You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

References_notes.md 1.8 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. ## Notebooks:
  2. machineLearning/10_digits_classification.ipynb
  3. MachineLearningNotebooks/05.%20Logistic%20Regression.ipynb
  4. MachineLearningNotebooks/08.%20Practical_NeuralNets.ipynb
  5. ## Exercise
  6. http://sofasofa.io/competitions.php?type=practice
  7. https://www.kaggle.com/competitions
  8. Titanic
  9. notebooks/data-science-ipython-notebooks/kaggle/titanic.ipynb
  10. ## Method
  11. Programming Multiclass Logistic Regression
  12. http://localhost:8889/notebooks/MachineLearningNotebooks/05.%20Logistic%20Regression.ipynb
  13. Equation for MLP
  14. http://localhost:8889/notebooks/MachineLearningNotebooks/07.%20MLP%20Neural%20Networks.ipynb
  15. Optimization methods
  16. http://localhost:8889/notebooks/MachineLearningNotebooks/06.%20Optimization.ipynb
  17. https://github.com/wmpscc/DataMiningNotesAndPractice/blob/master/2.KMeans%E7%AE%97%E6%B3%95%E4%B8%8E%E4%BA%A4%E9%80%9A%E4%BA%8B%E6%95%85%E7%90%86%E8%B5%94%E5%AE%A1%E6%A0%B8%E9%A2%84%E6%B5%8B.md
  18. evaluation metrics
  19. http://localhost:8889/notebooks/machineLearning/10_digits_classification.ipynb
  20. model selection and assessment
  21. http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selection%20and%20Assessment.ipynb
  22. NN
  23. 神经网络——梯度下降&反向传播 https://blog.csdn.net/skullfang/article/details/78634317
  24. 零基础入门深度学习(3) - 神经网络和反向传播算法 https://www.zybuluo.com/hanbingtao/note/476663
  25. 如何直观地解释 backpropagation 算法? https://www.zhihu.com/question/27239198
  26. 一文弄懂神经网络中的反向传播法——BackPropagation https://www.cnblogs.com/charlotte77/p/5629865.html
  27. https://medium.com/@UdacityINDIA/how-to-build-your-first-neural-network-with-python-6819c7f65dbf
  28. https://enlight.nyc/projects/neural-network/
  29. https://www.python-course.eu/neural_networks_with_python_numpy.php

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。