You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

4_Data_Structure_2.ipynb 25 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
3 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
6 years ago
6 years ago
2 years ago
6 years ago
6 years ago
3 years ago
6 years ago
6 years ago
2 years ago
6 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# 数据结构 - 2\n",
  8. "\n",
  9. "## 1. 字符串"
  10. ]
  11. },
  12. {
  13. "cell_type": "markdown",
  14. "metadata": {},
  15. "source": [
  16. "字符串是基于文本的有序数据,用单/双/三重引号括起来表示。"
  17. ]
  18. },
  19. {
  20. "cell_type": "code",
  21. "execution_count": 1,
  22. "metadata": {
  23. "collapsed": true
  24. },
  25. "outputs": [],
  26. "source": [
  27. "String0 = 'Taj Mahal is beautiful'\n",
  28. "String1 = \"Taj Mahal is beautiful\"\n",
  29. "String2 = '''Taj Mahal\n",
  30. "is\n",
  31. "beautiful'''"
  32. ]
  33. },
  34. {
  35. "cell_type": "code",
  36. "execution_count": 2,
  37. "metadata": {},
  38. "outputs": [
  39. {
  40. "name": "stdout",
  41. "output_type": "stream",
  42. "text": [
  43. "Taj Mahal is beautiful <class 'str'>\n",
  44. "Taj Mahal is beautiful <class 'str'>\n",
  45. "Taj Mahal\n",
  46. "is\n",
  47. "beautiful <class 'str'>\n"
  48. ]
  49. }
  50. ],
  51. "source": [
  52. "print(String0, type(String0))\n",
  53. "print(String1, type(String1))\n",
  54. "print(String2, type(String2))"
  55. ]
  56. },
  57. {
  58. "cell_type": "markdown",
  59. "metadata": {},
  60. "source": [
  61. "字符串索引和分段类似于前面详细解释过的列表。"
  62. ]
  63. },
  64. {
  65. "cell_type": "code",
  66. "execution_count": 5,
  67. "metadata": {},
  68. "outputs": [
  69. {
  70. "name": "stdout",
  71. "output_type": "stream",
  72. "text": [
  73. "M\n",
  74. "Mahal is beautiful\n",
  75. "l\n"
  76. ]
  77. }
  78. ],
  79. "source": [
  80. "print(String0[4])\n",
  81. "print(String0[4:])\n",
  82. "print(String0[-1])"
  83. ]
  84. },
  85. {
  86. "cell_type": "markdown",
  87. "metadata": {},
  88. "source": [
  89. "### 1.1 内置函数"
  90. ]
  91. },
  92. {
  93. "cell_type": "markdown",
  94. "metadata": {},
  95. "source": [
  96. "**find( )** 函数返回要在字符串中找到的给定数据的索引值。如果没有找到它,它返回 **-1**。请注意不要将返回的-1与反向索引值混淆。"
  97. ]
  98. },
  99. {
  100. "cell_type": "code",
  101. "execution_count": 4,
  102. "metadata": {},
  103. "outputs": [
  104. {
  105. "name": "stdout",
  106. "output_type": "stream",
  107. "text": [
  108. "Taj Mahal is beautiful\n",
  109. "7\n",
  110. "-1\n"
  111. ]
  112. }
  113. ],
  114. "source": [
  115. "print(String0)\n",
  116. "print(String0.find('al'))\n",
  117. "print(String0.find('am'))"
  118. ]
  119. },
  120. {
  121. "cell_type": "markdown",
  122. "metadata": {},
  123. "source": [
  124. "返回的索引值是输入数据中第一个元素的索引。"
  125. ]
  126. },
  127. {
  128. "cell_type": "code",
  129. "execution_count": 6,
  130. "metadata": {},
  131. "outputs": [
  132. {
  133. "name": "stdout",
  134. "output_type": "stream",
  135. "text": [
  136. "a\n"
  137. ]
  138. }
  139. ],
  140. "source": [
  141. "print(String0[7])"
  142. ]
  143. },
  144. {
  145. "cell_type": "markdown",
  146. "metadata": {},
  147. "source": [
  148. "还可以输入**find()** 函数,在它们之间搜索索引值。"
  149. ]
  150. },
  151. {
  152. "cell_type": "code",
  153. "execution_count": 7,
  154. "metadata": {},
  155. "outputs": [
  156. {
  157. "name": "stdout",
  158. "output_type": "stream",
  159. "text": [
  160. "2\n",
  161. "2\n"
  162. ]
  163. }
  164. ],
  165. "source": [
  166. "print(String0.find('j',1))\n",
  167. "print(String0.find('j',1,3))"
  168. ]
  169. },
  170. {
  171. "cell_type": "markdown",
  172. "metadata": {},
  173. "source": [
  174. "**capitalize( )** 用于将字符串中的第一个元素大写。"
  175. ]
  176. },
  177. {
  178. "cell_type": "code",
  179. "execution_count": 8,
  180. "metadata": {},
  181. "outputs": [
  182. {
  183. "name": "stdout",
  184. "output_type": "stream",
  185. "text": [
  186. "Observe the first letter in this sentence. can you change this sentence\n"
  187. ]
  188. }
  189. ],
  190. "source": [
  191. "String3 = 'observe the first letter in this sentence. can you change this sentence'\n",
  192. "print(String3.capitalize())"
  193. ]
  194. },
  195. {
  196. "cell_type": "markdown",
  197. "metadata": {},
  198. "source": [
  199. "**center( )** 用于通过指定字段宽度将字符串居中对齐。"
  200. ]
  201. },
  202. {
  203. "cell_type": "code",
  204. "execution_count": 9,
  205. "metadata": {},
  206. "outputs": [
  207. {
  208. "data": {
  209. "text/plain": [
  210. "' Taj Mahal is beautiful '"
  211. ]
  212. },
  213. "execution_count": 9,
  214. "metadata": {},
  215. "output_type": "execute_result"
  216. }
  217. ],
  218. "source": [
  219. "String0.center(70)"
  220. ]
  221. },
  222. {
  223. "cell_type": "markdown",
  224. "metadata": {},
  225. "source": [
  226. "One can also fill the left out spaces with any other character."
  227. ]
  228. },
  229. {
  230. "cell_type": "code",
  231. "execution_count": 10,
  232. "metadata": {},
  233. "outputs": [
  234. {
  235. "data": {
  236. "text/plain": [
  237. "'------------------------Taj Mahal is beautiful------------------------'"
  238. ]
  239. },
  240. "execution_count": 10,
  241. "metadata": {},
  242. "output_type": "execute_result"
  243. }
  244. ],
  245. "source": [
  246. "String0.center(70,'-')"
  247. ]
  248. },
  249. {
  250. "cell_type": "markdown",
  251. "metadata": {},
  252. "source": [
  253. "**zfill( )** 通过指定字段宽度来填充零。"
  254. ]
  255. },
  256. {
  257. "cell_type": "code",
  258. "execution_count": 11,
  259. "metadata": {},
  260. "outputs": [
  261. {
  262. "data": {
  263. "text/plain": [
  264. "'00000000Taj Mahal is beautiful'"
  265. ]
  266. },
  267. "execution_count": 11,
  268. "metadata": {},
  269. "output_type": "execute_result"
  270. }
  271. ],
  272. "source": [
  273. "String0.zfill(30)"
  274. ]
  275. },
  276. {
  277. "cell_type": "markdown",
  278. "metadata": {},
  279. "source": [
  280. "**expandtabs( )** 允许您更改制表符的间距。`'\\t'`默认设置为8个空格。"
  281. ]
  282. },
  283. {
  284. "cell_type": "code",
  285. "execution_count": 12,
  286. "metadata": {},
  287. "outputs": [
  288. {
  289. "name": "stdout",
  290. "output_type": "stream",
  291. "text": [
  292. "h\te\tl\tl\to\n",
  293. "h e l l o\n",
  294. "h e l l o\n"
  295. ]
  296. }
  297. ],
  298. "source": [
  299. "s = 'h\\te\\tl\\tl\\to'\n",
  300. "print(s)\n",
  301. "print(s.expandtabs(1))\n",
  302. "print(s.expandtabs(4))"
  303. ]
  304. },
  305. {
  306. "cell_type": "markdown",
  307. "metadata": {
  308. "collapsed": true
  309. },
  310. "source": [
  311. "**index( )** 和 **find( )** 函数的工作方式相同,唯一的区别在于 **find( )** 返回 `-1`,当输入元素在字符串中没有找到,但是**index( )** 函数会抛出一个 `ValueError`异常。"
  312. ]
  313. },
  314. {
  315. "cell_type": "code",
  316. "execution_count": 13,
  317. "metadata": {},
  318. "outputs": [
  319. {
  320. "name": "stdout",
  321. "output_type": "stream",
  322. "text": [
  323. "0\n",
  324. "4\n"
  325. ]
  326. },
  327. {
  328. "ename": "ValueError",
  329. "evalue": "substring not found",
  330. "output_type": "error",
  331. "traceback": [
  332. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  333. "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
  334. "\u001b[0;32m<ipython-input-13-a7d6b97b4839>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Taj'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Mahal'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Mahal'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  335. "\u001b[0;31mValueError\u001b[0m: substring not found"
  336. ]
  337. }
  338. ],
  339. "source": [
  340. "print(String0.index('Taj'))\n",
  341. "print(String0.index('Mahal',0))\n",
  342. "print(String0.index('Mahal',10,20))"
  343. ]
  344. },
  345. {
  346. "cell_type": "markdown",
  347. "metadata": {},
  348. "source": [
  349. "**endswith( )** 函数用于检查给定字符串是否以作为输入的特定字符结尾。"
  350. ]
  351. },
  352. {
  353. "cell_type": "code",
  354. "execution_count": 14,
  355. "metadata": {},
  356. "outputs": [
  357. {
  358. "name": "stdout",
  359. "output_type": "stream",
  360. "text": [
  361. "False\n"
  362. ]
  363. }
  364. ],
  365. "source": [
  366. "print(String0.endswith('y'))"
  367. ]
  368. },
  369. {
  370. "cell_type": "markdown",
  371. "metadata": {},
  372. "source": [
  373. "还可以指定开始和停止索引值。"
  374. ]
  375. },
  376. {
  377. "cell_type": "code",
  378. "execution_count": 15,
  379. "metadata": {},
  380. "outputs": [
  381. {
  382. "name": "stdout",
  383. "output_type": "stream",
  384. "text": [
  385. "True\n",
  386. "True\n"
  387. ]
  388. }
  389. ],
  390. "source": [
  391. "print(String0.endswith('l',0))\n",
  392. "print(String0.endswith('M',0,5))"
  393. ]
  394. },
  395. {
  396. "cell_type": "markdown",
  397. "metadata": {},
  398. "source": [
  399. "**count( )** 函数计算给定字符串中的字符数。也可以指定开始和停止索引或将其留空。(这些是隐式参数,将在函数中处理)"
  400. ]
  401. },
  402. {
  403. "cell_type": "code",
  404. "execution_count": 16,
  405. "metadata": {},
  406. "outputs": [
  407. {
  408. "name": "stdout",
  409. "output_type": "stream",
  410. "text": [
  411. "4\n",
  412. "2\n"
  413. ]
  414. }
  415. ],
  416. "source": [
  417. "print(String0.count('a',0))\n",
  418. "print(String0.count('a',5,10))"
  419. ]
  420. },
  421. {
  422. "cell_type": "markdown",
  423. "metadata": {},
  424. "source": [
  425. "**join( )** 函数在输入字符串的元素之间添加一个字符。"
  426. ]
  427. },
  428. {
  429. "cell_type": "code",
  430. "execution_count": 17,
  431. "metadata": {},
  432. "outputs": [
  433. {
  434. "data": {
  435. "text/plain": [
  436. "'*a_a-'"
  437. ]
  438. },
  439. "execution_count": 17,
  440. "metadata": {},
  441. "output_type": "execute_result"
  442. }
  443. ],
  444. "source": [
  445. "'a'.join('*_-')"
  446. ]
  447. },
  448. {
  449. "cell_type": "code",
  450. "execution_count": 18,
  451. "metadata": {},
  452. "outputs": [
  453. {
  454. "data": {
  455. "text/plain": [
  456. "'1\\n2'"
  457. ]
  458. },
  459. "execution_count": 18,
  460. "metadata": {},
  461. "output_type": "execute_result"
  462. }
  463. ],
  464. "source": [
  465. "'\\n'.join(['1', '2'])"
  466. ]
  467. },
  468. {
  469. "cell_type": "markdown",
  470. "metadata": {},
  471. "source": [
  472. "'*_-' 是输入字符串而字符'a'被添加在每一个元素之间。"
  473. ]
  474. },
  475. {
  476. "cell_type": "markdown",
  477. "metadata": {},
  478. "source": [
  479. "**join( )** 函数也可以被用来将列表转化为字符串。"
  480. ]
  481. },
  482. {
  483. "cell_type": "code",
  484. "execution_count": 19,
  485. "metadata": {},
  486. "outputs": [
  487. {
  488. "name": "stdout",
  489. "output_type": "stream",
  490. "text": [
  491. "['T', 'a', 'j', ' ', 'M', 'a', 'h', 'a', 'l', ' ', 'i', 's', ' ', 'b', 'e', 'a', 'u', 't', 'i', 'f', 'u', 'l']\n",
  492. "Taj Mahal is beautiful\n"
  493. ]
  494. }
  495. ],
  496. "source": [
  497. "a = list(String0)\n",
  498. "print(a)\n",
  499. "b = ''.join(a)\n",
  500. "print(b)"
  501. ]
  502. },
  503. {
  504. "cell_type": "markdown",
  505. "metadata": {},
  506. "source": [
  507. "在将它转化成字符串之前,**join( )** 函数可以被用来在列表元素中插入任意的字符。"
  508. ]
  509. },
  510. {
  511. "cell_type": "code",
  512. "execution_count": 20,
  513. "metadata": {},
  514. "outputs": [
  515. {
  516. "name": "stdout",
  517. "output_type": "stream",
  518. "text": [
  519. " /i/s/ /b/e/a/u/t/i/f/u/l\n"
  520. ]
  521. }
  522. ],
  523. "source": [
  524. "c = '/'.join(a)[18:]\n",
  525. "print(c)"
  526. ]
  527. },
  528. {
  529. "cell_type": "markdown",
  530. "metadata": {},
  531. "source": [
  532. "**split( )** 函数被用来将一个字符串转化为列表。把它想成与**join()** 相反地函数。"
  533. ]
  534. },
  535. {
  536. "cell_type": "code",
  537. "execution_count": 21,
  538. "metadata": {},
  539. "outputs": [
  540. {
  541. "name": "stdout",
  542. "output_type": "stream",
  543. "text": [
  544. "[' ', 'i', 's', ' ', 'b', 'e', 'a', 'u', 't', 'i', 'f', 'u', 'l']\n"
  545. ]
  546. }
  547. ],
  548. "source": [
  549. "d = c.split('/')\n",
  550. "print(d)"
  551. ]
  552. },
  553. {
  554. "cell_type": "markdown",
  555. "metadata": {},
  556. "source": [
  557. "在 **split( )** 函数中,还可以指定分割字符串的次数,或者新返回列表应该包含的元素数量。元素的数量总是比指定的数量多1,这是因为它被分割了指定的次数。"
  558. ]
  559. },
  560. {
  561. "cell_type": "code",
  562. "execution_count": 21,
  563. "metadata": {},
  564. "outputs": [
  565. {
  566. "name": "stdout",
  567. "output_type": "stream",
  568. "text": [
  569. "[' ', 'i', 's', ' /b/e/a/u/t/i/f/u/l']\n",
  570. "4\n"
  571. ]
  572. }
  573. ],
  574. "source": [
  575. "e = c.split('/',3)\n",
  576. "print(e)\n",
  577. "print(len(e))"
  578. ]
  579. },
  580. {
  581. "cell_type": "markdown",
  582. "metadata": {},
  583. "source": [
  584. "**lower( )** 将任何大写字母转换为小写字母。"
  585. ]
  586. },
  587. {
  588. "cell_type": "code",
  589. "execution_count": 22,
  590. "metadata": {},
  591. "outputs": [
  592. {
  593. "name": "stdout",
  594. "output_type": "stream",
  595. "text": [
  596. "Taj Mahal is beautiful\n",
  597. "taj mahal is beautiful\n"
  598. ]
  599. }
  600. ],
  601. "source": [
  602. "print(String0)\n",
  603. "print(String0.lower())"
  604. ]
  605. },
  606. {
  607. "cell_type": "markdown",
  608. "metadata": {},
  609. "source": [
  610. "**upper( )** 将任何小写字母转换为大写字母。"
  611. ]
  612. },
  613. {
  614. "cell_type": "code",
  615. "execution_count": 23,
  616. "metadata": {},
  617. "outputs": [
  618. {
  619. "data": {
  620. "text/plain": [
  621. "'TAJ MAHAL IS BEAUTIFUL'"
  622. ]
  623. },
  624. "execution_count": 23,
  625. "metadata": {},
  626. "output_type": "execute_result"
  627. }
  628. ],
  629. "source": [
  630. "String0.upper()"
  631. ]
  632. },
  633. {
  634. "cell_type": "markdown",
  635. "metadata": {},
  636. "source": [
  637. "**replace( )** 函数将该元素替换为另一个元素。"
  638. ]
  639. },
  640. {
  641. "cell_type": "code",
  642. "execution_count": 24,
  643. "metadata": {},
  644. "outputs": [
  645. {
  646. "data": {
  647. "text/plain": [
  648. "'Bengaluru is beautiful'"
  649. ]
  650. },
  651. "execution_count": 24,
  652. "metadata": {},
  653. "output_type": "execute_result"
  654. }
  655. ],
  656. "source": [
  657. "String0.replace('Taj Mahal','Bengaluru')"
  658. ]
  659. },
  660. {
  661. "cell_type": "markdown",
  662. "metadata": {},
  663. "source": [
  664. "**strip( )** 函数用于从右端和左端删除不需要的元素。"
  665. ]
  666. },
  667. {
  668. "cell_type": "code",
  669. "execution_count": 25,
  670. "metadata": {
  671. "collapsed": true
  672. },
  673. "outputs": [],
  674. "source": [
  675. "f = ' hello '"
  676. ]
  677. },
  678. {
  679. "cell_type": "markdown",
  680. "metadata": {},
  681. "source": [
  682. "如果没有指定字符,那么它将删除数据左边和右边的所有空格。"
  683. ]
  684. },
  685. {
  686. "cell_type": "code",
  687. "execution_count": 27,
  688. "metadata": {},
  689. "outputs": [
  690. {
  691. "data": {
  692. "text/plain": [
  693. "'hello'"
  694. ]
  695. },
  696. "execution_count": 27,
  697. "metadata": {},
  698. "output_type": "execute_result"
  699. }
  700. ],
  701. "source": [
  702. "f.strip()"
  703. ]
  704. },
  705. {
  706. "cell_type": "markdown",
  707. "metadata": {},
  708. "source": [
  709. "**strip( )** 函数,当指定字符时,如果该字符出现在指定字符串的两端,则删除该字符。"
  710. ]
  711. },
  712. {
  713. "cell_type": "code",
  714. "execution_count": 30,
  715. "metadata": {
  716. "collapsed": true
  717. },
  718. "outputs": [],
  719. "source": [
  720. "f = ' ***----hello---******* '"
  721. ]
  722. },
  723. {
  724. "cell_type": "code",
  725. "execution_count": 32,
  726. "metadata": {},
  727. "outputs": [
  728. {
  729. "data": {
  730. "text/plain": [
  731. "'hello'"
  732. ]
  733. },
  734. "execution_count": 32,
  735. "metadata": {},
  736. "output_type": "execute_result"
  737. }
  738. ],
  739. "source": [
  740. "f.strip(' *-')"
  741. ]
  742. },
  743. {
  744. "cell_type": "markdown",
  745. "metadata": {},
  746. "source": [
  747. "必须删除星号,但没有。这是因为在左边和右边都有一个空格。在strip函数中。字符需要按照它们出现的特定顺序输入。"
  748. ]
  749. },
  750. {
  751. "cell_type": "code",
  752. "execution_count": 31,
  753. "metadata": {},
  754. "outputs": [
  755. {
  756. "name": "stdout",
  757. "output_type": "stream",
  758. "text": [
  759. "----hello---\n",
  760. "hello\n"
  761. ]
  762. }
  763. ],
  764. "source": [
  765. "print(f.strip(' *'))\n",
  766. "print(f.strip(' *-'))"
  767. ]
  768. },
  769. {
  770. "cell_type": "markdown",
  771. "metadata": {},
  772. "source": [
  773. "**lstrip( )** 和 **rstrip( )** 函数具有与strip函数相同的功能,但唯一的区别是**lstrip()** 只删除左边的内容,而**rstrip()** 只删除右边的内容。"
  774. ]
  775. },
  776. {
  777. "cell_type": "code",
  778. "execution_count": 32,
  779. "metadata": {},
  780. "outputs": [
  781. {
  782. "name": "stdout",
  783. "output_type": "stream",
  784. "text": [
  785. "----hello---******* \n",
  786. " ***----hello---\n"
  787. ]
  788. }
  789. ],
  790. "source": [
  791. "print(f.lstrip(' *'))\n",
  792. "print(f.rstrip(' *'))"
  793. ]
  794. },
  795. {
  796. "cell_type": "markdown",
  797. "metadata": {},
  798. "source": [
  799. "## 2. 词典"
  800. ]
  801. },
  802. {
  803. "cell_type": "markdown",
  804. "metadata": {},
  805. "source": [
  806. "词典更像数据库,因为在这里你可以用用户定义的字符串索引特定的序列。"
  807. ]
  808. },
  809. {
  810. "cell_type": "markdown",
  811. "metadata": {},
  812. "source": [
  813. "为了定义一个词典,让一个变量赋值为 `{ }`或`dict()`。"
  814. ]
  815. },
  816. {
  817. "cell_type": "code",
  818. "execution_count": 33,
  819. "metadata": {},
  820. "outputs": [
  821. {
  822. "name": "stdout",
  823. "output_type": "stream",
  824. "text": [
  825. "<class 'dict'> <class 'dict'>\n"
  826. ]
  827. }
  828. ],
  829. "source": [
  830. "d0 = {}\n",
  831. "d1 = dict()\n",
  832. "print(type(d0), type(d1))"
  833. ]
  834. },
  835. {
  836. "cell_type": "markdown",
  837. "metadata": {},
  838. "source": [
  839. "词典的工作方式有点像列表,但增加了分配自己索引样式的功能。"
  840. ]
  841. },
  842. {
  843. "cell_type": "code",
  844. "execution_count": 35,
  845. "metadata": {},
  846. "outputs": [
  847. {
  848. "name": "stdout",
  849. "output_type": "stream",
  850. "text": [
  851. "{'One': 1, 'OneTwo': 12}\n"
  852. ]
  853. }
  854. ],
  855. "source": [
  856. "d0['One'] = 1\n",
  857. "d0['OneTwo'] = 12 \n",
  858. "print(d0)"
  859. ]
  860. },
  861. {
  862. "cell_type": "code",
  863. "execution_count": 37,
  864. "metadata": {},
  865. "outputs": [
  866. {
  867. "name": "stdout",
  868. "output_type": "stream",
  869. "text": [
  870. "{'key1': 1, 'key2': [1, 2, 4], 3: (1, 4, 6)}\n"
  871. ]
  872. }
  873. ],
  874. "source": [
  875. "d1 = {\"key1\":1, \"key2\":[1,2,4], 3:(1, 4, 6)}\n",
  876. "print(d1)"
  877. ]
  878. },
  879. {
  880. "cell_type": "markdown",
  881. "metadata": {},
  882. "source": [
  883. "这就是字典的样子。现在你可以通过设为 `'One'` 的索引值来访问 `1` "
  884. ]
  885. },
  886. {
  887. "cell_type": "code",
  888. "execution_count": 38,
  889. "metadata": {},
  890. "outputs": [
  891. {
  892. "name": "stdout",
  893. "output_type": "stream",
  894. "text": [
  895. "1\n"
  896. ]
  897. }
  898. ],
  899. "source": [
  900. "print(d0['One'])"
  901. ]
  902. },
  903. {
  904. "cell_type": "markdown",
  905. "metadata": {},
  906. "source": [
  907. "两个相关的列表可以合并成一个词典。"
  908. ]
  909. },
  910. {
  911. "cell_type": "code",
  912. "execution_count": 39,
  913. "metadata": {
  914. "collapsed": true
  915. },
  916. "outputs": [],
  917. "source": [
  918. "names = ['One', 'Two', 'Three', 'Four', 'Five']\n",
  919. "numbers = [1, 2, 3, 4, 5]"
  920. ]
  921. },
  922. {
  923. "cell_type": "markdown",
  924. "metadata": {},
  925. "source": [
  926. "**zip( )** 函数用来结合两个列表。"
  927. ]
  928. },
  929. {
  930. "cell_type": "code",
  931. "execution_count": 40,
  932. "metadata": {},
  933. "outputs": [
  934. {
  935. "name": "stdout",
  936. "output_type": "stream",
  937. "text": [
  938. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  939. ]
  940. }
  941. ],
  942. "source": [
  943. "d2 = zip(names,numbers)\n",
  944. "print(dict(d2))"
  945. ]
  946. },
  947. {
  948. "cell_type": "code",
  949. "execution_count": 42,
  950. "metadata": {},
  951. "outputs": [
  952. {
  953. "name": "stdout",
  954. "output_type": "stream",
  955. "text": [
  956. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  957. ]
  958. }
  959. ],
  960. "source": [
  961. "d3 = {names[i]:numbers[i] for i in range(len(names))}\n",
  962. "print(d3)"
  963. ]
  964. },
  965. {
  966. "cell_type": "markdown",
  967. "metadata": {},
  968. "source": [
  969. "这两个列表组合成一个列表,每个元素都与元组中来自另一个列表的各自元素相连。\n",
  970. "\n",
  971. "进一步地,为了将上面的内容转化为词典。我们可以使用 **dict( )** 函数。"
  972. ]
  973. },
  974. {
  975. "cell_type": "code",
  976. "execution_count": 5,
  977. "metadata": {},
  978. "outputs": [
  979. {
  980. "name": "stdout",
  981. "output_type": "stream",
  982. "text": [
  983. "{'One': 1, 'Four': 4, 'Three': 3, 'Five': 5, 'Two': 2}\n"
  984. ]
  985. }
  986. ],
  987. "source": [
  988. "d2 = zip(names,numbers)\n",
  989. "\n",
  990. "a1 = dict(d2)\n",
  991. "print(a1)"
  992. ]
  993. },
  994. {
  995. "cell_type": "markdown",
  996. "metadata": {},
  997. "source": [
  998. "### 2.1 内置函数"
  999. ]
  1000. },
  1001. {
  1002. "cell_type": "markdown",
  1003. "metadata": {},
  1004. "source": [
  1005. "**clear( )** 函数被用于擦除所创建的整个词典。"
  1006. ]
  1007. },
  1008. {
  1009. "cell_type": "code",
  1010. "execution_count": 43,
  1011. "metadata": {},
  1012. "outputs": [
  1013. {
  1014. "name": "stdout",
  1015. "output_type": "stream",
  1016. "text": [
  1017. "{}\n"
  1018. ]
  1019. }
  1020. ],
  1021. "source": [
  1022. "a1 = {1:10, 2:20}\n",
  1023. "a1.clear()\n",
  1024. "print(a1)"
  1025. ]
  1026. },
  1027. {
  1028. "cell_type": "markdown",
  1029. "metadata": {},
  1030. "source": [
  1031. "词典也可以使用循环来构建。"
  1032. ]
  1033. },
  1034. {
  1035. "cell_type": "code",
  1036. "execution_count": 44,
  1037. "metadata": {},
  1038. "outputs": [
  1039. {
  1040. "name": "stdout",
  1041. "output_type": "stream",
  1042. "text": [
  1043. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  1044. ]
  1045. }
  1046. ],
  1047. "source": [
  1048. "a1 = {names[i]:numbers[i] for i in range(len(names))}\n",
  1049. "print(a1)"
  1050. ]
  1051. },
  1052. {
  1053. "cell_type": "code",
  1054. "execution_count": 45,
  1055. "metadata": {},
  1056. "outputs": [
  1057. {
  1058. "name": "stdout",
  1059. "output_type": "stream",
  1060. "text": [
  1061. "{'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}\n"
  1062. ]
  1063. }
  1064. ],
  1065. "source": [
  1066. "for i in range(len(names)):\n",
  1067. " a1[names[i]] = numbers[i]\n",
  1068. "print(a1)"
  1069. ]
  1070. },
  1071. {
  1072. "cell_type": "markdown",
  1073. "metadata": {},
  1074. "source": [
  1075. "**values( )** 函数返回了一个包含词典中所有赋值的列表"
  1076. ]
  1077. },
  1078. {
  1079. "cell_type": "code",
  1080. "execution_count": 46,
  1081. "metadata": {},
  1082. "outputs": [
  1083. {
  1084. "data": {
  1085. "text/plain": [
  1086. "dict_values([1, 2, 3, 4, 5])"
  1087. ]
  1088. },
  1089. "execution_count": 46,
  1090. "metadata": {},
  1091. "output_type": "execute_result"
  1092. }
  1093. ],
  1094. "source": [
  1095. "a1.values()"
  1096. ]
  1097. },
  1098. {
  1099. "cell_type": "markdown",
  1100. "metadata": {},
  1101. "source": [
  1102. "**keys( )** 函数返回包含赋值的所有索引或键。"
  1103. ]
  1104. },
  1105. {
  1106. "cell_type": "code",
  1107. "execution_count": 47,
  1108. "metadata": {},
  1109. "outputs": [
  1110. {
  1111. "data": {
  1112. "text/plain": [
  1113. "dict_keys(['One', 'Two', 'Three', 'Four', 'Five'])"
  1114. ]
  1115. },
  1116. "execution_count": 47,
  1117. "metadata": {},
  1118. "output_type": "execute_result"
  1119. }
  1120. ],
  1121. "source": [
  1122. "a1.keys()"
  1123. ]
  1124. },
  1125. {
  1126. "cell_type": "markdown",
  1127. "metadata": {},
  1128. "source": [
  1129. "**items()** 返回一个列表同时也包含该列表,但是词典中的每个元素都在一个元组中。这与使用zip函数得到的结果相同。"
  1130. ]
  1131. },
  1132. {
  1133. "cell_type": "code",
  1134. "execution_count": 48,
  1135. "metadata": {},
  1136. "outputs": [
  1137. {
  1138. "name": "stdout",
  1139. "output_type": "stream",
  1140. "text": [
  1141. "[ One] 1\n",
  1142. "[ Two] 2\n",
  1143. "[ Three] 3\n",
  1144. "[ Four] 4\n",
  1145. "[ Five] 5\n"
  1146. ]
  1147. }
  1148. ],
  1149. "source": [
  1150. "a1.items()\n",
  1151. "\n",
  1152. "for (k,v) in a1.items():\n",
  1153. " print(\"[%6s] %d\" % (k, v))"
  1154. ]
  1155. },
  1156. {
  1157. "cell_type": "markdown",
  1158. "metadata": {},
  1159. "source": [
  1160. "**pop()** 函数用于删除特定的元素,并且这个删除的元素可以被分配给一个新的变量。但是请记住,只存储值而不存储键,因为它只是一个索引值。"
  1161. ]
  1162. },
  1163. {
  1164. "cell_type": "code",
  1165. "execution_count": 52,
  1166. "metadata": {},
  1167. "outputs": [
  1168. {
  1169. "ename": "KeyError",
  1170. "evalue": "'One'",
  1171. "output_type": "error",
  1172. "traceback": [
  1173. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  1174. "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
  1175. "\u001b[0;32m<ipython-input-52-436d4737aff5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'One'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  1176. "\u001b[0;31mKeyError\u001b[0m: 'One'"
  1177. ]
  1178. }
  1179. ],
  1180. "source": [
  1181. "a2 = a1.pop('One')\n",
  1182. "print(a1)\n",
  1183. "print(a2)"
  1184. ]
  1185. }
  1186. ],
  1187. "metadata": {
  1188. "kernelspec": {
  1189. "display_name": "Python 3",
  1190. "language": "python",
  1191. "name": "python3"
  1192. },
  1193. "language_info": {
  1194. "codemirror_mode": {
  1195. "name": "ipython",
  1196. "version": 3
  1197. },
  1198. "file_extension": ".py",
  1199. "mimetype": "text/x-python",
  1200. "name": "python",
  1201. "nbconvert_exporter": "python",
  1202. "pygments_lexer": "ipython3",
  1203. "version": "3.7.9"
  1204. }
  1205. },
  1206. "nbformat": 4,
  1207. "nbformat_minor": 1
  1208. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。