|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Softmax & 交叉熵代价函数\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考。\n",
- "\n",
- "## softmax 函数\n",
- "\n",
- "softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任务的输出层。其实可以认为softmax输出的是几个类别选择的概率,比如我有一个分类任务,要分为三个类,softmax函数可以根据它们相对的大小,输出三个类别选取的概率,并且概率和为1。\n",
- "\n",
- "softmax函数的公式是这种形式:\n",
- "\n",
- "$$\n",
- "S_i = \\frac{e^{z_i}}{\\sum_k e^{z_k}}\n",
- "$$\n",
- "\n",
- "* $S_i$是经过softmax的类别概率输出\n",
- "* $z_k$是神经元的输出\n",
- "\n",
- "\n",
- "更形象的如下图表示:\n",
- "\n",
- "\n",
- "\n",
- "softmax直白来说就是将原来输出是$[3,1,-3]$通过softmax函数一作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们就可以将它理解成概率,在最后选取输出结点的时候,我们就可以选取概率最大(也就是值对应最大的)结点,作为我们的预测目标!\n",
- "\n",
- "\n",
- "\n",
- "首先是神经元的输出,一个神经元如下图:\n",
- "\n",
- "\n",
- "\n",
- "神经元的输出设为:\n",
- "\n",
- "$$\n",
- "z_i = \\sum_{j} w_{ij} x_{j} + b\n",
- "$$\n",
- "\n",
- "其中$W_{ij}$是第$i$个神经元的第$j$个权重,$b$是偏置。$z_i$表示该网络的第$i$个输出。\n",
- "\n",
- "给这个输出加上一个softmax函数,那就变成了这样:\n",
- "\n",
- "$$\n",
- "a_i = \\frac{e^{z_i}}{\\sum_k e^{z_k}}\n",
- "$$\n",
- "\n",
- "$a_i$代表softmax的第$i$个输出值,右侧套用了softmax函数。\n",
- "\n",
- "\n",
- "### 损失函数 loss function\n",
- "\n",
- "在神经网络反向传播中,要求一个损失函数,这个损失函数其实表示的是真实值与网络的估计值的误差,知道误差了,才能知道怎样去修改网络中的权重。\n",
- "\n",
- "损失函数可以有很多形式,这里用的是交叉熵函数,主要是由于这个求导结果比较简单,易于计算,并且交叉熵解决某些损失函数学习缓慢的问题。**[交叉熵函数](https://blog.csdn.net/u014313009/article/details/51043064)**是这样的:\n",
- "\n",
- "$$\n",
- "C = - \\sum_i y_i ln a_i\n",
- "$$\n",
- "\n",
- "其中$y_i$表示真实的分类结果。\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 推导过程\n",
- "\n",
- "首先,我们要明确一下我们要求什么,我们要求的是我们的$loss$对于神经元输出($z_i$)的梯度,即:\n",
- "\n",
- "$$\n",
- "\\frac{\\partial C}{\\partial z_i}\n",
- "$$\n",
- "\n",
- "根据复合函数求导法则:\n",
- "\n",
- "$$\n",
- "\\frac{\\partial C}{\\partial z_i} = \\frac{\\partial C}{\\partial a_j} \\frac{\\partial a_j}{\\partial z_i}\n",
- "$$\n",
- "\n",
- "有个人可能有疑问了,这里为什么是$a_j$而不是$a_i$,这里要看一下$softmax$的公式了,因为$softmax$公式的特性,它的分母包含了所有神经元的输出,所以,对于不等于i的其他输出里面,也包含着$z_i$,所有的$a$都要纳入到计算范围中,并且后面的计算可以看到需要分为$i = j$和$i \\ne j$两种情况求导。\n",
- "\n",
- "### 针对$a_j$的偏导\n",
- "\n",
- "$$\n",
- "\\frac{\\partial C}{\\partial a_j} = \\frac{(\\partial -\\sum_j y_j ln a_j)}{\\partial a_j} = -\\sum_j y_j \\frac{1}{a_j}\n",
- "$$\n",
- "\n",
- "### 针对$z_i$的偏导\n",
- "\n",
- "如果 $i=j$ :\n",
- "\n",
- "\\begin{eqnarray}\n",
- "\\frac{\\partial a_i}{\\partial z_i} & = & \\frac{\\partial (\\frac{e^{z_i}}{\\sum_k e^{z_k}})}{\\partial z_i} \\\\\n",
- " & = & \\frac{\\sum_k e^{z_k} e^{z_i} - (e^{z_i})^2}{\\sum_k (e^{z_k})^2} \\\\\n",
- " & = & (\\frac{e^{z_i}}{\\sum_k e^{z_k}} ) (1 - \\frac{e^{z_i}}{\\sum_k e^{z_k}} ) \\\\\n",
- " & = & a_i (1 - a_i)\n",
- "\\end{eqnarray}\n",
- "\n",
- "如果 $i \\ne j$:\n",
- "\\begin{eqnarray}\n",
- "\\frac{\\partial a_j}{\\partial z_i} & = & \\frac{\\partial (\\frac{e^{z_j}}{\\sum_k e^{z_k}})}{\\partial z_i} \\\\\n",
- " & = & \\frac{0 \\cdot \\sum_k e^{z_k} - e^{z_j} \\cdot e^{z_i} }{(\\sum_k e^{z_k})^2} \\\\\n",
- " & = & - \\frac{e^{z_j}}{\\sum_k e^{z_k}} \\cdot \\frac{e^{z_i}}{\\sum_k e^{z_k}} \\\\\n",
- " & = & -a_j a_i\n",
- "\\end{eqnarray}\n",
- "\n",
- "当u,v都是变量的函数时的导数推导公式:\n",
- "$$\n",
- "(\\frac{u}{v})' = \\frac{u'v - uv'}{v^2} \n",
- "$$\n",
- "\n",
- "### 整体的推导\n",
- "\n",
- "\\begin{eqnarray}\n",
- "\\frac{\\partial C}{\\partial z_i} & = & (-\\sum_j y_j \\frac{1}{a_j} ) \\frac{\\partial a_j}{\\partial z_i} \\\\\n",
- " & = & - \\frac{y_i}{a_i} a_i ( 1 - a_i) + \\sum_{j \\ne i} \\frac{y_j}{a_j} a_i a_j \\\\\n",
- " & = & -y_i + y_i a_i + \\sum_{j \\ne i} y_j a_i \\\\\n",
- " & = & -y_i + a_i \\sum_{j} y_j\n",
- "\\end{eqnarray}"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 问题\n",
- "如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的方法中?"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## References\n",
- "\n",
- "* Softmax & 交叉熵\n",
- " * [交叉熵代价函数(作用及公式推导)](https://blog.csdn.net/u014313009/article/details/51043064)\n",
- " * [手打例子一步一步带你看懂softmax函数以及相关求导过程](https://www.jianshu.com/p/ffa51250ba2e)\n",
- " * [简单易懂的softmax交叉熵损失函数求导](https://www.jianshu.com/p/c02a1fbffad6)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.5.2"
- },
- "main_language": "python"
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|