You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

4_LSTM_timeseries.py 2.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. import numpy as np
  2. import pandas as pd
  3. import matplotlib.pyplot as plt
  4. import torch
  5. from torch import nn
  6. from torch.autograd import Variable
  7. """
  8. Using torch to do time series analysis by LSTM model
  9. """
  10. # load data
  11. data_csv = pd.read_csv("./lstm_data.csv", usecols=[1])
  12. #plt.plot(data_csv)
  13. #plt.show()
  14. # data pre-processing
  15. data_csv = data_csv.dropna()
  16. dataset = data_csv.values
  17. dataset = dataset.astype("float32")
  18. val_max = np.max(dataset)
  19. val_min = np.min(dataset)
  20. val_scale = val_max - val_min
  21. dataset = (dataset - val_min) / val_scale
  22. # generate dataset
  23. def create_dataset(dataset, look_back=6):
  24. dataX, dataY = [], []
  25. dataset = dataset.tolist()
  26. for i in range(len(dataset) - look_back):
  27. a = dataset[i:(i+look_back)]
  28. dataX.append(a)
  29. dataY.append(dataset[i+look_back])
  30. return np.array(dataX), np.array(dataY)
  31. look_back = 1
  32. data_X, data_Y = create_dataset(dataset, look_back)
  33. # split train/test dataset
  34. train_size = int(len(data_X) * 0.7)
  35. test_size = len(data_X) - train_size
  36. train_X = data_X[:train_size]
  37. train_Y = data_Y[:train_size]
  38. test_X = data_X[train_size:]
  39. test_Y = data_Y[train_size:]
  40. # convert data for torch
  41. train_X = train_X.reshape(-1, 1, look_back)
  42. train_Y = train_Y.reshape(-1, 1, 1)
  43. test_X = test_X.reshape(-1, 1, look_back)
  44. train_x = torch.from_numpy(train_X).float()
  45. train_y = torch.from_numpy(train_Y).float()
  46. test_x = torch.from_numpy(test_X).float()
  47. # define LSTM model
  48. class LSTM_Reg(nn.Module):
  49. def __init__(self, input_size, hidden_size, output_size=1, num_layer=2):
  50. super(LSTM_Reg, self).__init__()
  51. self.rnn = nn.LSTM(input_size, hidden_size, num_layer)
  52. self.reg = nn.Linear(hidden_size, output_size)
  53. def forward(self, x):
  54. x, _ = self.rnn(x)
  55. s, b, h = x.shape
  56. x = x.view(s*b, h)
  57. x = self.reg(x)
  58. x = x.view(s, b, -1)
  59. return x
  60. net = LSTM_Reg(look_back, 4, num_layer=1)
  61. criterion = nn.MSELoss()
  62. optimizer = torch.optim.Adam(net.parameters(), lr=1e-2)
  63. for e in range(1000):
  64. var_x = Variable(train_x)
  65. var_y = Variable(train_y)
  66. # forward
  67. out = net(var_x)
  68. loss = criterion(out, var_y)
  69. # backward
  70. optimizer.zero_grad()
  71. loss.backward()
  72. optimizer.step()
  73. # print progress
  74. if e % 100 == 0:
  75. print("epoch: %5d, loss: %.5f" % (e, loss.data[0]))
  76. # do test
  77. net = net.eval()
  78. data_X = data_X.reshape(-1, 1, look_back)
  79. data_X = torch.from_numpy(data_X).float()
  80. var_data = Variable(data_X)
  81. pred_test = net(var_data)
  82. pred_test = pred_test.view(-1).data.numpy()
  83. # plot
  84. plt.plot(pred_test, 'r', label="Prediction")
  85. plt.plot(dataset, 'b', label="Real")
  86. plt.legend(loc="best")
  87. plt.show()

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。