You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

Nerual_Network.py 3.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. from __future__ import print_function
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. import torch.optim as optim
  6. from torch.autograd import Variable
  7. from torchvision import datasets, transforms
  8. # Training settings
  9. batch_size = 64
  10. # MNIST Dataset
  11. dataset_path = "../data/mnist"
  12. train_dataset = datasets.MNIST(root=dataset_path,
  13. train=True,
  14. transform=transforms.ToTensor(),
  15. download=True)
  16. test_dataset = datasets.MNIST(root=dataset_path,
  17. train=False,
  18. transform=transforms.ToTensor())
  19. # Data Loader (Input Pipeline)
  20. train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
  21. batch_size=batch_size,
  22. shuffle=True)
  23. test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
  24. batch_size=batch_size,
  25. shuffle=False)
  26. # define Network
  27. class Net(nn.Module):
  28. def __init__(self):
  29. super(Net, self).__init__()
  30. self.l1 = nn.Linear(784, 520)
  31. self.l2 = nn.Linear(520, 320)
  32. self.l3 = nn.Linear(320, 240)
  33. self.l4 = nn.Linear(240, 120)
  34. self.l5 = nn.Linear(120, 10)
  35. def forward(self, x):
  36. x = x.view(-1, 784) # Flatten the data (n, 1, 28, 28)-> (n, 784)
  37. x = F.relu(self.l1(x))
  38. x = F.relu(self.l2(x))
  39. x = F.relu(self.l3(x))
  40. x = F.relu(self.l4(x))
  41. return self.l5(x)
  42. model = Net()
  43. criterion = nn.CrossEntropyLoss()
  44. optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
  45. def train(epoch):
  46. #model.train()
  47. for batch_idx, (data, target) in enumerate(train_loader):
  48. data, target = Variable(data), Variable(target)
  49. optimizer.zero_grad()
  50. output = model(data)
  51. loss = criterion(output, target)
  52. loss.backward()
  53. optimizer.step()
  54. if batch_idx % 10 == 0:
  55. print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
  56. epoch, batch_idx * len(data), len(train_loader.dataset),
  57. 100. * batch_idx / len(train_loader), loss.data[0]))
  58. def test():
  59. model.eval()
  60. test_loss = 0
  61. correct = 0
  62. for data, target in test_loader:
  63. data, target = Variable(data, volatile=True), Variable(target)
  64. output = model(data)
  65. # sum up batch loss
  66. test_loss += criterion(output, target).data[0]
  67. # get the index of the max
  68. pred = output.data.max(1, keepdim=True)[1]
  69. correct += pred.eq(target.data.view_as(pred)).cpu().sum()
  70. test_loss /= len(test_loader.dataset)
  71. print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
  72. test_loss, correct, len(test_loader.dataset),
  73. 100. * correct / len(test_loader.dataset)))
  74. for epoch in range(1, 10):
  75. train(epoch)
  76. test()

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。