You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

9-densenet.ipynb 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# DenseNet\n",
  8. "因为 ResNet 提出了跨层链接的思想,这直接影响了随后出现的卷积网络架构,其中最有名的就是 cvpr 2017 的 best paper,DenseNet。\n",
  9. "\n",
  10. "DenseNet 和 ResNet 不同在于 ResNet 是跨层求和,而 DenseNet 是跨层将特征在通道维度进行拼接,下面可以看看他们两者的图示\n",
  11. "\n",
  12. "![](https://ws4.sinaimg.cn/large/006tNc79ly1fmpvj5vkfhj30uw0anq73.jpg)\n",
  13. "\n",
  14. "![](https://ws1.sinaimg.cn/large/006tNc79ly1fmpvj7fxd1j30vb0eyzqf.jpg)"
  15. ]
  16. },
  17. {
  18. "cell_type": "markdown",
  19. "metadata": {},
  20. "source": [
  21. "第一张图是 ResNet,第二张图是 DenseNet,因为是在通道维度进行特征的拼接,所以底层的输出会保留进入所有后面的层,这能够更好的保证梯度的传播,同时能够使用低维的特征和高维的特征进行联合训练,能够得到更好的结果。"
  22. ]
  23. },
  24. {
  25. "cell_type": "markdown",
  26. "metadata": {},
  27. "source": [
  28. "DenseNet 主要由 dense block 构成,下面我们来实现一个 densen block"
  29. ]
  30. },
  31. {
  32. "cell_type": "code",
  33. "execution_count": 1,
  34. "metadata": {
  35. "ExecuteTime": {
  36. "end_time": "2017-12-22T15:38:31.113030Z",
  37. "start_time": "2017-12-22T15:38:30.612922Z"
  38. }
  39. },
  40. "outputs": [],
  41. "source": [
  42. "import sys\n",
  43. "sys.path.append('..')\n",
  44. "\n",
  45. "import numpy as np\n",
  46. "import torch\n",
  47. "from torch import nn\n",
  48. "from torch.autograd import Variable\n",
  49. "from torchvision.datasets import CIFAR10"
  50. ]
  51. },
  52. {
  53. "cell_type": "markdown",
  54. "metadata": {},
  55. "source": [
  56. "首先定义一个卷积块,这个卷积块的顺序是 bn -> relu -> conv"
  57. ]
  58. },
  59. {
  60. "cell_type": "code",
  61. "execution_count": 2,
  62. "metadata": {
  63. "ExecuteTime": {
  64. "end_time": "2017-12-22T15:38:31.121249Z",
  65. "start_time": "2017-12-22T15:38:31.115369Z"
  66. }
  67. },
  68. "outputs": [],
  69. "source": [
  70. "def conv_block(in_channel, out_channel):\n",
  71. " layer = nn.Sequential(\n",
  72. " nn.BatchNorm2d(in_channel),\n",
  73. " nn.ReLU(True),\n",
  74. " nn.Conv2d(in_channel, out_channel, 3, padding=1, bias=False)\n",
  75. " )\n",
  76. " return layer"
  77. ]
  78. },
  79. {
  80. "cell_type": "markdown",
  81. "metadata": {},
  82. "source": [
  83. "dense block 将每次的卷积的输出称为 `growth_rate`,因为如果输入是 `in_channel`,有 n 层,那么输出就是 `in_channel + n * growh_rate`"
  84. ]
  85. },
  86. {
  87. "cell_type": "code",
  88. "execution_count": 3,
  89. "metadata": {
  90. "ExecuteTime": {
  91. "end_time": "2017-12-22T15:38:31.145274Z",
  92. "start_time": "2017-12-22T15:38:31.123363Z"
  93. }
  94. },
  95. "outputs": [],
  96. "source": [
  97. "class dense_block(nn.Module):\n",
  98. " def __init__(self, in_channel, growth_rate, num_layers):\n",
  99. " super(dense_block, self).__init__()\n",
  100. " block = []\n",
  101. " channel = in_channel\n",
  102. " for i in range(num_layers):\n",
  103. " block.append(conv_block(channel, growth_rate))\n",
  104. " channel += growth_rate\n",
  105. " \n",
  106. " self.net = nn.Sequential(*block)\n",
  107. " \n",
  108. " def forward(self, x):\n",
  109. " for layer in self.net:\n",
  110. " out = layer(x)\n",
  111. " x = torch.cat((out, x), dim=1)\n",
  112. " return x"
  113. ]
  114. },
  115. {
  116. "cell_type": "markdown",
  117. "metadata": {},
  118. "source": [
  119. "我们验证一下输出的 channel 是否正确"
  120. ]
  121. },
  122. {
  123. "cell_type": "code",
  124. "execution_count": 4,
  125. "metadata": {
  126. "ExecuteTime": {
  127. "end_time": "2017-12-22T15:38:31.213632Z",
  128. "start_time": "2017-12-22T15:38:31.147196Z"
  129. }
  130. },
  131. "outputs": [
  132. {
  133. "name": "stdout",
  134. "output_type": "stream",
  135. "text": [
  136. "input shape: 3 x 96 x 96\n",
  137. "output shape: 39 x 96 x 96\n"
  138. ]
  139. }
  140. ],
  141. "source": [
  142. "test_net = dense_block(3, 12, 3)\n",
  143. "test_x = Variable(torch.zeros(1, 3, 96, 96))\n",
  144. "print('input shape: {} x {} x {}'.format(test_x.shape[1], test_x.shape[2], test_x.shape[3]))\n",
  145. "test_y = test_net(test_x)\n",
  146. "print('output shape: {} x {} x {}'.format(test_y.shape[1], test_y.shape[2], test_y.shape[3]))"
  147. ]
  148. },
  149. {
  150. "cell_type": "markdown",
  151. "metadata": {},
  152. "source": [
  153. "除了 dense block,DenseNet 中还有一个模块叫过渡层(transition block),因为 DenseNet 会不断地对维度进行拼接, 所以当层数很高的时候,输出的通道数就会越来越大,参数和计算量也会越来越大,为了避免这个问题,需要引入过渡层将输出通道降低下来,同时也将输入的长宽减半,这个过渡层可以使用 1 x 1 的卷积"
  154. ]
  155. },
  156. {
  157. "cell_type": "code",
  158. "execution_count": 5,
  159. "metadata": {
  160. "ExecuteTime": {
  161. "end_time": "2017-12-22T15:38:31.222120Z",
  162. "start_time": "2017-12-22T15:38:31.215770Z"
  163. }
  164. },
  165. "outputs": [],
  166. "source": [
  167. "def transition(in_channel, out_channel):\n",
  168. " trans_layer = nn.Sequential(\n",
  169. " nn.BatchNorm2d(in_channel),\n",
  170. " nn.ReLU(True),\n",
  171. " nn.Conv2d(in_channel, out_channel, 1),\n",
  172. " nn.AvgPool2d(2, 2)\n",
  173. " )\n",
  174. " return trans_layer"
  175. ]
  176. },
  177. {
  178. "cell_type": "markdown",
  179. "metadata": {},
  180. "source": [
  181. "验证一下过渡层是否正确"
  182. ]
  183. },
  184. {
  185. "cell_type": "code",
  186. "execution_count": 6,
  187. "metadata": {
  188. "ExecuteTime": {
  189. "end_time": "2017-12-22T15:38:31.234846Z",
  190. "start_time": "2017-12-22T15:38:31.224078Z"
  191. }
  192. },
  193. "outputs": [
  194. {
  195. "name": "stdout",
  196. "output_type": "stream",
  197. "text": [
  198. "input shape: 3 x 96 x 96\n",
  199. "output shape: 12 x 48 x 48\n"
  200. ]
  201. }
  202. ],
  203. "source": [
  204. "test_net = transition(3, 12)\n",
  205. "test_x = Variable(torch.zeros(1, 3, 96, 96))\n",
  206. "print('input shape: {} x {} x {}'.format(test_x.shape[1], test_x.shape[2], test_x.shape[3]))\n",
  207. "test_y = test_net(test_x)\n",
  208. "print('output shape: {} x {} x {}'.format(test_y.shape[1], test_y.shape[2], test_y.shape[3]))"
  209. ]
  210. },
  211. {
  212. "cell_type": "markdown",
  213. "metadata": {},
  214. "source": [
  215. "最后我们定义 DenseNet"
  216. ]
  217. },
  218. {
  219. "cell_type": "code",
  220. "execution_count": 7,
  221. "metadata": {
  222. "ExecuteTime": {
  223. "end_time": "2017-12-22T15:38:31.318822Z",
  224. "start_time": "2017-12-22T15:38:31.236857Z"
  225. }
  226. },
  227. "outputs": [],
  228. "source": [
  229. "class densenet(nn.Module):\n",
  230. " def __init__(self, in_channel, num_classes, growth_rate=32, block_layers=[6, 12, 24, 16]):\n",
  231. " super(densenet, self).__init__()\n",
  232. " self.block1 = nn.Sequential(\n",
  233. " nn.Conv2d(in_channel, 64, 7, 2, 3),\n",
  234. " nn.BatchNorm2d(64),\n",
  235. " nn.ReLU(True),\n",
  236. " nn.MaxPool2d(3, 2, padding=1)\n",
  237. " )\n",
  238. " \n",
  239. " channels = 64\n",
  240. " block = []\n",
  241. " for i, layers in enumerate(block_layers):\n",
  242. " block.append(dense_block(channels, growth_rate, layers))\n",
  243. " channels += layers * growth_rate\n",
  244. " if i != len(block_layers) - 1:\n",
  245. " block.append(transition(channels, channels // 2)) # 通过 transition 层将大小减半,通道数减半\n",
  246. " channels = channels // 2\n",
  247. " \n",
  248. " self.block2 = nn.Sequential(*block)\n",
  249. " self.block2.add_module('bn', nn.BatchNorm2d(channels))\n",
  250. " self.block2.add_module('relu', nn.ReLU(True))\n",
  251. " self.block2.add_module('avg_pool', nn.AvgPool2d(3))\n",
  252. " \n",
  253. " self.classifier = nn.Linear(channels, num_classes)\n",
  254. " \n",
  255. " def forward(self, x):\n",
  256. " x = self.block1(x)\n",
  257. " x = self.block2(x)\n",
  258. " \n",
  259. " x = x.view(x.shape[0], -1)\n",
  260. " x = self.classifier(x)\n",
  261. " return x"
  262. ]
  263. },
  264. {
  265. "cell_type": "code",
  266. "execution_count": 8,
  267. "metadata": {
  268. "ExecuteTime": {
  269. "end_time": "2017-12-22T15:38:31.654182Z",
  270. "start_time": "2017-12-22T15:38:31.320788Z"
  271. }
  272. },
  273. "outputs": [
  274. {
  275. "name": "stdout",
  276. "output_type": "stream",
  277. "text": [
  278. "output: torch.Size([1, 10])\n"
  279. ]
  280. }
  281. ],
  282. "source": [
  283. "test_net = densenet(3, 10)\n",
  284. "test_x = Variable(torch.zeros(1, 3, 96, 96))\n",
  285. "test_y = test_net(test_x)\n",
  286. "print('output: {}'.format(test_y.shape))"
  287. ]
  288. },
  289. {
  290. "cell_type": "code",
  291. "execution_count": 9,
  292. "metadata": {
  293. "ExecuteTime": {
  294. "end_time": "2017-12-22T15:38:32.894729Z",
  295. "start_time": "2017-12-22T15:38:31.656356Z"
  296. }
  297. },
  298. "outputs": [],
  299. "source": [
  300. "from utils import train\n",
  301. "\n",
  302. "def data_tf(x):\n",
  303. " x = x.resize((96, 96), 2) # 将图片放大到 96 x 96\n",
  304. " x = np.array(x, dtype='float32') / 255\n",
  305. " x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到\n",
  306. " x = x.transpose((2, 0, 1)) # 将 channel 放到第一维,只是 pytorch 要求的输入方式\n",
  307. " x = torch.from_numpy(x)\n",
  308. " return x\n",
  309. " \n",
  310. "train_set = CIFAR10('../../data', train=True, transform=data_tf)\n",
  311. "train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)\n",
  312. "test_set = CIFAR10('../../data', train=False, transform=data_tf)\n",
  313. "test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)\n",
  314. "\n",
  315. "net = densenet(3, 10)\n",
  316. "optimizer = torch.optim.SGD(net.parameters(), lr=0.01)\n",
  317. "criterion = nn.CrossEntropyLoss()"
  318. ]
  319. },
  320. {
  321. "cell_type": "code",
  322. "execution_count": 10,
  323. "metadata": {
  324. "ExecuteTime": {
  325. "end_time": "2017-12-22T16:15:38.168095Z",
  326. "start_time": "2017-12-22T15:38:32.896735Z"
  327. }
  328. },
  329. "outputs": [
  330. {
  331. "name": "stdout",
  332. "output_type": "stream",
  333. "text": [
  334. "Epoch 0. Train Loss: 1.374316, Train Acc: 0.507972, Valid Loss: 1.203217, Valid Acc: 0.572884, Time 00:01:44\n",
  335. "Epoch 1. Train Loss: 0.912924, Train Acc: 0.681506, Valid Loss: 1.555908, Valid Acc: 0.492286, Time 00:01:50\n",
  336. "Epoch 2. Train Loss: 0.701387, Train Acc: 0.755794, Valid Loss: 0.815147, Valid Acc: 0.718354, Time 00:01:49\n",
  337. "Epoch 3. Train Loss: 0.575985, Train Acc: 0.800911, Valid Loss: 0.696013, Valid Acc: 0.759494, Time 00:01:50\n",
  338. "Epoch 4. Train Loss: 0.479812, Train Acc: 0.836957, Valid Loss: 1.013879, Valid Acc: 0.676226, Time 00:01:51\n",
  339. "Epoch 5. Train Loss: 0.402165, Train Acc: 0.861413, Valid Loss: 0.674512, Valid Acc: 0.778481, Time 00:01:50\n",
  340. "Epoch 6. Train Loss: 0.334593, Train Acc: 0.888247, Valid Loss: 0.647112, Valid Acc: 0.791634, Time 00:01:50\n",
  341. "Epoch 7. Train Loss: 0.278181, Train Acc: 0.907149, Valid Loss: 0.773517, Valid Acc: 0.756527, Time 00:01:51\n",
  342. "Epoch 8. Train Loss: 0.227948, Train Acc: 0.922714, Valid Loss: 0.654399, Valid Acc: 0.800237, Time 00:01:49\n",
  343. "Epoch 9. Train Loss: 0.181156, Train Acc: 0.940157, Valid Loss: 1.179013, Valid Acc: 0.685225, Time 00:01:50\n",
  344. "Epoch 10. Train Loss: 0.151305, Train Acc: 0.950208, Valid Loss: 0.630000, Valid Acc: 0.807951, Time 00:01:50\n",
  345. "Epoch 11. Train Loss: 0.118433, Train Acc: 0.961077, Valid Loss: 1.247253, Valid Acc: 0.703323, Time 00:01:52\n",
  346. "Epoch 12. Train Loss: 0.094127, Train Acc: 0.969789, Valid Loss: 1.230697, Valid Acc: 0.723101, Time 00:01:51\n",
  347. "Epoch 13. Train Loss: 0.086181, Train Acc: 0.972047, Valid Loss: 0.904135, Valid Acc: 0.769284, Time 00:01:50\n",
  348. "Epoch 14. Train Loss: 0.064248, Train Acc: 0.980359, Valid Loss: 1.665002, Valid Acc: 0.624209, Time 00:01:51\n",
  349. "Epoch 15. Train Loss: 0.054932, Train Acc: 0.982996, Valid Loss: 0.927216, Valid Acc: 0.774723, Time 00:01:51\n",
  350. "Epoch 16. Train Loss: 0.043503, Train Acc: 0.987272, Valid Loss: 1.574383, Valid Acc: 0.707377, Time 00:01:52\n",
  351. "Epoch 17. Train Loss: 0.047615, Train Acc: 0.985154, Valid Loss: 0.987781, Valid Acc: 0.770471, Time 00:01:51\n",
  352. "Epoch 18. Train Loss: 0.039813, Train Acc: 0.988012, Valid Loss: 2.248944, Valid Acc: 0.631824, Time 00:01:50\n",
  353. "Epoch 19. Train Loss: 0.030183, Train Acc: 0.991168, Valid Loss: 0.887785, Valid Acc: 0.795392, Time 00:01:51\n"
  354. ]
  355. }
  356. ],
  357. "source": [
  358. "train(net, train_data, test_data, 20, optimizer, criterion)"
  359. ]
  360. },
  361. {
  362. "cell_type": "markdown",
  363. "metadata": {},
  364. "source": [
  365. "DenseNet 将残差连接改为了特征拼接,使得网络有了更稠密的连接"
  366. ]
  367. }
  368. ],
  369. "metadata": {
  370. "kernelspec": {
  371. "display_name": "Python 3",
  372. "language": "python",
  373. "name": "python3"
  374. },
  375. "language_info": {
  376. "codemirror_mode": {
  377. "name": "ipython",
  378. "version": 3
  379. },
  380. "file_extension": ".py",
  381. "mimetype": "text/x-python",
  382. "name": "python",
  383. "nbconvert_exporter": "python",
  384. "pygments_lexer": "ipython3",
  385. "version": "3.5.2"
  386. }
  387. },
  388. "nbformat": 4,
  389. "nbformat_minor": 2
  390. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。