|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- # -*- coding: utf-8 -*-
- # ---
- # jupyter:
- # jupytext_format_version: '1.2'
- # kernelspec:
- # display_name: Python 3
- # language: python
- # name: python3
- # language_info:
- # codemirror_mode:
- # name: ipython
- # version: 3
- # file_extension: .py
- # mimetype: text/x-python
- # name: python
- # nbconvert_exporter: python
- # pygments_lexer: ipython3
- # version: 3.5.2
- # ---
-
- # # Adadelta
- # Adadelta 算是 Adagrad 法的延伸,它跟 RMSProp 一样,都是为了解决 Adagrad 中学习率不断减小的问题,RMSProp 是通过移动加权平均的方式,而 Adadelta 也是一种方法,有趣的是,它并不需要学习率这个参数。
- #
- # ## Adadelta 法
- # Adadelta 跟 RMSProp 一样,先使用移动平均来计算 s
- #
- # $$
- # s = \rho s + (1 - \rho) g^2
- # $$
- #
- # 这里 $\rho$ 和 RMSProp 中的 $\alpha$ 都是移动平均系数,g 是参数的梯度,然后我们会计算需要更新的参数的变化量
- #
- # $$
- # g' = \frac{\sqrt{\Delta \theta + \epsilon}}{\sqrt{s + \epsilon}} g
- # $$
- #
- # $\Delta \theta$ 初始为 0 张量,每一步做如下的指数加权移动平均更新
- #
- # $$
- # \Delta \theta = \rho \Delta \theta + (1 - \rho) g'^2
- # $$
- #
- # 最后参数更新如下
- #
- # $$
- # \theta = \theta - g'
- # $$
- #
- # 下面我们实现以下 Adadelta
-
- def adadelta(parameters, sqrs, deltas, rho):
- eps = 1e-6
- for param, sqr, delta in zip(parameters, sqrs, deltas):
- sqr[:] = rho * sqr + (1 - rho) * param.grad.data ** 2
- cur_delta = torch.sqrt(delta + eps) / torch.sqrt(sqr + eps) * param.grad.data
- delta[:] = rho * delta + (1 - rho) * cur_delta ** 2
- param.data = param.data - cur_delta
-
- # +
- import numpy as np
- import torch
- from torchvision.datasets import MNIST # 导入 pytorch 内置的 mnist 数据
- from torch.utils.data import DataLoader
- from torch import nn
- from torch.autograd import Variable
- import time
- import matplotlib.pyplot as plt
- # %matplotlib inline
-
- def data_tf(x):
- x = np.array(x, dtype='float32') / 255
- x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到
- x = x.reshape((-1,)) # 拉平
- x = torch.from_numpy(x)
- return x
-
- train_set = MNIST('./data', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换
- test_set = MNIST('./data', train=False, transform=data_tf, download=True)
-
- # 定义 loss 函数
- criterion = nn.CrossEntropyLoss()
-
- # +
- train_data = DataLoader(train_set, batch_size=64, shuffle=True)
- # 使用 Sequential 定义 3 层神经网络
- net = nn.Sequential(
- nn.Linear(784, 200),
- nn.ReLU(),
- nn.Linear(200, 10),
- )
-
- # 初始化梯度平方项和 delta 项
- sqrs = []
- deltas = []
- for param in net.parameters():
- sqrs.append(torch.zeros_like(param.data))
- deltas.append(torch.zeros_like(param.data))
-
- # 开始训练
- losses = []
- idx = 0
- start = time.time() # 记时开始
- for e in range(5):
- train_loss = 0
- for im, label in train_data:
- im = Variable(im)
- label = Variable(label)
- # 前向传播
- out = net(im)
- loss = criterion(out, label)
- # 反向传播
- net.zero_grad()
- loss.backward()
- adadelta(net.parameters(), sqrs, deltas, 0.9) # rho 设置为 0.9
- # 记录误差
- train_loss += loss.data[0]
- if idx % 30 == 0:
- losses.append(loss.data[0])
- idx += 1
- print('epoch: {}, Train Loss: {:.6f}'
- .format(e, train_loss / len(train_data)))
- end = time.time() # 计时结束
- print('使用时间: {:.5f} s'.format(end - start))
- # -
-
- x_axis = np.linspace(0, 5, len(losses), endpoint=True)
- plt.semilogy(x_axis, losses, label='rho=0.99')
- plt.legend(loc='best')
-
- # 可以看到使用 adadelta 跑 5 次能够得到更小的 loss
-
- # **小练习:思考一下为什么 Adadelta 没有学习率这个参数,它是被什么代替了**
-
- # 当然 pytorch 也内置了 adadelta 的方法,非常简单,只需要调用 `torch.optim.Adadelta()` 就可以了,下面是例子
-
- # +
- train_data = DataLoader(train_set, batch_size=64, shuffle=True)
- # 使用 Sequential 定义 3 层神经网络
- net = nn.Sequential(
- nn.Linear(784, 200),
- nn.ReLU(),
- nn.Linear(200, 10),
- )
-
- optimizer = torch.optim.Adadelta(net.parameters(), rho=0.9)
-
- # 开始训练
- start = time.time() # 记时开始
- for e in range(5):
- train_loss = 0
- for im, label in train_data:
- im = Variable(im)
- label = Variable(label)
- # 前向传播
- out = net(im)
- loss = criterion(out, label)
- # 反向传播
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- # 记录误差
- train_loss += loss.data[0]
- print('epoch: {}, Train Loss: {:.6f}'
- .format(e, train_loss / len(train_data)))
- end = time.time() # 计时结束
- print('使用时间: {:.5f} s'.format(end - start))
- # -
-
- # **小练习:看看 pytorch 中的 adadelta,里面是有学习率这个参数,但是前面我们讲过 adadelta 不用设置学习率,看看这个学习率到底是干嘛的**
|