|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# PyTorch 中的循环神经网络模块\n",
- "前面我们讲了循环神经网络的基础知识和网络结构,下面我们教大家如何在 pytorch 下构建循环神经网络,因为 pytorch 的动态图机制,使得循环神经网络非常方便。"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 一般的 RNN\n",
- "\n",
- "\n",
- "\n",
- "对于最简单的 RNN,我们可以使用下面两种方式去调用,分别是 `torch.nn.RNNCell()` 和 `torch.nn.RNN()`,这两种方式的区别在于 `RNNCell()` 只能接受序列中单步的输入,且必须传入隐藏状态,而 `RNN()` 可以接受一个序列的输入,默认会传入全 0 的隐藏状态,也可以自己申明隐藏状态传入。\n",
- "\n",
- "`RNN()` 里面的参数有\n",
- "\n",
- "input_size 表示输入 $x_t$ 的特征维度\n",
- "\n",
- "hidden_size 表示输出的特征维度\n",
- "\n",
- "num_layers 表示网络的层数\n",
- "\n",
- "nonlinearity 表示选用的非线性激活函数,默认是 'tanh'\n",
- "\n",
- "bias 表示是否使用偏置,默认使用\n",
- "\n",
- "batch_first 表示输入数据的形式,默认是 False,就是这样形式,(seq, batch, feature),也就是将序列长度放在第一位,batch 放在第二位\n",
- "\n",
- "dropout 表示是否在输出层应用 dropout\n",
- "\n",
- "bidirectional 表示是否使用双向的 rnn,默认是 False\n",
- "\n",
- "对于 `RNNCell()`,里面的参数就少很多,只有 input_size,hidden_size,bias 以及 nonlinearity"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 46,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "import torch\n",
- "from torch.autograd import Variable\n",
- "from torch import nn"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 47,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "# 定义一个单步的 rnn\n",
- "rnn_single = nn.RNNCell(input_size=100, hidden_size=200)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 48,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Parameter containing:\n",
- "1.00000e-02 *\n",
- " 6.2260 -5.3805 3.5870 ... -2.2162 6.2760 1.6760\n",
- "-5.1878 -4.6751 -5.5926 ... -1.8942 0.1589 1.0725\n",
- " 3.3236 -3.2726 5.5399 ... 3.3193 0.2117 1.1730\n",
- " ... ⋱ ... \n",
- " 2.4032 -3.4415 5.1036 ... -2.2035 -0.1900 -6.4016\n",
- " 5.2031 -1.5793 -0.0623 ... 0.3424 6.9412 6.3707\n",
- "-5.4495 4.5280 2.1774 ... 1.8767 2.4968 5.3403\n",
- "[torch.FloatTensor of size 200x200]"
- ]
- },
- "execution_count": 48,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 访问其中的参数\n",
- "rnn_single.weight_hh"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "# 构造一个序列,长为 6,batch 是 5, 特征是 100\n",
- "x = Variable(torch.randn(6, 5, 100)) # 这是 rnn 的输入格式"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "# 定义初始的记忆状态\n",
- "h_t = Variable(torch.zeros(5, 200))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "# 传入 rnn\n",
- "out = []\n",
- "for i in range(6): # 通过循环 6 次作用在整个序列上\n",
- " h_t = rnn_single(x[i], h_t)\n",
- " out.append(h_t)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 52,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Variable containing:\n",
- " 0.0136 0.3723 0.1704 ... 0.4306 -0.7909 -0.5306\n",
- "-0.2681 -0.6261 -0.3926 ... 0.1752 0.5739 -0.2061\n",
- "-0.4918 -0.7611 0.2787 ... 0.0854 -0.3899 0.0092\n",
- " 0.6050 0.1852 -0.4261 ... -0.7220 0.6809 0.1825\n",
- "-0.6851 0.7273 0.5396 ... -0.7969 0.6133 -0.0852\n",
- "[torch.FloatTensor of size 5x200]"
- ]
- },
- "execution_count": 52,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "h_t"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 54,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "6"
- ]
- },
- "execution_count": 54,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "len(out)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 55,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([5, 200])"
- ]
- },
- "execution_count": 55,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "out[0].shape # 每个输出的维度"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "可以看到经过了 rnn 之后,隐藏状态的值已经被改变了,因为网络记忆了序列中的信息,同时输出 6 个结果"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "下面我们看看直接使用 `RNN` 的情况"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "rnn_seq = nn.RNN(100, 200)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Parameter containing:\n",
- "1.00000e-02 *\n",
- " 1.0998 -1.5018 -1.4337 ... 3.8385 -0.8958 -1.6781\n",
- " 5.3302 -5.4654 5.5568 ... 4.7399 5.4110 3.6170\n",
- " 1.0788 -0.6620 5.7689 ... -5.0747 -2.9066 0.6152\n",
- " ... ⋱ ... \n",
- "-5.6921 0.1843 -0.0803 ... -4.5852 5.6194 -1.4734\n",
- " 4.4306 6.9795 -1.5736 ... 3.4236 -0.3441 3.1397\n",
- " 7.0349 -1.6120 -4.2840 ... -5.5676 6.8897 6.1968\n",
- "[torch.FloatTensor of size 200x200]"
- ]
- },
- "execution_count": 33,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 访问其中的参数\n",
- "rnn_seq.weight_hh_l0"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 34,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "out, h_t = rnn_seq(x) # 使用默认的全 0 隐藏状态"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Variable containing:\n",
- "( 0 ,.,.) = \n",
- " 0.2012 0.0517 0.0570 ... 0.2316 0.3615 -0.1247\n",
- " 0.5307 0.4147 0.7881 ... -0.4138 -0.1444 0.3602\n",
- " 0.0882 0.4307 0.3939 ... 0.3244 -0.4629 -0.2315\n",
- " 0.2868 0.7400 0.6534 ... 0.6631 0.2624 -0.0162\n",
- " 0.0841 0.6274 0.1840 ... 0.5800 0.8780 0.4301\n",
- "[torch.FloatTensor of size 1x5x200]"
- ]
- },
- "execution_count": 36,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "h_t"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 35,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "6"
- ]
- },
- "execution_count": 35,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "len(out)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "这里的 h_t 是网络最后的隐藏状态,网络也输出了 6 个结果"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 40,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "# 自己定义初始的隐藏状态\n",
- "h_0 = Variable(torch.randn(1, 5, 200))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "这里的隐藏状态的大小有三个维度,分别是 (num_layers * num_direction, batch, hidden_size)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "out, h_t = rnn_seq(x, h_0)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Variable containing:\n",
- "( 0 ,.,.) = \n",
- " 0.2091 0.0353 0.0625 ... 0.2340 0.3734 -0.1307\n",
- " 0.5498 0.4221 0.7877 ... -0.4143 -0.1209 0.3335\n",
- " 0.0757 0.4204 0.3826 ... 0.3187 -0.4626 -0.2336\n",
- " 0.3106 0.7355 0.6436 ... 0.6611 0.2587 -0.0338\n",
- " 0.1025 0.6350 0.1943 ... 0.5720 0.8749 0.4525\n",
- "[torch.FloatTensor of size 1x5x200]"
- ]
- },
- "execution_count": 42,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "h_t"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 45,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([6, 5, 200])"
- ]
- },
- "execution_count": 45,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "out.shape"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "同时输出的结果也是 (seq, batch, feature)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "一般情况下我们都是用 `nn.RNN()` 而不是 `nn.RNNCell()`,因为 `nn.RNN()` 能够避免我们手动写循环,非常方便,同时如果不特别说明,我们也会选择使用默认的全 0 初始化隐藏状态"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## LSTM"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- ""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "collapsed": true
- },
- "source": [
- "LSTM 和基本的 RNN 是一样的,他的参数也是相同的,同时他也有 `nn.LSTMCell()` 和 `nn.LSTM()` 两种形式,跟前面讲的都是相同的,我们就不再赘述了,下面直接举个小例子"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 58,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "lstm_seq = nn.LSTM(50, 100, num_layers=2) # 输入维度 100,输出 200,两层"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 80,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Parameter containing:\n",
- "1.00000e-02 *\n",
- " 3.8420 5.7387 6.1351 ... 1.2680 0.9890 1.3037\n",
- "-4.2301 6.8294 -4.8627 ... -6.4147 4.3015 8.4103\n",
- " 9.4411 5.0195 9.8620 ... -1.6096 9.2516 -0.6941\n",
- " ... ⋱ ... \n",
- " 1.2930 -1.3300 -0.9311 ... -6.0891 -0.7164 3.9578\n",
- " 9.0435 2.4674 9.4107 ... -3.3822 -3.9773 -3.0685\n",
- "-4.2039 -8.2992 -3.3605 ... 2.2875 8.2163 -9.3277\n",
- "[torch.FloatTensor of size 400x100]"
- ]
- },
- "execution_count": 80,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "lstm_seq.weight_hh_l0 # 第一层的 h_t 权重"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**小练习:想想为什么这个系数的大小是 (400, 100)**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 59,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "lstm_input = Variable(torch.randn(10, 3, 50)) # 序列 10,batch 是 3,输入维度 50"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 64,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "out, (h, c) = lstm_seq(lstm_input) # 使用默认的全 0 隐藏状态"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "注意这里 LSTM 输出的隐藏状态有两个,h 和 c,就是上图中的每个 cell 之间的两个箭头,这两个隐藏状态的大小都是相同的,(num_layers * direction, batch, feature)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 66,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([2, 3, 100])"
- ]
- },
- "execution_count": 66,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "h.shape # 两层,Batch 是 3,特征是 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 67,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([2, 3, 100])"
- ]
- },
- "execution_count": 67,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "c.shape"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 61,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([10, 3, 100])"
- ]
- },
- "execution_count": 61,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "out.shape"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "我们可以不使用默认的隐藏状态,这是需要传入两个张量"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 68,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "h_init = Variable(torch.randn(2, 3, 100))\n",
- "c_init = Variable(torch.randn(2, 3, 100))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 69,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "out, (h, c) = lstm_seq(lstm_input, (h_init, c_init))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 70,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([2, 3, 100])"
- ]
- },
- "execution_count": 70,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "h.shape"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 71,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([2, 3, 100])"
- ]
- },
- "execution_count": 71,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "c.shape"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 72,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([10, 3, 100])"
- ]
- },
- "execution_count": 72,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "out.shape"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# GRU\n",
- ""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "GRU 和前面讲的这两个是同样的道理,就不再细说,还是演示一下例子"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 73,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "gru_seq = nn.GRU(10, 20)\n",
- "gru_input = Variable(torch.randn(3, 32, 10))\n",
- "\n",
- "out, h = gru_seq(gru_input)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 76,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Parameter containing:\n",
- " 0.0766 -0.0548 -0.2008 ... -0.0250 -0.1819 0.1453\n",
- "-0.1676 0.1622 0.0417 ... 0.1905 -0.0071 -0.1038\n",
- " 0.0444 -0.1516 0.2194 ... -0.0009 0.0771 0.0476\n",
- " ... ⋱ ... \n",
- " 0.1698 -0.1707 0.0340 ... -0.1315 0.1278 0.0946\n",
- " 0.1936 0.1369 -0.0694 ... -0.0667 0.0429 0.1322\n",
- " 0.0870 -0.1884 0.1732 ... -0.1423 -0.1723 0.2147\n",
- "[torch.FloatTensor of size 60x20]"
- ]
- },
- "execution_count": 76,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "gru_seq.weight_hh_l0"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 75,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([1, 32, 20])"
- ]
- },
- "execution_count": 75,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "h.shape"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 74,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "torch.Size([3, 32, 20])"
- ]
- },
- "execution_count": 74,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "out.shape"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "mx",
- "language": "python",
- "name": "mx"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.0"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|