You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

2_numpy.ipynb 2.1 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "## 数值计算\n",
  8. "\n",
  9. "\n",
  10. "### (1)对于一个存在在数组,如何添加一个用0填充的边界?\n",
  11. "例如对一个二维矩阵\n",
  12. "```\n",
  13. "10, 34, 54, 23\n",
  14. "31, 87, 53, 68\n",
  15. "98, 49, 25, 11\n",
  16. "84, 32, 67, 88\n",
  17. "```\n",
  18. "\n",
  19. "变换成\n",
  20. "```\n",
  21. " 0, 0, 0, 0, 0, 0\n",
  22. " 0, 10, 34, 54, 23, 0\n",
  23. " 0, 31, 87, 53, 68, 0\n",
  24. " 0, 98, 49, 25, 11, 0\n",
  25. " 0, 84, 32, 67, 88, 0\n",
  26. " 0, 0, 0, 0, 0, 0\n",
  27. "```\n",
  28. "\n",
  29. "### (2) 创建一个 5x5的矩阵,并设置值1,2,3,4落在其对角线下方位置\n",
  30. "\n",
  31. "\n",
  32. "### (3) 创建一个8x8 的矩阵,并且设置成国际象棋棋盘样式(黑可以用0, 白可以用1)\n",
  33. "\n",
  34. "\n",
  35. "### (4)求解线性方程组\n",
  36. "\n",
  37. "给定一个方程组,如何求出其的方程解。有多种方法,分析各种方法的优缺点(最简单的方式是消元方)。\n",
  38. "\n",
  39. "例如\n",
  40. "```\n",
  41. "3x + 4y + 2z = 10\n",
  42. "5x + 3y + 4z = 14\n",
  43. "8x + 2y + 7z = 20\n",
  44. "```\n",
  45. "\n",
  46. "编程写出求解的程序\n",
  47. "\n",
  48. "\n",
  49. "### (5) 翻转一个数组(第一个元素变成最后一个)\n",
  50. "\n",
  51. "\n",
  52. "### (6) 产生一个十乘十随机数组,并且找出最大和最小值\n",
  53. "\n",
  54. "\n",
  55. "## Reference\n",
  56. "* [100 numpy exercises](https://github.com/rougier/numpy-100)"
  57. ]
  58. }
  59. ],
  60. "metadata": {
  61. "kernelspec": {
  62. "display_name": "Python 3",
  63. "language": "python",
  64. "name": "python3"
  65. },
  66. "language_info": {
  67. "codemirror_mode": {
  68. "name": "ipython",
  69. "version": 3
  70. },
  71. "file_extension": ".py",
  72. "mimetype": "text/x-python",
  73. "name": "python",
  74. "nbconvert_exporter": "python",
  75. "pygments_lexer": "ipython3",
  76. "version": "3.5.2"
  77. },
  78. "main_language": "python"
  79. },
  80. "nbformat": 4,
  81. "nbformat_minor": 2
  82. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。

Contributors (1)