You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

4_Data_Structure_2.ipynb 24 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "## 1. 字符串"
  8. ]
  9. },
  10. {
  11. "cell_type": "markdown",
  12. "metadata": {},
  13. "source": [
  14. "字符串是基于文本的有序数据,用单/双/三重引号括起来表示。"
  15. ]
  16. },
  17. {
  18. "cell_type": "code",
  19. "execution_count": 4,
  20. "metadata": {},
  21. "outputs": [
  22. {
  23. "name": "stdout",
  24. "output_type": "stream",
  25. "text": [
  26. "10\n"
  27. ]
  28. }
  29. ],
  30. "source": [
  31. "String0 = 'Taj Mahal is beautiful'\n",
  32. "String1 = \"Taj Mahal is beautiful\"\n",
  33. "String2 = '''Taj Mahal\n",
  34. "is\n",
  35. "beautiful'''"
  36. ]
  37. },
  38. {
  39. "cell_type": "code",
  40. "execution_count": 3,
  41. "metadata": {},
  42. "outputs": [
  43. {
  44. "name": "stdout",
  45. "output_type": "stream",
  46. "text": [
  47. "Taj Mahal is beautiful <class 'str'>\n",
  48. "Taj Mahal is beautiful <class 'str'>\n",
  49. "Taj Mahal\n",
  50. "is\n",
  51. "beautiful <class 'str'>\n"
  52. ]
  53. }
  54. ],
  55. "source": [
  56. "print(String0, type(String0))\n",
  57. "print(String1, type(String1))\n",
  58. "print(String2, type(String2))"
  59. ]
  60. },
  61. {
  62. "cell_type": "markdown",
  63. "metadata": {},
  64. "source": [
  65. "字符串索引和分段类似于前面详细解释过的列表。"
  66. ]
  67. },
  68. {
  69. "cell_type": "code",
  70. "execution_count": 5,
  71. "metadata": {},
  72. "outputs": [
  73. {
  74. "name": "stdout",
  75. "output_type": "stream",
  76. "text": [
  77. "M\n",
  78. "Mahal is beautiful\n"
  79. ]
  80. }
  81. ],
  82. "source": [
  83. "print(String0[4])\n",
  84. "print(String0[4:])"
  85. ]
  86. },
  87. {
  88. "cell_type": "markdown",
  89. "metadata": {},
  90. "source": [
  91. "### 1.1 内置函数"
  92. ]
  93. },
  94. {
  95. "cell_type": "markdown",
  96. "metadata": {},
  97. "source": [
  98. "**find( )** 函数返回要在字符串中找到的给定数据的索引值。如果没有找到它,它返回 **-1**。记住不要将返回的-1与反向索引值混淆。"
  99. ]
  100. },
  101. {
  102. "cell_type": "code",
  103. "execution_count": 6,
  104. "metadata": {},
  105. "outputs": [
  106. {
  107. "name": "stdout",
  108. "output_type": "stream",
  109. "text": [
  110. "7\n",
  111. "-1\n"
  112. ]
  113. }
  114. ],
  115. "source": [
  116. "print(String0.find('al'))\n",
  117. "print(String0.find('am'))"
  118. ]
  119. },
  120. {
  121. "cell_type": "markdown",
  122. "metadata": {},
  123. "source": [
  124. "返回的索引值是输入数据中第一个元素的索引。"
  125. ]
  126. },
  127. {
  128. "cell_type": "code",
  129. "execution_count": 7,
  130. "metadata": {},
  131. "outputs": [
  132. {
  133. "name": "stdout",
  134. "output_type": "stream",
  135. "text": [
  136. "a\n"
  137. ]
  138. }
  139. ],
  140. "source": [
  141. "print(String0[7])"
  142. ]
  143. },
  144. {
  145. "cell_type": "markdown",
  146. "metadata": {},
  147. "source": [
  148. "还可以输入**find()** 函数,在它们之间搜索索引值。"
  149. ]
  150. },
  151. {
  152. "cell_type": "code",
  153. "execution_count": 8,
  154. "metadata": {},
  155. "outputs": [
  156. {
  157. "name": "stdout",
  158. "output_type": "stream",
  159. "text": [
  160. "2\n",
  161. "2\n"
  162. ]
  163. }
  164. ],
  165. "source": [
  166. "print(String0.find('j',1))\n",
  167. "print(String0.find('j',1,3))"
  168. ]
  169. },
  170. {
  171. "cell_type": "markdown",
  172. "metadata": {},
  173. "source": [
  174. "**capitalize( )** 用于将字符串中的第一个元素大写。"
  175. ]
  176. },
  177. {
  178. "cell_type": "code",
  179. "execution_count": 9,
  180. "metadata": {},
  181. "outputs": [
  182. {
  183. "name": "stdout",
  184. "output_type": "stream",
  185. "text": [
  186. "Observe the first letter in this sentence. can you change this sentence\n"
  187. ]
  188. }
  189. ],
  190. "source": [
  191. "String3 = 'observe the first letter in this sentence. can you change this sentence'\n",
  192. "print(String3.capitalize())"
  193. ]
  194. },
  195. {
  196. "cell_type": "markdown",
  197. "metadata": {},
  198. "source": [
  199. "**center( )** 用于通过指定字段宽度将字符串居中对齐。"
  200. ]
  201. },
  202. {
  203. "cell_type": "code",
  204. "execution_count": 10,
  205. "metadata": {},
  206. "outputs": [
  207. {
  208. "data": {
  209. "text/plain": [
  210. "' Taj Mahal is beautiful '"
  211. ]
  212. },
  213. "execution_count": 10,
  214. "metadata": {},
  215. "output_type": "execute_result"
  216. }
  217. ],
  218. "source": [
  219. "String0.center(70)"
  220. ]
  221. },
  222. {
  223. "cell_type": "markdown",
  224. "metadata": {},
  225. "source": [
  226. "One can also fill the left out spaces with any other character."
  227. ]
  228. },
  229. {
  230. "cell_type": "code",
  231. "execution_count": 11,
  232. "metadata": {},
  233. "outputs": [
  234. {
  235. "data": {
  236. "text/plain": [
  237. "'------------------------Taj Mahal is beautiful------------------------'"
  238. ]
  239. },
  240. "execution_count": 11,
  241. "metadata": {},
  242. "output_type": "execute_result"
  243. }
  244. ],
  245. "source": [
  246. "String0.center(70,'-')"
  247. ]
  248. },
  249. {
  250. "cell_type": "markdown",
  251. "metadata": {},
  252. "source": [
  253. "**zfill( )** 通过指定字段宽度来填充零。"
  254. ]
  255. },
  256. {
  257. "cell_type": "code",
  258. "execution_count": 12,
  259. "metadata": {},
  260. "outputs": [
  261. {
  262. "data": {
  263. "text/plain": [
  264. "'00000000Taj Mahal is beautiful'"
  265. ]
  266. },
  267. "execution_count": 12,
  268. "metadata": {},
  269. "output_type": "execute_result"
  270. }
  271. ],
  272. "source": [
  273. "String0.zfill(30)"
  274. ]
  275. },
  276. {
  277. "cell_type": "markdown",
  278. "metadata": {},
  279. "source": [
  280. "**expandtabs( )** 允许您更改制表符的间距。'\\t'默认设置为8个空格。"
  281. ]
  282. },
  283. {
  284. "cell_type": "code",
  285. "execution_count": 13,
  286. "metadata": {},
  287. "outputs": [
  288. {
  289. "name": "stdout",
  290. "output_type": "stream",
  291. "text": [
  292. "h\te\tl\tl\to\n",
  293. "h e l l o\n",
  294. "h e l l o\n"
  295. ]
  296. }
  297. ],
  298. "source": [
  299. "s = 'h\\te\\tl\\tl\\to'\n",
  300. "print(s)\n",
  301. "print(s.expandtabs(1))\n",
  302. "print(s.expandtabs())"
  303. ]
  304. },
  305. {
  306. "cell_type": "markdown",
  307. "metadata": {
  308. "collapsed": true
  309. },
  310. "source": [
  311. "**index( )** 和 **find( )** 函数的工作方式相同,唯一的区别在于 **find( )** 返回'-1',当输入元素在字符串中没有找到,但是**index( )** 函数会抛出一个ValueError。"
  312. ]
  313. },
  314. {
  315. "cell_type": "code",
  316. "execution_count": 14,
  317. "metadata": {},
  318. "outputs": [
  319. {
  320. "name": "stdout",
  321. "output_type": "stream",
  322. "text": [
  323. "0\n",
  324. "4\n"
  325. ]
  326. },
  327. {
  328. "ename": "ValueError",
  329. "evalue": "substring not found",
  330. "output_type": "error",
  331. "traceback": [
  332. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  333. "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
  334. "\u001b[0;32m<ipython-input-14-a7d6b97b4839>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Taj'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Mahal'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Mahal'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  335. "\u001b[0;31mValueError\u001b[0m: substring not found"
  336. ]
  337. }
  338. ],
  339. "source": [
  340. "print(String0.index('Taj'))\n",
  341. "print(String0.index('Mahal',0))\n",
  342. "print(String0.index('Mahal',10,20))"
  343. ]
  344. },
  345. {
  346. "cell_type": "markdown",
  347. "metadata": {},
  348. "source": [
  349. "**endswith( )** 函数用于检查给定字符串是否以作为输入的特定字符结尾。"
  350. ]
  351. },
  352. {
  353. "cell_type": "code",
  354. "execution_count": 15,
  355. "metadata": {},
  356. "outputs": [
  357. {
  358. "name": "stdout",
  359. "output_type": "stream",
  360. "text": [
  361. "False\n"
  362. ]
  363. }
  364. ],
  365. "source": [
  366. "print(String0.endswith('y'))"
  367. ]
  368. },
  369. {
  370. "cell_type": "markdown",
  371. "metadata": {},
  372. "source": [
  373. "还可以指定开始和停止索引值。"
  374. ]
  375. },
  376. {
  377. "cell_type": "code",
  378. "execution_count": 14,
  379. "metadata": {},
  380. "outputs": [
  381. {
  382. "name": "stdout",
  383. "output_type": "stream",
  384. "text": [
  385. "True\n",
  386. "True\n"
  387. ]
  388. }
  389. ],
  390. "source": [
  391. "print(String0.endswith('l',0))\n",
  392. "print(String0.endswith('M',0,5))"
  393. ]
  394. },
  395. {
  396. "cell_type": "markdown",
  397. "metadata": {},
  398. "source": [
  399. "**count( )** 函数计算给定字符串中的字符数。也可以指定开始和停止索引或将其留空。(这些是隐式参数,将在函数中处理)"
  400. ]
  401. },
  402. {
  403. "cell_type": "code",
  404. "execution_count": 15,
  405. "metadata": {},
  406. "outputs": [
  407. {
  408. "name": "stdout",
  409. "output_type": "stream",
  410. "text": [
  411. "4\n",
  412. "2\n"
  413. ]
  414. }
  415. ],
  416. "source": [
  417. "print(String0.count('a',0))\n",
  418. "print(String0.count('a',5,10))"
  419. ]
  420. },
  421. {
  422. "cell_type": "markdown",
  423. "metadata": {},
  424. "source": [
  425. "**join( )** 函数在输入字符串的元素之间添加一个字符。"
  426. ]
  427. },
  428. {
  429. "cell_type": "code",
  430. "execution_count": 16,
  431. "metadata": {},
  432. "outputs": [
  433. {
  434. "data": {
  435. "text/plain": [
  436. "'*a_a-'"
  437. ]
  438. },
  439. "execution_count": 16,
  440. "metadata": {},
  441. "output_type": "execute_result"
  442. }
  443. ],
  444. "source": [
  445. "'a'.join('*_-')"
  446. ]
  447. },
  448. {
  449. "cell_type": "code",
  450. "execution_count": 6,
  451. "metadata": {},
  452. "outputs": [
  453. {
  454. "data": {
  455. "text/plain": [
  456. "'1\\n2'"
  457. ]
  458. },
  459. "execution_count": 6,
  460. "metadata": {},
  461. "output_type": "execute_result"
  462. }
  463. ],
  464. "source": [
  465. "'\\n'.join(['1', '2'])"
  466. ]
  467. },
  468. {
  469. "cell_type": "markdown",
  470. "metadata": {},
  471. "source": [
  472. "'*_-' 是输入字符串而字符'a'被添加在每一个元素之间。"
  473. ]
  474. },
  475. {
  476. "cell_type": "markdown",
  477. "metadata": {},
  478. "source": [
  479. "**join( )** 函数也可以被用来将列表转化为字符串。"
  480. ]
  481. },
  482. {
  483. "cell_type": "code",
  484. "execution_count": 17,
  485. "metadata": {},
  486. "outputs": [
  487. {
  488. "name": "stdout",
  489. "output_type": "stream",
  490. "text": [
  491. "['T', 'a', 'j', ' ', 'M', 'a', 'h', 'a', 'l', ' ', 'i', 's', ' ', 'b', 'e', 'a', 'u', 't', 'i', 'f', 'u', 'l']\n",
  492. "Taj Mahal is beautiful\n"
  493. ]
  494. }
  495. ],
  496. "source": [
  497. "a = list(String0)\n",
  498. "print(a)\n",
  499. "b = ''.join(a)\n",
  500. "print(b)"
  501. ]
  502. },
  503. {
  504. "cell_type": "markdown",
  505. "metadata": {},
  506. "source": [
  507. "在将它转化成字符串之前,**join( )** 函数可以被用来在列表元素中插入任意的字符。"
  508. ]
  509. },
  510. {
  511. "cell_type": "code",
  512. "execution_count": 18,
  513. "metadata": {},
  514. "outputs": [
  515. {
  516. "name": "stdout",
  517. "output_type": "stream",
  518. "text": [
  519. " /i/s/ /b/e/a/u/t/i/f/u/l\n"
  520. ]
  521. }
  522. ],
  523. "source": [
  524. "c = '/'.join(a)[18:]\n",
  525. "print(c)"
  526. ]
  527. },
  528. {
  529. "cell_type": "markdown",
  530. "metadata": {},
  531. "source": [
  532. "**split( )** 函数被用来将一个字符串转化为列表。把它想成与**join()** 相反地函数。"
  533. ]
  534. },
  535. {
  536. "cell_type": "code",
  537. "execution_count": 19,
  538. "metadata": {},
  539. "outputs": [
  540. {
  541. "name": "stdout",
  542. "output_type": "stream",
  543. "text": [
  544. "[' ', 'i', 's', ' ', 'b', 'e', 'a', 'u', 't', 'i', 'f', 'u', 'l']\n"
  545. ]
  546. }
  547. ],
  548. "source": [
  549. "d = c.split('/')\n",
  550. "print(d)"
  551. ]
  552. },
  553. {
  554. "cell_type": "markdown",
  555. "metadata": {},
  556. "source": [
  557. "在 **split( )** 函数中,还可以指定分割字符串的次数,或者新返回列表应该包含的元素数量。元素的数量总是比指定的数量多1,这是因为它被分割了指定的次数。"
  558. ]
  559. },
  560. {
  561. "cell_type": "code",
  562. "execution_count": 20,
  563. "metadata": {},
  564. "outputs": [
  565. {
  566. "name": "stdout",
  567. "output_type": "stream",
  568. "text": [
  569. "[' ', 'i', 's', ' /b/e/a/u/t/i/f/u/l']\n",
  570. "4\n"
  571. ]
  572. }
  573. ],
  574. "source": [
  575. "e = c.split('/',3)\n",
  576. "print(e)\n",
  577. "print(len(e))"
  578. ]
  579. },
  580. {
  581. "cell_type": "markdown",
  582. "metadata": {},
  583. "source": [
  584. "**lower( )** 将任何大写字母转换为小写字母。"
  585. ]
  586. },
  587. {
  588. "cell_type": "code",
  589. "execution_count": 21,
  590. "metadata": {},
  591. "outputs": [
  592. {
  593. "name": "stdout",
  594. "output_type": "stream",
  595. "text": [
  596. "Taj Mahal is beautiful\n",
  597. "taj mahal is beautiful\n"
  598. ]
  599. }
  600. ],
  601. "source": [
  602. "print(String0)\n",
  603. "print(String0.lower())"
  604. ]
  605. },
  606. {
  607. "cell_type": "markdown",
  608. "metadata": {},
  609. "source": [
  610. "**upper( )** 将任何小写字母转换为大写字母。"
  611. ]
  612. },
  613. {
  614. "cell_type": "code",
  615. "execution_count": 12,
  616. "metadata": {},
  617. "outputs": [
  618. {
  619. "data": {
  620. "text/plain": [
  621. "'TAJ MAHAL IS BEAUTIFUL'"
  622. ]
  623. },
  624. "execution_count": 12,
  625. "metadata": {},
  626. "output_type": "execute_result"
  627. }
  628. ],
  629. "source": [
  630. "String0.upper()"
  631. ]
  632. },
  633. {
  634. "cell_type": "markdown",
  635. "metadata": {},
  636. "source": [
  637. "**replace( )** 函数将该元素替换为另一个元素。"
  638. ]
  639. },
  640. {
  641. "cell_type": "code",
  642. "execution_count": 22,
  643. "metadata": {},
  644. "outputs": [
  645. {
  646. "data": {
  647. "text/plain": [
  648. "'Bengaluru is beautiful'"
  649. ]
  650. },
  651. "execution_count": 22,
  652. "metadata": {},
  653. "output_type": "execute_result"
  654. }
  655. ],
  656. "source": [
  657. "String0.replace('Taj Mahal','Bengaluru')"
  658. ]
  659. },
  660. {
  661. "cell_type": "markdown",
  662. "metadata": {},
  663. "source": [
  664. "**strip( )** 函数用于从右端和左端删除不需要的元素。"
  665. ]
  666. },
  667. {
  668. "cell_type": "code",
  669. "execution_count": 16,
  670. "metadata": {},
  671. "outputs": [],
  672. "source": [
  673. "f = ' hello '"
  674. ]
  675. },
  676. {
  677. "cell_type": "markdown",
  678. "metadata": {},
  679. "source": [
  680. "如果没有指定字符,那么它将删除数据左边和右边的所有空格。"
  681. ]
  682. },
  683. {
  684. "cell_type": "code",
  685. "execution_count": 17,
  686. "metadata": {},
  687. "outputs": [
  688. {
  689. "data": {
  690. "text/plain": [
  691. "'hello'"
  692. ]
  693. },
  694. "execution_count": 17,
  695. "metadata": {},
  696. "output_type": "execute_result"
  697. }
  698. ],
  699. "source": [
  700. "f.strip()"
  701. ]
  702. },
  703. {
  704. "cell_type": "markdown",
  705. "metadata": {},
  706. "source": [
  707. "**strip( )** 函数,当指定字符时,如果该字符出现在指定字符串的两端,则删除该字符。"
  708. ]
  709. },
  710. {
  711. "cell_type": "code",
  712. "execution_count": 20,
  713. "metadata": {},
  714. "outputs": [],
  715. "source": [
  716. "f = ' ***----hello---******* '"
  717. ]
  718. },
  719. {
  720. "cell_type": "code",
  721. "execution_count": 21,
  722. "metadata": {},
  723. "outputs": [
  724. {
  725. "data": {
  726. "text/plain": [
  727. "' ***----hello---******* '"
  728. ]
  729. },
  730. "execution_count": 21,
  731. "metadata": {},
  732. "output_type": "execute_result"
  733. }
  734. ],
  735. "source": [
  736. "f.strip('*')"
  737. ]
  738. },
  739. {
  740. "cell_type": "markdown",
  741. "metadata": {},
  742. "source": [
  743. "必须删除星号,但没有。这是因为在左边和右边都有一个空格。在strip函数中。字符需要按照它们出现的特定顺序输入。"
  744. ]
  745. },
  746. {
  747. "cell_type": "code",
  748. "execution_count": 22,
  749. "metadata": {},
  750. "outputs": [
  751. {
  752. "name": "stdout",
  753. "output_type": "stream",
  754. "text": [
  755. "----hello---\n",
  756. "hello\n"
  757. ]
  758. }
  759. ],
  760. "source": [
  761. "print(f.strip(' *'))\n",
  762. "print(f.strip(' *-'))"
  763. ]
  764. },
  765. {
  766. "cell_type": "markdown",
  767. "metadata": {},
  768. "source": [
  769. "**lstrip( )** 和 **rstrip( )** 函数具有与strip函数相同的功能,但唯一的区别是**lstrip()** 只删除左边的内容,而**rstrip()** 只删除右边的内容。"
  770. ]
  771. },
  772. {
  773. "cell_type": "code",
  774. "execution_count": 28,
  775. "metadata": {},
  776. "outputs": [
  777. {
  778. "name": "stdout",
  779. "output_type": "stream",
  780. "text": [
  781. "----hello---******* \n",
  782. " ***----hello---\n"
  783. ]
  784. }
  785. ],
  786. "source": [
  787. "print(f.lstrip(' *'))\n",
  788. "print(f.rstrip(' *'))"
  789. ]
  790. },
  791. {
  792. "cell_type": "markdown",
  793. "metadata": {},
  794. "source": [
  795. "## 2. 词典"
  796. ]
  797. },
  798. {
  799. "cell_type": "markdown",
  800. "metadata": {},
  801. "source": [
  802. "字典更像数据库,因为在这里您可以用用户定义的字符串索引特定的序列。"
  803. ]
  804. },
  805. {
  806. "cell_type": "markdown",
  807. "metadata": {},
  808. "source": [
  809. "为了定义一个词典,让一个变量和{ }或dict()相等。"
  810. ]
  811. },
  812. {
  813. "cell_type": "code",
  814. "execution_count": 24,
  815. "metadata": {},
  816. "outputs": [
  817. {
  818. "name": "stdout",
  819. "output_type": "stream",
  820. "text": [
  821. "<class 'dict'> <class 'dict'>\n"
  822. ]
  823. }
  824. ],
  825. "source": [
  826. "d0 = {}\n",
  827. "d1 = dict()\n",
  828. "print(type(d0), type(d1))"
  829. ]
  830. },
  831. {
  832. "cell_type": "markdown",
  833. "metadata": {},
  834. "source": [
  835. "词典的工作方式有点像列表,但增加了分配自己索引样式的功能。"
  836. ]
  837. },
  838. {
  839. "cell_type": "code",
  840. "execution_count": 25,
  841. "metadata": {},
  842. "outputs": [
  843. {
  844. "name": "stdout",
  845. "output_type": "stream",
  846. "text": [
  847. "{'OneTwo': 12, 'One': 1}\n"
  848. ]
  849. }
  850. ],
  851. "source": [
  852. "d0['One'] = 1\n",
  853. "d0['OneTwo'] = 12 \n",
  854. "print(d0)"
  855. ]
  856. },
  857. {
  858. "cell_type": "code",
  859. "execution_count": 26,
  860. "metadata": {},
  861. "outputs": [
  862. {
  863. "name": "stdout",
  864. "output_type": "stream",
  865. "text": [
  866. "{'key2': [1, 2, 4], 'key1': 1, 3: (1, 4, 6)}\n"
  867. ]
  868. }
  869. ],
  870. "source": [
  871. "d1 = {\"key1\":1, \"key2\":[1,2,4], 3:(1, 4, 6)}\n",
  872. "print(d1)"
  873. ]
  874. },
  875. {
  876. "cell_type": "markdown",
  877. "metadata": {},
  878. "source": [
  879. "这就是字典的样子。现在你可以通过设为'One'的索引值来访问'1'了"
  880. ]
  881. },
  882. {
  883. "cell_type": "code",
  884. "execution_count": 27,
  885. "metadata": {},
  886. "outputs": [
  887. {
  888. "name": "stdout",
  889. "output_type": "stream",
  890. "text": [
  891. "1\n"
  892. ]
  893. }
  894. ],
  895. "source": [
  896. "print(d0['One'])"
  897. ]
  898. },
  899. {
  900. "cell_type": "markdown",
  901. "metadata": {},
  902. "source": [
  903. "两个相关的列表可以合并成一个字典。"
  904. ]
  905. },
  906. {
  907. "cell_type": "code",
  908. "execution_count": 1,
  909. "metadata": {},
  910. "outputs": [],
  911. "source": [
  912. "names = ['One', 'Two', 'Three', 'Four', 'Five']\n",
  913. "numbers = [1, 2, 3, 4, 5]"
  914. ]
  915. },
  916. {
  917. "cell_type": "markdown",
  918. "metadata": {},
  919. "source": [
  920. "**zip( )** 函数用来结合两个列表。"
  921. ]
  922. },
  923. {
  924. "cell_type": "code",
  925. "execution_count": 4,
  926. "metadata": {},
  927. "outputs": [
  928. {
  929. "name": "stdout",
  930. "output_type": "stream",
  931. "text": [
  932. "{'One': 1, 'Four': 4, 'Three': 3, 'Five': 5, 'Two': 2}\n"
  933. ]
  934. }
  935. ],
  936. "source": [
  937. "d2 = zip(names,numbers)\n",
  938. "print(dict(d2))"
  939. ]
  940. },
  941. {
  942. "cell_type": "markdown",
  943. "metadata": {},
  944. "source": [
  945. "这两个列表组合成一个列表,每个元素都与元组中来自另一个列表的各自元素相连。元组,因为它是被分配的,而且值不应该改变。\n",
  946. "\n",
  947. "进一步地,为了将上面的内容转化为词典。我们可以使用 **dict( )** 函数。"
  948. ]
  949. },
  950. {
  951. "cell_type": "code",
  952. "execution_count": 5,
  953. "metadata": {},
  954. "outputs": [
  955. {
  956. "name": "stdout",
  957. "output_type": "stream",
  958. "text": [
  959. "{'One': 1, 'Four': 4, 'Three': 3, 'Five': 5, 'Two': 2}\n"
  960. ]
  961. }
  962. ],
  963. "source": [
  964. "d2 = zip(names,numbers)\n",
  965. "\n",
  966. "a1 = dict(d2)\n",
  967. "print(a1)"
  968. ]
  969. },
  970. {
  971. "cell_type": "markdown",
  972. "metadata": {},
  973. "source": [
  974. "### 2.1 内置函数"
  975. ]
  976. },
  977. {
  978. "cell_type": "markdown",
  979. "metadata": {},
  980. "source": [
  981. "**clear( )** 函数被用于擦除所创建的整个数据库。"
  982. ]
  983. },
  984. {
  985. "cell_type": "code",
  986. "execution_count": 6,
  987. "metadata": {},
  988. "outputs": [
  989. {
  990. "name": "stdout",
  991. "output_type": "stream",
  992. "text": [
  993. "{}\n"
  994. ]
  995. }
  996. ],
  997. "source": [
  998. "a1.clear()\n",
  999. "print(a1)"
  1000. ]
  1001. },
  1002. {
  1003. "cell_type": "markdown",
  1004. "metadata": {},
  1005. "source": [
  1006. "字典也可以使用循环来构建。"
  1007. ]
  1008. },
  1009. {
  1010. "cell_type": "code",
  1011. "execution_count": 9,
  1012. "metadata": {},
  1013. "outputs": [
  1014. {
  1015. "name": "stdout",
  1016. "output_type": "stream",
  1017. "text": [
  1018. "{'One': 1, 'Four': 4, 'Three': 3, 'Five': 5, 'Two': 2}\n"
  1019. ]
  1020. }
  1021. ],
  1022. "source": [
  1023. "a1 = {names[i]:numbers[i] for i in range(len(names))}\n",
  1024. "print(a1)"
  1025. ]
  1026. },
  1027. {
  1028. "cell_type": "code",
  1029. "execution_count": 7,
  1030. "metadata": {},
  1031. "outputs": [
  1032. {
  1033. "name": "stdout",
  1034. "output_type": "stream",
  1035. "text": [
  1036. "{'One': 1, 'Four': 4, 'Three': 3, 'Five': 5, 'Two': 2}\n"
  1037. ]
  1038. }
  1039. ],
  1040. "source": [
  1041. "for i in range(len(names)):\n",
  1042. " a1[names[i]] = numbers[i]\n",
  1043. "print(a1)"
  1044. ]
  1045. },
  1046. {
  1047. "cell_type": "markdown",
  1048. "metadata": {},
  1049. "source": [
  1050. "**values( )** 函数返回了一个包含字典中所有赋值的列表"
  1051. ]
  1052. },
  1053. {
  1054. "cell_type": "code",
  1055. "execution_count": 10,
  1056. "metadata": {},
  1057. "outputs": [
  1058. {
  1059. "data": {
  1060. "text/plain": [
  1061. "dict_values([1, 4, 3, 5, 2])"
  1062. ]
  1063. },
  1064. "execution_count": 10,
  1065. "metadata": {},
  1066. "output_type": "execute_result"
  1067. }
  1068. ],
  1069. "source": [
  1070. "a1.values()"
  1071. ]
  1072. },
  1073. {
  1074. "cell_type": "markdown",
  1075. "metadata": {},
  1076. "source": [
  1077. "**keys( )** 函数返回包含赋值的所有索引或键。"
  1078. ]
  1079. },
  1080. {
  1081. "cell_type": "code",
  1082. "execution_count": 11,
  1083. "metadata": {},
  1084. "outputs": [
  1085. {
  1086. "data": {
  1087. "text/plain": [
  1088. "dict_keys(['One', 'Four', 'Three', 'Five', 'Two'])"
  1089. ]
  1090. },
  1091. "execution_count": 11,
  1092. "metadata": {},
  1093. "output_type": "execute_result"
  1094. }
  1095. ],
  1096. "source": [
  1097. "a1.keys()"
  1098. ]
  1099. },
  1100. {
  1101. "cell_type": "markdown",
  1102. "metadata": {},
  1103. "source": [
  1104. "**items()** 返回一个列表同时也包含该列表,但是字典中的每个元素都在一个元组中。这与使用zip函数得到的结果相同。"
  1105. ]
  1106. },
  1107. {
  1108. "cell_type": "code",
  1109. "execution_count": 12,
  1110. "metadata": {},
  1111. "outputs": [
  1112. {
  1113. "name": "stdout",
  1114. "output_type": "stream",
  1115. "text": [
  1116. "[ One] 1\n",
  1117. "[ Four] 4\n",
  1118. "[ Three] 3\n",
  1119. "[ Five] 5\n",
  1120. "[ Two] 2\n"
  1121. ]
  1122. }
  1123. ],
  1124. "source": [
  1125. "a1.items()\n",
  1126. "\n",
  1127. "for (k,v) in a1.items():\n",
  1128. " print(\"[%6s] %d\" % (k, v))"
  1129. ]
  1130. },
  1131. {
  1132. "cell_type": "markdown",
  1133. "metadata": {},
  1134. "source": [
  1135. "**pop()** 函数用于删除特定的元素,并且这个删除的元素可以被分配给一个新的变量。但是请记住,只存储值而不存储键。因为它只是一个索引值。"
  1136. ]
  1137. },
  1138. {
  1139. "cell_type": "code",
  1140. "execution_count": 13,
  1141. "metadata": {},
  1142. "outputs": [
  1143. {
  1144. "name": "stdout",
  1145. "output_type": "stream",
  1146. "text": [
  1147. "{'One': 1, 'Three': 3, 'Five': 5, 'Two': 2}\n",
  1148. "4\n"
  1149. ]
  1150. }
  1151. ],
  1152. "source": [
  1153. "a2 = a1.pop('Four')\n",
  1154. "print(a1)\n",
  1155. "print(a2)"
  1156. ]
  1157. }
  1158. ],
  1159. "metadata": {
  1160. "kernelspec": {
  1161. "display_name": "Python 3",
  1162. "language": "python",
  1163. "name": "python3"
  1164. },
  1165. "language_info": {
  1166. "codemirror_mode": {
  1167. "name": "ipython",
  1168. "version": 3
  1169. },
  1170. "file_extension": ".py",
  1171. "mimetype": "text/x-python",
  1172. "name": "python",
  1173. "nbconvert_exporter": "python",
  1174. "pygments_lexer": "ipython3",
  1175. "version": "3.6.8"
  1176. }
  1177. },
  1178. "nbformat": 4,
  1179. "nbformat_minor": 1
  1180. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。