You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

densenet.ipynb 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# DenseNet\n",
  8. "因为 ResNet 提出了跨层链接的思想,这直接影响了随后出现的卷积网络架构,其中最有名的就是 cvpr 2017 的 best paper,DenseNet。\n",
  9. "\n",
  10. "DenseNet 和 ResNet 不同在于 ResNet 是跨层求和,而 DenseNet 是跨层将特征在通道维度进行拼接,下面可以看看他们两者的图示\n",
  11. "\n",
  12. "![](https://ws4.sinaimg.cn/large/006tNc79ly1fmpvj5vkfhj30uw0anq73.jpg)\n",
  13. "\n",
  14. "![](https://ws1.sinaimg.cn/large/006tNc79ly1fmpvj7fxd1j30vb0eyzqf.jpg)"
  15. ]
  16. },
  17. {
  18. "cell_type": "markdown",
  19. "metadata": {},
  20. "source": [
  21. "第一张图是 ResNet,第二张图是 DenseNet,因为是在通道维度进行特征的拼接,所以底层的输出会保留进入所有后面的层,这能够更好的保证梯度的传播,同时能够使用低维的特征和高维的特征进行联合训练,能够得到更好的结果。"
  22. ]
  23. },
  24. {
  25. "cell_type": "markdown",
  26. "metadata": {},
  27. "source": [
  28. "DenseNet 主要由 dense block 构成,下面我们来实现一个 densen block"
  29. ]
  30. },
  31. {
  32. "cell_type": "code",
  33. "execution_count": 1,
  34. "metadata": {
  35. "ExecuteTime": {
  36. "end_time": "2017-12-22T15:38:31.113030Z",
  37. "start_time": "2017-12-22T15:38:30.612922Z"
  38. },
  39. "collapsed": true
  40. },
  41. "outputs": [],
  42. "source": [
  43. "import sys\n",
  44. "sys.path.append('..')\n",
  45. "\n",
  46. "import numpy as np\n",
  47. "import torch\n",
  48. "from torch import nn\n",
  49. "from torch.autograd import Variable\n",
  50. "from torchvision.datasets import CIFAR10"
  51. ]
  52. },
  53. {
  54. "cell_type": "markdown",
  55. "metadata": {},
  56. "source": [
  57. "首先定义一个卷积块,这个卷积块的顺序是 bn -> relu -> conv"
  58. ]
  59. },
  60. {
  61. "cell_type": "code",
  62. "execution_count": 2,
  63. "metadata": {
  64. "ExecuteTime": {
  65. "end_time": "2017-12-22T15:38:31.121249Z",
  66. "start_time": "2017-12-22T15:38:31.115369Z"
  67. },
  68. "collapsed": true
  69. },
  70. "outputs": [],
  71. "source": [
  72. "def conv_block(in_channel, out_channel):\n",
  73. " layer = nn.Sequential(\n",
  74. " nn.BatchNorm2d(in_channel),\n",
  75. " nn.ReLU(True),\n",
  76. " nn.Conv2d(in_channel, out_channel, 3, padding=1, bias=False)\n",
  77. " )\n",
  78. " return layer"
  79. ]
  80. },
  81. {
  82. "cell_type": "markdown",
  83. "metadata": {},
  84. "source": [
  85. "dense block 将每次的卷积的输出称为 `growth_rate`,因为如果输入是 `in_channel`,有 n 层,那么输出就是 `in_channel + n * growh_rate`"
  86. ]
  87. },
  88. {
  89. "cell_type": "code",
  90. "execution_count": 3,
  91. "metadata": {
  92. "ExecuteTime": {
  93. "end_time": "2017-12-22T15:38:31.145274Z",
  94. "start_time": "2017-12-22T15:38:31.123363Z"
  95. },
  96. "collapsed": true
  97. },
  98. "outputs": [],
  99. "source": [
  100. "class dense_block(nn.Module):\n",
  101. " def __init__(self, in_channel, growth_rate, num_layers):\n",
  102. " super(dense_block, self).__init__()\n",
  103. " block = []\n",
  104. " channel = in_channel\n",
  105. " for i in range(num_layers):\n",
  106. " block.append(conv_block(channel, growth_rate))\n",
  107. " channel += growth_rate\n",
  108. " \n",
  109. " self.net = nn.Sequential(*block)\n",
  110. " \n",
  111. " def forward(self, x):\n",
  112. " for layer in self.net:\n",
  113. " out = layer(x)\n",
  114. " x = torch.cat((out, x), dim=1)\n",
  115. " return x"
  116. ]
  117. },
  118. {
  119. "cell_type": "markdown",
  120. "metadata": {},
  121. "source": [
  122. "我们验证一下输出的 channel 是否正确"
  123. ]
  124. },
  125. {
  126. "cell_type": "code",
  127. "execution_count": 4,
  128. "metadata": {
  129. "ExecuteTime": {
  130. "end_time": "2017-12-22T15:38:31.213632Z",
  131. "start_time": "2017-12-22T15:38:31.147196Z"
  132. }
  133. },
  134. "outputs": [
  135. {
  136. "name": "stdout",
  137. "output_type": "stream",
  138. "text": [
  139. "input shape: 3 x 96 x 96\n",
  140. "output shape: 39 x 96 x 96\n"
  141. ]
  142. }
  143. ],
  144. "source": [
  145. "test_net = dense_block(3, 12, 3)\n",
  146. "test_x = Variable(torch.zeros(1, 3, 96, 96))\n",
  147. "print('input shape: {} x {} x {}'.format(test_x.shape[1], test_x.shape[2], test_x.shape[3]))\n",
  148. "test_y = test_net(test_x)\n",
  149. "print('output shape: {} x {} x {}'.format(test_y.shape[1], test_y.shape[2], test_y.shape[3]))"
  150. ]
  151. },
  152. {
  153. "cell_type": "markdown",
  154. "metadata": {},
  155. "source": [
  156. "除了 dense block,DenseNet 中还有一个模块叫过渡层(transition block),因为 DenseNet 会不断地对维度进行拼接, 所以当层数很高的时候,输出的通道数就会越来越大,参数和计算量也会越来越大,为了避免这个问题,需要引入过渡层将输出通道降低下来,同时也将输入的长宽减半,这个过渡层可以使用 1 x 1 的卷积"
  157. ]
  158. },
  159. {
  160. "cell_type": "code",
  161. "execution_count": 5,
  162. "metadata": {
  163. "ExecuteTime": {
  164. "end_time": "2017-12-22T15:38:31.222120Z",
  165. "start_time": "2017-12-22T15:38:31.215770Z"
  166. },
  167. "collapsed": true
  168. },
  169. "outputs": [],
  170. "source": [
  171. "def transition(in_channel, out_channel):\n",
  172. " trans_layer = nn.Sequential(\n",
  173. " nn.BatchNorm2d(in_channel),\n",
  174. " nn.ReLU(True),\n",
  175. " nn.Conv2d(in_channel, out_channel, 1),\n",
  176. " nn.AvgPool2d(2, 2)\n",
  177. " )\n",
  178. " return trans_layer"
  179. ]
  180. },
  181. {
  182. "cell_type": "markdown",
  183. "metadata": {},
  184. "source": [
  185. "验证一下过渡层是否正确"
  186. ]
  187. },
  188. {
  189. "cell_type": "code",
  190. "execution_count": 6,
  191. "metadata": {
  192. "ExecuteTime": {
  193. "end_time": "2017-12-22T15:38:31.234846Z",
  194. "start_time": "2017-12-22T15:38:31.224078Z"
  195. }
  196. },
  197. "outputs": [
  198. {
  199. "name": "stdout",
  200. "output_type": "stream",
  201. "text": [
  202. "input shape: 3 x 96 x 96\n",
  203. "output shape: 12 x 48 x 48\n"
  204. ]
  205. }
  206. ],
  207. "source": [
  208. "test_net = transition(3, 12)\n",
  209. "test_x = Variable(torch.zeros(1, 3, 96, 96))\n",
  210. "print('input shape: {} x {} x {}'.format(test_x.shape[1], test_x.shape[2], test_x.shape[3]))\n",
  211. "test_y = test_net(test_x)\n",
  212. "print('output shape: {} x {} x {}'.format(test_y.shape[1], test_y.shape[2], test_y.shape[3]))"
  213. ]
  214. },
  215. {
  216. "cell_type": "markdown",
  217. "metadata": {},
  218. "source": [
  219. "最后我们定义 DenseNet"
  220. ]
  221. },
  222. {
  223. "cell_type": "code",
  224. "execution_count": 7,
  225. "metadata": {
  226. "ExecuteTime": {
  227. "end_time": "2017-12-22T15:38:31.318822Z",
  228. "start_time": "2017-12-22T15:38:31.236857Z"
  229. },
  230. "collapsed": true
  231. },
  232. "outputs": [],
  233. "source": [
  234. "class densenet(nn.Module):\n",
  235. " def __init__(self, in_channel, num_classes, growth_rate=32, block_layers=[6, 12, 24, 16]):\n",
  236. " super(densenet, self).__init__()\n",
  237. " self.block1 = nn.Sequential(\n",
  238. " nn.Conv2d(in_channel, 64, 7, 2, 3),\n",
  239. " nn.BatchNorm2d(64),\n",
  240. " nn.ReLU(True),\n",
  241. " nn.MaxPool2d(3, 2, padding=1)\n",
  242. " )\n",
  243. " \n",
  244. " channels = 64\n",
  245. " block = []\n",
  246. " for i, layers in enumerate(block_layers):\n",
  247. " block.append(dense_block(channels, growth_rate, layers))\n",
  248. " channels += layers * growth_rate\n",
  249. " if i != len(block_layers) - 1:\n",
  250. " block.append(transition(channels, channels // 2)) # 通过 transition 层将大小减半,通道数减半\n",
  251. " channels = channels // 2\n",
  252. " \n",
  253. " self.block2 = nn.Sequential(*block)\n",
  254. " self.block2.add_module('bn', nn.BatchNorm2d(channels))\n",
  255. " self.block2.add_module('relu', nn.ReLU(True))\n",
  256. " self.block2.add_module('avg_pool', nn.AvgPool2d(3))\n",
  257. " \n",
  258. " self.classifier = nn.Linear(channels, num_classes)\n",
  259. " \n",
  260. " def forward(self, x):\n",
  261. " x = self.block1(x)\n",
  262. " x = self.block2(x)\n",
  263. " \n",
  264. " x = x.view(x.shape[0], -1)\n",
  265. " x = self.classifier(x)\n",
  266. " return x"
  267. ]
  268. },
  269. {
  270. "cell_type": "code",
  271. "execution_count": 8,
  272. "metadata": {
  273. "ExecuteTime": {
  274. "end_time": "2017-12-22T15:38:31.654182Z",
  275. "start_time": "2017-12-22T15:38:31.320788Z"
  276. }
  277. },
  278. "outputs": [
  279. {
  280. "name": "stdout",
  281. "output_type": "stream",
  282. "text": [
  283. "output: torch.Size([1, 10])\n"
  284. ]
  285. }
  286. ],
  287. "source": [
  288. "test_net = densenet(3, 10)\n",
  289. "test_x = Variable(torch.zeros(1, 3, 96, 96))\n",
  290. "test_y = test_net(test_x)\n",
  291. "print('output: {}'.format(test_y.shape))"
  292. ]
  293. },
  294. {
  295. "cell_type": "code",
  296. "execution_count": 9,
  297. "metadata": {
  298. "ExecuteTime": {
  299. "end_time": "2017-12-22T15:38:32.894729Z",
  300. "start_time": "2017-12-22T15:38:31.656356Z"
  301. },
  302. "collapsed": true
  303. },
  304. "outputs": [],
  305. "source": [
  306. "from utils import train\n",
  307. "\n",
  308. "def data_tf(x):\n",
  309. " x = x.resize((96, 96), 2) # 将图片放大到 96 x 96\n",
  310. " x = np.array(x, dtype='float32') / 255\n",
  311. " x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到\n",
  312. " x = x.transpose((2, 0, 1)) # 将 channel 放到第一维,只是 pytorch 要求的输入方式\n",
  313. " x = torch.from_numpy(x)\n",
  314. " return x\n",
  315. " \n",
  316. "train_set = CIFAR10('./data', train=True, transform=data_tf)\n",
  317. "train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)\n",
  318. "test_set = CIFAR10('./data', train=False, transform=data_tf)\n",
  319. "test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)\n",
  320. "\n",
  321. "net = densenet(3, 10)\n",
  322. "optimizer = torch.optim.SGD(net.parameters(), lr=0.01)\n",
  323. "criterion = nn.CrossEntropyLoss()"
  324. ]
  325. },
  326. {
  327. "cell_type": "code",
  328. "execution_count": 10,
  329. "metadata": {
  330. "ExecuteTime": {
  331. "end_time": "2017-12-22T16:15:38.168095Z",
  332. "start_time": "2017-12-22T15:38:32.896735Z"
  333. }
  334. },
  335. "outputs": [
  336. {
  337. "name": "stdout",
  338. "output_type": "stream",
  339. "text": [
  340. "Epoch 0. Train Loss: 1.374316, Train Acc: 0.507972, Valid Loss: 1.203217, Valid Acc: 0.572884, Time 00:01:44\n",
  341. "Epoch 1. Train Loss: 0.912924, Train Acc: 0.681506, Valid Loss: 1.555908, Valid Acc: 0.492286, Time 00:01:50\n",
  342. "Epoch 2. Train Loss: 0.701387, Train Acc: 0.755794, Valid Loss: 0.815147, Valid Acc: 0.718354, Time 00:01:49\n",
  343. "Epoch 3. Train Loss: 0.575985, Train Acc: 0.800911, Valid Loss: 0.696013, Valid Acc: 0.759494, Time 00:01:50\n",
  344. "Epoch 4. Train Loss: 0.479812, Train Acc: 0.836957, Valid Loss: 1.013879, Valid Acc: 0.676226, Time 00:01:51\n",
  345. "Epoch 5. Train Loss: 0.402165, Train Acc: 0.861413, Valid Loss: 0.674512, Valid Acc: 0.778481, Time 00:01:50\n",
  346. "Epoch 6. Train Loss: 0.334593, Train Acc: 0.888247, Valid Loss: 0.647112, Valid Acc: 0.791634, Time 00:01:50\n",
  347. "Epoch 7. Train Loss: 0.278181, Train Acc: 0.907149, Valid Loss: 0.773517, Valid Acc: 0.756527, Time 00:01:51\n",
  348. "Epoch 8. Train Loss: 0.227948, Train Acc: 0.922714, Valid Loss: 0.654399, Valid Acc: 0.800237, Time 00:01:49\n",
  349. "Epoch 9. Train Loss: 0.181156, Train Acc: 0.940157, Valid Loss: 1.179013, Valid Acc: 0.685225, Time 00:01:50\n",
  350. "Epoch 10. Train Loss: 0.151305, Train Acc: 0.950208, Valid Loss: 0.630000, Valid Acc: 0.807951, Time 00:01:50\n",
  351. "Epoch 11. Train Loss: 0.118433, Train Acc: 0.961077, Valid Loss: 1.247253, Valid Acc: 0.703323, Time 00:01:52\n",
  352. "Epoch 12. Train Loss: 0.094127, Train Acc: 0.969789, Valid Loss: 1.230697, Valid Acc: 0.723101, Time 00:01:51\n",
  353. "Epoch 13. Train Loss: 0.086181, Train Acc: 0.972047, Valid Loss: 0.904135, Valid Acc: 0.769284, Time 00:01:50\n",
  354. "Epoch 14. Train Loss: 0.064248, Train Acc: 0.980359, Valid Loss: 1.665002, Valid Acc: 0.624209, Time 00:01:51\n",
  355. "Epoch 15. Train Loss: 0.054932, Train Acc: 0.982996, Valid Loss: 0.927216, Valid Acc: 0.774723, Time 00:01:51\n",
  356. "Epoch 16. Train Loss: 0.043503, Train Acc: 0.987272, Valid Loss: 1.574383, Valid Acc: 0.707377, Time 00:01:52\n",
  357. "Epoch 17. Train Loss: 0.047615, Train Acc: 0.985154, Valid Loss: 0.987781, Valid Acc: 0.770471, Time 00:01:51\n",
  358. "Epoch 18. Train Loss: 0.039813, Train Acc: 0.988012, Valid Loss: 2.248944, Valid Acc: 0.631824, Time 00:01:50\n",
  359. "Epoch 19. Train Loss: 0.030183, Train Acc: 0.991168, Valid Loss: 0.887785, Valid Acc: 0.795392, Time 00:01:51\n"
  360. ]
  361. }
  362. ],
  363. "source": [
  364. "train(net, train_data, test_data, 20, optimizer, criterion)"
  365. ]
  366. },
  367. {
  368. "cell_type": "markdown",
  369. "metadata": {},
  370. "source": [
  371. "DenseNet 将残差连接改为了特征拼接,使得网络有了更稠密的连接"
  372. ]
  373. }
  374. ],
  375. "metadata": {
  376. "kernelspec": {
  377. "display_name": "Python 3",
  378. "language": "python",
  379. "name": "python3"
  380. },
  381. "language_info": {
  382. "codemirror_mode": {
  383. "name": "ipython",
  384. "version": 3
  385. },
  386. "file_extension": ".py",
  387. "mimetype": "text/x-python",
  388. "name": "python",
  389. "nbconvert_exporter": "python",
  390. "pygments_lexer": "ipython3",
  391. "version": "3.5.2"
  392. }
  393. },
  394. "nbformat": 4,
  395. "nbformat_minor": 2
  396. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。