You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

References.md 3.9 kB

6 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. # References
  2. 可以自行在下属列表找找到适合自己的学习资料,虽然罗列的比较多,但是个人最好选择一个深入阅读、练习。当练习到一定程度,可以再看看其他的资料,这样弥补单一学习资料可能存在的欠缺。
  3. 列表等在 https://gitee.com/pi-lab/pilab_research_fields/blob/master/references/ML_References.md
  4. ## References
  5. * [形象直观了解谷歌大脑新型优化器LAMB](https://www.toutiao.com/i6687162064395305475/)
  6. * [5种常用的交叉验证技术,保证评估模型的稳定性](https://m.toutiaocdn.com/i6838062457596936718)
  7. * 22 个神经网络结构设计/可视化工具
  8. - https://www.toutiao.com/i6836884346155041292/
  9. - https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network
  10. * CNN 可视化工具 https://m.toutiaocdn.com/group/6822123587156050435
  11. - https://poloclub.github.io/cnn-explainer/
  12. - https://github.com/poloclub/cnn-explainer
  13. * 一款图像转卡通的Python项目,超级值得你练手
  14. - https://www.toutiao.com/a6821299115175969287/
  15. - https://github.com/minivision-ai/photo2cartoon
  16. * [Awesome Deep Learning Project Ideas](https://github.com/NirantK/awesome-project-ideas)
  17. * [Machine Learning From Scratch](https://github.com/eriklindernoren/ML-From-Scratch)
  18. ## Course & Code
  19. * [《统计学习方法》的代码](https://gitee.com/afishoutis/MachineLearning)
  20. ## Exercise
  21. * http://sofasofa.io/competitions.php?type=practice
  22. * https://www.kaggle.com/competitions
  23. * Machine learning project ideas
  24. * https://data-flair.training/blogs/machine-learning-project-ideas/
  25. * https://data-flair.training/blogs/deep-learning-project-ideas/
  26. * https://www.kdnuggets.com/2020/03/20-machine-learning-datasets-project-ideas.html
  27. * Titanic: notebooks/data-science-ipython-notebooks/kaggle/titanic.ipynb
  28. * 使用神经网络解决拼图游戏 https://www.toutiao.com/a6855437347463365133/
  29. * [Sudoku-Solver](https://github.com/shivaverma/Sudoku-Solver)
  30. ## Method
  31. * Programming Multiclass Logistic Regression
  32. notebooks/MachineLearningNotebooks/05.%20Logistic%20Regression.ipynb
  33. * Equation for MLP
  34. notebooks/MachineLearningNotebooks/07.%20MLP%20Neural%20Networks.ipynb
  35. * Optimization methods
  36. notebooks/MachineLearningNotebooks/06.%20Optimization.ipynb
  37. * https://github.com/wmpscc/DataMiningNotesAndPractice/blob/master/2.KMeans%E7%AE%97%E6%B3%95%E4%B8%8E%E4%BA%A4%E9%80%9A%E4%BA%8B%E6%95%85%E7%90%86%E8%B5%94%E5%AE%A1%E6%A0%B8%E9%A2%84%E6%B5%8B.md
  38. * evaluation metrics
  39. http://localhost:8889/notebooks/machineLearning/10_digits_classification.ipynb
  40. * model selection and assessment
  41. http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selection%20and%20Assessment.ipynb
  42. ## NN
  43. * 神经网络——梯度下降&反向传播 https://blog.csdn.net/skullfang/article/details/78634317
  44. * 零基础入门深度学习(3) - 神经网络和反向传播算法 https://www.zybuluo.com/hanbingtao/note/476663
  45. * 如何直观地解释 backpropagation 算法? https://www.zhihu.com/question/27239198
  46. * 一文弄懂神经网络中的反向传播法——BackPropagation https://www.cnblogs.com/charlotte77/p/5629865.html
  47. * https://medium.com/@UdacityINDIA/how-to-build-your-first-neural-network-with-python-6819c7f65dbf
  48. * https://enlight.nyc/projects/neural-network/
  49. * https://www.python-course.eu/neural_networks_with_python_numpy.php
  50. ## k-Means
  51. * [如何使用 Keras 实现无监督聚类](http://m.sohu.com/a/236221126_717210)
  52. ## AutoEncoder (自编码/非监督学习)
  53. * https://morvanzhou.github.io/tutorials/machine-learning/torch/4-04-autoencoder/
  54. * https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/404_autoencoder.py
  55. * pytorch AutoEncoder 自编码 https://www.jianshu.com/p/f0929f427d03
  56. * Adversarial Autoencoders (with Pytorch) https://blog.paperspace.com/adversarial-autoencoders-with-pytorch/

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。