|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# DenseNet\n",
- "因为 ResNet 提出了跨层链接的思想,这直接影响了随后出现的卷积网络架构,其中最有名的就是 cvpr 2017 的 best paper,DenseNet。\n",
- "\n",
- "DenseNet 和 ResNet 不同在于 ResNet 是跨层求和,而 DenseNet 是跨层将特征在通道维度进行拼接,下面可以看看他们两者的图示\n",
- "\n",
- "\n",
- "\n",
- ""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "第一张图是 ResNet,第二张图是 DenseNet,因为是在通道维度进行特征的拼接,所以底层的输出会保留进入所有后面的层,这能够更好的保证梯度的传播,同时能够使用低维的特征和高维的特征进行联合训练,能够得到更好的结果。"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "DenseNet 主要由 dense block 构成,下面我们来实现一个 densen block"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2017-12-22T15:38:31.113030Z",
- "start_time": "2017-12-22T15:38:30.612922Z"
- }
- },
- "outputs": [],
- "source": [
- "import sys\n",
- "sys.path.append('..')\n",
- "\n",
- "import numpy as np\n",
- "import torch\n",
- "from torch import nn\n",
- "from torch.autograd import Variable\n",
- "from torchvision.datasets import CIFAR10"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "首先定义一个卷积块,这个卷积块的顺序是 bn -> relu -> conv"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2017-12-22T15:38:31.121249Z",
- "start_time": "2017-12-22T15:38:31.115369Z"
- }
- },
- "outputs": [],
- "source": [
- "def conv_block(in_channel, out_channel):\n",
- " layer = nn.Sequential(\n",
- " nn.BatchNorm2d(in_channel),\n",
- " nn.ReLU(True),\n",
- " nn.Conv2d(in_channel, out_channel, 3, padding=1, bias=False)\n",
- " )\n",
- " return layer"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "dense block 将每次的卷积的输出称为 `growth_rate`,因为如果输入是 `in_channel`,有 n 层,那么输出就是 `in_channel + n * growh_rate`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2017-12-22T15:38:31.145274Z",
- "start_time": "2017-12-22T15:38:31.123363Z"
- }
- },
- "outputs": [],
- "source": [
- "class dense_block(nn.Module):\n",
- " def __init__(self, in_channel, growth_rate, num_layers):\n",
- " super(dense_block, self).__init__()\n",
- " block = []\n",
- " channel = in_channel\n",
- " for i in range(num_layers):\n",
- " block.append(conv_block(channel, growth_rate))\n",
- " channel += growth_rate\n",
- " \n",
- " self.net = nn.Sequential(*block)\n",
- " \n",
- " def forward(self, x):\n",
- " for layer in self.net:\n",
- " out = layer(x)\n",
- " x = torch.cat((out, x), dim=1)\n",
- " return x"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "我们验证一下输出的 channel 是否正确"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2017-12-22T15:38:31.213632Z",
- "start_time": "2017-12-22T15:38:31.147196Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "input shape: 3 x 96 x 96\n",
- "output shape: 39 x 96 x 96\n"
- ]
- }
- ],
- "source": [
- "test_net = dense_block(3, 12, 3)\n",
- "test_x = Variable(torch.zeros(1, 3, 96, 96))\n",
- "print('input shape: {} x {} x {}'.format(test_x.shape[1], test_x.shape[2], test_x.shape[3]))\n",
- "test_y = test_net(test_x)\n",
- "print('output shape: {} x {} x {}'.format(test_y.shape[1], test_y.shape[2], test_y.shape[3]))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "除了 dense block,DenseNet 中还有一个模块叫过渡层(transition block),因为 DenseNet 会不断地对维度进行拼接, 所以当层数很高的时候,输出的通道数就会越来越大,参数和计算量也会越来越大,为了避免这个问题,需要引入过渡层将输出通道降低下来,同时也将输入的长宽减半,这个过渡层可以使用 1 x 1 的卷积"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2017-12-22T15:38:31.222120Z",
- "start_time": "2017-12-22T15:38:31.215770Z"
- }
- },
- "outputs": [],
- "source": [
- "def transition(in_channel, out_channel):\n",
- " trans_layer = nn.Sequential(\n",
- " nn.BatchNorm2d(in_channel),\n",
- " nn.ReLU(True),\n",
- " nn.Conv2d(in_channel, out_channel, 1),\n",
- " nn.AvgPool2d(2, 2)\n",
- " )\n",
- " return trans_layer"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "验证一下过渡层是否正确"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2017-12-22T15:38:31.234846Z",
- "start_time": "2017-12-22T15:38:31.224078Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "input shape: 3 x 96 x 96\n",
- "output shape: 12 x 48 x 48\n"
- ]
- }
- ],
- "source": [
- "test_net = transition(3, 12)\n",
- "test_x = Variable(torch.zeros(1, 3, 96, 96))\n",
- "print('input shape: {} x {} x {}'.format(test_x.shape[1], test_x.shape[2], test_x.shape[3]))\n",
- "test_y = test_net(test_x)\n",
- "print('output shape: {} x {} x {}'.format(test_y.shape[1], test_y.shape[2], test_y.shape[3]))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "最后我们定义 DenseNet"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2017-12-22T15:38:31.318822Z",
- "start_time": "2017-12-22T15:38:31.236857Z"
- }
- },
- "outputs": [],
- "source": [
- "class densenet(nn.Module):\n",
- " def __init__(self, in_channel, num_classes, growth_rate=32, block_layers=[6, 12, 24, 16]):\n",
- " super(densenet, self).__init__()\n",
- " self.block1 = nn.Sequential(\n",
- " nn.Conv2d(in_channel, 64, 7, 2, 3),\n",
- " nn.BatchNorm2d(64),\n",
- " nn.ReLU(True),\n",
- " nn.MaxPool2d(3, 2, padding=1)\n",
- " )\n",
- " \n",
- " channels = 64\n",
- " block = []\n",
- " for i, layers in enumerate(block_layers):\n",
- " block.append(dense_block(channels, growth_rate, layers))\n",
- " channels += layers * growth_rate\n",
- " if i != len(block_layers) - 1:\n",
- " block.append(transition(channels, channels // 2)) # 通过 transition 层将大小减半,通道数减半\n",
- " channels = channels // 2\n",
- " \n",
- " self.block2 = nn.Sequential(*block)\n",
- " self.block2.add_module('bn', nn.BatchNorm2d(channels))\n",
- " self.block2.add_module('relu', nn.ReLU(True))\n",
- " self.block2.add_module('avg_pool', nn.AvgPool2d(3))\n",
- " \n",
- " self.classifier = nn.Linear(channels, num_classes)\n",
- " \n",
- " def forward(self, x):\n",
- " x = self.block1(x)\n",
- " x = self.block2(x)\n",
- " \n",
- " x = x.view(x.shape[0], -1)\n",
- " x = self.classifier(x)\n",
- " return x"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2017-12-22T15:38:31.654182Z",
- "start_time": "2017-12-22T15:38:31.320788Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "output: torch.Size([1, 10])\n"
- ]
- }
- ],
- "source": [
- "test_net = densenet(3, 10)\n",
- "test_x = Variable(torch.zeros(1, 3, 96, 96))\n",
- "test_y = test_net(test_x)\n",
- "print('output: {}'.format(test_y.shape))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2017-12-22T15:38:32.894729Z",
- "start_time": "2017-12-22T15:38:31.656356Z"
- }
- },
- "outputs": [],
- "source": [
- "from utils import train\n",
- "\n",
- "def data_tf(x):\n",
- " x = x.resize((96, 96), 2) # 将图片放大到 96 x 96\n",
- " x = np.array(x, dtype='float32') / 255\n",
- " x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到\n",
- " x = x.transpose((2, 0, 1)) # 将 channel 放到第一维,只是 pytorch 要求的输入方式\n",
- " x = torch.from_numpy(x)\n",
- " return x\n",
- " \n",
- "train_set = CIFAR10('../../data', train=True, transform=data_tf)\n",
- "train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)\n",
- "test_set = CIFAR10('../../data', train=False, transform=data_tf)\n",
- "test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)\n",
- "\n",
- "net = densenet(3, 10)\n",
- "optimizer = torch.optim.SGD(net.parameters(), lr=0.01)\n",
- "criterion = nn.CrossEntropyLoss()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2017-12-22T16:15:38.168095Z",
- "start_time": "2017-12-22T15:38:32.896735Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 0. Train Loss: 1.374316, Train Acc: 0.507972, Valid Loss: 1.203217, Valid Acc: 0.572884, Time 00:01:44\n",
- "Epoch 1. Train Loss: 0.912924, Train Acc: 0.681506, Valid Loss: 1.555908, Valid Acc: 0.492286, Time 00:01:50\n",
- "Epoch 2. Train Loss: 0.701387, Train Acc: 0.755794, Valid Loss: 0.815147, Valid Acc: 0.718354, Time 00:01:49\n",
- "Epoch 3. Train Loss: 0.575985, Train Acc: 0.800911, Valid Loss: 0.696013, Valid Acc: 0.759494, Time 00:01:50\n",
- "Epoch 4. Train Loss: 0.479812, Train Acc: 0.836957, Valid Loss: 1.013879, Valid Acc: 0.676226, Time 00:01:51\n",
- "Epoch 5. Train Loss: 0.402165, Train Acc: 0.861413, Valid Loss: 0.674512, Valid Acc: 0.778481, Time 00:01:50\n",
- "Epoch 6. Train Loss: 0.334593, Train Acc: 0.888247, Valid Loss: 0.647112, Valid Acc: 0.791634, Time 00:01:50\n",
- "Epoch 7. Train Loss: 0.278181, Train Acc: 0.907149, Valid Loss: 0.773517, Valid Acc: 0.756527, Time 00:01:51\n",
- "Epoch 8. Train Loss: 0.227948, Train Acc: 0.922714, Valid Loss: 0.654399, Valid Acc: 0.800237, Time 00:01:49\n",
- "Epoch 9. Train Loss: 0.181156, Train Acc: 0.940157, Valid Loss: 1.179013, Valid Acc: 0.685225, Time 00:01:50\n",
- "Epoch 10. Train Loss: 0.151305, Train Acc: 0.950208, Valid Loss: 0.630000, Valid Acc: 0.807951, Time 00:01:50\n",
- "Epoch 11. Train Loss: 0.118433, Train Acc: 0.961077, Valid Loss: 1.247253, Valid Acc: 0.703323, Time 00:01:52\n",
- "Epoch 12. Train Loss: 0.094127, Train Acc: 0.969789, Valid Loss: 1.230697, Valid Acc: 0.723101, Time 00:01:51\n",
- "Epoch 13. Train Loss: 0.086181, Train Acc: 0.972047, Valid Loss: 0.904135, Valid Acc: 0.769284, Time 00:01:50\n",
- "Epoch 14. Train Loss: 0.064248, Train Acc: 0.980359, Valid Loss: 1.665002, Valid Acc: 0.624209, Time 00:01:51\n",
- "Epoch 15. Train Loss: 0.054932, Train Acc: 0.982996, Valid Loss: 0.927216, Valid Acc: 0.774723, Time 00:01:51\n",
- "Epoch 16. Train Loss: 0.043503, Train Acc: 0.987272, Valid Loss: 1.574383, Valid Acc: 0.707377, Time 00:01:52\n",
- "Epoch 17. Train Loss: 0.047615, Train Acc: 0.985154, Valid Loss: 0.987781, Valid Acc: 0.770471, Time 00:01:51\n",
- "Epoch 18. Train Loss: 0.039813, Train Acc: 0.988012, Valid Loss: 2.248944, Valid Acc: 0.631824, Time 00:01:50\n",
- "Epoch 19. Train Loss: 0.030183, Train Acc: 0.991168, Valid Loss: 0.887785, Valid Acc: 0.795392, Time 00:01:51\n"
- ]
- }
- ],
- "source": [
- "train(net, train_data, test_data, 20, optimizer, criterion)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "DenseNet 将残差连接改为了特征拼接,使得网络有了更稠密的连接"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.5.2"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|