You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

4_Data_Structure_2.ipynb 25 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# 数据结构2\n",
  8. "\n",
  9. "## 1. 字符串"
  10. ]
  11. },
  12. {
  13. "cell_type": "markdown",
  14. "metadata": {},
  15. "source": [
  16. "字符串是基于文本的有序数据,用单/双/三重引号括起来表示。"
  17. ]
  18. },
  19. {
  20. "cell_type": "code",
  21. "execution_count": 2,
  22. "metadata": {},
  23. "outputs": [],
  24. "source": [
  25. "String0 = 'Taj Mahal is beautiful'\n",
  26. "String1 = \"Taj Mahal is beautiful\"\n",
  27. "String2 = '''Taj Mahal\n",
  28. "is\n",
  29. "beautiful'''"
  30. ]
  31. },
  32. {
  33. "cell_type": "code",
  34. "execution_count": 2,
  35. "metadata": {},
  36. "outputs": [
  37. {
  38. "name": "stdout",
  39. "output_type": "stream",
  40. "text": [
  41. "Taj Mahal is beautiful <class 'str'>\n",
  42. "Taj Mahal is beautiful <class 'str'>\n",
  43. "Taj Mahal\n",
  44. "is\n",
  45. "beautiful <class 'str'>\n"
  46. ]
  47. }
  48. ],
  49. "source": [
  50. "print(String0, type(String0))\n",
  51. "print(String1, type(String1))\n",
  52. "print(String2, type(String2))"
  53. ]
  54. },
  55. {
  56. "cell_type": "markdown",
  57. "metadata": {},
  58. "source": [
  59. "字符串索引和分段类似于前面详细解释过的列表。"
  60. ]
  61. },
  62. {
  63. "cell_type": "code",
  64. "execution_count": 3,
  65. "metadata": {},
  66. "outputs": [
  67. {
  68. "name": "stdout",
  69. "output_type": "stream",
  70. "text": [
  71. "M\n",
  72. "Mahal is beautiful\n"
  73. ]
  74. }
  75. ],
  76. "source": [
  77. "print(String0[4])\n",
  78. "print(String0[4:])"
  79. ]
  80. },
  81. {
  82. "cell_type": "markdown",
  83. "metadata": {},
  84. "source": [
  85. "### 1.1 内置函数"
  86. ]
  87. },
  88. {
  89. "cell_type": "markdown",
  90. "metadata": {},
  91. "source": [
  92. "**find( )** 函数返回要在字符串中找到的给定数据的索引值。如果没有找到它,它返回 **-1**。记住不要将返回的-1与反向索引值混淆。"
  93. ]
  94. },
  95. {
  96. "cell_type": "code",
  97. "execution_count": 3,
  98. "metadata": {},
  99. "outputs": [
  100. {
  101. "name": "stdout",
  102. "output_type": "stream",
  103. "text": [
  104. "Taj Mahal is beautiful\n",
  105. "7\n",
  106. "-1\n"
  107. ]
  108. }
  109. ],
  110. "source": [
  111. "print(String0)\n",
  112. "print(String0.find('al'))\n",
  113. "print(String0.find('am'))"
  114. ]
  115. },
  116. {
  117. "cell_type": "markdown",
  118. "metadata": {},
  119. "source": [
  120. "返回的索引值是输入数据中第一个元素的索引。"
  121. ]
  122. },
  123. {
  124. "cell_type": "code",
  125. "execution_count": 4,
  126. "metadata": {},
  127. "outputs": [
  128. {
  129. "name": "stdout",
  130. "output_type": "stream",
  131. "text": [
  132. "a\n"
  133. ]
  134. }
  135. ],
  136. "source": [
  137. "print(String0[7])"
  138. ]
  139. },
  140. {
  141. "cell_type": "markdown",
  142. "metadata": {},
  143. "source": [
  144. "还可以输入**find()** 函数,在它们之间搜索索引值。"
  145. ]
  146. },
  147. {
  148. "cell_type": "code",
  149. "execution_count": 5,
  150. "metadata": {},
  151. "outputs": [
  152. {
  153. "name": "stdout",
  154. "output_type": "stream",
  155. "text": [
  156. "2\n",
  157. "2\n"
  158. ]
  159. }
  160. ],
  161. "source": [
  162. "print(String0.find('j',1))\n",
  163. "print(String0.find('j',1,3))"
  164. ]
  165. },
  166. {
  167. "cell_type": "markdown",
  168. "metadata": {},
  169. "source": [
  170. "**capitalize( )** 用于将字符串中的第一个元素大写。"
  171. ]
  172. },
  173. {
  174. "cell_type": "code",
  175. "execution_count": 6,
  176. "metadata": {},
  177. "outputs": [
  178. {
  179. "name": "stdout",
  180. "output_type": "stream",
  181. "text": [
  182. "Observe the first letter in this sentence. can you change this sentence\n"
  183. ]
  184. }
  185. ],
  186. "source": [
  187. "String3 = 'observe the first letter in this sentence. can you change this sentence'\n",
  188. "print(String3.capitalize())"
  189. ]
  190. },
  191. {
  192. "cell_type": "markdown",
  193. "metadata": {},
  194. "source": [
  195. "**center( )** 用于通过指定字段宽度将字符串居中对齐。"
  196. ]
  197. },
  198. {
  199. "cell_type": "code",
  200. "execution_count": 7,
  201. "metadata": {},
  202. "outputs": [
  203. {
  204. "data": {
  205. "text/plain": [
  206. "' Taj Mahal is beautiful '"
  207. ]
  208. },
  209. "execution_count": 7,
  210. "metadata": {},
  211. "output_type": "execute_result"
  212. }
  213. ],
  214. "source": [
  215. "String0.center(70)"
  216. ]
  217. },
  218. {
  219. "cell_type": "markdown",
  220. "metadata": {},
  221. "source": [
  222. "One can also fill the left out spaces with any other character."
  223. ]
  224. },
  225. {
  226. "cell_type": "code",
  227. "execution_count": 8,
  228. "metadata": {},
  229. "outputs": [
  230. {
  231. "data": {
  232. "text/plain": [
  233. "'------------------------Taj Mahal is beautiful------------------------'"
  234. ]
  235. },
  236. "execution_count": 8,
  237. "metadata": {},
  238. "output_type": "execute_result"
  239. }
  240. ],
  241. "source": [
  242. "String0.center(70,'-')"
  243. ]
  244. },
  245. {
  246. "cell_type": "markdown",
  247. "metadata": {},
  248. "source": [
  249. "**zfill( )** 通过指定字段宽度来填充零。"
  250. ]
  251. },
  252. {
  253. "cell_type": "code",
  254. "execution_count": 9,
  255. "metadata": {},
  256. "outputs": [
  257. {
  258. "data": {
  259. "text/plain": [
  260. "'00000000Taj Mahal is beautiful'"
  261. ]
  262. },
  263. "execution_count": 9,
  264. "metadata": {},
  265. "output_type": "execute_result"
  266. }
  267. ],
  268. "source": [
  269. "String0.zfill(30)"
  270. ]
  271. },
  272. {
  273. "cell_type": "markdown",
  274. "metadata": {},
  275. "source": [
  276. "**expandtabs( )** 允许您更改制表符的间距。'\\t'默认设置为8个空格。"
  277. ]
  278. },
  279. {
  280. "cell_type": "code",
  281. "execution_count": 11,
  282. "metadata": {},
  283. "outputs": [
  284. {
  285. "name": "stdout",
  286. "output_type": "stream",
  287. "text": [
  288. "h\te\tl\tl\to\n",
  289. "h e l l o\n",
  290. "h e l l o\n"
  291. ]
  292. }
  293. ],
  294. "source": [
  295. "s = 'h\\te\\tl\\tl\\to'\n",
  296. "print(s)\n",
  297. "print(s.expandtabs(1))\n",
  298. "print(s.expandtabs(4))"
  299. ]
  300. },
  301. {
  302. "cell_type": "markdown",
  303. "metadata": {
  304. "collapsed": true
  305. },
  306. "source": [
  307. "**index( )** 和 **find( )** 函数的工作方式相同,唯一的区别在于 **find( )** 返回'-1',当输入元素在字符串中没有找到,但是**index( )** 函数会抛出一个ValueError。"
  308. ]
  309. },
  310. {
  311. "cell_type": "code",
  312. "execution_count": 13,
  313. "metadata": {},
  314. "outputs": [
  315. {
  316. "name": "stdout",
  317. "output_type": "stream",
  318. "text": [
  319. "0\n",
  320. "4\n"
  321. ]
  322. },
  323. {
  324. "ename": "ValueError",
  325. "evalue": "substring not found",
  326. "output_type": "error",
  327. "traceback": [
  328. "\u001b[0;31m------------------------------------------\u001b[0m",
  329. "\u001b[0;31mValueError\u001b[0mTraceback (most recent call last)",
  330. "\u001b[0;32m<ipython-input-13-a7d6b97b4839>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Taj'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Mahal'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Mahal'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  331. "\u001b[0;31mValueError\u001b[0m: substring not found"
  332. ]
  333. }
  334. ],
  335. "source": [
  336. "print(String0.index('Taj'))\n",
  337. "print(String0.index('Mahal',0))\n",
  338. "print(String0.index('Mahal',10,20))"
  339. ]
  340. },
  341. {
  342. "cell_type": "markdown",
  343. "metadata": {},
  344. "source": [
  345. "**endswith( )** 函数用于检查给定字符串是否以作为输入的特定字符结尾。"
  346. ]
  347. },
  348. {
  349. "cell_type": "code",
  350. "execution_count": 14,
  351. "metadata": {},
  352. "outputs": [
  353. {
  354. "name": "stdout",
  355. "output_type": "stream",
  356. "text": [
  357. "False\n"
  358. ]
  359. }
  360. ],
  361. "source": [
  362. "print(String0.endswith('y'))"
  363. ]
  364. },
  365. {
  366. "cell_type": "markdown",
  367. "metadata": {},
  368. "source": [
  369. "还可以指定开始和停止索引值。"
  370. ]
  371. },
  372. {
  373. "cell_type": "code",
  374. "execution_count": 15,
  375. "metadata": {},
  376. "outputs": [
  377. {
  378. "name": "stdout",
  379. "output_type": "stream",
  380. "text": [
  381. "True\n",
  382. "True\n"
  383. ]
  384. }
  385. ],
  386. "source": [
  387. "print(String0.endswith('l',0))\n",
  388. "print(String0.endswith('M',0,5))"
  389. ]
  390. },
  391. {
  392. "cell_type": "markdown",
  393. "metadata": {},
  394. "source": [
  395. "**count( )** 函数计算给定字符串中的字符数。也可以指定开始和停止索引或将其留空。(这些是隐式参数,将在函数中处理)"
  396. ]
  397. },
  398. {
  399. "cell_type": "code",
  400. "execution_count": 16,
  401. "metadata": {},
  402. "outputs": [
  403. {
  404. "name": "stdout",
  405. "output_type": "stream",
  406. "text": [
  407. "4\n",
  408. "2\n"
  409. ]
  410. }
  411. ],
  412. "source": [
  413. "print(String0.count('a',0))\n",
  414. "print(String0.count('a',5,10))"
  415. ]
  416. },
  417. {
  418. "cell_type": "markdown",
  419. "metadata": {},
  420. "source": [
  421. "**join( )** 函数在输入字符串的元素之间添加一个字符。"
  422. ]
  423. },
  424. {
  425. "cell_type": "code",
  426. "execution_count": 17,
  427. "metadata": {},
  428. "outputs": [
  429. {
  430. "data": {
  431. "text/plain": [
  432. "'*a_a-'"
  433. ]
  434. },
  435. "execution_count": 17,
  436. "metadata": {},
  437. "output_type": "execute_result"
  438. }
  439. ],
  440. "source": [
  441. "'a'.join('*_-')"
  442. ]
  443. },
  444. {
  445. "cell_type": "code",
  446. "execution_count": 18,
  447. "metadata": {},
  448. "outputs": [
  449. {
  450. "data": {
  451. "text/plain": [
  452. "'1\\n2'"
  453. ]
  454. },
  455. "execution_count": 18,
  456. "metadata": {},
  457. "output_type": "execute_result"
  458. }
  459. ],
  460. "source": [
  461. "'\\n'.join(['1', '2'])"
  462. ]
  463. },
  464. {
  465. "cell_type": "markdown",
  466. "metadata": {},
  467. "source": [
  468. "'*_-' 是输入字符串而字符'a'被添加在每一个元素之间。"
  469. ]
  470. },
  471. {
  472. "cell_type": "markdown",
  473. "metadata": {},
  474. "source": [
  475. "**join( )** 函数也可以被用来将列表转化为字符串。"
  476. ]
  477. },
  478. {
  479. "cell_type": "code",
  480. "execution_count": 19,
  481. "metadata": {},
  482. "outputs": [
  483. {
  484. "name": "stdout",
  485. "output_type": "stream",
  486. "text": [
  487. "['T', 'a', 'j', ' ', 'M', 'a', 'h', 'a', 'l', ' ', 'i', 's', ' ', 'b', 'e', 'a', 'u', 't', 'i', 'f', 'u', 'l']\n",
  488. "Taj Mahal is beautiful\n"
  489. ]
  490. }
  491. ],
  492. "source": [
  493. "a = list(String0)\n",
  494. "print(a)\n",
  495. "b = ''.join(a)\n",
  496. "print(b)"
  497. ]
  498. },
  499. {
  500. "cell_type": "markdown",
  501. "metadata": {},
  502. "source": [
  503. "在将它转化成字符串之前,**join( )** 函数可以被用来在列表元素中插入任意的字符。"
  504. ]
  505. },
  506. {
  507. "cell_type": "code",
  508. "execution_count": 20,
  509. "metadata": {},
  510. "outputs": [
  511. {
  512. "name": "stdout",
  513. "output_type": "stream",
  514. "text": [
  515. " /i/s/ /b/e/a/u/t/i/f/u/l\n"
  516. ]
  517. }
  518. ],
  519. "source": [
  520. "c = '/'.join(a)[18:]\n",
  521. "print(c)"
  522. ]
  523. },
  524. {
  525. "cell_type": "markdown",
  526. "metadata": {},
  527. "source": [
  528. "**split( )** 函数被用来将一个字符串转化为列表。把它想成与**join()** 相反地函数。"
  529. ]
  530. },
  531. {
  532. "cell_type": "code",
  533. "execution_count": 21,
  534. "metadata": {},
  535. "outputs": [
  536. {
  537. "name": "stdout",
  538. "output_type": "stream",
  539. "text": [
  540. "[' ', 'i', 's', ' ', 'b', 'e', 'a', 'u', 't', 'i', 'f', 'u', 'l']\n"
  541. ]
  542. }
  543. ],
  544. "source": [
  545. "d = c.split('/')\n",
  546. "print(d)"
  547. ]
  548. },
  549. {
  550. "cell_type": "markdown",
  551. "metadata": {},
  552. "source": [
  553. "在 **split( )** 函数中,还可以指定分割字符串的次数,或者新返回列表应该包含的元素数量。元素的数量总是比指定的数量多1,这是因为它被分割了指定的次数。"
  554. ]
  555. },
  556. {
  557. "cell_type": "code",
  558. "execution_count": 22,
  559. "metadata": {},
  560. "outputs": [
  561. {
  562. "name": "stdout",
  563. "output_type": "stream",
  564. "text": [
  565. "[' ', 'i', 's', ' /b/e/a/u/t/i/f/u/l']\n",
  566. "4\n"
  567. ]
  568. }
  569. ],
  570. "source": [
  571. "e = c.split('/',3)\n",
  572. "print(e)\n",
  573. "print(len(e))"
  574. ]
  575. },
  576. {
  577. "cell_type": "markdown",
  578. "metadata": {},
  579. "source": [
  580. "**lower( )** 将任何大写字母转换为小写字母。"
  581. ]
  582. },
  583. {
  584. "cell_type": "code",
  585. "execution_count": 23,
  586. "metadata": {},
  587. "outputs": [
  588. {
  589. "name": "stdout",
  590. "output_type": "stream",
  591. "text": [
  592. "Taj Mahal is beautiful\n",
  593. "taj mahal is beautiful\n"
  594. ]
  595. }
  596. ],
  597. "source": [
  598. "print(String0)\n",
  599. "print(String0.lower())"
  600. ]
  601. },
  602. {
  603. "cell_type": "markdown",
  604. "metadata": {},
  605. "source": [
  606. "**upper( )** 将任何小写字母转换为大写字母。"
  607. ]
  608. },
  609. {
  610. "cell_type": "code",
  611. "execution_count": 24,
  612. "metadata": {},
  613. "outputs": [
  614. {
  615. "data": {
  616. "text/plain": [
  617. "'TAJ MAHAL IS BEAUTIFUL'"
  618. ]
  619. },
  620. "execution_count": 24,
  621. "metadata": {},
  622. "output_type": "execute_result"
  623. }
  624. ],
  625. "source": [
  626. "String0.upper()"
  627. ]
  628. },
  629. {
  630. "cell_type": "markdown",
  631. "metadata": {},
  632. "source": [
  633. "**replace( )** 函数将该元素替换为另一个元素。"
  634. ]
  635. },
  636. {
  637. "cell_type": "code",
  638. "execution_count": 25,
  639. "metadata": {},
  640. "outputs": [
  641. {
  642. "data": {
  643. "text/plain": [
  644. "'Bengaluru is beautiful'"
  645. ]
  646. },
  647. "execution_count": 25,
  648. "metadata": {},
  649. "output_type": "execute_result"
  650. }
  651. ],
  652. "source": [
  653. "String0.replace('Taj Mahal','Bengaluru')"
  654. ]
  655. },
  656. {
  657. "cell_type": "markdown",
  658. "metadata": {},
  659. "source": [
  660. "**strip( )** 函数用于从右端和左端删除不需要的元素。"
  661. ]
  662. },
  663. {
  664. "cell_type": "code",
  665. "execution_count": 27,
  666. "metadata": {},
  667. "outputs": [],
  668. "source": [
  669. "f = ' hello '"
  670. ]
  671. },
  672. {
  673. "cell_type": "markdown",
  674. "metadata": {},
  675. "source": [
  676. "如果没有指定字符,那么它将删除数据左边和右边的所有空格。"
  677. ]
  678. },
  679. {
  680. "cell_type": "code",
  681. "execution_count": 28,
  682. "metadata": {},
  683. "outputs": [
  684. {
  685. "data": {
  686. "text/plain": [
  687. "'hello'"
  688. ]
  689. },
  690. "execution_count": 28,
  691. "metadata": {},
  692. "output_type": "execute_result"
  693. }
  694. ],
  695. "source": [
  696. "f.strip()"
  697. ]
  698. },
  699. {
  700. "cell_type": "markdown",
  701. "metadata": {},
  702. "source": [
  703. "**strip( )** 函数,当指定字符时,如果该字符出现在指定字符串的两端,则删除该字符。"
  704. ]
  705. },
  706. {
  707. "cell_type": "code",
  708. "execution_count": 29,
  709. "metadata": {},
  710. "outputs": [],
  711. "source": [
  712. "f = ' ***----hello---******* '"
  713. ]
  714. },
  715. {
  716. "cell_type": "code",
  717. "execution_count": 30,
  718. "metadata": {},
  719. "outputs": [
  720. {
  721. "data": {
  722. "text/plain": [
  723. "' ***----hello---******* '"
  724. ]
  725. },
  726. "execution_count": 30,
  727. "metadata": {},
  728. "output_type": "execute_result"
  729. }
  730. ],
  731. "source": [
  732. "f.strip('*')"
  733. ]
  734. },
  735. {
  736. "cell_type": "markdown",
  737. "metadata": {},
  738. "source": [
  739. "必须删除星号,但没有。这是因为在左边和右边都有一个空格。在strip函数中。字符需要按照它们出现的特定顺序输入。"
  740. ]
  741. },
  742. {
  743. "cell_type": "code",
  744. "execution_count": 31,
  745. "metadata": {},
  746. "outputs": [
  747. {
  748. "name": "stdout",
  749. "output_type": "stream",
  750. "text": [
  751. "----hello---\n",
  752. "hello\n"
  753. ]
  754. }
  755. ],
  756. "source": [
  757. "print(f.strip(' *'))\n",
  758. "print(f.strip(' *-'))"
  759. ]
  760. },
  761. {
  762. "cell_type": "markdown",
  763. "metadata": {},
  764. "source": [
  765. "**lstrip( )** 和 **rstrip( )** 函数具有与strip函数相同的功能,但唯一的区别是**lstrip()** 只删除左边的内容,而**rstrip()** 只删除右边的内容。"
  766. ]
  767. },
  768. {
  769. "cell_type": "code",
  770. "execution_count": 32,
  771. "metadata": {},
  772. "outputs": [
  773. {
  774. "name": "stdout",
  775. "output_type": "stream",
  776. "text": [
  777. "----hello---******* \n",
  778. " ***----hello---\n"
  779. ]
  780. }
  781. ],
  782. "source": [
  783. "print(f.lstrip(' *'))\n",
  784. "print(f.rstrip(' *'))"
  785. ]
  786. },
  787. {
  788. "cell_type": "markdown",
  789. "metadata": {},
  790. "source": [
  791. "## 2. 词典"
  792. ]
  793. },
  794. {
  795. "cell_type": "markdown",
  796. "metadata": {},
  797. "source": [
  798. "词典更像数据库,因为在这里你可以用用户定义的字符串索引特定的序列。"
  799. ]
  800. },
  801. {
  802. "cell_type": "markdown",
  803. "metadata": {},
  804. "source": [
  805. "为了定义一个词典,让一个变量和{ }或dict()相等。"
  806. ]
  807. },
  808. {
  809. "cell_type": "code",
  810. "execution_count": 34,
  811. "metadata": {},
  812. "outputs": [
  813. {
  814. "name": "stdout",
  815. "output_type": "stream",
  816. "text": [
  817. "<class 'dict'> <class 'dict'>\n"
  818. ]
  819. }
  820. ],
  821. "source": [
  822. "d0 = {}\n",
  823. "d1 = dict()\n",
  824. "print(type(d0), type(d1))"
  825. ]
  826. },
  827. {
  828. "cell_type": "markdown",
  829. "metadata": {},
  830. "source": [
  831. "词典的工作方式有点像列表,但增加了分配自己索引样式的功能。"
  832. ]
  833. },
  834. {
  835. "cell_type": "code",
  836. "execution_count": 35,
  837. "metadata": {},
  838. "outputs": [
  839. {
  840. "name": "stdout",
  841. "output_type": "stream",
  842. "text": [
  843. "{'One': 1, 'OneTwo': 12}\n"
  844. ]
  845. }
  846. ],
  847. "source": [
  848. "d0['One'] = 1\n",
  849. "d0['OneTwo'] = 12 \n",
  850. "print(d0)"
  851. ]
  852. },
  853. {
  854. "cell_type": "code",
  855. "execution_count": 36,
  856. "metadata": {},
  857. "outputs": [
  858. {
  859. "name": "stdout",
  860. "output_type": "stream",
  861. "text": [
  862. "{'key1': 1, 'key2': [1, 2, 4], 3: (1, 4, 6)}\n"
  863. ]
  864. }
  865. ],
  866. "source": [
  867. "d1 = {\"key1\":1, \"key2\":[1,2,4], 3:(1, 4, 6)}\n",
  868. "print(d1)"
  869. ]
  870. },
  871. {
  872. "cell_type": "markdown",
  873. "metadata": {},
  874. "source": [
  875. "这就是字典的样子。现在你可以通过设为'One'的索引值来访问'1'了"
  876. ]
  877. },
  878. {
  879. "cell_type": "code",
  880. "execution_count": 37,
  881. "metadata": {},
  882. "outputs": [
  883. {
  884. "name": "stdout",
  885. "output_type": "stream",
  886. "text": [
  887. "1\n"
  888. ]
  889. }
  890. ],
  891. "source": [
  892. "print(d0['One'])"
  893. ]
  894. },
  895. {
  896. "cell_type": "markdown",
  897. "metadata": {},
  898. "source": [
  899. "两个相关的列表可以合并成一个字典。"
  900. ]
  901. },
  902. {
  903. "cell_type": "code",
  904. "execution_count": 38,
  905. "metadata": {},
  906. "outputs": [],
  907. "source": [
  908. "names = ['One', 'Two', 'Three', 'Four', 'Five']\n",
  909. "numbers = [1, 2, 3, 4, 5]"
  910. ]
  911. },
  912. {
  913. "cell_type": "markdown",
  914. "metadata": {},
  915. "source": [
  916. "**zip( )** 函数用来结合两个列表。"
  917. ]
  918. },
  919. {
  920. "cell_type": "code",
  921. "execution_count": 39,
  922. "metadata": {},
  923. "outputs": [
  924. {
  925. "name": "stdout",
  926. "output_type": "stream",
  927. "text": [
  928. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  929. ]
  930. }
  931. ],
  932. "source": [
  933. "d2 = zip(names,numbers)\n",
  934. "print(dict(d2))"
  935. ]
  936. },
  937. {
  938. "cell_type": "code",
  939. "execution_count": 41,
  940. "metadata": {},
  941. "outputs": [
  942. {
  943. "name": "stdout",
  944. "output_type": "stream",
  945. "text": [
  946. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  947. ]
  948. }
  949. ],
  950. "source": [
  951. "d3 = {names[i]:numbers[i] for i in range(len(names))}\n",
  952. "print(d3)"
  953. ]
  954. },
  955. {
  956. "cell_type": "markdown",
  957. "metadata": {},
  958. "source": [
  959. "这两个列表组合成一个列表,每个元素都与元组中来自另一个列表的各自元素相连。元组,因为它是被分配的,而且值不应该改变。\n",
  960. "\n",
  961. "进一步地,为了将上面的内容转化为词典。我们可以使用 **dict( )** 函数。"
  962. ]
  963. },
  964. {
  965. "cell_type": "code",
  966. "execution_count": 5,
  967. "metadata": {},
  968. "outputs": [
  969. {
  970. "name": "stdout",
  971. "output_type": "stream",
  972. "text": [
  973. "{'One': 1, 'Four': 4, 'Three': 3, 'Five': 5, 'Two': 2}\n"
  974. ]
  975. }
  976. ],
  977. "source": [
  978. "d2 = zip(names,numbers)\n",
  979. "\n",
  980. "a1 = dict(d2)\n",
  981. "print(a1)"
  982. ]
  983. },
  984. {
  985. "cell_type": "markdown",
  986. "metadata": {},
  987. "source": [
  988. "### 2.1 内置函数"
  989. ]
  990. },
  991. {
  992. "cell_type": "markdown",
  993. "metadata": {},
  994. "source": [
  995. "**clear( )** 函数被用于擦除所创建的整个数据库。"
  996. ]
  997. },
  998. {
  999. "cell_type": "code",
  1000. "execution_count": 43,
  1001. "metadata": {},
  1002. "outputs": [
  1003. {
  1004. "name": "stdout",
  1005. "output_type": "stream",
  1006. "text": [
  1007. "{}\n"
  1008. ]
  1009. }
  1010. ],
  1011. "source": [
  1012. "a1 = {1:10, 2:20}\n",
  1013. "a1.clear()\n",
  1014. "print(a1)"
  1015. ]
  1016. },
  1017. {
  1018. "cell_type": "markdown",
  1019. "metadata": {},
  1020. "source": [
  1021. "字典也可以使用循环来构建。"
  1022. ]
  1023. },
  1024. {
  1025. "cell_type": "code",
  1026. "execution_count": 35,
  1027. "metadata": {},
  1028. "outputs": [
  1029. {
  1030. "name": "stdout",
  1031. "output_type": "stream",
  1032. "text": [
  1033. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  1034. ]
  1035. }
  1036. ],
  1037. "source": [
  1038. "a1 = {names[i]:numbers[i] for i in range(len(names))}\n",
  1039. "print(a1)"
  1040. ]
  1041. },
  1042. {
  1043. "cell_type": "code",
  1044. "execution_count": 46,
  1045. "metadata": {},
  1046. "outputs": [
  1047. {
  1048. "name": "stdout",
  1049. "output_type": "stream",
  1050. "text": [
  1051. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  1052. ]
  1053. }
  1054. ],
  1055. "source": [
  1056. "for i in range(len(names)):\n",
  1057. " a1[names[i]] = numbers[i]\n",
  1058. "print(a1)"
  1059. ]
  1060. },
  1061. {
  1062. "cell_type": "markdown",
  1063. "metadata": {},
  1064. "source": [
  1065. "**values( )** 函数返回了一个包含字典中所有赋值的列表"
  1066. ]
  1067. },
  1068. {
  1069. "cell_type": "code",
  1070. "execution_count": 47,
  1071. "metadata": {},
  1072. "outputs": [
  1073. {
  1074. "data": {
  1075. "text/plain": [
  1076. "dict_values([1, 2, 3, 4, 5])"
  1077. ]
  1078. },
  1079. "execution_count": 47,
  1080. "metadata": {},
  1081. "output_type": "execute_result"
  1082. }
  1083. ],
  1084. "source": [
  1085. "a1.values()"
  1086. ]
  1087. },
  1088. {
  1089. "cell_type": "markdown",
  1090. "metadata": {},
  1091. "source": [
  1092. "**keys( )** 函数返回包含赋值的所有索引或键。"
  1093. ]
  1094. },
  1095. {
  1096. "cell_type": "code",
  1097. "execution_count": 48,
  1098. "metadata": {},
  1099. "outputs": [
  1100. {
  1101. "data": {
  1102. "text/plain": [
  1103. "dict_keys(['One', 'Two', 'Three', 'Four', 'Five'])"
  1104. ]
  1105. },
  1106. "execution_count": 48,
  1107. "metadata": {},
  1108. "output_type": "execute_result"
  1109. }
  1110. ],
  1111. "source": [
  1112. "a1.keys()"
  1113. ]
  1114. },
  1115. {
  1116. "cell_type": "markdown",
  1117. "metadata": {},
  1118. "source": [
  1119. "**items()** 返回一个列表同时也包含该列表,但是字典中的每个元素都在一个元组中。这与使用zip函数得到的结果相同。"
  1120. ]
  1121. },
  1122. {
  1123. "cell_type": "code",
  1124. "execution_count": 49,
  1125. "metadata": {},
  1126. "outputs": [
  1127. {
  1128. "name": "stdout",
  1129. "output_type": "stream",
  1130. "text": [
  1131. "[ One] 1\n",
  1132. "[ Two] 2\n",
  1133. "[ Three] 3\n",
  1134. "[ Four] 4\n",
  1135. "[ Five] 5\n"
  1136. ]
  1137. }
  1138. ],
  1139. "source": [
  1140. "a1.items()\n",
  1141. "\n",
  1142. "for (k,v) in a1.items():\n",
  1143. " print(\"[%6s] %d\" % (k, v))"
  1144. ]
  1145. },
  1146. {
  1147. "cell_type": "markdown",
  1148. "metadata": {},
  1149. "source": [
  1150. "**pop()** 函数用于删除特定的元素,并且这个删除的元素可以被分配给一个新的变量。但是请记住,只存储值而不存储键。因为它只是一个索引值。"
  1151. ]
  1152. },
  1153. {
  1154. "cell_type": "code",
  1155. "execution_count": 51,
  1156. "metadata": {},
  1157. "outputs": [
  1158. {
  1159. "ename": "TypeError",
  1160. "evalue": "pop expected at least 1 arguments, got 0",
  1161. "output_type": "error",
  1162. "traceback": [
  1163. "\u001b[0;31m------------------------------------------\u001b[0m",
  1164. "\u001b[0;31mTypeError\u001b[0mTraceback (most recent call last)",
  1165. "\u001b[0;32m<ipython-input-51-a0907f1327c5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  1166. "\u001b[0;31mTypeError\u001b[0m: pop expected at least 1 arguments, got 0"
  1167. ]
  1168. }
  1169. ],
  1170. "source": [
  1171. "a2 = a1.pop()\n",
  1172. "print(a1)\n",
  1173. "print(a2)"
  1174. ]
  1175. }
  1176. ],
  1177. "metadata": {
  1178. "kernelspec": {
  1179. "display_name": "Python 3",
  1180. "language": "python",
  1181. "name": "python3"
  1182. },
  1183. "language_info": {
  1184. "codemirror_mode": {
  1185. "name": "ipython",
  1186. "version": 3
  1187. },
  1188. "file_extension": ".py",
  1189. "mimetype": "text/x-python",
  1190. "name": "python",
  1191. "nbconvert_exporter": "python",
  1192. "pygments_lexer": "ipython3",
  1193. "version": "3.6.9"
  1194. }
  1195. },
  1196. "nbformat": 4,
  1197. "nbformat_minor": 1
  1198. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。