You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

1-numpy_tutorial.ipynb 167 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# Numpy - 多维数据的数组"
  8. ]
  9. },
  10. {
  11. "cell_type": "markdown",
  12. "metadata": {},
  13. "source": [
  14. "最新的[IPython notebook](http://ipython.org/notebook.html)课程可以在[http://github.com/jrjohansson/scientific-python-lectures](http://github.com/jrjohansson/scientific-python-lectures) 找到.\n",
  15. "\n",
  16. "其他有关这个课程的参考书在这里标注出[http://jrjohansson.github.io](http://jrjohansson.github.io).\n"
  17. ]
  18. },
  19. {
  20. "cell_type": "code",
  21. "execution_count": 1,
  22. "metadata": {},
  23. "outputs": [],
  24. "source": [
  25. "# 这一行的作用会在课程4中回答\n",
  26. "%matplotlib inline\n",
  27. "import matplotlib.pyplot as plt"
  28. ]
  29. },
  30. {
  31. "cell_type": "markdown",
  32. "metadata": {},
  33. "source": [
  34. "## 1. 简介"
  35. ]
  36. },
  37. {
  38. "cell_type": "markdown",
  39. "metadata": {},
  40. "source": [
  41. "这个`numpy`包(模块)用在几乎所有使用Python的数值计算中。他是一个为Python提供高性能向量,矩阵和高维数据结构的模块。它是用C和Fortran语言实现的,因此当计算向量化数据(用向量和矩阵表示)时,性能非常的好。\n",
  42. "\n",
  43. "为了使用`numpy`模块,你先要像下面的例子一样导入这个模块:"
  44. ]
  45. },
  46. {
  47. "cell_type": "code",
  48. "execution_count": 3,
  49. "metadata": {},
  50. "outputs": [],
  51. "source": [
  52. "# 不建议用这种方式导入库\n",
  53. "from numpy import *"
  54. ]
  55. },
  56. {
  57. "cell_type": "code",
  58. "execution_count": 2,
  59. "metadata": {},
  60. "outputs": [],
  61. "source": [
  62. "import numpy as np"
  63. ]
  64. },
  65. {
  66. "cell_type": "markdown",
  67. "metadata": {},
  68. "source": [
  69. "在`numpy`模块中,用于向量,矩阵和高维数据集的术语是*数组*。\n",
  70. "\n",
  71. "**建议大家使用第二种导入方法** `import numpy as np`\n"
  72. ]
  73. },
  74. {
  75. "cell_type": "markdown",
  76. "metadata": {},
  77. "source": [
  78. "## 2. 创建`numpy`数组"
  79. ]
  80. },
  81. {
  82. "cell_type": "markdown",
  83. "metadata": {},
  84. "source": [
  85. "有很多种方法去初始化新的numpy数组, 例如从\n",
  86. "\n",
  87. "* Python列表或元组\n",
  88. "* 使用专门用来创建numpy arrays的函数,例如 `arange`, `linspace`等\n",
  89. "* 从文件中读取数据"
  90. ]
  91. },
  92. {
  93. "cell_type": "markdown",
  94. "metadata": {},
  95. "source": [
  96. "### 2.1 从列表中"
  97. ]
  98. },
  99. {
  100. "cell_type": "markdown",
  101. "metadata": {},
  102. "source": [
  103. "例如,为了从Python列表创建新的向量和矩阵我们可以用`numpy.array`函数。\n"
  104. ]
  105. },
  106. {
  107. "cell_type": "code",
  108. "execution_count": 4,
  109. "metadata": {},
  110. "outputs": [
  111. {
  112. "name": "stdout",
  113. "output_type": "stream",
  114. "text": [
  115. "[1, 2, 3, 4]\n"
  116. ]
  117. },
  118. {
  119. "data": {
  120. "text/plain": [
  121. "array([1, 2, 3, 4])"
  122. ]
  123. },
  124. "execution_count": 4,
  125. "metadata": {},
  126. "output_type": "execute_result"
  127. }
  128. ],
  129. "source": [
  130. "import numpy as np\n",
  131. "\n",
  132. "a = [1, 2, 3, 4]\n",
  133. "print(a)\n",
  134. "\n",
  135. "# a vector: the argument to the array function is a Python list\n",
  136. "v = np.array(a)\n",
  137. "\n",
  138. "v"
  139. ]
  140. },
  141. {
  142. "cell_type": "code",
  143. "execution_count": 6,
  144. "metadata": {},
  145. "outputs": [
  146. {
  147. "name": "stdout",
  148. "output_type": "stream",
  149. "text": [
  150. "[[1 2]\n",
  151. " [3 4]\n",
  152. " [5 6]]\n",
  153. "\n",
  154. "(3, 2)\n"
  155. ]
  156. }
  157. ],
  158. "source": [
  159. "# 矩阵:数组函数的参数是一个嵌套的Python列表\n",
  160. "M = np.array([[1, 2], [3, 4], [5, 6]])\n",
  161. "\n",
  162. "print(M)\n",
  163. "print()\n",
  164. "print(M.shape)"
  165. ]
  166. },
  167. {
  168. "cell_type": "code",
  169. "execution_count": 8,
  170. "metadata": {},
  171. "outputs": [
  172. {
  173. "name": "stdout",
  174. "output_type": "stream",
  175. "text": [
  176. "[[[ 1 2]\n",
  177. " [ 3 4]\n",
  178. " [ 5 6]]\n",
  179. "\n",
  180. " [[ 3 4]\n",
  181. " [ 5 6]\n",
  182. " [ 7 8]]\n",
  183. "\n",
  184. " [[ 5 6]\n",
  185. " [ 7 8]\n",
  186. " [ 9 10]]\n",
  187. "\n",
  188. " [[ 7 8]\n",
  189. " [ 9 10]\n",
  190. " [11 12]]]\n",
  191. "\n",
  192. "(4, 3, 2)\n"
  193. ]
  194. }
  195. ],
  196. "source": [
  197. "M = np.array([[[1,2], [3,4], [5,6]], \\\n",
  198. " [[3,4], [5,6], [7,8]], \\\n",
  199. " [[5,6], [7,8], [9,10]], \\\n",
  200. " [[7,8], [9,10], [11,12]]])\n",
  201. "print(M)\n",
  202. "print()\n",
  203. "print(M.shape)"
  204. ]
  205. },
  206. {
  207. "cell_type": "markdown",
  208. "metadata": {},
  209. "source": [
  210. "`v`和`M`两个都是属于`numpy`模块提供的`ndarray`类型。"
  211. ]
  212. },
  213. {
  214. "cell_type": "code",
  215. "execution_count": 9,
  216. "metadata": {},
  217. "outputs": [
  218. {
  219. "data": {
  220. "text/plain": [
  221. "(numpy.ndarray, numpy.ndarray)"
  222. ]
  223. },
  224. "execution_count": 9,
  225. "metadata": {},
  226. "output_type": "execute_result"
  227. }
  228. ],
  229. "source": [
  230. "type(v), type(M)"
  231. ]
  232. },
  233. {
  234. "cell_type": "markdown",
  235. "metadata": {},
  236. "source": [
  237. "`v`和`M`之间的区别仅在于他们的形状。我们可以用属性函数`ndarray.shape`得到数组形状的信息。"
  238. ]
  239. },
  240. {
  241. "cell_type": "code",
  242. "execution_count": 10,
  243. "metadata": {},
  244. "outputs": [
  245. {
  246. "data": {
  247. "text/plain": [
  248. "(4,)"
  249. ]
  250. },
  251. "execution_count": 10,
  252. "metadata": {},
  253. "output_type": "execute_result"
  254. }
  255. ],
  256. "source": [
  257. "v.shape"
  258. ]
  259. },
  260. {
  261. "cell_type": "code",
  262. "execution_count": 11,
  263. "metadata": {},
  264. "outputs": [
  265. {
  266. "data": {
  267. "text/plain": [
  268. "(4, 3, 2)"
  269. ]
  270. },
  271. "execution_count": 11,
  272. "metadata": {},
  273. "output_type": "execute_result"
  274. }
  275. ],
  276. "source": [
  277. "M.shape"
  278. ]
  279. },
  280. {
  281. "cell_type": "markdown",
  282. "metadata": {},
  283. "source": [
  284. "通过属性函数`ndarray.size`我们可以得到数组中元素的个数"
  285. ]
  286. },
  287. {
  288. "cell_type": "code",
  289. "execution_count": 12,
  290. "metadata": {},
  291. "outputs": [
  292. {
  293. "data": {
  294. "text/plain": [
  295. "24"
  296. ]
  297. },
  298. "execution_count": 12,
  299. "metadata": {},
  300. "output_type": "execute_result"
  301. }
  302. ],
  303. "source": [
  304. "M.size"
  305. ]
  306. },
  307. {
  308. "cell_type": "markdown",
  309. "metadata": {},
  310. "source": [
  311. "同样,我们可以用函数`numpy.shape`和`numpy.size`"
  312. ]
  313. },
  314. {
  315. "cell_type": "code",
  316. "execution_count": 13,
  317. "metadata": {},
  318. "outputs": [
  319. {
  320. "data": {
  321. "text/plain": [
  322. "(4, 3, 2)"
  323. ]
  324. },
  325. "execution_count": 13,
  326. "metadata": {},
  327. "output_type": "execute_result"
  328. }
  329. ],
  330. "source": [
  331. "np.shape(M)"
  332. ]
  333. },
  334. {
  335. "cell_type": "code",
  336. "execution_count": 14,
  337. "metadata": {},
  338. "outputs": [
  339. {
  340. "data": {
  341. "text/plain": [
  342. "24"
  343. ]
  344. },
  345. "execution_count": 14,
  346. "metadata": {},
  347. "output_type": "execute_result"
  348. }
  349. ],
  350. "source": [
  351. "np.size(M)"
  352. ]
  353. },
  354. {
  355. "cell_type": "markdown",
  356. "metadata": {},
  357. "source": [
  358. "到目前为止`numpy.ndarray`看起来非常像Python列表(或嵌套列表)。为什么不简单地使用Python列表来进行计算,而不是创建一个新的数组类型?\n",
  359. "\n",
  360. "下面有几个原因:\n",
  361. "\n",
  362. "* Python列表非常普遍。它们可以包含任何类型的对象。它们是动态类型的。它们不支持矩阵和点乘等数学函数。由于动态类型的关系,为Python列表实现这类函数的效率不是很高。\n",
  363. "* Numpy数组是**静态类型的**和**同构的**。元素的类型是在创建数组时确定的。\n",
  364. "* Numpy数组是内存高效的。\n",
  365. "* 由于是静态类型,数学函数的快速实现,比如“numpy”数组的乘法和加法可以用编译语言实现(使用C和Fortran).\n",
  366. "\n",
  367. "利用`ndarray`的属性函数`dtype`(数据类型),我们可以看出数组的数据是那种类型。\n"
  368. ]
  369. },
  370. {
  371. "cell_type": "code",
  372. "execution_count": 15,
  373. "metadata": {},
  374. "outputs": [
  375. {
  376. "data": {
  377. "text/plain": [
  378. "dtype('int64')"
  379. ]
  380. },
  381. "execution_count": 15,
  382. "metadata": {},
  383. "output_type": "execute_result"
  384. }
  385. ],
  386. "source": [
  387. "M.dtype"
  388. ]
  389. },
  390. {
  391. "cell_type": "markdown",
  392. "metadata": {},
  393. "source": [
  394. "如果我们试图给一个numpy数组中的元素赋一个错误类型的值,我们会得到一个错误:"
  395. ]
  396. },
  397. {
  398. "cell_type": "code",
  399. "execution_count": 17,
  400. "metadata": {},
  401. "outputs": [
  402. {
  403. "ename": "ValueError",
  404. "evalue": "invalid literal for int() with base 10: 'hello'",
  405. "output_type": "error",
  406. "traceback": [
  407. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  408. "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
  409. "\u001b[0;32m<ipython-input-17-3eecc5e8509b>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mM\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"hello\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  410. "\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: 'hello'"
  411. ]
  412. }
  413. ],
  414. "source": [
  415. "M[0,0,0] = \"hello\""
  416. ]
  417. },
  418. {
  419. "cell_type": "markdown",
  420. "metadata": {},
  421. "source": [
  422. "如果我们想的话,我们可以利用`dtype`关键字参数显式地定义我们创建的数组数据类型:"
  423. ]
  424. },
  425. {
  426. "cell_type": "code",
  427. "execution_count": 18,
  428. "metadata": {},
  429. "outputs": [
  430. {
  431. "data": {
  432. "text/plain": [
  433. "array([[1.+0.j, 2.+0.j],\n",
  434. " [3.+0.j, 4.+0.j]])"
  435. ]
  436. },
  437. "execution_count": 18,
  438. "metadata": {},
  439. "output_type": "execute_result"
  440. }
  441. ],
  442. "source": [
  443. "M = np.array([[1, 2], [3, 4]], dtype=complex)\n",
  444. "\n",
  445. "M"
  446. ]
  447. },
  448. {
  449. "cell_type": "markdown",
  450. "metadata": {},
  451. "source": [
  452. "常规可以伴随`dtype`使用的数据类型是:`int`, `float`, `complex`, `bool`, `object`等\n",
  453. "\n",
  454. "我们也可以显式地定义数据类型的大小,例如:`int64`, `int16`, `float128`, `complex128`。"
  455. ]
  456. },
  457. {
  458. "cell_type": "markdown",
  459. "metadata": {},
  460. "source": [
  461. "### 2.2 使用数组生成函数"
  462. ]
  463. },
  464. {
  465. "cell_type": "markdown",
  466. "metadata": {},
  467. "source": [
  468. "对于较大的数组,使用显式的Python列表人为地初始化数据是不切实际的。除此之外我们可以用`numpy`的很多函数得到不同类型的数组。有一些常用的分别是:"
  469. ]
  470. },
  471. {
  472. "cell_type": "markdown",
  473. "metadata": {},
  474. "source": [
  475. "#### arange"
  476. ]
  477. },
  478. {
  479. "cell_type": "code",
  480. "execution_count": 19,
  481. "metadata": {},
  482. "outputs": [
  483. {
  484. "name": "stdout",
  485. "output_type": "stream",
  486. "text": [
  487. "[0 1 2 3 4 5 6 7 8 9]\n",
  488. "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n"
  489. ]
  490. }
  491. ],
  492. "source": [
  493. "# 创建一个范围\n",
  494. "\n",
  495. "x = np.arange(0, 10, 1) # 参数:start, stop, step: \n",
  496. "y = range(0, 10, 1)\n",
  497. "print(x)\n",
  498. "print(list(y))"
  499. ]
  500. },
  501. {
  502. "cell_type": "code",
  503. "execution_count": 20,
  504. "metadata": {},
  505. "outputs": [
  506. {
  507. "data": {
  508. "text/plain": [
  509. "array([-1.00000000e+00, -9.00000000e-01, -8.00000000e-01, -7.00000000e-01,\n",
  510. " -6.00000000e-01, -5.00000000e-01, -4.00000000e-01, -3.00000000e-01,\n",
  511. " -2.00000000e-01, -1.00000000e-01, -2.22044605e-16, 1.00000000e-01,\n",
  512. " 2.00000000e-01, 3.00000000e-01, 4.00000000e-01, 5.00000000e-01,\n",
  513. " 6.00000000e-01, 7.00000000e-01, 8.00000000e-01, 9.00000000e-01])"
  514. ]
  515. },
  516. "execution_count": 20,
  517. "metadata": {},
  518. "output_type": "execute_result"
  519. }
  520. ],
  521. "source": [
  522. "x = np.arange(-1, 1, 0.1)\n",
  523. "\n",
  524. "x"
  525. ]
  526. },
  527. {
  528. "cell_type": "markdown",
  529. "metadata": {},
  530. "source": [
  531. "#### linspace and logspace"
  532. ]
  533. },
  534. {
  535. "cell_type": "code",
  536. "execution_count": 21,
  537. "metadata": {},
  538. "outputs": [
  539. {
  540. "data": {
  541. "text/plain": [
  542. "array([ 0. , 2.5, 5. , 7.5, 10. ])"
  543. ]
  544. },
  545. "execution_count": 21,
  546. "metadata": {},
  547. "output_type": "execute_result"
  548. }
  549. ],
  550. "source": [
  551. "# 使用linspace两边的端点也被包含进去\n",
  552. "np.linspace(0, 10, 5)"
  553. ]
  554. },
  555. {
  556. "cell_type": "code",
  557. "execution_count": 23,
  558. "metadata": {},
  559. "outputs": [
  560. {
  561. "data": {
  562. "text/plain": [
  563. "array([1.00000000e+00, 3.03773178e+00, 9.22781435e+00, 2.80316249e+01,\n",
  564. " 8.51525577e+01, 2.58670631e+02, 7.85771994e+02, 2.38696456e+03,\n",
  565. " 7.25095809e+03, 2.20264658e+04])"
  566. ]
  567. },
  568. "execution_count": 23,
  569. "metadata": {},
  570. "output_type": "execute_result"
  571. }
  572. ],
  573. "source": [
  574. "np.logspace(0, 10, 10, base=np.e)"
  575. ]
  576. },
  577. {
  578. "cell_type": "markdown",
  579. "metadata": {},
  580. "source": [
  581. "#### mgrid"
  582. ]
  583. },
  584. {
  585. "cell_type": "code",
  586. "execution_count": 24,
  587. "metadata": {},
  588. "outputs": [],
  589. "source": [
  590. "y, x = np.mgrid[0:5, 0:5] # 和MATLAB中的meshgrid类似"
  591. ]
  592. },
  593. {
  594. "cell_type": "code",
  595. "execution_count": 25,
  596. "metadata": {},
  597. "outputs": [
  598. {
  599. "data": {
  600. "text/plain": [
  601. "array([[0, 1, 2, 3, 4],\n",
  602. " [0, 1, 2, 3, 4],\n",
  603. " [0, 1, 2, 3, 4],\n",
  604. " [0, 1, 2, 3, 4],\n",
  605. " [0, 1, 2, 3, 4]])"
  606. ]
  607. },
  608. "execution_count": 25,
  609. "metadata": {},
  610. "output_type": "execute_result"
  611. }
  612. ],
  613. "source": [
  614. "x"
  615. ]
  616. },
  617. {
  618. "cell_type": "code",
  619. "execution_count": 26,
  620. "metadata": {},
  621. "outputs": [
  622. {
  623. "data": {
  624. "text/plain": [
  625. "array([[0, 0, 0, 0, 0],\n",
  626. " [1, 1, 1, 1, 1],\n",
  627. " [2, 2, 2, 2, 2],\n",
  628. " [3, 3, 3, 3, 3],\n",
  629. " [4, 4, 4, 4, 4]])"
  630. ]
  631. },
  632. "execution_count": 26,
  633. "metadata": {},
  634. "output_type": "execute_result"
  635. }
  636. ],
  637. "source": [
  638. "y"
  639. ]
  640. },
  641. {
  642. "cell_type": "markdown",
  643. "metadata": {},
  644. "source": [
  645. "#### random data"
  646. ]
  647. },
  648. {
  649. "cell_type": "code",
  650. "execution_count": 27,
  651. "metadata": {},
  652. "outputs": [],
  653. "source": [
  654. "from numpy import random"
  655. ]
  656. },
  657. {
  658. "cell_type": "code",
  659. "execution_count": 29,
  660. "metadata": {},
  661. "outputs": [
  662. {
  663. "data": {
  664. "text/plain": [
  665. "array([[[0.05939386, 0.11090236],\n",
  666. " [0.79171356, 0.9035595 ],\n",
  667. " [0.91073118, 0.44563208],\n",
  668. " [0.04466834, 0.5628772 ]],\n",
  669. "\n",
  670. " [[0.4416194 , 0.91226087],\n",
  671. " [0.168705 , 0.00683321],\n",
  672. " [0.41202402, 0.29339536],\n",
  673. " [0.96726694, 0.95870147]],\n",
  674. "\n",
  675. " [[0.70866367, 0.34569454],\n",
  676. " [0.49093219, 0.41306501],\n",
  677. " [0.01983635, 0.20873294],\n",
  678. " [0.20396734, 0.40334421]],\n",
  679. "\n",
  680. " [[0.50604792, 0.06472671],\n",
  681. " [0.31110672, 0.24701568],\n",
  682. " [0.24144453, 0.90806792],\n",
  683. " [0.04381394, 0.84682658]],\n",
  684. "\n",
  685. " [[0.61750894, 0.92342968],\n",
  686. " [0.55962797, 0.20718725],\n",
  687. " [0.54104153, 0.88491054],\n",
  688. " [0.80989667, 0.47680582]]])"
  689. ]
  690. },
  691. "execution_count": 29,
  692. "metadata": {},
  693. "output_type": "execute_result"
  694. }
  695. ],
  696. "source": [
  697. "# 均匀随机数在[0,1)区间\n",
  698. "random.rand(5,4,2)"
  699. ]
  700. },
  701. {
  702. "cell_type": "code",
  703. "execution_count": 30,
  704. "metadata": {},
  705. "outputs": [
  706. {
  707. "data": {
  708. "text/plain": [
  709. "array([[ 0.11502391, -0.92395205, 0.68163698, -1.79088946, 0.14831216],\n",
  710. " [ 0.78671373, -0.56667653, 0.7015141 , -0.06435951, -1.19476965],\n",
  711. " [ 0.87780154, -0.46150288, -0.34295011, -0.37943472, 0.40605553],\n",
  712. " [ 1.71869392, 1.89791292, 1.27828548, 0.09929399, 0.91991364],\n",
  713. " [-0.2730765 , -0.39200219, -0.03646926, -1.9063281 , 1.1373957 ]])"
  714. ]
  715. },
  716. "execution_count": 30,
  717. "metadata": {},
  718. "output_type": "execute_result"
  719. }
  720. ],
  721. "source": [
  722. "# 标准正态分布随机数\n",
  723. "random.randn(5,5)"
  724. ]
  725. },
  726. {
  727. "cell_type": "markdown",
  728. "metadata": {},
  729. "source": [
  730. "#### diag"
  731. ]
  732. },
  733. {
  734. "cell_type": "code",
  735. "execution_count": 31,
  736. "metadata": {},
  737. "outputs": [
  738. {
  739. "data": {
  740. "text/plain": [
  741. "array([[1, 0, 0],\n",
  742. " [0, 2, 0],\n",
  743. " [0, 0, 3]])"
  744. ]
  745. },
  746. "execution_count": 31,
  747. "metadata": {},
  748. "output_type": "execute_result"
  749. }
  750. ],
  751. "source": [
  752. "# 一个对角矩阵\n",
  753. "np.diag([1,2,3])"
  754. ]
  755. },
  756. {
  757. "cell_type": "code",
  758. "execution_count": 33,
  759. "metadata": {},
  760. "outputs": [
  761. {
  762. "data": {
  763. "text/plain": [
  764. "array([[0, 0, 0, 0],\n",
  765. " [1, 0, 0, 0],\n",
  766. " [0, 2, 0, 0],\n",
  767. " [0, 0, 3, 0]])"
  768. ]
  769. },
  770. "execution_count": 33,
  771. "metadata": {},
  772. "output_type": "execute_result"
  773. }
  774. ],
  775. "source": [
  776. "# 从主对角线偏移的对角线\n",
  777. "np.diag([1,2,3], k=-1) "
  778. ]
  779. },
  780. {
  781. "cell_type": "markdown",
  782. "metadata": {},
  783. "source": [
  784. "#### zeros and ones"
  785. ]
  786. },
  787. {
  788. "cell_type": "code",
  789. "execution_count": 34,
  790. "metadata": {},
  791. "outputs": [
  792. {
  793. "data": {
  794. "text/plain": [
  795. "array([[0., 0., 0.],\n",
  796. " [0., 0., 0.],\n",
  797. " [0., 0., 0.]])"
  798. ]
  799. },
  800. "execution_count": 34,
  801. "metadata": {},
  802. "output_type": "execute_result"
  803. }
  804. ],
  805. "source": [
  806. "np.zeros((3,3))"
  807. ]
  808. },
  809. {
  810. "cell_type": "code",
  811. "execution_count": 35,
  812. "metadata": {},
  813. "outputs": [
  814. {
  815. "data": {
  816. "text/plain": [
  817. "array([[1., 1., 1.],\n",
  818. " [1., 1., 1.],\n",
  819. " [1., 1., 1.]])"
  820. ]
  821. },
  822. "execution_count": 35,
  823. "metadata": {},
  824. "output_type": "execute_result"
  825. }
  826. ],
  827. "source": [
  828. "np.ones((3,3))"
  829. ]
  830. },
  831. {
  832. "cell_type": "markdown",
  833. "metadata": {},
  834. "source": [
  835. "## 3. 文件 I/O"
  836. ]
  837. },
  838. {
  839. "cell_type": "markdown",
  840. "metadata": {},
  841. "source": [
  842. "### 3.1 逗号分隔值 (CSV)"
  843. ]
  844. },
  845. {
  846. "cell_type": "markdown",
  847. "metadata": {},
  848. "source": [
  849. "对于数据文件来说一种非常常见的文件格式是逗号分割值(CSV),或者有关的格式例如TSV(制表符分隔的值)。为了从这些文件中读取数据到Numpy数组中,我们可以用`numpy.genfromtxt`函数。例如:"
  850. ]
  851. },
  852. {
  853. "cell_type": "code",
  854. "execution_count": 36,
  855. "metadata": {},
  856. "outputs": [
  857. {
  858. "name": "stdout",
  859. "output_type": "stream",
  860. "text": [
  861. "1800 1 1 -6.1 -6.1 -6.1 1\r\n",
  862. "1800 1 2 -15.4 -15.4 -15.4 1\r\n",
  863. "1800 1 3 -15.0 -15.0 -15.0 1\r\n",
  864. "1800 1 4 -19.3 -19.3 -19.3 1\r\n",
  865. "1800 1 5 -16.8 -16.8 -16.8 1\r\n",
  866. "1800 1 6 -11.4 -11.4 -11.4 1\r\n",
  867. "1800 1 7 -7.6 -7.6 -7.6 1\r\n",
  868. "1800 1 8 -7.1 -7.1 -7.1 1\r\n",
  869. "1800 1 9 -10.1 -10.1 -10.1 1\r\n",
  870. "1800 1 10 -9.5 -9.5 -9.5 1\r\n"
  871. ]
  872. }
  873. ],
  874. "source": [
  875. "!head stockholm_td_adj.dat"
  876. ]
  877. },
  878. {
  879. "cell_type": "code",
  880. "execution_count": 38,
  881. "metadata": {},
  882. "outputs": [],
  883. "source": [
  884. "import numpy as np\n",
  885. "data = np.genfromtxt('stockholm_td_adj.dat')"
  886. ]
  887. },
  888. {
  889. "cell_type": "code",
  890. "execution_count": 39,
  891. "metadata": {},
  892. "outputs": [
  893. {
  894. "data": {
  895. "text/plain": [
  896. "(77431, 7)"
  897. ]
  898. },
  899. "execution_count": 39,
  900. "metadata": {},
  901. "output_type": "execute_result"
  902. }
  903. ],
  904. "source": [
  905. "data.shape"
  906. ]
  907. },
  908. {
  909. "cell_type": "code",
  910. "execution_count": 40,
  911. "metadata": {},
  912. "outputs": [
  913. {
  914. "data": {
  915. "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAEWCAYAAACpAjzFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAClmElEQVR4nO2dd5jcxPnHv3Pn3nsv54aNO9iY3k01vQXSKCGEQBIIkMQQAiRAMIFAyi8JJdQQaugY0003NsYNjHsvuOPerszvj5V2R7Oa2Vfa2Xb3fp7Hj/d2pdFIGo3m7UJKCYZhGIZhGIZhmLpKWaE7wDAMwzAMwzAMU0hYKGIYhmEYhmEYpk7DQhHDMAzDMAzDMHUaFooYhmEYhmEYhqnTsFDEMAzDMAzDMEydhoUihmEYhmEYhmHqNCwUMQzDMLUaIcQEIcSFhe6HDSHEUiHE6Ki/EdqVQoi+2fWOYRim9sNCEcMwTBGTzYK4kAghbhFCPFHofgCAlPIkKeVjcfYVQhwmhPhUCLFFCLFJCPGJEOIA77eLhBAfu+0twzAMUwjqFboDDMMwDKMjhKgnpawqcB9aAHgNwE8BPAugAYDDAewpZL8YhmEY97CliGEYpkgRQvwHQA8Arwohtgshfu19f5BnvdgshJgphDhK2ed9IcRt3u/bhRCvCiHaCiH+K4TYKoT4XAhRoWwvhRC/EEIsFkJsEELcJYQoU36/RAgxRwjxrRDiTSFET+W3vwohVnjtfiGEONz7/kQANwD4jteHmd73AauXak0SQlR4ffmREGI5gPdsxxcJ7hVCrPOO/6UQYrDhOr4vhLjU+3yREOJjIcTdXptLhBAnGW7BPgAgpXxKSlktpdwlpXxLSjlLCLEvgPsAHOyd42av/ZZCiMeFEOuFEMuEEDdq1/PH3vlsE0J8LYTYP6S/+3r9ukD5ergQYpZnsXpGCNFIa3OhZ8l6RQjRxXAdHhVC/NNzJ9zuWb06CSH+4l2LuUKI/QzXgmEYplbDQhHDMEyRIqX8AYDlAE6VUjaTUv5JCNEVwHgAtwFoA+A6AM8LIdoru54P4AcAugLoA2ASgEe87ecAuFk71JkARgLYH8DpAC4BACHE6UgIN2cBaA/gIwBPKft9DmC41+6TAJ4TQjSSUr4B4I8AnvH6PSzCaR8JYF8AJ2Q4/vEAjkBCcGkJ4DwAG4nHOBDAPADtAPwJwENCCBGy3XwA1UKIx4QQJwkhWvs/SCnnALgcwCTvHFt5P/3d609v71x+COBiABBCnAvgFu+7FgBO0/vsCUlvAvi5lFK91ucBOBFALwBDAVzkbX8MgDu83zsDWAbgacu5nwfgRu/c9yAxNqZ5f/8PwD2WfRmGYWotLBQxDMOUFt8H8LqU8nUpZY2U8m0AUwGcrGzziJRykZRyC4AJABZJKd/x3NGeA6BbA+6UUm6SUi4H8BcAvoXicgB3SCnnePv+EQmLRU8AkFI+IaXcKKWsklL+GUBDAP2zPL9bpJQ7pJS7Mhy/EkBzAAMACG+bb4jHWCalfFBKWQ3gMSSEiY76RlLKrQAOAyABPAhgvWeJSdsWAIQQ5UgIpNdLKbdJKZcC+DMSAioAXArgT1LKz2WChVLKZUoThwN4BcAPpZSvac3/TUq5Wkq5CcCrSAijAPA9AA9LKadJKfcAuB4J61WF4dxflFJ+IaXcDeBFALullI971+IZpI8NhmGYOgELRQzDMKVFTwDneq5zmz23rcOQWNj7rFU+7wr5u5nW5grl8zIAvvtVTwB/VY6zCYBAwgIFIcR1nivYFu/3lkhYHLJB7Yvx+FLK9wD8H4B/AFgnhHhAJGKAKKzxP0gpd3of9Wvi/z5HSnmRlLIbgMFIXJu/GNptB6A+EtfQZxm86wWgO4BFln5dDuBTKeX7tj4D2Kn0t4t6PCnldiSsT10RTtSxwTAMUydgoYhhGKa4kdrfKwD8R0rZSvnXVEo5LotjdFc+9wCwWjnWT7RjNZZSfurFD/0aCXes1p772BYkhJawfgPADgBNlL87hWyj7mc8PgBIKf8mpRwBYCASbnS/inLSUZFSzgXwKBLCkd5XANiAhAWrp/JdDwCrvM8rkHBnNHE5gB5CiHsjdGu1ejwhRFMAbZVjMgzDMARYKGIYhilu1iIRn+LzBIBThRAnCCHKhRCNhBBHCSG6ZXGMXwkhWgshugO4Cgk3KiCRSOB6IcQgIJlE4Fzvt+YAqgCsB1BPCHETEnEyar8r1CQDAGYAOF8IUV8IMRLAORn6ZTy+EOIAIcSBQoj6SAhbuwHUxDl5E0KIAUKIa/1r612fCwB85m2yFkA3IUQDAPBc0J4FcLsQornn5ncNEvcMAP4N4DohxAgvUURfoSSuALANibihI4QQVCH3KQAXCyGGCyEaIuFiONlz3WMYhmGIsFDEMAxT3NwB4EbPhew6KeUKJJIh3ICEQLICCQtJNvP5ywC+QEJoGQ/gIQCQUr4I4E4ATwshtgL4CoCfqe1NAG8gkYxgGRJCier69pz3/0YhxDTv8++QsJR8C+D3SCRnMJLh+C2QiPP51jv+RgB3RTvtjGxDIinDZCHEDiSEoa8AXOv9/h6A2QDWCCE2eN/9HAkhbTGAj5E4x4e983kOwO3ed9sAvIREkookUsrNAI4DcJIQ4tZMHZRSvoPEdX0ewDdIXN/z45wswzBMXUZIGebhwDAMw9QFhBASQD8p5cJC94VhGIZhCgVbihiGYRiGYRiGqdOwUMQwDMMwDMMwTJ2mYEKRFxw8RSSqsc8WQvze+76XEGKyV537GT+AlWEYhnGPlFKw6xzDMAxT1ymkpWgPgGO8SufDAZwohDgIiaDae6WUfZEIoP1R4brIMAzDMAzDMExtp16hDiwTGR62e3/W9/5JAMcA+K73/WMAbgHwL1tb7dq1kxUVFTnpJ8MwDMMwDMMwpc8XX3yxQUrZPuy3gglFACCEKEciDWxfJKqSLwKwWUpZ5W2yEoaq3EKIywBcBgA9evTA1KlTc99hhmEYhmEYhmFKEiHEMtNvBU20IKWsllIOB9ANwCgAAyLs+4CUcqSUcmT79qECH8MwDMMwDMMwTEaKIvucV6xuIoCDAbQSQvgWrG4AVhWqXwzDMAzDMAzD1H4KmX2uvRCilfe5MRIVvOcgIRyd4212IRKV1hmGYRiGYRiGYXJCIWOKOgN4zIsrKgPwrJTyNSHE1wCeFkLcBmA6gIcK2EeGYRiGYRiGYWo5hcw+NwvAfiHfL0YivohhGIZhGIZhGCbnFEVMEcMwDMMwDMMwTKFgoYhhGIZhGIZhmDoNC0UMwzAMwzBMXpm2/Ft8vXprobvBMEkKWryVYRiGYRiGqXuc9c9PAQBLx40pcE8YJgFbihiGYRiGYRiGqdOwUMQwDMMwDMPUWrbtrix0F5gSgIWiOsK3O/ZiypJNhe4GwzAMwzBM3pi0aCOG3PIWPpi/vtBdYYocForqCN/992Scd/+kQneDYRiGYfLOrr3VWLR+e6G7wRSAL5YlFMJTlmwscE9SfLVqCyrGjsfUpaysLiZYKKojzPkmkeFFSlngnjDFzKYde1FTw2OEYZho7NxbhZ17qwrdDSM/e3Iajv3zB9hbVZP22/hZ37DAxOSVjxZsAAC8PWdtgXvCqLBQVMd4b+66QnehZJBSYvysb1BdR4SEDdv3YP9b38Y9b88vdFcYhikxBt70Jgbe9Gahu2Hk44WJRWhNiGLwSk9gYmonxagL3l1ZXegu5IR73p6Pf0xcWOhuxIaFojrG7sp0LRkTziszV+PKJ6fh3x8tLnRXjFSMHY9rnp3hpK0N2/cAAN76eo2T9nLNo58sQcXY8di8c2+hu8LkiPs/WMTuJUwaC9dtx5ad0QLni2VdPG/NNmzfU7wWtdqMgCh0F5L89d0FAIAZyzcXtiOO+du7C3DXm/MK3Y3YsFBUx5A5ejW88/XaWrd4Wb8tISSs3bqnwD2x88K0VU7aKaYXBoWnpqwAAKzZurvAPWFyxR0T5uKc+zgWkgky+p4PMObvH2Xc7uUZqzB3TXEVBz3hLx/ikkc+L3Q3aj2bd+7F/R8sKvqQgWISkO/7YBEG3fRGobtRUFgoKkEe+ngJfvnMjJy0LaXE81+sRGV1NIvSpY9PzdviJWrfmNpNkb/zGCaAlBJVPIdlzcpvd2Xc5qqnZ+DEv2QWnvKFv0CfUssUiMXI9S98iTsmzMXkHGTdlVLipemrnLjAiSLSRY6bMBc79tZOtz4qLBSVILe+9jVenO7GOqDzyszVuPa5mbjv/UU5aT9bvly5Bf1+OwETOTYqZ7gUMuav3Za0uDEMA9zw4pfo+9sJztqTUuLTRRuKXiPO1E2e/XwFXsrResXGtt0JC4yqRHXlKfPRgg24+pkZuPONuVm3tXozezoUEywU5YHj7vkAlz0+NeN2W3ZVYuP2wi4gv92RiM/YUOB+mPjc07BxvYH4rNi0Ew9+mJ84qePv/RCH/+m9nB4jTNO2evOupBZv9eZduK8E3CiY0mbdtt247rmZGceZ7/bpiglfrcF3H5yMJz5bZt2upkbiL+/Mr7sxeMTHf/ueKtzz1rycWPPq4hT06+dn4eocebZExZWL+JZdiXi2dQ5c6zftiP88Vowdj4qx47ErgnVnd2U1KsaOzzhf7K2qwZ/fmhep7doAC0V5YMG67Xjr68xpF0fe9jZG3PYOgMTC9W3CPlHJx6RcUyNzlprV737YQvjZqStw2v99nJPj1iZ+8NBk3P76nEgC+JadlXhx+spYxytEco9Dxr2Hnz7xBQDgsv9MxbgJc7Fs486894OpO4y6/V3874uVeOSTpXk97spvE+M60/ieOG8d/vLOAtz8yux8dKtoyeSudPeb8/C39xbipRmr89MhpuTwMxgWi+tbFCX2Zi9Byd/fW2Dd7snJy/D39xbin++Xbia5OLBQVERUVqcklpP/9hF+TLAuRSUfiqo7JszBwJvejORvO3XpJvzmf7Myaln938M2+/X/ZmHWyi2R+loX8d0K9EvoT/Bhd+AXT0/HL5+ZmbGWR02NxLXPzsSMFZuz7me2TJyXsCb657uX4zjyyh0T5uCdHCh28s3uympc/p8vsGzjDtL2SzbQtss3fn2eYk4FvGDtNizPsfIik2Jwhxf4Xl2TA0uR8xYZCv51/9aRldQfQ+VlRSIVhXDjS19i0qJEsdqaGomJ89aFrq9em7Uaf3knvQzHnhKYL3IBC0VFir+Qy8Sbs9egYux4fLMlc9BpvnjwoyUAUi8XCufdPwnPTF2RsSaQ7zb36KdLrdtJKTFvzTby8esSpitsm9798ZUpycXGHXvx/LSV+NGjxZNdydeg3zkhe/9vhs79HyzGpTlQ7OSb9+auwxuz1+BX/5tF2r5YtMcAsGbLbvz5rXmQMhVN4bsQrdu6OyvXHSpLN+xAxdjx+JDg8nzcvR/iiLsm5rxPNvxXkMjBjYzrwvvpwg14/ot4lnqXVIwdjz+8+nWhuxGb/05e7qSdpKXISWsJNu3Yi3UOM6k+8dlyXPDgZwCAxyctxcWPfI5XZ32TVNr4WXV/9uR0/OWddKtRMc1j+YSFohLnmc8T/umzV9HSjuZznEepeZpyi7P3kOrD+9/Jy3HCXz7EJ17BPiaFjDGh+/eyTAhIKVExdjwOuP2d9LbhuxXkb6RR1xnLNkXTQI+87R089PGSGD1iCsnuymqn7rtPe3PsFGIWq0KtJcIeuZ8/NQ1/f28hvlq1Nfmc+NuN+uO72P/WtzO2+9qs1QHrzbcRBSk/09rLnjvajj1V2FNVvNpnfw4rK6JV4Xf/PRnXPjez0N0AADz8SW7mxI8WrMeXJeLpIZX3oSv2v/VtjPrju6G/vTBtZVap5Vd4mRrXbtmNyUs2kvYZP+sbAEEPJp/Pl25C/xsnRJ4LSgEWikocGdG31ZX5XkqJN75aYw1GjaIVS76wM21HPIPZqxMTyFKiy0tdxCS4hN03/7sykZokw7LK+R4nxZioo14EV4dVm3dhw/Y9uPW14tGKVlbX4I2v1uQlYcTarbvzVnds5bc7nbpbHnfvBxh405vO2juwVxsAQL8OzZy16RLbcNiluL6kFBbR2v/Zk9Nx0l8/BJAQDPe79W288VWEAs/JBWTi/0E3v4mT/pr/NNnUd8cqbwG5dVe04rC0PmRHLhIMVVbX4MKHp2Bmhmcw12nkf/DQFJxaIjHBNdQFS0yWb9yJ79w/Cdt2V0JKiWuenZlVavn3vGy9QtCV1TM9ATXM5fCfExdiT1UNpq/4NnafihUWikocW+KBXPL212tx+RNf4B8Tzam7o1iKfDKdR5w2axNTlmzCI1lq6jYbXva2a091KdlVAP9j6tivX06f7lYRaqDkm7+/uwCXP/EFJs7LfTr64+/9MHLdsd2V1bjp5a+wdXe0xeRhd07EGf/4JO17agwPAOxz4wRc8EDCVWTFptS9q6yuwUvTV0Vy5dVp27QBAGC/Hq1I2+fTSpoJX0khhKp4it4/v3aJv3D+PIPA/Jbn1r10w47kAvLtOan4ssXri1dZ5de1eXWW+0QL2eozpi1zvwid881WfDB/PX6dwT00zGIQxp6qanz3wc+werO7OXT15l2RXctyVag+0XaCXFkT731nPiYv2YS3Zq/FEw5c/tQ4x6ixcrYYSSnjz/vFCgtFJY7tRbd9T1XOqiVv2J7QHthimWocabRXb96FJ72JgdJmJk368o07UTF2PL5aRTPVZ5r3npqyHPv8dkLGeCidtTH8h8+7fxJ+n6VPdyYlV9hZ+BPji9Ps9Sbi3vNj//w+7pgwJ9I+UV969cuLZ7Eah5XeImPj9mguC0f8aSLueWtepH22xNCSPzVlOR6ftAx/f9ee1YjKjj10AXtvVQ0mLU53Cxk3YS6ufmYGjrzrfSd9KjXUOcmFAq1GsRgDwH8mLQ1drL4yMyFQzFq1JXlcP+tVoaFOUcXkPueTiy797qWvAABrvPu4u7IaW7K4Vy9MW4VPF23EIePclWI4ZNx7RtcyCq6N61J7Duav3ZYc83e+MRcVY8dn5Qqo3ubZxHUKhV17qyNbG/3kVeu27lY8k1I9/O/kxLz/f+8Fs9RFXQ8VCywUFSGR3M78DyGT5eCb38Tgm925kYRhm6TnrY2e6CBMy/r9hybjhhe/xJadlSQNY+Lyma/hu3MTGsvnptLqhWS6Hbe8Mht7q2uS2Z0ovDBtJQ7847v4wqD5q6mROXeTEiIx0aUCoDO/cd+fv84qjMTt86L1O3D/B/FqJ/kKgZoMk3CUOboI10NWDf/6bXvwvsGCtHzTTvzNe2FJKTNep7j4L8FiSvLnu+WZ3DlzcS0KNXbC5s5NnutLwlKUfbyfGlu4fONO/O7l2fiJl/o+rC9SSquiREppXTxFvT/VNRLn3T8pNKlD1KmpPJvrZJi/s7VeuKqzo+K7SW3zNP0n//UjDPvDWwAS76nL/5N+f4FEaYc3Z6e7UbpShpqgvhs3bMtdvIv6HAAJy/ovnpoOAPiXV/j+ySmJOkDZvsv9mEYb+lA1He/ed+bHmp8XrtuOUX98NzTG1rc86c9qpqRMxQoLRTlizjdbM2pbpZS49LHP05IBvByjPgJ1qsz0cK7ektAWVTlYLGSyKlDxNePUydbVpOy7C2QKLPWP9tsXv0z7bcvOytAASd/9xJQhr/cNr2cMrHUhNJ3xj0/ww4enkLdfumGndXERJSX6lCWbnCxKJSTenbMWvW94HXO+MQejRolbKRaZaPXmXWkpisOu2Ln3fYqLHsmc8e/CRz5H7xted9Q796z8didO/8cn2L6nKqfuLwDwxldr0PuG17Egg/JGz9r25cotVne8XCxc49K6SX0AQL2yMnLcpo3kPRGpFPdh7zlfgy6lXRh57NOl6HPD66E106Yu3YTeN7xOTnABJOIfpizZFFos1H+nUZNwZCPc9r7hdZwb0f2UQi4Fbv82LVbcpa55dibe8AQfPYb0owUb8JMQgSnXFoLeN7yO657LnAkyjlKWSg1BweCP+943vI6bXs5vbTDTM1cj460blm9KjAlb4qqwSzF9+beRvRQKDQtFOeKkv36E79xvnxQ37diLd+asw/f+PTntewpV1TXOrQkPfJjQ1k/O8CJassFerwYwx674TFq0MVKBWuoLITEnBzeesWJz0ry9k1iheZf28hzwuwn4c9gD7t2CF6anC4HD/vBW5ABJPzPTCxmEShe33heCgw0n/rv55a9wkOaysH1PlfW41zxLy5A0ce46nHf/JDySIbU6lbdmJ8ZRruojXfDAZ/jBQ5MzbvfW7DXJ2hBU9lRV496354fWgzhk3Hs44q6J+GrVFuv4X0qs7UJJixyFf3+0GBVjx1vnoSgaw8PunIiZKzbjYUdZ/2zH9rXcX2ZwT1Gztu3YU4VT/+9j/OzJacbtw+7TgrXb8PSUYGxA1GQkFz0yBefe92mkfcLIZmGtZt2yZbH0v5Owa8mf9+a4VSHxJ35M2+tffmPt0/Tl3ybndt9ab3uHPvEZLUYj2xo0Uz0vgF17q7FuW2KezXbOzqW4nalvfyAmnclHXZvnp6XSk6/8dmfOBDH1mduxpyr5zPqHsyeaSn3+z2fLctK/YsA0boQAzvznp0kvhVKBhaIcMjfECrBw3XYcfMe7WL9tD/6ape/9ciXFsBAC3+7Yi0PHvYevV8dP3Whj9uot+GJZQljyaxHZyGQFuODBz0gFaqMKfgltZnCfM/7xSdK8fdebNM2F/jDvrqzB30MecIpG2/SiCNv30U+WkvqXLfpl9RdLvqbwsUnLkn7mgf0caPD9+JhF67db03rW1Eg88/ly6+LWlWZeSmm8T5MWb8RHC8K1ZLsrq5Nj9LL/fJGsDUHlsU+X4q/vLrCm/x6vLgyLyFX7tvGJODDbI+pKb5OYf6IFmtssl77wuieC26u/6PYLA1M57t4PMfaFoCX5uudmoqq6Bifc+yHe81x67/tgEX7quaN9uXILDrvzvaQl5v156/H50vTzp15e23O7cfueZArewD7azdNjKYBwbfnrXyYEzpqaVJ2wMPx2bK+KReu3o7K6Bs98vjz0nXLmPz9Nzu2+Br9Ly0bG9vTrYHq/6DFFuyurcfTd7+PTRdHKPJz/wCSMuj1+PEw27K6sdmKNX7V5F/k9bJqPoyRKWLZxByn2ZfXmXTjszom4O0fWCPWZO+mvH2HkbYkyFL6l+LkiqB0Vhu1OZeNJY9vTZjUrpfgiForyzEMfL8E3W3bjra/XYBfRYmFizZbdiuYO+HDBeqzavAv/+iCYES5Tqs0wtocUjx3zt49x9r9065f5QXDtWxw22U5b/m2a+wb1sK6yRKlZeaprJK57bibma6b7het0y5r52LsrMy/SVm3elfXaOO7+cW/ryzNW4YEPE2MzqUmWwMcWk/zz01biN89/ifs/MGc5zIa1W3cnXe7+MXEhBvzuDWzOUPV8x54qXPnfaVi/bQ+27KzEgN+9gZtfCbpHVFbXYPysb5L+5Tb8+23TsAoUj0ufiv8IRX0Jz1yxOXKNi8T8k52lZNH67VjhKZN8gd+WXUmHkl2RGlu4Y08VNu3Yi3lrt+E3zycEpnET5mKCl+76L+/Mx8pvd+HzCO5jQMIC5SeRUS+9zX3ux49PxZVPTktqwr9YtinUKhyoV+Z9lz63pVzraqQMVaz4+PEsHy8wL4CFEHjgw8X4zfNf4n+WRSjVIqmfk2k+K9MsRYvX78CSDTsiFy+dqQjm2b4S9T7Z2F1ZjQG/ewN3vpkoWr1g7bZQixyFQzMkTdiyqxLTlieEB9NrdZM2r66w1I078q73cSHBrdt36ctHPUJVCX3nG5kLgatxfJlwbV2zHTfOGDQJumpbutCr7vMsMX67GGChqIDYXhY6T05ejlkrNwe+k0gtOFRBXNcMqS5FvsQ+8rZ3cOV/zS4gUfpmIo52IKyon6mVyuoanPXPT/GjR4OxFFKmYnVmLN8cuQ/ZsGj9dvzvi5XWawsoi8mQk6PIanur7K6Tlz72ecYXWVzivtevenoG/vh64mWSOkdpTTHtC7ybdqS7YoZeu4h9OnTce8maKS967o8btu+x3oNBN7+J8V9+g7+8Mx/rtyeek8cnBd0jZq7YjCufnEZ6efovxLDFZRiuYm2qayT5mCZSwq29T1JK/GPiwuRC6PR/fIJzM7gX54Jj//wBDv/TxMB3Ybf67a/X4l0vhbRa3+fVmcF4z/MfmITj7/0g8B3VVUZA5MTod9JfP8Ipf0+v92IrOLnSS0FfVS2xZVclzv7XJFzx32lp/fOFQgHa4irdZh/OpxaX0zKRcjW0pf29m+gB4Pdn6YYdiXnUclwgka00bNH61JTlqBg73hpfFjUVvBrftmTDjqyC1f1jP+sF6h9374dZvRNsFtWLH5mCs/75aaR3/l4Hgfg7NBf3D+avT3O3lJI+Z0opsXBd5lgk0tiXwDbi/ddjuPXzysTmnZWocTCfZ+L9EAu53/OXLLHwYTGDxUrBhCIhRHchxEQhxNdCiNlCiKu879sIId4WQizw/m9dqD7mhuivwddmrcYNL36J0/4vWMtDytTL5NpnZ2DphsSCY3zapJB+zA3b9yS3+9f7i3BOlhrYMOIIRdZaCdq73G9fjwmokRLTPGFogqXIoC2deLZkOveUz308BIBqy8z8zpx1GbWC+rigChQuLICqFomSmtwmpAgRfOlFcbdUX0b+p+3EVNASblzD/ulZk2xjFUi/Bm98tQZLI1g5dG56+SuMvucDa6KBTDFa/gI7k6Vo9uqtuOvNeQGBxPYCzxSgDyQWyE5iKkVCwfLYp0tRVV2Dyuoa/PjxqfjRY1OTffE31I/22eJNmL82twuRTOgWIDUgXn1WbQUn/a2EAPZ4AsDXq7emXV/f8klNxLN1VyVpXrEJRVICO71n0rYwXxzhWdi0Yy+Ouvt9/Ob5WcYxVC4EKqtrcMRdE/GLp6anLaz9a+Ff7+emrkizfupxY7bF+dtfr8Vx936Il2eswrptu3H03e/j969mDtA3CYq+J0Sm2F6qw4TNou+/g6tqasipzLP1lAGA7z4YjPO88OEpuCJEIbnA8oz+/tXZuOK/CZfVhz5egtH3fOgsNnXoLW+RttPfqW/OpsdaA4m5/B8TF2L0PR9Ykw0BMdcc2i1VlQR5qCWeVwppKaoCcK2UciCAgwBcKYQYCGAsgHellP0AvOv9XSuhTh43vJCe1QwIugts2L43Gcyps3xTcHGsa0LufGNuMijUJXEWz6FxG4ZmUjUzROj3mfrwbUgthjnfbA1daEZJtw2Ev6DfnL0mWRMijA/mr8euvdVk4eTxT4Ma6Uc+WUJy1/Jx5T43ce46jH0+czag1P6qAGOPCcrnhOune7/pZfM90qF0z4XwrR7HvyaXP/EFjvnz+7Hb/K9X+2uOIQMikBC8bPiPnvqc6dNajQTemRPtJf+fz5Zaf1+/bQ+G3vIW/jEx+yBeAYFHP1mKm1+Zjf98tsxYT8d15q9te6rcukSGNLbIG9N7qqrTsuhlbE6Yx3fCApR59N82fk7WbsoSQJOG5QCARvXLjW5XZM8yKXGf54774vRVgbNQlVlCiKQw9paSECiZbtzbs6pGYvH67fjV/2ZljJG1zWe+y/XcNduw1RNk9KQt+qWcOG8dht7yVmick5/1NM0F0kXGT61R/x1cU0O/D7qLeTbYDlkjJaq0gqUfL9iAa56dAQB45JOlyRg43w3P5tqXC0zjgqpY3ltdgy8898U1W3Zbn8xYiiRtF1+JUcvkIQAFFIqklN9IKad5n7cBmAOgK4DTATzmbfYYgDMK0sEcI6X5JUt9h+gV300DdOW3qQdcSlrMShRMD9k0outa3CA8fz99ElbnP5tQFObacNJfP8JRd7+f9j3FDQqwv/R+8p8v0l1rvB2uf+FLXPjwFFz9zHTS/RciPWPT71/9Oq2f1PSzkdDO8eJHPw+tpWBKN/7KzNUB90HS+SKhda0YO94aV0ChYux4VIwdb/w9SnFUyvvlnxOzj4dKxBSlX6iwR0dKiT+9MTfw3Ntws0gK/wwknsG/vBMtqcyGDPfAty6O/9IutFHYXVmddNPcttucCpxivYqCqtHV0x0DbhccO/dWJxvM9LylhCfz/Fkm6NciW2ve7srqZFp6KaXR7apMCNwxwXfPFZryJWgRVouTqt17RCm/UCaAKUvT47l8y+oKT9l43v2Tku6HNuVimBBQMXY87ng9rGi12QK7u7I62Zafrjws46UpTiVOYeZM+Ba8yUs2orw8fFmpz19UC6up/lqwcfug1ofg9x+aHJrd1U+gEqcsStoxIzzBpmekfj26QoH6mC0i1Hp0QdB7Iy+HdEJRxBQJISoA7AdgMoCOUkrf/2sNgI6GfS4TQkwVQkxdv95tmtlcMnlxYhJ7lJiKeP22PUZNm76WMS1uVEuKa22nEJlTR4e98FVUi5eUElXVNagYOx4ne7Eevl+uHsinF1BLfa9YiizyX5QHNZNJOir6fXjKS9f75uy1JM2qgLDG4vjY3FzSs8/RBgd1sjdlaVq/bU8gZa/NYqreS9+C99SU9JS6krrgczw7U6yh9b1Fwobte0gCyBtfrUmrbbXi25QAnKmFeWu34Z/vL8JPn7DHtaXay9yn3ZXVyeKOP39qerKgo59kRHWF2bY7XuKTKLgsDKjOxWHDR3Uti8IPHpocyYKq801YuvwMmFySWjaun4qNCvld9axL1WCxJCEQgnxfs3W3nb92G96dm5jrbC7BZUIEMuip7pl6im61ho06/lcqz5k+L/mnUVUjA8lYNu3YizZNGwAAKto2MfYvUXsrnfs/TC9aLVITZBpjn5+F4+/9EAvXbUelJ4yEZUWl4nJJ8ObsNeT2JhneD7rw+OpMe0p2IPM5RB2BUS3boceMcFDTa4Fq1VUTn+QiI4/NnZD0/giJFS9WCi4UCSGaAXgewNVSysBKQCZWMKFXXEr5gJRypJRyZPv27fPQUzq2BbTvVkUNiJsaoqny0V82JhcvdW6P+n5atXlXxuJ58y2BiZMXb8QBt78TWtjUxE7fp127jrprnb/A1YMZ1etii7uJgu7zft8Hi3DHhHQNH3XhJCyaQAoS0pjqVtUEWlMlK0d/N8JLgGpYUI9do7mlqNfJds38tPXrFMHav+9h3bjvg/QFhqlPNraGZF/U+XbHXjz4kf14QCImcN3W3Rh52zuh/u46lz/xRVptq0079gSsazZ8RUCm+jtROPru9zHE849/debqZEFHn2WKu4mepta1IAoA37k/WtrzTNhe7H6yFltNkjA+WrAhYzV625Xx3yMZi4ArrazaHD4nqBbqnaEWBEUq8thdWWMca6/MXE2O4zP9pLsoTZwbruSpUrJ7CpiFMX0eMbr+yeAiLzBPKX+UlZnPy5SFsEmDeoajBms72bC9QgREMqD90sc+tyq9xs/K3opqYp1B0VlVnX0amJdnBJWsJne8TFlCfVzPPrlIL53tHCmUNqhJUKKw2qKMoIQW/MOBt0S+KKhQJISoj4RA9F8p5Qve12uFEJ293zsDINhOi4tF62kCDzWmyAR14KvHsVkXwmKSjvzTRJyXRZYoX5Dx4xfCILthaH+b5iZVELJNYNnMG+MmzMX9IQtw6rlQF7gmXrGY97drQuLyjTtRMXY8Xp25OpmqV2fGis2BiXmNRUtNncCl4bMAcNtrqfo2tqfAL7Q7e3WqeKl+dHX/JRt2ZBAEMyMESLW+Zq3cEpqNR2fdtj3JRYQvTCxctw1jn58VaaFNnS58X3kqW3dVQUqJqUs3Ge9tJqtFdU2N0SKQixIVlMxVYZksTfh9XLV5F3bvDbbtF4qcv3Y72UrqMtvSjr1V1kVJkPBBsmtvNeatSbyXwuoRpfYW+NJLIb1lV6Xxni7buDPwnMXJJKZbfS7WsoiGtZ1YIGf2iLAKaZZ7GBCKLA+cSYNve0bLY7zv0+Y6pYktuyqtx5uylFZEOs7zaXo/VNdk72Naryy4LDWdo5qYxnppHc8/+rO93KCcnB4hWUOUsgBhzFy5JbnWkrC/v+Ngu74uY8OKgUJmnxMAHgIwR0p5j/LTKwAu9D5fCODlfPctW9Q5IVu3KwnzgPxQq+1gevbV2gbvzjELRXtCYo0yZRnKNM3XK8/8IlBfRHryA5NfOGAWeErJfzUMyrtzo6XGi65Ze3VWQoC64/U5QYFJu05fKYKATbCnXl71fq0IFBpOWfckaMqBhB90cDvf2vrAh4vJRfTUPplc2YQIFvg1JUrYtrsymakr83GDf9/62hw8/fmK0ALPmfa3Lep2V1aT2/S5+815eGXmapxz3yT0uv71wG97q2oCcRb6sXyqaxCqJADc1ytTsc2vNsWBjl/u4OnPV1gX+NRT8YvaxkUdp49PWkaqjwTY5w6qZl21krq4d6Y2qCKCup2tTk+58put17ZTUm99ueVY+k+Uy1RWRp87KdemvExY3atMruMunkZTG9WSbikybadbRtV3VhyLioTM6ZrgyidT1n/VAhklPfZPPHdknTh685oambW72uTFNIG6NlJIS9GhAH4A4BghxAzv38kAxgE4TgixAMBo7++SYrESyPbarOwC9rbsqjS6T6z6NrhYM1fmTn2uVy6SRdbywXRDsgVVQ26br9TA1bAA7jCoL3LXcUIA8JGlCGEYYbERVD9iEwEhQ6YW+Ku37A60rF+lPyjpX62KtxgvGHUM67JI1OxU+v5xq4pTT2PrrnBXOiEEdhDTyupLBb9a+9tfB90WTbEyNVImiwfarn+cIOpte6qMmsqHP1mCP7wWXqzyPcXdqaqmxiio6/3Va/3kCl3Y1i2oKqqCpUWjcBeoKMOUGpNgupf695RnzrZEFgBemG6O/QwmylAUBzGe9c+0BdXHYRlFY/LRgg0k97lvlMLmid9SP+qJWkxuvoE4jbSDZe5DYrPUF+Vl9jgs3yI5WXFXtwkBuhuynlihxqIA+njBBpz8149ix+aZ3rHVNTKZOS8us1cHvRleV5KpmBK6ZH403UlFekvq3KHHPVOhprgHEmsnF8lxbOiePfUNyTNslKpyupDZ5z6WUgop5VAp5XDv3+tSyo1SymOllP2klKOllNHKeRcBD3xI85+0vcB8/u+9hcZJW5+YbD7UPvXLy3CrYZETZxAvXLfdWivFX/zpfBvI/hM88KwVqUlR9SfXz9dkKfKTWRQCPQ4qDDXRwG3j56S9zCjmaGvdHuXzCmIGMiBzxi8f6qI2uChJfVaL623N4AISxswsakgEXPoMAz5tQWp01zEfJy2+wfBs6XE/938QPnfUSOCThYnFZjGmi33LUldDv87UGiDZvlT13U2lDXRMQvqOPVWBczGVQAASWewo/DE081j6XKcvFFVcLj7STt3mimpYoOp1r3ZHLGeQdhzl85xvthq7lCnhj48eD6M+33pqeaMApr29KfaRTBZxX5n6xbJvk2Nw6cadgTGntqAnMNLHnHouen2nsS/MwtffbI3tZmValO/cW42735ofvo/Xn69WbbFaLVULne6aFmeoS82j7wvH5Uek4bPOrr3VqBg7HkfdNTHttyjKrL6/nYALH5li/N1WyysuR+wTHrdfXSNzks2wkBQ80UJdZq3lpeqjF39T/bD1JAKmKfdzJVlD+2YNzdrJGFPO7qoa7IqR4lszZgT43JBcwqahUbn6mRmR++MMgub36LvfT2ZTAtIzRr1o0ej62KxJ6qLO6gan9Ok+fTFueX/rQfYmTNpE9aW0ccdeen0RIrZR7KooHxDdwhWGLjCsNixS1O3CslWltgv+rS569MKSFJo3tAeO+9iyacZVaupFqKMyV1NQ2OpFUQSL+Wu3B85l6tLsF1evGBQMeneuenpG4O9HP1mCirHj0+YO05i0JcOxHdtmdTe9Lz7TEvNk64JXT5sgTAkZ4hJMtJD6XFUtjYoTk9Ljq1VmpVh5mSCv6tXm1UVuuiUqxRtfBZ8Xhwka01BPQ1XSvJfh3ny9eitO+fvHOOtfnxrHxZCuLZOfL340uPgPplZXBVhbBtPg35OXhLuG5SIhjMq1z80AkBB0VeK8/0LrOXr8/tXZsXxN1PeDfiVMAv19HyxKKutqCywU5QCqS406gZo0NvrgDFqNgr/NWhmuTVQ1Sof1a0eyKNnQTcRxHsCAG5fluOqzuHOv2T0gG3bsqUJNjXSSVcZ4bZVftu+pCqR+zXTU7Xuq8Mzny4MaQ8tFp06yap8qq829SNPqES8T5XJW18g0AW/9tj3Y7w9vpSU7cJFO/tFPliY/Z3u3bd3RFySmY6W5EhK3o6IKgYs3pARk3dpkepT0zI4q1HGmP6em3XQFULZFb8sJ8Yw+QW2vRRCI5LITH7XuTNh1vuXVhLVfndt3V5oLP2/YFqX2VrjlxI+7Ct8n9VlP5GB2d6NdwWaaYP7E5GWGLWlcdEhF4G+T9VgIYL0hYUacJEmzV2+NpXi0zvXa4FizZXfy+u9V4kpsrqMqeu1DE6qlyGZ5UZ9pIYCT/5bIqrl4vTkhTu/2zZKf9Zo6pqtnd/eWViHCJ06yEJ0qy3vUJDC7UK6prN0aL8mLqkC1eYOoLpc2JePamK6EhYaFohxDXbfrWp5UA8E/awwvLCCV7ltHNUc/9PESWocsqObStVt2G4vEhfHs1BX4x8SFwYlAXxgqP6nTxd/eDRaAjOKHa2Lb7koMuvlN3P3WvKRPdy7IRn47/p4P8Jvnvwy8fNK8XIhZk+Kgv1CpL/aAK4rhtbWnqgZasiFMnLsO3+6sxMNagL+Ls1LdkEz3RC/eatpOF9JV9LSyRlc9YwtB9No/Jqi3XhdAVKgFf6nH0s/RtN997wetlXpsSlQaRPGDJ/rABLXTqe91l7FsURN92KzCEjLpbvuqUhRZ57B+7azHU09ZVdioU6xfrDTsN9ucYLoP5PIF2na22nOm/QLJGtLqD6X6rnpfvPP1Wtz08myEEWcu+sVT02O9B9T+ZspSdsGDn+HKJ6dhb1VNIGGGnnXUtz7p7b1myUyoslpRWNjuY6AUg+5yaHRNNEOJJ0vbBzSB54EM5RwofGtxC1wew+15s5Z4ynUsUaZyK2HoNb9MuKwll09YKMox1Do56gJfzQKmv2zUhSYlsxuQnkXHtEDT3dZMlhNVe7Zm6+5AYGgmfv2/WbjrzXmBiU93I1RdQmxalPeUTHqmVNOZ8AW8l2esjhUgSjW5W91QLL9t2VmZdKlSM1DpAuFyLbubCTVeKa6gRp2Xg7WJwreprqlJu8e2IpPZQrEI6Jm+1OukZuWxZQRboFVrN1tn9ec7fDv95WhCv6em627LrEW1mFI1nPqL3LTfPE2wUDWeVKFQRU/taxvvVEE/2EbqPOavpWeaoqAuKPTrovdn384tAABn7d816yQtQLAQqDo+ddnmrdnhAfA6jeqHLzOoyrT0xXSce6V8r91r9a+XlYyFVI8PvQ0besZYE89OTdW3Us9+t+aqHrgyQmClF0OaNp5VHaSUSQvjza8EhT7qtdX7YcI2lZh+sin1TM/phu17yYtwU1IRF7ExcfSRtrlYL4Aep+6i7Z5S46uCWYBpx3WhtC4ELBTlGJs5VUUtDqouznW3JvWvVo0bkNpO04wZtntLy4Rl8r3Vs97FQe2Snr5WjZmwZcpThbM3vsquUN2qzbtIBTszYZqAbFYF29yh3gO1aT2GQ71O6iJC747qRhB3ylLP0aYhp8yJe6pqzAlHciAV1cSY3NUX8QTiONtZqVnXlGMFMi9qffhy1ebQ9ly8X9RjubYmUo8LmJMQ2BYH97wdHrxtg6o00gPqbZeaGmOSLeRU7Uitd/VsZCo2pczarbtJbpu6MKtaVG3XzDR243otZPso6MIYeR5QtluoxWpShQmqlv2fitVU3UdXWOj1w/z1AlU4TrPCURVeMZSBZPd0m9VHhn9esmEH7nh9bsZ9bJjCD6K0F0cp0bRBufG3T7V4Heq5NG9UP/I+NijKRCBRf8+HuvYtNlgoyjHqxD/VkEAACErVtsWByd/bRmPLQ6dOuPphTZPYwC4tSMe1oU4eHxoy1AF2H2d1Qndiqo0xe5hcFnX+8Gp4xj/APsmoiTXsBVVTn/dUp176NkujDfX+LNDqLahWC5v/MuVYyzbuTFtsmbLgUS0T1sKNWc7T1HT26cdJfbHToiE31haJaZHMpcBJvZZ6n742ZFLTA+pVbAsqk0uJLQYmEOsA+kI7KCQon4n7u8bm6qi6Ri1eb56nPl6wwZhOXdVM6wVke7ZrkvxsG5+me0ddNPVo0yTwd7bP8FNTVgS/iNGeLUPoFotV1zbGjSi76Bnn3leLsRNjTtV5VN+MLOwo93SZoXgpEEwSQXUppips9L2/MM7NwS1Na4UplvWZiq4sjpOgIRhrZT7fK47uG/hbvT/Uwt8uRBP1GbadrloeI0rx7GKChaI8YkvXrAoGtgJ16vuFqnjRK2mrg3rTjtTDaRPGVOJqmeNMHnurzPsE3N1cLPJi7KMLbQGNinK+m2yFE4kH1rWCJlRXQj24MxAHQLwf+oJKFQRtL1GqVUa/dWo8hUqswn3aPnEWVOo+egptE9SU6Xu19Kmm/WzFelUes2SBU09drx0TzOrkls2aW4ravvritM0rtsdbdTVS0V3a1Oafm7pS+T7Yui39tRo8rO6VR8NbwNLxu5e+Sn7Wx7paKsEWEK16GaYtkrW6PSrDu7dKHdvS3zjJBdRzOah3m2CfHGcJq6IGKal9sLx8X1IW/9RxYXMlVBVUkxwX1UyPr6Ltpy6SbW5SqmJC95ZQj6Wmt6fGFOnu7qpheKMidOjnlCkuKxN6Jkj1vKhjXbWyphcCTrXRsJ7ZBXgNMZGBVUmI6PO+9flTfrKt3YoZForyCPW9adMmmfxhrcclHlifID83xAplSrtpQs0kQ62fY7MAqRq/uL702b5fbe/TbYFK3ObtqPWB9uvRitirFLqLClXjQ8XuNkOzaprG55qYWXSoZCsg2RjQKWhNDWQtU05Y16bFWVyr8wA1488dE4KuJjOJriPakUlb/fmtoJCrXosde1Lnb1PK2LSppphGvT01BkxdDFTXBFMv22ILVE1o3JiqbFEXodOWb06OmQc/WhK0Xlm6t1WJ0bLNnep80aCeeblgey5McyRZuNFORK8zlC13vxWuhNHRx0zwtxS2WMM/KQofdcztsGSHI88Jyob6pd1tcN+2JZ2woZ6+rnSlol7PJcrawJ40IbWPno5efd7VZCF/1RI0qaEKLt6BawKKEqqVK3Vg/f2v9qlF4/qB33QlGqV99V7Z1pa2epMmt8X046Zwkc23ELBQlE+Ik4dNY0pdaFLbU9Gzozz9ebgG9k1inZp0FMsJUfNtc1MY2Dm18MynO5CK7lseaC8wf5kbN8WR6NiKslEnrTgTld0dzWYpUj9HP67uVhlnitWDpVV3RPXFsdGSjS0O//simMlQ7bs6VNNTckcfyJ9b6uWoC/d5ljgVqlWvJoZQrY/bxcozEwzkp7kN65isaPoCwObqmf3r29z3SkUqoKZGtqEXtFTHTMA1yjIp7jZot3VvBlUAs2bzs42ZLFeeLoxw6qUY0bN14DdqLImK7vlnmn9t8XRqvRrb2Cd7ZigH09/lav0zW2kHk6eDjnpPbQ4mQWWQ+Tc1O5xVKFL20a1rZYGxn/pej8/TXRAp2NxUqYKKClWwaKKFPnzngUm0NtQxqLSop6On9mnV5p2k7dSMoUuJ6d2LDRaK8gjVnZguFGXboyDUl0PrJuYED/oLW+VbYgYtFWrAcVymK24lcdw8KrUJUb0n6gLcZg1yEkSvfra09/HCzPUa4h5XjzlQxyo11astVXScPtmy66jX6dbXLDFfxPuz1ZIhzRTIH2fM6dgys0nLQikO24npulX0tK/VhjmM6r6ro+41R1nU27K26cRZt1N7q7ZtKkwdBWr9JmrMgcoPHgoWy1TjQOprlqLJi1PnYhvHcYQiN1bs8Eb26dgs9PsoVBNd7qYus8QRK/fHLhTR++Vz40tfBv5WC95OX745+dkmOL8wzVxEXFWu2Vx7beNCjVVdqHy2Z59LobvtqbGuVOWSnvnWxJ4YBeptWBVPFgWVuh4yJawBgoqoud+k9mlqKcZte07//NZ80nbqdXJR/qUQsFCUR6gPqlUhl6X2PS6qhtN21JWbzQuvc++bZPwtDibtuw1dU/uLp6ZHPq5avNaWInMBsYo82YvE2oYykdKaIx/XqqlU2pijx8wpv9nqN6jYrGFxoLqDuPDVt7lJmRKk2F5sVH702NTkZ91qpArjh/a116pJYrlk6kiIO/uo6XzVRZPVUqR8ti32VY1ulOnRpFSwBQu3aZZSDuUzpogan2d1cyb2V1VS6JYi1S3JvsgzdIHYh55tm2TeKAM2600cTX96HE34SdqEYHWPuAqBAMoF1d9zqjJM/W3Vt+Yizjalgnr6eibUwHbKpbWVzbC5DwaPmzqwrvCKogTxoQo7VAtvnBp+OtQYJVtowetfppSQajxhfS0jp6rEHty1pbE99b1sLS+i9DdOrF4xwEJRHqHOe7YJstKSztdE66b1M2+UgZXK5GnLFqfXBjHhQpxTF5rvzFlr3E41l+vWjGB7tOOqk4yLWCHqREpdRFDTk7s4bsDHW3NncO2qR90ujv+z9VjU60RcaaoLAD1zk3qtdZ95Cqu08R3HEvXYpKWk7ezuG8TjKpvNUDTYtmNd+vjUwG9OBBLlAO/PS81vt2vlAlSaK1pXas0dW2YyKrYrGy8mzfyb+gzrCypqn0zoRZJV1MQ0ce+v6bz0RZ2eXdOEKszrChCTu1JapjsD9iQj5t9MZSRsRkK1f/r+geLE5iZipeSeZnm+1f7aBBD1sEf3b0/qgw3beagWWUrxV4C+hrAdVy1Sb40vt7VPfPeqIRJUwZz6rFdzSm4mE1TfYJtJW11o2xadqvBkc3dTOTxD1XMKVMHPdfCxrXgidXGubmVLBa5up09u6mJwriXboAq5fAPNYBO7kG2wvVSLj09aZtxOVQbpKXbV82rRKHvBnC7syNDP6e1RBTDSZvY2lM+2VMTqsRYSF2vW4yrtPW7R6Ko894V5IafOTfZrSzpUoAVbens1RksVWoB4MSd6/9Q/VYunbeyri2Q1C5yOOkdc/cwM43bUuDbdXVK1VgdqlJFas6NaRGxZUeNkhrS5Rv9Hue5xnz+Ty2rcBC53vpFKTkItpmxDVY5Y1wYxBrjr92vc9ls2ps376hj+7YvmZ0m9kbbxSMV2Fqf87ePkZ2oyCepVt2XsU5PllFuUzLZnTk0+Qy6S7GDtpv5UyYkWmIxQLUUOEi2ofsMfLaDFkejbxRnS1IxM974TvRijjgutjIkbLYscmwuj+rfNHB1sj2qxoUlFlUSzNfWy2FKYqk1s0zR86rWgZ1Sk9cmuJUt9tgogymebNpY8eogBwi7cXuP4a+8gxgOt2GS2plKXIdSaH9RLYcvoNdWSaEKFqvmmVo2/4cVU3Iat8PNjn5oFq2AfSJvhmmdnavspQpFykk6EeaUN23vJ9fKHao23oQrtao03m6eDDbWN/05eHvjtbcVTgdrfV2auTn7euMMsqFEXqy9MSykObGOYfD0tx6WO1S6tGpO2o8Zoqff0L+8ssGxJw3Yt1Fipz6ju1VQLmuUCqvG3trWBbT2gukuqyYbsrrfxEnKpqAJdHE+HYoCFojxCXVDodT1U1IepXwdzwOj2PTRNlm1yi5OlhWqCjZPxRyeO/24cs3/acdUFlDaXv/5lynWNWlvGRUaq3UrsQxzLWNpvxJfeCmWCfFhbqJMtMbRDkdv+dFHqhWBbTKtNuHDpt2nktuxKjQXb7Qm4r1j6ZEsMoaK24SJ+ScXuOkqbO5wkmiCmvo+RxMuKLZufCrX8QKzCngi+E9QaS7bEHwGLkuV81XnQNre7jm/9QBFc4rb8rOIa9JWl9hQV9Rz1eeUJxbJFHWdqAPyJf/kou84hqAi1xzfS2tPdnwYpRdupJRao7yKb5UTFfRg1rUHqu5zsWubAikJ+5ojbUYutPvyJWSGnDn0X65pCwEJRHqFaUV5VNEg6ag2NfZWU1DprttAWJXGCTG3kMd6YTEBLb/O1VrabucL8En1didm574NF2XQNAPCnN8x1MtQ+fbbIrK1S6zK4WKBQm1DTs+uaoUChWEsbeoE6ChPnmbW9quvoOK0eTwBi/1RscRW2Og8PfLg4+dn2QtSL7bqE6spiQw1uVs9Cvy6O39dkbDWG7DFQqc9k4Yk4alwI3DbUBeUqZR5Q3bOs6bQtqGPVnjKd1l5aMhYD6j2wWXZs93v26tSx4rj36dieW6o2XkVN7mI7jziucHHfAY3rp1JAP/6Z2cJJr2eU2m6klgo9sJ0DRZ4K9RnetZfqVeFWaLMp6wLtWX57bw6tXiT1PUy1FH2y0LwOceHSWGhYKCoxxitZRfSgahVbXv1cYtNOuob6rlAnZmuiBWXKsGk5dhI1IONnmYVbKuopTltOcxOiJn2hVrq2oS6U9GBUau0b+jSaasRmlVGPZbNYUM9RvU6N6pWbt7O0oQYZ5/PZVK/Fwb3bkrazoV539bpUalpl6uLFtfXKFrOjoi/CqAUOVfRzLhRq39UsUer9tgWK67VQgm3TXGCpi3DVLc6G2twrFiXhc1PN8W9qnI6L8IZCFaO84r/TIu9js7w0qm++3yq6wlQ9/y+o7yLlRrZpao5t/tSi8FMhZxMltve7ly3xS4HjkjYj989WKoJ6XKo79EfEMhwuEtaUvkjEQlFecTFggosS83ZUc7RrVL/rXEOdgLbuSk0eeuaqOIwe2JG0HTX7nA1JFCxitW35jboAUCdSPe222oStCG8c7K484Z91JigWP9uzqV4L2+KSen+oGalcY3vpURe1qobzqqdnGLejPpt/cRBbqEIVsvRFnWrBcP2cUbXRVBcdHdU6dJuSLa9Xu6ak/bu2Nsd9qAqWDywWG+rr5j+WxBVxoCY8cGE9p8aauU7PPtMiSHZvE37vvrG8h+euiWeNVtcUaup/PWW6evrquHjra3OGWFsmQhXqXXzra1oGVlu8rAp1fFP752J9Rh3StvGjst5xAfNShYWiPGJLG01FrcruelHrAif1FhQa1TcP0WHdW5HaoPr0U2c0m2ZVxVZUMw627gWFJ9qJfGLRIFGL5tqSJKja+HXEInk2NxJVHrHXtEkd1/YcXP9CKlDe5tqqCk+2lxnV8hSnqKYLbOdI1dTaEleoqLU2urRsZG4vj8ob9fT1DHYqcYUTE88rAfA2qFYUavs2a/dsYoyNKkz8/b2F5u3IsSOO3bUtrxs12Ufc5Aoq1BTDroXqHZaA9RE9wl3SbPOemobZRv+OzY1t2pJuqPNMY6JVynVMEdUVjPqupFr3qf0jJ27IY1HkTx0UdqdmWC5mWCjKIzZNCZXTh3dJfrY90IUy9bsWimyncTzRYvOIJTAwl9SL6cevEijkZrnfgRoaxFt/08uzjb+5iDWzZVRSUbv7hMWPXbVE2V7K6tiPG7yusidGEgsbVI2zCwrl4KUmaenexlx8820Hc6JrXMSfxMF1sgLbYlpN925PtEA7FtUdiIrJAqJDtcbHFThV9OyapQo1tq6hppBUBdpdFo+VOHMkNfvcl6s2k7bbvIs2Llwvk6jP8HRLzSYV2/iOM128P98ch+RCoKkFMhELRfnExYKqe+vUAsPWGjWTCBW65cmxUORiEeo4iJM6GVEX5K2amAPg73k75V5kO43/KMJEPhMt2HiHGAiq8vIMWhwWNRMW1arnAnKK+BKt3wDQX3ovTV+V/Hz68K456k3t4n9TaRYlKm6SC9AWq9RMpdShT12gPTVleeaNkF8lYT6fb9fvWxU9Q+zZ+3cL3c72vqG+i6j3h+oeu3ozzTOBnCGtQIt9a2mQGCovmzDmZiyVvlTEQlGJodag6WbxBX/mc7cvWNUSYcN18hEX7jXUJqiZkcjphonHpfrF5zLFtQ71ZeY6yxg1hfarliQW05ZtTn6m3ntb0hLXUOPzv16dfSa63Yq1oIfFYkPFFvSuohZiVev5lALfOijMGQdb/Y842BaawSK8ljaIY1WPJzRhe2epUN00qeTTTfPvE81uhq6JowCzrX1tcSVxFEzUy164lNw06O54Oe6Igush7aJYOFuKmLzz0EcpV7B9OjQ3btenPS3Ilv4QF592m6yZJ25IfRFTFwCu3WFcWLKGE+OwCuVCZCfVJ1uMgPqCzWetBNeWoqUbaUHANm5/PRV4Hyf1uY4tFqfYKcohrUDNJkXFNszUtYtNeKLOA00b1iNtZ8saqVLpOO6OqnhygesyFzaolnUqVIWfiloOQmfCV98Yf1MZ3KUlaTtqYhbX769XZqzKvBHiXb+4PKkUED5in/ZZt+ci5r041w3RYKGoxCAXESOOzR3EReOcb2iB9w8q9ViKBdfCyfNf0CZI1/NDM+LCo10zc+pTsmBF3i5/rnqq6T+fixzX95Fe2NQttSEINhuK/XXtOj25LaGHKggtsGSGpLo12ep3qXy2eFPmjSIcl4mO7U6pxcd14syDWy2Jc1RsLuQqSzfSrKmu4zZXE7Pq3l+g9U/f9s0KclwdFxl3Cw0LRY7JtaRMbZ+a5UfNOnV4v3bG7d6bS4sPman5IecS6pWmWoCowtOarbQJ0vXETE1r3aKR+QUzj5iOlXotqGuXBQ5M86p534XVg8oeoua3kvjMTV5CWxi6FubLiQvX2kpt0GJG4a/vLjD+piZw2WSxfK8jxgq5vrT5TEZS14grb95hK4RtgCrcukhCpVLXZGoXykkmAQtFtRSqS/b/vnAbe5RPHvt0KWk7qr8ydbFaKKhaGDUVrQ41Noz8UnEwF1Mn9HcVwdyWWcu1QYT6jDz6yVK3B3b9nuP3Zp1ip+UZmbosNUf86Y15xu2ocQauhxY1/TUTnTguXicMomV61SlUvcR8ujAWA6xDcAcLRSWGOslc+9xM43ZxtKKuNdO5hirEuAggjEPTPGY+cw05gQKvtJPYaizF4aMF2deNYFLkM74sX8RVAFDdpqm4fnUUajFdDFCL7uaTJg1orts6LsZFc6LbeF2G3U3dkVEoEkJ0EEKcKYS4UghxiRBilBCChSkDuZYrqHEBejpNE8Gin7TtGBqdW9IyLRUjVGFnk+NCl6VMZ0uR0jh8TcyGyNCgWklLiZ8e2SfWfq4NMa6VI3V5kdemqTkmtFC8OJ0WR6vjYt1QW+pD5RIXCm0XNf1qA0bhRghxtBDiTQDjAZwEoDOAgQBuBPClEOL3QogW2RxcCPGwEGKdEOIr5bs2Qoi3hRALvP/DSzbXUVxbc+qyRi7XlLJffKN6NCvXovXZZ0hzbWzq0Lyh2waJZJvIwJYgwwVqmmymbuNayeV6qttrSRLhukB4sVGbFJC8vMgPLtaFjXPo2dK2CAV9EzaLz8kAfiylPEBKeZmU8kYp5XVSytMADAMwHcBxWR7/UQAnat+NBfCulLIfgHe9v0uGXM8BrudL1aWk1NznCkVvontDKRfpzGvRU8ft1S8vjCE72+cn14/fvW/T0tkypUPcIVPKc31ttyLVprMb/yUtJTeTHU6eiRwOvI079mJLgeq/RcW4epBS/kpKGVouWkpZJaV8SUr5fDYHl1J+CEAPDDkdwGPe58cAnJHNMRg7ajCu7T1pcrdoVL/ueVKS6x6V2Mv7tGFdkp/z2XX3WuvCXPfKLH2Scq9QKa3xSMVFUdq6hmvXXmrqZSYzaumBUqe2C7DFwkYHqbBz7aa4dhsta2+hsbnPXSOE+FHI9z8SQlydwz51lFL66oU1AELTngghLhNCTBVCTF2/vngKCuY8JXcOl062rpuKZbZtWhhXpUJCdYsrZW1sPjmwd1un7X28sDAJCrItfldbhZZc07qEXDNcE3fIuHbVLFR9FqY0cR1/Wdd5l1gyhcmMTc3/PQCPh3z/HwCX5KY7QWRilRA67UspH5BSjpRSjmzfPvtqvqUCr5sKD7EcTUm7z+VToLPVVYpDsaRjPbRvNGEv55aiHLdfKGau2FzoLhSMpz8PdebIyN6q2joamFKgtseFMemUytrVJhTVk1Km2cSllHthL4qcLWuFEJ0BwPu/pETgXN93aiHJOMSxQtVF7Tb1nEst0YLa23ymMa+tab0/Wbgx80YKuRaiS2w4MgQ2x/TTr7QkMig2hnZrWegulARdW5VOtlOei+oepfKetwlFZUKINNe1sO8c8wqAC73PFwJ4OcfHYzxK2LCRV1ZvofnGlrI/ddwUrHFw/YIUrqu35olcj5ZdleZinkzdoopq7i4CqOUl6jq92xdffSOG8SkWD45M2ISiuwCMF0IcKYRo7v07CsBrAO52cXAhxFMAJgHoL4RY6cUwjQNwnBBiAYDR3t8lQylrQOJYfUr4dHNOKQtF+eTRT5cWugvFAQ8XJk9kmxSEKT5KqdhzXfQwqevc9ea8QneBhLFUsJTycSHEegB/ADAYiVf2bAA3SSknuDi4lPICw0/HumifiUYh1/ADOjXH3DXbCteBHFBq2ecKxRfLvnXa3qpvdzltL1/waGHyRacWHOjOFA6e6+oeLjLk5QNrPmUp5QQp5ZFSyrZSynbeZycCUW2lkH6To3q1yWr/GTECll0pfNrmuHBlIWBlWGFYs7U0Un/qsPbULUO6ciyKiW+ILsAMkwt4/NU9ykqkeostJfeNQgjjKlsIcYwQ4pTcdIuJRQmvqWrjenB7jvP+u+br1ey7X0hq4SNQUL7i8Wwk2/TxDMMwUSgrkVhfo/scgC8BvCqE2A1gGoD1ABoB6AdgOIB3APwx1x0sNQq5uC9EXRxXlrHaKBSVGovW7yh0F+o0/Ay4ha8nwzBMcVAqCVNsMUUvA3hZCNEPwKEAOgPYCuAJAJdJKUvTcb8WU4g1wNqte5y0UyrpGhkmV/AzwDAMwzCFw2YpAgBIKRcAWJCHvjBZUsoxCSXcdYZxwu7K0khZyjAMwzC1kRIJfWIolLJcMXnJpkJ3gWEYhmGYOkr3NqVTAJfJDSwUOaYQcT0+bG1hGIZhGIaJDq+hGBaKHPPh/MIVUOPnmWEYhmEYJjosFDEZhSIhxD5CiHeFEF95fw8VQtyY+66VJnurCxcXMDNGnSGGYRiGYZi6TqmV0WDcQ7EUPQjgegCVACClnAXg/Fx2qpQp5WQHDMMwDMMwdZFChj8wxQFFKGoipZyifcfiNMMwDMMwDFMrKI3yokwuoQhFG4QQfeCFrAghzgHwTU57xTAMwzAMwzB5Yhu7z9V5MtYpAnAlgAcADBBCrAKwBMD3ctqrEoatrwzDMAzDMKUFr98Yq1AkhCgHcIWUcrQQoimAMinltvx0rTThqvQMwzAMwzAMU1pYhSIpZbUQ4jDv8478dKm0YU0DwzAMUyiE4PcQwzBMHCjuc9OFEK8AeA5AUjCSUr6Qs16VMDX8MmIYhmEKBAtEDMMw8aAIRY0AbARwjPKdBMBCEcMwDMMwDMMwJU9GoUhKeXE+OlJb4DpFDMMwDMMwDFNaZBSKhBCPAOnZA6SUl+SkRyUOi0QMwzB2ygS7GjMJfnx4Lzz40ZJCdyNvDOnaEl+u2lLobjAMEwLFfe415XMjAGcCWJ2b7tQC+EXPMAxjhQUixqdR/fJCdyGvCK4QyjBFC8V97nn1byHEUwA+zlmPShxOyc0wDMMwNEQdkxLq2vkyTClRFmOffgA6uO5IbYFDihiGYRiGRl0TEWau2FzoLjAMY4ASU7QNQaewNQB+k7MelTivzmLPQoZhGIah8L8vVha6CwzDMABo7nPN89GR2sInCzcWugsMwzAMUxJUVtcUugsMwzAACO5zQoh3Kd8xDMMwDMNE4fwDuhe6CwzDMAAsliIhRCMATQC0E0K0Rsr1twWArnnoG8MwDMMwtZj12/cUugsMwzAA7O5zPwFwNYAuAL5ASijaCuD/ctsthmEYhmFqO5yNjWGYYsHoPiel/KuUsheA66SUvaWUvbx/w6SULBQxDMMwDMMUKb3bNS10F5wxpGvLQneBicGoXm0K3YVIZIwpklL+XQgxWAhxnhDih/6/XHdMCHGiEGKeEGKhEGJsro/HMAzDMEx+mfPNVqftdW3V2Gl7pUxZWe2xwjVuULeK/NYWfnhwz0J3IRKURAs3A/i79+9oAH8CcFouOyWEKAfwDwAnARgI4AIhxMBcHpNhGIZhmPyyZVel0/ZaN63vtL1SpnmjjAmGGSanlJWYeyyleOs5AI4FsEZKeTGAYQBybcccBWChlHKxlHIvgKcBnJ7jYzIMwzAMk0dcp+SOU0B9ePdWTvtQLAzq0qLQXXDGlCWbCt2FAI3r123LVS+ia2ZpiUQ0oWiXlLIGQJUQogWAdQBynUOzK4AVyt8roWW8E0JcJoSYKoSYun79+hx3h8mG2jQxMwzDMO4QRbBsKjFlNpm9VVwDKldIxJC+axE92zYhbVdqzxZFKJoqhGgF4EEkstBNAzApl52iIKV8QEo5Uko5sn379oXuDmMhjuaOoXFARetCd4FhmBxx45h9C92F2DSoR1leMHUNF+Pi6P685is09HVdaUlF1tEpErky75BSbpZS3gfgOAAXem50uWQVgtaobt53TAlSapqCUqJji0aBv284eUCBesIw+aUuWKAb1gEXHdfvh6YNo8fR1NZXVDG6eJ0ypHPWbfRp38xBT5hsaN2EFrtXaus/q1AkpZQAXlf+XiqlnJXzXgGfA+gnhOglhGgA4HwAr+ThuHln3861/8XO5A69xkf75g0L1BOGyS+lFsAbhwbltHPs0rJR5o2KiHNGdEt+dn0Xf3JE78j71FZnhsYNii/Rwun7dc28UQZaNi58Mo1i9IDp37F53o7VumkD0nalNk9T7JjThBAH5LwnClLKKgA/A/AmgDkAnpVSzs5nH/JFaQ2XeBTj5FEocp0htRj8811wWYyFjY1ieIkybimxd20shnZrVegu5ISRPXPn9tuwHs06UoxWFNcUY0ZuF32iPvtN61ga72KMc/Jjj+oTFTyFhiIUHQhgkhBikRBilhDiSyFEzq1FUsrXpZT7SCn7SClvz/XxCkUborRdylAf0wGd8qflKBTljt9Sugm7tiwUOzi2eNWW68LukSlqyS21Ql24F99SCLj3vOHG3w7t2y75Wbd2Z0uPNrQA8OMHdUz1wWkPioc4WvoWDtJ4XzCqh/G3cgf3mzpmqnOokS3GdOfFqIAWALq3aYxTh3YpdFdIUISiEwD0AXAMgFMBnOL9zzigGDXYrovfyWJ8UgtEvTK3wcdXj97HaXs6xTg+VXKpcS5G3pu7rtBdyDnFqByhpp91reSqIB63GDl6gDkYvpEi7B3dv4PT45aXiEY6GxqU094jcXRwLgq+2gTTfBaUza07WfGNs3yutKgCd0tPcVsqq8CMT5aUchkSSQ+O8T7vpOzH0CjGitPUuBTXi5cflFjl4zi4uN2H9Gmb/NxEcw9QJyoXC7T6xJdvoWhFDPasLUxfvrnQXYgNdSE3kJhAwbWFwQZ1cTWwQDGixfcWsaPeuo4tHFuFLb/p82UuyWX2vbP2p8XlxHlGXMSA1FgUofmMMWnfPBVrd81xuVUgxmG/Hq2ctpfP+Yd6Fzs0b1RSbv0Zn1ohxM0AfgPgeu+r+gCeyGWn6hL1i1AoonaJakWwTZAqtbWAnooLIfgnR/Yx/qa+b1yMrFy+v0ZVtDH+5tq46Po0msXIcOWCQmnbbAqQhsTF3/49W5G2s71A1cVgPqfO3VXVpO16ty9dy45r9lSmauSM3tdsDXI9pm1zlmqhUueYaTGVDUfsY7aGXXVsv1htUmhEdKuMM39v2rE3+k4aeyz1kVzo2ejnlbrJVY6LBLt4N1KbOExxN7Vx86kD43eGAUCz+JwJ4DQAOwBASrkaQPH5N5Qo+dR2UqHGvVBfZtQFrm27IrxMsaC+zOKyYO325GfqNbPF7+Tysjesn/3bsc55Zhbh+T754wNJ21E1xLbNvtm8W9mu+CYF167HpYx6v1s1CVqtTXfu/AOyrwtvE6o374y+4LfFjhSqXs55I1PX6dRh5liNQmnon56y3PKrg5giYhvq+8H1fHGMxe2TagGiTucdLNbUnx3dN/k511a4OpGchLDNXi81twQAIQSrwhziYgw3crC4VMnnYkNdkOfT5H6Wg7SgKu2a0VxAXEwqK7/dafxt/JffJD9T4yDaWvqey0n2jOHZ3wNq91zLEtRgbtfkM7vQqF4pS55tThjR02zxU6HeK9tmkxZvJG3nmmJPK9vXQeyE63T+Qnkt2fRs6k9HWiwv+3TMvjaNGqNFvaW2e9+5pVkIDljtHQ+florb8NkWV7pCeT/vqjRbVl1YeKnzoFrLzPUzfNuZg5Ofda+Zpy87KPn5glE0Qf/XJ/aP1Y84p/XIRfESSndSUv8X+ZQYG8oj86wQ4n4ArYQQPwbwDoAHc9utuoOLcTVmiNusHq7dUmzT1wM/HJn8XGOzFLnrDoD8umyouLi2i9btIB2X6t5YqEQYw7q3NP6mvvRsrmqFshSNGZp9AcI45PN81RSqzR24C1K1u9TFSz4FFepzS709B/dum3mjCFx1bN/MG+UZEfhMtRKat+vemqaIsA2L04dFV8TY2mvakKbk+s2JbrNGUkd+oaypUpoX+S4ysFLHkyrou17XqPG2Y08K3l81LfwxAzrChDqfX3FU8BkOCFOWiSXOO2FwV/O7d8JVh5Pa6NC8tGqjUaEkWrgbwP8APA9gHwA3SSn/nuuO1RVcvNhPcbxAI2cc0x7GIZYHzYTqmpDPxTk1zsk1Ll5StgDewEKEeCxb8HFu36nmxqm3x4X1oZRwPWptz7o6N+3TKXstPTWejnxP83pT3R7MdYKQcmJWS1sMTC5dwfJ5T10Pi6YxC6CqC/fLLXGg2VKMbqT7dGyGPu3D5wwXax5yE8qG1H2OivEc2BISubGM2X6L/lawXYt6SocP7GX2ArjwkIrIxy0FqMbVLwF8BOBD7zPjiCKcz3DjmHjBeqrJWMUmgKg1C1o3MWdLUyfSMUPyp6Wn1suJMUfH5vB+5qDLOIkWbIVS43SX6rZnQz0Pm2ZRj1UwUYShOLGgZnyk+rRTX44uYhNcPyNDu0VXwsTFtZa5UFlH1WzVeheu0tL7m9yyrx4dPYGAfk/VhXyZ4bMO+Rm2ueoRL/vFh1YkP193gjlrme25yOUt3rGnirRdHKuMPn/HOY8RPVtjmKHwsOtafTbURFZU4fG2MwZn3kjD1rLtsCbBUce1Epd6B3Rhr62S0TbKffzn9/bPaeIRl1Cyz10KYAqAswCcA+AzIcQlue4YUziaxnSVMe1XVW0RipQHy1qTQ3n+XMdV2IQCataXfFosgoJPsMV9lNgCap9sWq44Wsg/njmEtB3V9e93p5iF9G6taYHtNTbfzBLiIqJ2jpq623Z3DyWOfSr0oUTb8NrjzT741HFBxUVSmZ8fk3KPiVPA0hYHSV2fHDMgFRyuL2r0Nlo0CrdmUd1mmiv72+aRkxVPB9tpUD0JTP2OgtpGo3rx4kDjKMCoiTq27q5MHcfWh+hdSOu3LebURuum4ffBhWJw2cYdmTdCvLTocWoJ2s7JNvap87k9tCB3QmaLxsE1nXo91aNmKmQ7uGvLkqm5Rrn7vwKwn5TyIinlhQBGIJGim3FAMVqKqF3atzNNa22bmKjaBnWz5g2zf+mp79cfHdYr8FvTPNWyqBdXY2aZILsoL1XqZGmbcE0vNhsussqpfW/ruCBmsRAnsN21q4ytvcALMI9uTVQtuC2T47ED3BYEpS7Izx5hFlzUhUOc1N3dLMk9qM+66manz71UZXSceUvfQ/2bWr+KKpjq40LtLrXn1GMNtcRFxkmqc8PJ+xK3zN4V1fTutd0rKlKax2R7RciyeT3YmLx4E2k79fz7daBZZeLMdVYXdMt+Q6zW7tSePR0n9qG6MO7fo3Xg71tOGxS63c2nhn9filBmo40Atil/b/O+Y5xQfFIRdVKo56Cqtmlirq9VJVcn2MuONFt2qMxfu834m/pCzKWbSy4E4ngvMPMS4PqTUi9p19XBnVjNivD5odIig3YtDNdxd9asYKo/voNjUQW6PZaaQCN7tjb+pvKDgytI21HRL3trQ0xQq8Y0Ad51UWR6FsbUiejPjj6yzvQsU3r8Uxz3J30RZsrMNkK5v7r7XtyhXx5woYrXhgmbQBfH0kq1bFDdXuPE76RbELO7aDbLk80V0zbMqoiWf3WMH9THnNxEzSZqO1t9XeJz/MBOxn26aQlC4hQQ7qsIdIMsxa2p48d2T9WfqrXrbPJEqU2puilXcCGAyUKIW7xCrp8BmC+EuEYIcU1uu1f7yWd6SipxagDE3c70cO6jLcDVzaiaRRu7LSlD1f5SH/Y4i3N9n8Fdo1ejTrt8hsWGDdv7pbEygeczHXQ+j1VKvDJztdP2bM+m6uKVz2Bu27NEde2N012bkKr79B9sWGC5SPNswvUdyPTu8d1dTtAWfP201NiUU9G3UWMB1Z9aK1bhrq0aBwSjuDOCMIxj29jv2ormIhjXbcoEVelha7kv1SJi+F5P2hHnWVLPwh5vY/7VdiXUxbottlCNCdaPdMKgVFa4bNdhNuWpLtzv25n6nk+d42mWWlQq5NAHy/mqQ9AmfAbjAmmHLQUoq8tFAF5C6g69DGAJEgVcuYirgVGWrB1FD3GA92xLM+naJjeT1lF/N7h+5qgv2JMGmzVAKi7WjOSsf5ZjLVmf8rWmLrwa1LNojZTPBQvLsZxGy8bURXLtmLU3bs++2nxDRZu40VK93kVdmDjYXPqpVoo4d/viQ4NutKP3TbngDdGCxtXxRK1ZpS4w4gxHF0P4aKXgpL6Q0xfk/p9CBBc9ak22Zg3rkeYZ230zPZvfPbAnvn9gT2P/qJgObXMDVIujxoV6u9RrQz3DoKAX/O0SZRzHSVyh6xzpLn1K2zHfFWoiGVsbway15u0OsVjrVItVYAwSBYa4dLQUYjXhuuYVWWFKfOnripJShpKS+/e2f/noZCmSS//VXEOV+l24lpkCjnXNbJnlJRCHfh1o8rxtUnWNizou789frzZIwl6AMNUIdYKkvjjIGXUsm53jYPFCpXPLwtdlcDH2fzuGtsjpQVR6UKF23fYcUNtQLRFUy7Ie56NqXQdrLivqvDV6X3MdEhX1+XE97VPHhRpvo88jpgQKQphdwVo3rU96X1jddYz7BB/9uBm4zj+gR/KzmpWxhUUJRVWiuHDfzXZe0fuQrbvgoM5By0sXS/IHm0IgzrGvOS6V6e+4gebn6gcH9yRtF+wPbQy6dslOcx2N4YnjuoKI2oMrjgqmi1e7S3VT7NWuDglFQoiRQogXhRDThBCz/H/56FwpQ89Glj+piGqJyKdWnRyUb9BURkF1Twu4heXRAqIuoFQXsWuPM6d91VF9/PU79dMc1sOgL0po263btid+ZzziZPGKi+r/7iK2R12gmnzVbeixHtSEFHGumBvtJK2R0QPNSRKo/WijXAtqgc2GWpaxwKJE2zYQvE+d6x0rdgJtx7irujCjxyOk5icR6LtaOqFMCNKx4+jPEsH6wb/joC7c42Smi++2R9vOtSul2lycto8fFBQybE30Vyw7qgUkELsWoQ/qtrZyGOXE7egHpm0WZyykCZVZuyO6nTxstyfsnR9WlLeuuc/9F8AjAM4GcKryj7GQz2rr1JcFNf9+tj3/7oE9An/bFpCmDFL6Lur1tGWdstGmqTJpW/q0yxJvZIJ6zdRYKbULrZrUdyJIq24F1D7Zxs82JfVra8dZ4MjPiGUzcoC5AyFG7W9zB2l/1UQlPdsGrRQUwb+Ndj+o12J499a0DR1ArU1xppJuun9Hs899HIWNbZ/jLVrmg3qn4obSEi0YngVb76j1eExYa+JE1y1ldEVU3ec6t0hZM1T3SylBmmhsRWOpxLUUmQrlupgT8unKpBZHt8cyhX/W033rQfQmXK5loiQZsM2BrvWYVE8UF1ciThuuE+xQ59GwMXLFUX2xdNyYWO2VApSpdL2U8hUp5RIp5TL/X857VoLs2ptaTJNdRRyMJerz4iKzTWC7kO8W3n4SbteErziTqh5o7+I6qcr4QIa5PGrBbZs5N5ET+2RbbCzbuDP5+ULHGb3sLjVuJ1lViDm4tzkLETVV8qF9zW2onDeyW/LzuSO6BX6rrKpJfu7UIuhCQ7p1McfLPp2Irg5K+3HvRyfFNcgWw6G6uNkW+HGeVdsuQfef4AUdEch0F/xNfS7I/chySNuy8tnujzmGIYNQpHwO0w77UO4Jtd6brQ9x58cjDQLZtt201O+5hjosXvnZoco+5kV84Dfl+2GW9OE2qP07cVAq/lYG5o4UUQTbnyl1vXTixOfZFRapz3HHxX3fHxH4++1fHoEXrjgkvR/EDlMvFaW5X2qFmanzKFVwrk1QVsk3CyH+LYS4QAhxlv8v5z0rQQqVMcv1UakPo+oL3a5ZQnNar7ws7aHvqhVSpLj55CLRgtov1Y2iQ4vcxoqYXG0GdY33klLRr3VQGx3ehyiot2GgJRVoHGx9cv0sqRY0m4bc5o4XvNa0C6pmgjrvgGD809ffbE1+1uPzTF20vwCJgnkeXXbVI3W2ZPRS77dNWI5lYcmB4um9ueuSn9WYBtuoDYyeGJ2qrK4x/lZVY/7NdL8zdsE7aQFzzSrqcxpXk5xtXMX5B3Q3HrvahaVI+dxMy/zlIkY00F4MxVswJpS0e1p/dIu0inoJVU8MKrYzsqWtf3fO2ujHshxMPeede81Cka0NvWB0v47Nk3V+ju6fEszjPAm28iemYdy9Tao/urKvSQPVoyTYI9Xdj4WicC4GMBzAiUi5zp2Swz7VClyYE7s4Dux2bYlQC3vp/vgqenptCnpXqYUubZld1IVmnODWC0b1yLxRCAdUpDIRDuqSEoTGnjggsB09NsH8m6lQoZ6mtRexurRqtm9FzY5HxMUz4tpqb82SleVx9UWTin5Y0/2xulA5vhYBP3YHbdvqXFHnJlvQt4mrRpvj9Y7Z1xy/pC741e7pVeh7E5+lYKwHaZcAtsXz3G/MdddM7lS2gpDDu7dKRRQJPR4q9dlWpJOK6dbrpxvXfc7UO9frvbguTup5UpOC2N3nwq1INiHwJ0ekav/pbXe3ZldUn5Hw7IWZvovD1l2VmTfScFHKI+5YV+O5yZnfDBfrHM3jwKSYUIVKa3FZrT+qwORCcVBqUEbJAVLKkVLKC6WUF3v/Lsl5z2oxFx9akfxsL6JlcTchusLFQT2sza9X3e6o/maf8Y6aJYbymOkTwilDaXn6bZmgqDUqTNxx1pDoO2moi6E4wfWAtjjX2y8LX7zoqC9w27WIc52o++j1G0zYrlIuMwXtr2Sq0iG7Nij9s9Wn0OeBv52/X8a29S7EFarV+SjQvuPsR7rFOHAsw3F14gjmav2hEVrx10P6hLt1jejZOtAPNY5mZEWwjWAQtBl1LMSzeJn3sQkMgXgJpQ9tm5ktAOr52p6xHm2ahAp4UU7PJkyoC744C7Qrjza7YMUVstT4N2tGM/LzqHgwEEsMBPbP8LeP7TqriYds5zSQWGNHSpm8d7kIN4lz51RrS8cWDZ0riRta1mRxDqUL7f77Mk66eCmB//xolPH3doa5gC1F4XwqhBiY857UMtSJQC8ASrVSWINnY41VtwNcnVSaaYUPf+bgZaTGbVA1qzahaJNSk6Vd8+AkcJmiKYtDnBdgLo4V0BKq32uvSvUFoS489MkxjvaTuod9sUXTvsfB5vJDDWB2cSwVveYXJZGDq+Db3xrqkKjzVtxhe6SiLMln8hkV9TLpsVsm9PinYwaYLUqBY1l+M1lsqOQzw5MQwUQLJiraNQ3c14N6J6ziruIPVXfWY4n3QKV7mybJ/qfFtMV4fA7s1YaczZBKnNtKdQVTcZEchvru7t8pJTyp83ymvalzWpSEDWG8eMWhgb/7KVZs/b0UUEBbrns/B5bwwD4O12sSQKvGZiXIx785JvR7ForCOQjADCHEPC8d95eckjszQa2g+TdqGyE/JnGxODK99OOuY+rFtIIk0WOKHCQy2LA9lQJa91cmF041UFVN9K3X/m7RKFwzOEpxuYuCMPyhX5frjk+5FKnD56j+wXEQZ2Q1N5yTjs1V7eA+5kQGcRaX6kKhUwuzxSLOwssF+ks+znNHn1e0vw0Ha2nI2hUFtQaWrdq6y6DitLaJo1jvg+ruqF4jekV6M5ssRXNN6M+LmkDAVk8t7hzuv1cy7a66Nrf3ah3tZ7Gy0o8PnDIs5SHQl1hbzoT+jMVZ8P3qhP4BDb56beK+hYNFg6PfLP00AvOj0p6eujqg9LCsV1ROGBQsZq4+M6qy94JR3VHP0+pecbRSJsLRGlu9d3GWP7pVR00SYSpK//51R8X2S1CFSXIb2nmZzpMy70spjfOAgDmjb1xrailDEYpOBNAPwPFIxRNxSu4M7NiTCtaLqyGlpoakDlvb+DZNhLZ9RMw3wk+OSEySoy3+/DVSWjPsxCHQhONnPTDxa6iH0lMvnzY83C3Qlu0JluticpXRURNNqP3TEw3EURTZ4svUxVIm90FTGl89ixsF9bRsQtvQbq0it61zYK+UQGsTBIL70LLZqcR1n4uDPg9Qi1OrdLe6z9EG2uQlmyIfN857XQhzLEWf9tkXKrQlTaByrDJ/2hOERG97ePfWZLdAahHvAzS3Qx9bTJF6XuSadhZUV26qO14gk5owKyHjrh/1EhYU1EK76dnnaJiSZ2yxxOscYFHWqW5dQgiUlwksHTcGVysxfX4GPKrizEQuDRim69mpZSMnc2xbap1F7Vh+xr14iiHbccwNVhKVvbWJjLOMl367O4BjvM87KfvVRQLaFtXiqj9kWbpR6PvlU5gnp/U2pAUFUi5aLUPMuX86eyiA9IfYJlje+51hpD7l0n1HfUldqQlIw7qlkiuYqo3r52uqrZGJOEUl1YWHSUhzwaWH9YqUgSts8XH5kX1ymj3N5rJKfW4rFMH3pMGdjdupmlpdADRq9ZTvmzYILiyo9bviuHDqQsv1JyeShJjSHcc4AIkVm6Knws71/Ki2b0s7rqLORaoQTT0OENTak92piO+NAypaJ63pmcYV1a3P5L5l2l0gKLhUx1ygqfOFatWK52Eh0oQkH2qMpLV1w8XQlRCmGJBEGzRlomFYYI6SFVNHdzsPJmPJPBD85Ex+chJ1Hz3MwEouhSLDiMxmHvn5MYl6bTefOhDXHW9TeKbQr4dvHdMtnCaFUkBnHbPvNew+l44Q4mYAvwFwvfdVfQBP5LJTtQN1Yoq3iHO9iG/novKzAzcXWxOjvAVClJTc6nXSs6yphLlr+e5SLi91ubay/uVx5uxXrglailLo7oHq5R3cNeUOpKcVVRcOLYguhqbFRqP65bGeBXWfsScNsGxJbY92rLjPrWmxoXPCIEtSEILg94tjg3F7V4+mFUpNc58j7RPcyr82cV+Zp+dQ+C4k9sD78LH16MWjSPOPrpBSrR623YOKiNTnTNk0zxvZHVcc1Qe/yFCAV51zbILGDSdHe3bLykTAfSfb5Zm+f9z1nsntjmoVtmG6j+lW4eiWQZui0eRyp9OttS0TXWb0PqjjpUG9MvI9VsdFBTH7o603qmBhVWLHVMj179QcS8eNwcWH9rImZKDyqxNSglWnluEW+OAYiTfYOftcOGcCOA3ADgCQUq4GkJ1zbx1AHY9+8GnodpaHzPb4xRmrNtN38LjR3dbSJm3lc1q8jrdxmIaxLLnYCvrAHkDUpra11EpQM0/5k6BfgyHOZHeq4u+uL4SbKv7rTRqYXpbmY1Kz/ukvR5M1wyYsBpMzmPtEtUTkGvW8qJp5lYq25peoTRGhuhzmOmkApfkTNSuUOs6aZhmInIlsz97XnPrIwGfz5KbHNFAItJaD2xYnIFodto2J98oW90gVxlSOtsTPVdVINKhXhl+fOCBjLFjYs+Af85ShqTHawmApMrrPIbhojmRJ0BsKOVCmeImTh4SPNb1mjCklu+mW2BQCpnklSmwHdYjHq4WWHdZMgxHOUb0eB1mKcZvYGCOmT0KmWcrioJ/l2fuHu4Pr2/njX4hgTNTRlsy/ybZsYRCW/aprpDHuubZCEYr2ysRolQAghMhdWqhahDrQbPECcSegMgdaAK0nod+m5fY3aaEsT52awhRILSLCzt3/Tm9OrYmkY9J46QxR3Nj8uBf/he/6RXDm/l0zb6ShLl5aNbG4RxDbsAk4w7q3Mv52y6mpZJNxAi1te7h2MYmTgMMWA2GTsdRkJLnOBKaOadWSZ0N9Bi9UaunoqeRdJCtIWooijA/b4p+aIj5OKQK1bauiKXLLfvu07dRjd4+gcY8j+JuOS21pd2V1sA3LjqphXL8Ufzt/P8y/7aTQ3zL1qUmDegFrTtyYIlPfM1mKfn5MP3Rv0ziQBVUIYN/OSqYyIfDwRQeE7q+XovAxK8ksVp4Ii1p1TlSHjouETPqxoraZ5gES88Ubxcr3qxP6p61B0q3l5n74iph6ZWW47Ahz7HBc7jpnaPIZUXHpuha3peoaiR6GxBO1Fcos86wQ4n4ArYQQPwbwDoB/57ZbpY+TRbbVzYfWhCn9N0W7EEoM9zl9EUqZR6PMtdSgTXWheeqwLrjmuH0CZmgfcjFGw/cvzVhF2j9OfARgf5GUBa67uk9wO1MhUSGCGuQRPcMtdLqbHYURFa2DwbiRW3DDEf3MmbpM7ocA/QVuijnQsbWnunraguhNqNrsTG5SceYqyi56Io0mDeolM4DpxxzYhSb4ZSukx1kc2AT5ds0akPuknrO+wLddT0rRaOs9zOGDJkTwmfE/+9+UlYmMgqz+HPjvpmaN6pGzjNlcR33F3v5ajapMi859O7fAR78+xqig6t0+8Z4wWXf0DKc+qpBFxTbG+mheAMG40ugDw0XZCBNNHLgYApkKyga58ui+uPc7wwPfCRGMDbNZe+86Zxg+u/5YNKhXllFBMeOm4zDrluOt2+iCpOkZocYOUY4TVx7u2KJRTmN4ixFKooW7AfwPwPMA+gO4SUr5t2wOKoQ4VwgxWwhRI4QYqf12vRBioZcC/IRsjlNIqNaL4wea4wqoxMuBT8OUnjITlIk17GHz3dm+e2AP8sKbHFiqfC4vE/jFsf1CXUNsqaIpbW/dVUmaSPZW1TifcFo3VV/gNKuRin79OhmEattCp70Wu9bfq9/QqUUjY6IJa59om2VoI9WKngEwsJ1yMP1FSoWeApq6mE516ihiYgP9ml16WK/Q9nJJmOBtqhPURnF7tcYjGi6ZLU32acPixy+9e+2Rxhoefn/izL/6Qtrm0ulDndsyHcslUgbH002nDMQFo3rEcnP0UWMyAzFFlgtti3VpVL8cr/38MPzze/sHvo8jYAsA547ojvMP6I4Xf3qo136iv5R7mKmvpnk6LI7Jd6HS3Sptip3AsQzCE3WfKPjpwId2TXhrhF35KHfDFo9JoV6ZICWzARLvOtN7UKdVkwZGN9GomGR2fYzYsr366OEIgfYs9/SQPm2TiaNs3iW1CUqihTullG9LKX8lpbxOSvm2EOLOLI/7FYCzAHyoHWsggPMBDEIiFfg/hRDFEchAwDjo0rZLfaP7J9v287niqD7Gyu661eQnhqKk6e+D8CfwX98bYeyfvT0zJw7uhIGdW+CnR6Wbops2rIcld5yMK4/ui5tPHYTvHdgDU244lt64BdviwOWygbwIEalYqUy1T9RgZ1vrh/QJunr4jDSkw03rkhCBSde0ELH1oUWj+sk4uj7tzQsFam0oJ86hxFui3jtVG+nLcq/87FC8c80RDnpER5XRdW23eZ/gCedqXWxP2Z9+0OM8JVDrJuYiwbY2TT99Z2S6X/7ScWOw5I6TA7Fw1MvgPwN92jezxvc1aVgey31O17vcde4w434UIVu/1ocr1lBh2c5EFIFBPZf2zRvijrOGhCpNosogAiA//GdncFce3LVlmgLM9u419kkING5QjnFnD03W8erQohEeunAk/qEIXfY44nQGeZbSOO5ztgOo9zsXMfPUJgd7wpB1+EXon+lcWhOztsZxw7UdNxdUEBXSuhIyDFu/B1rWHjVSJrNGNimSmOJcQxkZx4V8l+4AGQEp5Rwp5byQn04H8LSUco+UcgmAhQBGZXOsYsc2SZgWyucf0AN/Oif8Jao3Z/IHTc8CE94HFwUcdVo1aYDXrzrcmDXGn8gb1S/H7WcOQQdiFXogg0XEgTtitvsE9kdCiz3lt8dmTIJxtSIU2YW7cI3f6cOjxzjZyLS4+s4BCTe5wV1bGq+TLW4qw9Ej79HPK/x4mFfk0mQNzCTQDu3WKmMRSXohUtp5qH3Vi+ua26YfK15GwPDvM1m+f33iAEy9cXTSIhyVqNp9/dyoCotMm53j1cq69LDesRIt6P1SrWqPXRL+yoviCPXvC0fiyR8fiPu+PyJonY3aUQKuLVG+26UQIpD9Sr3KN47ZN7BPnDGsxgZly7H7dgwoeaxzdMhPmYY11aqsZzazWxBN39PeL9mQK9sldRy0baYrZZQ2LL2L86zrUD1RyjPU8ctEQCAO+d1PoGCLeQ8UKq4jXnRGoUgI8VMhxJcA+gshZin/lgCYlaP+dAWwQvl7pfddWP8uE0JMFUJMXb9+fY66Ex+bdk79a7ilWOQPD64I/V5CBurY2B7TuuYPql5qXRuUzysRRbvr1ziyvsCUibR7G7NboQtBzcV2/ktGaN+ZxqPNxcnFffMXsTecnFhMXW1IM6y/r4ohdXScRad+HtmOC9OaTB/nvkYYCL9v5WXCankB7JpPcz/s+Mkq1IBrPd4yEGOQoUF/4V6vXJCDvoMB8GZLXhdLv8xtB/9uWK8ch/RphxMHdwrck7jY3iNRvY07ZNBs33rGYPzosF44un97Y/prWzZNMnnU+quEPc+ZuhIl5j649jAfw5RltnMruhKSii7UmU4nW0sMVWlCcTnLFXFiU7NFSpn2DFOar66RebWOFQM2S9GTAE4F8Ir3v/9vhJTy+5kaFkK8I4T4KuTf6S46LqV8QEo5Uko5sn17RwUEHWIb+M0UFzdqNXCbdiHOoG2jWYCoi6azR4RbHAr53AjDZx3bNQy4jGXbH0ETRvVAdHr78bTdeoHQMMqE2dfa1rZOUigi9jVKLac4C/yD+7TF0nFjMgb068/jnw1uTV1b5U4w1YlTmymuhYTcPmF8U+ta6diEprjpYX0tvhr8nqUeNvmJHhuW+hwroVxMa59+rFHE8gY0ZGRXpExDsV2zhvjdKQNRr7zMKKi6eN/EaSNXijV/DJkz5dl729yzNJ40uBM5nlkfF76V1xYTo7enF5A24fc+zYJt/CMecRfwwfgq83bZZoKMgkkhQEXvq/G8LKekjrs6bymSUm6RUi6VUl4gpVym/NtEaVhKOVpKOTjk38uW3VYB6K783c37ruSwPWSmvPQ2DlZy8cfxude59YzBwf2IO952xpBQ4aIUtAlRXRoyYZxjiIJFtoXwQo8d+BzshG0hn9xH67fpvpITN5C2yrzdFUf1Sbq+5XJuTn+RhB/NFo/g+lkYarEmq3S1JCZxfc38OSAtZT9S89vPju6b9puJI4kJJH5MiJHMFJ9nQj2VehkVFqkDmtYuNmEhzVJkOdIPDu6JBvXKMHpfs+tk2H1ItZ1qvVH9cjzxowMx+/eJHEajPLddff/01Mnm1tt7Qmym4qz+o6XXO7Odu2qJdOG6FGhbO0nbNYxK1PeJf01MirtMZ97Gcwf7xbH9QrMBhvcx+1nhtIiWdFeeKybhJJOC4oh92ifjrKNYhn3863lGHjwIdEE4an/VOSyREEXbgNAG5TiZLL+lhrtZwA2vADhfCNFQCNELQD8AUwrcp6zRx2Kc7Ga2F4LpN90NQ6W5pg2ivm7Ky0TS/70YBSFTjYbEb8Q2Yhwrzv7p7cXcMdBGqpFTs8i6lfk49t+TQ0MAAzolfPdNacBN7anj69cnDsATlx5oPeYIYhICG9TkDzaiPhbfOzBDymxiO4O6KK5rxJ10y8tQr5aXf89MHNirDX52dN/Q2MabThmIy4/sE8n10BQ3qAesmxau6jW/WKnRZEOv1j563444aXAia9rxEbKnmRZiE687yrwTYW7y5+8BnVpg/m0nobOhcj1gF8DUtsu99L9+0gE/nfNvtRgd/ZT09NIHhlibKG6RvzqhPx73Yqb8NNq24rANyhUByvH7Rsqgtb6bxS3Zx8UcHSao/PN7++OqY/slM3XqZEof7t+vMiGCiS+aNQw8Q00MtcKCwkqUJBvBczn/gO4kK+hF3jOant02eOywcQakErboqHuHKUcev2QUrvdcqM0KPzO+lfWcEd0tW7nBdM+pY1DN4igh0bG55pZLaK9GSuva89Oxx+Dta46kdahEKIhQJIQ4UwixEsDBAMYLId4EACnlbADPAvgawBsArpRSVptbKl5cu6v0bhfdh7pNswZ5C6TRHxwXheKy5dShwUWZy1TEB1uqaAsBDCH48VOtMlFQm4zjJuPqCiXdQSBwx1lD8fRlB8UuAkd1A8y0kCcdy7sCceow2dqzYStMHJcO2gvQnI41+MNvTkxo+/XscDplZQLXndA/Lf5HykRylrEnDYiV3UvnlKFd8MIVhxj7e/GhFbHbXrt1T+DveuVlSaE4s5tM6nfTelW3zFLdfP1TbGQpdhsFyrSnK+r0U9J/Vy0EdHdegSuP7ptMiX/16H2wdNwYq0BHjZ2Ng0R0y4ULS0eoANyqMX553D7Ga0k9dyGAkUrSnkP6tsPofRMChJTBLKZhNfqyZdzZQ7H4jjFp3+vvtrP274al48YEk+2EnKRJkWaaW/7zo5Ti7Luj7IJLHMtjz7ZNsXTcGBxmqXXnioMsawy9ztmEqw7HpOuDpQP0OcykfAgbcZ9dfyxOGtwJJw7upGyXvmWXVo2dKBKLiYIIRVLKF6WU3aSUDaWUHaWUJyi/3S6l7COl7C+lnFCI/rlAHY8uFgejFc2ILXOcMHyficAL2/tDz2STtk+R+JgGXBWV7y/TXG16RCj4lgndKqEXk8smuPn2Mwdn3shA1vdE0NqIImA2blBuneCBcOupr9XUf/Nf8j5/OH0QAODyI+nVxs1CQuL/bARUalFAukUyeh8oaVrjtm0jbqpbE0LQhEaqEibTQsh3YzIV3ozTZhLrxVaFcdcTawzPhAzXs2/7hJJuePfUPJdXPZiDY8mEVOQU35JpC+SP8sz5LpNqghCfe78zHAM6NU+zntqeQXWh3FGxzgb7RO9gZOVnxqZ19+XE/9RaY8Mj1NJRu+67ZieOmfuFzX9+NArvXWu3sBzStx0uOqQCZ3np5lXvHl/pdYBXamPfzi3SLMmqEFRTE6aENd+7Ti0b4V/fH4EmDerFeq5PHhK/TlmhcVNemAmlaYNy7NhbjUP7ZK9VsPncS8NnILcWm6g1SvKN3gWbJcHW3yYNyrFzb9BgKSExpGtLvDg9EfKmmuoFiMkKDP3tYnGTyTWuLJy+EHRuSP2YMMKu/7izh2JI12VpVjl9yx8eXGHM1BiVlFBUeEvn9N8dh7IyEetZOrxvvDnHP1Lc+I2zMtSLcU2Y9jKs71QN/3Un9EfLxvUjxQzEGSqmexpY0BLafePqwzFj+Wary5J9+IQH+GcK7D+wd1t88Kuj0KNNE0xeTAoztnLS4E5YsmGHdRu1S1U1Eh2aN8S6bXvMO2RAQgZHRYwsfzp3njMEv3xmJhpbarpEsTb1aJOwqumZEgHg5CGdcfKQzgCAnx3TF7/+36xQZcjRAzrgtvFzcNrwLpi6lHKvEtltN++sTO97Ll/roQq5xBdjhnbGKzNX5+zQrWOWCIjL4f1oMZS3nDYo+fl/lx+M9+etC8TkhVn09+nYDPPXbsfPj+mLD+cnMjPb5H9/LppxU1j1HXU7UpcBIBlnWIoUW0xRrcI3DcedSEwLsygLtpqazNscHtEUHHY+1PopucZ2ra2/ef9fdEhFQIMGAB/86mi8/ctgwU4pgQ4twh/8bBPUZBNQnK0wKhB0+/GHmu5Oluko3ds0wdJxYzJaiGy0adoAPz+2X04E7EmLN4Z+7wuFMvl34v8LiXEqiX2j3T/T1q2bNgh1TaBcDmpWy/TGw78+P4Mrik+ceEkb+S4p0KxhPfzyuH0iWfd1AeInR/RGu2bpixWS+1xYQLSFAZ1a4PxRPazPCKU5/ToP757ZOtezbdOMtVCo/Ov7I/DG1faiyOpzJRDM4hqHXOg96pWZx81vvViWjob3RhhUy/V5I7tj6bgxaBKSDa5P+2ZYOm5MmhWll1InUCA47qiL2lypjkwxQy4x9b3w6txwKto1xUWH9gp8F3YO/hi0CeYA8ANPkehbGls1aRBaO7Dw6sH8wkJRjoircbdlCOtlKHZqE5Ioeft1ISAOuiWrGDTtOrYFlnq7fL/rYd5LpH3zhuhnCIANb0vE0x5H3yUnhC2w9K8s7/4MbRu+j9dcbPR4kmQ/vI74z40QAov+eDJuOmWgsS1bgHkuFvUf/upoPPlje9IJaj/Ub08YpLjoauO3EbGuR5SzvTZCGnbj8SJeXlfTUrOGievRsF55mnb++pP3xdQb07WutoykfjHbYwaklEtxu6pXqLddI9P1MMmE6YHxyNvDa4vR0rn73GEZCwkDwWvTpGHmMZ45K6HfcPpXlx7eC4v+eHKkotW+jsFV5r3GSpxaJ8X6dMZ+XYNu+MZ5OvgD1V3W1vtD+yYUZz8+POXuno/lQxEuUZK4jtORUobEj/bHoj+e7NzludThq5EriLEZOiMrCP7zEdqjCjzhGofECeiWJF8TUcRzSijU+0GpHxQnSDe9P25WE43qUx/jzHeMHDRdNCKcW5KWIuVSlWdwYYtyG/34p8D+9N0BJKxwh0R0yTX10fdDn3rjaPz9gv3zOqZ9YYKyeM1EpnS1ro2N1xzXH786oT/O3K9rcj5s3ST+QqZN0waYcsOxuP7kfa13oE/7cMWYiq6wsBZe9eZ43cAXdg1n3HQc3rjKbs3JJb3bB5MN2cbaOSO64YEfjrS2pxe0vPiQhBbeNh5N2eHSG0//SggR2ZLqn6OfzOPQvm0xZmjnSG2onDcy3OKrp1WmzgNHEt3AUu2m41ulKto1TboJ+vXkcumuZxI0i8DznzxOwrbKlMk1tV308VgX4Jgih7h+mPRxnPT3t61tZaJOyPPTVkLKlLXDht7tRvXL8Ytj+yWD5fSEC0/9+EC8MnO1dRFQKC1Mtm4kVAtX26YNYrvqmThz/26YOG89+nfKXGdlYOcW+GbLLgDA704ZiN+++FVSQ3ztcfvg6AHR3BlbNq6PLbsq0xdHRNG3d7umWJwhJgAoHu2c6T77p59N3bzmWpafT8cekxwPPzy4Aje9PDvYl/iHio0QiXvhK2F0a1dabGKO+gAEM4zpZLJ0R33MXJ1H4wbluNKrw9TUszBcrLm2qFyvFeANW3TqacnDxuivThiAy5/4wto3eo0h4Ncn9Ee5EDhTiwULu05RLByuoLg8u2rf15jXt6Y3z+8i8tgBHfDAh4txSJ+ENeW/lx6UVXv1y8vwydhjQrMr2iyZpu9ju+kq/O6UgWjRuD5OHNQJDeqV4eUrD01LVBTrvRHzXhVDPLTr7MVp8XNR9i2Wl3aeYEtRHnA2poijOmqa2rDuXXPcPhjgLc51bUK/js1x7fH9i2LyAOharWwFJiC1gDt9eFdL4CKtLX2z04Z1wdJxY0hFVl+/6nBMv+l4r51ES8O8TFA/P7YfKfvdR78+Gi9deSiAYArt8L4Gv9ffhVGydYW2XxxDKRmncEoEbez/XbBf4G/V1VKUJdKWhtaYMZyzrZ5TXPRD3ey5A+rfJ+9DzDkrzm20zY9+ApMxQzvjoQvNmv8o7kX/+t7+ABI1VVzQsF45lo4bE0h3rHPJYb1w+vCU4NHdUhPHX5y3DXHL3K9HKwDp9aVU0oQi45YJQefWMwYns6Xt0zFhjaG4XacfN3+LJxHTEwMA/vHdxP2/8phgcWGnvXcwn504qBMO7N0WS8eNIRdwptC1VeM0D5JCvsvbNmuIP5w+ODnuh3Vv5cSCMdkQN5qkiNf6xwyIZoHLB1HGSBFf2oywpShHmDKQ6Vpkexs0Au+iGHNJkaxHYxGlQKntPP0HXiKlNR8RkgpY1bD591evNF8sC/xMdG/TJJlK3DSJGdc52kn6PtDnZcg2R/VVz5ZRvdpgyhJaVqyz9u+KF6Ylsgg2aVAPM246Lq24sY0DLckkWkRox+ePZw2JvE9UenmuSANCChzmC8o991Pf+wtZHX8hpWpWM72QTxzcCbecOhDnGlyJcoFAUNj1a/WE0a11E9x59hAcM8DsxtUoQxC1ygmDO+GxScuI/Yz+HObSldbUdjby15ihnTFm6Biv/bBjFgeFeo9IaV4Ax+1Sg3LfTTN/J7V8007r78W8cL9Uia+Ki+5SHDvhV9Y9KS1YKMoRvntK+g8uWpfaX4YsdSHfTb1xdFql5ERf3Q79jTv2Om3PRBSFEsXdTcqEsPD2L49ARWhiC194Sl0vfaIvIyZayDRJHdS7DT6LkO6Wegv/eGbIotvfl+g2oR/M1+yp2vAoRMnIROHHh/e2CkXtmzfEovUJdz/dlSQbN6FbTjUnZKBiswLERruBR+7THhOuOpxc8JY6P0R58R7gFReOotjw8WM7rjy6L/ZW1eD7B/XEs1NXYP7a7aHbXzCqBz5asAEDOjWHECIti9MPDuoZuQ9RiKqJ/84BPay/2+5GOy0+pHvr6PXZ4rwO8rl4cuZ8EXJfnLSdRSOnDeuCV2audmodiopr0eWOs4ai78dLcGjEUgHZ9CNTncVidgvrFJKCnUpoTFEWfUm2G2HbIr60GWH3uSLGFFOkM7BzZlcpn3bNGqb5rmcyVcfRBGaakLLFL+aW6eHzqzy3b94w0sKkX8fmdpcwCaQEpNxAiQcD3GgUkzJRWkxROLqWPds+RLk3Ls73CCVboosJfFi3xDM4vEfrrMdDlGtx3/dHAAB6ZwjAvygkpfi+nVukHct05FyM8V7tEtXhj7DUYAvj+Z8ejKcvS8RWNG1YDzeeMhCN6pdbi7yePKQzlo4bE5p4Zum4Mbj1jPgFk4uN35+WnsyDCjUFdNg+ucCkLDEdMmp5CUqb2TT27rVHZizSqeMviAtlKcrGNdFE++YNMfakAUUV2F/M6/Y4HgY+Yc+uzfqXiYN7t8XxAzuS5xVyMpIihYWiHCEQPrFkGpZxFmhxJxp/kJcJ4VwrFVYvwSVq6lrbs+5fG2qcRqbYBEowaqbfkttkGA2utS229vxgcZN7g/6tKWVopj4XzyvRMcmsdbl71Y6qaJP23YmDO2HurSfizQw1XtpELE7oPweDuybc6/Lp9pKJET3bhBZb9F3KwoLIC43rHtnaM5VuILWbzHZGH8e+8iab45oIi6sCgAGdm6fVYZl764l45KIDIrX//RxbCPu0b5aWNa/YsblaFUscsc7cW09MKz5aihlS7zlvGPp1cDNe1FuVTUr3RvXL8cAPRxo8Z8KP6yqFfCFg97kcYZrMXUwqmbLPUQ+hZo45d2Q3/PXdBdl1rABkOtcOzRvh+pMGJCt/G9uJeFwJYJgnSH53lNnVJRu3MN3N0cTBXkzLmfvRXNfCrtkzlx2Md+aszUmQv0q+pspMwkmuKm4nUrVH3Efra9j+n449JrR6ORAtviQTydg6r0sP/GAkXpy+ChVh9WmKjOtO6I9mDevhDOJzwKQT5+30/QN74NA+bfO6+G/aoB4uOawXrnp6RvK7OM8BJcV5ocj3kl4VIqIIFPXLBSqrcz2z29tvVL888v3XXxFzbz0xb27/Js7avxvO2t8el0tFPb+2EZVidRkWihyiTiSqFitQiTvCTFehBeOaBarsJyRXdViy2cc1/qTwkyP7ZNy2pbfgbNvUvlhOJueSCTeHpePGpG2za2918nOrxqnJ6JwR0SY76l2t8NyQyO2GNFzRrqmT4M5sGNa9FWau2OykrUyWDd+SefKQTk79raWk3zfTwqNpiGDahZCR0AX6ZevSqnEy9TRp/wJqZ5s1rIfrTuhfsOPbcDUfZmOI7NY6N2NICFEQa0hDYkFhG+o80cKzfus1e3LBsG4tMXPlltDfrjiqD9Zv24PvZWHFevLSAzGZmGgmjChFtj/5zTH4dmdl7GPF6YcL9EepUf1yUubXYke9ZuN/cRiueWYmjh/YKb99KEErnQ8LRTkkbGBEGSqmYDvqezGTtvykwZ3w4IeL8aPDelm3izMx5TqmiEKUfp86tDMqq2pw2nB70HfS595yF4Z1b4WKtk0xoFNz3HxqwkVxwe0noTzihXTtiZXLF4yLtk8a3MmZUNSQXNDWDanzl5FvnL61n3GtkBTa+eEXx/bDhu17CtyL3DCcGCvoik4tG2Fg5xa4/uQBGbf1C7+WQqC0izlHLXR7RL92uOe8YRm9ClxwZP8ORqGoVZMGuPc7w7Nq/5C+7XBIxKQGV43uh3lrt+GQPu1w34eLyft1aNEoLU65FIiTdr7UGNSlJd78Zf4LLrP7HJNGwJ8zwviwbapqo8N/8f+ivS3aNWuID399NABg1eZdpH2oHD+oE+6YMNdpm2FI6cbNQAiBswmWHMq1PWFQJzSqX443lDiPsKQNmV7qrieWWBmlIi/w4xfbdCmzRem2X5slG/w4liiWolzz48N74bVZ30Tax/eojR2W4+gmXnPcPm4aKhJ8S/zUG0dn5aIaRxCoX16G1686nNY+oscUFQon877qMiZE1q5LnT1FZikGm+/buQUmXncUAPO1LWSa8MhkDODO3MQfTo+ftKSuonodnTgovxYqF7BQlENcTyCm9nS/6CYNEm4FPQsYBxDVKkJh3FlDIgeM5wrbJO0qzjtX65J47pDBnfT4FhfmcpdDhm5NBS49rDf++Hp2Avxfzt8PD364GPv1aI3Zq7dat/31if0xqqINnpqyAkDuYgd+O2YgfjsmWorw4d1b46JDKnDp4XbrMROPdlnGsuVaVikGt+d84vp8R1a0wQtXHJKMNy1VimUcZPNeySwTZX6YaoM7Xb6RUibnqUP7mmv4FSuF93GqpTSuXx7rBfbL0eaq6D76w6wvWCvaNcW/fzgSd587LHoHHJGLSfX8UT1wvKZ5yPfkTcoq56hPLrS1L195aOSUsBQaNwj68x/ppVXuFqMmSi6IYuEqcyDFdm3VGLecNgjlZSLjsa84qi9GKpnkikknX14mcMtpg2Lfx2JZTNV2cn2di2lM5hJqVsUoRdf379E6Y0bYIkyQGMBsKcpvx/0sp1HcoZt7dd6G92hl3S7fbqz54vYzhuCAitbYp1MRZD0swRcCW4pyxKnDuuCet+dH3s8WsErRmtTzKkePHpiqhn7kPu3RPovg0dINmstdv+1ujm6O66R+TpYTv6kL+lx36eG9cMZ+XTOOM1vCAOp1s72Yu7ZqjFWbd9GTHeRgiBTy2AyTDfv3aI1ZK7egTRYFjPOFiwW6qbSAzmu/OAzTln+b9fFKhWJJvf27UweiX8dmOLp/h8wbe3x2/bH4+3sL8esMSVcuGNUjo4dACXiRpjGseys8d/khBe3DgM6JUg492xSHkjQKLBQ5RJ1HystEeJ2iiJPN45eMwtqtu9O+N2USCgvQfOySUZGOWXLkcf5OxXWZZ0vqLc60XTH59Wc6JSEESfC2CWku3sN9OzRLxsft36MVpi3fnH2jDJlsbuF/Lz0QK7/d6awvTHR+O2ZfnD+qO3qUQAp2F9N+B69kQqYaSz3bNkXPtsWbvts1xSESJTJKRs2K2rRhPYw9KXNSEb3OVSnh149zlb7bJVIm0vTv170VBndtWejuRIaFojwTdbIJq/YuZSJDTRimjHXZMKhrC4z/MlrAtskikIt0p/nM1pVPDVoxiEQUuewXx2Z2+aTg4trefOpA/OG1r3Fw77b458SFDnoVHaos27pJQkvdNMeFjkuFQyNmy6qLtG/eECcP6ZSz9Pn1y8swoFOLnLTtGhfzY4fmifflacPsWUfrGmFlAWob9UKSH5UK3Vo3iVSGI98IIUpSIAJYKMoL6uSdzbqPFM+SAx3P0K6tAEQLmjP5THd0lLrT12QO7dYqcr2Kod2yf1htC1/q4j7TvdKP8cvR+2Dyko2ktintRUKY/9zPkW921Ex3YfRu3wyPXlxYyyj1LK49vj96tGmCkwaXXoYenaYNyrFDqc/F5IbyMoF/fm9E6G8vXXko9lbV5LlHhcPFm65N0waYdcvxaJZnxUSxu6TfefZQHHTHu3jhisK6YWWifnlxX8e6xCWH9sLDnywpdDeyhoUih+hruvDH1fwQjxma+/oIJmxTSzHmnN+/R2u8c80R6BOxaODHvzk65xnsqNN01wzFFHUh4arR/QBkb5WJWC0p6+MVigtG9cDnS/MfB0AV7hrVL8cPDq7IbWfyTLHEIuSC135+GKYXcVxJbQ0cN+FqqLVoRIsrqkuYCpOruChlkA1TbjjWSQFfxg3nHdAND3+ypCjXi1EoXfthERNXezEygxvY6cO7AsiNCxplGGej3frX9/ZPtOFwzdS3Q/PIi7BurZugSRZaQb+WUasm2b9IMwX5llJMkZNjOF5QHzMgEZwbdp2beRmKsk2RXErcevqgnCleimek5o7BXVvWOiGWKQy1QXdATVKRKzq0aISWDt7DjBuK3fpJhS1FOcBfy/7h9MH4/auz0aWVG5exy4/sjYsPrUCjPAcIulibd64l+f5/ObofrjiqT17uQa5kIhfNBgQYR3NhPtPUHtGvHe46ZyhOzUEsQRHJsgF+cHBFzhf1teO1mB/Y5TA+LRrXR4N6pavTrQ3PSW1ZBNs4oFcb6+9CFO98byLn6fxL7HrosFCUQ47Ypz3evfaowHe2AZlpMAkh8i4QBY8fZduozoPuycXDn897UAxzSz4nONe3K1Pc17kjuzs+onfcAt+5KDVVXFHqL8JC8NkNx6Kymi9cHMrLRLLG0CF9Sq9AZKnd9WHdWmLmyi3BL2u/TJTRGjbz5uNRXULP8B1nDcnokRSX2mD9BFgoygm2wZHrcRN3QWaPKcotk284Fjsdakx7t2uKxRt2OGsvKq4mh4N7t8X/vliJAyrcTmJxuqcLuU3V4q2l807IC4UUEN655ghjZsp8EDb2G9cvR+ccZMUsdZpzLEtkzhvZDc9OXVnobmRNqa0f/3PpgVixKZguv9TOIReUWjzaBaN65Kztvu2b4aJDKnDhIRU5O0Y+YKEoz1gtRfnrRiQaeKkrW+TIh9hFRrrXfn5YxiripYZfiLdTy8K5HprGZL+OzfPajzgUSnNVyOe4b4fC3BebMubrP5yQx54wtZk7zx6KcWcNLXQ3sqasxN5VLRrVx6AuiaytR/dvj4nz1uPGMQPz2odc1J07Y3gXHNi79CyNxUhZmcAtpw0qdDeyhoUih1CsNDYtsouUxHGxHfmg3m1w45h9ce6I3LgbuUDNiX/N8fvgZ09OR5cCCRNlRWpHjmJFfPTiAwK1KvJxRqW2UDBRl13JwuIManNGOib3PP/Tg7F1dxWAxFjSh1Ndft4Kwf0/GIltuyvRNs9Jap6+7GDsc+MEp7Gnfzl/P3eNMbUCFopyQNQAxGLP7y6EyLpYYLOGCXerigyVw11wytAuOGVo4YrxHVwLNE9H9U9kbpu/dpvztv93+cGYsWJz2ve1ZelcTFkD80UdPGUmT4zoaQ92L0WaNyrdpVeDemV5F4gA1DpPEKY4KciTKYS4C8CpAPYCWATgYinlZu+36wH8CEA1gF9IKd8sRB/j4AtDHVqYJ4y6qjTt26E5Hr5oJA6qBQKDieaN6mHb7irnFg9XrcXJFtSrXVMc1b89fjl6H0e9AEZWtMHIitwvdHihnn/q6vzGFI5SHHM92yaUgyNyFPReG/Fv85n7dStoP5jaTaFyWr4NYLCUciiA+QCuBwAhxEAA5wMYBOBEAP8UQpRMda4G9crwl+8Mx7M/Odi4Tbh7SeL/Qi7i8vFeOWZAx6xqBBU9Rb4Ij5OEo355GR69eBSGhRSGPKp/+9jthlGvPDfTUSkumkqNP545BO2bN0zGHzJMvihF5YevN2tcwGyypUZZmcDMm4/HnWcPKXRXmFpMQd5gUsq3pJRV3p+fAfBF/9MBPC2l3COlXAJgIYBRhehjXM7Yryu6WGryhC3Q/K+iLi4fufgA/OO7+0fah8k9rhfhrt/52fTv9V8cjt+dkgiwdS1r5KJmUCEoZGxgLrGNm7NHdMPnvx1da+LCXHHZEdm5HTO1E185WhddbbOhZeP6OVOeMQxQHDFFlwB4xvvcFQkhyWel910aQojLAFwGAD165C7NoGvClgxxF6lHe3EfLsjV1HxghuJnTGkxsEsLDOzSIidtN21QjvMP6I5zRpS2e0RNLV3ndGjeEGu37inpopn55oaT98UNJ+9b6G7UakrRElwM3iEMw6STM6FICPEOgE4hP/1WSvmyt81vAVQB+G/U9qWUDwB4AABGjhzJU4tHRdvcJzKgMvfWE1GPNcdpNKhXhr1VNeTtXV1B31WjXllxLmqFEBh3dumn262t3HbGEPz48anYL8SVkmEYOr5QxJYihikuciYUSSlH234XQlwE4BQAx8qUv8kqAGre527ed7WGsPS0pwztggc/WuLE8tMopo9yXJef6b87zqipi9uX2s7rvzgMkxZtzPtxf3XiALRsXB+nDy8eN7VXfnYo5q/dnpO2/ZTiLpNE1GWaehkkS1EzzzDFhF+2gWUihikuCpV97kQAvwZwpJRSLZP8CoAnhRD3AOgCoB+AKQXoYl4Z1r0Vlo4bU9A+xJ2cWzdt4LYjJUzPdk3w1aqtKM+wauzboTmpyKbrF2azhvVwzfH9nbXnF5Vt1jB+Ud+h3VphaLdWjnoUpEG9soI8V728tPP9Ixa4ff6nB+P9eetz0SUnNPOEzM4FLCbMMLWBuHHEDMPklkLFFP0fgIYA3vYsJ59JKS+XUs4WQjwL4Gsk3OqulFJWF6iPDBOJRy8ehenLNweKnrqgWDXzN50yEAf1boNRHDcWwNcC9+kQzZV1RM82RV2TZWi3VvjbBfvh2AHuYhkZpi7iJyRhSxHDFBcFEYqklH0tv90O4PY8dodhnNCuWUMcN7Cj83aL9cXZuEE5Th8emgel5DhuYEdUVdPjvGx0atkIANC/Y24SUhSS02pJhkCm9lCs86MNX8/FMUUMU1wUQ/a5OoWv9X/8klFYtmmnfeM8wnNz8ZHMUFTYbtQJHvzhSGdtjejZGi9deSiGdG3prE2GYWoPfmwxz+0MU1ywUJQnzt6/G56fthLHeK4nR+zTvsA9CsK+zcVHPy/u6NA+bQvcEyYqwzlDG8PkhWJ1L7aRyj5X2H4wDBOEhaI80bt9Ir6gmeN4E1ewpaj4GNilBabeOBptOZlFGu2aNcRVo/sVuhsMwzCRKSuSQkVvXH04lm8sHo8Vhik0xblCZ/IOy0TFSbtmDQvdhaJk6o3WjP8MwzBFSyqmqKDdwIBOLTCgU+2LfWSYuBRnFUcm7/Ro06TQXWAYhmGYWk/nVolkLCcNCatvzzBMoWBLUZ6IWxw1X5SXlaBjNsMwDMOUGB2aN8KXtxxftO70DFNX4Scyz5RiUCjDMAzDMO5o3ih+0WuGYXIDu88xDMMwDMMwDFOnYaGIYRiGYRiGYZg6DQtFDMMwDMMwDMPUaVgoYhiGYRimpPBr/50xvGuBe8IwTG2BEy0wDMPE4O5zh+HD+esL3Q2GqZN0btkYS+44GYKzFzGOOX5gR7z19dpCd4MpACwU5YmTh3TG3W/Nx+lErdagLtEKql14cE/MXLklTtcYhonBOSO64ZwR3QrdDYaps7BAxOSC//vu/tixp6rQ3WAKAAtFeaJ3+2ZYOm4Madv3rj0S7Zs3jNT+708fHKdbDMMwDMMwjEeDemVoUK9BobvBFAAWioqQ3u2bFboLDMMwDMMwDFNn4EQLDMMwDMMwDMPUadhSxCS5+dSBOLBX20J3g2EYhmEYhmHyCgtFTJKLD+1V6C4wDMMwDMMwTN5h9zmGYRiGYRiGYeo0LBQxDMMwDMMwDFOnYaGIYRiGYRiGYZg6DQtFDMMwDMMwDMPUaVgoYhiGYRiGYRimTsNCEcMwDMMwDMMwdRoWihiGYRiGYRiGqdOwUMQwDMMwDMMwTJ1GSCkL3YesEUKsB7Cs0P3waAdgQ6E7wTAGeHwyxQqPTaaY4fHJFCs8NqPRU0rZPuyHWiEUFRNCiKlSypGF7gfDhMHjkylWeGwyxQyPT6ZY4bHpDnafYxiGYRiGYRimTsNCEcMwDMMwDMMwdRoWitzzQKE7wDAWeHwyxQqPTaaY4fHJFCs8Nh3BMUUMwzAMwzAMw9Rp2FLEMAzDMAzDMEydhoUihmEYhmEYhmHqNCwUERBCPCyEWCeE+Er5brgQ4jMhxAwhxFQhxCjveyGE+JsQYqEQYpYQYn9lnwuFEAu8fxcW4lyY2kXEsXmUEGKL9/0MIcRNyj4nCiHmeeN2bCHOhal9GMbnMCHEJCHEl0KIV4UQLZTfrvfG4DwhxAnK9zw+GadEGZtCiAohxC5l7rxP2WeEt/1C790vCnE+TO1CCNFdCDFRCPG1EGK2EOIq7/s2Qoi3vXXk20KI1t73vPZ0gZSS/2X4B+AIAPsD+Er57i0AJ3mfTwbwvvJ5AgAB4CAAk73v2wBY7P3f2vvcutDnxv9K+1/EsXkUgNdC2igHsAhAbwANAMwEMLDQ58b/Sv+fYXx+DuBI7/MlAG71Pg/0xl5DAL28MVnO45P/5eJfxLFZoW6ntTPFe9cL791/UqHPjf+V/j8AnQHs731uDmC+N0f+CcBY7/uxAO70PvPa08E/thQRkFJ+CGCT/jUAX8PZEsBq7/PpAB6XCT4D0EoI0RnACQDellJuklJ+C+BtACfmvvdMbSbi2DQxCsBCKeViKeVeAE8jMY4ZJisM43MfAB96n98GcLb3+XQAT0sp90gplwBYiMTY5PHJOCfi2AzFe7e3kFJ+JhMr0McBnOG4q0wdREr5jZRymvd5G4A5ALoiMfc95m32GFLjjdeeDmChKD5XA7hLCLECwN0Arve+7wpghbLdSu870/cM45qrET42AeBgIcRMIcQEIcQg7zsem0w+mY2UUHMugO7eZ547mUJjGpsA0EsIMV0I8YEQ4nDvu65IjEcfHpuMc4QQFQD2AzAZQEcp5TfeT2sAdPQ+8/zpABaK4vNTAL+UUnYH8EsADxW4PwzjYxqb0wD0lFIOA/B3AC8VpntMHecSAFcIIb5Awi1kb4H7wzA+prH5DYAeUsr9AFwD4Ek1Fo5hcoUQohmA5wFcLaXcqv7mWSe5ro5DWCiKz4UAXvA+P4eEiwcArEJQu9TN+870PcO4JnRsSim3Sim3e59fB1BfCNEOPDaZPCKlnCulPF5KOQLAU0jECwE8dzIFxjQ2PZfOjd7nL7zv90FiHHZTmuCxyThDCFEfCYHov1JK/52+1nOL890313nf8/zpABaK4rMawJHe52MALPA+vwLgh14mkIMAbPFMnW8COF4I0drLFnK89x3DuCZ0bAohOvmZkbyMdGUANiIRXNxPCNFLCNEAwPlIjGOGcY4QooP3fxmAGwH4mbxeAXC+EKKhEKIXgH5IBLHz+GTygmlsCiHaCyHKvc+9kRibi713+1YhxEHe3PpDAC8XpPNMrcIbTw8BmCOlvEf56RUkFJ/w/n9Z+Z7XnllSr9AdKAWEEE8hkbmrnRBiJYCbAfwYwF+FEPUA7AZwmbf560hkAVkIYCeAiwFASrlJCHErEi94APiDlFIP8mSYSEQcm+cA+KkQogrALgDne+b3KiHEz5CYKMsBPCylnJ3fM2FqI4bx2UwIcaW3yQsAHgEAKeVsIcSzAL4GUAXgSilltdcOj0/GKVHGJhKZ6v4ghKgEUAPgcuX9fQWARwE0RiL714S8nABT2zkUwA8AfCmEmOF9dwOAcQCeFUL8CMAyAOd5v/Ha0wEisSZiGIZhGIZhGIapm7D7HMMwDMMwDMMwdRoWihiGYRiGYRiGqdOwUMQwDMMwDMMwTJ2GhSKGYRiGYRiGYeo0LBQxDMMwDMMwDFOnYaGIYRiGYRiGYZg6DQtFDMMwTJ3GL8zJMAzD1F1YKGIYhmFKBiHEH4QQVyt/3y6EuEoI8SshxOdCiFlCiN8rv78khPhCCDFbCHGZ8v12IcSfhRAzARyc37NgGIZhig0WihiGYZhS4mEAPwQAIUQZgPMBrAHQD8AoAMMBjBBCHOFtf4mUcgSAkQB+IYRo633fFMBkKeUwKeXHeew/wzAMU4TUK3QHGIZhGIaKlHKpEGKjEGI/AB0BTAdwAIDjvc8A0AwJIelDJAShM73vu3vfbwRQDeD5fPadYRiGKV5YKGIYhmFKjX8DuAhAJyQsR8cCuENKeb+6kRDiKACjARwspdwphHgfQCPv591Syuo89ZdhGIYpcth9jmEYhik1XgRwIhIWoje9f5cIIZoBgBCiqxCiA4CWAL71BKIBAA4qVIcZhmGY4oYtRQzDMExJIaXcK4SYCGCzZ+15SwixL4BJQggA2A7g+wDeAHC5EGIOgHkAPitUnxmGYZjiRkgpC90HhmEYhiHjJViYBuBcKeWCQveHYRiGKX3YfY5hGIYpGYQQAwEsBPAuC0QMwzCMK9hSxDAMwzAMwzBMnYYtRQzDMAzDMAzD1GlYKGIYhmEYhmEYpk7DQhHDMAzDMAzDMHUaFooYhmEYhmEYhqnTsFDEMAzDMAzDMEyd5v8BgT8yOH4j7u4AAAAASUVORK5CYII=\n",
  916. "text/plain": [
  917. "<Figure size 1008x288 with 1 Axes>"
  918. ]
  919. },
  920. "metadata": {
  921. "needs_background": "light"
  922. },
  923. "output_type": "display_data"
  924. }
  925. ],
  926. "source": [
  927. "%matplotlib inline\n",
  928. "import matplotlib.pyplot as plt\n",
  929. "\n",
  930. "fig, ax = plt.subplots(figsize=(14,4))\n",
  931. "ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5])\n",
  932. "ax.axis('tight')\n",
  933. "ax.set_title('tempeatures in Stockholm')\n",
  934. "ax.set_xlabel('year')\n",
  935. "ax.set_ylabel('temperature (C)');"
  936. ]
  937. },
  938. {
  939. "cell_type": "markdown",
  940. "metadata": {},
  941. "source": [
  942. "使用`numpy.savetxt`我们可以将一个Numpy数组以CSV格式存入:"
  943. ]
  944. },
  945. {
  946. "cell_type": "code",
  947. "execution_count": 41,
  948. "metadata": {},
  949. "outputs": [
  950. {
  951. "data": {
  952. "text/plain": [
  953. "array([[0.23335391, 0.0986599 , 0.0572248 ],\n",
  954. " [0.69544933, 0.53988449, 0.70582772],\n",
  955. " [0.74875206, 0.09427575, 0.7859238 ]])"
  956. ]
  957. },
  958. "execution_count": 41,
  959. "metadata": {},
  960. "output_type": "execute_result"
  961. }
  962. ],
  963. "source": [
  964. "M = np.random.rand(3,3)\n",
  965. "\n",
  966. "M"
  967. ]
  968. },
  969. {
  970. "cell_type": "code",
  971. "execution_count": 42,
  972. "metadata": {},
  973. "outputs": [],
  974. "source": [
  975. "np.savetxt(\"random-matrix.csv\", M)"
  976. ]
  977. },
  978. {
  979. "cell_type": "code",
  980. "execution_count": 43,
  981. "metadata": {},
  982. "outputs": [
  983. {
  984. "name": "stdout",
  985. "output_type": "stream",
  986. "text": [
  987. "2.333539099227897040e-01 9.865990104831434682e-02 5.722480315676647944e-02\r\n",
  988. "6.954493301173710895e-01 5.398844914884662893e-01 7.058277231806755481e-01\r\n",
  989. "7.487520572646998440e-01 9.427574847574227146e-02 7.859238035716934467e-01\r\n"
  990. ]
  991. }
  992. ],
  993. "source": [
  994. "!cat random-matrix.csv"
  995. ]
  996. },
  997. {
  998. "cell_type": "code",
  999. "execution_count": 44,
  1000. "metadata": {},
  1001. "outputs": [
  1002. {
  1003. "name": "stdout",
  1004. "output_type": "stream",
  1005. "text": [
  1006. "0.23335 0.09866 0.05722\r\n",
  1007. "0.69545 0.53988 0.70583\r\n",
  1008. "0.74875 0.09428 0.78592\r\n"
  1009. ]
  1010. }
  1011. ],
  1012. "source": [
  1013. "np.savetxt(\"random-matrix.csv\", M, fmt='%.5f') # fmt 确定格式\n",
  1014. "\n",
  1015. "!cat random-matrix.csv"
  1016. ]
  1017. },
  1018. {
  1019. "cell_type": "markdown",
  1020. "metadata": {},
  1021. "source": [
  1022. "### 3.2 numpy 的本地文件格式"
  1023. ]
  1024. },
  1025. {
  1026. "cell_type": "markdown",
  1027. "metadata": {},
  1028. "source": [
  1029. "当存储和读取numpy数组时非常有用。利用函数`numpy.save`和`numpy.load`:"
  1030. ]
  1031. },
  1032. {
  1033. "cell_type": "code",
  1034. "execution_count": 45,
  1035. "metadata": {},
  1036. "outputs": [
  1037. {
  1038. "name": "stdout",
  1039. "output_type": "stream",
  1040. "text": [
  1041. "random-matrix.npy: data\r\n"
  1042. ]
  1043. }
  1044. ],
  1045. "source": [
  1046. "np.save(\"random-matrix.npy\", M)\n",
  1047. "\n",
  1048. "!file random-matrix.npy"
  1049. ]
  1050. },
  1051. {
  1052. "cell_type": "code",
  1053. "execution_count": 46,
  1054. "metadata": {},
  1055. "outputs": [
  1056. {
  1057. "data": {
  1058. "text/plain": [
  1059. "array([[0.23335391, 0.0986599 , 0.0572248 ],\n",
  1060. " [0.69544933, 0.53988449, 0.70582772],\n",
  1061. " [0.74875206, 0.09427575, 0.7859238 ]])"
  1062. ]
  1063. },
  1064. "execution_count": 46,
  1065. "metadata": {},
  1066. "output_type": "execute_result"
  1067. }
  1068. ],
  1069. "source": [
  1070. "np.load(\"random-matrix.npy\")"
  1071. ]
  1072. },
  1073. {
  1074. "cell_type": "markdown",
  1075. "metadata": {},
  1076. "source": [
  1077. "## 4. 更多Numpy数组的性质"
  1078. ]
  1079. },
  1080. {
  1081. "cell_type": "code",
  1082. "execution_count": 47,
  1083. "metadata": {},
  1084. "outputs": [
  1085. {
  1086. "name": "stdout",
  1087. "output_type": "stream",
  1088. "text": [
  1089. "int64\n",
  1090. "8\n"
  1091. ]
  1092. }
  1093. ],
  1094. "source": [
  1095. "M = np.array([[1, 2], [3, 4], [5, 6]])\n",
  1096. "\n",
  1097. "print(M.dtype)\n",
  1098. "print(M.itemsize) # 每个元素的字节数\n"
  1099. ]
  1100. },
  1101. {
  1102. "cell_type": "code",
  1103. "execution_count": 48,
  1104. "metadata": {},
  1105. "outputs": [
  1106. {
  1107. "data": {
  1108. "text/plain": [
  1109. "48"
  1110. ]
  1111. },
  1112. "execution_count": 48,
  1113. "metadata": {},
  1114. "output_type": "execute_result"
  1115. }
  1116. ],
  1117. "source": [
  1118. "M.nbytes # 字节数"
  1119. ]
  1120. },
  1121. {
  1122. "cell_type": "code",
  1123. "execution_count": 49,
  1124. "metadata": {},
  1125. "outputs": [
  1126. {
  1127. "data": {
  1128. "text/plain": [
  1129. "2"
  1130. ]
  1131. },
  1132. "execution_count": 49,
  1133. "metadata": {},
  1134. "output_type": "execute_result"
  1135. }
  1136. ],
  1137. "source": [
  1138. "M.ndim # 维度"
  1139. ]
  1140. },
  1141. {
  1142. "cell_type": "markdown",
  1143. "metadata": {},
  1144. "source": [
  1145. "## 5. 操作数组"
  1146. ]
  1147. },
  1148. {
  1149. "cell_type": "markdown",
  1150. "metadata": {},
  1151. "source": [
  1152. "### 5.1 索引"
  1153. ]
  1154. },
  1155. {
  1156. "cell_type": "markdown",
  1157. "metadata": {},
  1158. "source": [
  1159. "我们可以用方括号和下标索引元素:"
  1160. ]
  1161. },
  1162. {
  1163. "cell_type": "code",
  1164. "execution_count": 50,
  1165. "metadata": {},
  1166. "outputs": [
  1167. {
  1168. "data": {
  1169. "text/plain": [
  1170. "1"
  1171. ]
  1172. },
  1173. "execution_count": 50,
  1174. "metadata": {},
  1175. "output_type": "execute_result"
  1176. }
  1177. ],
  1178. "source": [
  1179. "v = np.array([1, 2, 3, 4, 5])\n",
  1180. "# v 是一个向量,仅仅只有一维,取一个索引\n",
  1181. "v[0]"
  1182. ]
  1183. },
  1184. {
  1185. "cell_type": "code",
  1186. "execution_count": 51,
  1187. "metadata": {},
  1188. "outputs": [
  1189. {
  1190. "name": "stdout",
  1191. "output_type": "stream",
  1192. "text": [
  1193. "4\n",
  1194. "4\n",
  1195. "[3 4]\n"
  1196. ]
  1197. }
  1198. ],
  1199. "source": [
  1200. "\n",
  1201. "# M 是一个矩阵或者是一个二维的数组,取两个索引 \n",
  1202. "print(M[1,1])\n",
  1203. "print(M[1][1])\n",
  1204. "print(M[1])"
  1205. ]
  1206. },
  1207. {
  1208. "cell_type": "markdown",
  1209. "metadata": {},
  1210. "source": [
  1211. "如果我们省略了一个多维数组的索引,它将会返回整行(或者,总的来说,一个 N-1 维的数组)"
  1212. ]
  1213. },
  1214. {
  1215. "cell_type": "code",
  1216. "execution_count": 52,
  1217. "metadata": {},
  1218. "outputs": [
  1219. {
  1220. "data": {
  1221. "text/plain": [
  1222. "array([[1, 2],\n",
  1223. " [3, 4],\n",
  1224. " [5, 6]])"
  1225. ]
  1226. },
  1227. "execution_count": 52,
  1228. "metadata": {},
  1229. "output_type": "execute_result"
  1230. }
  1231. ],
  1232. "source": [
  1233. "M"
  1234. ]
  1235. },
  1236. {
  1237. "cell_type": "code",
  1238. "execution_count": 53,
  1239. "metadata": {},
  1240. "outputs": [
  1241. {
  1242. "data": {
  1243. "text/plain": [
  1244. "array([3, 4])"
  1245. ]
  1246. },
  1247. "execution_count": 53,
  1248. "metadata": {},
  1249. "output_type": "execute_result"
  1250. }
  1251. ],
  1252. "source": [
  1253. "M[1]"
  1254. ]
  1255. },
  1256. {
  1257. "cell_type": "markdown",
  1258. "metadata": {},
  1259. "source": [
  1260. "相同的事情可以利用`:`而不是索引来实现:"
  1261. ]
  1262. },
  1263. {
  1264. "cell_type": "code",
  1265. "execution_count": 54,
  1266. "metadata": {},
  1267. "outputs": [
  1268. {
  1269. "data": {
  1270. "text/plain": [
  1271. "array([3, 4])"
  1272. ]
  1273. },
  1274. "execution_count": 54,
  1275. "metadata": {},
  1276. "output_type": "execute_result"
  1277. }
  1278. ],
  1279. "source": [
  1280. "M[1,:] # 行 1"
  1281. ]
  1282. },
  1283. {
  1284. "cell_type": "code",
  1285. "execution_count": 55,
  1286. "metadata": {},
  1287. "outputs": [
  1288. {
  1289. "data": {
  1290. "text/plain": [
  1291. "array([2, 4, 6])"
  1292. ]
  1293. },
  1294. "execution_count": 55,
  1295. "metadata": {},
  1296. "output_type": "execute_result"
  1297. }
  1298. ],
  1299. "source": [
  1300. "M[:,1] # 列 1"
  1301. ]
  1302. },
  1303. {
  1304. "cell_type": "markdown",
  1305. "metadata": {},
  1306. "source": [
  1307. "我们可以用索引赋新的值给数组中的元素:"
  1308. ]
  1309. },
  1310. {
  1311. "cell_type": "code",
  1312. "execution_count": 56,
  1313. "metadata": {},
  1314. "outputs": [],
  1315. "source": [
  1316. "M[0,0] = 1"
  1317. ]
  1318. },
  1319. {
  1320. "cell_type": "code",
  1321. "execution_count": 57,
  1322. "metadata": {},
  1323. "outputs": [
  1324. {
  1325. "data": {
  1326. "text/plain": [
  1327. "array([[1, 2],\n",
  1328. " [3, 4],\n",
  1329. " [5, 6]])"
  1330. ]
  1331. },
  1332. "execution_count": 57,
  1333. "metadata": {},
  1334. "output_type": "execute_result"
  1335. }
  1336. ],
  1337. "source": [
  1338. "M"
  1339. ]
  1340. },
  1341. {
  1342. "cell_type": "code",
  1343. "execution_count": 58,
  1344. "metadata": {},
  1345. "outputs": [],
  1346. "source": [
  1347. "# 对行和列也同样有用\n",
  1348. "M[1,:] = 0\n",
  1349. "M[:,1] = -1"
  1350. ]
  1351. },
  1352. {
  1353. "cell_type": "code",
  1354. "execution_count": 59,
  1355. "metadata": {},
  1356. "outputs": [
  1357. {
  1358. "data": {
  1359. "text/plain": [
  1360. "array([[ 1, -1],\n",
  1361. " [ 0, -1],\n",
  1362. " [ 5, -1]])"
  1363. ]
  1364. },
  1365. "execution_count": 59,
  1366. "metadata": {},
  1367. "output_type": "execute_result"
  1368. }
  1369. ],
  1370. "source": [
  1371. "M"
  1372. ]
  1373. },
  1374. {
  1375. "cell_type": "markdown",
  1376. "metadata": {},
  1377. "source": [
  1378. "### 5.2 切片索引"
  1379. ]
  1380. },
  1381. {
  1382. "cell_type": "markdown",
  1383. "metadata": {},
  1384. "source": [
  1385. "切片索引是语法`M[lower:upper:step]`的技术名称,用于提取数组的一部分:"
  1386. ]
  1387. },
  1388. {
  1389. "cell_type": "code",
  1390. "execution_count": 60,
  1391. "metadata": {},
  1392. "outputs": [
  1393. {
  1394. "data": {
  1395. "text/plain": [
  1396. "array([1, 2, 3, 4, 5])"
  1397. ]
  1398. },
  1399. "execution_count": 60,
  1400. "metadata": {},
  1401. "output_type": "execute_result"
  1402. }
  1403. ],
  1404. "source": [
  1405. "A = np.array([1,2,3,4,5])\n",
  1406. "A"
  1407. ]
  1408. },
  1409. {
  1410. "cell_type": "code",
  1411. "execution_count": 61,
  1412. "metadata": {},
  1413. "outputs": [
  1414. {
  1415. "data": {
  1416. "text/plain": [
  1417. "array([2, 3])"
  1418. ]
  1419. },
  1420. "execution_count": 61,
  1421. "metadata": {},
  1422. "output_type": "execute_result"
  1423. }
  1424. ],
  1425. "source": [
  1426. "A[1:3]"
  1427. ]
  1428. },
  1429. {
  1430. "cell_type": "markdown",
  1431. "metadata": {},
  1432. "source": [
  1433. "切片索引是*可变的*: 如果它们被分配了一个新值,那么从其中提取切片的原始数组将被修改:\n"
  1434. ]
  1435. },
  1436. {
  1437. "cell_type": "code",
  1438. "execution_count": 62,
  1439. "metadata": {},
  1440. "outputs": [
  1441. {
  1442. "data": {
  1443. "text/plain": [
  1444. "array([ 1, -2, -3, 4, 5])"
  1445. ]
  1446. },
  1447. "execution_count": 62,
  1448. "metadata": {},
  1449. "output_type": "execute_result"
  1450. }
  1451. ],
  1452. "source": [
  1453. "A[1:3] = [-2,-3] # auto convert type\n",
  1454. "A[1:3] = np.array([-2, -3]) \n",
  1455. "\n",
  1456. "A"
  1457. ]
  1458. },
  1459. {
  1460. "cell_type": "markdown",
  1461. "metadata": {},
  1462. "source": [
  1463. "我们可以省略`M[lower:upper:step]`中任意的三个值\n",
  1464. "We can omit any of the three parameters in `M[lower:upper:step]`:"
  1465. ]
  1466. },
  1467. {
  1468. "cell_type": "code",
  1469. "execution_count": 63,
  1470. "metadata": {},
  1471. "outputs": [
  1472. {
  1473. "data": {
  1474. "text/plain": [
  1475. "array([ 1, -2, -3, 4, 5])"
  1476. ]
  1477. },
  1478. "execution_count": 63,
  1479. "metadata": {},
  1480. "output_type": "execute_result"
  1481. }
  1482. ],
  1483. "source": [
  1484. "A[::] # lower, upper, step 都取默认值"
  1485. ]
  1486. },
  1487. {
  1488. "cell_type": "code",
  1489. "execution_count": 64,
  1490. "metadata": {},
  1491. "outputs": [
  1492. {
  1493. "data": {
  1494. "text/plain": [
  1495. "array([ 1, -2, -3, 4, 5])"
  1496. ]
  1497. },
  1498. "execution_count": 64,
  1499. "metadata": {},
  1500. "output_type": "execute_result"
  1501. }
  1502. ],
  1503. "source": [
  1504. "A[:]"
  1505. ]
  1506. },
  1507. {
  1508. "cell_type": "code",
  1509. "execution_count": 65,
  1510. "metadata": {},
  1511. "outputs": [
  1512. {
  1513. "data": {
  1514. "text/plain": [
  1515. "array([ 1, -3, 5])"
  1516. ]
  1517. },
  1518. "execution_count": 65,
  1519. "metadata": {},
  1520. "output_type": "execute_result"
  1521. }
  1522. ],
  1523. "source": [
  1524. "A[::2] # step is 2, lower and upper 代表数组的开始和结束"
  1525. ]
  1526. },
  1527. {
  1528. "cell_type": "code",
  1529. "execution_count": 66,
  1530. "metadata": {},
  1531. "outputs": [
  1532. {
  1533. "data": {
  1534. "text/plain": [
  1535. "array([ 1, -2, -3])"
  1536. ]
  1537. },
  1538. "execution_count": 66,
  1539. "metadata": {},
  1540. "output_type": "execute_result"
  1541. }
  1542. ],
  1543. "source": [
  1544. "A[:3] # 前3个元素"
  1545. ]
  1546. },
  1547. {
  1548. "cell_type": "code",
  1549. "execution_count": 67,
  1550. "metadata": {},
  1551. "outputs": [
  1552. {
  1553. "data": {
  1554. "text/plain": [
  1555. "array([4, 5])"
  1556. ]
  1557. },
  1558. "execution_count": 67,
  1559. "metadata": {},
  1560. "output_type": "execute_result"
  1561. }
  1562. ],
  1563. "source": [
  1564. "A[3:] # 从索引3开始的元素"
  1565. ]
  1566. },
  1567. {
  1568. "cell_type": "markdown",
  1569. "metadata": {},
  1570. "source": [
  1571. "负索引计数从数组的结束(正索引从开始):"
  1572. ]
  1573. },
  1574. {
  1575. "cell_type": "code",
  1576. "execution_count": 68,
  1577. "metadata": {},
  1578. "outputs": [],
  1579. "source": [
  1580. "A = np.array([1,2,3,4,5])"
  1581. ]
  1582. },
  1583. {
  1584. "cell_type": "code",
  1585. "execution_count": 69,
  1586. "metadata": {},
  1587. "outputs": [
  1588. {
  1589. "data": {
  1590. "text/plain": [
  1591. "5"
  1592. ]
  1593. },
  1594. "execution_count": 69,
  1595. "metadata": {},
  1596. "output_type": "execute_result"
  1597. }
  1598. ],
  1599. "source": [
  1600. "A[-1] # 数组中最后一个元素"
  1601. ]
  1602. },
  1603. {
  1604. "cell_type": "code",
  1605. "execution_count": 70,
  1606. "metadata": {},
  1607. "outputs": [
  1608. {
  1609. "data": {
  1610. "text/plain": [
  1611. "array([3, 4, 5])"
  1612. ]
  1613. },
  1614. "execution_count": 70,
  1615. "metadata": {},
  1616. "output_type": "execute_result"
  1617. }
  1618. ],
  1619. "source": [
  1620. "A[-3:] # 最后三个元素"
  1621. ]
  1622. },
  1623. {
  1624. "cell_type": "markdown",
  1625. "metadata": {},
  1626. "source": [
  1627. "索引切片的工作方式与多维数组完全相同:"
  1628. ]
  1629. },
  1630. {
  1631. "cell_type": "code",
  1632. "execution_count": 71,
  1633. "metadata": {},
  1634. "outputs": [
  1635. {
  1636. "data": {
  1637. "text/plain": [
  1638. "array([[ 0, 1, 2, 3, 4],\n",
  1639. " [10, 11, 12, 13, 14],\n",
  1640. " [20, 21, 22, 23, 24],\n",
  1641. " [30, 31, 32, 33, 34],\n",
  1642. " [40, 41, 42, 43, 44]])"
  1643. ]
  1644. },
  1645. "execution_count": 71,
  1646. "metadata": {},
  1647. "output_type": "execute_result"
  1648. }
  1649. ],
  1650. "source": [
  1651. "A = np.array([[n+m*10 for n in range(5)] for m in range(5)])\n",
  1652. "\n",
  1653. "A"
  1654. ]
  1655. },
  1656. {
  1657. "cell_type": "code",
  1658. "execution_count": 72,
  1659. "metadata": {},
  1660. "outputs": [
  1661. {
  1662. "data": {
  1663. "text/plain": [
  1664. "array([[11, 12, 13],\n",
  1665. " [21, 22, 23],\n",
  1666. " [31, 32, 33]])"
  1667. ]
  1668. },
  1669. "execution_count": 72,
  1670. "metadata": {},
  1671. "output_type": "execute_result"
  1672. }
  1673. ],
  1674. "source": [
  1675. "# 原始数组中的一个块\n",
  1676. "A[1:4, 1:4]"
  1677. ]
  1678. },
  1679. {
  1680. "cell_type": "code",
  1681. "execution_count": 66,
  1682. "metadata": {},
  1683. "outputs": [
  1684. {
  1685. "data": {
  1686. "text/plain": [
  1687. "array([[ 0, 2, 4],\n",
  1688. " [20, 22, 24],\n",
  1689. " [40, 42, 44]])"
  1690. ]
  1691. },
  1692. "execution_count": 66,
  1693. "metadata": {},
  1694. "output_type": "execute_result"
  1695. }
  1696. ],
  1697. "source": [
  1698. "# 步长\n",
  1699. "A[::2, ::2]"
  1700. ]
  1701. },
  1702. {
  1703. "cell_type": "markdown",
  1704. "metadata": {},
  1705. "source": [
  1706. "### 5.3 花式索引"
  1707. ]
  1708. },
  1709. {
  1710. "cell_type": "markdown",
  1711. "metadata": {},
  1712. "source": [
  1713. "Fancy索引是一个名称时,一个数组或列表被使用在一个索引:"
  1714. ]
  1715. },
  1716. {
  1717. "cell_type": "code",
  1718. "execution_count": 74,
  1719. "metadata": {},
  1720. "outputs": [
  1721. {
  1722. "name": "stdout",
  1723. "output_type": "stream",
  1724. "text": [
  1725. "[[10 11 12 13 14]\n",
  1726. " [20 21 22 23 24]\n",
  1727. " [30 31 32 33 34]]\n",
  1728. "[[ 0 1 2 3 4]\n",
  1729. " [10 11 12 13 14]\n",
  1730. " [20 21 22 23 24]\n",
  1731. " [30 31 32 33 34]\n",
  1732. " [40 41 42 43 44]]\n"
  1733. ]
  1734. }
  1735. ],
  1736. "source": [
  1737. "A = np.array([[n+m*10 for n in range(5)] for m in range(5)])\n",
  1738. "\n",
  1739. "row_indices = [1, 2, 3]\n",
  1740. "print(A[row_indices])\n",
  1741. "print(A)"
  1742. ]
  1743. },
  1744. {
  1745. "cell_type": "code",
  1746. "execution_count": 75,
  1747. "metadata": {},
  1748. "outputs": [
  1749. {
  1750. "data": {
  1751. "text/plain": [
  1752. "array([11, 21, 34])"
  1753. ]
  1754. },
  1755. "execution_count": 75,
  1756. "metadata": {},
  1757. "output_type": "execute_result"
  1758. }
  1759. ],
  1760. "source": [
  1761. "col_indices = [1, 1, -1] # 索引-1 代表最后一个元素\n",
  1762. "A[row_indices, col_indices]"
  1763. ]
  1764. },
  1765. {
  1766. "cell_type": "markdown",
  1767. "metadata": {},
  1768. "source": [
  1769. "我们也可以使用索引掩码:如果索引掩码是一个数据类型`bool`的Numpy数组,那么一个元素被选择(True)或不(False)取决于索引掩码在每个元素位置的值:"
  1770. ]
  1771. },
  1772. {
  1773. "cell_type": "code",
  1774. "execution_count": 77,
  1775. "metadata": {},
  1776. "outputs": [
  1777. {
  1778. "data": {
  1779. "text/plain": [
  1780. "array([0, 1, 2, 3, 4])"
  1781. ]
  1782. },
  1783. "execution_count": 77,
  1784. "metadata": {},
  1785. "output_type": "execute_result"
  1786. }
  1787. ],
  1788. "source": [
  1789. "B = np.array([n for n in range(5)])\n",
  1790. "B"
  1791. ]
  1792. },
  1793. {
  1794. "cell_type": "code",
  1795. "execution_count": 79,
  1796. "metadata": {},
  1797. "outputs": [
  1798. {
  1799. "data": {
  1800. "text/plain": [
  1801. "array([0, 2])"
  1802. ]
  1803. },
  1804. "execution_count": 79,
  1805. "metadata": {},
  1806. "output_type": "execute_result"
  1807. }
  1808. ],
  1809. "source": [
  1810. "row_mask = np.array([True, False, True, False, False])\n",
  1811. "B[row_mask]"
  1812. ]
  1813. },
  1814. {
  1815. "cell_type": "code",
  1816. "execution_count": 81,
  1817. "metadata": {},
  1818. "outputs": [
  1819. {
  1820. "data": {
  1821. "text/plain": [
  1822. "array([0, 2])"
  1823. ]
  1824. },
  1825. "execution_count": 81,
  1826. "metadata": {},
  1827. "output_type": "execute_result"
  1828. }
  1829. ],
  1830. "source": [
  1831. "# 相同的事情\n",
  1832. "row_mask = np.array([1,0,1,0,0], dtype=bool)\n",
  1833. "B[row_mask]"
  1834. ]
  1835. },
  1836. {
  1837. "cell_type": "markdown",
  1838. "metadata": {},
  1839. "source": [
  1840. "这个特性对于有条件地从数组中选择元素非常有用,例如使用比较运算符:"
  1841. ]
  1842. },
  1843. {
  1844. "cell_type": "code",
  1845. "execution_count": 82,
  1846. "metadata": {},
  1847. "outputs": [
  1848. {
  1849. "data": {
  1850. "text/plain": [
  1851. "array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. ,\n",
  1852. " 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])"
  1853. ]
  1854. },
  1855. "execution_count": 82,
  1856. "metadata": {},
  1857. "output_type": "execute_result"
  1858. }
  1859. ],
  1860. "source": [
  1861. "x = np.arange(0, 10, 0.5)\n",
  1862. "x"
  1863. ]
  1864. },
  1865. {
  1866. "cell_type": "code",
  1867. "execution_count": 84,
  1868. "metadata": {},
  1869. "outputs": [
  1870. {
  1871. "data": {
  1872. "text/plain": [
  1873. "array([False, False, False, False, False, False, False, False, False,\n",
  1874. " False, False, True, True, True, True, False, False, False,\n",
  1875. " False, False])"
  1876. ]
  1877. },
  1878. "execution_count": 84,
  1879. "metadata": {},
  1880. "output_type": "execute_result"
  1881. }
  1882. ],
  1883. "source": [
  1884. "mask = (5 < x) * (x < 7.5)\n",
  1885. "\n",
  1886. "mask"
  1887. ]
  1888. },
  1889. {
  1890. "cell_type": "code",
  1891. "execution_count": 85,
  1892. "metadata": {},
  1893. "outputs": [
  1894. {
  1895. "data": {
  1896. "text/plain": [
  1897. "array([5.5, 6. , 6.5, 7. ])"
  1898. ]
  1899. },
  1900. "execution_count": 85,
  1901. "metadata": {},
  1902. "output_type": "execute_result"
  1903. }
  1904. ],
  1905. "source": [
  1906. "x[mask]"
  1907. ]
  1908. },
  1909. {
  1910. "cell_type": "code",
  1911. "execution_count": 86,
  1912. "metadata": {},
  1913. "outputs": [
  1914. {
  1915. "data": {
  1916. "text/plain": [
  1917. "array([3.5, 4. , 4.5, 5. , 5.5])"
  1918. ]
  1919. },
  1920. "execution_count": 86,
  1921. "metadata": {},
  1922. "output_type": "execute_result"
  1923. }
  1924. ],
  1925. "source": [
  1926. "x[(3<x) * (x<6)]"
  1927. ]
  1928. },
  1929. {
  1930. "cell_type": "markdown",
  1931. "metadata": {},
  1932. "source": [
  1933. "## 6. 用于从数组中提取数据和创建数组的函数"
  1934. ]
  1935. },
  1936. {
  1937. "cell_type": "markdown",
  1938. "metadata": {},
  1939. "source": [
  1940. "### 6.1 where"
  1941. ]
  1942. },
  1943. {
  1944. "cell_type": "markdown",
  1945. "metadata": {},
  1946. "source": [
  1947. "索引掩码可以使用`where`函数转换为位置索引"
  1948. ]
  1949. },
  1950. {
  1951. "cell_type": "code",
  1952. "execution_count": 88,
  1953. "metadata": {},
  1954. "outputs": [
  1955. {
  1956. "data": {
  1957. "text/plain": [
  1958. "(array([11, 12, 13, 14]),)"
  1959. ]
  1960. },
  1961. "execution_count": 88,
  1962. "metadata": {},
  1963. "output_type": "execute_result"
  1964. }
  1965. ],
  1966. "source": [
  1967. "x = np.arange(0, 10, 0.5)\n",
  1968. "mask = (5 < x) * (x < 7.5)\n",
  1969. "\n",
  1970. "indices = np.where(mask)\n",
  1971. "\n",
  1972. "indices"
  1973. ]
  1974. },
  1975. {
  1976. "cell_type": "code",
  1977. "execution_count": 89,
  1978. "metadata": {},
  1979. "outputs": [
  1980. {
  1981. "data": {
  1982. "text/plain": [
  1983. "array([5.5, 6. , 6.5, 7. ])"
  1984. ]
  1985. },
  1986. "execution_count": 89,
  1987. "metadata": {},
  1988. "output_type": "execute_result"
  1989. }
  1990. ],
  1991. "source": [
  1992. "x[indices] # 这个索引等同于花式索引x[mask]"
  1993. ]
  1994. },
  1995. {
  1996. "cell_type": "markdown",
  1997. "metadata": {},
  1998. "source": [
  1999. "### 6.2 diag"
  2000. ]
  2001. },
  2002. {
  2003. "cell_type": "markdown",
  2004. "metadata": {},
  2005. "source": [
  2006. "使用diag函数,我们还可以提取一个数组的对角线和亚对角线:"
  2007. ]
  2008. },
  2009. {
  2010. "cell_type": "code",
  2011. "execution_count": 90,
  2012. "metadata": {},
  2013. "outputs": [
  2014. {
  2015. "data": {
  2016. "text/plain": [
  2017. "array([ 0, 11, 22, 33, 44])"
  2018. ]
  2019. },
  2020. "execution_count": 90,
  2021. "metadata": {},
  2022. "output_type": "execute_result"
  2023. }
  2024. ],
  2025. "source": [
  2026. "np.diag(A)"
  2027. ]
  2028. },
  2029. {
  2030. "cell_type": "code",
  2031. "execution_count": 91,
  2032. "metadata": {},
  2033. "outputs": [
  2034. {
  2035. "data": {
  2036. "text/plain": [
  2037. "array([10, 21, 32, 43])"
  2038. ]
  2039. },
  2040. "execution_count": 91,
  2041. "metadata": {},
  2042. "output_type": "execute_result"
  2043. }
  2044. ],
  2045. "source": [
  2046. "np.diag(A, -1)"
  2047. ]
  2048. },
  2049. {
  2050. "cell_type": "markdown",
  2051. "metadata": {},
  2052. "source": [
  2053. "### 6.3 take"
  2054. ]
  2055. },
  2056. {
  2057. "cell_type": "markdown",
  2058. "metadata": {},
  2059. "source": [
  2060. "`take` 函数和上面描述的花式索引类似"
  2061. ]
  2062. },
  2063. {
  2064. "cell_type": "code",
  2065. "execution_count": 92,
  2066. "metadata": {},
  2067. "outputs": [
  2068. {
  2069. "data": {
  2070. "text/plain": [
  2071. "array([-3, -2, -1, 0, 1, 2])"
  2072. ]
  2073. },
  2074. "execution_count": 92,
  2075. "metadata": {},
  2076. "output_type": "execute_result"
  2077. }
  2078. ],
  2079. "source": [
  2080. "v2 = np.arange(-3,3)\n",
  2081. "v2"
  2082. ]
  2083. },
  2084. {
  2085. "cell_type": "code",
  2086. "execution_count": 93,
  2087. "metadata": {},
  2088. "outputs": [
  2089. {
  2090. "data": {
  2091. "text/plain": [
  2092. "array([-2, 0, 2])"
  2093. ]
  2094. },
  2095. "execution_count": 93,
  2096. "metadata": {},
  2097. "output_type": "execute_result"
  2098. }
  2099. ],
  2100. "source": [
  2101. "row_indices = [1, 3, 5]\n",
  2102. "v2[row_indices] # 花式索引"
  2103. ]
  2104. },
  2105. {
  2106. "cell_type": "code",
  2107. "execution_count": 38,
  2108. "metadata": {},
  2109. "outputs": [
  2110. {
  2111. "data": {
  2112. "text/plain": [
  2113. "array([-2, 0, 2])"
  2114. ]
  2115. },
  2116. "execution_count": 38,
  2117. "metadata": {},
  2118. "output_type": "execute_result"
  2119. }
  2120. ],
  2121. "source": [
  2122. "v2.take(row_indices)"
  2123. ]
  2124. },
  2125. {
  2126. "cell_type": "markdown",
  2127. "metadata": {},
  2128. "source": [
  2129. "但是`take`也作用在列表和其他的物体上:"
  2130. ]
  2131. },
  2132. {
  2133. "cell_type": "code",
  2134. "execution_count": 94,
  2135. "metadata": {},
  2136. "outputs": [
  2137. {
  2138. "data": {
  2139. "text/plain": [
  2140. "array([-2, 0, 2])"
  2141. ]
  2142. },
  2143. "execution_count": 94,
  2144. "metadata": {},
  2145. "output_type": "execute_result"
  2146. }
  2147. ],
  2148. "source": [
  2149. "np.take([-3, -2, -1, 0, 1, 2], row_indices)"
  2150. ]
  2151. },
  2152. {
  2153. "cell_type": "markdown",
  2154. "metadata": {},
  2155. "source": [
  2156. "### 6.4 choose"
  2157. ]
  2158. },
  2159. {
  2160. "cell_type": "markdown",
  2161. "metadata": {},
  2162. "source": [
  2163. "通过从几个数组中选择元素来构造一个数组:"
  2164. ]
  2165. },
  2166. {
  2167. "cell_type": "code",
  2168. "execution_count": 95,
  2169. "metadata": {},
  2170. "outputs": [
  2171. {
  2172. "data": {
  2173. "text/plain": [
  2174. "array([ 5, -2, 5, -2])"
  2175. ]
  2176. },
  2177. "execution_count": 95,
  2178. "metadata": {},
  2179. "output_type": "execute_result"
  2180. }
  2181. ],
  2182. "source": [
  2183. "which = [1, 0, 1, 0]\n",
  2184. "choices = [[-2,-2,-2,-2], [5,5,5,5]]\n",
  2185. "\n",
  2186. "np.choose(which, choices)"
  2187. ]
  2188. },
  2189. {
  2190. "cell_type": "markdown",
  2191. "metadata": {},
  2192. "source": [
  2193. "## 7. 线性代数"
  2194. ]
  2195. },
  2196. {
  2197. "cell_type": "markdown",
  2198. "metadata": {},
  2199. "source": [
  2200. "向量化代码是使用Python/Numpy编写高效数值计算的关键。这意味着尽可能多的程序应该用矩阵和向量运算来表示,比如矩阵-矩阵乘法。"
  2201. ]
  2202. },
  2203. {
  2204. "cell_type": "markdown",
  2205. "metadata": {},
  2206. "source": [
  2207. "### 7.1 Scalar-array 操作"
  2208. ]
  2209. },
  2210. {
  2211. "cell_type": "markdown",
  2212. "metadata": {},
  2213. "source": [
  2214. "我们可以使用常用的算术运算符来对标量数组进行乘、加、减和除运算。"
  2215. ]
  2216. },
  2217. {
  2218. "cell_type": "code",
  2219. "execution_count": 96,
  2220. "metadata": {},
  2221. "outputs": [],
  2222. "source": [
  2223. "import numpy as np\n",
  2224. "\n",
  2225. "v1 = np.arange(0, 5)"
  2226. ]
  2227. },
  2228. {
  2229. "cell_type": "code",
  2230. "execution_count": 97,
  2231. "metadata": {},
  2232. "outputs": [
  2233. {
  2234. "data": {
  2235. "text/plain": [
  2236. "array([0, 2, 4, 6, 8])"
  2237. ]
  2238. },
  2239. "execution_count": 97,
  2240. "metadata": {},
  2241. "output_type": "execute_result"
  2242. }
  2243. ],
  2244. "source": [
  2245. "v1 * 2"
  2246. ]
  2247. },
  2248. {
  2249. "cell_type": "code",
  2250. "execution_count": 42,
  2251. "metadata": {},
  2252. "outputs": [
  2253. {
  2254. "data": {
  2255. "text/plain": [
  2256. "array([2, 3, 4, 5, 6])"
  2257. ]
  2258. },
  2259. "execution_count": 42,
  2260. "metadata": {},
  2261. "output_type": "execute_result"
  2262. }
  2263. ],
  2264. "source": [
  2265. "v1 + 2"
  2266. ]
  2267. },
  2268. {
  2269. "cell_type": "code",
  2270. "execution_count": 98,
  2271. "metadata": {},
  2272. "outputs": [
  2273. {
  2274. "data": {
  2275. "text/plain": [
  2276. "(array([[ 0, 2, 4, 6, 8],\n",
  2277. " [20, 22, 24, 26, 28],\n",
  2278. " [40, 42, 44, 46, 48],\n",
  2279. " [60, 62, 64, 66, 68],\n",
  2280. " [80, 82, 84, 86, 88]]),\n",
  2281. " array([[ 2, 3, 4, 5, 6],\n",
  2282. " [12, 13, 14, 15, 16],\n",
  2283. " [22, 23, 24, 25, 26],\n",
  2284. " [32, 33, 34, 35, 36],\n",
  2285. " [42, 43, 44, 45, 46]]))"
  2286. ]
  2287. },
  2288. "execution_count": 98,
  2289. "metadata": {},
  2290. "output_type": "execute_result"
  2291. }
  2292. ],
  2293. "source": [
  2294. "A = np.array([[n+m*10 for n in range(5)] for m in range(5)])\n",
  2295. "\n",
  2296. "A * 2, A + 2"
  2297. ]
  2298. },
  2299. {
  2300. "cell_type": "markdown",
  2301. "metadata": {},
  2302. "source": [
  2303. "### 7.2 数组间的元素操作"
  2304. ]
  2305. },
  2306. {
  2307. "cell_type": "markdown",
  2308. "metadata": {},
  2309. "source": [
  2310. "当我们对数组进行加法、减法、乘法和除法时,默认的行为是**element-wise**操作:"
  2311. ]
  2312. },
  2313. {
  2314. "cell_type": "code",
  2315. "execution_count": 99,
  2316. "metadata": {},
  2317. "outputs": [
  2318. {
  2319. "data": {
  2320. "text/plain": [
  2321. "array([[0.4704086 , 0.04100762, 0.31167633],\n",
  2322. " [0.66134738, 0.47887988, 0.09973749]])"
  2323. ]
  2324. },
  2325. "execution_count": 99,
  2326. "metadata": {},
  2327. "output_type": "execute_result"
  2328. }
  2329. ],
  2330. "source": [
  2331. "A = np.random.rand(2, 3)\n",
  2332. "\n",
  2333. "A * A # element-wise 乘法"
  2334. ]
  2335. },
  2336. {
  2337. "cell_type": "code",
  2338. "execution_count": 106,
  2339. "metadata": {},
  2340. "outputs": [
  2341. {
  2342. "data": {
  2343. "text/plain": [
  2344. "array([1., 4.])"
  2345. ]
  2346. },
  2347. "execution_count": 106,
  2348. "metadata": {},
  2349. "output_type": "execute_result"
  2350. }
  2351. ],
  2352. "source": [
  2353. "v1 = np.array([1.0, 2.0])\n",
  2354. "v1 * v1"
  2355. ]
  2356. },
  2357. {
  2358. "cell_type": "markdown",
  2359. "metadata": {},
  2360. "source": [
  2361. "如果我们用兼容的形状进行数组的乘法,我们会得到每一行的对位相乘结果:"
  2362. ]
  2363. },
  2364. {
  2365. "cell_type": "code",
  2366. "execution_count": 107,
  2367. "metadata": {},
  2368. "outputs": [
  2369. {
  2370. "data": {
  2371. "text/plain": [
  2372. "((2, 3), (2,))"
  2373. ]
  2374. },
  2375. "execution_count": 107,
  2376. "metadata": {},
  2377. "output_type": "execute_result"
  2378. }
  2379. ],
  2380. "source": [
  2381. "A.shape, v1.shape"
  2382. ]
  2383. },
  2384. {
  2385. "cell_type": "code",
  2386. "execution_count": 108,
  2387. "metadata": {},
  2388. "outputs": [
  2389. {
  2390. "ename": "ValueError",
  2391. "evalue": "operands could not be broadcast together with shapes (2,3) (2,) ",
  2392. "output_type": "error",
  2393. "traceback": [
  2394. "\u001b[0;31m-----------------------------------------------------------\u001b[0m",
  2395. "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
  2396. "\u001b[0;32m<ipython-input-108-1af134c5c5d0>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mA\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mv1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  2397. "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,3) (2,) "
  2398. ]
  2399. }
  2400. ],
  2401. "source": [
  2402. "A * v1"
  2403. ]
  2404. },
  2405. {
  2406. "cell_type": "markdown",
  2407. "metadata": {},
  2408. "source": [
  2409. "### 7.4 矩阵代数"
  2410. ]
  2411. },
  2412. {
  2413. "cell_type": "markdown",
  2414. "metadata": {},
  2415. "source": [
  2416. "那么矩阵的乘法呢?有两种方法。我们可以使用点函数,它对两个参数应用矩阵-矩阵、矩阵-向量或内向量乘法"
  2417. ]
  2418. },
  2419. {
  2420. "cell_type": "code",
  2421. "execution_count": 124,
  2422. "metadata": {},
  2423. "outputs": [
  2424. {
  2425. "data": {
  2426. "text/plain": [
  2427. "array([[0.93919112, 1.70487505, 1.76705439, 1.3495362 , 1.46609022],\n",
  2428. " [0.8343938 , 1.88658078, 1.31805554, 1.24245149, 0.96131716],\n",
  2429. " [0.79755253, 1.70825859, 1.44585397, 1.04582713, 1.1244295 ],\n",
  2430. " [0.11333111, 0.60861172, 0.48009346, 0.70933735, 0.57239177],\n",
  2431. " [0.58048796, 1.28344711, 1.36267101, 1.10752867, 1.27728192]])"
  2432. ]
  2433. },
  2434. "execution_count": 124,
  2435. "metadata": {},
  2436. "output_type": "execute_result"
  2437. }
  2438. ],
  2439. "source": [
  2440. "A = np.random.rand(5, 5)\n",
  2441. "v1 = np.random.rand(5, 1)\n",
  2442. "\n",
  2443. "np.dot(A, A)"
  2444. ]
  2445. },
  2446. {
  2447. "cell_type": "code",
  2448. "execution_count": 125,
  2449. "metadata": {},
  2450. "outputs": [
  2451. {
  2452. "data": {
  2453. "text/plain": [
  2454. "array([[1.05508837],\n",
  2455. " [1.01103735],\n",
  2456. " [0.88771095],\n",
  2457. " [0.34107892],\n",
  2458. " [0.78814586]])"
  2459. ]
  2460. },
  2461. "execution_count": 125,
  2462. "metadata": {},
  2463. "output_type": "execute_result"
  2464. }
  2465. ],
  2466. "source": [
  2467. "np.dot(A, v1)"
  2468. ]
  2469. },
  2470. {
  2471. "cell_type": "code",
  2472. "execution_count": 126,
  2473. "metadata": {},
  2474. "outputs": [
  2475. {
  2476. "data": {
  2477. "text/plain": [
  2478. "array([[1.08640806]])"
  2479. ]
  2480. },
  2481. "execution_count": 126,
  2482. "metadata": {},
  2483. "output_type": "execute_result"
  2484. }
  2485. ],
  2486. "source": [
  2487. "np.dot(v1.T, v1)"
  2488. ]
  2489. },
  2490. {
  2491. "cell_type": "markdown",
  2492. "metadata": {},
  2493. "source": [
  2494. "另外,我们可以将数组对象投到`matrix`类型上。这将改变标准算术运算符`+, -, *` 的行为,以使用矩阵代数。"
  2495. ]
  2496. },
  2497. {
  2498. "cell_type": "code",
  2499. "execution_count": 127,
  2500. "metadata": {},
  2501. "outputs": [],
  2502. "source": [
  2503. "M = np.matrix(A)\n",
  2504. "v = np.matrix(v1).T # make it a column vector"
  2505. ]
  2506. },
  2507. {
  2508. "cell_type": "code",
  2509. "execution_count": 128,
  2510. "metadata": {},
  2511. "outputs": [
  2512. {
  2513. "data": {
  2514. "text/plain": [
  2515. "matrix([[0.65312574, 0.36553623, 0.01310058, 0.18549019, 0.70117034]])"
  2516. ]
  2517. },
  2518. "execution_count": 128,
  2519. "metadata": {},
  2520. "output_type": "execute_result"
  2521. }
  2522. ],
  2523. "source": [
  2524. "v"
  2525. ]
  2526. },
  2527. {
  2528. "cell_type": "code",
  2529. "execution_count": 129,
  2530. "metadata": {},
  2531. "outputs": [
  2532. {
  2533. "data": {
  2534. "text/plain": [
  2535. "matrix([[0.93919112, 1.70487505, 1.76705439, 1.3495362 , 1.46609022],\n",
  2536. " [0.8343938 , 1.88658078, 1.31805554, 1.24245149, 0.96131716],\n",
  2537. " [0.79755253, 1.70825859, 1.44585397, 1.04582713, 1.1244295 ],\n",
  2538. " [0.11333111, 0.60861172, 0.48009346, 0.70933735, 0.57239177],\n",
  2539. " [0.58048796, 1.28344711, 1.36267101, 1.10752867, 1.27728192]])"
  2540. ]
  2541. },
  2542. "execution_count": 129,
  2543. "metadata": {},
  2544. "output_type": "execute_result"
  2545. }
  2546. ],
  2547. "source": [
  2548. "M * M"
  2549. ]
  2550. },
  2551. {
  2552. "cell_type": "code",
  2553. "execution_count": 131,
  2554. "metadata": {},
  2555. "outputs": [
  2556. {
  2557. "data": {
  2558. "text/plain": [
  2559. "matrix([[1.05508837],\n",
  2560. " [1.01103735],\n",
  2561. " [0.88771095],\n",
  2562. " [0.34107892],\n",
  2563. " [0.78814586]])"
  2564. ]
  2565. },
  2566. "execution_count": 131,
  2567. "metadata": {},
  2568. "output_type": "execute_result"
  2569. }
  2570. ],
  2571. "source": [
  2572. "M * v.T"
  2573. ]
  2574. },
  2575. {
  2576. "cell_type": "code",
  2577. "execution_count": 133,
  2578. "metadata": {},
  2579. "outputs": [
  2580. {
  2581. "data": {
  2582. "text/plain": [
  2583. "matrix([[1.08640806]])"
  2584. ]
  2585. },
  2586. "execution_count": 133,
  2587. "metadata": {},
  2588. "output_type": "execute_result"
  2589. }
  2590. ],
  2591. "source": [
  2592. "# 內积\n",
  2593. "v * v.T"
  2594. ]
  2595. },
  2596. {
  2597. "cell_type": "code",
  2598. "execution_count": 19,
  2599. "metadata": {},
  2600. "outputs": [
  2601. {
  2602. "data": {
  2603. "text/plain": [
  2604. "matrix([[5.346923 ],\n",
  2605. " [7.32008278],\n",
  2606. " [9.66667311],\n",
  2607. " [6.19229347],\n",
  2608. " [8.84861051]])"
  2609. ]
  2610. },
  2611. "execution_count": 19,
  2612. "metadata": {},
  2613. "output_type": "execute_result"
  2614. }
  2615. ],
  2616. "source": [
  2617. "# 对于矩阵对象,适用标准的矩阵代数\n",
  2618. "v + M*v"
  2619. ]
  2620. },
  2621. {
  2622. "cell_type": "markdown",
  2623. "metadata": {},
  2624. "source": [
  2625. "如果我们尝试用不相配的矩阵形状加,减或者乘我们会得到错误:"
  2626. ]
  2627. },
  2628. {
  2629. "cell_type": "code",
  2630. "execution_count": 134,
  2631. "metadata": {},
  2632. "outputs": [],
  2633. "source": [
  2634. "v = np.matrix([1,2,3,4,5,6]).T"
  2635. ]
  2636. },
  2637. {
  2638. "cell_type": "code",
  2639. "execution_count": 135,
  2640. "metadata": {},
  2641. "outputs": [
  2642. {
  2643. "data": {
  2644. "text/plain": [
  2645. "((5, 5), (6, 1))"
  2646. ]
  2647. },
  2648. "execution_count": 135,
  2649. "metadata": {},
  2650. "output_type": "execute_result"
  2651. }
  2652. ],
  2653. "source": [
  2654. "np.shape(M), np.shape(v)"
  2655. ]
  2656. },
  2657. {
  2658. "cell_type": "code",
  2659. "execution_count": 136,
  2660. "metadata": {},
  2661. "outputs": [
  2662. {
  2663. "ename": "ValueError",
  2664. "evalue": "shapes (5,5) and (6,1) not aligned: 5 (dim 1) != 6 (dim 0)",
  2665. "output_type": "error",
  2666. "traceback": [
  2667. "\u001b[0;31m-----------------------------------------------------------\u001b[0m",
  2668. "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
  2669. "\u001b[0;32m<ipython-input-136-e8f88679fe45>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mM\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  2670. "\u001b[0;32m~/virtualenv/dl/lib/python3.6/site-packages/numpy/matrixlib/defmatrix.py\u001b[0m in \u001b[0;36m__mul__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 218\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 219\u001b[0m \u001b[0;31m# This promotes 1-D vectors to row vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 220\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0masmatrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 221\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misscalar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'__rmul__'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  2671. "\u001b[0;32m<__array_function__ internals>\u001b[0m in \u001b[0;36mdot\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
  2672. "\u001b[0;31mValueError\u001b[0m: shapes (5,5) and (6,1) not aligned: 5 (dim 1) != 6 (dim 0)"
  2673. ]
  2674. }
  2675. ],
  2676. "source": [
  2677. "M * v"
  2678. ]
  2679. },
  2680. {
  2681. "cell_type": "markdown",
  2682. "metadata": {},
  2683. "source": [
  2684. "同样了解相关的函数:`inner`, `outer`, `cross`, `kron`, `tensordot`。例如用`help(kron)`。"
  2685. ]
  2686. },
  2687. {
  2688. "cell_type": "markdown",
  2689. "metadata": {},
  2690. "source": [
  2691. "### 7.5 数组/矩阵转换"
  2692. ]
  2693. },
  2694. {
  2695. "cell_type": "markdown",
  2696. "metadata": {},
  2697. "source": [
  2698. "同样我们也用`.T`对矩阵目标`v`进行转置。我们也可以利用`transpose`函数去实现同样的事情。\n",
  2699. "\n",
  2700. "变换矩阵对象的其他数学函数有:"
  2701. ]
  2702. },
  2703. {
  2704. "cell_type": "code",
  2705. "execution_count": 137,
  2706. "metadata": {},
  2707. "outputs": [
  2708. {
  2709. "name": "stdout",
  2710. "output_type": "stream",
  2711. "text": [
  2712. "[[0.59227725 0.17647736 0.32760242 0.94853282]\n",
  2713. " [0.47433311 0.96295875 0.53835066 0.65341328]\n",
  2714. " [0.31043303 0.91920326 0.11855559 0.96115268]]\n",
  2715. "[[0.59227725 0.47433311 0.31043303]\n",
  2716. " [0.17647736 0.96295875 0.91920326]\n",
  2717. " [0.32760242 0.53835066 0.11855559]\n",
  2718. " [0.94853282 0.65341328 0.96115268]]\n"
  2719. ]
  2720. }
  2721. ],
  2722. "source": [
  2723. "A = np.random.rand(3,4)\n",
  2724. "print(A)\n",
  2725. "print(A.T)"
  2726. ]
  2727. },
  2728. {
  2729. "cell_type": "code",
  2730. "execution_count": 138,
  2731. "metadata": {},
  2732. "outputs": [
  2733. {
  2734. "data": {
  2735. "text/plain": [
  2736. "matrix([[0.+1.j, 0.+2.j],\n",
  2737. " [0.+3.j, 0.+4.j]])"
  2738. ]
  2739. },
  2740. "execution_count": 138,
  2741. "metadata": {},
  2742. "output_type": "execute_result"
  2743. }
  2744. ],
  2745. "source": [
  2746. "C = np.matrix([[1j, 2j], [3j, 4j]])\n",
  2747. "C"
  2748. ]
  2749. },
  2750. {
  2751. "cell_type": "code",
  2752. "execution_count": 139,
  2753. "metadata": {},
  2754. "outputs": [
  2755. {
  2756. "data": {
  2757. "text/plain": [
  2758. "matrix([[0.-1.j, 0.-2.j],\n",
  2759. " [0.-3.j, 0.-4.j]])"
  2760. ]
  2761. },
  2762. "execution_count": 139,
  2763. "metadata": {},
  2764. "output_type": "execute_result"
  2765. }
  2766. ],
  2767. "source": [
  2768. "np.conjugate(C)"
  2769. ]
  2770. },
  2771. {
  2772. "cell_type": "markdown",
  2773. "metadata": {},
  2774. "source": [
  2775. "厄米共轭:转置+共轭"
  2776. ]
  2777. },
  2778. {
  2779. "cell_type": "code",
  2780. "execution_count": 140,
  2781. "metadata": {},
  2782. "outputs": [
  2783. {
  2784. "data": {
  2785. "text/plain": [
  2786. "matrix([[0.-1.j, 0.-3.j],\n",
  2787. " [0.-2.j, 0.-4.j]])"
  2788. ]
  2789. },
  2790. "execution_count": 140,
  2791. "metadata": {},
  2792. "output_type": "execute_result"
  2793. }
  2794. ],
  2795. "source": [
  2796. "C.H"
  2797. ]
  2798. },
  2799. {
  2800. "cell_type": "markdown",
  2801. "metadata": {},
  2802. "source": [
  2803. "我们可以将复数数组的实部和虚部提取出来并用`real`和`imag`来表示:"
  2804. ]
  2805. },
  2806. {
  2807. "cell_type": "code",
  2808. "execution_count": 141,
  2809. "metadata": {},
  2810. "outputs": [
  2811. {
  2812. "data": {
  2813. "text/plain": [
  2814. "matrix([[0., 0.],\n",
  2815. " [0., 0.]])"
  2816. ]
  2817. },
  2818. "execution_count": 141,
  2819. "metadata": {},
  2820. "output_type": "execute_result"
  2821. }
  2822. ],
  2823. "source": [
  2824. "np.real(C) # same as: C.real"
  2825. ]
  2826. },
  2827. {
  2828. "cell_type": "code",
  2829. "execution_count": 142,
  2830. "metadata": {},
  2831. "outputs": [
  2832. {
  2833. "data": {
  2834. "text/plain": [
  2835. "matrix([[1., 2.],\n",
  2836. " [3., 4.]])"
  2837. ]
  2838. },
  2839. "execution_count": 142,
  2840. "metadata": {},
  2841. "output_type": "execute_result"
  2842. }
  2843. ],
  2844. "source": [
  2845. "np.imag(C) # same as: C.imag"
  2846. ]
  2847. },
  2848. {
  2849. "cell_type": "markdown",
  2850. "metadata": {},
  2851. "source": [
  2852. "或者说复数和绝对值"
  2853. ]
  2854. },
  2855. {
  2856. "cell_type": "code",
  2857. "execution_count": 143,
  2858. "metadata": {},
  2859. "outputs": [
  2860. {
  2861. "data": {
  2862. "text/plain": [
  2863. "matrix([[0.78539816, 1.10714872],\n",
  2864. " [1.24904577, 1.32581766]])"
  2865. ]
  2866. },
  2867. "execution_count": 143,
  2868. "metadata": {},
  2869. "output_type": "execute_result"
  2870. }
  2871. ],
  2872. "source": [
  2873. "np.angle(C+1) # heads up MATLAB Users, angle is used instead of arg"
  2874. ]
  2875. },
  2876. {
  2877. "cell_type": "code",
  2878. "execution_count": 144,
  2879. "metadata": {},
  2880. "outputs": [
  2881. {
  2882. "data": {
  2883. "text/plain": [
  2884. "matrix([[1., 2.],\n",
  2885. " [3., 4.]])"
  2886. ]
  2887. },
  2888. "execution_count": 144,
  2889. "metadata": {},
  2890. "output_type": "execute_result"
  2891. }
  2892. ],
  2893. "source": [
  2894. "np.abs(C)"
  2895. ]
  2896. },
  2897. {
  2898. "cell_type": "markdown",
  2899. "metadata": {},
  2900. "source": [
  2901. "### 7.6 矩阵计算"
  2902. ]
  2903. },
  2904. {
  2905. "cell_type": "markdown",
  2906. "metadata": {},
  2907. "source": [
  2908. "#### 求逆"
  2909. ]
  2910. },
  2911. {
  2912. "cell_type": "code",
  2913. "execution_count": 145,
  2914. "metadata": {},
  2915. "outputs": [
  2916. {
  2917. "data": {
  2918. "text/plain": [
  2919. "matrix([[0.+2.j , 0.-1.j ],\n",
  2920. " [0.-1.5j, 0.+0.5j]])"
  2921. ]
  2922. },
  2923. "execution_count": 145,
  2924. "metadata": {},
  2925. "output_type": "execute_result"
  2926. }
  2927. ],
  2928. "source": [
  2929. "np.linalg.inv(C) # equivalent to C.I "
  2930. ]
  2931. },
  2932. {
  2933. "cell_type": "code",
  2934. "execution_count": 146,
  2935. "metadata": {},
  2936. "outputs": [
  2937. {
  2938. "data": {
  2939. "text/plain": [
  2940. "matrix([[1.00000000e+00+0.j, 0.00000000e+00+0.j],\n",
  2941. " [1.11022302e-16+0.j, 1.00000000e+00+0.j]])"
  2942. ]
  2943. },
  2944. "execution_count": 146,
  2945. "metadata": {},
  2946. "output_type": "execute_result"
  2947. }
  2948. ],
  2949. "source": [
  2950. "C.I * C"
  2951. ]
  2952. },
  2953. {
  2954. "cell_type": "markdown",
  2955. "metadata": {},
  2956. "source": [
  2957. "#### 行列式"
  2958. ]
  2959. },
  2960. {
  2961. "cell_type": "code",
  2962. "execution_count": 147,
  2963. "metadata": {},
  2964. "outputs": [
  2965. {
  2966. "data": {
  2967. "text/plain": [
  2968. "(2.0000000000000004+0j)"
  2969. ]
  2970. },
  2971. "execution_count": 147,
  2972. "metadata": {},
  2973. "output_type": "execute_result"
  2974. }
  2975. ],
  2976. "source": [
  2977. "np.linalg.det(C)"
  2978. ]
  2979. },
  2980. {
  2981. "cell_type": "code",
  2982. "execution_count": 148,
  2983. "metadata": {},
  2984. "outputs": [
  2985. {
  2986. "data": {
  2987. "text/plain": [
  2988. "(0.49999999999999967+0j)"
  2989. ]
  2990. },
  2991. "execution_count": 148,
  2992. "metadata": {},
  2993. "output_type": "execute_result"
  2994. }
  2995. ],
  2996. "source": [
  2997. "np.linalg.det(C.I)"
  2998. ]
  2999. },
  3000. {
  3001. "cell_type": "markdown",
  3002. "metadata": {},
  3003. "source": [
  3004. "### 7.7 数据处理"
  3005. ]
  3006. },
  3007. {
  3008. "cell_type": "markdown",
  3009. "metadata": {},
  3010. "source": [
  3011. "通常将数据集存储在Numpy数组中是非常有用的。Numpy提供了许多函数用于计算数组中数据集的统计。\n",
  3012. "\n",
  3013. "例如,让我们从上面使用的斯德哥尔摩温度数据集计算一些属性。"
  3014. ]
  3015. },
  3016. {
  3017. "cell_type": "code",
  3018. "execution_count": 149,
  3019. "metadata": {},
  3020. "outputs": [
  3021. {
  3022. "data": {
  3023. "text/plain": [
  3024. "(77431, 7)"
  3025. ]
  3026. },
  3027. "execution_count": 149,
  3028. "metadata": {},
  3029. "output_type": "execute_result"
  3030. }
  3031. ],
  3032. "source": [
  3033. "import numpy as np\n",
  3034. "data = np.genfromtxt('stockholm_td_adj.dat')\n",
  3035. "\n",
  3036. "# 提醒一下,温度数据集存储在数据变量中:\n",
  3037. "np.shape(data)"
  3038. ]
  3039. },
  3040. {
  3041. "cell_type": "markdown",
  3042. "metadata": {},
  3043. "source": [
  3044. "#### mean"
  3045. ]
  3046. },
  3047. {
  3048. "cell_type": "code",
  3049. "execution_count": 150,
  3050. "metadata": {},
  3051. "outputs": [
  3052. {
  3053. "name": "stdout",
  3054. "output_type": "stream",
  3055. "text": [
  3056. "(77431, 7)\n"
  3057. ]
  3058. },
  3059. {
  3060. "data": {
  3061. "text/plain": [
  3062. "6.197109684751585"
  3063. ]
  3064. },
  3065. "execution_count": 150,
  3066. "metadata": {},
  3067. "output_type": "execute_result"
  3068. }
  3069. ],
  3070. "source": [
  3071. "# 温度数据在第三列中\n",
  3072. "print(data.shape)\n",
  3073. "np.mean(data[:,3])"
  3074. ]
  3075. },
  3076. {
  3077. "cell_type": "code",
  3078. "execution_count": 151,
  3079. "metadata": {},
  3080. "outputs": [
  3081. {
  3082. "data": {
  3083. "text/plain": [
  3084. "0.49494514118786737"
  3085. ]
  3086. },
  3087. "execution_count": 151,
  3088. "metadata": {},
  3089. "output_type": "execute_result"
  3090. }
  3091. ],
  3092. "source": [
  3093. "A = np.random.rand(4, 3)\n",
  3094. "np.mean(A)"
  3095. ]
  3096. },
  3097. {
  3098. "cell_type": "markdown",
  3099. "metadata": {},
  3100. "source": [
  3101. "在过去的200年里,斯德哥尔摩每天的平均气温大约是6.2 C。"
  3102. ]
  3103. },
  3104. {
  3105. "cell_type": "markdown",
  3106. "metadata": {},
  3107. "source": [
  3108. "#### 标准差和方差"
  3109. ]
  3110. },
  3111. {
  3112. "cell_type": "code",
  3113. "execution_count": 152,
  3114. "metadata": {},
  3115. "outputs": [
  3116. {
  3117. "data": {
  3118. "text/plain": [
  3119. "(8.282271621340573, 68.59602320966341)"
  3120. ]
  3121. },
  3122. "execution_count": 152,
  3123. "metadata": {},
  3124. "output_type": "execute_result"
  3125. }
  3126. ],
  3127. "source": [
  3128. "np.std(data[:,3]), np.var(data[:,3])"
  3129. ]
  3130. },
  3131. {
  3132. "cell_type": "markdown",
  3133. "metadata": {},
  3134. "source": [
  3135. "#### 最小值和最大值"
  3136. ]
  3137. },
  3138. {
  3139. "cell_type": "code",
  3140. "execution_count": 153,
  3141. "metadata": {},
  3142. "outputs": [
  3143. {
  3144. "data": {
  3145. "text/plain": [
  3146. "-25.8"
  3147. ]
  3148. },
  3149. "execution_count": 153,
  3150. "metadata": {},
  3151. "output_type": "execute_result"
  3152. }
  3153. ],
  3154. "source": [
  3155. "# 最低日平均温度\n",
  3156. "data[:,3].min()"
  3157. ]
  3158. },
  3159. {
  3160. "cell_type": "code",
  3161. "execution_count": 154,
  3162. "metadata": {},
  3163. "outputs": [
  3164. {
  3165. "data": {
  3166. "text/plain": [
  3167. "28.3"
  3168. ]
  3169. },
  3170. "execution_count": 154,
  3171. "metadata": {},
  3172. "output_type": "execute_result"
  3173. }
  3174. ],
  3175. "source": [
  3176. "# 最高日平均温度\n",
  3177. "data[:,3].max()"
  3178. ]
  3179. },
  3180. {
  3181. "cell_type": "markdown",
  3182. "metadata": {},
  3183. "source": [
  3184. "#### sum, prod, and trace"
  3185. ]
  3186. },
  3187. {
  3188. "cell_type": "code",
  3189. "execution_count": 156,
  3190. "metadata": {},
  3191. "outputs": [
  3192. {
  3193. "data": {
  3194. "text/plain": [
  3195. "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
  3196. ]
  3197. },
  3198. "execution_count": 156,
  3199. "metadata": {},
  3200. "output_type": "execute_result"
  3201. }
  3202. ],
  3203. "source": [
  3204. "d = np.arange(0, 10)\n",
  3205. "d"
  3206. ]
  3207. },
  3208. {
  3209. "cell_type": "code",
  3210. "execution_count": 157,
  3211. "metadata": {},
  3212. "outputs": [
  3213. {
  3214. "data": {
  3215. "text/plain": [
  3216. "45"
  3217. ]
  3218. },
  3219. "execution_count": 157,
  3220. "metadata": {},
  3221. "output_type": "execute_result"
  3222. }
  3223. ],
  3224. "source": [
  3225. "# 将所有的元素相加\n",
  3226. "np.sum(d)"
  3227. ]
  3228. },
  3229. {
  3230. "cell_type": "code",
  3231. "execution_count": 158,
  3232. "metadata": {},
  3233. "outputs": [
  3234. {
  3235. "data": {
  3236. "text/plain": [
  3237. "3628800"
  3238. ]
  3239. },
  3240. "execution_count": 158,
  3241. "metadata": {},
  3242. "output_type": "execute_result"
  3243. }
  3244. ],
  3245. "source": [
  3246. "# 全元素积分\n",
  3247. "np.prod(d+1)"
  3248. ]
  3249. },
  3250. {
  3251. "cell_type": "code",
  3252. "execution_count": 159,
  3253. "metadata": {},
  3254. "outputs": [
  3255. {
  3256. "data": {
  3257. "text/plain": [
  3258. "array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45])"
  3259. ]
  3260. },
  3261. "execution_count": 159,
  3262. "metadata": {},
  3263. "output_type": "execute_result"
  3264. }
  3265. ],
  3266. "source": [
  3267. "# 累计求和\n",
  3268. "np.cumsum(d)"
  3269. ]
  3270. },
  3271. {
  3272. "cell_type": "code",
  3273. "execution_count": 160,
  3274. "metadata": {},
  3275. "outputs": [
  3276. {
  3277. "data": {
  3278. "text/plain": [
  3279. "array([ 1, 2, 6, 24, 120, 720, 5040,\n",
  3280. " 40320, 362880, 3628800])"
  3281. ]
  3282. },
  3283. "execution_count": 160,
  3284. "metadata": {},
  3285. "output_type": "execute_result"
  3286. }
  3287. ],
  3288. "source": [
  3289. "# 累计乘积\n",
  3290. "np.cumprod(d+1)"
  3291. ]
  3292. },
  3293. {
  3294. "cell_type": "code",
  3295. "execution_count": 161,
  3296. "metadata": {},
  3297. "outputs": [
  3298. {
  3299. "data": {
  3300. "text/plain": [
  3301. "1.2869808487677687"
  3302. ]
  3303. },
  3304. "execution_count": 161,
  3305. "metadata": {},
  3306. "output_type": "execute_result"
  3307. }
  3308. ],
  3309. "source": [
  3310. "# 计算对角线元素的和,和diag(A).sum()一样\n",
  3311. "np.trace(A)"
  3312. ]
  3313. },
  3314. {
  3315. "cell_type": "markdown",
  3316. "metadata": {},
  3317. "source": [
  3318. "### 7.8 数组子集的计算"
  3319. ]
  3320. },
  3321. {
  3322. "cell_type": "markdown",
  3323. "metadata": {},
  3324. "source": [
  3325. "我们可以使用索引、花式索引和从数组中提取数据的其他方法(如上所述)来计算数组中的数据子集。\n",
  3326. "\n",
  3327. "例如,让我们回到温度数据集:"
  3328. ]
  3329. },
  3330. {
  3331. "cell_type": "code",
  3332. "execution_count": 162,
  3333. "metadata": {},
  3334. "outputs": [
  3335. {
  3336. "name": "stdout",
  3337. "output_type": "stream",
  3338. "text": [
  3339. "1800 1 1 -6.1 -6.1 -6.1 1\r\n",
  3340. "1800 1 2 -15.4 -15.4 -15.4 1\r\n",
  3341. "1800 1 3 -15.0 -15.0 -15.0 1\r\n"
  3342. ]
  3343. }
  3344. ],
  3345. "source": [
  3346. "!head -n 3 stockholm_td_adj.dat"
  3347. ]
  3348. },
  3349. {
  3350. "cell_type": "markdown",
  3351. "metadata": {},
  3352. "source": [
  3353. "数据集的格式是:年,月,日,日平均气温,低,高,位置。\n",
  3354. "\n",
  3355. "如果我们对某个特定月份的平均温度感兴趣,比如二月,然后我们可以创建一个索引掩码,使用它来选择当月的数据:"
  3356. ]
  3357. },
  3358. {
  3359. "cell_type": "code",
  3360. "execution_count": 163,
  3361. "metadata": {},
  3362. "outputs": [
  3363. {
  3364. "data": {
  3365. "text/plain": [
  3366. "array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.])"
  3367. ]
  3368. },
  3369. "execution_count": 163,
  3370. "metadata": {},
  3371. "output_type": "execute_result"
  3372. }
  3373. ],
  3374. "source": [
  3375. "np.unique(data[:,1]) # 列的值从1到12"
  3376. ]
  3377. },
  3378. {
  3379. "cell_type": "code",
  3380. "execution_count": 164,
  3381. "metadata": {},
  3382. "outputs": [
  3383. {
  3384. "name": "stdout",
  3385. "output_type": "stream",
  3386. "text": [
  3387. "[False False False ... False False False]\n"
  3388. ]
  3389. }
  3390. ],
  3391. "source": [
  3392. "mask_feb = data[:,1] == 2\n",
  3393. "print(mask_feb)"
  3394. ]
  3395. },
  3396. {
  3397. "cell_type": "code",
  3398. "execution_count": 165,
  3399. "metadata": {},
  3400. "outputs": [
  3401. {
  3402. "name": "stdout",
  3403. "output_type": "stream",
  3404. "text": [
  3405. "-3.212109570736596\n",
  3406. "5.090390768766271\n"
  3407. ]
  3408. }
  3409. ],
  3410. "source": [
  3411. "# 温度数据实在第三行\n",
  3412. "print(np.mean(data[mask_feb,3]))\n",
  3413. "print(np.std(data[mask_feb,3]))"
  3414. ]
  3415. },
  3416. {
  3417. "cell_type": "markdown",
  3418. "metadata": {},
  3419. "source": [
  3420. "有了这些工具,我们就有了非常强大的数据处理能力。例如,提取每年每个月的平均气温只需要几行代码:"
  3421. ]
  3422. },
  3423. {
  3424. "cell_type": "code",
  3425. "execution_count": 166,
  3426. "metadata": {},
  3427. "outputs": [
  3428. {
  3429. "data": {
  3430. "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAARfElEQVR4nO3da7BkVXnG8f8jEyOCiMqIRhwPWpYWEkQzRVSMQY0JipckpYl4CSoRE8RLtIyjSQrMBzNG8UKZUkGIdyyLeEFnQBAFTLwOighegpJBQeSiCaImGODNh96jh8nMmU2f3t3TZ/1/VV2ne3X3Xu+umnnOOmvvvXaqCklSO2436wIkSdNl8EtSYwx+SWqMwS9JjTH4Jakxq2ZdQB977bVXLSwszLoMSZorF1xwwXVVtXrr9rkI/oWFBTZt2jTrMiRpriS5fFvtTvVIUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGjMXF3BJ82Bh3YaJb3Pz+sMmvk3JEb8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQY1+qR5syk1wRyPaD2OOKXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjRks+JOckuSaJBcvajsuyZVJLuweTxiqf0nStg054n8XcOg22t9UVQd2j40D9i9J2obBgr+qzgd+PNT2JUnjmcUc/zFJLuqmgu4yg/4lqWnTDv63AfcDDgSuAo7f3geTHJVkU5JN11577ZTKk6SVb6rBX1VXV9XNVXULcBJw0BKfPbGq1lbV2tWrV0+vSEla4aYa/EnuuejlHwEXb++zkqRhDLY6Z5JTgUOAvZJcARwLHJLkQKCAzcALhupf2mLSq1mCK1pqvg0W/FV1+DaaTx6qP0lSP165K0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNWTXOl5J8oqqeOOliJO08FtZtmOj2Nq8/bKLb0/jGHfE/f6JVSJKmpteIP8ntgQcCBXy7qq4atCpJ0mB2GPxJDgPeDnwXCLBvkhdU1RlDFydJmrw+I/7jgUdX1XcAktwP2AAY/JI0h/rM8d+wJfQ7lwE3DFSPJGlgfUb8m5JsBD7EaI7/acCXk/wxQFV9eMD6JEkT1if47wBcDfxu9/paYFfgSYx+ERj8kjRHdhj8VfXcaRQiSZqOPmf17Au8CFhY/PmqevJwZUmShtJnquejwMnAx4FbBq1GkjS4PsH/P1V1wuCVSJKmok/wvyXJscBZwI1bGqvqK4NVJUkaTJ/g/03g2cBj+NVUT3WvJUlzpk/wPw24b1X9YuhiJEnD63Pl7sXAnrd1w0lOSXJNkosXtd01ydlJLu1+3uW2bleStDx9gn9P4FtJPpnk9C2PHt97F3DoVm3rgHOq6v7AOd1rSdIU9ZnqOXacDVfV+UkWtmp+CnBI9/zdwLnAK8fZviRpPH2u3D0vyX2A+1fVp5LcEdhlzP72XrSW/w+Bvbf3wSRHAUcBrFmzZszuJElb2+FUT5LnA6cB7+ia7sXooq5lqapidHbQ9t4/sarWVtXa1atXL7c7SVKnzxz/C4GDgZ8AVNWlwN3H7O/qJPcE6H5eM+Z2JElj6hP8Ny4+lTPJKpYYqe/A6cAR3fMjgI+NuR1J0pj6HNw9L8mrgV2TPA44mtG6PUtKciqjA7l7JbmC0UHi9cCHkhwJXA78ybiFa/4trNsw8W1uXn/YxLcprTR9gn8dcCTwdeAFwMaqOmlHX6qqw7fz1mP7lydJmrQ+wf+iqnoL8MuwT/KSrk2SNGf6zPEfsY2250y4DknSlGx3xJ/kcOAZwL5bXal7J+DHQxcmSRrGUlM9nwOuAvYCjl/UfgNw0ZBFSZKGs93gr6rLGZ158/DplSNJGlqfOX5J0gpi8EtSYwx+SWrMWMGf5LgJ1yFJmpJxR/wXTLQKSdLUjBX8VbXDtXokSTunHS7ZkOSEbTRfD2yqKlfXlKQ502fEfwfgQODS7nEAsA9wZJI3D1aZJGkQfRZpOwA4uKpuBkjyNuCzwCMZrdgpSZojfUb8dwF2X/R6N+Cu3S+CGwepSpI0mD4j/n8ELkxyLhDgUcBrk+wGfGrA2iRJA9hh8FfVyUk2Agd1Ta+uqh90z18xWGWSpEH0Oavn48AHgNOr6mfDlyRJGlKfOf43AL8DfCPJaUmemuQOA9clSRpIn6me8xjdcH0X4DHA84FTgD0Grk2SNIA+B3dJsivwJOBPgYcC7x6yKEnScPrM8X+I0YHdM4G3AudV1S1DFyZJGkafEf/JwOFbLuCSJM23PnP8n0yyf5L9GC3fsKX9PYNWJkkaRJ+pnmOBQ4D9gI3A44F/BQx+SZpDfaZ6ngo8GPhqVT03yd7A+4YtS1ILFtZtmPg2N68/bOLbXGn6nMf/393B3JuS7AFcA9x72LIkSUPpM+LflGRP4CRGd976KfD5IYuSJA2nz8Hdo7unb09yJrBHVV00bFmSpKH0uoBri6raPFAdkqQpGfdm65KkOWXwS1Jjdhj8SY5P8qBpFCNJGl6fEf83gROTfDHJXyS589BFSZKGs8Pgr6p3VtXBwJ8BC8BFST6Q5NFDFydJmrxec/zdWvwP7B7XAV8DXpbkgwPWJkkaQJ+1et7EaC3+c4DXVtWXurdel+TbQxYnSZq8PufxXwT87Xbut3vQNtokSTux7QZ/kod2T78GPCDJrd6vqq9U1fUD1iZJGsBSI/7jl3ivGN1/dyxJNgM3ADcDN1XV2nG3JUm6bbYb/FU19Fk7j66q6wbuQ5K0lb43W38Eo1M5f/l578AlSfOpz1k97wXuB1zIaGoGRlM9ywn+As5KUsA7qurEbfR7FHAUwJo1a5bRlSRpsT4j/rXAflVVE+z3kVV1ZZK7A2cn+VZVnb/4A90vgxMB1q5dO8m+JalpfS7guhi4xyQ7raoru5/XAB/B00IlaWqWOp3z44ymZO4EfCPJl4Abt7xfVU8ep8MkuwG3q6obuue/D/z9ONuSJN12S031vGGgPvcGPtJdF7AK+EBVnTlQX5KkrSx1Oud5AEleV1WvXPxektcB543TYVVdBjx4nO9Kkpavzxz/47bR9vhJFyJJmo6l5vj/EjgauG+SxTdXvxPwuaELkyQNY6k5/g8AZwD/AKxb1H5DVf140KokSYNZao7/euB64PBuPf69u8/vnmT3qvrelGqUJE1Qnyt3jwGOA64GbumaCzhguLIkSUPpc+XuS4EHVNWPBq5FO5GFdRsmur3N6w+b6PYkja/PWT3fZzTlI0laAfqM+C8Dzk2ygVtfufvGwaqSJA2mT/B/r3vcvntIkubYDoO/ql4DkGT37vVPhy5KkjScHc7xJ9k/yVeBS4BLklyQ5EHDlyZJGkKfg7snAi+rqvtU1X2AlwMnDVuWJGkofYJ/t6r6zJYXVXUusNtgFUmSBtXrrJ4kfwe8t3v9LEZn+kiS5lCfEf/zgNXAh7vH6q5NkjSH+pzV85/Ai6dQiyRpCpZalvn0pb447q0XJUmztdSI/+GMlms4FfgikKlUJEka1FLBfw9Gd986HHgGsAE4taoumUZhkqRhbPfgblXdXFVnVtURwMOA7zBas+eYqVUnSZq4JQ/uJvl14DBGo/4F4ATgI8OXJUkaylIHd98D7A9sBF5TVRdPrSpJ0mCWGvE/C/gZ8BLgxckvj+0GqKraY+DaJEkDWOqeu30u7pKknd6k7ygH831XOcNdkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxswk+JMcmuTbSb6TZN0sapCkVk09+JPsAvwT8HhgP+DwJPtNuw5JatUsRvwHAd+pqsuq6hfAB4GnzKAOSWpSqmq6HSZPBQ6tqj/vXj8b+O2qOmarzx0FHAWwZs2a37r88svH6m9at1yb137m+fZx0s5mZ7vFY5ILqmrt1u077cHdqjqxqtZW1drVq1fPuhxJWjFmEfxXAvde9Hqfrk2SNAWzCP4vA/dPsm+S2wNPB06fQR2S1KRV0+6wqm5KcgzwSWAX4JSqumTadUhSq6Ye/ABVtRHYOIu+Jal1O+3BXUnSMAx+SWrMTKZ6ND7Pu5e0XI74JakxBr8kNcbgl6TGOMcvSRMyL8fgHPFLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhqz4m/EMi83RpCkaXHEL0mNWfEj/mnxLwtJ88IRvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNSZVNesadijJtcDls65jQvYCrpt1ERO0kvZnJe0LuD87s2nty32qavXWjXMR/CtJkk1VtXbWdUzKStqflbQv4P7szGa9L071SFJjDH5JaozBP30nzrqACVtJ+7OS9gXcn53ZTPfFOX5JaowjfklqjMEvSY0x+Kckyb2TfCbJN5JckuQls65puZLskuSrST4x61qWK8meSU5L8q0k30zy8FnXtBxJ/qr7d3ZxklOT3GHWNfWV5JQk1yS5eFHbXZOcneTS7uddZlnjbbGd/Xl992/toiQfSbLnNGsy+KfnJuDlVbUf8DDghUn2m3FNy/US4JuzLmJC3gKcWVUPBB7MHO9XknsBLwbWVtX+wC7A02db1W3yLuDQrdrWAedU1f2Bc7rX8+Jd/P/9ORvYv6oOAP4deNU0CzL4p6Sqrqqqr3TPb2AULPeabVXjS7IPcBjwzlnXslxJ7gw8CjgZoKp+UVX/NdOilm8VsGuSVcAdgR/MuJ7equp84MdbNT8FeHf3/N3AH06zpuXY1v5U1VlVdVP38gvAPtOsyeCfgSQLwEOAL864lOV4M/DXwC0zrmMS9gWuBf65m7p6Z5LdZl3UuKrqSuANwPeAq4Drq+qs2Va1bHtX1VXd8x8Ce8+ymAl7HnDGNDs0+Kcsye7AvwAvraqfzLqecSR5InBNVV0w61omZBXwUOBtVfUQ4GfM11TCrXTz309h9AvtN4DdkjxrtlVNTo3OQV8R56En+RtG08Dvn2a/Bv8UJfk1RqH//qr68KzrWYaDgScn2Qx8EHhMkvfNtqRluQK4oqq2/AV2GqNfBPPq94D/qKprq+p/gQ8Dj5hxTct1dZJ7AnQ/r5lxPcuW5DnAE4Fn1pQvqDL4pyRJGM0hf7Oq3jjrepajql5VVftU1QKjg4afrqq5HVFW1Q+B7yd5QNf0WOAbMyxpub4HPCzJHbt/d49ljg9Wd04HjuieHwF8bIa1LFuSQxlNlT65qn4+7f4N/uk5GHg2o9Hxhd3jCbMuSr/0IuD9SS4CDgReO9tyxtf95XIa8BXg64z+n8/NcgdJTgU+DzwgyRVJjgTWA49Lcimjv2jWz7LG22I7+/NW4E7A2V0WvH2qNblkgyS1xRG/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH4JSFKLL0JLsirJteOuPNqt9nn0oteHrIRVTLUyGPzSyM+A/ZPs2r1+HHDlMra3J3D0jj4kzYLBL/3KRkYrjgIcDpy65Y1uPfiPduunfyHJAV37cd166+cmuSzJi7uvrAfu112c8/qubfdFa/6/v7uqVpo6g1/6lQ8CT+9uWnIAt1499TXAV7v1018NvGfRew8E/gA4CDi2W5NpHfDdqjqwql7Rfe4hwEuB/YD7MrqaW5o6g1/qVNVFwAKj0f7Grd5+JPDe7nOfBu6WZI/uvQ1VdWNVXcdo8bDtLRn8paq6oqpuAS7s+pKmbtWsC5B2MqczWsv+EOBuPb9z46LnN7P9/1d9PycNyhG/dGunAK+pqq9v1f5Z4JkwOkMHuG4H91O4gdEiXNJOxxGHtEhVXQGcsI23jgNO6Vbv/Dm/WiJ4e9v5UZJ/626wfQawYdK1SuNydU5JaoxTPZLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNeb/AGb7TuHgiT13AAAAAElFTkSuQmCC\n",
  3431. "text/plain": [
  3432. "<Figure size 432x288 with 1 Axes>"
  3433. ]
  3434. },
  3435. "metadata": {
  3436. "needs_background": "light"
  3437. },
  3438. "output_type": "display_data"
  3439. }
  3440. ],
  3441. "source": [
  3442. "%matplotlib inline\n",
  3443. "import matplotlib.pyplot as plt\n",
  3444. "\n",
  3445. "months = np.arange(1,13)\n",
  3446. "monthly_mean = [np.mean(data[data[:,1] == month, 3]) for month in months]\n",
  3447. "\n",
  3448. "fig, ax = plt.subplots()\n",
  3449. "ax.bar(months, monthly_mean)\n",
  3450. "ax.set_xlabel(\"Month\")\n",
  3451. "ax.set_ylabel(\"Monthly avg. temp.\");"
  3452. ]
  3453. },
  3454. {
  3455. "cell_type": "markdown",
  3456. "metadata": {},
  3457. "source": [
  3458. "### 7.9 高维数据的计算"
  3459. ]
  3460. },
  3461. {
  3462. "cell_type": "markdown",
  3463. "metadata": {},
  3464. "source": [
  3465. "当例如`min`, `max`等函数应用在高维数组上时,有时将计算应用于整个数组是有用的,而且很多时候有时只基于行或列。用`axis`参数我们可以决定这个函数应该怎样表现:"
  3466. ]
  3467. },
  3468. {
  3469. "cell_type": "code",
  3470. "execution_count": 167,
  3471. "metadata": {},
  3472. "outputs": [
  3473. {
  3474. "data": {
  3475. "text/plain": [
  3476. "array([[0.28760836, 0.74204101, 0.39567837],\n",
  3477. " [0.74805878, 0.405101 , 0.13400733],\n",
  3478. " [0.55124625, 0.98346507, 0.88726029],\n",
  3479. " [0.92808432, 0.75063001, 0.5832612 ]])"
  3480. ]
  3481. },
  3482. "execution_count": 167,
  3483. "metadata": {},
  3484. "output_type": "execute_result"
  3485. }
  3486. ],
  3487. "source": [
  3488. "import numpy as np\n",
  3489. "\n",
  3490. "m = np.random.rand(4,3)\n",
  3491. "m"
  3492. ]
  3493. },
  3494. {
  3495. "cell_type": "code",
  3496. "execution_count": 168,
  3497. "metadata": {},
  3498. "outputs": [
  3499. {
  3500. "data": {
  3501. "text/plain": [
  3502. "0.9834650747647675"
  3503. ]
  3504. },
  3505. "execution_count": 168,
  3506. "metadata": {},
  3507. "output_type": "execute_result"
  3508. }
  3509. ],
  3510. "source": [
  3511. "# global max\n",
  3512. "m.max()"
  3513. ]
  3514. },
  3515. {
  3516. "cell_type": "code",
  3517. "execution_count": 169,
  3518. "metadata": {},
  3519. "outputs": [
  3520. {
  3521. "data": {
  3522. "text/plain": [
  3523. "array([0.92808432, 0.98346507, 0.88726029])"
  3524. ]
  3525. },
  3526. "execution_count": 169,
  3527. "metadata": {},
  3528. "output_type": "execute_result"
  3529. }
  3530. ],
  3531. "source": [
  3532. "# max in each column\n",
  3533. "m.max(axis=0)"
  3534. ]
  3535. },
  3536. {
  3537. "cell_type": "code",
  3538. "execution_count": 170,
  3539. "metadata": {},
  3540. "outputs": [
  3541. {
  3542. "data": {
  3543. "text/plain": [
  3544. "array([0.74204101, 0.74805878, 0.98346507, 0.92808432])"
  3545. ]
  3546. },
  3547. "execution_count": 170,
  3548. "metadata": {},
  3549. "output_type": "execute_result"
  3550. }
  3551. ],
  3552. "source": [
  3553. "# max in each row\n",
  3554. "m.max(axis=1)"
  3555. ]
  3556. },
  3557. {
  3558. "cell_type": "markdown",
  3559. "metadata": {},
  3560. "source": [
  3561. "许多其他的在`array` 和`matrix`类中的函数和方法接受同样(可选的)的关键字参数`axis`"
  3562. ]
  3563. },
  3564. {
  3565. "cell_type": "markdown",
  3566. "metadata": {},
  3567. "source": [
  3568. "## 8. 阵列的重塑、调整大小和堆叠"
  3569. ]
  3570. },
  3571. {
  3572. "cell_type": "markdown",
  3573. "metadata": {},
  3574. "source": [
  3575. "Numpy数组的形状可以被确定而无需复制底层数据,这使得即使对于大型数组也能有较快的操作。"
  3576. ]
  3577. },
  3578. {
  3579. "cell_type": "code",
  3580. "execution_count": 171,
  3581. "metadata": {},
  3582. "outputs": [
  3583. {
  3584. "name": "stdout",
  3585. "output_type": "stream",
  3586. "text": [
  3587. "[[0.98346378 0.63646196 0.08381973]\n",
  3588. " [0.21685601 0.27589121 0.0874428 ]\n",
  3589. " [0.96690659 0.95725769 0.52492868]\n",
  3590. " [0.98482663 0.90069241 0.42153789]]\n"
  3591. ]
  3592. }
  3593. ],
  3594. "source": [
  3595. "import numpy as np\n",
  3596. "\n",
  3597. "A = np.random.rand(4, 3)\n",
  3598. "print(A)"
  3599. ]
  3600. },
  3601. {
  3602. "cell_type": "code",
  3603. "execution_count": 172,
  3604. "metadata": {},
  3605. "outputs": [
  3606. {
  3607. "name": "stdout",
  3608. "output_type": "stream",
  3609. "text": [
  3610. "4 3\n"
  3611. ]
  3612. }
  3613. ],
  3614. "source": [
  3615. "n, m = A.shape\n",
  3616. "print(n, m)"
  3617. ]
  3618. },
  3619. {
  3620. "cell_type": "code",
  3621. "execution_count": 173,
  3622. "metadata": {},
  3623. "outputs": [
  3624. {
  3625. "data": {
  3626. "text/plain": [
  3627. "array([[0.98346378, 0.63646196, 0.08381973, 0.21685601, 0.27589121,\n",
  3628. " 0.0874428 , 0.96690659, 0.95725769, 0.52492868, 0.98482663,\n",
  3629. " 0.90069241, 0.42153789]])"
  3630. ]
  3631. },
  3632. "execution_count": 173,
  3633. "metadata": {},
  3634. "output_type": "execute_result"
  3635. }
  3636. ],
  3637. "source": [
  3638. "B = A.reshape((1,n*m))\n",
  3639. "B"
  3640. ]
  3641. },
  3642. {
  3643. "cell_type": "code",
  3644. "execution_count": 174,
  3645. "metadata": {},
  3646. "outputs": [
  3647. {
  3648. "name": "stdout",
  3649. "output_type": "stream",
  3650. "text": [
  3651. "[[0.98346378]\n",
  3652. " [0.63646196]\n",
  3653. " [0.08381973]\n",
  3654. " [0.21685601]\n",
  3655. " [0.27589121]\n",
  3656. " [0.0874428 ]\n",
  3657. " [0.96690659]\n",
  3658. " [0.95725769]\n",
  3659. " [0.52492868]\n",
  3660. " [0.98482663]\n",
  3661. " [0.90069241]\n",
  3662. " [0.42153789]]\n",
  3663. "(12, 1)\n"
  3664. ]
  3665. }
  3666. ],
  3667. "source": [
  3668. "B2 = A.reshape((n*m, 1))\n",
  3669. "print(B2)\n",
  3670. "print(B2.shape)"
  3671. ]
  3672. },
  3673. {
  3674. "cell_type": "code",
  3675. "execution_count": 176,
  3676. "metadata": {},
  3677. "outputs": [
  3678. {
  3679. "data": {
  3680. "text/plain": [
  3681. "array([[5. , 5. , 5. , 5. , 5. ,\n",
  3682. " 0.0874428 , 0.96690659, 0.95725769, 0.52492868, 0.98482663,\n",
  3683. " 0.90069241, 0.42153789]])"
  3684. ]
  3685. },
  3686. "execution_count": 176,
  3687. "metadata": {},
  3688. "output_type": "execute_result"
  3689. }
  3690. ],
  3691. "source": [
  3692. "B[0,0:5] = 5 # modify the array\n",
  3693. "\n",
  3694. "B"
  3695. ]
  3696. },
  3697. {
  3698. "cell_type": "code",
  3699. "execution_count": 177,
  3700. "metadata": {},
  3701. "outputs": [
  3702. {
  3703. "data": {
  3704. "text/plain": [
  3705. "array([[5. , 5. , 5. ],\n",
  3706. " [5. , 5. , 0.0874428 ],\n",
  3707. " [0.96690659, 0.95725769, 0.52492868],\n",
  3708. " [0.98482663, 0.90069241, 0.42153789]])"
  3709. ]
  3710. },
  3711. "execution_count": 177,
  3712. "metadata": {},
  3713. "output_type": "execute_result"
  3714. }
  3715. ],
  3716. "source": [
  3717. "A # and the original variable is also changed. B is only a different view of the same data"
  3718. ]
  3719. },
  3720. {
  3721. "cell_type": "markdown",
  3722. "metadata": {},
  3723. "source": [
  3724. "We can also use the function `flatten` to make a higher-dimensional array into a vector. But this function create a copy of the data."
  3725. ]
  3726. },
  3727. {
  3728. "cell_type": "code",
  3729. "execution_count": 178,
  3730. "metadata": {},
  3731. "outputs": [
  3732. {
  3733. "data": {
  3734. "text/plain": [
  3735. "array([5. , 5. , 5. , 5. , 5. ,\n",
  3736. " 0.0874428 , 0.96690659, 0.95725769, 0.52492868, 0.98482663,\n",
  3737. " 0.90069241, 0.42153789])"
  3738. ]
  3739. },
  3740. "execution_count": 178,
  3741. "metadata": {},
  3742. "output_type": "execute_result"
  3743. }
  3744. ],
  3745. "source": [
  3746. "B = A.flatten()\n",
  3747. "\n",
  3748. "B"
  3749. ]
  3750. },
  3751. {
  3752. "cell_type": "code",
  3753. "execution_count": 179,
  3754. "metadata": {},
  3755. "outputs": [
  3756. {
  3757. "name": "stdout",
  3758. "output_type": "stream",
  3759. "text": [
  3760. "(12,)\n"
  3761. ]
  3762. }
  3763. ],
  3764. "source": [
  3765. "print(B.shape)"
  3766. ]
  3767. },
  3768. {
  3769. "cell_type": "code",
  3770. "execution_count": 180,
  3771. "metadata": {},
  3772. "outputs": [
  3773. {
  3774. "name": "stdout",
  3775. "output_type": "stream",
  3776. "text": [
  3777. "[0.4076777 0.0032036 0.8637935 0.63928257 0.92394319 0.94463281\n",
  3778. " 0.75838245 0.77815663 0.59448528 0.05197006 0.4252758 0.51943058\n",
  3779. " 0.25521222 0.21153197 0.13903764 0.70652387 0.47792749 0.76336588\n",
  3780. " 0.35224639 0.85792682 0.37824866 0.08396315 0.6820255 0.48759341\n",
  3781. " 0.06410559 0.04382042 0.58880606 0.49957256 0.30892822 0.86214811\n",
  3782. " 0.29476108 0.58164927 0.18771192 0.62448138 0.27972963 0.64589686\n",
  3783. " 0.7414693 0.87782264 0.92350925 0.82749223 0.72188647 0.64283206\n",
  3784. " 0.57347573 0.53142496 0.92027185 0.39492156 0.3399361 0.05608057\n",
  3785. " 0.18456121 0.21670162 0.93057584 0.22099788 0.16258077 0.90794268\n",
  3786. " 0.5725359 0.67821311 0.59549661 0.7304167 0.93257325 0.95671415]\n"
  3787. ]
  3788. }
  3789. ],
  3790. "source": [
  3791. "T = np.random.rand(3, 4, 5)\n",
  3792. "T2 = T.flatten()\n",
  3793. "print(T2)"
  3794. ]
  3795. },
  3796. {
  3797. "cell_type": "code",
  3798. "execution_count": 181,
  3799. "metadata": {},
  3800. "outputs": [
  3801. {
  3802. "data": {
  3803. "text/plain": [
  3804. "array([10. , 10. , 10. , 10. , 10. ,\n",
  3805. " 0.0874428 , 0.96690659, 0.95725769, 0.52492868, 0.98482663,\n",
  3806. " 0.90069241, 0.42153789])"
  3807. ]
  3808. },
  3809. "execution_count": 181,
  3810. "metadata": {},
  3811. "output_type": "execute_result"
  3812. }
  3813. ],
  3814. "source": [
  3815. "B[0:5] = 10\n",
  3816. "\n",
  3817. "B"
  3818. ]
  3819. },
  3820. {
  3821. "cell_type": "code",
  3822. "execution_count": 182,
  3823. "metadata": {},
  3824. "outputs": [
  3825. {
  3826. "data": {
  3827. "text/plain": [
  3828. "array([[5. , 5. , 5. ],\n",
  3829. " [5. , 5. , 0.0874428 ],\n",
  3830. " [0.96690659, 0.95725769, 0.52492868],\n",
  3831. " [0.98482663, 0.90069241, 0.42153789]])"
  3832. ]
  3833. },
  3834. "execution_count": 182,
  3835. "metadata": {},
  3836. "output_type": "execute_result"
  3837. }
  3838. ],
  3839. "source": [
  3840. "A # 现在A并没有改变,因为B的数值是A的复制,并不指向同样的值。"
  3841. ]
  3842. },
  3843. {
  3844. "cell_type": "markdown",
  3845. "metadata": {},
  3846. "source": [
  3847. "## 9. 添加、删除维度:newaxis、squeeze"
  3848. ]
  3849. },
  3850. {
  3851. "cell_type": "markdown",
  3852. "metadata": {},
  3853. "source": [
  3854. "当矩阵乘法的时候,需要两个矩阵的对应的纬度保持一致才可以正确执行,有了`newaxis`,我们可以在数组中插入新的维度,例如将一个向量转换为列或行矩阵:"
  3855. ]
  3856. },
  3857. {
  3858. "cell_type": "code",
  3859. "execution_count": 183,
  3860. "metadata": {},
  3861. "outputs": [],
  3862. "source": [
  3863. "v = np.array([1,2,3])"
  3864. ]
  3865. },
  3866. {
  3867. "cell_type": "code",
  3868. "execution_count": 184,
  3869. "metadata": {},
  3870. "outputs": [
  3871. {
  3872. "name": "stdout",
  3873. "output_type": "stream",
  3874. "text": [
  3875. "(3,)\n",
  3876. "[1 2 3]\n"
  3877. ]
  3878. }
  3879. ],
  3880. "source": [
  3881. "print(np.shape(v))\n",
  3882. "print(v)"
  3883. ]
  3884. },
  3885. {
  3886. "cell_type": "code",
  3887. "execution_count": 186,
  3888. "metadata": {},
  3889. "outputs": [
  3890. {
  3891. "name": "stdout",
  3892. "output_type": "stream",
  3893. "text": [
  3894. "(3, 1)\n",
  3895. "[[1]\n",
  3896. " [2]\n",
  3897. " [3]]\n"
  3898. ]
  3899. }
  3900. ],
  3901. "source": [
  3902. "v2 = v.reshape(3, 1)\n",
  3903. "print(v2.shape)\n",
  3904. "print(v2)"
  3905. ]
  3906. },
  3907. {
  3908. "cell_type": "code",
  3909. "execution_count": 188,
  3910. "metadata": {},
  3911. "outputs": [
  3912. {
  3913. "name": "stdout",
  3914. "output_type": "stream",
  3915. "text": [
  3916. "(3,)\n",
  3917. "(3, 1)\n"
  3918. ]
  3919. }
  3920. ],
  3921. "source": [
  3922. "# 做一个向量v的列矩阵\n",
  3923. "v2 = v[:, np.newaxis]\n",
  3924. "print(v.shape)\n",
  3925. "print(v2.shape)\n"
  3926. ]
  3927. },
  3928. {
  3929. "cell_type": "code",
  3930. "execution_count": 189,
  3931. "metadata": {},
  3932. "outputs": [
  3933. {
  3934. "data": {
  3935. "text/plain": [
  3936. "(3, 1)"
  3937. ]
  3938. },
  3939. "execution_count": 189,
  3940. "metadata": {},
  3941. "output_type": "execute_result"
  3942. }
  3943. ],
  3944. "source": [
  3945. "# 列矩阵\n",
  3946. "v[:,np.newaxis].shape"
  3947. ]
  3948. },
  3949. {
  3950. "cell_type": "code",
  3951. "execution_count": 190,
  3952. "metadata": {},
  3953. "outputs": [
  3954. {
  3955. "data": {
  3956. "text/plain": [
  3957. "(1, 3)"
  3958. ]
  3959. },
  3960. "execution_count": 190,
  3961. "metadata": {},
  3962. "output_type": "execute_result"
  3963. }
  3964. ],
  3965. "source": [
  3966. "# 行矩阵\n",
  3967. "v[np.newaxis,:].shape"
  3968. ]
  3969. },
  3970. {
  3971. "cell_type": "markdown",
  3972. "metadata": {},
  3973. "source": [
  3974. "也可以通过`np.expand_dims`来实现类似的操作"
  3975. ]
  3976. },
  3977. {
  3978. "cell_type": "code",
  3979. "execution_count": 191,
  3980. "metadata": {},
  3981. "outputs": [
  3982. {
  3983. "name": "stdout",
  3984. "output_type": "stream",
  3985. "text": [
  3986. "(3, 1)\n",
  3987. "[[1]\n",
  3988. " [2]\n",
  3989. " [3]]\n"
  3990. ]
  3991. }
  3992. ],
  3993. "source": [
  3994. "v = np.array([1,2,3])\n",
  3995. "v3 = np.expand_dims(v, 1)\n",
  3996. "print(v3.shape)\n",
  3997. "print(v3)"
  3998. ]
  3999. },
  4000. {
  4001. "cell_type": "markdown",
  4002. "metadata": {},
  4003. "source": [
  4004. "在某些情况,需要将纬度为1的那个纬度删除掉,可以使用`np.squeeze`实现"
  4005. ]
  4006. },
  4007. {
  4008. "cell_type": "code",
  4009. "execution_count": 192,
  4010. "metadata": {},
  4011. "outputs": [
  4012. {
  4013. "name": "stdout",
  4014. "output_type": "stream",
  4015. "text": [
  4016. "(1, 2, 3)\n",
  4017. "[[[1 2 3]\n",
  4018. " [2 3 4]]]\n"
  4019. ]
  4020. }
  4021. ],
  4022. "source": [
  4023. "arr = np.array([[[1, 2, 3], [2, 3, 4]]])\n",
  4024. "print(arr.shape)\n",
  4025. "print(arr)"
  4026. ]
  4027. },
  4028. {
  4029. "cell_type": "code",
  4030. "execution_count": 193,
  4031. "metadata": {},
  4032. "outputs": [
  4033. {
  4034. "name": "stdout",
  4035. "output_type": "stream",
  4036. "text": [
  4037. "(2, 3)\n",
  4038. "[[1 2 3]\n",
  4039. " [2 3 4]]\n"
  4040. ]
  4041. }
  4042. ],
  4043. "source": [
  4044. "# 实际上第一个纬度为`1`,我们不需要\n",
  4045. "arr2 = np.squeeze(arr, 0)\n",
  4046. "print(arr2.shape)\n",
  4047. "print(arr2)"
  4048. ]
  4049. },
  4050. {
  4051. "cell_type": "markdown",
  4052. "metadata": {},
  4053. "source": [
  4054. "需要注意:只有数组长度在该纬度上为1,那么该纬度才可以被删除;否则会报错。"
  4055. ]
  4056. },
  4057. {
  4058. "cell_type": "markdown",
  4059. "metadata": {},
  4060. "source": [
  4061. "## 10. 叠加和重复数组"
  4062. ]
  4063. },
  4064. {
  4065. "cell_type": "markdown",
  4066. "metadata": {},
  4067. "source": [
  4068. "利用函数`repeat`, `tile`, `vstack`, `hstack`, 和`concatenate` 我们可以用较小的向量和矩阵来创建更大的向量和矩阵:"
  4069. ]
  4070. },
  4071. {
  4072. "cell_type": "markdown",
  4073. "metadata": {},
  4074. "source": [
  4075. "### 10.1 tile and repeat"
  4076. ]
  4077. },
  4078. {
  4079. "cell_type": "code",
  4080. "execution_count": 194,
  4081. "metadata": {},
  4082. "outputs": [
  4083. {
  4084. "name": "stdout",
  4085. "output_type": "stream",
  4086. "text": [
  4087. "[[1 2]\n",
  4088. " [3 4]]\n"
  4089. ]
  4090. }
  4091. ],
  4092. "source": [
  4093. "a = np.array([[1, 2], [3, 4]])\n",
  4094. "print(a)"
  4095. ]
  4096. },
  4097. {
  4098. "cell_type": "code",
  4099. "execution_count": 195,
  4100. "metadata": {},
  4101. "outputs": [
  4102. {
  4103. "data": {
  4104. "text/plain": [
  4105. "array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4])"
  4106. ]
  4107. },
  4108. "execution_count": 195,
  4109. "metadata": {},
  4110. "output_type": "execute_result"
  4111. }
  4112. ],
  4113. "source": [
  4114. "# 重复每一个元素三次\n",
  4115. "np.repeat(a, 3)"
  4116. ]
  4117. },
  4118. {
  4119. "cell_type": "code",
  4120. "execution_count": 196,
  4121. "metadata": {},
  4122. "outputs": [
  4123. {
  4124. "data": {
  4125. "text/plain": [
  4126. "array([[1, 2, 1, 2, 1, 2],\n",
  4127. " [3, 4, 3, 4, 3, 4]])"
  4128. ]
  4129. },
  4130. "execution_count": 196,
  4131. "metadata": {},
  4132. "output_type": "execute_result"
  4133. }
  4134. ],
  4135. "source": [
  4136. "# tile the matrix 3 times \n",
  4137. "np.tile(a, 3)"
  4138. ]
  4139. },
  4140. {
  4141. "cell_type": "code",
  4142. "execution_count": 197,
  4143. "metadata": {},
  4144. "outputs": [
  4145. {
  4146. "data": {
  4147. "text/plain": [
  4148. "array([[1, 2, 1, 2, 1, 2],\n",
  4149. " [3, 4, 3, 4, 3, 4]])"
  4150. ]
  4151. },
  4152. "execution_count": 197,
  4153. "metadata": {},
  4154. "output_type": "execute_result"
  4155. }
  4156. ],
  4157. "source": [
  4158. "# 更好的方案\n",
  4159. "np.tile(a, (1, 3))"
  4160. ]
  4161. },
  4162. {
  4163. "cell_type": "code",
  4164. "execution_count": 198,
  4165. "metadata": {},
  4166. "outputs": [
  4167. {
  4168. "data": {
  4169. "text/plain": [
  4170. "array([[1, 2],\n",
  4171. " [3, 4],\n",
  4172. " [1, 2],\n",
  4173. " [3, 4],\n",
  4174. " [1, 2],\n",
  4175. " [3, 4]])"
  4176. ]
  4177. },
  4178. "execution_count": 198,
  4179. "metadata": {},
  4180. "output_type": "execute_result"
  4181. }
  4182. ],
  4183. "source": [
  4184. "np.tile(a, (3, 1))"
  4185. ]
  4186. },
  4187. {
  4188. "cell_type": "markdown",
  4189. "metadata": {},
  4190. "source": [
  4191. "### 10.2 concatenate"
  4192. ]
  4193. },
  4194. {
  4195. "cell_type": "code",
  4196. "execution_count": 205,
  4197. "metadata": {},
  4198. "outputs": [],
  4199. "source": [
  4200. "b = np.array([[5, 6]])"
  4201. ]
  4202. },
  4203. {
  4204. "cell_type": "code",
  4205. "execution_count": 206,
  4206. "metadata": {},
  4207. "outputs": [
  4208. {
  4209. "data": {
  4210. "text/plain": [
  4211. "array([[1, 2],\n",
  4212. " [3, 4],\n",
  4213. " [5, 6]])"
  4214. ]
  4215. },
  4216. "execution_count": 206,
  4217. "metadata": {},
  4218. "output_type": "execute_result"
  4219. }
  4220. ],
  4221. "source": [
  4222. "np.concatenate((a, b), axis=0)"
  4223. ]
  4224. },
  4225. {
  4226. "cell_type": "code",
  4227. "execution_count": 207,
  4228. "metadata": {},
  4229. "outputs": [
  4230. {
  4231. "data": {
  4232. "text/plain": [
  4233. "array([[1, 2, 5],\n",
  4234. " [3, 4, 6]])"
  4235. ]
  4236. },
  4237. "execution_count": 207,
  4238. "metadata": {},
  4239. "output_type": "execute_result"
  4240. }
  4241. ],
  4242. "source": [
  4243. "np.concatenate((a, b.T), axis=1)"
  4244. ]
  4245. },
  4246. {
  4247. "cell_type": "markdown",
  4248. "metadata": {},
  4249. "source": [
  4250. "### 10.3 hstack and vstack"
  4251. ]
  4252. },
  4253. {
  4254. "cell_type": "code",
  4255. "execution_count": 208,
  4256. "metadata": {},
  4257. "outputs": [
  4258. {
  4259. "data": {
  4260. "text/plain": [
  4261. "array([[1, 2],\n",
  4262. " [3, 4],\n",
  4263. " [5, 6]])"
  4264. ]
  4265. },
  4266. "execution_count": 208,
  4267. "metadata": {},
  4268. "output_type": "execute_result"
  4269. }
  4270. ],
  4271. "source": [
  4272. "np.vstack((a,b))"
  4273. ]
  4274. },
  4275. {
  4276. "cell_type": "code",
  4277. "execution_count": 209,
  4278. "metadata": {},
  4279. "outputs": [
  4280. {
  4281. "data": {
  4282. "text/plain": [
  4283. "array([[1, 2, 5],\n",
  4284. " [3, 4, 6]])"
  4285. ]
  4286. },
  4287. "execution_count": 209,
  4288. "metadata": {},
  4289. "output_type": "execute_result"
  4290. }
  4291. ],
  4292. "source": [
  4293. "np.hstack((a,b.T))"
  4294. ]
  4295. },
  4296. {
  4297. "cell_type": "markdown",
  4298. "metadata": {},
  4299. "source": [
  4300. "## 11. 复制和“深度复制”"
  4301. ]
  4302. },
  4303. {
  4304. "cell_type": "markdown",
  4305. "metadata": {},
  4306. "source": [
  4307. "为了获得高性能,Python中的赋值通常不复制底层对象。例如,在函数之间传递对象时,这一点非常重要,以避免不必要时大量的内存复制(技术术语:通过引用传递)。"
  4308. ]
  4309. },
  4310. {
  4311. "cell_type": "code",
  4312. "execution_count": 210,
  4313. "metadata": {},
  4314. "outputs": [
  4315. {
  4316. "data": {
  4317. "text/plain": [
  4318. "array([[1, 2],\n",
  4319. " [3, 4]])"
  4320. ]
  4321. },
  4322. "execution_count": 210,
  4323. "metadata": {},
  4324. "output_type": "execute_result"
  4325. }
  4326. ],
  4327. "source": [
  4328. "A = np.array([[1, 2], [3, 4]])\n",
  4329. "\n",
  4330. "A"
  4331. ]
  4332. },
  4333. {
  4334. "cell_type": "code",
  4335. "execution_count": 211,
  4336. "metadata": {},
  4337. "outputs": [],
  4338. "source": [
  4339. "# 现在B和A指的是同一个数组数据\n",
  4340. "B = A "
  4341. ]
  4342. },
  4343. {
  4344. "cell_type": "code",
  4345. "execution_count": 212,
  4346. "metadata": {},
  4347. "outputs": [
  4348. {
  4349. "data": {
  4350. "text/plain": [
  4351. "array([[10, 2],\n",
  4352. " [ 3, 4]])"
  4353. ]
  4354. },
  4355. "execution_count": 212,
  4356. "metadata": {},
  4357. "output_type": "execute_result"
  4358. }
  4359. ],
  4360. "source": [
  4361. "# 改变B影响A\n",
  4362. "B[0,0] = 10\n",
  4363. "\n",
  4364. "B"
  4365. ]
  4366. },
  4367. {
  4368. "cell_type": "code",
  4369. "execution_count": 213,
  4370. "metadata": {},
  4371. "outputs": [
  4372. {
  4373. "data": {
  4374. "text/plain": [
  4375. "array([[10, 2],\n",
  4376. " [ 3, 4]])"
  4377. ]
  4378. },
  4379. "execution_count": 213,
  4380. "metadata": {},
  4381. "output_type": "execute_result"
  4382. }
  4383. ],
  4384. "source": [
  4385. "A"
  4386. ]
  4387. },
  4388. {
  4389. "cell_type": "markdown",
  4390. "metadata": {},
  4391. "source": [
  4392. "如果我们想避免这种行为,那么当我们从`A`中复制一个新的完全独立的对象`B`时,我们需要使用函数`copy`来做一个所谓的“深度复制”:"
  4393. ]
  4394. },
  4395. {
  4396. "cell_type": "code",
  4397. "execution_count": 214,
  4398. "metadata": {},
  4399. "outputs": [],
  4400. "source": [
  4401. "B = np.copy(A)"
  4402. ]
  4403. },
  4404. {
  4405. "cell_type": "code",
  4406. "execution_count": 215,
  4407. "metadata": {},
  4408. "outputs": [
  4409. {
  4410. "data": {
  4411. "text/plain": [
  4412. "array([[-5, 2],\n",
  4413. " [ 3, 4]])"
  4414. ]
  4415. },
  4416. "execution_count": 215,
  4417. "metadata": {},
  4418. "output_type": "execute_result"
  4419. }
  4420. ],
  4421. "source": [
  4422. "# 现在如果我们改变B,A不受影响\n",
  4423. "B[0,0] = -5\n",
  4424. "\n",
  4425. "B"
  4426. ]
  4427. },
  4428. {
  4429. "cell_type": "code",
  4430. "execution_count": 216,
  4431. "metadata": {},
  4432. "outputs": [
  4433. {
  4434. "data": {
  4435. "text/plain": [
  4436. "array([[10, 2],\n",
  4437. " [ 3, 4]])"
  4438. ]
  4439. },
  4440. "execution_count": 216,
  4441. "metadata": {},
  4442. "output_type": "execute_result"
  4443. }
  4444. ],
  4445. "source": [
  4446. "A"
  4447. ]
  4448. },
  4449. {
  4450. "cell_type": "markdown",
  4451. "metadata": {},
  4452. "source": [
  4453. "## 12. 遍历数组元素"
  4454. ]
  4455. },
  4456. {
  4457. "cell_type": "markdown",
  4458. "metadata": {},
  4459. "source": [
  4460. "通常,我们希望尽可能避免遍历数组元素(不惜一切代价)。原因是在像Python(或MATLAB)这样的解释语言中,迭代与向量化操作相比真的很慢。\n",
  4461. "\n",
  4462. "然而,有时迭代是不可避免的。对于这种情况,Python的For循环是最方便的遍历数组的方法:"
  4463. ]
  4464. },
  4465. {
  4466. "cell_type": "code",
  4467. "execution_count": 217,
  4468. "metadata": {},
  4469. "outputs": [
  4470. {
  4471. "name": "stdout",
  4472. "output_type": "stream",
  4473. "text": [
  4474. "1\n",
  4475. "2\n",
  4476. "3\n",
  4477. "4\n"
  4478. ]
  4479. }
  4480. ],
  4481. "source": [
  4482. "v = np.array([1,2,3,4])\n",
  4483. "\n",
  4484. "for element in v:\n",
  4485. " print(element)"
  4486. ]
  4487. },
  4488. {
  4489. "cell_type": "code",
  4490. "execution_count": 218,
  4491. "metadata": {},
  4492. "outputs": [
  4493. {
  4494. "name": "stdout",
  4495. "output_type": "stream",
  4496. "text": [
  4497. "row [1 2]\n",
  4498. "1\n",
  4499. "2\n",
  4500. "row [3 4]\n",
  4501. "3\n",
  4502. "4\n"
  4503. ]
  4504. }
  4505. ],
  4506. "source": [
  4507. "M = np.array([[1,2], [3,4]])\n",
  4508. "\n",
  4509. "for row in M:\n",
  4510. " print(\"row\", row)\n",
  4511. " \n",
  4512. " for element in row:\n",
  4513. " print(element)"
  4514. ]
  4515. },
  4516. {
  4517. "cell_type": "markdown",
  4518. "metadata": {},
  4519. "source": [
  4520. "当我们需要去\n",
  4521. "当我们需要遍历一个数组的每个元素并修改它的元素时,使用`enumerate`函数可以方便地在`for`循环中获得元素及其索引:"
  4522. ]
  4523. },
  4524. {
  4525. "cell_type": "code",
  4526. "execution_count": 219,
  4527. "metadata": {},
  4528. "outputs": [
  4529. {
  4530. "name": "stdout",
  4531. "output_type": "stream",
  4532. "text": [
  4533. "row_idx 0 row [1 2]\n",
  4534. "col_idx 0 element 1\n",
  4535. "col_idx 1 element 2\n",
  4536. "row_idx 1 row [3 4]\n",
  4537. "col_idx 0 element 3\n",
  4538. "col_idx 1 element 4\n"
  4539. ]
  4540. }
  4541. ],
  4542. "source": [
  4543. "for row_idx, row in enumerate(M):\n",
  4544. " print(\"row_idx\", row_idx, \"row\", row)\n",
  4545. " \n",
  4546. " for col_idx, element in enumerate(row):\n",
  4547. " print(\"col_idx\", col_idx, \"element\", element)\n",
  4548. " \n",
  4549. " # 更新矩阵:对每个元素求平方\n",
  4550. " M[row_idx, col_idx] = element ** 2"
  4551. ]
  4552. },
  4553. {
  4554. "cell_type": "code",
  4555. "execution_count": 109,
  4556. "metadata": {},
  4557. "outputs": [
  4558. {
  4559. "data": {
  4560. "text/plain": [
  4561. "array([[ 1, 4],\n",
  4562. " [ 9, 16]])"
  4563. ]
  4564. },
  4565. "execution_count": 109,
  4566. "metadata": {},
  4567. "output_type": "execute_result"
  4568. }
  4569. ],
  4570. "source": [
  4571. "# 现在矩阵里的每一个元素都已经求得平方\n",
  4572. "M"
  4573. ]
  4574. },
  4575. {
  4576. "cell_type": "markdown",
  4577. "metadata": {},
  4578. "source": [
  4579. "## 13. 向量化功能"
  4580. ]
  4581. },
  4582. {
  4583. "cell_type": "markdown",
  4584. "metadata": {},
  4585. "source": [
  4586. "正如前面多次提到的,为了获得良好的性能,我们应该尽量避免对向量和矩阵中的元素进行循环,而应该使用向量化算法。将标量算法转换为向量化算法的第一步是确保我们编写的函数使用向量输入。"
  4587. ]
  4588. },
  4589. {
  4590. "cell_type": "code",
  4591. "execution_count": 220,
  4592. "metadata": {},
  4593. "outputs": [],
  4594. "source": [
  4595. "def Theta(x):\n",
  4596. " \"\"\"\n",
  4597. " Heaviside阶跃函数的标量实现\n",
  4598. " \"\"\"\n",
  4599. " if x >= 0:\n",
  4600. " return 1\n",
  4601. " else:\n",
  4602. " return 0"
  4603. ]
  4604. },
  4605. {
  4606. "cell_type": "code",
  4607. "execution_count": 221,
  4608. "metadata": {},
  4609. "outputs": [
  4610. {
  4611. "ename": "ValueError",
  4612. "evalue": "The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()",
  4613. "output_type": "error",
  4614. "traceback": [
  4615. "\u001b[0;31m-----------------------------------------------------------\u001b[0m",
  4616. "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
  4617. "\u001b[0;32m<ipython-input-221-b49266106206>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mTheta\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  4618. "\u001b[0;32m<ipython-input-220-5990c144f91d>\u001b[0m in \u001b[0;36mTheta\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mHeaviside阶跃函数的标量实现\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \"\"\"\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  4619. "\u001b[0;31mValueError\u001b[0m: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()"
  4620. ]
  4621. }
  4622. ],
  4623. "source": [
  4624. "Theta(np.array([-3,-2,-1,0,1,2,3]))"
  4625. ]
  4626. },
  4627. {
  4628. "cell_type": "markdown",
  4629. "metadata": {},
  4630. "source": [
  4631. "这个操作并不可行因为我们没有写`Theta`函数去解决一个向量输入\n",
  4632. "\n",
  4633. "为了得到向量化的版本,我们可以使用Numpy函数`vectorize`。在许多情况下,它可以自动向量化一个函数:"
  4634. ]
  4635. },
  4636. {
  4637. "cell_type": "code",
  4638. "execution_count": 222,
  4639. "metadata": {},
  4640. "outputs": [],
  4641. "source": [
  4642. "Theta_vec = np.vectorize(Theta)"
  4643. ]
  4644. },
  4645. {
  4646. "cell_type": "code",
  4647. "execution_count": 223,
  4648. "metadata": {},
  4649. "outputs": [
  4650. {
  4651. "data": {
  4652. "text/plain": [
  4653. "array([0, 0, 0, 1, 1, 1, 1])"
  4654. ]
  4655. },
  4656. "execution_count": 223,
  4657. "metadata": {},
  4658. "output_type": "execute_result"
  4659. }
  4660. ],
  4661. "source": [
  4662. "Theta_vec(np.array([-3,-2,-1,0,1,2,3]))"
  4663. ]
  4664. },
  4665. {
  4666. "cell_type": "markdown",
  4667. "metadata": {},
  4668. "source": [
  4669. "我们也可以实现从一开始就接受矢量输入的函数(需要更多的计算,但可能会有更好的性能):"
  4670. ]
  4671. },
  4672. {
  4673. "cell_type": "code",
  4674. "execution_count": 225,
  4675. "metadata": {},
  4676. "outputs": [],
  4677. "source": [
  4678. "def Theta(x):\n",
  4679. " \"\"\"\n",
  4680. " Heaviside阶跃函数的矢量感知实现。\n",
  4681. " \"\"\"\n",
  4682. " return 1 * (x >= 0)"
  4683. ]
  4684. },
  4685. {
  4686. "cell_type": "code",
  4687. "execution_count": 226,
  4688. "metadata": {},
  4689. "outputs": [
  4690. {
  4691. "data": {
  4692. "text/plain": [
  4693. "array([0, 0, 0, 1, 1, 1, 1])"
  4694. ]
  4695. },
  4696. "execution_count": 226,
  4697. "metadata": {},
  4698. "output_type": "execute_result"
  4699. }
  4700. ],
  4701. "source": [
  4702. "Theta(np.array([-3,-2,-1,0,1,2,3]))"
  4703. ]
  4704. },
  4705. {
  4706. "cell_type": "code",
  4707. "execution_count": 227,
  4708. "metadata": {},
  4709. "outputs": [
  4710. {
  4711. "name": "stdout",
  4712. "output_type": "stream",
  4713. "text": [
  4714. "[False False False True True True True]\n"
  4715. ]
  4716. },
  4717. {
  4718. "data": {
  4719. "text/plain": [
  4720. "array([0, 0, 0, 1, 1, 1, 1])"
  4721. ]
  4722. },
  4723. "execution_count": 227,
  4724. "metadata": {},
  4725. "output_type": "execute_result"
  4726. }
  4727. ],
  4728. "source": [
  4729. "a = np.array([-3,-2,-1,0,1,2,3])\n",
  4730. "b = a>=0\n",
  4731. "print(b)\n",
  4732. "b*1"
  4733. ]
  4734. },
  4735. {
  4736. "cell_type": "code",
  4737. "execution_count": 128,
  4738. "metadata": {},
  4739. "outputs": [
  4740. {
  4741. "data": {
  4742. "text/plain": [
  4743. "(0, 1)"
  4744. ]
  4745. },
  4746. "execution_count": 128,
  4747. "metadata": {},
  4748. "output_type": "execute_result"
  4749. }
  4750. ],
  4751. "source": [
  4752. "# 同样适用于标量\n",
  4753. "Theta(-1.2), Theta(2.6)"
  4754. ]
  4755. },
  4756. {
  4757. "cell_type": "markdown",
  4758. "metadata": {},
  4759. "source": [
  4760. "## 14. 在条件中使用数组"
  4761. ]
  4762. },
  4763. {
  4764. "cell_type": "markdown",
  4765. "metadata": {},
  4766. "source": [
  4767. "当在条件中使用数组时,例如`if`语句和其他布尔表达,一个需要用`any`或者`all`,这让数组任何或者所有元素都等于`True`。"
  4768. ]
  4769. },
  4770. {
  4771. "cell_type": "code",
  4772. "execution_count": 228,
  4773. "metadata": {},
  4774. "outputs": [
  4775. {
  4776. "data": {
  4777. "text/plain": [
  4778. "array([[1, 2],\n",
  4779. " [3, 4]])"
  4780. ]
  4781. },
  4782. "execution_count": 228,
  4783. "metadata": {},
  4784. "output_type": "execute_result"
  4785. }
  4786. ],
  4787. "source": [
  4788. "M = np.array([[1, 2], [3, 4]])\n",
  4789. "M"
  4790. ]
  4791. },
  4792. {
  4793. "cell_type": "code",
  4794. "execution_count": 229,
  4795. "metadata": {},
  4796. "outputs": [
  4797. {
  4798. "data": {
  4799. "text/plain": [
  4800. "True"
  4801. ]
  4802. },
  4803. "execution_count": 229,
  4804. "metadata": {},
  4805. "output_type": "execute_result"
  4806. }
  4807. ],
  4808. "source": [
  4809. "(M > 2).any()"
  4810. ]
  4811. },
  4812. {
  4813. "cell_type": "code",
  4814. "execution_count": 230,
  4815. "metadata": {},
  4816. "outputs": [
  4817. {
  4818. "name": "stdout",
  4819. "output_type": "stream",
  4820. "text": [
  4821. "at least one element in M is larger than 2\n"
  4822. ]
  4823. }
  4824. ],
  4825. "source": [
  4826. "if (M > 2).any():\n",
  4827. " print(\"at least one element in M is larger than 2\")\n",
  4828. "else:\n",
  4829. " print(\"no element in M is larger than 2\")"
  4830. ]
  4831. },
  4832. {
  4833. "cell_type": "code",
  4834. "execution_count": 231,
  4835. "metadata": {},
  4836. "outputs": [
  4837. {
  4838. "name": "stdout",
  4839. "output_type": "stream",
  4840. "text": [
  4841. "all elements in M are not larger than 5\n"
  4842. ]
  4843. }
  4844. ],
  4845. "source": [
  4846. "if (M > 5).all():\n",
  4847. " print(\"all elements in M are larger than 5\")\n",
  4848. "else:\n",
  4849. " print(\"all elements in M are not larger than 5\")"
  4850. ]
  4851. },
  4852. {
  4853. "cell_type": "markdown",
  4854. "metadata": {},
  4855. "source": [
  4856. "## 15. 类型转换"
  4857. ]
  4858. },
  4859. {
  4860. "cell_type": "markdown",
  4861. "metadata": {},
  4862. "source": [
  4863. "因为Numpy数组是*静态类型*,数组的类型一旦创建就不会改变。但是我们可以用`astype`函数(参见类似的“asarray”函数)显式地转换一个数组的类型到其他的类型,这总是创建一个新类型的新数组。"
  4864. ]
  4865. },
  4866. {
  4867. "cell_type": "code",
  4868. "execution_count": 232,
  4869. "metadata": {},
  4870. "outputs": [
  4871. {
  4872. "data": {
  4873. "text/plain": [
  4874. "dtype('int64')"
  4875. ]
  4876. },
  4877. "execution_count": 232,
  4878. "metadata": {},
  4879. "output_type": "execute_result"
  4880. }
  4881. ],
  4882. "source": [
  4883. "M.dtype\n"
  4884. ]
  4885. },
  4886. {
  4887. "cell_type": "code",
  4888. "execution_count": 233,
  4889. "metadata": {},
  4890. "outputs": [
  4891. {
  4892. "data": {
  4893. "text/plain": [
  4894. "array([[1., 2.],\n",
  4895. " [3., 4.]])"
  4896. ]
  4897. },
  4898. "execution_count": 233,
  4899. "metadata": {},
  4900. "output_type": "execute_result"
  4901. }
  4902. ],
  4903. "source": [
  4904. "M2 = M.astype(float)\n",
  4905. "\n",
  4906. "M2"
  4907. ]
  4908. },
  4909. {
  4910. "cell_type": "code",
  4911. "execution_count": 234,
  4912. "metadata": {},
  4913. "outputs": [
  4914. {
  4915. "data": {
  4916. "text/plain": [
  4917. "dtype('float64')"
  4918. ]
  4919. },
  4920. "execution_count": 234,
  4921. "metadata": {},
  4922. "output_type": "execute_result"
  4923. }
  4924. ],
  4925. "source": [
  4926. "M2.dtype"
  4927. ]
  4928. },
  4929. {
  4930. "cell_type": "code",
  4931. "execution_count": 235,
  4932. "metadata": {},
  4933. "outputs": [
  4934. {
  4935. "data": {
  4936. "text/plain": [
  4937. "array([[ True, True],\n",
  4938. " [ True, True]])"
  4939. ]
  4940. },
  4941. "execution_count": 235,
  4942. "metadata": {},
  4943. "output_type": "execute_result"
  4944. }
  4945. ],
  4946. "source": [
  4947. "M3 = M.astype(bool)\n",
  4948. "\n",
  4949. "M3"
  4950. ]
  4951. },
  4952. {
  4953. "cell_type": "markdown",
  4954. "metadata": {},
  4955. "source": [
  4956. "## 进一步的阅读"
  4957. ]
  4958. },
  4959. {
  4960. "cell_type": "markdown",
  4961. "metadata": {},
  4962. "source": [
  4963. "* [NumPy 简易教程](https://www.runoob.com/numpy/numpy-tutorial.html)\n",
  4964. "* [NumPy 官方用户指南](https://www.numpy.org.cn/user/)\n",
  4965. "* [NumPy 官方参考手册](https://www.numpy.org.cn/reference/)\n",
  4966. "* [NumPy Tutorial](http://scipy.org/Tentative_NumPy_Tutorial)\n",
  4967. "* [一个针对MATLAB使用者的Numpy教程](http://scipy.org/NumPy_for_Matlab_Users)"
  4968. ]
  4969. }
  4970. ],
  4971. "metadata": {
  4972. "kernelspec": {
  4973. "display_name": "Python 3",
  4974. "language": "python",
  4975. "name": "python3"
  4976. },
  4977. "language_info": {
  4978. "codemirror_mode": {
  4979. "name": "ipython",
  4980. "version": 3
  4981. },
  4982. "file_extension": ".py",
  4983. "mimetype": "text/x-python",
  4984. "name": "python",
  4985. "nbconvert_exporter": "python",
  4986. "pygments_lexer": "ipython3",
  4987. "version": "3.6.9"
  4988. }
  4989. },
  4990. "nbformat": 4,
  4991. "nbformat_minor": 1
  4992. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。