You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

0-ipython_notebook.ipynb 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# IPython和Jupyter笔记本"
  8. ]
  9. },
  10. {
  11. "cell_type": "markdown",
  12. "metadata": {},
  13. "source": [
  14. "本在线讲义使用Jupyter Notebook编写,因此首先介绍Jupter Notebook的使用方法。使用Notebook,可以方便的将理论描述、程序、数据可视化等集成在一个多媒体页面,方便大家的学习。\n",
  15. "\n",
  16. "Jupyter notebook 是一种 Web 应用,它能让用户将说明文本、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,非常方便研究和教学,让编写、阅读变得一目了然。Jupyter notebook特别适合做科学计算、数据处理,其用途可以包括数据清理和探索、可视化、机器学习和大数据分析。其具有以下特点:\n",
  17. "* 编程时具有语法高亮、缩进、tab补全的功能。\n",
  18. "* 可直接通过浏览器运行代码,同时在代码块下方展示运行结果。\n",
  19. "* 以富媒体格式展示计算结果。富媒体格式包括:HTML,LaTeX,PNG,SVG等。\n",
  20. "* 对代码编写说明文档或语句时,支持Markdown语法。\n",
  21. "* 支持使用LaTeX编写数学性说明。\n"
  22. ]
  23. },
  24. {
  25. "cell_type": "markdown",
  26. "metadata": {},
  27. "source": [
  28. "## Jupyter 安装\n",
  29. "安装Jupyter最简单的方法就是使用 Anaconda,其发行版附带了 Jupyter Notebook。在 conda 环境下安装 Jupyter Notebook 可以使用 \n",
  30. "\n",
  31. "```\n",
  32. "conda install jupyter\n",
  33. "```\n",
  34. "\n",
  35. "当然,也可以通过 `pip` 来安装 \n",
  36. "```\n",
  37. "pip install jupyter。\n",
  38. "```\n",
  39. "\n",
  40. "安装后便可在终端中输入以下命令启动:\n",
  41. "```\n",
  42. "# jupyter notebook\n",
  43. "\n",
  44. "或者\n",
  45. "# jupyter-notebook\n",
  46. "```"
  47. ]
  48. },
  49. {
  50. "cell_type": "markdown",
  51. "metadata": {},
  52. "source": [
  53. "## 常用操作\n",
  54. "\n",
  55. "![shortcut](images/jupyter_shortcuts.png)"
  56. ]
  57. },
  58. {
  59. "cell_type": "code",
  60. "execution_count": 2,
  61. "metadata": {
  62. "podoc": {
  63. "output_text": "Screenshot of a Jupyter notebook"
  64. }
  65. },
  66. "outputs": [
  67. {
  68. "name": "stdout",
  69. "output_type": "stream",
  70. "text": [
  71. "Hello world!\n"
  72. ]
  73. }
  74. ],
  75. "source": [
  76. "print(\"Hello world!\")"
  77. ]
  78. },
  79. {
  80. "cell_type": "code",
  81. "execution_count": 3,
  82. "metadata": {},
  83. "outputs": [
  84. {
  85. "data": {
  86. "text/plain": [
  87. "4"
  88. ]
  89. },
  90. "execution_count": 3,
  91. "metadata": {},
  92. "output_type": "execute_result"
  93. }
  94. ],
  95. "source": [
  96. "2 + 2"
  97. ]
  98. },
  99. {
  100. "cell_type": "code",
  101. "execution_count": 4,
  102. "metadata": {},
  103. "outputs": [
  104. {
  105. "data": {
  106. "text/plain": [
  107. "12"
  108. ]
  109. },
  110. "execution_count": 4,
  111. "metadata": {},
  112. "output_type": "execute_result"
  113. }
  114. ],
  115. "source": [
  116. "_ * 3"
  117. ]
  118. },
  119. {
  120. "cell_type": "code",
  121. "execution_count": 5,
  122. "metadata": {},
  123. "outputs": [
  124. {
  125. "name": "stdout",
  126. "output_type": "stream",
  127. "text": [
  128. "0-ipython_notebook_EN.ipynb 3_Data_Structure_1.ipynb\t 7_Class_EN.ipynb\r\n",
  129. "0-ipython_notebook.ipynb 4_Data_Structure_2_EN.ipynb 7_Class.ipynb\r\n",
  130. "1_Basics_EN.ipynb\t 4_Data_Structure_2.ipynb\t images\r\n",
  131. "1_Basics.ipynb\t\t 5_Control_Flow_EN.ipynb\t Python.pdf\r\n",
  132. "2_Print_Statement_EN.ipynb 5_Control_Flow.ipynb\t README_ENG.md\r\n",
  133. "2_Print_Statement.ipynb 6_Function_EN.ipynb\t README.md\r\n",
  134. "3_Data_Structure_1_EN.ipynb 6_Function.ipynb\t\t test.txt\r\n"
  135. ]
  136. }
  137. ],
  138. "source": [
  139. "!ls"
  140. ]
  141. },
  142. {
  143. "cell_type": "code",
  144. "execution_count": 6,
  145. "metadata": {},
  146. "outputs": [
  147. {
  148. "data": {
  149. "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAalElEQVR4nO3df4xldXnH8c/DMNZBTUdkQmCW7W4KXQoaWJ0gdtNWltrFSmDjr4qt2TTG/UdbUTM6tDZC0sa126D+YUk2gm6LARTIAGJdDbvGlETqrAPiClu3iMDwa407/mIqw/L0j3vuevfOOXfOveee7/n1fiVm5575cb9nBp/7vc/3+T5fc3cBAJrjhKIHAAAIi8APAA1D4AeAhiHwA0DDEPgBoGFOLHoAaZxyyim+bt26oocBAJWyf//+n7r7RPf1SgT+devWaW5uruhhAEClmNlP4q6T6gGAhiHwA0DD5B74zWzEzObN7KvR4/Vmdp+ZHTKzW8zsJXmPAQDwWyFm/B+U9FDH409J+rS7nynpiKT3BhgDACCSa+A3szWS3iLp89Fjk7RZ0q3Rl+yWtDXPMQAAjpd3Vc9nJH1U0iuix6+StOjuL0SPn5A0GfeNZrZd0nZJWrt2bb6jBFAbs/ML2rnnoJ5cXNLp42Oa3rJBWzfGhpnGym3Gb2aXSnrW3fcP8v3uvsvdp9x9amJiRRkqAKwwO7+gq25/UAuLS3JJC4tLuur2BzU7v1D00Eolz1TPJkmXmdmjkm5WK8XzWUnjZtZ+p7FGEn8RAEOxc89BLS0fPe7a0vJR7dxzsKARlVNugd/dr3L3Ne6+TtK7JO1197+StE/S26Mv2ybpjrzGAKBZnlxc6ut6mczOL2jTjr1aP3O3Nu3Ym+u7lCLq+D8m6cNmdkitnP/1BYwBQA2dPj7W1/WyCJ2iChL43f1b7n5p9PEj7n6Bu5/p7u9w99+EGAOA+pveskFjoyPHXRsbHdH0lg0FjSid0CmqSvTqAYA02tU7VavqCZ2iIvADqJWtGydLH+i7nT4+poWYIJ9XiopePQBQsNApKmb8AFCw0CkqAj8A9CGvncEhU1QEfgBIqV122a7AaZddSooN2rPzC7rmrgM68tyyJGl8bFRXX3Zu4WsQ5PgBIKV+yi5n5xc0fesDx4K+JC0uLWv6Kw8U3kKCwA8AKfVTdrlzz0EtH/UV15df9MJbSBD4ASClfnYGx5VnthXdQoLADwAp9VN2OWKW+HNOMIvtyROqXw+LuwCQUj9ll0d9ZZqn+3Odi8OS+lo4zoLADwCRNKWaacsuJxN243brXBxOWjgeduAn1QMAGn6HzLi0UJInF5eC9ush8AOAht8hc+vGSX3yra/R5PiYTK13AONjo7Ffe/r4WNCW0qR6AGRSlzNu85hxd6eFujeASccvDvf63DAR+AEMrN+drGUWokNmmsXhEC+i5j1WnstiamrK5+bmih4GgC6bduyNDZaT42O6d2ZzASMaXNJs/JNvfU3lXsTazGy/u091X2fGD2BgVT7jtltVD3EZBIEfwMBCHyCStyoe4jIIqnoADKyqZ9yuJtQO2qIw4wcwsKqlR9JUINVpwToJgR9AJlVJj6QN6L3q+atwn2mQ6gHQCGk3aNVpwToJgR9AI6QN6CF30BaFwA+gEdIG9LouWHci8ANohLQBPa7HTpU3ccVhcRdAI/RTgVSVBetBEfgBNEbdA3papHoAoGGY8QNAyeTd6prADwADaAfnhcUljZjpqLsmhxCkQ+wcJvADQIdes+3OYG+S2k3t4w5PHzRIh9g5TOAHgEiv2bZ0/AlZSSeZZA3SIXYOE/gBILJaW4fuzyXJEqRDtLqmqgcAIkkBe2FxKTYYJ8kSpEPsHCbwA0AkKWBbHz8ja5AOsXOYVA8ARKa3bFhx7m7nIm639ueGWdUj5b/RjMAPAJG4tg69Ujyf/svzK7kTmMAPoBaGtempe7a9acfe2OA/OT6WS9DPe/OWlGOO38xeamb/bWYPmNkBM7smur7ezO4zs0NmdouZvSSvMQBohnYZ5sLikly/LcMcxlm5Ids053kfnfJc3P2NpM3ufp6k8yVdYmYXSvqUpE+7+5mSjkh6b45jANAAq5VhZjk8PWSb5rSnhGWVW6rH3V3Sr6KHo9H/XNJmSe+Oru+WdLWk6/IaB5BViLfeyKbXpqdhtEAI1dUz1LGPueb4zWxE0n5JZ0r6nKT/lbTo7i9EX/KEpNjfppltl7RdktauXZvnMIFEIfqm1FHoF8tem56G1QIhxD2F2Lwl5VzH7+5H3f18SWskXSDp7D6+d5e7T7n71MTERF5DBHoK9dY7iyxpjLzGM+w89Wr32CsPP4xZdJp7GsbfIdR6QpANXO6+KGmfpDdIGjez9juNNZKK/a8U6CHUW+9BhVoM7MewXyzT3GOvPPwwDk9Ps4YwjL9DqPWE3FI9ZjYhadndF81sTNKb1FrY3Sfp7ZJulrRN0h15jQHIKtRb70GF6OTYrywvlnHplLT3mJSHj9uU1e8serV7GubfIcR6Qp4z/tMk7TOz70v6rqRvuvtXJX1M0ofN7JCkV0m6PscxAJmELOUbRBnfkSS9KLrUMwUSN2u+8pb7EzdQpb3HYcyiV3vXUMa/Qy95VvV8X9LGmOuPqJXvB0qvnwO6i1DGdyRxM+y2XovjcbPmXk4fH0u94Jp1Fr3au4Yy/h16YecusIoyH9A9jDTGsHW+WMYFw6QUSD+z47HREV109kSwiqvVJgBl/Dv0QuAHKqys70jaL5brZ+6ObXAWF+RX64sjtZqi9Zv7H5ZeE4Cy/h2SEPiBiivzO5J+UiC9UkRSKzd/78zmY48/dMv9sV9XVF69zH+HbgR+ALnpJwXSDprX3HVAR55bPu5zcd+T9KJygpnWz9wdZNbdvcZw0dkT2vfw4dLP+s09qdN0eUxNTfnc3FzRwwAwgEF2vKb5nu5d1XHGRkdy66tT9POnYWb73X1qxXUCP4Cq6nyBOCE6DKVbd4poWJLaNYd6/jSSAj+pHgCV1ZlXXz9zd+zX5JXzT/tzy1jLT+AHUBpZGqGFrqVPU4WU5/NnwWHrAEoha7+b0Lus456vW1lr+ZnxA1hViJbEWevyQ9fSxz1fVap6CPwAegp1JsEw+t2ErqWvUu1+J1I9AHoKdSbBMNonIx0CP4CeQnWeLHsn1Doh1QOgp17VMsPM/febo+cs5MGxgQtAT3E7VMdGR/S2103qtv0LK66H2KmaNKYid8mWUdIGLlI9AHpKOshk38OHV83953UecBXOQi4zUj0AjklKn8RVr6zWHTPPaqCqnXhVNgR+ICdlzkHHjU1SX4F6tZ2yefbLr9qJV2VDqgfIQdpdqHmlQgYZ2zV3HegrfbJaFU6es3IqgLJhxg9kFDd7TjPbDbUxqlvS2JLaCycF6tWqcPKclVftxKuyIfADGSQF7zRBNPTRgXFjSKNXoO61czXvc2irumu2DEj1ABkkBe8Rs9iv7wyiRS1QJgXy8bHRoaZPkqqBCNbFY8YPZJAUpI+6a2x0pOdsNykVMn7S6PAH2iFpJn71ZedKGm76hFl5ORH4gQySgvdkR64/KYhOb9mg6Vsf0PLR4zdR/ur/XtDs/ELQrpKdYyNQ1x87d4EMsu4gPf+ab2hxaXnF9SKP60N9cPQikIOs1SU/jwn6EhuRkC8CP5BRljw2G5FQBKp6gAKxEalaithwlwdm/ECB8t6IVOa2EVVT1Ia7PBD4gYLlVfKYZ6Bq4gtKURvu8kDgB3qocoDLK1DVaebbjzp1BCXHDyRI22itrPIKVEkvKNfcdSDTzy27Op0JTOAHElT9sI9egSrLImXSC8eR55Yr86I4iDotxBP4gQRVf2ufFKguOnsi0zuZXjPcqrwoDqJOvYfI8aOWhpGbr3qNfVLFUNbc//SWDbpyldO36qouvYcI/KidYS0+5tlWONSi8SBHJqb5mVffeSC21URVXhSbjlQPaidpRnvlLff3lc/O66190YvGw1ikvPqyc2uT724iZvyonV4z135n/3m8tS+6HnwY72Q4AavaCPyojXb6ZLV+s0Vvuil60XhYQbsu+e4myi3wm9kZkv5d0qmSXNIud/+smZ0s6RZJ6yQ9Kumd7n4kr3GgGeLaI/dS5CJkGRaNCdrNlmeO/wVJH3H3cyRdKOn9ZnaOpBlJ97j7WZLuiR4DmcSlT3opchGyTvXgw1aXJmhll9uM392fkvRU9PEvzewhSZOSLpf0xujLdkv6lqSP5TUONEOvGfxqRyCGNkiqpcqtI9JqaiuIIgTJ8ZvZOkkbJd0n6dToRUGSnlYrFRT3PdslbZektWvXBhglqizLEYjdQgTZflItTQmIRS96N0nugd/MXi7pNklXuvsvzOzY59zdzSx2Lc7dd0naJbWOXsx7nKi2XpUqeQfZvF8omhIQi170bpJc6/jNbFStoP8ld789uvyMmZ0Wff40Sc/mOQY0w7Bq7vvtzxOiJr8pAbFOTdDKLs+qHpN0vaSH3P3ajk/dKWmbpB3Rv3fkNQY0yzAqVfoNsiFm42WoAgohz53SOF7ijN/Mvhbl5ge1SdJ7JG02s/uj//2FWgH/TWb2I0l/Fj0GSqHfWWeI2XhTqoDq1ASt7HrN+L8g6RtmtlvSv7j7ysYcPbj7f0myhE9f3M/PAkLpd9YZYjbepF2y7C8IIzHwu/tXzOw/Jf2jpDkz+w9JL3Z8/tqk70X1NKFcMI1+g2yW9EQ/v3MCIoZptRz/85J+Lel3JL1CHYG/aeocGJtSLphWP0F20Nk4v3MUKTHwm9klkq5VazH2te7+XLBRlUzd/0+62gJllV/0ylaT39aUEk2UU68Z/z9Ieoe71/sgzRTq/n/SXguUVXzRawf7hcUlmXSsaVuZxh63LiAd/7f4+OyDuum+x3XUXSNmuuL1Z+iftr4m1BBRY4lVPe7+xwT9lrrXUfeqZKnaubOddfWSVnTqLMPYZ+cXEqse2n+Lj88+qBu/85iOeusOjrrrxu88po/PPhholKgzDmJJoe4bS3qVC1btRS9Ns7aix57UOtqkY4vCN933eOz3Jl0H+kHgT6HuddS96qer9qKXJqgXPfakMbp+m4Jqz/S7JV0H+sFBLCk0oY46aYEyVLnisCTV1bcN+oI9zHvp1VCubcQsNsiPWFKSCEiPwJ9SU+uoq1auGPdC1V7gnRwwYA/7XtK8mF7x+jN043ceW/G9V7z+jL6fD+hmXoG3jlNTUz43N1f0MNCHTTv2Js5q753ZnOtzD/udRtK9SNleTFYbI1U9yMrM9rv71IrrBH7kYf3M3YkLmD/e8ZbQw8kk6V7axkZHgvSUqfJ+ChQjKfCT6kEu6tRRcrV1g84S0bwCcxX3U6C8qOpBLupUCRV3L93agTivvvxV20+BciPwIxd1arHbeS9JRsxyDcxV20+BciPVg9zUqRKqfS/dKRdp5WHunYYVmItInbGmUF/M+IHI7PyCNu3Yq/Uzd2vTjr2xaZqkdzJJ7waGFZhDp85CHCmJ4jDjB9Tf4mnSO5k8jw0MvYmw7o0Jm47ADyh7oAsRmEOmzlhTqDcCP6DhBLo6rWnUqRwXK5HjB1T/Dqz9qlM5LlYi8AMi0HWrUzkuViLVA6gZHVj7VafUFY5H4AciBDo0BakeAGgYZvwIgl2gQHkQ+GukrMGVzpJAuZDqqYkyb7GnsyRQLgT+mihzcGUXKFAuBP6aKHNwZXMUUC4E/pooc3BlcxRQLgT+kkrTIrhTmYMru0CBcqGqp4QGqYIp+85TNkcB5UHgL6FBWwQTXAGkQaqnhMq8UAug+gj8JVTmhVoA1UfgL6EyL9QCqD5y/APKsz1C2RdqAVQbgX8AIXrPsFALIC+5BX4zu0HSpZKedfdXR9dOlnSLpHWSHpX0Tnc/ktcYskqa1Wc9mHuQ56yKqo8faII8c/xflHRJ17UZSfe4+1mS7okel1KvpmdJ1TVxh1MP6zmroOrjB5oit8Dv7t+W9LOuy5dL2h19vFvS1ryeP6tes/qk6hqTMgW5MjdaS6Pq4weaInRVz6nu/lT08dOSTg38/Kn1qqWf3rJBFvM5lzIFuX7q9/tt6RAC+w+AaiisnNPdXa1YGcvMtpvZnJnNHT58OODIWnrV0m/dOJk48CxBLm39fllTKuw/AKohdOB/xsxOk6To32eTvtDdd7n7lLtPTUxMBBtg22q19JM5BLm09ftlTamw/wCohtCB/05J26KPt0m6I/Dzp7ZaR8k8glzaLpZlTanQhROoBmtlXHL4wWY3SXqjpFMkPSPpE5JmJX1Z0lpJP1GrnLN7AXiFqakpn5uby2WcWRRVurhpx97YCqLJ8THdO7M59+cHUA1mtt/dp7qv51bH7+5XJHzq4ryeM7SiNllNb9lw3AYyiZQKgPTYuVtBtHQAkAWBv6Jo6QBgUHTnBICGIfADQMMQ+AGgYQj8ANAwBH4AaJjGVPXQJz47fodAPTQi8Ic4MaufsVQxeJbpdwggm0akesrS1KysXTXTKMvvEEB2jQj8ZWlqVuXgWZbfIYDsGhH4y9InvsrBsyy/QwDZNSLwl6VPfJWDZ1l+hwCya0TgL0uf+CoHz7L8DgFkV9uqnrjqmaJ71Ve9qyaN4YB6qGXgL3PpIcETQNFqmeqpcvUMAOStloG/ytUzAJC3Wgb+KlfPAEDeahn4q1w9AwB5q+Xibq/qmar2yhmGkPfe5N8zUHa1DPxSfPVMmat98hby3pv8ewaqoJapniRNrvYJee9N/j0DVVDbGX+chYpX+8zOL+iauw7oyHPLkqTxsVFdfdm5qWbRISudqKoCyq0xM/7Z+QVZwueqUO0zO7+g6VsfOBb0JWlxaVnTX3kgVVvnkJVOVFUB5daYwL9zz0F5zHWTKlHts3PPQS0fXXkHyy96qhRKXKWTSbro7IlhDbHnc1FVBZRHYwJ/UprHVY0Fx15pkjQplK0bJ/W2100e967HJd22f2HoB8HQ0A0ot8bk+EfMdNRXzphHLCkBVC6nj48lvnilTaHse/jwinc97UXXYQdlehIB5dWYGX9c0O91vWymt2zQ6MjKF6nREyx1CoVFVwBSgwL/ZMKsOOl62WzdOKmdbz9Przxp9Ni18bFR7XzHealn1iy6ApAalOqZ3rLhuE1FUvUWHLOmT+rwOwCQXWMCf9UPQRkGfgcAJMm8Ajnuqakpn5ubK3oYAFApZrbf3ae6rzcmxw8AaCHwA0DDEPgBoGEI/ADQMI2p6kFxOJQFKBcCP3LFoSxA+RSS6jGzS8zsoJkdMrOZIsaAMDiUBSif4IHfzEYkfU7SmyWdI+kKMzsn9DgQBv2BgPIpYsZ/gaRD7v6Iuz8v6WZJlxcwDgRAfyCgfIoI/JOSHu94/ER0DTXEoSxA+ZR2cdfMtkvaLklr164teDQYFP2BgPIpIvAvSDqj4/Ga6Npx3H2XpF1Sq1fPsAdBiWE4HMoClEvwJm1mdqKk/5F0sVoB/7uS3u3uB5K+Z9hN2rpLDKXW+bOuVn9+XgQA1EFSk7bgM353f8HMPiBpj6QRSTf0Cvp5iCsxbL/8UWcOoO4KqeN396+5+x+4+++7+z+Hfv7VSgmpMwdQZ43s1ZOmlJA6cwB1VevAPzu/oE079mr9zN3atGOvZudba8hxJYbdqDMHUFelLefMKk2PmJ17DmphcenYwm4bdeYA6qy2gb9Xj5h2eWH7BYDSTgBNUtvA30+PGOrMATRJbXP89IgBgHi1Dfz0iAGAeLVN9dAjBgDi1TbwS+TuASBObVM9AIB4BH4AaBgCPwA0DIEfABqGwA8ADRP8IJZBmNlhST9J+PQpkn4acDhlwr03T1PvW2ruvWe5799z94nui5UI/L2Y2VzcCTNNwL03796bet9Sc+89j/sm1QMADUPgB4CGqUPg31X0AArEvTdPU+9bau69D/2+K5/jBwD0pw4zfgBAHwj8ANAwlQ78ZnaJmR00s0NmNlP0eEIxszPMbJ+Z/dDMDpjZB4seU0hmNmJm82b21aLHEpKZjZvZrWb2sJk9ZGZvKHpMIZjZh6L/zn9gZjeZ2UuLHlNezOwGM3vWzH7Qce1kM/ummf0o+veVWZ+nsoHfzEYkfU7SmyWdI+kKMzun2FEF84Kkj7j7OZIulPT+Bt27JH1Q0kNFD6IAn5X0dXc/W9J5asDvwMwmJf2dpCl3f7WkEUnvKnZUufqipEu6rs1Iusfdz5J0T/Q4k8oGfkkXSDrk7o+4+/OSbpZ0ecFjCsLdn3L370Uf/1KtANCIgwfMbI2kt0j6fNFjCcnMflfSn0i6XpLc/Xl3Xyx0UOGcKGnMzE6UdJKkJwseT27c/duSftZ1+XJJu6OPd0vamvV5qhz4JyU93vH4CTUk+HUys3WSNkq6r+ChhPIZSR+V9GLB4whtvaTDkr4Qpbk+b2YvK3pQeXP3BUn/KukxSU9J+rm7f6PYUQV3qrs/FX38tKRTs/7AKgf+xjOzl0u6TdKV7v6LoseTNzO7VNKz7r6/6LEU4ERJr5V0nbtvlPRrDeEtf9lF+ezL1XrhO13Sy8zsr4sdVXG8VX+fuQa/yoF/QdIZHY/XRNcawcxG1Qr6X3L324seTyCbJF1mZo+qldrbbGY3FjukYJ6Q9IS7t9/Z3arWC0Hd/ZmkH7v7YXdflnS7pD8qeEyhPWNmp0lS9O+zWX9glQP/dyWdZWbrzewlai343FnwmIIwM1Mr1/uQu19b9HhCcfer3H2Nu69T6++9190bMftz96clPW5mG6JLF0v6YYFDCuUxSRea2UnRf/cXqwGL2l3ulLQt+nibpDuy/sDKHrbu7i+Y2Qck7VFrpf8Gdz9Q8LBC2STpPZIeNLP7o2t/7+5fK25ICOBvJX0pmug8IulvCh5P7tz9PjO7VdL31Kpmm1eNWzeY2U2S3ijpFDN7QtInJO2Q9GUze69a7enfmfl5aNkAAM1S5VQPAGAABH4AaBgCPwA0DIEfABqGwA8ADUPgB/oUdUf9sZmdHD1+ZfR4XcFDA1Ih8AN9cvfHJV2nVn21on93ufujhQ0K6AN1/MAAopYZ+yXdIOl9ks6PWgoApVfZnbtAkdx92cymJX1d0p8T9FElpHqAwb1ZrVbBry56IEA/CPzAAMzsfElvUusEtA+1uycCVUDgB/oUdYm8Tq1zEB6TtFOtw0KASiDwA/17n6TH3P2b0eN/k/SHZvanBY4JSI2qHgBoGGb8ANAwBH4AaBgCPwA0DIEfABqGwA8ADUPgB4CGIfADQMP8P+cSfmrJA8kHAAAAAElFTkSuQmCC\n",
  150. "text/plain": [
  151. "<Figure size 432x288 with 1 Axes>"
  152. ]
  153. },
  154. "metadata": {
  155. "needs_background": "light"
  156. },
  157. "output_type": "display_data"
  158. }
  159. ],
  160. "source": [
  161. "# code block & drawing\n",
  162. "\n",
  163. "%matplotlib inline\n",
  164. "\n",
  165. "import matplotlib.pyplot as plt\n",
  166. "import numpy as np\n",
  167. "\n",
  168. "# generate data\n",
  169. "data_num = 100\n",
  170. "X = np.random.rand(data_num, 1)*10\n",
  171. "Y = X * 3 + 4 + 5*np.random.randn(data_num,1)\n",
  172. "\n",
  173. "# draw original data\n",
  174. "plt.scatter(X, Y)\n",
  175. "plt.xlabel(\"X\")\n",
  176. "plt.ylabel(\"Y\")\n",
  177. "plt.show()"
  178. ]
  179. }
  180. ],
  181. "metadata": {
  182. "kernelspec": {
  183. "display_name": "Python 3",
  184. "language": "python",
  185. "name": "python3"
  186. },
  187. "language_info": {
  188. "codemirror_mode": {
  189. "name": "ipython",
  190. "version": 3
  191. },
  192. "file_extension": ".py",
  193. "mimetype": "text/x-python",
  194. "name": "python",
  195. "nbconvert_exporter": "python",
  196. "pygments_lexer": "ipython3",
  197. "version": "3.5.4"
  198. }
  199. },
  200. "nbformat": 4,
  201. "nbformat_minor": 2
  202. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。