You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

4_Data_Structure_2.ipynb 25 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
3 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
3 years ago
6 years ago
6 years ago
3 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# 数据结构 - 2\n",
  8. "\n",
  9. "## 1. 字符串"
  10. ]
  11. },
  12. {
  13. "cell_type": "markdown",
  14. "metadata": {},
  15. "source": [
  16. "字符串是基于文本的有序数据,用单/双/三重引号括起来表示。"
  17. ]
  18. },
  19. {
  20. "cell_type": "code",
  21. "execution_count": 1,
  22. "metadata": {},
  23. "outputs": [],
  24. "source": [
  25. "String0 = 'Taj Mahal is beautiful'\n",
  26. "String1 = \"Taj Mahal is beautiful\"\n",
  27. "String2 = '''Taj Mahal\n",
  28. "is\n",
  29. "beautiful'''"
  30. ]
  31. },
  32. {
  33. "cell_type": "code",
  34. "execution_count": 2,
  35. "metadata": {},
  36. "outputs": [
  37. {
  38. "name": "stdout",
  39. "output_type": "stream",
  40. "text": [
  41. "Taj Mahal is beautiful <class 'str'>\n",
  42. "Taj Mahal is beautiful <class 'str'>\n",
  43. "Taj Mahal\n",
  44. "is\n",
  45. "beautiful <class 'str'>\n"
  46. ]
  47. }
  48. ],
  49. "source": [
  50. "print(String0, type(String0))\n",
  51. "print(String1, type(String1))\n",
  52. "print(String2, type(String2))"
  53. ]
  54. },
  55. {
  56. "cell_type": "markdown",
  57. "metadata": {},
  58. "source": [
  59. "字符串索引和分段类似于前面详细解释过的列表。"
  60. ]
  61. },
  62. {
  63. "cell_type": "code",
  64. "execution_count": 5,
  65. "metadata": {},
  66. "outputs": [
  67. {
  68. "name": "stdout",
  69. "output_type": "stream",
  70. "text": [
  71. "M\n",
  72. "Mahal is beautiful\n",
  73. "l\n"
  74. ]
  75. }
  76. ],
  77. "source": [
  78. "print(String0[4])\n",
  79. "print(String0[4:])\n",
  80. "print(String0[-1])"
  81. ]
  82. },
  83. {
  84. "cell_type": "markdown",
  85. "metadata": {},
  86. "source": [
  87. "### 1.1 内置函数"
  88. ]
  89. },
  90. {
  91. "cell_type": "markdown",
  92. "metadata": {},
  93. "source": [
  94. "**find( )** 函数返回要在字符串中找到的给定数据的索引值。如果没有找到它,它返回 **-1**。请注意不要将返回的-1与反向索引值混淆。"
  95. ]
  96. },
  97. {
  98. "cell_type": "code",
  99. "execution_count": 4,
  100. "metadata": {},
  101. "outputs": [
  102. {
  103. "name": "stdout",
  104. "output_type": "stream",
  105. "text": [
  106. "Taj Mahal is beautiful\n",
  107. "7\n",
  108. "-1\n"
  109. ]
  110. }
  111. ],
  112. "source": [
  113. "print(String0)\n",
  114. "print(String0.find('al'))\n",
  115. "print(String0.find('am'))"
  116. ]
  117. },
  118. {
  119. "cell_type": "markdown",
  120. "metadata": {},
  121. "source": [
  122. "返回的索引值是输入数据中第一个元素的索引。"
  123. ]
  124. },
  125. {
  126. "cell_type": "code",
  127. "execution_count": 6,
  128. "metadata": {},
  129. "outputs": [
  130. {
  131. "name": "stdout",
  132. "output_type": "stream",
  133. "text": [
  134. "a\n"
  135. ]
  136. }
  137. ],
  138. "source": [
  139. "print(String0[7])"
  140. ]
  141. },
  142. {
  143. "cell_type": "markdown",
  144. "metadata": {},
  145. "source": [
  146. "还可以输入**find()** 函数,在它们之间搜索索引值。"
  147. ]
  148. },
  149. {
  150. "cell_type": "code",
  151. "execution_count": 7,
  152. "metadata": {},
  153. "outputs": [
  154. {
  155. "name": "stdout",
  156. "output_type": "stream",
  157. "text": [
  158. "2\n",
  159. "2\n"
  160. ]
  161. }
  162. ],
  163. "source": [
  164. "print(String0.find('j',1))\n",
  165. "print(String0.find('j',1,3))"
  166. ]
  167. },
  168. {
  169. "cell_type": "markdown",
  170. "metadata": {},
  171. "source": [
  172. "**capitalize( )** 用于将字符串中的第一个元素大写。"
  173. ]
  174. },
  175. {
  176. "cell_type": "code",
  177. "execution_count": 8,
  178. "metadata": {},
  179. "outputs": [
  180. {
  181. "name": "stdout",
  182. "output_type": "stream",
  183. "text": [
  184. "Observe the first letter in this sentence. can you change this sentence\n"
  185. ]
  186. }
  187. ],
  188. "source": [
  189. "String3 = 'observe the first letter in this sentence. can you change this sentence'\n",
  190. "print(String3.capitalize())"
  191. ]
  192. },
  193. {
  194. "cell_type": "markdown",
  195. "metadata": {},
  196. "source": [
  197. "**center( )** 用于通过指定字段宽度将字符串居中对齐。"
  198. ]
  199. },
  200. {
  201. "cell_type": "code",
  202. "execution_count": 9,
  203. "metadata": {},
  204. "outputs": [
  205. {
  206. "data": {
  207. "text/plain": [
  208. "' Taj Mahal is beautiful '"
  209. ]
  210. },
  211. "execution_count": 9,
  212. "metadata": {},
  213. "output_type": "execute_result"
  214. }
  215. ],
  216. "source": [
  217. "String0.center(70)"
  218. ]
  219. },
  220. {
  221. "cell_type": "markdown",
  222. "metadata": {},
  223. "source": [
  224. "One can also fill the left out spaces with any other character."
  225. ]
  226. },
  227. {
  228. "cell_type": "code",
  229. "execution_count": 10,
  230. "metadata": {},
  231. "outputs": [
  232. {
  233. "data": {
  234. "text/plain": [
  235. "'------------------------Taj Mahal is beautiful------------------------'"
  236. ]
  237. },
  238. "execution_count": 10,
  239. "metadata": {},
  240. "output_type": "execute_result"
  241. }
  242. ],
  243. "source": [
  244. "String0.center(70,'-')"
  245. ]
  246. },
  247. {
  248. "cell_type": "markdown",
  249. "metadata": {},
  250. "source": [
  251. "**zfill( )** 通过指定字段宽度来填充零。"
  252. ]
  253. },
  254. {
  255. "cell_type": "code",
  256. "execution_count": 11,
  257. "metadata": {},
  258. "outputs": [
  259. {
  260. "data": {
  261. "text/plain": [
  262. "'00000000Taj Mahal is beautiful'"
  263. ]
  264. },
  265. "execution_count": 11,
  266. "metadata": {},
  267. "output_type": "execute_result"
  268. }
  269. ],
  270. "source": [
  271. "String0.zfill(30)"
  272. ]
  273. },
  274. {
  275. "cell_type": "markdown",
  276. "metadata": {},
  277. "source": [
  278. "**expandtabs( )** 允许您更改制表符的间距。'\\t'默认设置为8个空格。"
  279. ]
  280. },
  281. {
  282. "cell_type": "code",
  283. "execution_count": 12,
  284. "metadata": {},
  285. "outputs": [
  286. {
  287. "name": "stdout",
  288. "output_type": "stream",
  289. "text": [
  290. "h\te\tl\tl\to\n",
  291. "h e l l o\n",
  292. "h e l l o\n"
  293. ]
  294. }
  295. ],
  296. "source": [
  297. "s = 'h\\te\\tl\\tl\\to'\n",
  298. "print(s)\n",
  299. "print(s.expandtabs(1))\n",
  300. "print(s.expandtabs(4))"
  301. ]
  302. },
  303. {
  304. "cell_type": "markdown",
  305. "metadata": {
  306. "collapsed": true
  307. },
  308. "source": [
  309. "**index( )** 和 **find( )** 函数的工作方式相同,唯一的区别在于 **find( )** 返回'-1',当输入元素在字符串中没有找到,但是**index( )** 函数会抛出一个ValueError。"
  310. ]
  311. },
  312. {
  313. "cell_type": "code",
  314. "execution_count": 13,
  315. "metadata": {},
  316. "outputs": [
  317. {
  318. "name": "stdout",
  319. "output_type": "stream",
  320. "text": [
  321. "0\n",
  322. "4\n"
  323. ]
  324. },
  325. {
  326. "ename": "ValueError",
  327. "evalue": "substring not found",
  328. "output_type": "error",
  329. "traceback": [
  330. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  331. "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
  332. "\u001b[0;32m<ipython-input-13-a7d6b97b4839>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Taj'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Mahal'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Mahal'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  333. "\u001b[0;31mValueError\u001b[0m: substring not found"
  334. ]
  335. }
  336. ],
  337. "source": [
  338. "print(String0.index('Taj'))\n",
  339. "print(String0.index('Mahal',0))\n",
  340. "print(String0.index('Mahal',10,20))"
  341. ]
  342. },
  343. {
  344. "cell_type": "markdown",
  345. "metadata": {},
  346. "source": [
  347. "**endswith( )** 函数用于检查给定字符串是否以作为输入的特定字符结尾。"
  348. ]
  349. },
  350. {
  351. "cell_type": "code",
  352. "execution_count": 14,
  353. "metadata": {},
  354. "outputs": [
  355. {
  356. "name": "stdout",
  357. "output_type": "stream",
  358. "text": [
  359. "False\n"
  360. ]
  361. }
  362. ],
  363. "source": [
  364. "print(String0.endswith('y'))"
  365. ]
  366. },
  367. {
  368. "cell_type": "markdown",
  369. "metadata": {},
  370. "source": [
  371. "还可以指定开始和停止索引值。"
  372. ]
  373. },
  374. {
  375. "cell_type": "code",
  376. "execution_count": 15,
  377. "metadata": {},
  378. "outputs": [
  379. {
  380. "name": "stdout",
  381. "output_type": "stream",
  382. "text": [
  383. "True\n",
  384. "True\n"
  385. ]
  386. }
  387. ],
  388. "source": [
  389. "print(String0.endswith('l',0))\n",
  390. "print(String0.endswith('M',0,5))"
  391. ]
  392. },
  393. {
  394. "cell_type": "markdown",
  395. "metadata": {},
  396. "source": [
  397. "**count( )** 函数计算给定字符串中的字符数。也可以指定开始和停止索引或将其留空。(这些是隐式参数,将在函数中处理)"
  398. ]
  399. },
  400. {
  401. "cell_type": "code",
  402. "execution_count": 16,
  403. "metadata": {},
  404. "outputs": [
  405. {
  406. "name": "stdout",
  407. "output_type": "stream",
  408. "text": [
  409. "4\n",
  410. "2\n"
  411. ]
  412. }
  413. ],
  414. "source": [
  415. "print(String0.count('a',0))\n",
  416. "print(String0.count('a',5,10))"
  417. ]
  418. },
  419. {
  420. "cell_type": "markdown",
  421. "metadata": {},
  422. "source": [
  423. "**join( )** 函数在输入字符串的元素之间添加一个字符。"
  424. ]
  425. },
  426. {
  427. "cell_type": "code",
  428. "execution_count": 17,
  429. "metadata": {},
  430. "outputs": [
  431. {
  432. "data": {
  433. "text/plain": [
  434. "'*a_a-'"
  435. ]
  436. },
  437. "execution_count": 17,
  438. "metadata": {},
  439. "output_type": "execute_result"
  440. }
  441. ],
  442. "source": [
  443. "'a'.join('*_-')"
  444. ]
  445. },
  446. {
  447. "cell_type": "code",
  448. "execution_count": 18,
  449. "metadata": {},
  450. "outputs": [
  451. {
  452. "data": {
  453. "text/plain": [
  454. "'1\\n2'"
  455. ]
  456. },
  457. "execution_count": 18,
  458. "metadata": {},
  459. "output_type": "execute_result"
  460. }
  461. ],
  462. "source": [
  463. "'\\n'.join(['1', '2'])"
  464. ]
  465. },
  466. {
  467. "cell_type": "markdown",
  468. "metadata": {},
  469. "source": [
  470. "'*_-' 是输入字符串而字符'a'被添加在每一个元素之间。"
  471. ]
  472. },
  473. {
  474. "cell_type": "markdown",
  475. "metadata": {},
  476. "source": [
  477. "**join( )** 函数也可以被用来将列表转化为字符串。"
  478. ]
  479. },
  480. {
  481. "cell_type": "code",
  482. "execution_count": 19,
  483. "metadata": {},
  484. "outputs": [
  485. {
  486. "name": "stdout",
  487. "output_type": "stream",
  488. "text": [
  489. "['T', 'a', 'j', ' ', 'M', 'a', 'h', 'a', 'l', ' ', 'i', 's', ' ', 'b', 'e', 'a', 'u', 't', 'i', 'f', 'u', 'l']\n",
  490. "Taj Mahal is beautiful\n"
  491. ]
  492. }
  493. ],
  494. "source": [
  495. "a = list(String0)\n",
  496. "print(a)\n",
  497. "b = ''.join(a)\n",
  498. "print(b)"
  499. ]
  500. },
  501. {
  502. "cell_type": "markdown",
  503. "metadata": {},
  504. "source": [
  505. "在将它转化成字符串之前,**join( )** 函数可以被用来在列表元素中插入任意的字符。"
  506. ]
  507. },
  508. {
  509. "cell_type": "code",
  510. "execution_count": 20,
  511. "metadata": {},
  512. "outputs": [
  513. {
  514. "name": "stdout",
  515. "output_type": "stream",
  516. "text": [
  517. " /i/s/ /b/e/a/u/t/i/f/u/l\n"
  518. ]
  519. }
  520. ],
  521. "source": [
  522. "c = '/'.join(a)[18:]\n",
  523. "print(c)"
  524. ]
  525. },
  526. {
  527. "cell_type": "markdown",
  528. "metadata": {},
  529. "source": [
  530. "**split( )** 函数被用来将一个字符串转化为列表。把它想成与**join()** 相反地函数。"
  531. ]
  532. },
  533. {
  534. "cell_type": "code",
  535. "execution_count": 21,
  536. "metadata": {},
  537. "outputs": [
  538. {
  539. "name": "stdout",
  540. "output_type": "stream",
  541. "text": [
  542. "[' ', 'i', 's', ' ', 'b', 'e', 'a', 'u', 't', 'i', 'f', 'u', 'l']\n"
  543. ]
  544. }
  545. ],
  546. "source": [
  547. "d = c.split('/')\n",
  548. "print(d)"
  549. ]
  550. },
  551. {
  552. "cell_type": "markdown",
  553. "metadata": {},
  554. "source": [
  555. "在 **split( )** 函数中,还可以指定分割字符串的次数,或者新返回列表应该包含的元素数量。元素的数量总是比指定的数量多1,这是因为它被分割了指定的次数。"
  556. ]
  557. },
  558. {
  559. "cell_type": "code",
  560. "execution_count": 21,
  561. "metadata": {},
  562. "outputs": [
  563. {
  564. "name": "stdout",
  565. "output_type": "stream",
  566. "text": [
  567. "[' ', 'i', 's', ' /b/e/a/u/t/i/f/u/l']\n",
  568. "4\n"
  569. ]
  570. }
  571. ],
  572. "source": [
  573. "e = c.split('/',3)\n",
  574. "print(e)\n",
  575. "print(len(e))"
  576. ]
  577. },
  578. {
  579. "cell_type": "markdown",
  580. "metadata": {},
  581. "source": [
  582. "**lower( )** 将任何大写字母转换为小写字母。"
  583. ]
  584. },
  585. {
  586. "cell_type": "code",
  587. "execution_count": 22,
  588. "metadata": {},
  589. "outputs": [
  590. {
  591. "name": "stdout",
  592. "output_type": "stream",
  593. "text": [
  594. "Taj Mahal is beautiful\n",
  595. "taj mahal is beautiful\n"
  596. ]
  597. }
  598. ],
  599. "source": [
  600. "print(String0)\n",
  601. "print(String0.lower())"
  602. ]
  603. },
  604. {
  605. "cell_type": "markdown",
  606. "metadata": {},
  607. "source": [
  608. "**upper( )** 将任何小写字母转换为大写字母。"
  609. ]
  610. },
  611. {
  612. "cell_type": "code",
  613. "execution_count": 23,
  614. "metadata": {},
  615. "outputs": [
  616. {
  617. "data": {
  618. "text/plain": [
  619. "'TAJ MAHAL IS BEAUTIFUL'"
  620. ]
  621. },
  622. "execution_count": 23,
  623. "metadata": {},
  624. "output_type": "execute_result"
  625. }
  626. ],
  627. "source": [
  628. "String0.upper()"
  629. ]
  630. },
  631. {
  632. "cell_type": "markdown",
  633. "metadata": {},
  634. "source": [
  635. "**replace( )** 函数将该元素替换为另一个元素。"
  636. ]
  637. },
  638. {
  639. "cell_type": "code",
  640. "execution_count": 24,
  641. "metadata": {},
  642. "outputs": [
  643. {
  644. "data": {
  645. "text/plain": [
  646. "'Bengaluru is beautiful'"
  647. ]
  648. },
  649. "execution_count": 24,
  650. "metadata": {},
  651. "output_type": "execute_result"
  652. }
  653. ],
  654. "source": [
  655. "String0.replace('Taj Mahal','Bengaluru')"
  656. ]
  657. },
  658. {
  659. "cell_type": "markdown",
  660. "metadata": {},
  661. "source": [
  662. "**strip( )** 函数用于从右端和左端删除不需要的元素。"
  663. ]
  664. },
  665. {
  666. "cell_type": "code",
  667. "execution_count": 25,
  668. "metadata": {},
  669. "outputs": [],
  670. "source": [
  671. "f = ' hello '"
  672. ]
  673. },
  674. {
  675. "cell_type": "markdown",
  676. "metadata": {},
  677. "source": [
  678. "如果没有指定字符,那么它将删除数据左边和右边的所有空格。"
  679. ]
  680. },
  681. {
  682. "cell_type": "code",
  683. "execution_count": 27,
  684. "metadata": {},
  685. "outputs": [
  686. {
  687. "data": {
  688. "text/plain": [
  689. "'hello'"
  690. ]
  691. },
  692. "execution_count": 27,
  693. "metadata": {},
  694. "output_type": "execute_result"
  695. }
  696. ],
  697. "source": [
  698. "f.strip()"
  699. ]
  700. },
  701. {
  702. "cell_type": "markdown",
  703. "metadata": {},
  704. "source": [
  705. "**strip( )** 函数,当指定字符时,如果该字符出现在指定字符串的两端,则删除该字符。"
  706. ]
  707. },
  708. {
  709. "cell_type": "code",
  710. "execution_count": 30,
  711. "metadata": {},
  712. "outputs": [],
  713. "source": [
  714. "f = ' ***----hello---******* '"
  715. ]
  716. },
  717. {
  718. "cell_type": "code",
  719. "execution_count": 32,
  720. "metadata": {},
  721. "outputs": [
  722. {
  723. "data": {
  724. "text/plain": [
  725. "'hello'"
  726. ]
  727. },
  728. "execution_count": 32,
  729. "metadata": {},
  730. "output_type": "execute_result"
  731. }
  732. ],
  733. "source": [
  734. "f.strip(' *-')"
  735. ]
  736. },
  737. {
  738. "cell_type": "markdown",
  739. "metadata": {},
  740. "source": [
  741. "必须删除星号,但没有。这是因为在左边和右边都有一个空格。在strip函数中。字符需要按照它们出现的特定顺序输入。"
  742. ]
  743. },
  744. {
  745. "cell_type": "code",
  746. "execution_count": 31,
  747. "metadata": {},
  748. "outputs": [
  749. {
  750. "name": "stdout",
  751. "output_type": "stream",
  752. "text": [
  753. "----hello---\n",
  754. "hello\n"
  755. ]
  756. }
  757. ],
  758. "source": [
  759. "print(f.strip(' *'))\n",
  760. "print(f.strip(' *-'))"
  761. ]
  762. },
  763. {
  764. "cell_type": "markdown",
  765. "metadata": {},
  766. "source": [
  767. "**lstrip( )** 和 **rstrip( )** 函数具有与strip函数相同的功能,但唯一的区别是**lstrip()** 只删除左边的内容,而**rstrip()** 只删除右边的内容。"
  768. ]
  769. },
  770. {
  771. "cell_type": "code",
  772. "execution_count": 32,
  773. "metadata": {},
  774. "outputs": [
  775. {
  776. "name": "stdout",
  777. "output_type": "stream",
  778. "text": [
  779. "----hello---******* \n",
  780. " ***----hello---\n"
  781. ]
  782. }
  783. ],
  784. "source": [
  785. "print(f.lstrip(' *'))\n",
  786. "print(f.rstrip(' *'))"
  787. ]
  788. },
  789. {
  790. "cell_type": "markdown",
  791. "metadata": {},
  792. "source": [
  793. "## 2. 词典"
  794. ]
  795. },
  796. {
  797. "cell_type": "markdown",
  798. "metadata": {},
  799. "source": [
  800. "词典更像数据库,因为在这里你可以用用户定义的字符串索引特定的序列。"
  801. ]
  802. },
  803. {
  804. "cell_type": "markdown",
  805. "metadata": {},
  806. "source": [
  807. "为了定义一个词典,让一个变量和{ }或dict()相等。"
  808. ]
  809. },
  810. {
  811. "cell_type": "code",
  812. "execution_count": 33,
  813. "metadata": {},
  814. "outputs": [
  815. {
  816. "name": "stdout",
  817. "output_type": "stream",
  818. "text": [
  819. "<class 'dict'> <class 'dict'>\n"
  820. ]
  821. }
  822. ],
  823. "source": [
  824. "d0 = {}\n",
  825. "d1 = dict()\n",
  826. "print(type(d0), type(d1))"
  827. ]
  828. },
  829. {
  830. "cell_type": "markdown",
  831. "metadata": {},
  832. "source": [
  833. "词典的工作方式有点像列表,但增加了分配自己索引样式的功能。"
  834. ]
  835. },
  836. {
  837. "cell_type": "code",
  838. "execution_count": 35,
  839. "metadata": {},
  840. "outputs": [
  841. {
  842. "name": "stdout",
  843. "output_type": "stream",
  844. "text": [
  845. "{'One': 1, 'OneTwo': 12}\n"
  846. ]
  847. }
  848. ],
  849. "source": [
  850. "d0['One'] = 1\n",
  851. "d0['OneTwo'] = 12 \n",
  852. "print(d0)"
  853. ]
  854. },
  855. {
  856. "cell_type": "code",
  857. "execution_count": 37,
  858. "metadata": {},
  859. "outputs": [
  860. {
  861. "name": "stdout",
  862. "output_type": "stream",
  863. "text": [
  864. "{'key1': 1, 'key2': [1, 2, 4], 3: (1, 4, 6)}\n"
  865. ]
  866. }
  867. ],
  868. "source": [
  869. "d1 = {\"key1\":1, \"key2\":[1,2,4], 3:(1, 4, 6)}\n",
  870. "print(d1)"
  871. ]
  872. },
  873. {
  874. "cell_type": "markdown",
  875. "metadata": {},
  876. "source": [
  877. "这就是字典的样子。现在你可以通过设为'One'的索引值来访问'1'了"
  878. ]
  879. },
  880. {
  881. "cell_type": "code",
  882. "execution_count": 38,
  883. "metadata": {},
  884. "outputs": [
  885. {
  886. "name": "stdout",
  887. "output_type": "stream",
  888. "text": [
  889. "1\n"
  890. ]
  891. }
  892. ],
  893. "source": [
  894. "print(d0['One'])"
  895. ]
  896. },
  897. {
  898. "cell_type": "markdown",
  899. "metadata": {},
  900. "source": [
  901. "两个相关的列表可以合并成一个字典。"
  902. ]
  903. },
  904. {
  905. "cell_type": "code",
  906. "execution_count": 39,
  907. "metadata": {},
  908. "outputs": [],
  909. "source": [
  910. "names = ['One', 'Two', 'Three', 'Four', 'Five']\n",
  911. "numbers = [1, 2, 3, 4, 5]"
  912. ]
  913. },
  914. {
  915. "cell_type": "markdown",
  916. "metadata": {},
  917. "source": [
  918. "**zip( )** 函数用来结合两个列表。"
  919. ]
  920. },
  921. {
  922. "cell_type": "code",
  923. "execution_count": 40,
  924. "metadata": {},
  925. "outputs": [
  926. {
  927. "name": "stdout",
  928. "output_type": "stream",
  929. "text": [
  930. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  931. ]
  932. }
  933. ],
  934. "source": [
  935. "d2 = zip(names,numbers)\n",
  936. "print(dict(d2))"
  937. ]
  938. },
  939. {
  940. "cell_type": "code",
  941. "execution_count": 42,
  942. "metadata": {},
  943. "outputs": [
  944. {
  945. "name": "stdout",
  946. "output_type": "stream",
  947. "text": [
  948. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  949. ]
  950. }
  951. ],
  952. "source": [
  953. "d3 = {names[i]:numbers[i] for i in range(len(names))}\n",
  954. "print(d3)"
  955. ]
  956. },
  957. {
  958. "cell_type": "markdown",
  959. "metadata": {},
  960. "source": [
  961. "这两个列表组合成一个列表,每个元素都与元组中来自另一个列表的各自元素相连。元组,因为它是被分配的,而且值不应该改变。\n",
  962. "\n",
  963. "进一步地,为了将上面的内容转化为词典。我们可以使用 **dict( )** 函数。"
  964. ]
  965. },
  966. {
  967. "cell_type": "code",
  968. "execution_count": 5,
  969. "metadata": {},
  970. "outputs": [
  971. {
  972. "name": "stdout",
  973. "output_type": "stream",
  974. "text": [
  975. "{'One': 1, 'Four': 4, 'Three': 3, 'Five': 5, 'Two': 2}\n"
  976. ]
  977. }
  978. ],
  979. "source": [
  980. "d2 = zip(names,numbers)\n",
  981. "\n",
  982. "a1 = dict(d2)\n",
  983. "print(a1)"
  984. ]
  985. },
  986. {
  987. "cell_type": "markdown",
  988. "metadata": {},
  989. "source": [
  990. "### 2.1 内置函数"
  991. ]
  992. },
  993. {
  994. "cell_type": "markdown",
  995. "metadata": {},
  996. "source": [
  997. "**clear( )** 函数被用于擦除所创建的整个数据库。"
  998. ]
  999. },
  1000. {
  1001. "cell_type": "code",
  1002. "execution_count": 43,
  1003. "metadata": {},
  1004. "outputs": [
  1005. {
  1006. "name": "stdout",
  1007. "output_type": "stream",
  1008. "text": [
  1009. "{}\n"
  1010. ]
  1011. }
  1012. ],
  1013. "source": [
  1014. "a1 = {1:10, 2:20}\n",
  1015. "a1.clear()\n",
  1016. "print(a1)"
  1017. ]
  1018. },
  1019. {
  1020. "cell_type": "markdown",
  1021. "metadata": {},
  1022. "source": [
  1023. "字典也可以使用循环来构建。"
  1024. ]
  1025. },
  1026. {
  1027. "cell_type": "code",
  1028. "execution_count": 44,
  1029. "metadata": {},
  1030. "outputs": [
  1031. {
  1032. "name": "stdout",
  1033. "output_type": "stream",
  1034. "text": [
  1035. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  1036. ]
  1037. }
  1038. ],
  1039. "source": [
  1040. "a1 = {names[i]:numbers[i] for i in range(len(names))}\n",
  1041. "print(a1)"
  1042. ]
  1043. },
  1044. {
  1045. "cell_type": "code",
  1046. "execution_count": 45,
  1047. "metadata": {},
  1048. "outputs": [
  1049. {
  1050. "name": "stdout",
  1051. "output_type": "stream",
  1052. "text": [
  1053. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  1054. ]
  1055. }
  1056. ],
  1057. "source": [
  1058. "for i in range(len(names)):\n",
  1059. " a1[names[i]] = numbers[i]\n",
  1060. "print(a1)"
  1061. ]
  1062. },
  1063. {
  1064. "cell_type": "markdown",
  1065. "metadata": {},
  1066. "source": [
  1067. "**values( )** 函数返回了一个包含字典中所有赋值的列表"
  1068. ]
  1069. },
  1070. {
  1071. "cell_type": "code",
  1072. "execution_count": 46,
  1073. "metadata": {},
  1074. "outputs": [
  1075. {
  1076. "data": {
  1077. "text/plain": [
  1078. "dict_values([1, 2, 3, 4, 5])"
  1079. ]
  1080. },
  1081. "execution_count": 46,
  1082. "metadata": {},
  1083. "output_type": "execute_result"
  1084. }
  1085. ],
  1086. "source": [
  1087. "a1.values()"
  1088. ]
  1089. },
  1090. {
  1091. "cell_type": "markdown",
  1092. "metadata": {},
  1093. "source": [
  1094. "**keys( )** 函数返回包含赋值的所有索引或键。"
  1095. ]
  1096. },
  1097. {
  1098. "cell_type": "code",
  1099. "execution_count": 47,
  1100. "metadata": {},
  1101. "outputs": [
  1102. {
  1103. "data": {
  1104. "text/plain": [
  1105. "dict_keys(['One', 'Two', 'Three', 'Four', 'Five'])"
  1106. ]
  1107. },
  1108. "execution_count": 47,
  1109. "metadata": {},
  1110. "output_type": "execute_result"
  1111. }
  1112. ],
  1113. "source": [
  1114. "a1.keys()"
  1115. ]
  1116. },
  1117. {
  1118. "cell_type": "markdown",
  1119. "metadata": {},
  1120. "source": [
  1121. "**items()** 返回一个列表同时也包含该列表,但是字典中的每个元素都在一个元组中。这与使用zip函数得到的结果相同。"
  1122. ]
  1123. },
  1124. {
  1125. "cell_type": "code",
  1126. "execution_count": 48,
  1127. "metadata": {},
  1128. "outputs": [
  1129. {
  1130. "name": "stdout",
  1131. "output_type": "stream",
  1132. "text": [
  1133. "[ One] 1\n",
  1134. "[ Two] 2\n",
  1135. "[ Three] 3\n",
  1136. "[ Four] 4\n",
  1137. "[ Five] 5\n"
  1138. ]
  1139. }
  1140. ],
  1141. "source": [
  1142. "a1.items()\n",
  1143. "\n",
  1144. "for (k,v) in a1.items():\n",
  1145. " print(\"[%6s] %d\" % (k, v))"
  1146. ]
  1147. },
  1148. {
  1149. "cell_type": "markdown",
  1150. "metadata": {},
  1151. "source": [
  1152. "**pop()** 函数用于删除特定的元素,并且这个删除的元素可以被分配给一个新的变量。但是请记住,只存储值而不存储键。因为它只是一个索引值。"
  1153. ]
  1154. },
  1155. {
  1156. "cell_type": "code",
  1157. "execution_count": 52,
  1158. "metadata": {},
  1159. "outputs": [
  1160. {
  1161. "ename": "KeyError",
  1162. "evalue": "'One'",
  1163. "output_type": "error",
  1164. "traceback": [
  1165. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  1166. "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
  1167. "\u001b[0;32m<ipython-input-52-436d4737aff5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'One'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  1168. "\u001b[0;31mKeyError\u001b[0m: 'One'"
  1169. ]
  1170. }
  1171. ],
  1172. "source": [
  1173. "a2 = a1.pop('One')\n",
  1174. "print(a1)\n",
  1175. "print(a2)"
  1176. ]
  1177. }
  1178. ],
  1179. "metadata": {
  1180. "kernelspec": {
  1181. "display_name": "Python 3",
  1182. "language": "python",
  1183. "name": "python3"
  1184. },
  1185. "language_info": {
  1186. "codemirror_mode": {
  1187. "name": "ipython",
  1188. "version": 3
  1189. },
  1190. "file_extension": ".py",
  1191. "mimetype": "text/x-python",
  1192. "name": "python",
  1193. "nbconvert_exporter": "python",
  1194. "pygments_lexer": "ipython3",
  1195. "version": "3.7.9"
  1196. }
  1197. },
  1198. "nbformat": 4,
  1199. "nbformat_minor": 1
  1200. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。