|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 自动求导\n",
- "这次课程我们会了解 PyTorch 中的自动求导机制,自动求导是 PyTorch 中非常重要的特性,能够让我们避免手动去计算非常复杂的导数,这能够极大地减少了我们构建模型的时间,这也是其前身 Torch 这个框架所不具备的特性,下面我们通过例子看看 PyTorch 自动求导的独特魅力以及探究自动求导的更多用法。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import torch\n",
- "from torch.autograd import Variable"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 简单情况的自动求导\n",
- "下面我们显示一些简单情况的自动求导,\"简单\"体现在计算的结果都是标量,也就是一个数,我们对这个标量进行自动求导。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([19.], grad_fn=<AddBackward0>)\n"
- ]
- }
- ],
- "source": [
- "x = Variable(torch.Tensor([2]), requires_grad=True)\n",
- "y = x + 2\n",
- "z = y ** 2 + 3\n",
- "print(z)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "通过上面的一些列操作,我们从 x 得到了最后的结果out,我们可以将其表示为数学公式\n",
- "\n",
- "$$\n",
- "z = (x + 2)^2 + 3\n",
- "$$\n",
- "\n",
- "那么我们从 z 对 x 求导的结果就是 \n",
- "\n",
- "$$\n",
- "\\frac{\\partial z}{\\partial x} = 2 (x + 2) = 2 (2 + 2) = 8\n",
- "$$\n",
- "如果你对求导不熟悉,可以查看以下[网址进行复习](https://baike.baidu.com/item/%E5%AF%BC%E6%95%B0#1)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([8.])\n"
- ]
- }
- ],
- "source": [
- "# 使用自动求导\n",
- "z.backward()\n",
- "print(x.grad)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "对于上面这样一个简单的例子,我们验证了自动求导,同时可以发现发现使用自动求导非常方便。如果是一个更加复杂的例子,那么手动求导就会显得非常的麻烦,所以自动求导的机制能够帮助我们省去麻烦的数学计算,下面我们可以看一个更加复杂的例子。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([[-1.5318, 1.5200, -2.1316, -1.3238, 1.0080, -1.0832, -0.2814, -1.0486,\n",
- " 1.0807, -2.2865, 0.6545, -0.3595, 0.4229, -0.9194, 0.1690, -0.3241,\n",
- " 1.8970, -0.8979, -0.7827, 0.3879],\n",
- " [ 0.1404, -0.8016, 0.1156, -0.8397, -1.8886, 1.1072, -1.0186, 0.2249,\n",
- " 0.5631, 0.4391, 0.7887, -2.3255, -0.4185, 0.6559, 0.7622, 1.6883,\n",
- " -1.4147, 0.2579, -0.6177, 0.2172],\n",
- " [-0.4866, -0.0322, -1.2484, 1.1913, -0.6569, 0.0810, 0.2491, -0.1258,\n",
- " 2.5903, -0.8370, -0.0554, 1.2174, 0.4059, -1.0759, 0.6649, 0.1642,\n",
- " -0.3512, -0.7695, 1.1469, -0.3409],\n",
- " [ 1.8789, -1.6553, -0.7401, -0.3198, -0.1010, -0.5512, -0.4792, -0.2891,\n",
- " -0.2655, -0.8132, 0.7210, 1.0885, -0.9557, -0.4472, -1.5340, 0.8093,\n",
- " 0.9349, 0.8352, -0.0774, -0.1728],\n",
- " [-0.3424, 0.1938, -2.4253, -0.0229, 0.3132, -0.7731, 0.8481, -1.3002,\n",
- " -0.1595, -0.0364, -1.5733, 0.8882, 0.1909, -0.1404, -1.5673, -1.1809,\n",
- " -0.7169, 0.7074, 0.3337, -1.0738],\n",
- " [-0.0501, 1.6210, 0.6854, 0.2216, 0.3034, -1.2762, -0.6216, 1.4884,\n",
- " 0.6078, 2.1512, -0.7141, 0.4110, -0.8187, 0.9474, -0.5978, -0.2679,\n",
- " 1.5315, -2.1550, 2.0969, -1.7669],\n",
- " [ 1.4505, -0.9497, 2.0269, -1.6402, -0.0047, -0.2716, -0.2727, 0.6795,\n",
- " -0.7367, -0.3248, -0.5312, 0.0887, -1.4303, -0.8390, 1.5324, 0.3761,\n",
- " -0.4658, -0.2044, 0.3050, -0.2756],\n",
- " [ 0.3265, -0.2513, 1.1441, 0.3805, -1.3629, -1.3120, -1.8571, 0.1180,\n",
- " 0.7466, -0.2654, -0.2154, 1.0603, -0.4113, -2.5965, 1.0736, 1.1610,\n",
- " 0.8165, 1.5916, 1.5556, 0.3078],\n",
- " [-0.4417, 0.1656, -2.1743, -0.1148, -1.2795, 1.0212, -0.7035, -0.8234,\n",
- " 0.3010, -1.0891, -1.0676, 0.8385, -0.2886, -1.1881, 0.5097, -0.5097,\n",
- " -1.7893, 0.0494, -0.0162, 1.5170],\n",
- " [-0.6435, -1.8376, 1.0022, -0.0397, 0.7187, -0.0661, -0.8528, 1.3248,\n",
- " -0.2566, -2.2886, 0.8728, -0.7152, 1.6180, 0.8416, 0.2788, 0.5515,\n",
- " -0.1266, -1.0025, 0.1767, -0.4987]], requires_grad=True)\n"
- ]
- }
- ],
- "source": [
- "x = Variable(torch.randn(10, 20), requires_grad=True)\n",
- "y = Variable(torch.randn(10, 5), requires_grad=True)\n",
- "w = Variable(torch.randn(20, 5), requires_grad=True)\n",
- "print(x)\n",
- "out = torch.mean(y - torch.matmul(x, w)) # torch.matmul 是做矩阵乘法\n",
- "out.backward()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "如果你对矩阵乘法不熟悉,可以查看下面的[网址进行复习](https://baike.baidu.com/item/%E7%9F%A9%E9%98%B5%E4%B9%98%E6%B3%95/5446029?fr=aladdin)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([[-0.0198, -0.0066, -0.0288, 0.0080, 0.0079, -0.0569, -0.0489, 0.0505,\n",
- " 0.0132, -0.0072, -0.0024, 0.0400, 0.0691, -0.0273, 0.0124, 0.0104,\n",
- " 0.0098, -0.0598, 0.0365, 0.0177],\n",
- " [-0.0198, -0.0066, -0.0288, 0.0080, 0.0079, -0.0569, -0.0489, 0.0505,\n",
- " 0.0132, -0.0072, -0.0024, 0.0400, 0.0691, -0.0273, 0.0124, 0.0104,\n",
- " 0.0098, -0.0598, 0.0365, 0.0177],\n",
- " [-0.0198, -0.0066, -0.0288, 0.0080, 0.0079, -0.0569, -0.0489, 0.0505,\n",
- " 0.0132, -0.0072, -0.0024, 0.0400, 0.0691, -0.0273, 0.0124, 0.0104,\n",
- " 0.0098, -0.0598, 0.0365, 0.0177],\n",
- " [-0.0198, -0.0066, -0.0288, 0.0080, 0.0079, -0.0569, -0.0489, 0.0505,\n",
- " 0.0132, -0.0072, -0.0024, 0.0400, 0.0691, -0.0273, 0.0124, 0.0104,\n",
- " 0.0098, -0.0598, 0.0365, 0.0177],\n",
- " [-0.0198, -0.0066, -0.0288, 0.0080, 0.0079, -0.0569, -0.0489, 0.0505,\n",
- " 0.0132, -0.0072, -0.0024, 0.0400, 0.0691, -0.0273, 0.0124, 0.0104,\n",
- " 0.0098, -0.0598, 0.0365, 0.0177],\n",
- " [-0.0198, -0.0066, -0.0288, 0.0080, 0.0079, -0.0569, -0.0489, 0.0505,\n",
- " 0.0132, -0.0072, -0.0024, 0.0400, 0.0691, -0.0273, 0.0124, 0.0104,\n",
- " 0.0098, -0.0598, 0.0365, 0.0177],\n",
- " [-0.0198, -0.0066, -0.0288, 0.0080, 0.0079, -0.0569, -0.0489, 0.0505,\n",
- " 0.0132, -0.0072, -0.0024, 0.0400, 0.0691, -0.0273, 0.0124, 0.0104,\n",
- " 0.0098, -0.0598, 0.0365, 0.0177],\n",
- " [-0.0198, -0.0066, -0.0288, 0.0080, 0.0079, -0.0569, -0.0489, 0.0505,\n",
- " 0.0132, -0.0072, -0.0024, 0.0400, 0.0691, -0.0273, 0.0124, 0.0104,\n",
- " 0.0098, -0.0598, 0.0365, 0.0177],\n",
- " [-0.0198, -0.0066, -0.0288, 0.0080, 0.0079, -0.0569, -0.0489, 0.0505,\n",
- " 0.0132, -0.0072, -0.0024, 0.0400, 0.0691, -0.0273, 0.0124, 0.0104,\n",
- " 0.0098, -0.0598, 0.0365, 0.0177],\n",
- " [-0.0198, -0.0066, -0.0288, 0.0080, 0.0079, -0.0569, -0.0489, 0.0505,\n",
- " 0.0132, -0.0072, -0.0024, 0.0400, 0.0691, -0.0273, 0.0124, 0.0104,\n",
- " 0.0098, -0.0598, 0.0365, 0.0177]])\n"
- ]
- }
- ],
- "source": [
- "# 得到 x 的梯度\n",
- "print(x.grad)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([[0.0200, 0.0200, 0.0200, 0.0200, 0.0200],\n",
- " [0.0200, 0.0200, 0.0200, 0.0200, 0.0200],\n",
- " [0.0200, 0.0200, 0.0200, 0.0200, 0.0200],\n",
- " [0.0200, 0.0200, 0.0200, 0.0200, 0.0200],\n",
- " [0.0200, 0.0200, 0.0200, 0.0200, 0.0200],\n",
- " [0.0200, 0.0200, 0.0200, 0.0200, 0.0200],\n",
- " [0.0200, 0.0200, 0.0200, 0.0200, 0.0200],\n",
- " [0.0200, 0.0200, 0.0200, 0.0200, 0.0200],\n",
- " [0.0200, 0.0200, 0.0200, 0.0200, 0.0200],\n",
- " [0.0200, 0.0200, 0.0200, 0.0200, 0.0200]])\n"
- ]
- }
- ],
- "source": [
- "# 得到 y 的的梯度\n",
- "print(y.grad)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([[-0.0060, -0.0060, -0.0060, -0.0060, -0.0060],\n",
- " [ 0.0405, 0.0405, 0.0405, 0.0405, 0.0405],\n",
- " [ 0.0749, 0.0749, 0.0749, 0.0749, 0.0749],\n",
- " [ 0.0502, 0.0502, 0.0502, 0.0502, 0.0502],\n",
- " [ 0.0590, 0.0590, 0.0590, 0.0590, 0.0590],\n",
- " [ 0.0625, 0.0625, 0.0625, 0.0625, 0.0625],\n",
- " [ 0.0998, 0.0998, 0.0998, 0.0998, 0.0998],\n",
- " [-0.0050, -0.0050, -0.0050, -0.0050, -0.0050],\n",
- " [-0.0894, -0.0894, -0.0894, -0.0894, -0.0894],\n",
- " [ 0.1070, 0.1070, 0.1070, 0.1070, 0.1070],\n",
- " [ 0.0224, 0.0224, 0.0224, 0.0224, 0.0224],\n",
- " [-0.0438, -0.0438, -0.0438, -0.0438, -0.0438],\n",
- " [ 0.0337, 0.0337, 0.0337, 0.0337, 0.0337],\n",
- " [ 0.0952, 0.0952, 0.0952, 0.0952, 0.0952],\n",
- " [-0.0258, -0.0258, -0.0258, -0.0258, -0.0258],\n",
- " [-0.0494, -0.0494, -0.0494, -0.0494, -0.0494],\n",
- " [-0.0063, -0.0063, -0.0063, -0.0063, -0.0063],\n",
- " [ 0.0318, 0.0318, 0.0318, 0.0318, 0.0318],\n",
- " [-0.0824, -0.0824, -0.0824, -0.0824, -0.0824],\n",
- " [ 0.0340, 0.0340, 0.0340, 0.0340, 0.0340]])\n"
- ]
- }
- ],
- "source": [
- "# 得到 w 的梯度\n",
- "print(w.grad)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "上面数学公式就更加复杂,矩阵乘法之后对两个矩阵对应元素相乘,然后所有元素求平均,有兴趣的同学可以手动去计算一下梯度,使用 PyTorch 的自动求导,我们能够非常容易得到 x, y 和 w 的导数,因为深度学习中充满大量的矩阵运算,所以我们没有办法手动去求这些导数,有了自动求导能够非常方便地解决网络更新的问题。"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 复杂情况的自动求导\n",
- "上面我们展示了简单情况下的自动求导,都是对标量进行自动求导,可能你会有一个疑问,如何对一个向量或者矩阵自动求导了呢?感兴趣的同学可以自己先去尝试一下,下面我们会介绍对多维数组的自动求导机制。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([[2., 3.]], requires_grad=True)\n",
- "tensor([[0., 0.]])\n"
- ]
- }
- ],
- "source": [
- "m = Variable(torch.FloatTensor([[2, 3]]), requires_grad=True) # 构建一个 1 x 2 的矩阵\n",
- "n = Variable(torch.zeros(1, 2)) # 构建一个相同大小的 0 矩阵\n",
- "print(m)\n",
- "print(n)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor(2., grad_fn=<SelectBackward>)\n",
- "tensor([[ 4., 27.]], grad_fn=<CopySlices>)\n"
- ]
- }
- ],
- "source": [
- "# 通过 m 中的值计算新的 n 中的值\n",
- "print(m[0,0])\n",
- "n[0, 0] = m[0, 0] ** 2\n",
- "n[0, 1] = m[0, 1] ** 3\n",
- "print(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "将上面的式子写成数学公式,可以得到 \n",
- "$$\n",
- "n = (n_0,\\ n_1) = (m_0^2,\\ m_1^3) = (2^2,\\ 3^3) \n",
- "$$"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "下面我们直接对 n 进行反向传播,也就是求 n 对 m 的导数。\n",
- "\n",
- "这时我们需要明确这个导数的定义,即如何定义\n",
- "\n",
- "$$\n",
- "\\frac{\\partial n}{\\partial m} = \\frac{\\partial (n_0,\\ n_1)}{\\partial (m_0,\\ m_1)}\n",
- "$$\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "在 PyTorch 中,如果要调用自动求导,需要往`backward()`中传入一个参数,这个参数的形状和 n 一样大,比如是 $(w_0,\\ w_1)$,那么自动求导的结果就是:\n",
- "$$\n",
- "\\frac{\\partial n}{\\partial m_0} = w_0 \\frac{\\partial n_0}{\\partial m_0} + w_1 \\frac{\\partial n_1}{\\partial m_0}\n",
- "$$\n",
- "$$\n",
- "\\frac{\\partial n}{\\partial m_1} = w_0 \\frac{\\partial n_0}{\\partial m_1} + w_1 \\frac{\\partial n_1}{\\partial m_1}\n",
- "$$"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {},
- "outputs": [],
- "source": [
- "n.backward(torch.ones_like(n)) # 将 (w0, w1) 取成 (1, 1)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([[ 4., 27.]])\n"
- ]
- }
- ],
- "source": [
- "print(m.grad)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "通过自动求导我们得到了梯度是 4 和 27,我们可以验算一下\n",
- "$$\n",
- "\\frac{\\partial n}{\\partial m_0} = w_0 \\frac{\\partial n_0}{\\partial m_0} + w_1 \\frac{\\partial n_1}{\\partial m_0} = 2 m_0 + 0 = 2 \\times 2 = 4\n",
- "$$\n",
- "$$\n",
- "\\frac{\\partial n}{\\partial m_1} = w_0 \\frac{\\partial n_0}{\\partial m_1} + w_1 \\frac{\\partial n_1}{\\partial m_1} = 0 + 3 m_1^2 = 3 \\times 3^2 = 27\n",
- "$$\n",
- "通过验算我们可以得到相同的结果"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 多次自动求导\n",
- "通过调用 backward 我们可以进行一次自动求导,如果我们再调用一次 backward,会发现程序报错,没有办法再做一次。这是因为 PyTorch 默认做完一次自动求导之后,计算图就被丢弃了,所以两次自动求导需要手动设置一个东西,我们通过下面的小例子来说明。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([18.], grad_fn=<AddBackward0>)\n"
- ]
- }
- ],
- "source": [
- "x = Variable(torch.FloatTensor([3]), requires_grad=True)\n",
- "y = x * 2 + x ** 2 + 3\n",
- "print(y)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "y.backward(retain_graph=True) # 设置 retain_graph 为 True 来保留计算图"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([8.])\n"
- ]
- }
- ],
- "source": [
- "print(x.grad)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "y.backward() # 再做一次自动求导,这次不保留计算图"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([16.])\n"
- ]
- }
- ],
- "source": [
- "print(x.grad)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "可以发现 x 的梯度变成了 16,因为这里做了两次自动求导,所以讲第一次的梯度 8 和第二次的梯度 8 加起来得到了 16 的结果。"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**小练习**\n",
- "\n",
- "定义\n",
- "\n",
- "$$\n",
- "x = \n",
- "\\left[\n",
- "\\begin{matrix}\n",
- "x_0 \\\\\n",
- "x_1\n",
- "\\end{matrix}\n",
- "\\right] = \n",
- "\\left[\n",
- "\\begin{matrix}\n",
- "2 \\\\\n",
- "3\n",
- "\\end{matrix}\n",
- "\\right]\n",
- "$$\n",
- "\n",
- "$$\n",
- "k = (k_0,\\ k_1) = (x_0^2 + 3 x_1,\\ 2 x_0 + x_1^2)\n",
- "$$\n",
- "\n",
- "我们希望求得\n",
- "\n",
- "$$\n",
- "j = \\left[\n",
- "\\begin{matrix}\n",
- "\\frac{\\partial k_0}{\\partial x_0} & \\frac{\\partial k_0}{\\partial x_1} \\\\\n",
- "\\frac{\\partial k_1}{\\partial x_0} & \\frac{\\partial k_1}{\\partial x_1}\n",
- "\\end{matrix}\n",
- "\\right]\n",
- "$$\n",
- "\n",
- "参考答案:\n",
- "\n",
- "$$\n",
- "\\left[\n",
- "\\begin{matrix}\n",
- "4 & 3 \\\\\n",
- "2 & 6 \\\\\n",
- "\\end{matrix}\n",
- "\\right]\n",
- "$$"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {},
- "outputs": [],
- "source": [
- "x = Variable(torch.FloatTensor([2, 3]), requires_grad=True)\n",
- "k = Variable(torch.zeros(2))\n",
- "\n",
- "k[0] = x[0] ** 2 + 3 * x[1]\n",
- "k[1] = x[1] ** 2 + 2 * x[0]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {},
- "outputs": [],
- "source": [
- "#k.backward(torch.ones_like(k)) \n",
- "#print(x.grad)\n",
- "# 和上一个的区别在于该算法是求得导数和,并不是分布求解。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([13., 13.], grad_fn=<CopySlices>)\n",
- "tensor([4., 3.])\n",
- "tensor([2., 6.])\n"
- ]
- }
- ],
- "source": [
- "j = torch.zeros(2, 2)\n",
- "k.backward(torch.FloatTensor([1, 0]), retain_graph=True)\n",
- "print(k)\n",
- "j[0] = x.grad.data\n",
- "print(x.grad.data)\n",
- "\n",
- "x.grad.data.zero_() # 归零之前求得的梯度\n",
- "\n",
- "k.backward(torch.FloatTensor([0, 1]))\n",
- "j[1] = x.grad.data\n",
- "print(x.grad.data)\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([13., 13.], grad_fn=<CopySlices>)\n"
- ]
- }
- ],
- "source": [
- "print(k)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "tensor([[4., 3.],\n",
- " [2., 6.]])\n"
- ]
- }
- ],
- "source": [
- "print(j)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "下一次课我们会介绍两种神经网络的编程方式,动态图编程和静态图编程"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.9"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|