You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

1-Tensor-and-Variable.ipynb 34 kB

4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# Tensor and Variable\n",
  8. "这是 PyTorch 基础的第二课,通过本次课程,你能够学会如何像使用 NumPy 一样使用 PyTorch,了解到 PyTorch 中的基本元素 Tensor 和 Variable 及其操作方式。"
  9. ]
  10. },
  11. {
  12. "cell_type": "markdown",
  13. "metadata": {},
  14. "source": [
  15. "## 把 PyTorch 当做 NumPy 用\n",
  16. "PyTorch 的官方介绍是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构件是张量,所以我们可以把 PyTorch 当做 NumPy 来用,PyTorch 的很多操作好 NumPy 都是类似的,但是因为其能够在 GPU 上运行,所以有着比 NumPy 快很多倍的速度。"
  17. ]
  18. },
  19. {
  20. "cell_type": "code",
  21. "execution_count": 5,
  22. "metadata": {},
  23. "outputs": [],
  24. "source": [
  25. "import torch\n",
  26. "import numpy as np"
  27. ]
  28. },
  29. {
  30. "cell_type": "code",
  31. "execution_count": 6,
  32. "metadata": {},
  33. "outputs": [],
  34. "source": [
  35. "# 创建一个 numpy ndarray\n",
  36. "numpy_tensor = np.random.randn(10, 20)"
  37. ]
  38. },
  39. {
  40. "cell_type": "markdown",
  41. "metadata": {},
  42. "source": [
  43. "我们可以使用下面两种方式将numpy的ndarray转换到tensor上"
  44. ]
  45. },
  46. {
  47. "cell_type": "code",
  48. "execution_count": 7,
  49. "metadata": {},
  50. "outputs": [],
  51. "source": [
  52. "pytorch_tensor1 = torch.Tensor(numpy_tensor)\n",
  53. "pytorch_tensor2 = torch.from_numpy(numpy_tensor)"
  54. ]
  55. },
  56. {
  57. "cell_type": "markdown",
  58. "metadata": {},
  59. "source": [
  60. "使用以上两种方法进行转换的时候,会直接将 NumPy ndarray 的数据类型转换为对应的 PyTorch Tensor 数据类型"
  61. ]
  62. },
  63. {
  64. "cell_type": "markdown",
  65. "metadata": {},
  66. "source": [
  67. "\n"
  68. ]
  69. },
  70. {
  71. "cell_type": "markdown",
  72. "metadata": {},
  73. "source": [
  74. "同时我们也可以使用下面的方法将 pytorch tensor 转换为 numpy ndarray"
  75. ]
  76. },
  77. {
  78. "cell_type": "code",
  79. "execution_count": 8,
  80. "metadata": {},
  81. "outputs": [],
  82. "source": [
  83. "# 如果 pytorch tensor 在 cpu 上\n",
  84. "numpy_array = pytorch_tensor1.numpy()\n",
  85. "\n",
  86. "# 如果 pytorch tensor 在 gpu 上\n",
  87. "numpy_array = pytorch_tensor1.cpu().numpy()"
  88. ]
  89. },
  90. {
  91. "cell_type": "markdown",
  92. "metadata": {},
  93. "source": [
  94. "需要注意 GPU 上的 Tensor 不能直接转换为 NumPy ndarray,需要使用`.cpu()`先将 GPU 上的 Tensor 转到 CPU 上"
  95. ]
  96. },
  97. {
  98. "cell_type": "markdown",
  99. "metadata": {},
  100. "source": [
  101. "\n"
  102. ]
  103. },
  104. {
  105. "cell_type": "markdown",
  106. "metadata": {},
  107. "source": [
  108. "PyTorch Tensor 使用 GPU 加速\n",
  109. "\n",
  110. "我们可以使用以下两种方式将 Tensor 放到 GPU 上"
  111. ]
  112. },
  113. {
  114. "cell_type": "code",
  115. "execution_count": null,
  116. "metadata": {},
  117. "outputs": [],
  118. "source": [
  119. "# 第一种方式是定义 cuda 数据类型\n",
  120. "dtype = torch.cuda.FloatTensor # 定义默认 GPU 的 数据类型\n",
  121. "gpu_tensor = torch.randn(10, 20).type(dtype)\n",
  122. "\n",
  123. "# 第二种方式更简单,推荐使用\n",
  124. "gpu_tensor = torch.randn(10, 20).cuda(0) # 将 tensor 放到第一个 GPU 上\n",
  125. "gpu_tensor = torch.randn(10, 20).cuda(1) # 将 tensor 放到第二个 GPU 上"
  126. ]
  127. },
  128. {
  129. "cell_type": "markdown",
  130. "metadata": {},
  131. "source": [
  132. "使用第一种方式将 tensor 放到 GPU 上的时候会将数据类型转换成定义的类型,而是用第二种方式能够直接将 tensor 放到 GPU 上,类型跟之前保持一致\n",
  133. "\n",
  134. "推荐在定义 tensor 的时候就明确数据类型,然后直接使用第二种方法将 tensor 放到 GPU 上"
  135. ]
  136. },
  137. {
  138. "cell_type": "markdown",
  139. "metadata": {},
  140. "source": [
  141. "而将 tensor 放回 CPU 的操作非常简单"
  142. ]
  143. },
  144. {
  145. "cell_type": "code",
  146. "execution_count": null,
  147. "metadata": {
  148. "collapsed": true
  149. },
  150. "outputs": [],
  151. "source": [
  152. "cpu_tensor = gpu_tensor.cpu()"
  153. ]
  154. },
  155. {
  156. "cell_type": "markdown",
  157. "metadata": {},
  158. "source": [
  159. "我们也能够访问到 Tensor 的一些属性"
  160. ]
  161. },
  162. {
  163. "cell_type": "code",
  164. "execution_count": 5,
  165. "metadata": {},
  166. "outputs": [
  167. {
  168. "name": "stdout",
  169. "output_type": "stream",
  170. "text": [
  171. "torch.Size([10, 20])\n",
  172. "torch.Size([10, 20])\n"
  173. ]
  174. }
  175. ],
  176. "source": [
  177. "# 可以通过下面两种方式得到 tensor 的大小\n",
  178. "print(pytorch_tensor1.shape)\n",
  179. "print(pytorch_tensor1.size())"
  180. ]
  181. },
  182. {
  183. "cell_type": "code",
  184. "execution_count": 6,
  185. "metadata": {},
  186. "outputs": [
  187. {
  188. "name": "stdout",
  189. "output_type": "stream",
  190. "text": [
  191. "torch.FloatTensor\n"
  192. ]
  193. }
  194. ],
  195. "source": [
  196. "# 得到 tensor 的数据类型\n",
  197. "print(pytorch_tensor1.type())"
  198. ]
  199. },
  200. {
  201. "cell_type": "code",
  202. "execution_count": 7,
  203. "metadata": {},
  204. "outputs": [
  205. {
  206. "name": "stdout",
  207. "output_type": "stream",
  208. "text": [
  209. "2\n"
  210. ]
  211. }
  212. ],
  213. "source": [
  214. "# 得到 tensor 的维度\n",
  215. "print(pytorch_tensor1.dim())"
  216. ]
  217. },
  218. {
  219. "cell_type": "code",
  220. "execution_count": 8,
  221. "metadata": {},
  222. "outputs": [
  223. {
  224. "name": "stdout",
  225. "output_type": "stream",
  226. "text": [
  227. "200\n"
  228. ]
  229. }
  230. ],
  231. "source": [
  232. "# 得到 tensor 的所有元素个数\n",
  233. "print(pytorch_tensor1.numel())"
  234. ]
  235. },
  236. {
  237. "cell_type": "markdown",
  238. "metadata": {},
  239. "source": [
  240. "**小练习**\n",
  241. "\n",
  242. "查阅以下[文档](http://pytorch.org/docs/0.3.0/tensors.html)了解 tensor 的数据类型,创建一个 float64、大小是 3 x 2、随机初始化的 tensor,将其转化为 numpy 的 ndarray,输出其数据类型\n",
  243. "\n",
  244. "参考输出: float64"
  245. ]
  246. },
  247. {
  248. "cell_type": "code",
  249. "execution_count": 6,
  250. "metadata": {},
  251. "outputs": [
  252. {
  253. "name": "stdout",
  254. "output_type": "stream",
  255. "text": [
  256. "float64\n"
  257. ]
  258. }
  259. ],
  260. "source": [
  261. "# 答案\n",
  262. "x = torch.randn(3, 2)\n",
  263. "x = x.type(torch.DoubleTensor)\n",
  264. "x_array = x.numpy()\n",
  265. "print(x_array.dtype)"
  266. ]
  267. },
  268. {
  269. "cell_type": "markdown",
  270. "metadata": {},
  271. "source": [
  272. "\n"
  273. ]
  274. },
  275. {
  276. "cell_type": "markdown",
  277. "metadata": {},
  278. "source": [
  279. "## Tensor的操作\n",
  280. "Tensor 操作中的 api 和 NumPy 非常相似,如果你熟悉 NumPy 中的操作,那么 tensor 基本是一致的,下面我们来列举其中的一些操作"
  281. ]
  282. },
  283. {
  284. "cell_type": "code",
  285. "execution_count": 9,
  286. "metadata": {},
  287. "outputs": [
  288. {
  289. "name": "stdout",
  290. "output_type": "stream",
  291. "text": [
  292. "\n",
  293. " 1 1\n",
  294. " 1 1\n",
  295. "[torch.FloatTensor of size 2x2]\n",
  296. "\n"
  297. ]
  298. }
  299. ],
  300. "source": [
  301. "x = torch.ones(2, 2)\n",
  302. "print(x) # 这是一个float tensor"
  303. ]
  304. },
  305. {
  306. "cell_type": "code",
  307. "execution_count": 10,
  308. "metadata": {},
  309. "outputs": [
  310. {
  311. "name": "stdout",
  312. "output_type": "stream",
  313. "text": [
  314. "torch.FloatTensor\n"
  315. ]
  316. }
  317. ],
  318. "source": [
  319. "print(x.type())"
  320. ]
  321. },
  322. {
  323. "cell_type": "code",
  324. "execution_count": 11,
  325. "metadata": {},
  326. "outputs": [
  327. {
  328. "name": "stdout",
  329. "output_type": "stream",
  330. "text": [
  331. "\n",
  332. " 1 1\n",
  333. " 1 1\n",
  334. "[torch.LongTensor of size 2x2]\n",
  335. "\n"
  336. ]
  337. }
  338. ],
  339. "source": [
  340. "# 将其转化为整形\n",
  341. "x = x.long()\n",
  342. "# x = x.type(torch.LongTensor)\n",
  343. "print(x)"
  344. ]
  345. },
  346. {
  347. "cell_type": "code",
  348. "execution_count": 12,
  349. "metadata": {},
  350. "outputs": [
  351. {
  352. "name": "stdout",
  353. "output_type": "stream",
  354. "text": [
  355. "\n",
  356. " 1 1\n",
  357. " 1 1\n",
  358. "[torch.FloatTensor of size 2x2]\n",
  359. "\n"
  360. ]
  361. }
  362. ],
  363. "source": [
  364. "# 再将其转回 float\n",
  365. "x = x.float()\n",
  366. "# x = x.type(torch.FloatTensor)\n",
  367. "print(x)"
  368. ]
  369. },
  370. {
  371. "cell_type": "code",
  372. "execution_count": 13,
  373. "metadata": {},
  374. "outputs": [
  375. {
  376. "name": "stdout",
  377. "output_type": "stream",
  378. "text": [
  379. "\n",
  380. "-0.8203 -0.0328 1.8283\n",
  381. "-0.1734 -0.1873 0.9818\n",
  382. "-1.8368 -2.2450 -0.4410\n",
  383. "-0.8005 -2.1132 0.7140\n",
  384. "[torch.FloatTensor of size 4x3]\n",
  385. "\n"
  386. ]
  387. }
  388. ],
  389. "source": [
  390. "x = torch.randn(4, 3)\n",
  391. "print(x)"
  392. ]
  393. },
  394. {
  395. "cell_type": "code",
  396. "execution_count": 14,
  397. "metadata": {
  398. "collapsed": true
  399. },
  400. "outputs": [],
  401. "source": [
  402. "# 沿着行取最大值\n",
  403. "max_value, max_idx = torch.max(x, dim=1)"
  404. ]
  405. },
  406. {
  407. "cell_type": "code",
  408. "execution_count": 15,
  409. "metadata": {},
  410. "outputs": [
  411. {
  412. "data": {
  413. "text/plain": [
  414. "\n",
  415. " 1.8283\n",
  416. " 0.9818\n",
  417. "-0.4410\n",
  418. " 0.7140\n",
  419. "[torch.FloatTensor of size 4]"
  420. ]
  421. },
  422. "execution_count": 15,
  423. "metadata": {},
  424. "output_type": "execute_result"
  425. }
  426. ],
  427. "source": [
  428. "# 每一行的最大值\n",
  429. "max_value"
  430. ]
  431. },
  432. {
  433. "cell_type": "code",
  434. "execution_count": 16,
  435. "metadata": {},
  436. "outputs": [
  437. {
  438. "data": {
  439. "text/plain": [
  440. "\n",
  441. " 2\n",
  442. " 2\n",
  443. " 2\n",
  444. " 2\n",
  445. "[torch.LongTensor of size 4]"
  446. ]
  447. },
  448. "execution_count": 16,
  449. "metadata": {},
  450. "output_type": "execute_result"
  451. }
  452. ],
  453. "source": [
  454. "# 每一行最大值的下标\n",
  455. "max_idx"
  456. ]
  457. },
  458. {
  459. "cell_type": "code",
  460. "execution_count": 17,
  461. "metadata": {},
  462. "outputs": [
  463. {
  464. "name": "stdout",
  465. "output_type": "stream",
  466. "text": [
  467. "\n",
  468. " 0.9751\n",
  469. " 0.6212\n",
  470. "-4.5228\n",
  471. "-2.1997\n",
  472. "[torch.FloatTensor of size 4]\n",
  473. "\n"
  474. ]
  475. }
  476. ],
  477. "source": [
  478. "# 沿着行对 x 求和\n",
  479. "sum_x = torch.sum(x, dim=1)\n",
  480. "print(sum_x)"
  481. ]
  482. },
  483. {
  484. "cell_type": "code",
  485. "execution_count": 18,
  486. "metadata": {},
  487. "outputs": [
  488. {
  489. "name": "stdout",
  490. "output_type": "stream",
  491. "text": [
  492. "torch.Size([4, 3])\n",
  493. "torch.Size([1, 4, 3])\n"
  494. ]
  495. }
  496. ],
  497. "source": [
  498. "# 增加维度或者减少维度\n",
  499. "print(x.shape)\n",
  500. "x = x.unsqueeze(0) # 在第一维增加\n",
  501. "print(x.shape)"
  502. ]
  503. },
  504. {
  505. "cell_type": "code",
  506. "execution_count": 19,
  507. "metadata": {},
  508. "outputs": [
  509. {
  510. "name": "stdout",
  511. "output_type": "stream",
  512. "text": [
  513. "torch.Size([1, 1, 4, 3])\n"
  514. ]
  515. }
  516. ],
  517. "source": [
  518. "x = x.unsqueeze(1) # 在第二维增加\n",
  519. "print(x.shape)"
  520. ]
  521. },
  522. {
  523. "cell_type": "code",
  524. "execution_count": 20,
  525. "metadata": {},
  526. "outputs": [
  527. {
  528. "name": "stdout",
  529. "output_type": "stream",
  530. "text": [
  531. "torch.Size([1, 4, 3])\n"
  532. ]
  533. }
  534. ],
  535. "source": [
  536. "x = x.squeeze(0) # 减少第一维\n",
  537. "print(x.shape)"
  538. ]
  539. },
  540. {
  541. "cell_type": "code",
  542. "execution_count": 21,
  543. "metadata": {},
  544. "outputs": [
  545. {
  546. "name": "stdout",
  547. "output_type": "stream",
  548. "text": [
  549. "torch.Size([4, 3])\n"
  550. ]
  551. }
  552. ],
  553. "source": [
  554. "x = x.squeeze() # 将 tensor 中所有的一维全部都去掉\n",
  555. "print(x.shape)"
  556. ]
  557. },
  558. {
  559. "cell_type": "code",
  560. "execution_count": 22,
  561. "metadata": {},
  562. "outputs": [
  563. {
  564. "name": "stdout",
  565. "output_type": "stream",
  566. "text": [
  567. "torch.Size([3, 4, 5])\n",
  568. "torch.Size([4, 3, 5])\n",
  569. "torch.Size([5, 3, 4])\n"
  570. ]
  571. }
  572. ],
  573. "source": [
  574. "x = torch.randn(3, 4, 5)\n",
  575. "print(x.shape)\n",
  576. "\n",
  577. "# 使用permute和transpose进行维度交换\n",
  578. "x = x.permute(1, 0, 2) # permute 可以重新排列 tensor 的维度\n",
  579. "print(x.shape)\n",
  580. "\n",
  581. "x = x.transpose(0, 2) # transpose 交换 tensor 中的两个维度\n",
  582. "print(x.shape)"
  583. ]
  584. },
  585. {
  586. "cell_type": "code",
  587. "execution_count": 23,
  588. "metadata": {},
  589. "outputs": [
  590. {
  591. "name": "stdout",
  592. "output_type": "stream",
  593. "text": [
  594. "torch.Size([3, 4, 5])\n",
  595. "torch.Size([12, 5])\n",
  596. "torch.Size([3, 20])\n"
  597. ]
  598. }
  599. ],
  600. "source": [
  601. "# 使用 view 对 tensor 进行 reshape\n",
  602. "x = torch.randn(3, 4, 5)\n",
  603. "print(x.shape)\n",
  604. "\n",
  605. "x = x.view(-1, 5) # -1 表示任意的大小,5 表示第二维变成 5\n",
  606. "print(x.shape)\n",
  607. "\n",
  608. "x = x.view(3, 20) # 重新 reshape 成 (3, 20) 的大小\n",
  609. "print(x.shape)"
  610. ]
  611. },
  612. {
  613. "cell_type": "code",
  614. "execution_count": 24,
  615. "metadata": {
  616. "collapsed": true
  617. },
  618. "outputs": [],
  619. "source": [
  620. "x = torch.randn(3, 4)\n",
  621. "y = torch.randn(3, 4)\n",
  622. "\n",
  623. "# 两个 tensor 求和\n",
  624. "z = x + y\n",
  625. "# z = torch.add(x, y)"
  626. ]
  627. },
  628. {
  629. "cell_type": "markdown",
  630. "metadata": {},
  631. "source": [
  632. "另外,pytorch中大多数的操作都支持 inplace 操作,也就是可以直接对 tensor 进行操作而不需要另外开辟内存空间,方式非常简单,一般都是在操作的符号后面加`_`,比如"
  633. ]
  634. },
  635. {
  636. "cell_type": "code",
  637. "execution_count": 25,
  638. "metadata": {},
  639. "outputs": [
  640. {
  641. "name": "stdout",
  642. "output_type": "stream",
  643. "text": [
  644. "torch.Size([3, 3])\n",
  645. "torch.Size([1, 3, 3])\n",
  646. "torch.Size([3, 1, 3])\n"
  647. ]
  648. }
  649. ],
  650. "source": [
  651. "x = torch.ones(3, 3)\n",
  652. "print(x.shape)\n",
  653. "\n",
  654. "# unsqueeze 进行 inplace\n",
  655. "x.unsqueeze_(0)\n",
  656. "print(x.shape)\n",
  657. "\n",
  658. "# transpose 进行 inplace\n",
  659. "x.transpose_(1, 0)\n",
  660. "print(x.shape)"
  661. ]
  662. },
  663. {
  664. "cell_type": "code",
  665. "execution_count": null,
  666. "metadata": {
  667. "collapsed": true
  668. },
  669. "outputs": [],
  670. "source": [
  671. "x = torch.ones(3, 3)\n",
  672. "y = torch.ones(3, 3)\n",
  673. "print(x)\n",
  674. "\n",
  675. "# add 进行 inplace\n",
  676. "x.add_(y)\n",
  677. "print(x)"
  678. ]
  679. },
  680. {
  681. "cell_type": "markdown",
  682. "metadata": {},
  683. "source": [
  684. "**小练习**\n",
  685. "\n",
  686. "访问[文档](http://pytorch.org/docs/0.3.0/tensors.html)了解 tensor 更多的 api,实现下面的要求\n",
  687. "\n",
  688. "创建一个 float32、4 x 4 的全为1的矩阵,将矩阵正中间 2 x 2 的矩阵,全部修改成2\n",
  689. "\n",
  690. "参考输出\n",
  691. "$$\n",
  692. "\\left[\n",
  693. "\\begin{matrix}\n",
  694. "1 & 1 & 1 & 1 \\\\\n",
  695. "1 & 2 & 2 & 1 \\\\\n",
  696. "1 & 2 & 2 & 1 \\\\\n",
  697. "1 & 1 & 1 & 1\n",
  698. "\\end{matrix}\n",
  699. "\\right] \\\\\n",
  700. "[torch.FloatTensor\\ of\\ size\\ 4x4]\n",
  701. "$$"
  702. ]
  703. },
  704. {
  705. "cell_type": "code",
  706. "execution_count": 10,
  707. "metadata": {},
  708. "outputs": [
  709. {
  710. "name": "stdout",
  711. "output_type": "stream",
  712. "text": [
  713. "\n",
  714. " 1 1 1 1\n",
  715. " 1 2 2 1\n",
  716. " 1 2 2 1\n",
  717. " 1 1 1 1\n",
  718. "[torch.FloatTensor of size 4x4]\n",
  719. "\n"
  720. ]
  721. }
  722. ],
  723. "source": [
  724. "# 答案\n",
  725. "x = torch.ones(4, 4).float()\n",
  726. "x[1:3, 1:3] = 2\n",
  727. "print(x)"
  728. ]
  729. },
  730. {
  731. "cell_type": "markdown",
  732. "metadata": {},
  733. "source": [
  734. "## Variable\n",
  735. "tensor 是 PyTorch 中的完美组件,但是构建神经网络还远远不够,我们需要能够构建计算图的 tensor,这就是 Variable。Variable 是对 tensor 的封装,操作和 tensor 是一样的,但是每个 Variabel都有三个属性,Variable 中的 tensor本身`.data`,对应 tensor 的梯度`.grad`以及这个 Variable 是通过什么方式得到的`.grad_fn`"
  736. ]
  737. },
  738. {
  739. "cell_type": "code",
  740. "execution_count": 4,
  741. "metadata": {},
  742. "outputs": [],
  743. "source": [
  744. "# 通过下面这种方式导入 Variable\n",
  745. "from torch.autograd import Variable"
  746. ]
  747. },
  748. {
  749. "cell_type": "code",
  750. "execution_count": 28,
  751. "metadata": {},
  752. "outputs": [],
  753. "source": [
  754. "x_tensor = torch.randn(10, 5)\n",
  755. "y_tensor = torch.randn(10, 5)\n",
  756. "\n",
  757. "# 将 tensor 变成 Variable\n",
  758. "x = Variable(x_tensor, requires_grad=True) # 默认 Variable 是不需要求梯度的,所以我们用这个方式申明需要对其进行求梯度\n",
  759. "y = Variable(y_tensor, requires_grad=True)"
  760. ]
  761. },
  762. {
  763. "cell_type": "code",
  764. "execution_count": 29,
  765. "metadata": {
  766. "collapsed": true
  767. },
  768. "outputs": [],
  769. "source": [
  770. "z = torch.sum(x + y)"
  771. ]
  772. },
  773. {
  774. "cell_type": "code",
  775. "execution_count": 30,
  776. "metadata": {},
  777. "outputs": [
  778. {
  779. "name": "stdout",
  780. "output_type": "stream",
  781. "text": [
  782. "\n",
  783. "-2.1379\n",
  784. "[torch.FloatTensor of size 1]\n",
  785. "\n",
  786. "<SumBackward0 object at 0x10da636a0>\n"
  787. ]
  788. }
  789. ],
  790. "source": [
  791. "print(z.data)\n",
  792. "print(z.grad_fn)"
  793. ]
  794. },
  795. {
  796. "cell_type": "markdown",
  797. "metadata": {},
  798. "source": [
  799. "上面我们打出了 z 中的 tensor 数值,同时通过`grad_fn`知道了其是通过 Sum 这种方式得到的"
  800. ]
  801. },
  802. {
  803. "cell_type": "code",
  804. "execution_count": 31,
  805. "metadata": {},
  806. "outputs": [
  807. {
  808. "name": "stdout",
  809. "output_type": "stream",
  810. "text": [
  811. "Variable containing:\n",
  812. " 1 1 1 1 1\n",
  813. " 1 1 1 1 1\n",
  814. " 1 1 1 1 1\n",
  815. " 1 1 1 1 1\n",
  816. " 1 1 1 1 1\n",
  817. " 1 1 1 1 1\n",
  818. " 1 1 1 1 1\n",
  819. " 1 1 1 1 1\n",
  820. " 1 1 1 1 1\n",
  821. " 1 1 1 1 1\n",
  822. "[torch.FloatTensor of size 10x5]\n",
  823. "\n",
  824. "Variable containing:\n",
  825. " 1 1 1 1 1\n",
  826. " 1 1 1 1 1\n",
  827. " 1 1 1 1 1\n",
  828. " 1 1 1 1 1\n",
  829. " 1 1 1 1 1\n",
  830. " 1 1 1 1 1\n",
  831. " 1 1 1 1 1\n",
  832. " 1 1 1 1 1\n",
  833. " 1 1 1 1 1\n",
  834. " 1 1 1 1 1\n",
  835. "[torch.FloatTensor of size 10x5]\n",
  836. "\n"
  837. ]
  838. }
  839. ],
  840. "source": [
  841. "# 求 x 和 y 的梯度\n",
  842. "z.backward()\n",
  843. "\n",
  844. "print(x.grad)\n",
  845. "print(y.grad)"
  846. ]
  847. },
  848. {
  849. "cell_type": "markdown",
  850. "metadata": {},
  851. "source": [
  852. "通过`.grad`我们得到了 x 和 y 的梯度,这里我们使用了 PyTorch 提供的自动求导机制,非常方便,下一小节会具体讲自动求导。"
  853. ]
  854. },
  855. {
  856. "cell_type": "markdown",
  857. "metadata": {},
  858. "source": [
  859. "**小练习**\n",
  860. "\n",
  861. "尝试构建一个函数 $y = x^2 $,然后求 x=2 的导数。\n",
  862. "\n",
  863. "参考输出:4"
  864. ]
  865. },
  866. {
  867. "cell_type": "markdown",
  868. "metadata": {},
  869. "source": [
  870. "提示:\n",
  871. "\n",
  872. "$y = x^2$的图像如下"
  873. ]
  874. },
  875. {
  876. "cell_type": "code",
  877. "execution_count": 1,
  878. "metadata": {},
  879. "outputs": [
  880. {
  881. "data": {
  882. "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnB0lEQVR4nO3dd3hUVf7H8feZyaRDAkkIhCSEEFpAekcUBbvoYqPYcFXsZd2iq/tTd11dy9pdC9ZVKVbEiqKgINICRFoChIQ0IIUQkpBCMnN+fyS6igSGkMm5M/N9PU8eyWSY+VwDn1zOPfccpbVGCCGEddlMBxBCCHFkUtRCCGFxUtRCCGFxUtRCCGFxUtRCCGFxAZ540ejoaJ2UlOSJlxZCCJ+0du3aUq11zOG+5pGiTkpKIi0tzRMvLYQQPkkpldvc12ToQwghLE6KWgghLE6KWgghLE6KWgghLE6KWgghLE6KWgghLE6KWgghLM4yRV1b7+Tlpdn8sKPUdBQhhDhmSzKLeX15DgcbXK3+2pYp6gCb4uVl2by6LMd0FCGEOGYvfLeD//6wE4ddtfprW6eo7TYuGhrPkq3F7NlfazqOEEK4LbukitU5ZVwyPAGlfLioAS4ZloBLw/tr801HEUIIt72Tlo/dprhoSLxHXt9SRZ0UHcbo5CjeScvH5ZItwoQQ1lfvdPHB2gJO7dOJTu2DPfIelipqgKkjEsgvq2FF9l7TUYQQ4qi+ySimtOogU4cneOw9LFfUZ/TrTESIg7mr80xHEUKIo5q3Jo/O7YM5uddhVyhtFZYr6mCHncmDu/LV5iLKDhw0HUcIIZq1q7yG77aVcPGweALsnqtTyxU1wJThCRx0upi/vtB0FCGEaNZ7aQVo3TgRwpMsWdR9u7RnYEIk76zJQ2u5qCiEsB6nS/NuWj4npkST0DHUo+9lyaIGmDo8gW1FVazPLzcdRQghfmN5VimF5TVM8eBFxJ9YtqgnDYwjNNDOPLmoKISwoHlr8ugQ6uD0frEefy/LFnV4UACTBsTxyY+7qaytNx1HCCF+VlpVx6ItRVwwJJ6gALvH38+yRQ0wZUQCNfVOPvlxt+koQgjxs/nrCql36jYZ9gCLF/XghEh6x7Zj3hoZ/hBCWIPWmrmr8xiSGEmv2HZt8p6WLmqlFNNHJrKhYD8bCspNxxFCCFZk7yW79ACXjuzWZu9p6aIGmDykKyEOO3NWyVm1EMK82avyiAhxcM6ALm32npYv6vbBDs4bGMeC9F1UyEVFIYRBJZV1fLlpDxcNjSfY4fmLiD+xfFEDXDoqkZp6JwvkTkUhhEHvrc2nwaWZPjKxTd/XK4p6QHwk/bu2Z/YquVNRCGGGy6WZsyqPUckd6RET3qbv7VZRK6X+oJTarJTapJSaq5TyzKKrR3DpyG5k7qlkXd6+tn5rIYRg6fYSCvbVtOlFxJ8ctaiVUl2BW4FhWuv+gB2Y6ulghzpvYBzhQQHMXikXFYUQbW/2qjyiwgI5o1/nNn9vd4c+AoAQpVQAEArs8lykwwsLCmDy4K58unE35dWy/KkQou3s3l/D4sxiLhmeQGBA248YH/UdtdaFwL+BPGA3sF9r/dWhz1NKzVRKpSml0kpKSlo/KTB9ZCIHG1y8v7bAI68vhBCH886afJwuzbThbXsR8SfuDH10AM4HugNxQJhS6rJDn6e1nqW1Hqa1HhYT45mdDvp2ac+QxEjmyEVFIUQbaXC6mLc6n5N6xZAY5dnlTJvjzjn8RCBHa12ita4HPgTGeDZW8y4d2Y3s0gOyp6IQok0szixmT0Utl7bxlLxfcqeo84BRSqlQpZQCJgAZno3VvHMGdCEixCEXFYUQbWL2qjxi2wcxoU8nYxncGaNeBbwPrAM2Nv2eWR7O1axgh52Lh8bz5eY9FFXUmoohhPADO0sP8N22EqaNSPTonohH49Y7a63v01r30Vr311pfrrWu83SwI7lsVDecWsv6H0IIj3prZS4BNsX0EeaGPcBL7kw8VFJ0GCf3imHO6jwONrhMxxFC+KDqgw28l5bPmf0706l9m9/j9yteWdQAV4zu1rhAyuY9pqMIIXxQ40JwDVwxOsl0FO8t6pN7dSKxYyhvrcg1HUUI4WO01ry5Ipc+ndsxPKmD6TjeW9R2m+KyUYms3llGxu4K03GEED5kbe4+MnZXcMXoJBonu5nltUUNcMmwBIICbLwpZ9VCiFb03xW5tAsO4HeD40xHAby8qCNDAzl/UBwfrS9kf41sKiCEOH7FFbV8sXE3Fw9NIDQwwHQcwMuLGuCK0UnU1Dtl/Q8hRKuYu7pxc4DLR7f9cqbN8fqi7t81giGJkby9MheXS9b/EEK0XL3TxZzVuZzUK4bu0WGm4/zM64sa4MoxSeSUHmBZVqnpKEIIL/bV5iKKKuq40kJn0+AjRX1m/85Ehwfy5g87TUcRQnixN1fsJL5DCON7m1vX43B8oqiDAuxMH5HI4q3F7Cw9YDqOEMILbd61n1U5ZVwxuht2m/kpeb/kE0UNjet/BNgUb8hZtRCiBV5fvpPQQDtThpld1+NwfKaoO7UP5twBcbyXlk9FrUzVE0K4r6Syjo/Td3HhkHgiQh2m4/yGzxQ1wO/HdufAQSfvpclUPSGE++asyuOg08WMsUmmoxyWTxX1CfERDE/qwBs/5OCUqXpCCDfUNTh5a2Uup/SOoUdMuOk4h+VTRQ1w1dju5JfV8HVGkekoQggv8OmPuymtquOqsd1NR2mWzxX16amxdI0M4fXlOaajCCEsTmvNa8tzSOkUzrie0abjNMvnijrAbuOK0d1YmV3G5l37TccRQljYmp372LyrgqvGWmOVvOb4XFEDTB2eSIjDzhvLd5qOIoSwsNeX5xAR4uCCwfGmoxyRTxZ1RKiDi4bGsyB9F6VVRrd3FEJYVH5ZNV9u3sP0kYmEBNpNxzkinyxqgBljkzjodDF7pWyAK4T4rTdX7EQpxeWjrLWux+H4bFH3iAlnfO8Y3lqZS22903QcIYSFVNU1MG9N48a1cZEhpuMclc8WNcC145IprapjQXqh6ShCCAuZtzqPytoGZo5LNh3FLT5d1GN6RJHapT0vL8uRtaqFEAA0OF28vnwnI7p3ZGBCpOk4bvHpolZKMfOkZLKKq/huW4npOEIIC/h80x4Ky2u85mwafLyoAc4Z0IUuEcHMWpptOooQwjCtNbOW7iA5JoxT+1hrzekj8fmidtht/H5sd1Zk72VjgdwAI4Q/W5ldxqbCCq4dl4zNYmtOH4nPFzXA1BEJtAsK4OVlclYthD97eVk20eGBTB7c1XSUY+IXRd0u2MG0kYl8tnE3BfuqTccRQhiwvaiSxZnFXDE6iWCHtW9wOZRfFDXAjDFJKBp3cRBC+J9XluUQ7LBxmRfc4HIovynquMgQJg2MY97qPPbXyA4wQviT4spa5q8v5OKhCXQMCzQd55j5TVEDXDOucQeYuavltnIh/MmbP+RS73Jx9YnWXXP6SPyqqPvFRTA2JYrXl+dQ1yC3lQvhDw7UNfD2qlxOT40lKTrMdJwW8auiBrj+5B4UVdTx0Xq5rVwIfzB3dR7l1fVcd3IP01FazO+K+sSUaPp3bc+L32XLvopC+Li6BievLMthVHJHhiR2MB2nxdwqaqVUpFLqfaVUplIqQyk12tPBPEUpxY3jU8gpPcDCTXtMxxFCeNBH6wvZU1HLjeNTTEc5Lu6eUT8NLNRa9wEGAhmei+R5Z/TrTHJ0GC98l4XWclYthC9yujQvfZdN/67tLb0fojuOWtRKqQjgJOBVAK31Qa11uYdzeZTdprju5GQ2FVawbHup6ThCCA/4cvMesksPcMPJKZbeD9Ed7pxRdwdKgNeVUuuVUq8opX5z6VQpNVMplaaUSispsf5KdZMHx9O5fTDPf5tlOooQopVprXn+2yySo8M4s39n03GOmztFHQAMAV7QWg8GDgB3HfokrfUsrfUwrfWwmJiYVo7Z+gIDbFwzrjsrs8tYl7fPdBwhRCv6PquUTYUVXHdyMnYvWnypOe4UdQFQoLVe1fT5+zQWt9ebNiKRyFAHL3y7w3QUIUQren7JDmLbB/E7L1t8qTlHLWqt9R4gXynVu+mhCcAWj6ZqI2FBAVw5OolFW4rYVlRpOo4QohWsz9vHiuy9XDsumaAA71p8qTnuzvq4BZitlNoADAIe8liiNjZjTBIhDjsvylm1ED7h+W93EBHiYNqIRNNRWo1bRa21Tm8afx6gtf6d1tpnBnU7hAUybUQiC37cRd5eWQJVCG+2dU8li7YUceWYJMKCAkzHaTV+d2fi4fx0weGF72QGiBDe7NnF2wkLtPP7sUmmo7QqKWogtn0wU4cn8P7aAtlYQAgvlVVcyWcbd3PlmCQiQ71vKdMjkaJucn3Tgi0vfidj1UJ4o+cWZxHisHONF+0u7i4p6iZxkSFcNDSBd9cUsGd/rek4QohjkFN6gI9/3MVlo7p55cYARyNF/Qs3ju+BS2s5qxbCy/xnSRYOu41rffBsGqSofyWhYygXDOnK3NV5FFfIWbUQ3iBvbzXz1xdy6chuxLQLMh3HI6SoD3HTKSk0uDSzlmabjiKEcMPz32b9vNCar5KiPkS3qDDOHxTH26tyKa2qMx1HCHEEBfuqeX9tAdOGJxDbPth0HI+Roj6Mm05Joa7BxcvL5KxaCCt74dsdKIVXb7PlDinqw+gRE86kAXG8tSKXvXJWLYQl7Sqv4b20Ai4elkBcZIjpOB4lRd2MWyekUFvv5CUZqxbCkp5dnIVGc+N43z6bBinqZqV0asfvBnXlzRU7Ka6UGSBCWEne3mreS8tn2ohE4juEmo7jcVLUR3DrhJ7UOzXPL5F51UJYyTOLt2O3KW46xbs3rXWXFPURJEWHcdGQeOasymNXeY3pOEIIYEdJFR+uK+CyUd18eqbHL0lRH8UtE1LQaJ5bIivrCWEFT3+9naAAOzf4wdj0T6SojyK+QyhThyfy7pp8Wa9aCMO27qnkkw27mDE2iehw37wL8XCkqN1w0ykp2GyKZxZvNx1FCL/25KJthAUGMNNH1/RojhS1GzpHBHP5qG58uK6A7JIq03GE8EubCvezcPMerj6xOx18cIW8I5GidtMN43sQFGDnqa/lrFoIE55YtI2IEAdXj+tuOkqbk6J2U3R4EDPGJvHJhl1k7K4wHUcIv7I2dx+LM4uZeVIy7YMdpuO0OSnqY3DdScm0CwrgsS+3mo4ihN/QWvPIF5lEhwdxlY/theguKepjEBkayA3jU1icWcyq7L2m4wjhF5ZsLWb1zjJum9iT0EDf2Vn8WEhRH6MZY5KIbR/Ewwsz0VqbjiOET3O6NI98sZWkqFCmDk8wHccYKepjFBJo5w8Te7E+r5yvthSZjiOET/tofSFbiyr50xm9cdj9t67898iPw0VD4+kRE8ajCzNpcLpMxxHCJ9XWO3li0TZO6BrB2f27mI5jlBR1CwTYbfz5jD7sKDnAB+sKTMcRwie9vTKXwvIa7jqrDzabMh3HKCnqFjqjXyyDEyN5ctF2auudpuMI4VMqaut5bkkW43pGMzYl2nQc46SoW0gpxZ1n9mFPRS1v/LDTdBwhfMqs77Ipr67nzjP7mI5iCVLUx2FUchSn9I7h+SVZlFcfNB1HCJ9QXFHLq9/nMGlgHP27RpiOYwlS1MfpzrP6UFXXwDPfyDKoQrSGf3+1lQaXiz+d3st0FMuQoj5OfTq355JhCby5Yqcs2CTEcdq8az/vrS3gytFJdIsKMx3HMqSoW8Edp/ciKMDGw19kmo4ihNfSWvPgZxlEhji4ZUJP03EsRYq6FXRqF8yNp6Tw1ZYiVuyQW8uFaIlvMor5Ycdebp/Yi4gQ/1t46UikqFvJ1Sd2Jy4imH9+tgWXS24tF+JY1DtdPPR5BskxYUwfmWg6juVIUbeSYIedO8/qw+ZdFXy4vtB0HCG8yuyVuWSXHuCes/v69a3izXH7/4hSyq6UWq+U+tSTgbzZeQPjGJQQyWNfZlJ9sMF0HCGsbfZsSEpC22ycfs4o/lyaxql9OplOZUnH8qPrNiDDU0F8gVKK/zu3L0UVdcxamm06jhDWNXs2zJwJubkorYnbX8wNcx5BzZljOpkluVXUSql44BzgFc/G8X5Du3XknAFdeOm7bHbvrzEdRwhruuceqK7+1UO2mprGx8VvuHtG/RTwF6DZpeKUUjOVUmlKqbSSkpLWyOa17jqzDy6t+dfnMl1PiMPKyzu2x/3cUYtaKXUuUKy1Xnuk52mtZ2mth2mth8XExLRaQG+U0DGU607uwcc/7mKl7AQjxG8lNjOzo7nH/Zw7Z9RjgfOUUjuBecCpSqm3PZrKB9xwcg+6RoZw/8ebZc1qIQ5x8B8PUOsI+vWDoaHw4INmAlncUYtaa/1XrXW81joJmAos1lpf5vFkXi4k0M7/nZtK5p5K3l6ZazqOEJYyK34UfznjZmrj4kEp6NYNZs2CSy81Hc2SZMKiB53RL5ZxPaN5fNE2SqvqTMcRwhIKy2t4bkkW9VOmEVyYDy4X7NwpJX0Ex1TUWutvtdbneiqMr1FKcd+kftQcdPLYwq2m4whhCQ991jjL955z+hpO4j3kjNrDUjqFc/WJ3XknLZ/0/HLTcYQwanlWKZ9t3M1N41OI7xBqOo7XkKJuA7dM6EmndkHct2CTrAMi/Fa908V9H28msWMo156UbDqOV5GibgPhQQHcfXZffizYz7w1+abjCGHE68tzyCqu4t5zUwl22E3H8SpS1G3k/EFxjEruyMNfZFBSKRcWhX8p2FfNk4u2M7FvJyb0lfU8jpUUdRtRSvHg5BOorXfxz8+2mI4jRJvRWnPvgs0oBX8/vz9KKdORvI4UdRvqERPODeN7sCB9F0u3+fdt9sJ/LNy0h8WZxdxxWi+6RoaYjuOVpKjb2A3je5AcHcbfPtpEbb3TdBwhPKqytp77P9lMapf2zBiTZDqO15KibmPBDjv/nNyfvLJqnlssO5cL3/b4V9sorqzjXxecQIBsCNBi8n/OgDE9orlgSFdeWrqDbUWVpuMI4RE/5pfz3xU7uWJUNwYmRJqO49WkqA255+y+hAUFcM/8jTK3WvicBqeLv364kU7tgvjjGb1Nx/F6UtSGRIUHcffZfVmzcx9z18gavMK3vLY8hy27K7h/Uj/aB8uO4sdLitqgi4fGM6ZHFP/6PJPCctkNRviG7JIqHv9qGxP7xnJm/86m4/gEKWqDlFI8fMEAnC7NXz/ciNYyBCK8m9Ol+cv7GwgKsPHQZJkz3VqkqA1LjArlzjN7s3RbCe+vLTAdR4jj8uaKnaTl7uPeSf3o1D7YdByfIUVtAVeMTmJEUkce+HQLRRW1puMI0SK5ew/w6MKtjO8dw4VDupqO41OkqC3AZlM8ctEA6hpc3DNfhkCE93G5NHd+sIEAm+JfF5wgQx6tTIraIrpHh/HnM3rzdUYxC9J3mY4jxDGZvTqPldll3HNOX7pEyG3irU2K2kKuGtudIYmR3P/JZoorZQhEeIeCfdU8/HkG43pGM2V4guk4PkmK2kLsNsWjFw2k+qCTu2UWiPACLpfmz+9tAJAhDw+SoraYlE7h/KVpCEQ2GRBW9+r3OazI3su9k1Jlay0PkqK2oN+P7c7YlCge+HQLO0sPmI4jxGFl7K7gsS+3cnpqLJcMkyEPT5KitiCbTfHviwcSYFPc/k46DU6X6UhC/EptvZM/vJNO+xCHDHm0ASlqi+oSEcKDk08gPb+c/yzZYTqOEL/y+FdbydxTyWMXDSAqPMh0HJ8nRW1hkwbG8btBcTyzeDvr8/aZjiMEAD9klfLyshwuG5XIKX1k/8O2IEVtcX8/vz+x7YK4490fqT7YYDqO8HP7q+v543s/khwdxj1np5qO4zekqC0uIsTB45cMYufeA/zjE9kUV5ijtebujzZSUlnHk1MGERJoNx3Jb0hRe4HRPaK44eQezFuTz4L0QtNxhJ+aszqPzzbs5o7Te8mOLW1MitpL3HFaL4Z168DdH24ku6TKdBzhZ7bsquDvn2zhpF4xXH9SD9Nx/I4UtZcIsNt4ZtpgHAE2bpqzXnYwF22mqq6Bm+esIzLEwROXDMRmk6l4bU2K2ovERYbwxCUDydhdwT8/k/Fq4Xlaa/42fyM79x7gmWmDiZapeEZIUXuZU/vEMvOkZN5e2TheKIQnvZdWwEfpu7h9Yi9GJUeZjuO3pKi90J/P6M2ghEju+mADuXvlFnPhGduKKrn3402M6RHFTaekmI7j16SovZDDbuO56YNRCm54ex01B2W8WrSuytp6rn97LeFBATw1dRB2GZc2SoraS8V3COWpqYPI2FPBXz/cIEuiilbjcmnuePdHcvdW89z0IXRqJ3sfmiZF7cVO7RPLHRN78VH6Ll5fvtN0HOEjnluSxaItRfztnL4yLm0RRy1qpVSCUmqJUmqLUmqzUuq2tggm3HPTKSmcnhrLg59nsGLHXtNxhJf7JqOIJ7/exgWDuzJjTJLpOKKJO2fUDcAftdapwCjgJqWU3ORvETab4vFLBpIUFcrNc9ZRWF5jOpLwUtklVdw+L53ULu15SJYutZSjFrXWerfWel3TryuBDED2greQdsEOZl0xjLoGF9e/tVZuhhHHrKqugeveWkuAXfHS5UMJdsg6HlZyTGPUSqkkYDCw6jBfm6mUSlNKpZWUlLRSPOGuHjHhPDllEBsL98t+i+KYuFyaP76bzo6SKv4zfYhsqWVBbhe1Uioc+AC4XWtdcejXtdaztNbDtNbDYmJiWjOjcNNpqbHccVovPlxfyHOLs0zHEV7ikYWZfLm5iL+dk8qYlGjTccRhBLjzJKWUg8aSnq21/tCzkcTxuOXUFHaWHuDxRdtIjArl/EEySiWaN3d1Hi8tzebyUd24amyS6TiiGe7M+lDAq0CG1voJz0cSx0Mpxb8uPIER3Tvy5/c3sDa3zHQkYVHLtpfwt482Mb53DPdNSpWLhxbmztDHWOBy4FSlVHrTx9keziWOQ1CAnZcuG0rXyBCufXOt3GYufmNbUSU3vr2Onp3CeXbaYALsckuFlbkz6+N7rbXSWg/QWg9q+vi8LcKJlusQFshrM4bj0pqr3ljD/up605GERZRU1nHV62sIDrTz6ozhtAt2mI4kjkJ+jPqw7tFhvHTZUPLLqpn5VppM2xMcqGvgmjfT2HugjlevHEbXyBDTkYQbpKh93MjkKP598UBW5ZRx69z1NDhdpiMJQ+oanFz/9lo2Fe7n2WlDGBAfaTqScJMUtR84f1BX7p+UyldbivirzLH2S06X5o53fmTZ9lIeuXAAp6XGmo4kjoFb0/OE95sxtjv7qut5+pvtRIY6uPvsvnKV309orfnbR5v4bONu/nZOXy4aGm86kjhGUtR+5PaJPSmvPsjLy3LoEBbIjeNlMXh/8NiXW5m7Oo+bTunBNeOSTccRLSBF7UeUUtw3qR/lNfU8unArkSGBTB+ZaDqW8KCXl2bz/Lc7mD4ykT+d3tt0HNFCUtR+xmZT/PvigVTWNnDPRxsJsCkuGZ5gOpbwgNe+z+HBzzM4Z0AXHji/vwx1eTG5mOiHHHYbz186hJN6xvCXDzbwzpo805FEK3v1+xz+8ekWzurfmaemyFZa3k6K2k8FO+y8dPlQxveO4c4PNjJvtZS1r3hlWTYPfLqFs0/ozDPTBuOQuw69nnwH/Viww86Llw3llN4x3PXhRuaskrL2dq8sy+afn2VwzgldeHqqlLSvkO+inwt22Hnx8sayvnv+RmavyjUdSbTQy0v/V9JPTR0kJe1D5DspCApoLOtT+3TinvmbeP7bLLkpxotorXnsy8yfLxw+LSXtc+S7KYCmsr5sKOcNjOPRhVt54NMMXC4pa6trcLq464ON/GfJDqaNSOCZqbISni+S6XniZ4EBNp6aMoio8EBeW57D3gN1PHbRQAID5C++FdXWO7ll7noWbSni1lNT+MNpvWQKno+Soha/YrMp7j03lZh2QTy6cCv7qut54dIhhAXJHxUr2V9Tz7X/TWNNbhl/P68fV45JMh1JeJCcKonfUEpx4/gUHr1wAN9vL2H6yysprqg1HUs0KdhXzZSXVrA+fx/PThssJe0HpKhFsy4ZnsCsy4exvbiK855bzoaCctOR/N6anWWc/9xyCstreH3GCM4dEGc6kmgDUtTiiCamxvLBDWOw2xQXv7iCBemFpiP5rXmr85j+8koiQhx8dNNYTuwpO4b7CylqcVR9u7Tn45vHMjA+ktvmpfPYl5kyI6QNNThd3P/xZu76cCOjkqOYf+NYesSEm44l2pAUtXBLVHgQb18zkmkjEvjPkh3MfGst+2tkH0ZP21tVx1VvrOGNH3Zy9YndeX3GcCJCZY9DfyNFLdwWGGDjockncP+kVL7dWszZTy9jXd4+07F81g87Sjnr6WWsyinj0QsH8H/npsocaT8l33VxTJRSzBjbnfeuH41ScPGLK3jh2x0yFNKKGpwunli0jUtfWUV4cADzbxwjS9H6OSlq0SKDEzvw2a3jOLNfZx5ZmMmVr6+mpLLOdCyvt3t/DdNfXsUz32znwiHxfHLzifSLizAdSxgmRS1aLCLEwXPTB/PQ5BNYnVPGWU8vY+Gm3aZjeSWtNQvSCznr6WVs2rWfJ6cM5N8XD5QbjQQgRS2Ok1KK6SMT+fjmE+nULojr317HjbPXUlwpN8i4a1d5DVf/N43b5qWTFBXGp7ecyOTBsgGt+B/liVXShg0bptPS0lr9dYW11TtdzFqazdPfbCfEYef/zk3lwiFdZf2JZrhcmjmr83j4i0ycLs2fzujNjDFJshuLn1JKrdVaDzvs16SoRWvLKq7izg82sDZ3Hyf1iuH+Sakky7zfX9m6p5J7F2xiVU4ZY1Oi+NfkASRGhZqOJQySohZtzuXSvLUyl0cXZlLX4OLy0d24bUJPIkMDTUczqqSyjie/3sa81XmEBwVwzzl9uWRYgvyrQ0hRC3NKKut4YtE23lmTR7tgB7dO6Mnlo7r53dKptfVOXluew/NLdlBb7+SyUY0/uDqE+fcPLvE/UtTCuMw9FTz4WQbLtpfSPTqMW05NYdLAOJ/fiaSuwcn8dYU8uziLwvIaJvaN5a9n95FbwMVvSFELS9Ba8+22Eh75IpPMPZXEdwjhupN7cPHQeIIddtPxWlX1wQbmrs7n5aXZ7Kmo5YSuEdx1Vh/GpshCSuLwpKiFpWitWZxZzHNLslifV050eBDXjOvO1OEJXj+Gvbeqjjmr8nhteQ77qusZldyRG8enMK5ntIxDiyOSohaWpLVmZXYZz3+bxbLtpQQG2Dirf2emDEtgVHIUNi+ZpuZ0ab7PKuWdNXks2lJEvVMzoU8nbjylB0O7dTQdT3iJIxW13PYkjFFKMbpHFKN7RLFlVwXvrMlj/vpCFqTvIrFjKJcMi2fSwDi6RYWZjnpYO0qq+Dh9F++vLaCwvIYOoQ6uGJ3E1OEJ9IxtZzqe8CFyRi0spbbeycJNe5i3Jo+V2WUA9OwUzoS+sZyW2olBCR2M3RDS4HSxNncfX2cU8XVGMTmlBwAY1zOaKcMTOC01lqAA3xprF23nuIc+lFJnAk8DduAVrfXDR3q+FLVoDfll1SzaUsTXGUWszimjwaWJCgtkZHJHBiVEMjixA/3jIggJ9Ew5HqhrYGPhftbnlZOev49VOWWUV9fjsCtGJUdxWmosE/rG0jUyxCPvL/zLcRW1UsoObANOAwqANcA0rfWW5n6PFLVobftr6vluWwmLM4pYm7eP/LIaAOw2RZ/O7egV246EjqEkdAghoWMoiR1D6RgWSFCArdmLeFpr6hpclFbVkV9WQ35ZNfn7qskvqyZzTyXbiir5afXWblGhDO3WgYl9YxnXM5p2wbJ4v2hdxztGPQLI0lpnN73YPOB8oNmiFqK1RYQ4OG9gHOcNbNzMtbSqjvS8ctLzGz9W55TxUXohh5532BSEBgYQEmgnNNCO1lB90EnNwQZq6p0cuoy2TUGXiBCSY8I4PTWWwYkdGJgQSUe5MUUY5E5RdwXyf/F5ATDy0CcppWYCMwESExNbJZwQzYkOD2JiaiwTU2N/fuxgg4td5TXk76smr6ya8up6ag46qT7opPpgA9UHnSgFoYF2QhwBjf8NtNMxLJCEDo1n4V0ig33+JhzhfVpt1ofWehYwCxqHPlrrdYVwV2CAjaToMJKirTlLRIiWcufUoRD45T5A8U2PCSGEaAPuFPUaoKdSqrtSKhCYCnzs2VhCCCF+ctShD611g1LqZuBLGqfnvaa13uzxZEIIIQA3x6i11p8Dn3s4ixBCiMOQy9tCCGFxUtRCCGFxUtRCCGFxUtRCCGFxHlk9TylVAuS28LdHA6WtGMckXzkWXzkOkGOxIl85Dji+Y+mmtY453Bc8UtTHQymV1tzCJN7GV47FV44D5FisyFeOAzx3LDL0IYQQFidFLYQQFmfFop5lOkAr8pVj8ZXjADkWK/KV4wAPHYvlxqiFEEL8mhXPqIUQQvyCFLUQQlicJYtaKfWAUmqDUipdKfWVUirOdKaWUEo9ppTKbDqW+UqpSNOZWkopdbFSarNSyqWU8rqpVEqpM5VSW5VSWUqpu0znOR5KqdeUUsVKqU2msxwPpVSCUmqJUmpL05+t20xnaimlVLBSarVS6semY/l7q76+FceolVLttdYVTb++FUjVWl9vONYxU0qdDixuWir2EQCt9Z2GY7WIUqov4AJeAv6ktfaa3YtbskGzlSmlTgKqgDe11v1N52kppVQXoIvWep1Sqh2wFvidN35fVOMOymFa6yqllAP4HrhNa72yNV7fkmfUP5V0kzDAej9N3KC1/kpr3dD06Uoad8fxSlrrDK31VtM5WujnDZq11geBnzZo9kpa66VAmekcx0trvVtrva7p15VABo17tHod3aiq6VNH00er9ZYlixpAKfWgUiofuBS413SeVvB74AvTIfzU4TZo9spC8FVKqSRgMLDKcJQWU0rZlVLpQDGwSGvdasdirKiVUl8rpTYd5uN8AK31PVrrBGA2cLOpnEdztONoes49QAONx2JZ7hyLEK1NKRUOfADcfsi/pr2K1tqptR5E47+cRyilWm1YqtV2IT9WWuuJbj51No27y9znwTgtdrTjUErNAM4FJmgrXhD4hWP4nngb2aDZoprGcz8AZmutPzSdpzVorcuVUkuAM4FWueBryaEPpVTPX3x6PpBpKsvxUEqdCfwFOE9rXW06jx+TDZotqOkC3KtAhtb6CdN5jodSKuanWV1KqRAaL1y3Wm9ZddbHB0BvGmcZ5ALXa6297gxIKZUFBAF7mx5a6Y2zVwCUUpOBZ4EYoBxI11qfYTTUMVBKnQ08xf82aH7QbKKWU0rNBcbTuKRmEXCf1vpVo6FaQCl1IrAM2Ejj33WAu5v2aPUqSqkBwH9p/PNlA97VWv+j1V7fikUthBDifyw59CGEEOJ/pKiFEMLipKiFEMLipKiFEMLipKiFEMLipKiFEMLipKiFEMLi/h95yyGcg55E7QAAAABJRU5ErkJggg==\n",
  883. "text/plain": [
  884. "<Figure size 432x288 with 1 Axes>"
  885. ]
  886. },
  887. "metadata": {
  888. "needs_background": "light"
  889. },
  890. "output_type": "display_data"
  891. }
  892. ],
  893. "source": [
  894. "import numpy as np\n",
  895. "import matplotlib.pyplot as plt\n",
  896. "\n",
  897. "x = np.arange(-3, 3.01, 0.1)\n",
  898. "y = x ** 2\n",
  899. "plt.plot(x, y)\n",
  900. "plt.plot(2, 4, 'ro')\n",
  901. "plt.show()"
  902. ]
  903. },
  904. {
  905. "cell_type": "code",
  906. "execution_count": 6,
  907. "metadata": {},
  908. "outputs": [
  909. {
  910. "name": "stdout",
  911. "output_type": "stream",
  912. "text": [
  913. "tensor([4.])\n"
  914. ]
  915. }
  916. ],
  917. "source": [
  918. "import torch\n",
  919. "from torch.autograd import Variable\n",
  920. "\n",
  921. "# 答案\n",
  922. "x = Variable(torch.FloatTensor([2]), requires_grad=True)\n",
  923. "y = x ** 2\n",
  924. "y.backward()\n",
  925. "print(x.grad)"
  926. ]
  927. },
  928. {
  929. "cell_type": "markdown",
  930. "metadata": {},
  931. "source": [
  932. "下一次课程我们将会从导数展开,了解 PyTorch 的自动求导机制"
  933. ]
  934. }
  935. ],
  936. "metadata": {
  937. "kernelspec": {
  938. "display_name": "Python 3",
  939. "language": "python",
  940. "name": "python3"
  941. },
  942. "language_info": {
  943. "codemirror_mode": {
  944. "name": "ipython",
  945. "version": 3
  946. },
  947. "file_extension": ".py",
  948. "mimetype": "text/x-python",
  949. "name": "python",
  950. "nbconvert_exporter": "python",
  951. "pygments_lexer": "ipython3",
  952. "version": "3.6.9"
  953. }
  954. },
  955. "nbformat": 4,
  956. "nbformat_minor": 2
  957. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。