|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- from torch.autograd import Variable
-
- from torchvision import datasets, transforms
-
- # Training settings
- batch_size = 64
-
- # MNIST Dataset
- dataset_path = "../data/mnist"
- train_dataset = datasets.MNIST(root=dataset_path,
- train=True,
- transform=transforms.ToTensor(),
- download=True)
-
- test_dataset = datasets.MNIST(root=dataset_path,
- train=False,
- transform=transforms.ToTensor())
-
- # Data Loader (Input Pipeline)
- train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
- batch_size=batch_size,
- shuffle=True)
-
- test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
- batch_size=batch_size,
- shuffle=False)
-
-
- # define Network
- seq_net = nn.Sequential(
- nn.Linear(28*28, 300),
- nn.ReLU(),
- nn.Linear(300, 100),
- nn.ReLU(),
- nn.Linear(100, 10)
- )
-
- # define optimizer & criterion
- param = seq_net.parameters()
- optim = torch.optim.Adam(param, 0.01)
- criterion = nn.CrossEntropyLoss()
-
- # train the network
- for e in range(100):
- for batch_idx, (data, target) in enumerate(train_loader):
- data, target = Variable(data), Variable(target)
- data = data.view(-1, 784)
-
- out = seq_net(data)
- loss = criterion(out, target)
- optim.zero_grad()
- loss.backward()
- optim.step()
-
- if batch_idx % 100 == 0:
- pred = out.data.max(1, keepdim=True)[1]
- c = float(pred.eq(target.data.view_as(pred)).cpu().sum())/out.size(0)
-
- print("epoch: %5d, loss: %f, acc: %f" %
- (e+1, loss.data[0], c))
-
|