You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dynamic-graph.ipynb 9.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# 动态图和静态图\n",
  8. "目前神经网络框架分为[静态图框架和动态图框架](https://blog.csdn.net/qq_36653505/article/details/87875279),PyTorch 和 TensorFlow、Caffe 等框架最大的区别就是他们拥有不同的计算图表现形式。 TensorFlow 使用静态图,这意味着我们先定义计算图,然后不断使用它,而在 PyTorch 中,每次都会重新构建一个新的计算图。通过这次课程,我们会了解静态图和动态图之间的优缺点。\n",
  9. "\n",
  10. "对于使用者来说,两种形式的计算图有着非常大的区别,同时静态图和动态图都有他们各自的优点,比如动态图比较方便debug,使用者能够用任何他们喜欢的方式进行debug,同时非常直观,而静态图是通过先定义后运行的方式,之后再次运行的时候就不再需要重新构建计算图,所以速度会比动态图更快。"
  11. ]
  12. },
  13. {
  14. "cell_type": "markdown",
  15. "metadata": {},
  16. "source": [
  17. "![](https://ws3.sinaimg.cn/large/006tNc79ly1fmai482qumg30rs0fmq6e.gif)"
  18. ]
  19. },
  20. {
  21. "cell_type": "markdown",
  22. "metadata": {},
  23. "source": [
  24. "下面我们比较 while 循环语句在 TensorFlow 和 PyTorch 中的定义"
  25. ]
  26. },
  27. {
  28. "cell_type": "markdown",
  29. "metadata": {},
  30. "source": [
  31. "## TensorFlow"
  32. ]
  33. },
  34. {
  35. "cell_type": "code",
  36. "execution_count": 15,
  37. "metadata": {},
  38. "outputs": [],
  39. "source": [
  40. "# tensorflow\n",
  41. "import tensorflow as tf\n",
  42. "\n",
  43. "first_counter = tf.constant(0)\n",
  44. "second_counter = tf.constant(10)"
  45. ]
  46. },
  47. {
  48. "cell_type": "code",
  49. "execution_count": 16,
  50. "metadata": {},
  51. "outputs": [],
  52. "source": [
  53. "def cond(first_counter, second_counter, *args):\n",
  54. " return first_counter < second_counter\n",
  55. "\n",
  56. "def body(first_counter, second_counter):\n",
  57. " first_counter = tf.add(first_counter, 2)\n",
  58. " second_counter = tf.add(second_counter, 1)\n",
  59. " return first_counter, second_counter"
  60. ]
  61. },
  62. {
  63. "cell_type": "code",
  64. "execution_count": 17,
  65. "metadata": {},
  66. "outputs": [],
  67. "source": [
  68. "c1, c2 = tf.while_loop(cond, body, [first_counter, second_counter])"
  69. ]
  70. },
  71. {
  72. "cell_type": "code",
  73. "execution_count": 21,
  74. "metadata": {},
  75. "outputs": [
  76. {
  77. "ename": "RuntimeError",
  78. "evalue": "The Session graph is empty. Add operations to the graph before calling run().",
  79. "output_type": "error",
  80. "traceback": [
  81. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  82. "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
  83. "\u001b[0;32m<ipython-input-21-430d26a59053>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSession\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msess\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mcounter_1_res\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcounter_2_res\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mc1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  84. "\u001b[0;32m~/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 956\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 957\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 958\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 959\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 960\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  85. "\u001b[0;32m~/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1104\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Attempted to use a closed Session.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1105\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgraph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mversion\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1106\u001b[0;31m raise RuntimeError('The Session graph is empty. Add operations to the '\n\u001b[0m\u001b[1;32m 1107\u001b[0m 'graph before calling run().')\n\u001b[1;32m 1108\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
  86. "\u001b[0;31mRuntimeError\u001b[0m: The Session graph is empty. Add operations to the graph before calling run()."
  87. ]
  88. }
  89. ],
  90. "source": [
  91. "with tf.compat.v1.Session() as sess:\n",
  92. " counter_1_res, counter_2_res = sess.run([c1, c2])"
  93. ]
  94. },
  95. {
  96. "cell_type": "code",
  97. "execution_count": 19,
  98. "metadata": {},
  99. "outputs": [
  100. {
  101. "ename": "NameError",
  102. "evalue": "name 'counter_1_res' is not defined",
  103. "output_type": "error",
  104. "traceback": [
  105. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  106. "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
  107. "\u001b[0;32m<ipython-input-19-62b1e84b7d43>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcounter_1_res\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcounter_2_res\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  108. "\u001b[0;31mNameError\u001b[0m: name 'counter_1_res' is not defined"
  109. ]
  110. }
  111. ],
  112. "source": [
  113. "print(counter_1_res)\n",
  114. "print(counter_2_res)"
  115. ]
  116. },
  117. {
  118. "cell_type": "markdown",
  119. "metadata": {},
  120. "source": [
  121. "可以看到 TensorFlow 需要将整个图构建成静态的,换句话说,每次运行的时候图都是一样的,是不能够改变的,所以不能直接使用 Python 的 while 循环语句,需要使用辅助函数 `tf.while_loop` 写成 TensorFlow 内部的形式\n",
  122. "\n",
  123. "这是非常反直觉的,学习成本也是比较高的\n",
  124. "\n",
  125. "下面我们来看看 PyTorch 的动态图机制,这使得我们能够使用 Python 的 while 写循环,非常方便"
  126. ]
  127. },
  128. {
  129. "cell_type": "markdown",
  130. "metadata": {},
  131. "source": [
  132. "## PyTorch"
  133. ]
  134. },
  135. {
  136. "cell_type": "code",
  137. "execution_count": 6,
  138. "metadata": {
  139. "collapsed": true
  140. },
  141. "outputs": [],
  142. "source": [
  143. "# pytorch\n",
  144. "import torch\n",
  145. "first_counter = torch.Tensor([0])\n",
  146. "second_counter = torch.Tensor([10])"
  147. ]
  148. },
  149. {
  150. "cell_type": "code",
  151. "execution_count": 11,
  152. "metadata": {},
  153. "outputs": [],
  154. "source": [
  155. "while (first_counter < second_counter)[0]:\n",
  156. " first_counter += 2\n",
  157. " second_counter += 1"
  158. ]
  159. },
  160. {
  161. "cell_type": "code",
  162. "execution_count": 12,
  163. "metadata": {},
  164. "outputs": [
  165. {
  166. "name": "stdout",
  167. "output_type": "stream",
  168. "text": [
  169. "\n",
  170. " 20\n",
  171. "[torch.FloatTensor of size 1]\n",
  172. "\n",
  173. "\n",
  174. " 20\n",
  175. "[torch.FloatTensor of size 1]\n",
  176. "\n"
  177. ]
  178. }
  179. ],
  180. "source": [
  181. "print(first_counter)\n",
  182. "print(second_counter)"
  183. ]
  184. },
  185. {
  186. "cell_type": "markdown",
  187. "metadata": {},
  188. "source": [
  189. "可以看到 PyTorch 的写法跟 Python 的写法是完全一致的,没有任何额外的学习成本\n",
  190. "\n",
  191. "上面的例子展示如何使用静态图和动态图构建 while 循环,看起来动态图的方式更加简单且直观,你觉得呢?"
  192. ]
  193. }
  194. ],
  195. "metadata": {
  196. "kernelspec": {
  197. "display_name": "Python 3",
  198. "language": "python",
  199. "name": "python3"
  200. },
  201. "language_info": {
  202. "codemirror_mode": {
  203. "name": "ipython",
  204. "version": 3
  205. },
  206. "file_extension": ".py",
  207. "mimetype": "text/x-python",
  208. "name": "python",
  209. "nbconvert_exporter": "python",
  210. "pygments_lexer": "ipython3",
  211. "version": "3.6.8"
  212. }
  213. },
  214. "nbformat": 4,
  215. "nbformat_minor": 2
  216. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。