|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# AlexNet\n",
- "\n",
- "\n",
- "第一个典型的卷积神经网络是 LeNet5 ,但是第一个开启深度学习的网络却是 AlexNet,这个网络在2012年的ImageNet竞赛中取得冠军。这网络提出了深度学习常用的技术:ReLU和Dropout。AlexNet网络结构在整体上类似于LeNet,都是先卷积然后在全连接,但在细节上有很大不同,AlexNet更为复杂,Alexnet模型由5个卷积层和3个池化Pooling层,其中还有3个全连接层构成,共有$6 \\times 10^7$个参数和65000个神经元,最终的输出层是1000通道的Softmax。AlexNet 跟 LeNet 结构类似,但使⽤了更多的卷积层和更⼤的参数空间来拟合⼤规模数据集 ImageNet,它是浅层神经⽹络和深度神经⽹络的分界线。\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "import torch.nn as nn\n",
- "import torch\n",
- "\n",
- "class AlexNet(nn.Module):\n",
- " def __init__(self, num_classes=1000, init_weights=False): \n",
- " super(AlexNet, self).__init__()\n",
- " self.features = nn.Sequential( \n",
- " nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2), \n",
- " nn.ReLU(inplace=True), #inplace 可以载入更大模型\n",
- " nn.MaxPool2d(kernel_size=3, stride=2), \n",
- "\n",
- " nn.Conv2d(96, 256, kernel_size=5, padding=2),\n",
- " nn.ReLU(inplace=True),\n",
- " nn.MaxPool2d(kernel_size=3, stride=2),\n",
- "\n",
- " nn.Conv2d(256, 384, kernel_size=3, padding=1),\n",
- " nn.ReLU(inplace=True),\n",
- "\n",
- " nn.Conv2d(384, 384, kernel_size=3, padding=1),\n",
- " nn.ReLU(inplace=True),\n",
- "\n",
- " nn.Conv2d(384, 256, kernel_size=3, padding=1),\n",
- " nn.ReLU(inplace=True),\n",
- " nn.MaxPool2d(kernel_size=3, stride=2),\n",
- " )\n",
- " self.classifier = nn.Sequential(\n",
- " nn.Dropout(p=0.5),\n",
- " nn.Linear(256*6*6, 4096), #全链接\n",
- " nn.ReLU(inplace=True),\n",
- " nn.Dropout(p=0.5),\n",
- " nn.Linear(4096, 4096),\n",
- " nn.ReLU(inplace=True),\n",
- " nn.Linear(4096, num_classes),\n",
- " )\n",
- " if init_weights:\n",
- " self._initialize_weights()\n",
- "\n",
- " def forward(self, x):\n",
- " x = self.features(x)\n",
- " x = torch.flatten(x, start_dim=1) #展平或者view()\n",
- " x = self.classifier(x)\n",
- " return x\n",
- "\n",
- " def _initialize_weights(self):\n",
- " for m in self.modules():\n",
- " if isinstance(m, nn.Conv2d):\n",
- " #何教授方法\n",
- " nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') \n",
- " if m.bias is not None:\n",
- " nn.init.constant_(m.bias, 0)\n",
- " elif isinstance(m, nn.Linear):\n",
- " #正态分布赋值\n",
- " nn.init.normal_(m.weight, 0, 0.01) \n",
- " nn.init.constant_(m.bias, 0)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.5.4"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|