You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

1-numpy_tutorial.ipynb 163 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "metadata": {},
  6. "source": [
  7. "# Numpy - 多维数据的数组"
  8. ]
  9. },
  10. {
  11. "cell_type": "markdown",
  12. "metadata": {},
  13. "source": [
  14. "最新的[IPython notebook](http://ipython.org/notebook.html)课程可以在[http://github.com/jrjohansson/scientific-python-lectures](http://github.com/jrjohansson/scientific-python-lectures) 找到.\n",
  15. "\n",
  16. "其他有关这个课程的参考书在这里标注出[http://jrjohansson.github.io](http://jrjohansson.github.io).\n"
  17. ]
  18. },
  19. {
  20. "cell_type": "code",
  21. "execution_count": 1,
  22. "metadata": {},
  23. "outputs": [],
  24. "source": [
  25. "# 这一行的作用会在课程4中回答\n",
  26. "%matplotlib inline\n",
  27. "import matplotlib.pyplot as plt"
  28. ]
  29. },
  30. {
  31. "cell_type": "markdown",
  32. "metadata": {},
  33. "source": [
  34. "## 1. 简介"
  35. ]
  36. },
  37. {
  38. "cell_type": "markdown",
  39. "metadata": {},
  40. "source": [
  41. "这个`numpy`包(模块)用在几乎所有使用Python的数值计算中。他是一个为Python提供高性能向量,矩阵和高维数据结构的模块。它是用C和Fortran语言实现的,因此当计算向量化数据(用向量和矩阵表示)时,性能非常的好。\n",
  42. "\n",
  43. "为了使用`numpy`模块,你先要像下面的例子一样导入这个模块:"
  44. ]
  45. },
  46. {
  47. "cell_type": "code",
  48. "execution_count": 3,
  49. "metadata": {},
  50. "outputs": [],
  51. "source": [
  52. "# 不建议用这种方式导入库\n",
  53. "from numpy import *"
  54. ]
  55. },
  56. {
  57. "cell_type": "code",
  58. "execution_count": 2,
  59. "metadata": {},
  60. "outputs": [],
  61. "source": [
  62. "import numpy as np"
  63. ]
  64. },
  65. {
  66. "cell_type": "markdown",
  67. "metadata": {},
  68. "source": [
  69. "在`numpy`模块中,用于向量,矩阵和高维数据集的术语是*数组*。\n",
  70. "\n",
  71. "**建议大家使用第二种导入方法** `import numpy as np`\n"
  72. ]
  73. },
  74. {
  75. "cell_type": "markdown",
  76. "metadata": {},
  77. "source": [
  78. "## 2. 创建`numpy`数组"
  79. ]
  80. },
  81. {
  82. "cell_type": "markdown",
  83. "metadata": {},
  84. "source": [
  85. "有很多种方法去初始化新的numpy数组, 例如从\n",
  86. "\n",
  87. "* Python列表或元组\n",
  88. "* 使用专门用来创建numpy arrays的函数,例如 `arange`, `linspace`等\n",
  89. "* 从文件中读取数据"
  90. ]
  91. },
  92. {
  93. "cell_type": "markdown",
  94. "metadata": {},
  95. "source": [
  96. "### 2.1 从列表中"
  97. ]
  98. },
  99. {
  100. "cell_type": "markdown",
  101. "metadata": {},
  102. "source": [
  103. "例如,为了从Python列表创建新的向量和矩阵我们可以用`numpy.array`函数。\n"
  104. ]
  105. },
  106. {
  107. "cell_type": "code",
  108. "execution_count": 4,
  109. "metadata": {},
  110. "outputs": [
  111. {
  112. "data": {
  113. "text/plain": [
  114. "array([1, 2, 3, 4])"
  115. ]
  116. },
  117. "execution_count": 4,
  118. "metadata": {},
  119. "output_type": "execute_result"
  120. }
  121. ],
  122. "source": [
  123. "import numpy as np\n",
  124. "\n",
  125. "# a vector: the argument to the array function is a Python list\n",
  126. "v = np.array([1,2,3,4])\n",
  127. "\n",
  128. "v"
  129. ]
  130. },
  131. {
  132. "cell_type": "code",
  133. "execution_count": 5,
  134. "metadata": {},
  135. "outputs": [
  136. {
  137. "name": "stdout",
  138. "output_type": "stream",
  139. "text": [
  140. "[[1 2]\n",
  141. " [3 4]\n",
  142. " [5 6]]\n",
  143. "(3, 2)\n"
  144. ]
  145. }
  146. ],
  147. "source": [
  148. "# 矩阵:数组函数的参数是一个嵌套的Python列表\n",
  149. "M = np.array([[1, 2], [3, 4], [5, 6]])\n",
  150. "\n",
  151. "print(M)\n",
  152. "print(M.shape)"
  153. ]
  154. },
  155. {
  156. "cell_type": "markdown",
  157. "metadata": {},
  158. "source": [
  159. "`v`和`M`两个都是属于`numpy`模块提供的`ndarray`类型。"
  160. ]
  161. },
  162. {
  163. "cell_type": "code",
  164. "execution_count": 6,
  165. "metadata": {},
  166. "outputs": [
  167. {
  168. "data": {
  169. "text/plain": [
  170. "(numpy.ndarray, numpy.ndarray)"
  171. ]
  172. },
  173. "execution_count": 6,
  174. "metadata": {},
  175. "output_type": "execute_result"
  176. }
  177. ],
  178. "source": [
  179. "type(v), type(M)"
  180. ]
  181. },
  182. {
  183. "cell_type": "markdown",
  184. "metadata": {},
  185. "source": [
  186. "`v`和`M`之间的区别仅在于他们的形状。我们可以用属性函数`ndarray.shape`得到数组形状的信息。"
  187. ]
  188. },
  189. {
  190. "cell_type": "code",
  191. "execution_count": 7,
  192. "metadata": {},
  193. "outputs": [
  194. {
  195. "data": {
  196. "text/plain": [
  197. "(4,)"
  198. ]
  199. },
  200. "execution_count": 7,
  201. "metadata": {},
  202. "output_type": "execute_result"
  203. }
  204. ],
  205. "source": [
  206. "v.shape"
  207. ]
  208. },
  209. {
  210. "cell_type": "code",
  211. "execution_count": 8,
  212. "metadata": {},
  213. "outputs": [
  214. {
  215. "data": {
  216. "text/plain": [
  217. "(3, 2)"
  218. ]
  219. },
  220. "execution_count": 8,
  221. "metadata": {},
  222. "output_type": "execute_result"
  223. }
  224. ],
  225. "source": [
  226. "M.shape"
  227. ]
  228. },
  229. {
  230. "cell_type": "markdown",
  231. "metadata": {},
  232. "source": [
  233. "通过属性函数`ndarray.size`我们可以得到数组中元素的个数"
  234. ]
  235. },
  236. {
  237. "cell_type": "code",
  238. "execution_count": 9,
  239. "metadata": {},
  240. "outputs": [
  241. {
  242. "data": {
  243. "text/plain": [
  244. "6"
  245. ]
  246. },
  247. "execution_count": 9,
  248. "metadata": {},
  249. "output_type": "execute_result"
  250. }
  251. ],
  252. "source": [
  253. "M.size"
  254. ]
  255. },
  256. {
  257. "cell_type": "markdown",
  258. "metadata": {},
  259. "source": [
  260. "同样,我们可以用函数`numpy.shape`和`numpy.size`"
  261. ]
  262. },
  263. {
  264. "cell_type": "code",
  265. "execution_count": 10,
  266. "metadata": {},
  267. "outputs": [
  268. {
  269. "data": {
  270. "text/plain": [
  271. "(3, 2)"
  272. ]
  273. },
  274. "execution_count": 10,
  275. "metadata": {},
  276. "output_type": "execute_result"
  277. }
  278. ],
  279. "source": [
  280. "np.shape(M)"
  281. ]
  282. },
  283. {
  284. "cell_type": "code",
  285. "execution_count": 11,
  286. "metadata": {},
  287. "outputs": [
  288. {
  289. "data": {
  290. "text/plain": [
  291. "6"
  292. ]
  293. },
  294. "execution_count": 11,
  295. "metadata": {},
  296. "output_type": "execute_result"
  297. }
  298. ],
  299. "source": [
  300. "np.size(M)"
  301. ]
  302. },
  303. {
  304. "cell_type": "markdown",
  305. "metadata": {},
  306. "source": [
  307. "到目前为止`numpy.ndarray`看起来非常像Python列表(或嵌套列表)。为什么不简单地使用Python列表来进行计算,而不是创建一个新的数组类型?\n",
  308. "\n",
  309. "下面有几个原因:\n",
  310. "\n",
  311. "* Python列表非常普遍。它们可以包含任何类型的对象。它们是动态类型的。它们不支持矩阵和点乘等数学函数。由于动态类型的关系,为Python列表实现这类函数的效率不是很高。\n",
  312. "* Numpy数组是**静态类型的**和**同构的**。元素的类型是在创建数组时确定的。\n",
  313. "* Numpy数组是内存高效的。\n",
  314. "* 由于是静态类型,数学函数的快速实现,比如“numpy”数组的乘法和加法可以用编译语言实现(使用C和Fortran).\n",
  315. "\n",
  316. "利用`ndarray`的属性函数`dtype`(数据类型),我们可以看出数组的数据是那种类型。\n"
  317. ]
  318. },
  319. {
  320. "cell_type": "code",
  321. "execution_count": 12,
  322. "metadata": {},
  323. "outputs": [
  324. {
  325. "data": {
  326. "text/plain": [
  327. "dtype('int64')"
  328. ]
  329. },
  330. "execution_count": 12,
  331. "metadata": {},
  332. "output_type": "execute_result"
  333. }
  334. ],
  335. "source": [
  336. "M.dtype"
  337. ]
  338. },
  339. {
  340. "cell_type": "markdown",
  341. "metadata": {},
  342. "source": [
  343. "如果我们试图给一个numpy数组中的元素赋一个错误类型的值,我们会得到一个错误:"
  344. ]
  345. },
  346. {
  347. "cell_type": "code",
  348. "execution_count": 13,
  349. "metadata": {},
  350. "outputs": [
  351. {
  352. "ename": "ValueError",
  353. "evalue": "invalid literal for int() with base 10: 'hello'",
  354. "output_type": "error",
  355. "traceback": [
  356. "\u001b[0;31m-----------------------------------------------------------\u001b[0m",
  357. "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
  358. "\u001b[0;32m<ipython-input-13-e1f336250f69>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mM\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"hello\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  359. "\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: 'hello'"
  360. ]
  361. }
  362. ],
  363. "source": [
  364. "M[0,0] = \"hello\""
  365. ]
  366. },
  367. {
  368. "cell_type": "markdown",
  369. "metadata": {},
  370. "source": [
  371. "如果我们想的话,我们可以利用`dtype`关键字参数显式地定义我们创建的数组数据类型:"
  372. ]
  373. },
  374. {
  375. "cell_type": "code",
  376. "execution_count": 14,
  377. "metadata": {},
  378. "outputs": [
  379. {
  380. "data": {
  381. "text/plain": [
  382. "array([[1.+0.j, 2.+0.j],\n",
  383. " [3.+0.j, 4.+0.j]])"
  384. ]
  385. },
  386. "execution_count": 14,
  387. "metadata": {},
  388. "output_type": "execute_result"
  389. }
  390. ],
  391. "source": [
  392. "M = np.array([[1, 2], [3, 4]], dtype=complex)\n",
  393. "\n",
  394. "M"
  395. ]
  396. },
  397. {
  398. "cell_type": "markdown",
  399. "metadata": {},
  400. "source": [
  401. "常规可以伴随`dtype`使用的数据类型是:`int`, `float`, `complex`, `bool`, `object`等\n",
  402. "\n",
  403. "我们也可以显式地定义数据类型的大小,例如:`int64`, `int16`, `float128`, `complex128`。"
  404. ]
  405. },
  406. {
  407. "cell_type": "markdown",
  408. "metadata": {},
  409. "source": [
  410. "### 2.2 使用数组生成函数"
  411. ]
  412. },
  413. {
  414. "cell_type": "markdown",
  415. "metadata": {},
  416. "source": [
  417. "对于较大的数组,使用显式的Python列表人为地初始化数据是不切实际的。除此之外我们可以用`numpy`的很多函数得到不同类型的数组。有一些常用的分别是:"
  418. ]
  419. },
  420. {
  421. "cell_type": "markdown",
  422. "metadata": {},
  423. "source": [
  424. "#### arange"
  425. ]
  426. },
  427. {
  428. "cell_type": "code",
  429. "execution_count": 15,
  430. "metadata": {},
  431. "outputs": [
  432. {
  433. "name": "stdout",
  434. "output_type": "stream",
  435. "text": [
  436. "[0 1 2 3 4 5 6 7 8 9]\n",
  437. "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n"
  438. ]
  439. }
  440. ],
  441. "source": [
  442. "# 创建一个范围\n",
  443. "\n",
  444. "x = np.arange(0, 10, 1) # 参数:start, stop, step: \n",
  445. "y = range(0, 10, 1)\n",
  446. "print(x)\n",
  447. "print(list(y))"
  448. ]
  449. },
  450. {
  451. "cell_type": "code",
  452. "execution_count": 17,
  453. "metadata": {},
  454. "outputs": [
  455. {
  456. "data": {
  457. "text/plain": [
  458. "array([-1.00000000e+00, -9.00000000e-01, -8.00000000e-01, -7.00000000e-01,\n",
  459. " -6.00000000e-01, -5.00000000e-01, -4.00000000e-01, -3.00000000e-01,\n",
  460. " -2.00000000e-01, -1.00000000e-01, -2.22044605e-16, 1.00000000e-01,\n",
  461. " 2.00000000e-01, 3.00000000e-01, 4.00000000e-01, 5.00000000e-01,\n",
  462. " 6.00000000e-01, 7.00000000e-01, 8.00000000e-01, 9.00000000e-01])"
  463. ]
  464. },
  465. "execution_count": 17,
  466. "metadata": {},
  467. "output_type": "execute_result"
  468. }
  469. ],
  470. "source": [
  471. "x = np.arange(-1, 1, 0.1)\n",
  472. "\n",
  473. "x"
  474. ]
  475. },
  476. {
  477. "cell_type": "markdown",
  478. "metadata": {},
  479. "source": [
  480. "#### linspace and logspace"
  481. ]
  482. },
  483. {
  484. "cell_type": "code",
  485. "execution_count": 20,
  486. "metadata": {},
  487. "outputs": [
  488. {
  489. "data": {
  490. "text/plain": [
  491. "array([ 0. , 2.5, 5. , 7.5, 10. ])"
  492. ]
  493. },
  494. "execution_count": 20,
  495. "metadata": {},
  496. "output_type": "execute_result"
  497. }
  498. ],
  499. "source": [
  500. "# 使用linspace两边的端点也被包含进去\n",
  501. "np.linspace(0, 10, 5)"
  502. ]
  503. },
  504. {
  505. "cell_type": "code",
  506. "execution_count": 21,
  507. "metadata": {},
  508. "outputs": [
  509. {
  510. "data": {
  511. "text/plain": [
  512. "array([1.00000000e+00, 3.03773178e+00, 9.22781435e+00, 2.80316249e+01,\n",
  513. " 8.51525577e+01, 2.58670631e+02, 7.85771994e+02, 2.38696456e+03,\n",
  514. " 7.25095809e+03, 2.20264658e+04])"
  515. ]
  516. },
  517. "execution_count": 21,
  518. "metadata": {},
  519. "output_type": "execute_result"
  520. }
  521. ],
  522. "source": [
  523. "np.logspace(0, 10, 10, base=e)"
  524. ]
  525. },
  526. {
  527. "cell_type": "markdown",
  528. "metadata": {},
  529. "source": [
  530. "#### mgrid"
  531. ]
  532. },
  533. {
  534. "cell_type": "code",
  535. "execution_count": 22,
  536. "metadata": {},
  537. "outputs": [],
  538. "source": [
  539. "x, y = np.mgrid[0:5, 0:5] # 和MATLAB中的meshgrid类似"
  540. ]
  541. },
  542. {
  543. "cell_type": "code",
  544. "execution_count": 23,
  545. "metadata": {},
  546. "outputs": [
  547. {
  548. "data": {
  549. "text/plain": [
  550. "array([[0, 0, 0, 0, 0],\n",
  551. " [1, 1, 1, 1, 1],\n",
  552. " [2, 2, 2, 2, 2],\n",
  553. " [3, 3, 3, 3, 3],\n",
  554. " [4, 4, 4, 4, 4]])"
  555. ]
  556. },
  557. "execution_count": 23,
  558. "metadata": {},
  559. "output_type": "execute_result"
  560. }
  561. ],
  562. "source": [
  563. "x"
  564. ]
  565. },
  566. {
  567. "cell_type": "code",
  568. "execution_count": 24,
  569. "metadata": {},
  570. "outputs": [
  571. {
  572. "data": {
  573. "text/plain": [
  574. "array([[0, 1, 2, 3, 4],\n",
  575. " [0, 1, 2, 3, 4],\n",
  576. " [0, 1, 2, 3, 4],\n",
  577. " [0, 1, 2, 3, 4],\n",
  578. " [0, 1, 2, 3, 4]])"
  579. ]
  580. },
  581. "execution_count": 24,
  582. "metadata": {},
  583. "output_type": "execute_result"
  584. }
  585. ],
  586. "source": [
  587. "y"
  588. ]
  589. },
  590. {
  591. "cell_type": "markdown",
  592. "metadata": {},
  593. "source": [
  594. "#### random data"
  595. ]
  596. },
  597. {
  598. "cell_type": "code",
  599. "execution_count": 25,
  600. "metadata": {},
  601. "outputs": [],
  602. "source": [
  603. "from numpy import random"
  604. ]
  605. },
  606. {
  607. "cell_type": "code",
  608. "execution_count": 26,
  609. "metadata": {},
  610. "outputs": [
  611. {
  612. "data": {
  613. "text/plain": [
  614. "array([[0.77849722, 0.80418995, 0.05675561, 0.70158519, 0.25432473],\n",
  615. " [0.26593179, 0.68124455, 0.75827058, 0.54821965, 0.65368682],\n",
  616. " [0.10501453, 0.61381473, 0.32029867, 0.05271199, 0.14810179],\n",
  617. " [0.81571699, 0.311358 , 0.00545839, 0.81465233, 0.55005373],\n",
  618. " [0.64861977, 0.50134439, 0.11211157, 0.97227545, 0.52994903]])"
  619. ]
  620. },
  621. "execution_count": 26,
  622. "metadata": {},
  623. "output_type": "execute_result"
  624. }
  625. ],
  626. "source": [
  627. "# 均匀随机数在[0,1)区间\n",
  628. "random.rand(5,5)"
  629. ]
  630. },
  631. {
  632. "cell_type": "code",
  633. "execution_count": 27,
  634. "metadata": {},
  635. "outputs": [
  636. {
  637. "data": {
  638. "text/plain": [
  639. "array([[-0.09235676, -0.71023602, 0.61363172, 0.49120177, 1.00102961],\n",
  640. " [ 0.70097434, 1.98685481, -0.48047899, -0.83134067, 1.17453105],\n",
  641. " [ 0.50057823, -0.23609257, 1.08942973, 0.03857935, -2.00169139],\n",
  642. " [-0.09077163, 1.08568903, 0.53531071, 0.30819683, 0.40767628],\n",
  643. " [-0.24485242, -0.15219474, 0.29362566, -0.37050405, 0.17776159]])"
  644. ]
  645. },
  646. "execution_count": 27,
  647. "metadata": {},
  648. "output_type": "execute_result"
  649. }
  650. ],
  651. "source": [
  652. "# 标准正态分布随机数\n",
  653. "random.randn(5,5)"
  654. ]
  655. },
  656. {
  657. "cell_type": "markdown",
  658. "metadata": {},
  659. "source": [
  660. "#### diag"
  661. ]
  662. },
  663. {
  664. "cell_type": "code",
  665. "execution_count": 28,
  666. "metadata": {},
  667. "outputs": [
  668. {
  669. "data": {
  670. "text/plain": [
  671. "array([[1, 0, 0],\n",
  672. " [0, 2, 0],\n",
  673. " [0, 0, 3]])"
  674. ]
  675. },
  676. "execution_count": 28,
  677. "metadata": {},
  678. "output_type": "execute_result"
  679. }
  680. ],
  681. "source": [
  682. "# 一个对角矩阵\n",
  683. "np.diag([1,2,3])"
  684. ]
  685. },
  686. {
  687. "cell_type": "code",
  688. "execution_count": 29,
  689. "metadata": {},
  690. "outputs": [
  691. {
  692. "data": {
  693. "text/plain": [
  694. "array([[0, 1, 0, 0],\n",
  695. " [0, 0, 2, 0],\n",
  696. " [0, 0, 0, 3],\n",
  697. " [0, 0, 0, 0]])"
  698. ]
  699. },
  700. "execution_count": 29,
  701. "metadata": {},
  702. "output_type": "execute_result"
  703. }
  704. ],
  705. "source": [
  706. "# 从主对角线偏移的对角线\n",
  707. "np.diag([1,2,3], k=1) "
  708. ]
  709. },
  710. {
  711. "cell_type": "markdown",
  712. "metadata": {},
  713. "source": [
  714. "#### zeros and ones"
  715. ]
  716. },
  717. {
  718. "cell_type": "code",
  719. "execution_count": 30,
  720. "metadata": {},
  721. "outputs": [
  722. {
  723. "data": {
  724. "text/plain": [
  725. "array([[0., 0., 0.],\n",
  726. " [0., 0., 0.],\n",
  727. " [0., 0., 0.]])"
  728. ]
  729. },
  730. "execution_count": 30,
  731. "metadata": {},
  732. "output_type": "execute_result"
  733. }
  734. ],
  735. "source": [
  736. "np.zeros((3,3))"
  737. ]
  738. },
  739. {
  740. "cell_type": "code",
  741. "execution_count": 31,
  742. "metadata": {},
  743. "outputs": [
  744. {
  745. "data": {
  746. "text/plain": [
  747. "array([[1., 1., 1.],\n",
  748. " [1., 1., 1.],\n",
  749. " [1., 1., 1.]])"
  750. ]
  751. },
  752. "execution_count": 31,
  753. "metadata": {},
  754. "output_type": "execute_result"
  755. }
  756. ],
  757. "source": [
  758. "np.ones((3,3))"
  759. ]
  760. },
  761. {
  762. "cell_type": "markdown",
  763. "metadata": {},
  764. "source": [
  765. "## 3. 文件 I/O"
  766. ]
  767. },
  768. {
  769. "cell_type": "markdown",
  770. "metadata": {},
  771. "source": [
  772. "### 3.1 逗号分隔值 (CSV)"
  773. ]
  774. },
  775. {
  776. "cell_type": "markdown",
  777. "metadata": {},
  778. "source": [
  779. "对于数据文件来说一种非常常见的文件格式是逗号分割值(CSV),或者有关的格式例如TSV(制表符分隔的值)。为了从这些文件中读取数据到Numpy数组中,我们可以用`numpy.genfromtxt`函数。例如:"
  780. ]
  781. },
  782. {
  783. "cell_type": "code",
  784. "execution_count": 32,
  785. "metadata": {},
  786. "outputs": [
  787. {
  788. "name": "stdout",
  789. "output_type": "stream",
  790. "text": [
  791. "1800 1 1 -6.1 -6.1 -6.1 1\r\n",
  792. "1800 1 2 -15.4 -15.4 -15.4 1\r\n",
  793. "1800 1 3 -15.0 -15.0 -15.0 1\r\n",
  794. "1800 1 4 -19.3 -19.3 -19.3 1\r\n",
  795. "1800 1 5 -16.8 -16.8 -16.8 1\r\n",
  796. "1800 1 6 -11.4 -11.4 -11.4 1\r\n",
  797. "1800 1 7 -7.6 -7.6 -7.6 1\r\n",
  798. "1800 1 8 -7.1 -7.1 -7.1 1\r\n",
  799. "1800 1 9 -10.1 -10.1 -10.1 1\r\n",
  800. "1800 1 10 -9.5 -9.5 -9.5 1\r\n"
  801. ]
  802. }
  803. ],
  804. "source": [
  805. "!head stockholm_td_adj.dat"
  806. ]
  807. },
  808. {
  809. "cell_type": "code",
  810. "execution_count": 33,
  811. "metadata": {},
  812. "outputs": [],
  813. "source": [
  814. "import numpy as np\n",
  815. "data = np.genfromtxt('stockholm_td_adj.dat')"
  816. ]
  817. },
  818. {
  819. "cell_type": "code",
  820. "execution_count": 34,
  821. "metadata": {},
  822. "outputs": [
  823. {
  824. "data": {
  825. "text/plain": [
  826. "(77431, 7)"
  827. ]
  828. },
  829. "execution_count": 34,
  830. "metadata": {},
  831. "output_type": "execute_result"
  832. }
  833. ],
  834. "source": [
  835. "data.shape"
  836. ]
  837. },
  838. {
  839. "cell_type": "code",
  840. "execution_count": 35,
  841. "metadata": {},
  842. "outputs": [
  843. {
  844. "data": {
  845. "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAEWCAYAAACpAjzFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAClmElEQVR4nO2dd5jcxPnHv3Pn3nsv54aNO9iY3k01vQXSKCGEQBIIkMQQAiRAMIFAyi8JJdQQaugY0003NsYNjHsvuOPerszvj5V2R7Oa2Vfa2Xb3fp7Hj/d2pdFIGo3m7UJKCYZhGIZhGIZhmLpKWaE7wDAMwzAMwzAMU0hYKGIYhmEYhmEYpk7DQhHDMAzDMAzDMHUaFooYhmEYhmEYhqnTsFDEMAzDMAzDMEydhoUihmEYhmEYhmHqNCwUMQzDMLUaIcQEIcSFhe6HDSHEUiHE6Ki/EdqVQoi+2fWOYRim9sNCEcMwTBGTzYK4kAghbhFCPFHofgCAlPIkKeVjcfYVQhwmhPhUCLFFCLFJCPGJEOIA77eLhBAfu+0twzAMUwjqFboDDMMwDKMjhKgnpawqcB9aAHgNwE8BPAugAYDDAewpZL8YhmEY97CliGEYpkgRQvwHQA8Arwohtgshfu19f5BnvdgshJgphDhK2ed9IcRt3u/bhRCvCiHaCiH+K4TYKoT4XAhRoWwvhRC/EEIsFkJsEELcJYQoU36/RAgxRwjxrRDiTSFET+W3vwohVnjtfiGEONz7/kQANwD4jteHmd73AauXak0SQlR4ffmREGI5gPdsxxcJ7hVCrPOO/6UQYrDhOr4vhLjU+3yREOJjIcTdXptLhBAnGW7BPgAgpXxKSlktpdwlpXxLSjlLCLEvgPsAHOyd42av/ZZCiMeFEOuFEMuEEDdq1/PH3vlsE0J8LYTYP6S/+3r9ukD5ergQYpZnsXpGCNFIa3OhZ8l6RQjRxXAdHhVC/NNzJ9zuWb06CSH+4l2LuUKI/QzXgmEYplbDQhHDMEyRIqX8AYDlAE6VUjaTUv5JCNEVwHgAtwFoA+A6AM8LIdoru54P4AcAugLoA2ASgEe87ecAuFk71JkARgLYH8DpAC4BACHE6UgIN2cBaA/gIwBPKft9DmC41+6TAJ4TQjSSUr4B4I8AnvH6PSzCaR8JYF8AJ2Q4/vEAjkBCcGkJ4DwAG4nHOBDAPADtAPwJwENCCBGy3XwA1UKIx4QQJwkhWvs/SCnnALgcwCTvHFt5P/3d609v71x+COBiABBCnAvgFu+7FgBO0/vsCUlvAvi5lFK91ucBOBFALwBDAVzkbX8MgDu83zsDWAbgacu5nwfgRu/c9yAxNqZ5f/8PwD2WfRmGYWotLBQxDMOUFt8H8LqU8nUpZY2U8m0AUwGcrGzziJRykZRyC4AJABZJKd/x3NGeA6BbA+6UUm6SUi4H8BcAvoXicgB3SCnnePv+EQmLRU8AkFI+IaXcKKWsklL+GUBDAP2zPL9bpJQ7pJS7Mhy/EkBzAAMACG+bb4jHWCalfFBKWQ3gMSSEiY76RlLKrQAOAyABPAhgvWeJSdsWAIQQ5UgIpNdLKbdJKZcC+DMSAioAXArgT1LKz2WChVLKZUoThwN4BcAPpZSvac3/TUq5Wkq5CcCrSAijAPA9AA9LKadJKfcAuB4J61WF4dxflFJ+IaXcDeBFALullI971+IZpI8NhmGYOgELRQzDMKVFTwDneq5zmz23rcOQWNj7rFU+7wr5u5nW5grl8zIAvvtVTwB/VY6zCYBAwgIFIcR1nivYFu/3lkhYHLJB7Yvx+FLK9wD8H4B/AFgnhHhAJGKAKKzxP0gpd3of9Wvi/z5HSnmRlLIbgMFIXJu/GNptB6A+EtfQZxm86wWgO4BFln5dDuBTKeX7tj4D2Kn0t4t6PCnldiSsT10RTtSxwTAMUydgoYhhGKa4kdrfKwD8R0rZSvnXVEo5LotjdFc+9wCwWjnWT7RjNZZSfurFD/0aCXes1p772BYkhJawfgPADgBNlL87hWyj7mc8PgBIKf8mpRwBYCASbnS/inLSUZFSzgXwKBLCkd5XANiAhAWrp/JdDwCrvM8rkHBnNHE5gB5CiHsjdGu1ejwhRFMAbZVjMgzDMARYKGIYhilu1iIRn+LzBIBThRAnCCHKhRCNhBBHCSG6ZXGMXwkhWgshugO4Cgk3KiCRSOB6IcQgIJlE4Fzvt+YAqgCsB1BPCHETEnEyar8r1CQDAGYAOF8IUV8IMRLAORn6ZTy+EOIAIcSBQoj6SAhbuwHUxDl5E0KIAUKIa/1r612fCwB85m2yFkA3IUQDAPBc0J4FcLsQornn5ncNEvcMAP4N4DohxAgvUURfoSSuALANibihI4QQVCH3KQAXCyGGCyEaIuFiONlz3WMYhmGIsFDEMAxT3NwB4EbPhew6KeUKJJIh3ICEQLICCQtJNvP5ywC+QEJoGQ/gIQCQUr4I4E4ATwshtgL4CoCfqe1NAG8gkYxgGRJCier69pz3/0YhxDTv8++QsJR8C+D3SCRnMJLh+C2QiPP51jv+RgB3RTvtjGxDIinDZCHEDiSEoa8AXOv9/h6A2QDWCCE2eN/9HAkhbTGAj5E4x4e983kOwO3ed9sAvIREkookUsrNAI4DcJIQ4tZMHZRSvoPEdX0ewDdIXN/z45wswzBMXUZIGebhwDAMw9QFhBASQD8p5cJC94VhGIZhCgVbihiGYRiGYRiGqdOwUMQwDMMwDMMwTJ2mYEKRFxw8RSSqsc8WQvze+76XEGKyV537GT+AlWEYhnGPlFKw6xzDMAxT1ymkpWgPgGO8SufDAZwohDgIiaDae6WUfZEIoP1R4brIMAzDMAzDMExtp16hDiwTGR62e3/W9/5JAMcA+K73/WMAbgHwL1tb7dq1kxUVFTnpJ8MwDMMwDMMwpc8XX3yxQUrZPuy3gglFACCEKEciDWxfJKqSLwKwWUpZ5W2yEoaq3EKIywBcBgA9evTA1KlTc99hhmEYhmEYhmFKEiHEMtNvBU20IKWsllIOB9ANwCgAAyLs+4CUcqSUcmT79qECH8MwDMMwDMMwTEaKIvucV6xuIoCDAbQSQvgWrG4AVhWqXwzDMAzDMAzD1H4KmX2uvRCilfe5MRIVvOcgIRyd4212IRKV1hmGYRiGYRiGYXJCIWOKOgN4zIsrKgPwrJTyNSHE1wCeFkLcBmA6gIcK2EeGYRiGYRiGYWo5hcw+NwvAfiHfL0YivohhGIZhGIZhGCbnFEVMEcMwDMMwDMMwTKFgoYhhGIZhGIZhmDoNC0UMwzAMwzBMXpm2/Ft8vXprobvBMEkKWryVYRiGYRiGqXuc9c9PAQBLx40pcE8YJgFbihiGYRiGYRiGqdOwUMQwDMMwDMPUWrbtrix0F5gSgIWiOsK3O/ZiypJNhe4GwzAMwzBM3pi0aCOG3PIWPpi/vtBdYYocForqCN/992Scd/+kQneDYRiGYfLOrr3VWLR+e6G7wRSAL5YlFMJTlmwscE9SfLVqCyrGjsfUpaysLiZYKKojzPkmkeFFSlngnjDFzKYde1FTw2OEYZho7NxbhZ17qwrdDSM/e3Iajv3zB9hbVZP22/hZ37DAxOSVjxZsAAC8PWdtgXvCqLBQVMd4b+66QnehZJBSYvysb1BdR4SEDdv3YP9b38Y9b88vdFcYhikxBt70Jgbe9Gahu2Hk44WJRWhNiGLwSk9gYmonxagL3l1ZXegu5IR73p6Pf0xcWOhuxIaFojrG7sp0LRkTziszV+PKJ6fh3x8tLnRXjFSMHY9rnp3hpK0N2/cAAN76eo2T9nLNo58sQcXY8di8c2+hu8LkiPs/WMTuJUwaC9dtx5ad0QLni2VdPG/NNmzfU7wWtdqMgCh0F5L89d0FAIAZyzcXtiOO+du7C3DXm/MK3Y3YsFBUx5A5ejW88/XaWrd4Wb8tISSs3bqnwD2x88K0VU7aKaYXBoWnpqwAAKzZurvAPWFyxR0T5uKc+zgWkgky+p4PMObvH2Xc7uUZqzB3TXEVBz3hLx/ikkc+L3Q3aj2bd+7F/R8sKvqQgWISkO/7YBEG3fRGobtRUFgoKkEe+ngJfvnMjJy0LaXE81+sRGV1NIvSpY9PzdviJWrfmNpNkb/zGCaAlBJVPIdlzcpvd2Xc5qqnZ+DEv2QWnvKFv0CfUssUiMXI9S98iTsmzMXkHGTdlVLipemrnLjAiSLSRY6bMBc79tZOtz4qLBSVILe+9jVenO7GOqDzyszVuPa5mbjv/UU5aT9bvly5Bf1+OwETOTYqZ7gUMuav3Za0uDEMA9zw4pfo+9sJztqTUuLTRRuKXiPO1E2e/XwFXsrResXGtt0JC4yqRHXlKfPRgg24+pkZuPONuVm3tXozezoUEywU5YHj7vkAlz0+NeN2W3ZVYuP2wi4gv92RiM/YUOB+mPjc07BxvYH4rNi0Ew9+mJ84qePv/RCH/+m9nB4jTNO2evOupBZv9eZduK8E3CiY0mbdtt247rmZGceZ7/bpiglfrcF3H5yMJz5bZt2upkbiL+/Mr7sxeMTHf/ueKtzz1rycWPPq4hT06+dn4eocebZExZWL+JZdiXi2dQ5c6zftiP88Vowdj4qx47ErgnVnd2U1KsaOzzhf7K2qwZ/fmhep7doAC0V5YMG67Xjr68xpF0fe9jZG3PYOgMTC9W3CPlHJx6RcUyNzlprV737YQvjZqStw2v99nJPj1iZ+8NBk3P76nEgC+JadlXhx+spYxytEco9Dxr2Hnz7xBQDgsv9MxbgJc7Fs486894OpO4y6/V3874uVeOSTpXk97spvE+M60/ieOG8d/vLOAtz8yux8dKtoyeSudPeb8/C39xbipRmr89MhpuTwMxgWi+tbFCX2Zi9Byd/fW2Dd7snJy/D39xbin++Xbia5OLBQVERUVqcklpP/9hF+TLAuRSUfiqo7JszBwJvejORvO3XpJvzmf7Myaln938M2+/X/ZmHWyi2R+loX8d0K9EvoT/Bhd+AXT0/HL5+ZmbGWR02NxLXPzsSMFZuz7me2TJyXsCb657uX4zjyyh0T5uCdHCh28s3uympc/p8vsGzjDtL2SzbQtss3fn2eYk4FvGDtNizPsfIik2Jwhxf4Xl2TA0uR8xYZCv51/9aRldQfQ+VlRSIVhXDjS19i0qJEsdqaGomJ89aFrq9em7Uaf3knvQzHnhKYL3IBC0VFir+Qy8Sbs9egYux4fLMlc9BpvnjwoyUAUi8XCufdPwnPTF2RsSaQ7zb36KdLrdtJKTFvzTby8esSpitsm9798ZUpycXGHXvx/LSV+NGjxZNdydeg3zkhe/9vhs79HyzGpTlQ7OSb9+auwxuz1+BX/5tF2r5YtMcAsGbLbvz5rXmQMhVN4bsQrdu6OyvXHSpLN+xAxdjx+JDg8nzcvR/iiLsm5rxPNvxXkMjBjYzrwvvpwg14/ot4lnqXVIwdjz+8+nWhuxGb/05e7qSdpKXISWsJNu3Yi3UOM6k+8dlyXPDgZwCAxyctxcWPfI5XZ32TVNr4WXV/9uR0/OWddKtRMc1j+YSFohLnmc8T/umzV9HSjuZznEepeZpyi7P3kOrD+9/Jy3HCXz7EJ17BPiaFjDGh+/eyTAhIKVExdjwOuP2d9LbhuxXkb6RR1xnLNkXTQI+87R089PGSGD1iCsnuymqn7rtPe3PsFGIWq0KtJcIeuZ8/NQ1/f28hvlq1Nfmc+NuN+uO72P/WtzO2+9qs1QHrzbcRBSk/09rLnjvajj1V2FNVvNpnfw4rK6JV4Xf/PRnXPjez0N0AADz8SW7mxI8WrMeXJeLpIZX3oSv2v/VtjPrju6G/vTBtZVap5Vd4mRrXbtmNyUs2kvYZP+sbAEEPJp/Pl25C/xsnRJ4LSgEWikocGdG31ZX5XkqJN75aYw1GjaIVS76wM21HPIPZqxMTyFKiy0tdxCS4hN03/7sykZokw7LK+R4nxZioo14EV4dVm3dhw/Y9uPW14tGKVlbX4I2v1uQlYcTarbvzVnds5bc7nbpbHnfvBxh405vO2juwVxsAQL8OzZy16RLbcNiluL6kFBbR2v/Zk9Nx0l8/BJAQDPe79W288VWEAs/JBWTi/0E3v4mT/pr/NNnUd8cqbwG5dVe04rC0PmRHLhIMVVbX4MKHp2Bmhmcw12nkf/DQFJxaIjHBNdQFS0yWb9yJ79w/Cdt2V0JKiWuenZlVavn3vGy9QtCV1TM9ATXM5fCfExdiT1UNpq/4NnafihUWikocW+KBXPL212tx+RNf4B8Tzam7o1iKfDKdR5w2axNTlmzCI1lq6jYbXva2a091KdlVAP9j6tivX06f7lYRaqDkm7+/uwCXP/EFJs7LfTr64+/9MHLdsd2V1bjp5a+wdXe0xeRhd07EGf/4JO17agwPAOxz4wRc8EDCVWTFptS9q6yuwUvTV0Vy5dVp27QBAGC/Hq1I2+fTSpoJX0khhKp4it4/v3aJv3D+PIPA/Jbn1r10w47kAvLtOan4ssXri1dZ5de1eXWW+0QL2eozpi1zvwid881WfDB/PX6dwT00zGIQxp6qanz3wc+werO7OXT15l2RXctyVag+0XaCXFkT731nPiYv2YS3Zq/FEw5c/tQ4x6ixcrYYSSnjz/vFCgtFJY7tRbd9T1XOqiVv2J7QHthimWocabRXb96FJ72JgdJmJk368o07UTF2PL5aRTPVZ5r3npqyHPv8dkLGeCidtTH8h8+7fxJ+n6VPdyYlV9hZ+BPji9Ps9Sbi3vNj//w+7pgwJ9I+UV969cuLZ7Eah5XeImPj9mguC0f8aSLueWtepH22xNCSPzVlOR6ftAx/f9ee1YjKjj10AXtvVQ0mLU53Cxk3YS6ufmYGjrzrfSd9KjXUOcmFAq1GsRgDwH8mLQ1drL4yMyFQzFq1JXlcP+tVoaFOUcXkPueTiy797qWvAABrvPu4u7IaW7K4Vy9MW4VPF23EIePclWI4ZNx7RtcyCq6N61J7Duav3ZYc83e+MRcVY8dn5Qqo3ubZxHUKhV17qyNbG/3kVeu27lY8k1I9/O/kxLz/f+8Fs9RFXQ8VCywUFSGR3M78DyGT5eCb38Tgm925kYRhm6TnrY2e6CBMy/r9hybjhhe/xJadlSQNY+Lyma/hu3MTGsvnptLqhWS6Hbe8Mht7q2uS2Z0ovDBtJQ7847v4wqD5q6mROXeTEiIx0aUCoDO/cd+fv84qjMTt86L1O3D/B/FqJ/kKgZoMk3CUOboI10NWDf/6bXvwvsGCtHzTTvzNe2FJKTNep7j4L8FiSvLnu+WZ3DlzcS0KNXbC5s5NnutLwlKUfbyfGlu4fONO/O7l2fiJl/o+rC9SSquiREppXTxFvT/VNRLn3T8pNKlD1KmpPJvrZJi/s7VeuKqzo+K7SW3zNP0n//UjDPvDWwAS76nL/5N+f4FEaYc3Z6e7UbpShpqgvhs3bMtdvIv6HAAJy/ovnpoOAPiXV/j+ySmJOkDZvsv9mEYb+lA1He/ed+bHmp8XrtuOUX98NzTG1rc86c9qpqRMxQoLRTlizjdbM2pbpZS49LHP05IBvByjPgJ1qsz0cK7ektAWVTlYLGSyKlDxNePUydbVpOy7C2QKLPWP9tsXv0z7bcvOytAASd/9xJQhr/cNr2cMrHUhNJ3xj0/ww4enkLdfumGndXERJSX6lCWbnCxKJSTenbMWvW94HXO+MQejRolbKRaZaPXmXWkpisOu2Ln3fYqLHsmc8e/CRz5H7xted9Q796z8didO/8cn2L6nKqfuLwDwxldr0PuG17Egg/JGz9r25cotVne8XCxc49K6SX0AQL2yMnLcpo3kPRGpFPdh7zlfgy6lXRh57NOl6HPD66E106Yu3YTeN7xOTnABJOIfpizZFFos1H+nUZNwZCPc9r7hdZwb0f2UQi4Fbv82LVbcpa55dibe8AQfPYb0owUb8JMQgSnXFoLeN7yO657LnAkyjlKWSg1BweCP+943vI6bXs5vbTDTM1cj460blm9KjAlb4qqwSzF9+beRvRQKDQtFOeKkv36E79xvnxQ37diLd+asw/f+PTntewpV1TXOrQkPfJjQ1k/O8CJassFerwYwx674TFq0MVKBWuoLITEnBzeesWJz0ry9k1iheZf28hzwuwn4c9gD7t2CF6anC4HD/vBW5ABJPzPTCxmEShe33heCgw0n/rv55a9wkOaysH1PlfW41zxLy5A0ce46nHf/JDySIbU6lbdmJ8ZRruojXfDAZ/jBQ5MzbvfW7DXJ2hBU9lRV496354fWgzhk3Hs44q6J+GrVFuv4X0qs7UJJixyFf3+0GBVjx1vnoSgaw8PunIiZKzbjYUdZ/2zH9rXcX2ZwT1Gztu3YU4VT/+9j/OzJacbtw+7TgrXb8PSUYGxA1GQkFz0yBefe92mkfcLIZmGtZt2yZbH0v5Owa8mf9+a4VSHxJ35M2+tffmPt0/Tl3ybndt9ab3uHPvEZLUYj2xo0Uz0vgF17q7FuW2KezXbOzqW4nalvfyAmnclHXZvnp6XSk6/8dmfOBDH1mduxpyr5zPqHsyeaSn3+z2fLctK/YsA0boQAzvznp0kvhVKBhaIcMjfECrBw3XYcfMe7WL9tD/6ape/9ciXFsBAC3+7Yi0PHvYevV8dP3Whj9uot+GJZQljyaxHZyGQFuODBz0gFaqMKfgltZnCfM/7xSdK8fdebNM2F/jDvrqzB30MecIpG2/SiCNv30U+WkvqXLfpl9RdLvqbwsUnLkn7mgf0caPD9+JhF67db03rW1Eg88/ly6+LWlWZeSmm8T5MWb8RHC8K1ZLsrq5Nj9LL/fJGsDUHlsU+X4q/vLrCm/x6vLgyLyFX7tvGJODDbI+pKb5OYf6IFmtssl77wuieC26u/6PYLA1M57t4PMfaFoCX5uudmoqq6Bifc+yHe81x67/tgEX7quaN9uXILDrvzvaQl5v156/H50vTzp15e23O7cfueZArewD7azdNjKYBwbfnrXyYEzpqaVJ2wMPx2bK+KReu3o7K6Bs98vjz0nXLmPz9Nzu2+Br9Ly0bG9vTrYHq/6DFFuyurcfTd7+PTRdHKPJz/wCSMuj1+PEw27K6sdmKNX7V5F/k9bJqPoyRKWLZxByn2ZfXmXTjszom4O0fWCPWZO+mvH2HkbYkyFL6l+LkiqB0Vhu1OZeNJY9vTZjUrpfgiForyzEMfL8E3W3bjra/XYBfRYmFizZbdiuYO+HDBeqzavAv/+iCYES5Tqs0wtocUjx3zt49x9r9065f5QXDtWxw22U5b/m2a+wb1sK6yRKlZeaprJK57bibma6b7het0y5r52LsrMy/SVm3elfXaOO7+cW/ryzNW4YEPE2MzqUmWwMcWk/zz01biN89/ifs/MGc5zIa1W3cnXe7+MXEhBvzuDWzOUPV8x54qXPnfaVi/bQ+27KzEgN+9gZtfCbpHVFbXYPysb5L+5Tb8+23TsAoUj0ufiv8IRX0Jz1yxOXKNi8T8k52lZNH67VjhKZN8gd+WXUmHkl2RGlu4Y08VNu3Yi3lrt+E3zycEpnET5mKCl+76L+/Mx8pvd+HzCO5jQMIC5SeRUS+9zX3ux49PxZVPTktqwr9YtinUKhyoV+Z9lz63pVzraqQMVaz4+PEsHy8wL4CFEHjgw8X4zfNf4n+WRSjVIqmfk2k+K9MsRYvX78CSDTsiFy+dqQjm2b4S9T7Z2F1ZjQG/ewN3vpkoWr1g7bZQixyFQzMkTdiyqxLTlieEB9NrdZM2r66w1I078q73cSHBrdt36ctHPUJVCX3nG5kLgatxfJlwbV2zHTfOGDQJumpbutCr7vMsMX67GGChqIDYXhY6T05ejlkrNwe+k0gtOFRBXNcMqS5FvsQ+8rZ3cOV/zS4gUfpmIo52IKyon6mVyuoanPXPT/GjR4OxFFKmYnVmLN8cuQ/ZsGj9dvzvi5XWawsoi8mQk6PIanur7K6Tlz72ecYXWVzivtevenoG/vh64mWSOkdpTTHtC7ybdqS7YoZeu4h9OnTce8maKS967o8btu+x3oNBN7+J8V9+g7+8Mx/rtyeek8cnBd0jZq7YjCufnEZ6efovxLDFZRiuYm2qayT5mCZSwq29T1JK/GPiwuRC6PR/fIJzM7gX54Jj//wBDv/TxMB3Ybf67a/X4l0vhbRa3+fVmcF4z/MfmITj7/0g8B3VVUZA5MTod9JfP8Ipf0+v92IrOLnSS0FfVS2xZVclzv7XJFzx32lp/fOFQgHa4irdZh/OpxaX0zKRcjW0pf29m+gB4Pdn6YYdiXnUclwgka00bNH61JTlqBg73hpfFjUVvBrftmTDjqyC1f1jP+sF6h9374dZvRNsFtWLH5mCs/75aaR3/l4Hgfg7NBf3D+avT3O3lJI+Z0opsXBd5lgk0tiXwDbi/ddjuPXzysTmnZWocTCfZ+L9EAu53/OXLLHwYTGDxUrBhCIhRHchxEQhxNdCiNlCiKu879sIId4WQizw/m9dqD7mhuivwddmrcYNL36J0/4vWMtDytTL5NpnZ2DphsSCY3zapJB+zA3b9yS3+9f7i3BOlhrYMOIIRdZaCdq73G9fjwmokRLTPGFogqXIoC2deLZkOveUz308BIBqy8z8zpx1GbWC+rigChQuLICqFomSmtwmpAgRfOlFcbdUX0b+p+3EVNASblzD/ulZk2xjFUi/Bm98tQZLI1g5dG56+SuMvucDa6KBTDFa/gI7k6Vo9uqtuOvNeQGBxPYCzxSgDyQWyE5iKkVCwfLYp0tRVV2Dyuoa/PjxqfjRY1OTffE31I/22eJNmL82twuRTOgWIDUgXn1WbQUn/a2EAPZ4AsDXq7emXV/f8klNxLN1VyVpXrEJRVICO71n0rYwXxzhWdi0Yy+Ouvt9/Ob5WcYxVC4EKqtrcMRdE/GLp6anLaz9a+Ff7+emrkizfupxY7bF+dtfr8Vx936Il2eswrptu3H03e/j969mDtA3CYq+J0Sm2F6qw4TNou+/g6tqasipzLP1lAGA7z4YjPO88OEpuCJEIbnA8oz+/tXZuOK/CZfVhz5egtH3fOgsNnXoLW+RttPfqW/OpsdaA4m5/B8TF2L0PR9Ykw0BMdcc2i1VlQR5qCWeVwppKaoCcK2UciCAgwBcKYQYCGAsgHellP0AvOv9XSuhTh43vJCe1QwIugts2L43Gcyps3xTcHGsa0LufGNuMijUJXEWz6FxG4ZmUjUzROj3mfrwbUgthjnfbA1daEZJtw2Ev6DfnL0mWRMijA/mr8euvdVk4eTxT4Ma6Uc+WUJy1/Jx5T43ce46jH0+czag1P6qAGOPCcrnhOune7/pZfM90qF0z4XwrR7HvyaXP/EFjvnz+7Hb/K9X+2uOIQMikBC8bPiPnvqc6dNajQTemRPtJf+fz5Zaf1+/bQ+G3vIW/jEx+yBeAYFHP1mKm1+Zjf98tsxYT8d15q9te6rcukSGNLbIG9N7qqrTsuhlbE6Yx3fCApR59N82fk7WbsoSQJOG5QCARvXLjW5XZM8yKXGf54774vRVgbNQlVlCiKQw9paSECiZbtzbs6pGYvH67fjV/2ZljJG1zWe+y/XcNduw1RNk9KQt+qWcOG8dht7yVmick5/1NM0F0kXGT61R/x1cU0O/D7qLeTbYDlkjJaq0gqUfL9iAa56dAQB45JOlyRg43w3P5tqXC0zjgqpY3ltdgy8898U1W3Zbn8xYiiRtF1+JUcvkIQAFFIqklN9IKad5n7cBmAOgK4DTATzmbfYYgDMK0sEcI6X5JUt9h+gV300DdOW3qQdcSlrMShRMD9k0outa3CA8fz99ElbnP5tQFObacNJfP8JRd7+f9j3FDQqwv/R+8p8v0l1rvB2uf+FLXPjwFFz9zHTS/RciPWPT71/9Oq2f1PSzkdDO8eJHPw+tpWBKN/7KzNUB90HS+SKhda0YO94aV0ChYux4VIwdb/w9SnFUyvvlnxOzj4dKxBSlX6iwR0dKiT+9MTfw3Ntws0gK/wwknsG/vBMtqcyGDPfAty6O/9IutFHYXVmddNPcttucCpxivYqCqtHV0x0DbhccO/dWJxvM9LylhCfz/Fkm6NciW2ve7srqZFp6KaXR7apMCNwxwXfPFZryJWgRVouTqt17RCm/UCaAKUvT47l8y+oKT9l43v2Tku6HNuVimBBQMXY87ng9rGi12QK7u7I62Zafrjws46UpTiVOYeZM+Ba8yUs2orw8fFmpz19UC6up/lqwcfug1ofg9x+aHJrd1U+gEqcsStoxIzzBpmekfj26QoH6mC0i1Hp0QdB7Iy+HdEJRxBQJISoA7AdgMoCOUkrf/2sNgI6GfS4TQkwVQkxdv95tmtlcMnlxYhJ7lJiKeP22PUZNm76WMS1uVEuKa22nEJlTR4e98FVUi5eUElXVNagYOx4ne7Eevl+uHsinF1BLfa9YiizyX5QHNZNJOir6fXjKS9f75uy1JM2qgLDG4vjY3FzSs8/RBgd1sjdlaVq/bU8gZa/NYqreS9+C99SU9JS6krrgczw7U6yh9b1Fwobte0gCyBtfrUmrbbXi25QAnKmFeWu34Z/vL8JPn7DHtaXay9yn3ZXVyeKOP39qerKgo59kRHWF2bY7XuKTKLgsDKjOxWHDR3Uti8IPHpocyYKq801YuvwMmFySWjaun4qNCvld9axL1WCxJCEQgnxfs3W3nb92G96dm5jrbC7BZUIEMuip7pl6im61ho06/lcqz5k+L/mnUVUjA8lYNu3YizZNGwAAKto2MfYvUXsrnfs/TC9aLVITZBpjn5+F4+/9EAvXbUelJ4yEZUWl4nJJ8ObsNeT2JhneD7rw+OpMe0p2IPM5RB2BUS3boceMcFDTa4Fq1VUTn+QiI4/NnZD0/giJFS9WCi4UCSGaAXgewNVSysBKQCZWMKFXXEr5gJRypJRyZPv27fPQUzq2BbTvVkUNiJsaoqny0V82JhcvdW6P+n5atXlXxuJ58y2BiZMXb8QBt78TWtjUxE7fp127jrprnb/A1YMZ1etii7uJgu7zft8Hi3DHhHQNH3XhJCyaQAoS0pjqVtUEWlMlK0d/N8JLgGpYUI9do7mlqNfJds38tPXrFMHav+9h3bjvg/QFhqlPNraGZF/U+XbHXjz4kf14QCImcN3W3Rh52zuh/u46lz/xRVptq0079gSsazZ8RUCm+jtROPru9zHE849/debqZEFHn2WKu4mepta1IAoA37k/WtrzTNhe7H6yFltNkjA+WrAhYzV625Xx3yMZi4ArrazaHD4nqBbqnaEWBEUq8thdWWMca6/MXE2O4zP9pLsoTZwbruSpUrJ7CpiFMX0eMbr+yeAiLzBPKX+UlZnPy5SFsEmDeoajBms72bC9QgREMqD90sc+tyq9xs/K3opqYp1B0VlVnX0amJdnBJWsJne8TFlCfVzPPrlIL53tHCmUNqhJUKKw2qKMoIQW/MOBt0S+KKhQJISoj4RA9F8p5Qve12uFEJ293zsDINhOi4tF62kCDzWmyAR14KvHsVkXwmKSjvzTRJyXRZYoX5Dx4xfCILthaH+b5iZVELJNYNnMG+MmzMX9IQtw6rlQF7gmXrGY97drQuLyjTtRMXY8Xp25OpmqV2fGis2BiXmNRUtNncCl4bMAcNtrqfo2tqfAL7Q7e3WqeKl+dHX/JRt2ZBAEMyMESLW+Zq3cEpqNR2fdtj3JRYQvTCxctw1jn58VaaFNnS58X3kqW3dVQUqJqUs3Ge9tJqtFdU2N0SKQixIVlMxVYZksTfh9XLV5F3bvDbbtF4qcv3Y72UrqMtvSjr1V1kVJkPBBsmtvNeatSbyXwuoRpfYW+NJLIb1lV6Xxni7buDPwnMXJJKZbfS7WsoiGtZ1YIGf2iLAKaZZ7GBCKLA+cSYNve0bLY7zv0+Y6pYktuyqtx5uylFZEOs7zaXo/VNdk72Naryy4LDWdo5qYxnppHc8/+rO93KCcnB4hWUOUsgBhzFy5JbnWkrC/v+Ngu74uY8OKgUJmnxMAHgIwR0p5j/LTKwAu9D5fCODlfPctW9Q5IVu3KwnzgPxQq+1gevbV2gbvzjELRXtCYo0yZRnKNM3XK8/8IlBfRHryA5NfOGAWeErJfzUMyrtzo6XGi65Ze3VWQoC64/U5QYFJu05fKYKATbCnXl71fq0IFBpOWfckaMqBhB90cDvf2vrAh4vJRfTUPplc2YQIFvg1JUrYtrsymakr83GDf9/62hw8/fmK0ALPmfa3Lep2V1aT2/S5+815eGXmapxz3yT0uv71wG97q2oCcRb6sXyqaxCqJADc1ytTsc2vNsWBjl/u4OnPV1gX+NRT8YvaxkUdp49PWkaqjwTY5w6qZl21krq4d6Y2qCKCup2tTk+58put17ZTUm99ueVY+k+Uy1RWRp87KdemvExY3atMruMunkZTG9WSbikybadbRtV3VhyLioTM6ZrgyidT1n/VAhklPfZPPHdknTh685oambW72uTFNIG6NlJIS9GhAH4A4BghxAzv38kAxgE4TgixAMBo7++SYrESyPbarOwC9rbsqjS6T6z6NrhYM1fmTn2uVy6SRdbywXRDsgVVQ26br9TA1bAA7jCoL3LXcUIA8JGlCGEYYbERVD9iEwEhQ6YW+Ku37A60rF+lPyjpX62KtxgvGHUM67JI1OxU+v5xq4pTT2PrrnBXOiEEdhDTyupLBb9a+9tfB90WTbEyNVImiwfarn+cIOpte6qMmsqHP1mCP7wWXqzyPcXdqaqmxiio6/3Va/3kCl3Y1i2oKqqCpUWjcBeoKMOUGpNgupf695RnzrZEFgBemG6O/QwmylAUBzGe9c+0BdXHYRlFY/LRgg0k97lvlMLmid9SP+qJWkxuvoE4jbSDZe5DYrPUF+Vl9jgs3yI5WXFXtwkBuhuynlihxqIA+njBBpz8149ix+aZ3rHVNTKZOS8us1cHvRleV5KpmBK6ZH403UlFekvq3KHHPVOhprgHEmsnF8lxbOiePfUNyTNslKpyupDZ5z6WUgop5VAp5XDv3+tSyo1SymOllP2klKOllNHKeRcBD3xI85+0vcB8/u+9hcZJW5+YbD7UPvXLy3CrYZETZxAvXLfdWivFX/zpfBvI/hM88KwVqUlR9SfXz9dkKfKTWRQCPQ4qDDXRwG3j56S9zCjmaGvdHuXzCmIGMiBzxi8f6qI2uChJfVaL623N4AISxswsakgEXPoMAz5tQWp01zEfJy2+wfBs6XE/938QPnfUSOCThYnFZjGmi33LUldDv87UGiDZvlT13U2lDXRMQvqOPVWBczGVQAASWewo/DE081j6XKcvFFVcLj7STt3mimpYoOp1r3ZHLGeQdhzl85xvthq7lCnhj48eD6M+33pqeaMApr29KfaRTBZxX5n6xbJvk2Nw6cadgTGntqAnMNLHnHouen2nsS/MwtffbI3tZmValO/cW42735ofvo/Xn69WbbFaLVULne6aFmeoS82j7wvH5Uek4bPOrr3VqBg7HkfdNTHttyjKrL6/nYALH5li/N1WyysuR+wTHrdfXSNzks2wkBQ80UJdZq3lpeqjF39T/bD1JAKmKfdzJVlD+2YNzdrJGFPO7qoa7IqR4lszZgT43JBcwqahUbn6mRmR++MMgub36LvfT2ZTAtIzRr1o0ej62KxJ6qLO6gan9Ok+fTFueX/rQfYmTNpE9aW0ccdeen0RIrZR7KooHxDdwhWGLjCsNixS1O3CslWltgv+rS569MKSFJo3tAeO+9iyacZVaupFqKMyV1NQ2OpFUQSL+Wu3B85l6tLsF1evGBQMeneuenpG4O9HP1mCirHj0+YO05i0JcOxHdtmdTe9Lz7TEvNk64JXT5sgTAkZ4hJMtJD6XFUtjYoTk9Ljq1VmpVh5mSCv6tXm1UVuuiUqxRtfBZ8Xhwka01BPQ1XSvJfh3ny9eitO+fvHOOtfnxrHxZCuLZOfL340uPgPplZXBVhbBtPg35OXhLuG5SIhjMq1z80AkBB0VeK8/0LrOXr8/tXZsXxN1PeDfiVMAv19HyxKKutqCywU5QCqS406gZo0NvrgDFqNgr/NWhmuTVQ1Sof1a0eyKNnQTcRxHsCAG5fluOqzuHOv2T0gG3bsqUJNjXSSVcZ4bZVftu+pCqR+zXTU7Xuq8Mzny4MaQ8tFp06yap8qq829SNPqES8T5XJW18g0AW/9tj3Y7w9vpSU7cJFO/tFPliY/Z3u3bd3RFySmY6W5EhK3o6IKgYs3pARk3dpkepT0zI4q1HGmP6em3XQFULZFb8sJ8Yw+QW2vRRCI5LITH7XuTNh1vuXVhLVfndt3V5oLP2/YFqX2VrjlxI+7Ct8n9VlP5GB2d6NdwWaaYP7E5GWGLWlcdEhF4G+T9VgIYL0hYUacJEmzV2+NpXi0zvXa4FizZXfy+u9V4kpsrqMqeu1DE6qlyGZ5UZ9pIYCT/5bIqrl4vTkhTu/2zZKf9Zo6pqtnd/eWViHCJ06yEJ0qy3vUJDC7UK6prN0aL8mLqkC1eYOoLpc2JePamK6EhYaFohxDXbfrWp5UA8E/awwvLCCV7ltHNUc/9PESWocsqObStVt2G4vEhfHs1BX4x8SFwYlAXxgqP6nTxd/eDRaAjOKHa2Lb7koMuvlN3P3WvKRPdy7IRn47/p4P8Jvnvwy8fNK8XIhZk+Kgv1CpL/aAK4rhtbWnqgZasiFMnLsO3+6sxMNagL+Ls1LdkEz3RC/eatpOF9JV9LSyRlc9YwtB9No/Jqi3XhdAVKgFf6nH0s/RtN997wetlXpsSlQaRPGDJ/rABLXTqe91l7FsURN92KzCEjLpbvuqUhRZ57B+7azHU09ZVdioU6xfrDTsN9ucYLoP5PIF2na22nOm/QLJGtLqD6X6rnpfvPP1Wtz08myEEWcu+sVT02O9B9T+ZspSdsGDn+HKJ6dhb1VNIGGGnnXUtz7p7b1myUyoslpRWNjuY6AUg+5yaHRNNEOJJ0vbBzSB54EM5RwofGtxC1wew+15s5Z4ynUsUaZyK2HoNb9MuKwll09YKMox1Do56gJfzQKmv2zUhSYlsxuQnkXHtEDT3dZMlhNVe7Zm6+5AYGgmfv2/WbjrzXmBiU93I1RdQmxalPeUTHqmVNOZ8AW8l2esjhUgSjW5W91QLL9t2VmZdKlSM1DpAuFyLbubCTVeKa6gRp2Xg7WJwreprqlJu8e2IpPZQrEI6Jm+1OukZuWxZQRboFVrN1tn9ec7fDv95WhCv6em627LrEW1mFI1nPqL3LTfPE2wUDWeVKFQRU/taxvvVEE/2EbqPOavpWeaoqAuKPTrovdn384tAABn7d816yQtQLAQqDo+ddnmrdnhAfA6jeqHLzOoyrT0xXSce6V8r91r9a+XlYyFVI8PvQ0besZYE89OTdW3Us9+t+aqHrgyQmClF0OaNp5VHaSUSQvjza8EhT7qtdX7YcI2lZh+sin1TM/phu17yYtwU1IRF7ExcfSRtrlYL4Aep+6i7Z5S46uCWYBpx3WhtC4ELBTlGJs5VUUtDqouznW3JvWvVo0bkNpO04wZtntLy4Rl8r3Vs97FQe2Snr5WjZmwZcpThbM3vsquUN2qzbtIBTszYZqAbFYF29yh3gO1aT2GQ71O6iJC747qRhB3ylLP0aYhp8yJe6pqzAlHciAV1cSY3NUX8QTiONtZqVnXlGMFMi9qffhy1ebQ9ly8X9RjubYmUo8LmJMQ2BYH97wdHrxtg6o00gPqbZeaGmOSLeRU7Uitd/VsZCo2pczarbtJbpu6MKtaVG3XzDR243otZPso6MIYeR5QtluoxWpShQmqlv2fitVU3UdXWOj1w/z1AlU4TrPCURVeMZSBZPd0m9VHhn9esmEH7nh9bsZ9bJjCD6K0F0cp0bRBufG3T7V4Heq5NG9UP/I+NijKRCBRf8+HuvYtNlgoyjHqxD/VkEAACErVtsWByd/bRmPLQ6dOuPphTZPYwC4tSMe1oU4eHxoy1AF2H2d1Qndiqo0xe5hcFnX+8Gp4xj/APsmoiTXsBVVTn/dUp176NkujDfX+LNDqLahWC5v/MuVYyzbuTFtsmbLgUS0T1sKNWc7T1HT26cdJfbHToiE31haJaZHMpcBJvZZ6n742ZFLTA+pVbAsqk0uJLQYmEOsA+kI7KCQon4n7u8bm6qi6Ri1eb56nPl6wwZhOXdVM6wVke7ZrkvxsG5+me0ddNPVo0yTwd7bP8FNTVgS/iNGeLUPoFotV1zbGjSi76Bnn3leLsRNjTtV5VN+MLOwo93SZoXgpEEwSQXUppips9L2/MM7NwS1Na4UplvWZiq4sjpOgIRhrZT7fK47uG/hbvT/Uwt8uRBP1GbadrloeI0rx7GKChaI8YkvXrAoGtgJ16vuFqnjRK2mrg3rTjtTDaRPGVOJqmeNMHnurzPsE3N1cLPJi7KMLbQGNinK+m2yFE4kH1rWCJlRXQj24MxAHQLwf+oJKFQRtL1GqVUa/dWo8hUqswn3aPnEWVOo+egptE9SU6Xu19Kmm/WzFelUes2SBU09drx0TzOrkls2aW4ravvritM0rtsdbdTVS0V3a1Oafm7pS+T7Yui39tRo8rO6VR8NbwNLxu5e+Sn7Wx7paKsEWEK16GaYtkrW6PSrDu7dKHdvS3zjJBdRzOah3m2CfHGcJq6IGKal9sLx8X1IW/9RxYXMlVBVUkxwX1UyPr6Ltpy6SbW5SqmJC95ZQj6Wmt6fGFOnu7qpheKMidOjnlCkuKxN6Jkj1vKhjXbWyphcCTrXRsJ7ZBXgNMZGBVUmI6PO+9flTfrKt3YoZForyCPW9adMmmfxhrcclHlifID83xAplSrtpQs0kQ62fY7MAqRq/uL702b5fbe/TbYFK3ObtqPWB9uvRitirFLqLClXjQ8XuNkOzaprG55qYWXSoZCsg2RjQKWhNDWQtU05Y16bFWVyr8wA1488dE4KuJjOJriPakUlb/fmtoJCrXosde1Lnb1PK2LSppphGvT01BkxdDFTXBFMv22ILVE1o3JiqbFEXodOWb06OmQc/WhK0Xlm6t1WJ0bLNnep80aCeeblgey5McyRZuNFORK8zlC13vxWuhNHRx0zwtxS2WMM/KQofdcztsGSHI88Jyob6pd1tcN+2JZ2woZ6+rnSlol7PJcrawJ40IbWPno5efd7VZCF/1RI0qaEKLt6BawKKEqqVK3Vg/f2v9qlF4/qB33QlGqV99V7Z1pa2epMmt8X046Zwkc23ELBQlE+Ik4dNY0pdaFLbU9Gzozz9ebgG9k1inZp0FMsJUfNtc1MY2Dm18MynO5CK7lseaC8wf5kbN8WR6NiKslEnrTgTld0dzWYpUj9HP67uVhlnitWDpVV3RPXFsdGSjS0O//simMlQ7bs6VNNTckcfyJ9b6uWoC/d5ljgVqlWvJoZQrY/bxcozEwzkp7kN65isaPoCwObqmf3r29z3SkUqoKZGtqEXtFTHTMA1yjIp7jZot3VvBlUAs2bzs42ZLFeeLoxw6qUY0bN14DdqLImK7vlnmn9t8XRqvRrb2Cd7ZigH09/lav0zW2kHk6eDjnpPbQ4mQWWQ+Tc1O5xVKFL20a1rZYGxn/pej8/TXRAp2NxUqYKKClWwaKKFPnzngUm0NtQxqLSop6On9mnV5p2k7dSMoUuJ6d2LDRaK8gjVnZguFGXboyDUl0PrJuYED/oLW+VbYgYtFWrAcVymK24lcdw8KrUJUb0n6gLcZg1yEkSvfra09/HCzPUa4h5XjzlQxyo11astVXScPtmy66jX6dbXLDFfxPuz1ZIhzRTIH2fM6dgys0nLQikO24npulX0tK/VhjmM6r6ro+41R1nU27K26cRZt1N7q7ZtKkwdBWr9JmrMgcoPHgoWy1TjQOprlqLJi1PnYhvHcYQiN1bs8Eb26dgs9PsoVBNd7qYus8QRK/fHLhTR++Vz40tfBv5WC95OX745+dkmOL8wzVxEXFWu2Vx7beNCjVVdqHy2Z59LobvtqbGuVOWSnvnWxJ4YBeptWBVPFgWVuh4yJawBgoqoud+k9mlqKcZte07//NZ80nbqdXJR/qUQsFCUR6gPqlUhl6X2PS6qhtN21JWbzQuvc++bZPwtDibtuw1dU/uLp6ZHPq5avNaWInMBsYo82YvE2oYykdKaIx/XqqlU2pijx8wpv9nqN6jYrGFxoLqDuPDVt7lJmRKk2F5sVH702NTkZ91qpArjh/a116pJYrlk6kiIO/uo6XzVRZPVUqR8ti32VY1ulOnRpFSwBQu3aZZSDuUzpogan2d1cyb2V1VS6JYi1S3JvsgzdIHYh55tm2TeKAM2600cTX96HE34SdqEYHWPuAqBAMoF1d9zqjJM/W3Vt+Yizjalgnr6eibUwHbKpbWVzbC5DwaPmzqwrvCKogTxoQo7VAtvnBp+OtQYJVtowetfppSQajxhfS0jp6rEHty1pbE99b1sLS+i9DdOrF4xwEJRHqHOe7YJstKSztdE66b1M2+UgZXK5GnLFqfXBjHhQpxTF5rvzFlr3E41l+vWjGB7tOOqk4yLWCHqREpdRFDTk7s4bsDHW3NncO2qR90ujv+z9VjU60RcaaoLAD1zk3qtdZ95Cqu08R3HEvXYpKWk7ezuG8TjKpvNUDTYtmNd+vjUwG9OBBLlAO/PS81vt2vlAlSaK1pXas0dW2YyKrYrGy8mzfyb+gzrCypqn0zoRZJV1MQ0ce+v6bz0RZ2eXdOEKszrChCTu1JapjsD9iQj5t9MZSRsRkK1f/r+geLE5iZipeSeZnm+1f7aBBD1sEf3b0/qgw3beagWWUrxV4C+hrAdVy1Sb40vt7VPfPeqIRJUwZz6rFdzSm4mE1TfYJtJW11o2xadqvBkc3dTOTxD1XMKVMHPdfCxrXgidXGubmVLBa5up09u6mJwriXboAq5fAPNYBO7kG2wvVSLj09aZtxOVQbpKXbV82rRKHvBnC7syNDP6e1RBTDSZvY2lM+2VMTqsRYSF2vW4yrtPW7R6Ko894V5IafOTfZrSzpUoAVbens1RksVWoB4MSd6/9Q/VYunbeyri2Q1C5yOOkdc/cwM43bUuDbdXVK1VgdqlJFas6NaRGxZUeNkhrS5Rv9Hue5xnz+Ty2rcBC53vpFKTkItpmxDVY5Y1wYxBrjr92vc9ls2ps376hj+7YvmZ0m9kbbxSMV2Fqf87ePkZ2oyCepVt2XsU5PllFuUzLZnTk0+Qy6S7GDtpv5UyYkWmIxQLUUOEi2ofsMfLaDFkejbxRnS1IxM974TvRijjgutjIkbLYscmwuj+rfNHB1sj2qxoUlFlUSzNfWy2FKYqk1s0zR86rWgZ1Sk9cmuJUt9tgogymebNpY8eogBwi7cXuP4a+8gxgOt2GS2plKXIdSaH9RLYcvoNdWSaEKFqvmmVo2/4cVU3Iat8PNjn5oFq2AfSJvhmmdnavspQpFykk6EeaUN23vJ9fKHao23oQrtao03m6eDDbWN/05eHvjtbcVTgdrfV2auTn7euMMsqFEXqy9MSykObGOYfD0tx6WO1S6tGpO2o8Zoqff0L+8ssGxJw3Yt1Fipz6ju1VQLmuUCqvG3trWBbT2gukuqyYbsrrfxEnKpqAJdHE+HYoCFojxCXVDodT1U1IepXwdzwOj2PTRNlm1yi5OlhWqCjZPxRyeO/24cs3/acdUFlDaXv/5lynWNWlvGRUaq3UrsQxzLWNpvxJfeCmWCfFhbqJMtMbRDkdv+dFHqhWBbTKtNuHDpt2nktuxKjQXb7Qm4r1j6ZEsMoaK24SJ+ScXuOkqbO5wkmiCmvo+RxMuKLZufCrX8QKzCngi+E9QaS7bEHwGLkuV81XnQNre7jm/9QBFc4rb8rOIa9JWl9hQV9Rz1eeUJxbJFHWdqAPyJf/kou84hqAi1xzfS2tPdnwYpRdupJRao7yKb5UTFfRg1rUHqu5zsWubAikJ+5ojbUYutPvyJWSGnDn0X65pCwEJRHqFaUV5VNEg6ag2NfZWU1DprttAWJXGCTG3kMd6YTEBLb/O1VrabucL8En1didm574NF2XQNAPCnN8x1MtQ+fbbIrK1S6zK4WKBQm1DTs+uaoUChWEsbeoE6ChPnmbW9quvoOK0eTwBi/1RscRW2Og8PfLg4+dn2QtSL7bqE6spiQw1uVs9Cvy6O39dkbDWG7DFQqc9k4Yk4alwI3DbUBeUqZR5Q3bOs6bQtqGPVnjKd1l5aMhYD6j2wWXZs93v26tSx4rj36dieW6o2XkVN7mI7jziucHHfAY3rp1JAP/6Z2cJJr2eU2m6klgo9sJ0DRZ4K9RnetZfqVeFWaLMp6wLtWX57bw6tXiT1PUy1FH2y0LwOceHSWGhYKCoxxitZRfSgahVbXv1cYtNOuob6rlAnZmuiBWXKsGk5dhI1IONnmYVbKuopTltOcxOiJn2hVrq2oS6U9GBUau0b+jSaasRmlVGPZbNYUM9RvU6N6pWbt7O0oQYZ5/PZVK/Fwb3bkrazoV539bpUalpl6uLFtfXKFrOjoi/CqAUOVfRzLhRq39UsUer9tgWK67VQgm3TXGCpi3DVLc6G2twrFiXhc1PN8W9qnI6L8IZCFaO84r/TIu9js7w0qm++3yq6wlQ9/y+o7yLlRrZpao5t/tSi8FMhZxMltve7ly3xS4HjkjYj989WKoJ6XKo79EfEMhwuEtaUvkjEQlFecTFggosS83ZUc7RrVL/rXEOdgLbuSk0eeuaqOIwe2JG0HTX7nA1JFCxitW35jboAUCdSPe222oStCG8c7K484Z91JigWP9uzqV4L2+KSen+oGalcY3vpURe1qobzqqdnGLejPpt/cRBbqEIVsvRFnWrBcP2cUbXRVBcdHdU6dJuSLa9Xu6ak/bu2Nsd9qAqWDywWG+rr5j+WxBVxoCY8cGE9p8aauU7PPtMiSHZvE37vvrG8h+euiWeNVtcUaup/PWW6evrquHjra3OGWFsmQhXqXXzra1oGVlu8rAp1fFP752J9Rh3StvGjst5xAfNShYWiPGJLG01FrcruelHrAif1FhQa1TcP0WHdW5HaoPr0U2c0m2ZVxVZUMw627gWFJ9qJfGLRIFGL5tqSJKja+HXEInk2NxJVHrHXtEkd1/YcXP9CKlDe5tqqCk+2lxnV8hSnqKYLbOdI1dTaEleoqLU2urRsZG4vj8ob9fT1DHYqcYUTE88rAfA2qFYUavs2a/dsYoyNKkz8/b2F5u3IsSOO3bUtrxs12Ufc5Aoq1BTDroXqHZaA9RE9wl3SbPOemobZRv+OzY1t2pJuqPNMY6JVynVMEdUVjPqupFr3qf0jJ27IY1HkTx0UdqdmWC5mWCjKIzZNCZXTh3dJfrY90IUy9bsWimyncTzRYvOIJTAwl9SL6cevEijkZrnfgRoaxFt/08uzjb+5iDWzZVRSUbv7hMWPXbVE2V7K6tiPG7yusidGEgsbVI2zCwrl4KUmaenexlx8820Hc6JrXMSfxMF1sgLbYlpN925PtEA7FtUdiIrJAqJDtcbHFThV9OyapQo1tq6hppBUBdpdFo+VOHMkNfvcl6s2k7bbvIs2Llwvk6jP8HRLzSYV2/iOM128P98ch+RCoKkFMhELRfnExYKqe+vUAsPWGjWTCBW65cmxUORiEeo4iJM6GVEX5K2amAPg73k75V5kO43/KMJEPhMt2HiHGAiq8vIMWhwWNRMW1arnAnKK+BKt3wDQX3ovTV+V/Hz68K456k3t4n9TaRYlKm6SC9AWq9RMpdShT12gPTVleeaNkF8lYT6fb9fvWxU9Q+zZ+3cL3c72vqG+i6j3h+oeu3ozzTOBnCGtQIt9a2mQGCovmzDmZiyVvlTEQlGJodag6WbxBX/mc7cvWNUSYcN18hEX7jXUJqiZkcjphonHpfrF5zLFtQ71ZeY6yxg1hfarliQW05ZtTn6m3ntb0hLXUOPzv16dfSa63Yq1oIfFYkPFFvSuohZiVev5lALfOijMGQdb/Y842BaawSK8ljaIY1WPJzRhe2epUN00qeTTTfPvE81uhq6JowCzrX1tcSVxFEzUy164lNw06O54Oe6Igush7aJYOFuKmLzz0EcpV7B9OjQ3btenPS3Ilv4QF592m6yZJ25IfRFTFwCu3WFcWLKGE+OwCuVCZCfVJ1uMgPqCzWetBNeWoqUbaUHANm5/PRV4Hyf1uY4tFqfYKcohrUDNJkXFNszUtYtNeKLOA00b1iNtZ8saqVLpOO6OqnhygesyFzaolnUqVIWfiloOQmfCV98Yf1MZ3KUlaTtqYhbX769XZqzKvBHiXb+4PKkUED5in/ZZt+ci5r041w3RYKGoxCAXESOOzR3EReOcb2iB9w8q9ViKBdfCyfNf0CZI1/NDM+LCo10zc+pTsmBF3i5/rnqq6T+fixzX95Fe2NQttSEINhuK/XXtOj25LaGHKggtsGSGpLo12ep3qXy2eFPmjSIcl4mO7U6pxcd14syDWy2Jc1RsLuQqSzfSrKmu4zZXE7Pq3l+g9U/f9s0KclwdFxl3Cw0LRY7JtaRMbZ+a5UfNOnV4v3bG7d6bS4sPman5IecS6pWmWoCowtOarbQJ0vXETE1r3aKR+QUzj5iOlXotqGuXBQ5M86p534XVg8oeoua3kvjMTV5CWxi6FubLiQvX2kpt0GJG4a/vLjD+piZw2WSxfK8jxgq5vrT5TEZS14grb95hK4RtgCrcukhCpVLXZGoXykkmAQtFtRSqS/b/vnAbe5RPHvt0KWk7qr8ydbFaKKhaGDUVrQ41Noz8UnEwF1Mn9HcVwdyWWcu1QYT6jDz6yVK3B3b9nuP3Zp1ip+UZmbosNUf86Y15xu2ocQauhxY1/TUTnTguXicMomV61SlUvcR8ujAWA6xDcAcLRSWGOslc+9xM43ZxtKKuNdO5hirEuAggjEPTPGY+cw05gQKvtJPYaizF4aMF2deNYFLkM74sX8RVAFDdpqm4fnUUajFdDFCL7uaTJg1orts6LsZFc6LbeF2G3U3dkVEoEkJ0EEKcKYS4UghxiRBilBCChSkDuZYrqHEBejpNE8Gin7TtGBqdW9IyLRUjVGFnk+NCl6VMZ0uR0jh8TcyGyNCgWklLiZ8e2SfWfq4NMa6VI3V5kdemqTkmtFC8OJ0WR6vjYt1QW+pD5RIXCm0XNf1qA0bhRghxtBDiTQDjAZwEoDOAgQBuBPClEOL3QogW2RxcCPGwEGKdEOIr5bs2Qoi3hRALvP/DSzbXUVxbc+qyRi7XlLJffKN6NCvXovXZZ0hzbWzq0Lyh2waJZJvIwJYgwwVqmmymbuNayeV6qttrSRLhukB4sVGbFJC8vMgPLtaFjXPo2dK2CAV9EzaLz8kAfiylPEBKeZmU8kYp5XVSytMADAMwHcBxWR7/UQAnat+NBfCulLIfgHe9v0uGXM8BrudL1aWk1NznCkVvontDKRfpzGvRU8ft1S8vjCE72+cn14/fvW/T0tkypUPcIVPKc31ttyLVprMb/yUtJTeTHU6eiRwOvI079mJLgeq/RcW4epBS/kpKGVouWkpZJaV8SUr5fDYHl1J+CEAPDDkdwGPe58cAnJHNMRg7ajCu7T1pcrdoVL/ueVKS6x6V2Mv7tGFdkp/z2XX3WuvCXPfKLH2Scq9QKa3xSMVFUdq6hmvXXmrqZSYzaumBUqe2C7DFwkYHqbBz7aa4dhsta2+hsbnPXSOE+FHI9z8SQlydwz51lFL66oU1AELTngghLhNCTBVCTF2/vngKCuY8JXcOl062rpuKZbZtWhhXpUJCdYsrZW1sPjmwd1un7X28sDAJCrItfldbhZZc07qEXDNcE3fIuHbVLFR9FqY0cR1/Wdd5l1gyhcmMTc3/PQCPh3z/HwCX5KY7QWRilRA67UspH5BSjpRSjmzfPvtqvqUCr5sKD7EcTUm7z+VToLPVVYpDsaRjPbRvNGEv55aiHLdfKGau2FzoLhSMpz8PdebIyN6q2joamFKgtseFMemUytrVJhTVk1Km2cSllHthL4qcLWuFEJ0BwPu/pETgXN93aiHJOMSxQtVF7Tb1nEst0YLa23ymMa+tab0/Wbgx80YKuRaiS2w4MgQ2x/TTr7QkMig2hnZrWegulARdW5VOtlOei+oepfKetwlFZUKINNe1sO8c8wqAC73PFwJ4OcfHYzxK2LCRV1ZvofnGlrI/ddwUrHFw/YIUrqu35olcj5ZdleZinkzdoopq7i4CqOUl6jq92xdffSOG8SkWD45M2ISiuwCMF0IcKYRo7v07CsBrAO52cXAhxFMAJgHoL4RY6cUwjQNwnBBiAYDR3t8lQylrQOJYfUr4dHNOKQtF+eTRT5cWugvFAQ8XJk9kmxSEKT5KqdhzXfQwqevc9ea8QneBhLFUsJTycSHEegB/ADAYiVf2bAA3SSknuDi4lPICw0/HumifiUYh1/ADOjXH3DXbCteBHFBq2ecKxRfLvnXa3qpvdzltL1/waGHyRacWHOjOFA6e6+oeLjLk5QNrPmUp5QQp5ZFSyrZSynbeZycCUW2lkH6To3q1yWr/GTECll0pfNrmuHBlIWBlWGFYs7U0Un/qsPbULUO6ciyKiW+ILsAMkwt4/NU9ykqkeostJfeNQgjjKlsIcYwQ4pTcdIuJRQmvqWrjenB7jvP+u+br1ey7X0hq4SNQUL7i8Wwk2/TxDMMwUSgrkVhfo/scgC8BvCqE2A1gGoD1ABoB6AdgOIB3APwx1x0sNQq5uC9EXRxXlrHaKBSVGovW7yh0F+o0/Ay4ha8nwzBMcVAqCVNsMUUvA3hZCNEPwKEAOgPYCuAJAJdJKUvTcb8WU4g1wNqte5y0UyrpGhkmV/AzwDAMwzCFw2YpAgBIKRcAWJCHvjBZUsoxCSXcdYZxwu7K0khZyjAMwzC1kRIJfWIolLJcMXnJpkJ3gWEYhmGYOkr3NqVTAJfJDSwUOaYQcT0+bG1hGIZhGIaJDq+hGBaKHPPh/MIVUOPnmWEYhmEYJjosFDEZhSIhxD5CiHeFEF95fw8VQtyY+66VJnurCxcXMDNGnSGGYRiGYZi6TqmV0WDcQ7EUPQjgegCVACClnAXg/Fx2qpQp5WQHDMMwDMMwdZFChj8wxQFFKGoipZyifcfiNMMwDMMwDFMrKI3yokwuoQhFG4QQfeCFrAghzgHwTU57xTAMwzAMwzB5Yhu7z9V5MtYpAnAlgAcADBBCrAKwBMD3ctqrEoatrwzDMAzDMKUFr98Yq1AkhCgHcIWUcrQQoimAMinltvx0rTThqvQMwzAMwzAMU1pYhSIpZbUQ4jDv8478dKm0YU0DwzAMUyiE4PcQwzBMHCjuc9OFEK8AeA5AUjCSUr6Qs16VMDX8MmIYhmEKBAtEDMMw8aAIRY0AbARwjPKdBMBCEcMwDMMwDMMwJU9GoUhKeXE+OlJb4DpFDMMwDMMwDFNaZBSKhBCPAOnZA6SUl+SkRyUOi0QMwzB2ygS7GjMJfnx4Lzz40ZJCdyNvDOnaEl+u2lLobjAMEwLFfe415XMjAGcCWJ2b7tQC+EXPMAxjhQUixqdR/fJCdyGvCK4QyjBFC8V97nn1byHEUwA+zlmPShxOyc0wDMMwNEQdkxLq2vkyTClRFmOffgA6uO5IbYFDihiGYRiGRl0TEWau2FzoLjAMY4ASU7QNQaewNQB+k7MelTivzmLPQoZhGIah8L8vVha6CwzDMABo7nPN89GR2sInCzcWugsMwzAMUxJUVtcUugsMwzAACO5zQoh3Kd8xDMMwDMNE4fwDuhe6CwzDMAAsliIhRCMATQC0E0K0Rsr1twWArnnoG8MwDMMwtZj12/cUugsMwzAA7O5zPwFwNYAuAL5ASijaCuD/ctsthmEYhmFqO5yNjWGYYsHoPiel/KuUsheA66SUvaWUvbx/w6SULBQxDMMwDMMUKb3bNS10F5wxpGvLQneBicGoXm0K3YVIZIwpklL+XQgxWAhxnhDih/6/XHdMCHGiEGKeEGKhEGJsro/HMAzDMEx+mfPNVqftdW3V2Gl7pUxZWe2xwjVuULeK/NYWfnhwz0J3IRKURAs3A/i79+9oAH8CcFouOyWEKAfwDwAnARgI4AIhxMBcHpNhGIZhmPyyZVel0/ZaN63vtL1SpnmjjAmGGSanlJWYeyyleOs5AI4FsEZKeTGAYQBybcccBWChlHKxlHIvgKcBnJ7jYzIMwzAMk0dcp+SOU0B9ePdWTvtQLAzq0qLQXXDGlCWbCt2FAI3r123LVS+ia2ZpiUQ0oWiXlLIGQJUQogWAdQBynUOzK4AVyt8roWW8E0JcJoSYKoSYun79+hx3h8mG2jQxMwzDMO4QRbBsKjFlNpm9VVwDKldIxJC+axE92zYhbVdqzxZFKJoqhGgF4EEkstBNAzApl52iIKV8QEo5Uko5sn379oXuDmMhjuaOoXFARetCd4FhmBxx45h9C92F2DSoR1leMHUNF+Pi6P685is09HVdaUlF1tEpErky75BSbpZS3gfgOAAXem50uWQVgtaobt53TAlSapqCUqJji0aBv284eUCBesIw+aUuWKAb1gEXHdfvh6YNo8fR1NZXVDG6eJ0ypHPWbfRp38xBT5hsaN2EFrtXaus/q1AkpZQAXlf+XiqlnJXzXgGfA+gnhOglhGgA4HwAr+ThuHln3861/8XO5A69xkf75g0L1BOGyS+lFsAbhwbltHPs0rJR5o2KiHNGdEt+dn0Xf3JE78j71FZnhsYNii/Rwun7dc28UQZaNi58Mo1i9IDp37F53o7VumkD0nalNk9T7JjThBAH5LwnClLKKgA/A/AmgDkAnpVSzs5nH/JFaQ2XeBTj5FEocp0htRj8811wWYyFjY1ieIkybimxd20shnZrVegu5ISRPXPn9tuwHs06UoxWFNcUY0ZuF32iPvtN61ga72KMc/Jjj+oTFTyFhiIUHQhgkhBikRBilhDiSyFEzq1FUsrXpZT7SCn7SClvz/XxCkUborRdylAf0wGd8qflKBTljt9Sugm7tiwUOzi2eNWW68LukSlqyS21Ql24F99SCLj3vOHG3w7t2y75Wbd2Z0uPNrQA8OMHdUz1wWkPioc4WvoWDtJ4XzCqh/G3cgf3mzpmqnOokS3GdOfFqIAWALq3aYxTh3YpdFdIUISiEwD0AXAMgFMBnOL9zzigGDXYrovfyWJ8UgtEvTK3wcdXj97HaXs6xTg+VXKpcS5G3pu7rtBdyDnFqByhpp91reSqIB63GDl6gDkYvpEi7B3dv4PT45aXiEY6GxqU094jcXRwLgq+2gTTfBaUza07WfGNs3yutKgCd0tPcVsqq8CMT5aUchkSSQ+O8T7vpOzH0CjGitPUuBTXi5cflFjl4zi4uN2H9Gmb/NxEcw9QJyoXC7T6xJdvoWhFDPasLUxfvrnQXYgNdSE3kJhAwbWFwQZ1cTWwQDGixfcWsaPeuo4tHFuFLb/p82UuyWX2vbP2p8XlxHlGXMSA1FgUofmMMWnfPBVrd81xuVUgxmG/Hq2ctpfP+Yd6Fzs0b1RSbv0Zn1ohxM0AfgPgeu+r+gCeyGWn6hL1i1AoonaJakWwTZAqtbWAnooLIfgnR/Yx/qa+b1yMrFy+v0ZVtDH+5tq46Po0msXIcOWCQmnbbAqQhsTF3/49W5G2s71A1cVgPqfO3VXVpO16ty9dy45r9lSmauSM3tdsDXI9pm1zlmqhUueYaTGVDUfsY7aGXXVsv1htUmhEdKuMM39v2rE3+k4aeyz1kVzo2ejnlbrJVY6LBLt4N1KbOExxN7Vx86kD43eGAUCz+JwJ4DQAOwBASrkaQPH5N5Qo+dR2UqHGvVBfZtQFrm27IrxMsaC+zOKyYO325GfqNbPF7+Tysjesn/3bsc55Zhbh+T754wNJ21E1xLbNvtm8W9mu+CYF167HpYx6v1s1CVqtTXfu/AOyrwtvE6o374y+4LfFjhSqXs55I1PX6dRh5liNQmnon56y3PKrg5giYhvq+8H1fHGMxe2TagGiTucdLNbUnx3dN/k511a4OpGchLDNXi81twQAIQSrwhziYgw3crC4VMnnYkNdkOfT5H6Wg7SgKu2a0VxAXEwqK7/dafxt/JffJD9T4yDaWvqey0n2jOHZ3wNq91zLEtRgbtfkM7vQqF4pS55tThjR02zxU6HeK9tmkxZvJG3nmmJPK9vXQeyE63T+Qnkt2fRs6k9HWiwv+3TMvjaNGqNFvaW2e9+5pVkIDljtHQ+florb8NkWV7pCeT/vqjRbVl1YeKnzoFrLzPUzfNuZg5Ofda+Zpy87KPn5glE0Qf/XJ/aP1Y84p/XIRfESSndSUv8X+ZQYG8oj86wQ4n4ArYQQPwbwDoAHc9utuoOLcTVmiNusHq7dUmzT1wM/HJn8XGOzFLnrDoD8umyouLi2i9btIB2X6t5YqEQYw7q3NP6mvvRsrmqFshSNGZp9AcI45PN81RSqzR24C1K1u9TFSz4FFepzS709B/dum3mjCFx1bN/MG+UZEfhMtRKat+vemqaIsA2L04dFV8TY2mvakKbk+s2JbrNGUkd+oaypUpoX+S4ysFLHkyrou17XqPG2Y08K3l81LfwxAzrChDqfX3FU8BkOCFOWiSXOO2FwV/O7d8JVh5Pa6NC8tGqjUaEkWrgbwP8APA9gHwA3SSn/nuuO1RVcvNhPcbxAI2cc0x7GIZYHzYTqmpDPxTk1zsk1Ll5StgDewEKEeCxb8HFu36nmxqm3x4X1oZRwPWptz7o6N+3TKXstPTWejnxP83pT3R7MdYKQcmJWS1sMTC5dwfJ5T10Pi6YxC6CqC/fLLXGg2VKMbqT7dGyGPu3D5wwXax5yE8qG1H2OivEc2BISubGM2X6L/lawXYt6SocP7GX2ArjwkIrIxy0FqMbVLwF8BOBD7zPjiCKcz3DjmHjBeqrJWMUmgKg1C1o3MWdLUyfSMUPyp6Wn1suJMUfH5vB+5qDLOIkWbIVS43SX6rZnQz0Pm2ZRj1UwUYShOLGgZnyk+rRTX44uYhNcPyNDu0VXwsTFtZa5UFlH1WzVeheu0tL7m9yyrx4dPYGAfk/VhXyZ4bMO+Rm2ueoRL/vFh1YkP193gjlrme25yOUt3rGnirRdHKuMPn/HOY8RPVtjmKHwsOtafTbURFZU4fG2MwZn3kjD1rLtsCbBUce1Epd6B3Rhr62S0TbKffzn9/bPaeIRl1Cyz10KYAqAswCcA+AzIcQlue4YUziaxnSVMe1XVW0RipQHy1qTQ3n+XMdV2IQCataXfFosgoJPsMV9lNgCap9sWq44Wsg/njmEtB3V9e93p5iF9G6taYHtNTbfzBLiIqJ2jpq623Z3DyWOfSr0oUTb8NrjzT741HFBxUVSmZ8fk3KPiVPA0hYHSV2fHDMgFRyuL2r0Nlo0CrdmUd1mmiv72+aRkxVPB9tpUD0JTP2OgtpGo3rx4kDjKMCoiTq27q5MHcfWh+hdSOu3LebURuum4ffBhWJw2cYdmTdCvLTocWoJ2s7JNvap87k9tCB3QmaLxsE1nXo91aNmKmQ7uGvLkqm5Rrn7vwKwn5TyIinlhQBGIJGim3FAMVqKqF3atzNNa22bmKjaBnWz5g2zf+mp79cfHdYr8FvTPNWyqBdXY2aZILsoL1XqZGmbcE0vNhsussqpfW/ruCBmsRAnsN21q4ytvcALMI9uTVQtuC2T47ED3BYEpS7Izx5hFlzUhUOc1N3dLMk9qM+66manz71UZXSceUvfQ/2bWr+KKpjq40LtLrXn1GMNtcRFxkmqc8PJ+xK3zN4V1fTutd0rKlKax2R7RciyeT3YmLx4E2k79fz7daBZZeLMdVYXdMt+Q6zW7tSePR0n9qG6MO7fo3Xg71tOGxS63c2nhn9filBmo40Atil/b/O+Y5xQfFIRdVKo56Cqtmlirq9VJVcn2MuONFt2qMxfu834m/pCzKWbSy4E4ngvMPMS4PqTUi9p19XBnVjNivD5odIig3YtDNdxd9asYKo/voNjUQW6PZaaQCN7tjb+pvKDgytI21HRL3trQ0xQq8Y0Ad51UWR6FsbUiejPjj6yzvQsU3r8Uxz3J30RZsrMNkK5v7r7XtyhXx5woYrXhgmbQBfH0kq1bFDdXuPE76RbELO7aDbLk80V0zbMqoiWf3WMH9THnNxEzSZqO1t9XeJz/MBOxn26aQlC4hQQ7qsIdIMsxa2p48d2T9WfqrXrbPJEqU2puilXcCGAyUKIW7xCrp8BmC+EuEYIcU1uu1f7yWd6SipxagDE3c70cO6jLcDVzaiaRRu7LSlD1f5SH/Y4i3N9n8Fdo1ejTrt8hsWGDdv7pbEygeczHXQ+j1VKvDJztdP2bM+m6uKVz2Bu27NEde2N012bkKr79B9sWGC5SPNswvUdyPTu8d1dTtAWfP201NiUU9G3UWMB1Z9aK1bhrq0aBwSjuDOCMIxj29jv2ormIhjXbcoEVelha7kv1SJi+F5P2hHnWVLPwh5vY/7VdiXUxbottlCNCdaPdMKgVFa4bNdhNuWpLtzv25n6nk+d42mWWlQq5NAHy/mqQ9AmfAbjAmmHLQUoq8tFAF5C6g69DGAJEgVcuYirgVGWrB1FD3GA92xLM+naJjeT1lF/N7h+5qgv2JMGmzVAKi7WjOSsf5ZjLVmf8rWmLrwa1LNojZTPBQvLsZxGy8bURXLtmLU3bs++2nxDRZu40VK93kVdmDjYXPqpVoo4d/viQ4NutKP3TbngDdGCxtXxRK1ZpS4w4gxHF0P4aKXgpL6Q0xfk/p9CBBc9ak22Zg3rkeYZ230zPZvfPbAnvn9gT2P/qJgObXMDVIujxoV6u9RrQz3DoKAX/O0SZRzHSVyh6xzpLn1K2zHfFWoiGVsbway15u0OsVjrVItVYAwSBYa4dLQUYjXhuuYVWWFKfOnripJShpKS+/e2f/noZCmSS//VXEOV+l24lpkCjnXNbJnlJRCHfh1o8rxtUnWNizou789frzZIwl6AMNUIdYKkvjjIGXUsm53jYPFCpXPLwtdlcDH2fzuGtsjpQVR6UKF23fYcUNtQLRFUy7Ie56NqXQdrLivqvDV6X3MdEhX1+XE97VPHhRpvo88jpgQKQphdwVo3rU96X1jddYz7BB/9uBm4zj+gR/KzmpWxhUUJRVWiuHDfzXZe0fuQrbvgoM5By0sXS/IHm0IgzrGvOS6V6e+4gebn6gcH9yRtF+wPbQy6dslOcx2N4YnjuoKI2oMrjgqmi1e7S3VT7NWuDglFQoiRQogXhRDThBCz/H/56FwpQ89Glj+piGqJyKdWnRyUb9BURkF1Twu4heXRAqIuoFQXsWuPM6d91VF9/PU79dMc1sOgL0po263btid+ZzziZPGKi+r/7iK2R12gmnzVbeixHtSEFHGumBvtJK2R0QPNSRKo/WijXAtqgc2GWpaxwKJE2zYQvE+d6x0rdgJtx7irujCjxyOk5icR6LtaOqFMCNKx4+jPEsH6wb/joC7c42Smi++2R9vOtSul2lycto8fFBQybE30Vyw7qgUkELsWoQ/qtrZyGOXE7egHpm0WZyykCZVZuyO6nTxstyfsnR9WlLeuuc/9F8AjAM4GcKryj7GQz2rr1JcFNf9+tj3/7oE9An/bFpCmDFL6Lur1tGWdstGmqTJpW/q0yxJvZIJ6zdRYKbULrZrUdyJIq24F1D7Zxs82JfVra8dZ4MjPiGUzcoC5AyFG7W9zB2l/1UQlPdsGrRQUwb+Ndj+o12J499a0DR1ArU1xppJuun9Hs899HIWNbZ/jLVrmg3qn4obSEi0YngVb76j1eExYa+JE1y1ldEVU3ec6t0hZM1T3SylBmmhsRWOpxLUUmQrlupgT8unKpBZHt8cyhX/W033rQfQmXK5loiQZsM2BrvWYVE8UF1ciThuuE+xQ59GwMXLFUX2xdNyYWO2VApSpdL2U8hUp5RIp5TL/X857VoLs2ptaTJNdRRyMJerz4iKzTWC7kO8W3n4SbteErziTqh5o7+I6qcr4QIa5PGrBbZs5N5ET+2RbbCzbuDP5+ULHGb3sLjVuJ1lViDm4tzkLETVV8qF9zW2onDeyW/LzuSO6BX6rrKpJfu7UIuhCQ7p1McfLPp2Irg5K+3HvRyfFNcgWw6G6uNkW+HGeVdsuQfef4AUdEch0F/xNfS7I/chySNuy8tnujzmGIYNQpHwO0w77UO4Jtd6brQ9x58cjDQLZtt201O+5hjosXvnZoco+5kV84Dfl+2GW9OE2qP07cVAq/lYG5o4UUQTbnyl1vXTixOfZFRapz3HHxX3fHxH4++1fHoEXrjgkvR/EDlMvFaW5X2qFmanzKFVwrk1QVsk3CyH+LYS4QAhxlv8v5z0rQQqVMcv1UakPo+oL3a5ZQnNar7ws7aHvqhVSpLj55CLRgtov1Y2iQ4vcxoqYXG0GdY33klLRr3VQGx3ehyiot2GgJRVoHGx9cv0sqRY0m4bc5o4XvNa0C6pmgjrvgGD809ffbE1+1uPzTF20vwCJgnkeXXbVI3W2ZPRS77dNWI5lYcmB4um9ueuSn9WYBtuoDYyeGJ2qrK4x/lZVY/7NdL8zdsE7aQFzzSrqcxpXk5xtXMX5B3Q3HrvahaVI+dxMy/zlIkY00F4MxVswJpS0e1p/dIu0inoJVU8MKrYzsqWtf3fO2ujHshxMPeede81Cka0NvWB0v47Nk3V+ju6fEszjPAm28iemYdy9Tao/urKvSQPVoyTYI9Xdj4WicC4GMBzAiUi5zp2Swz7VClyYE7s4Dux2bYlQC3vp/vgqenptCnpXqYUubZld1IVmnODWC0b1yLxRCAdUpDIRDuqSEoTGnjggsB09NsH8m6lQoZ6mtRexurRqtm9FzY5HxMUz4tpqb82SleVx9UWTin5Y0/2xulA5vhYBP3YHbdvqXFHnJlvQt4mrRpvj9Y7Z1xy/pC741e7pVeh7E5+lYKwHaZcAtsXz3G/MdddM7lS2gpDDu7dKRRQJPR4q9dlWpJOK6dbrpxvXfc7UO9frvbguTup5UpOC2N3nwq1INiHwJ0ekav/pbXe3ZldUn5Hw7IWZvovD1l2VmTfScFHKI+5YV+O5yZnfDBfrHM3jwKSYUIVKa3FZrT+qwORCcVBqUEbJAVLKkVLKC6WUF3v/Lsl5z2oxFx9akfxsL6JlcTchusLFQT2sza9X3e6o/maf8Y6aJYbymOkTwilDaXn6bZmgqDUqTNxx1pDoO2moi6E4wfWAtjjX2y8LX7zoqC9w27WIc52o++j1G0zYrlIuMwXtr2Sq0iG7Nij9s9Wn0OeBv52/X8a29S7EFarV+SjQvuPsR7rFOHAsw3F14gjmav2hEVrx10P6hLt1jejZOtAPNY5mZEWwjWAQtBl1LMSzeJn3sQkMgXgJpQ9tm5ktAOr52p6xHm2ahAp4UU7PJkyoC744C7Qrjza7YMUVstT4N2tGM/LzqHgwEEsMBPbP8LeP7TqriYds5zSQWGNHSpm8d7kIN4lz51RrS8cWDZ0riRta1mRxDqUL7f77Mk66eCmB//xolPH3doa5gC1F4XwqhBiY857UMtSJQC8ASrVSWINnY41VtwNcnVSaaYUPf+bgZaTGbVA1qzahaJNSk6Vd8+AkcJmiKYtDnBdgLo4V0BKq32uvSvUFoS489MkxjvaTuod9sUXTvsfB5vJDDWB2cSwVveYXJZGDq+Db3xrqkKjzVtxhe6SiLMln8hkV9TLpsVsm9PinYwaYLUqBY1l+M1lsqOQzw5MQwUQLJiraNQ3c14N6J6ziruIPVXfWY4n3QKV7mybJ/qfFtMV4fA7s1YaczZBKnNtKdQVTcZEchvru7t8pJTyp83ymvalzWpSEDWG8eMWhgb/7KVZs/b0UUEBbrns/B5bwwD4O12sSQKvGZiXIx785JvR7ForCOQjADCHEPC8d95eckjszQa2g+TdqGyE/JnGxODK99OOuY+rFtIIk0WOKHCQy2LA9lQJa91cmF041UFVN9K3X/m7RKFwzOEpxuYuCMPyhX5frjk+5FKnD56j+wXEQZ2Q1N5yTjs1V7eA+5kQGcRaX6kKhUwuzxSLOwssF+ks+znNHn1e0vw0Ha2nI2hUFtQaWrdq6y6DitLaJo1jvg+ruqF4jekV6M5ssRXNN6M+LmkDAVk8t7hzuv1cy7a66Nrf3ah3tZ7Gy0o8PnDIs5SHQl1hbzoT+jMVZ8P3qhP4BDb56beK+hYNFg6PfLP00AvOj0p6eujqg9LCsV1ROGBQsZq4+M6qy94JR3VHP0+pecbRSJsLRGlu9d3GWP7pVR00SYSpK//51R8X2S1CFSXIb2nmZzpMy70spjfOAgDmjb1xrailDEYpOBNAPwPFIxRNxSu4M7NiTCtaLqyGlpoakDlvb+DZNhLZ9RMw3wk+OSEySoy3+/DVSWjPsxCHQhONnPTDxa6iH0lMvnzY83C3Qlu0JluticpXRURNNqP3TEw3EURTZ4svUxVIm90FTGl89ixsF9bRsQtvQbq0it61zYK+UQGsTBIL70LLZqcR1n4uDPg9Qi1OrdLe6z9EG2uQlmyIfN857XQhzLEWf9tkXKrQlTaByrDJ/2hOERG97ePfWZLdAahHvAzS3Qx9bTJF6XuSadhZUV26qO14gk5owKyHjrh/1EhYU1EK76dnnaJiSZ2yxxOscYFHWqW5dQgiUlwksHTcGVysxfX4GPKrizEQuDRim69mpZSMnc2xbap1F7Vh+xr14iiHbccwNVhKVvbWJjLOMl367O4BjvM87KfvVRQLaFtXiqj9kWbpR6PvlU5gnp/U2pAUFUi5aLUPMuX86eyiA9IfYJlje+51hpD7l0n1HfUldqQlIw7qlkiuYqo3r52uqrZGJOEUl1YWHSUhzwaWH9YqUgSts8XH5kX1ymj3N5rJKfW4rFMH3pMGdjdupmlpdADRq9ZTvmzYILiyo9bviuHDqQsv1JyeShJjSHcc4AIkVm6Knws71/Ki2b0s7rqLORaoQTT0OENTak92piO+NAypaJ63pmcYV1a3P5L5l2l0gKLhUx1ygqfOFatWK52Eh0oQkH2qMpLV1w8XQlRCmGJBEGzRlomFYYI6SFVNHdzsPJmPJPBD85Ex+chJ1Hz3MwEouhSLDiMxmHvn5MYl6bTefOhDXHW9TeKbQr4dvHdMtnCaFUkBnHbPvNew+l44Q4mYAvwFwvfdVfQBP5LJTtQN1Yoq3iHO9iG/novKzAzcXWxOjvAVClJTc6nXSs6yphLlr+e5SLi91ubay/uVx5uxXrglailLo7oHq5R3cNeUOpKcVVRcOLYguhqbFRqP65bGeBXWfsScNsGxJbY92rLjPrWmxoXPCIEtSEILg94tjg3F7V4+mFUpNc58j7RPcyr82cV+Zp+dQ+C4k9sD78LH16MWjSPOPrpBSrR623YOKiNTnTNk0zxvZHVcc1Qe/yFCAV51zbILGDSdHe3bLykTAfSfb5Zm+f9z1nsntjmoVtmG6j+lW4eiWQZui0eRyp9OttS0TXWb0PqjjpUG9MvI9VsdFBTH7o603qmBhVWLHVMj179QcS8eNwcWH9rImZKDyqxNSglWnluEW+OAYiTfYOftcOGcCOA3ADgCQUq4GkJ1zbx1AHY9+8GnodpaHzPb4xRmrNtN38LjR3dbSJm3lc1q8jrdxmIaxLLnYCvrAHkDUpra11EpQM0/5k6BfgyHOZHeq4u+uL4SbKv7rTRqYXpbmY1Kz/ukvR5M1wyYsBpMzmPtEtUTkGvW8qJp5lYq25peoTRGhuhzmOmkApfkTNSuUOs6aZhmInIlsz97XnPrIwGfz5KbHNFAItJaD2xYnIFodto2J98oW90gVxlSOtsTPVdVINKhXhl+fOCBjLFjYs+Af85ShqTHawmApMrrPIbhojmRJ0BsKOVCmeImTh4SPNb1mjCklu+mW2BQCpnklSmwHdYjHq4WWHdZMgxHOUb0eB1mKcZvYGCOmT0KmWcrioJ/l2fuHu4Pr2/njX4hgTNTRlsy/ybZsYRCW/aprpDHuubZCEYr2ysRolQAghMhdWqhahDrQbPECcSegMgdaAK0nod+m5fY3aaEsT52awhRILSLCzt3/Tm9OrYmkY9J46QxR3Nj8uBf/he/6RXDm/l0zb6ShLl5aNbG4RxDbsAk4w7q3Mv52y6mpZJNxAi1te7h2MYmTgMMWA2GTsdRkJLnOBKaOadWSZ0N9Bi9UaunoqeRdJCtIWooijA/b4p+aIj5OKQK1bauiKXLLfvu07dRjd4+gcY8j+JuOS21pd2V1sA3LjqphXL8Ufzt/P8y/7aTQ3zL1qUmDegFrTtyYIlPfM1mKfn5MP3Rv0ziQBVUIYN/OSqYyIfDwRQeE7q+XovAxK8ksVp4Ii1p1TlSHjouETPqxoraZ5gES88Ubxcr3qxP6p61B0q3l5n74iph6ZWW47Ahz7HBc7jpnaPIZUXHpuha3peoaiR6GxBO1Fcos86wQ4n4ArYQQPwbwDoB/57ZbpY+TRbbVzYfWhCn9N0W7EEoM9zl9EUqZR6PMtdSgTXWheeqwLrjmuH0CZmgfcjFGw/cvzVhF2j9OfARgf5GUBa67uk9wO1MhUSGCGuQRPcMtdLqbHYURFa2DwbiRW3DDEf3MmbpM7ocA/QVuijnQsbWnunraguhNqNrsTG5SceYqyi56Io0mDeolM4DpxxzYhSb4ZSukx1kc2AT5ds0akPuknrO+wLddT0rRaOs9zOGDJkTwmfE/+9+UlYmMgqz+HPjvpmaN6pGzjNlcR33F3v5ajapMi859O7fAR78+xqig6t0+8Z4wWXf0DKc+qpBFxTbG+mheAMG40ugDw0XZCBNNHLgYApkKyga58ui+uPc7wwPfCRGMDbNZe+86Zxg+u/5YNKhXllFBMeOm4zDrluOt2+iCpOkZocYOUY4TVx7u2KJRTmN4ixFKooW7AfwPwPMA+gO4SUr5t2wOKoQ4VwgxWwhRI4QYqf12vRBioZcC/IRsjlNIqNaL4wea4wqoxMuBT8OUnjITlIk17GHz3dm+e2AP8sKbHFiqfC4vE/jFsf1CXUNsqaIpbW/dVUmaSPZW1TifcFo3VV/gNKuRin79OhmEattCp70Wu9bfq9/QqUUjY6IJa59om2VoI9WKngEwsJ1yMP1FSoWeApq6mE516ihiYgP9ml16WK/Q9nJJmOBtqhPURnF7tcYjGi6ZLU32acPixy+9e+2Rxhoefn/izL/6Qtrm0ulDndsyHcslUgbH002nDMQFo3rEcnP0UWMyAzFFlgtti3VpVL8cr/38MPzze/sHvo8jYAsA547ojvMP6I4Xf3qo136iv5R7mKmvpnk6LI7Jd6HS3Sptip3AsQzCE3WfKPjpwId2TXhrhF35KHfDFo9JoV6ZICWzARLvOtN7UKdVkwZGN9GomGR2fYzYsr366OEIgfYs9/SQPm2TiaNs3iW1CUqihTullG9LKX8lpbxOSvm2EOLOLI/7FYCzAHyoHWsggPMBDEIiFfg/hRDFEchAwDjo0rZLfaP7J9v287niqD7Gyu661eQnhqKk6e+D8CfwX98bYeyfvT0zJw7uhIGdW+CnR6Wbops2rIcld5yMK4/ui5tPHYTvHdgDU244lt64BdviwOWygbwIEalYqUy1T9RgZ1vrh/QJunr4jDSkw03rkhCBSde0ELH1oUWj+sk4uj7tzQsFam0oJ86hxFui3jtVG+nLcq/87FC8c80RDnpER5XRdW23eZ/gCedqXWxP2Z9+0OM8JVDrJuYiwbY2TT99Z2S6X/7ScWOw5I6TA7Fw1MvgPwN92jezxvc1aVgey31O17vcde4w434UIVu/1ocr1lBh2c5EFIFBPZf2zRvijrOGhCpNosogAiA//GdncFce3LVlmgLM9u419kkING5QjnFnD03W8erQohEeunAk/qEIXfY44nQGeZbSOO5ztgOo9zsXMfPUJgd7wpB1+EXon+lcWhOztsZxw7UdNxdUEBXSuhIyDFu/B1rWHjVSJrNGNimSmOJcQxkZx4V8l+4AGQEp5Rwp5byQn04H8LSUco+UcgmAhQBGZXOsYsc2SZgWyucf0AN/Oif8Jao3Z/IHTc8CE94HFwUcdVo1aYDXrzrcmDXGn8gb1S/H7WcOQQdiFXogg0XEgTtitvsE9kdCiz3lt8dmTIJxtSIU2YW7cI3f6cOjxzjZyLS4+s4BCTe5wV1bGq+TLW4qw9Ej79HPK/x4mFfk0mQNzCTQDu3WKmMRSXohUtp5qH3Vi+ua26YfK15GwPDvM1m+f33iAEy9cXTSIhyVqNp9/dyoCotMm53j1cq69LDesRIt6P1SrWqPXRL+yoviCPXvC0fiyR8fiPu+PyJonY3aUQKuLVG+26UQIpD9Sr3KN47ZN7BPnDGsxgZly7H7dgwoeaxzdMhPmYY11aqsZzazWxBN39PeL9mQK9sldRy0baYrZZQ2LL2L86zrUD1RyjPU8ctEQCAO+d1PoGCLeQ8UKq4jXnRGoUgI8VMhxJcA+gshZin/lgCYlaP+dAWwQvl7pfddWP8uE0JMFUJMXb9+fY66Ex+bdk79a7ilWOQPD64I/V5CBurY2B7TuuYPql5qXRuUzysRRbvr1ziyvsCUibR7G7NboQtBzcV2/ktGaN+ZxqPNxcnFffMXsTecnFhMXW1IM6y/r4ohdXScRad+HtmOC9OaTB/nvkYYCL9v5WXCankB7JpPcz/s+Mkq1IBrPd4yEGOQoUF/4V6vXJCDvoMB8GZLXhdLv8xtB/9uWK8ch/RphxMHdwrck7jY3iNRvY07ZNBs33rGYPzosF44un97Y/prWzZNMnnU+quEPc+ZuhIl5j649jAfw5RltnMruhKSii7UmU4nW0sMVWlCcTnLFXFiU7NFSpn2DFOar66RebWOFQM2S9GTAE4F8Ir3v/9vhJTy+5kaFkK8I4T4KuTf6S46LqV8QEo5Uko5sn17RwUEHWIb+M0UFzdqNXCbdiHOoG2jWYCoi6azR4RbHAr53AjDZx3bNQy4jGXbH0ETRvVAdHr78bTdeoHQMMqE2dfa1rZOUigi9jVKLac4C/yD+7TF0nFjMgb068/jnw1uTV1b5U4w1YlTmymuhYTcPmF8U+ta6diEprjpYX0tvhr8nqUeNvmJHhuW+hwroVxMa59+rFHE8gY0ZGRXpExDsV2zhvjdKQNRr7zMKKi6eN/EaSNXijV/DJkz5dl729yzNJ40uBM5nlkfF76V1xYTo7enF5A24fc+zYJt/CMecRfwwfgq83bZZoKMgkkhQEXvq/G8LKekjrs6bymSUm6RUi6VUl4gpVym/NtEaVhKOVpKOTjk38uW3VYB6K783c37ruSwPWSmvPQ2DlZy8cfxude59YzBwf2IO952xpBQ4aIUtAlRXRoyYZxjiIJFtoXwQo8d+BzshG0hn9xH67fpvpITN5C2yrzdFUf1Sbq+5XJuTn+RhB/NFo/g+lkYarEmq3S1JCZxfc38OSAtZT9S89vPju6b9puJI4kJJH5MiJHMFJ9nQj2VehkVFqkDmtYuNmEhzVJkOdIPDu6JBvXKMHpfs+tk2H1ItZ1qvVH9cjzxowMx+/eJHEajPLddff/01Mnm1tt7Qmym4qz+o6XXO7Odu2qJdOG6FGhbO0nbNYxK1PeJf01MirtMZ97Gcwf7xbH9QrMBhvcx+1nhtIiWdFeeKybhJJOC4oh92ifjrKNYhn3863lGHjwIdEE4an/VOSyREEXbgNAG5TiZLL+lhrtZwA2vADhfCNFQCNELQD8AUwrcp6zRx2Kc7Ga2F4LpN90NQ6W5pg2ivm7Ky0TS/70YBSFTjYbEb8Q2Yhwrzv7p7cXcMdBGqpFTs8i6lfk49t+TQ0MAAzolfPdNacBN7anj69cnDsATlx5oPeYIYhICG9TkDzaiPhbfOzBDymxiO4O6KK5rxJ10y8tQr5aXf89MHNirDX52dN/Q2MabThmIy4/sE8n10BQ3qAesmxau6jW/WKnRZEOv1j563444aXAia9rxEbKnmRZiE687yrwTYW7y5+8BnVpg/m0nobOhcj1gF8DUtsu99L9+0gE/nfNvtRgd/ZT09NIHhlibKG6RvzqhPx73Yqb8NNq24rANyhUByvH7Rsqgtb6bxS3Zx8UcHSao/PN7++OqY/slM3XqZEof7t+vMiGCiS+aNQw8Q00MtcKCwkqUJBvBczn/gO4kK+hF3jOant02eOywcQakErboqHuHKUcev2QUrvdcqM0KPzO+lfWcEd0tW7nBdM+pY1DN4igh0bG55pZLaK9GSuva89Oxx+Dta46kdahEKIhQJIQ4UwixEsDBAMYLId4EACnlbADPAvgawBsArpRSVptbKl5cu6v0bhfdh7pNswZ5C6TRHxwXheKy5dShwUWZy1TEB1uqaAsBDCH48VOtMlFQm4zjJuPqCiXdQSBwx1lD8fRlB8UuAkd1A8y0kCcdy7sCceow2dqzYStMHJcO2gvQnI41+MNvTkxo+/XscDplZQLXndA/Lf5HykRylrEnDYiV3UvnlKFd8MIVhxj7e/GhFbHbXrt1T+DveuVlSaE4s5tM6nfTelW3zFLdfP1TbGQpdhsFyrSnK+r0U9J/Vy0EdHdegSuP7ptMiX/16H2wdNwYq0BHjZ2Ng0R0y4ULS0eoANyqMX553D7Ga0k9dyGAkUrSnkP6tsPofRMChJTBLKZhNfqyZdzZQ7H4jjFp3+vvtrP274al48YEk+2EnKRJkWaaW/7zo5Ti7Luj7IJLHMtjz7ZNsXTcGBxmqXXnioMsawy9ztmEqw7HpOuDpQP0OcykfAgbcZ9dfyxOGtwJJw7upGyXvmWXVo2dKBKLiYIIRVLKF6WU3aSUDaWUHaWUJyi/3S6l7COl7C+lnFCI/rlAHY8uFgejFc2ILXOcMHyficAL2/tDz2STtk+R+JgGXBWV7y/TXG16RCj4lgndKqEXk8smuPn2Mwdn3shA1vdE0NqIImA2blBuneCBcOupr9XUf/Nf8j5/OH0QAODyI+nVxs1CQuL/bARUalFAukUyeh8oaVrjtm0jbqpbE0LQhEaqEibTQsh3YzIV3ozTZhLrxVaFcdcTawzPhAzXs2/7hJJuePfUPJdXPZiDY8mEVOQU35JpC+SP8sz5LpNqghCfe78zHAM6NU+zntqeQXWh3FGxzgb7RO9gZOVnxqZ19+XE/9RaY8Mj1NJRu+67ZieOmfuFzX9+NArvXWu3sBzStx0uOqQCZ3np5lXvHl/pdYBXamPfzi3SLMmqEFRTE6aENd+7Ti0b4V/fH4EmDerFeq5PHhK/TlmhcVNemAmlaYNy7NhbjUP7ZK9VsPncS8NnILcWm6g1SvKN3gWbJcHW3yYNyrFzb9BgKSExpGtLvDg9EfKmmuoFiMkKDP3tYnGTyTWuLJy+EHRuSP2YMMKu/7izh2JI12VpVjl9yx8eXGHM1BiVlFBUeEvn9N8dh7IyEetZOrxvvDnHP1Lc+I2zMtSLcU2Y9jKs71QN/3Un9EfLxvUjxQzEGSqmexpY0BLafePqwzFj+Wary5J9+IQH+GcK7D+wd1t88Kuj0KNNE0xeTAoztnLS4E5YsmGHdRu1S1U1Eh2aN8S6bXvMO2RAQgZHRYwsfzp3njMEv3xmJhpbarpEsTb1aJOwqumZEgHg5CGdcfKQzgCAnx3TF7/+36xQZcjRAzrgtvFzcNrwLpi6lHKvEtltN++sTO97Ll/roQq5xBdjhnbGKzNX5+zQrWOWCIjL4f1oMZS3nDYo+fl/lx+M9+etC8TkhVn09+nYDPPXbsfPj+mLD+cnMjPb5H9/LppxU1j1HXU7UpcBIBlnWIoUW0xRrcI3DcedSEwLsygLtpqazNscHtEUHHY+1PopucZ2ra2/ef9fdEhFQIMGAB/86mi8/ctgwU4pgQ4twh/8bBPUZBNQnK0wKhB0+/GHmu5Oluko3ds0wdJxYzJaiGy0adoAPz+2X04E7EmLN4Z+7wuFMvl34v8LiXEqiX2j3T/T1q2bNgh1TaBcDmpWy/TGw78+P4Mrik+ceEkb+S4p0KxhPfzyuH0iWfd1AeInR/RGu2bpixWS+1xYQLSFAZ1a4PxRPazPCKU5/ToP757ZOtezbdOMtVCo/Ov7I/DG1faiyOpzJRDM4hqHXOg96pWZx81vvViWjob3RhhUy/V5I7tj6bgxaBKSDa5P+2ZYOm5MmhWll1InUCA47qiL2lypjkwxQy4x9b3w6txwKto1xUWH9gp8F3YO/hi0CeYA8ANPkehbGls1aRBaO7Dw6sH8wkJRjoircbdlCOtlKHZqE5Ioeft1ISAOuiWrGDTtOrYFlnq7fL/rYd5LpH3zhuhnCIANb0vE0x5H3yUnhC2w9K8s7/4MbRu+j9dcbPR4kmQ/vI74z40QAov+eDJuOmWgsS1bgHkuFvUf/upoPPlje9IJaj/Ub08YpLjoauO3EbGuR5SzvTZCGnbj8SJeXlfTUrOGievRsF55mnb++pP3xdQb07WutoykfjHbYwaklEtxu6pXqLddI9P1MMmE6YHxyNvDa4vR0rn73GEZCwkDwWvTpGHmMZ45K6HfcPpXlx7eC4v+eHKkotW+jsFV5r3GSpxaJ8X6dMZ+XYNu+MZ5OvgD1V3W1vtD+yYUZz8+POXuno/lQxEuUZK4jtORUobEj/bHoj+e7NzludThq5EriLEZOiMrCP7zEdqjCjzhGofECeiWJF8TUcRzSijU+0GpHxQnSDe9P25WE43qUx/jzHeMHDRdNCKcW5KWIuVSlWdwYYtyG/34p8D+9N0BJKxwh0R0yTX10fdDn3rjaPz9gv3zOqZ9YYKyeM1EpnS1ro2N1xzXH786oT/O3K9rcj5s3ST+QqZN0waYcsOxuP7kfa13oE/7cMWYiq6wsBZe9eZ43cAXdg1n3HQc3rjKbs3JJb3bB5MN2cbaOSO64YEfjrS2pxe0vPiQhBbeNh5N2eHSG0//SggR2ZLqn6OfzOPQvm0xZmjnSG2onDcy3OKrp1WmzgNHEt3AUu2m41ulKto1TboJ+vXkcumuZxI0i8DznzxOwrbKlMk1tV308VgX4Jgih7h+mPRxnPT3t61tZaJOyPPTVkLKlLXDht7tRvXL8Ytj+yWD5fSEC0/9+EC8MnO1dRFQKC1Mtm4kVAtX26YNYrvqmThz/26YOG89+nfKXGdlYOcW+GbLLgDA704ZiN+++FVSQ3ztcfvg6AHR3BlbNq6PLbsq0xdHRNG3d7umWJwhJgAoHu2c6T77p59N3bzmWpafT8cekxwPPzy4Aje9PDvYl/iHio0QiXvhK2F0a1dabGKO+gAEM4zpZLJ0R33MXJ1H4wbluNKrw9TUszBcrLm2qFyvFeANW3TqacnDxuivThiAy5/4wto3eo0h4Ncn9Ee5EDhTiwULu05RLByuoLg8u2rf15jXt6Y3z+8i8tgBHfDAh4txSJ+ENeW/lx6UVXv1y8vwydhjQrMr2iyZpu9ju+kq/O6UgWjRuD5OHNQJDeqV4eUrD01LVBTrvRHzXhVDPLTr7MVp8XNR9i2Wl3aeYEtRHnA2poijOmqa2rDuXXPcPhjgLc51bUK/js1x7fH9i2LyAOharWwFJiC1gDt9eFdL4CKtLX2z04Z1wdJxY0hFVl+/6nBMv+l4r51ES8O8TFA/P7YfKfvdR78+Gi9deSiAYArt8L4Gv9ffhVGydYW2XxxDKRmncEoEbez/XbBf4G/V1VKUJdKWhtaYMZyzrZ5TXPRD3ey5A+rfJ+9DzDkrzm20zY9+ApMxQzvjoQvNmv8o7kX/+t7+ABI1VVzQsF45lo4bE0h3rHPJYb1w+vCU4NHdUhPHX5y3DXHL3K9HKwDp9aVU0oQi45YJQefWMwYns6Xt0zFhjaG4XacfN3+LJxHTEwMA/vHdxP2/8phgcWGnvXcwn504qBMO7N0WS8eNIRdwptC1VeM0D5JCvsvbNmuIP5w+ODnuh3Vv5cSCMdkQN5qkiNf6xwyIZoHLB1HGSBFf2oywpShHmDKQ6Vpkexs0Au+iGHNJkaxHYxGlQKntPP0HXiKlNR8RkgpY1bD591evNF8sC/xMdG/TJJlK3DSJGdc52kn6PtDnZcg2R/VVz5ZRvdpgyhJaVqyz9u+KF6Ylsgg2aVAPM246Lq24sY0DLckkWkRox+ePZw2JvE9UenmuSANCChzmC8o991Pf+wtZHX8hpWpWM72QTxzcCbecOhDnGlyJcoFAUNj1a/WE0a11E9x59hAcM8DsxtUoQxC1ygmDO+GxScuI/Yz+HObSldbUdjby15ihnTFm6Biv/bBjFgeFeo9IaV4Ax+1Sg3LfTTN/J7V8007r78W8cL9Uia+Ki+5SHDvhV9Y9KS1YKMoRvntK+g8uWpfaX4YsdSHfTb1xdFql5ERf3Q79jTv2Om3PRBSFEsXdTcqEsPD2L49ARWhiC194Sl0vfaIvIyZayDRJHdS7DT6LkO6Wegv/eGbIotvfl+g2oR/M1+yp2vAoRMnIROHHh/e2CkXtmzfEovUJdz/dlSQbN6FbTjUnZKBiswLERruBR+7THhOuOpxc8JY6P0R58R7gFReOotjw8WM7rjy6L/ZW1eD7B/XEs1NXYP7a7aHbXzCqBz5asAEDOjWHECIti9MPDuoZuQ9RiKqJ/84BPay/2+5GOy0+pHvr6PXZ4rwO8rl4cuZ8EXJfnLSdRSOnDeuCV2audmodiopr0eWOs4ai78dLcGjEUgHZ9CNTncVidgvrFJKCnUpoTFEWfUm2G2HbIr60GWH3uSLGFFOkM7BzZlcpn3bNGqb5rmcyVcfRBGaakLLFL+aW6eHzqzy3b94w0sKkX8fmdpcwCaQEpNxAiQcD3GgUkzJRWkxROLqWPds+RLk3Ls73CCVboosJfFi3xDM4vEfrrMdDlGtx3/dHAAB6ZwjAvygkpfi+nVukHct05FyM8V7tEtXhj7DUYAvj+Z8ejKcvS8RWNG1YDzeeMhCN6pdbi7yePKQzlo4bE5p4Zum4Mbj1jPgFk4uN35+WnsyDCjUFdNg+ucCkLDEdMmp5CUqb2TT27rVHZizSqeMviAtlKcrGNdFE++YNMfakAUUV2F/M6/Y4HgY+Yc+uzfqXiYN7t8XxAzuS5xVyMpIihYWiHCEQPrFkGpZxFmhxJxp/kJcJ4VwrFVYvwSVq6lrbs+5fG2qcRqbYBEowaqbfkttkGA2utS229vxgcZN7g/6tKWVopj4XzyvRMcmsdbl71Y6qaJP23YmDO2HurSfizQw1XtpELE7oPweDuybc6/Lp9pKJET3bhBZb9F3KwoLIC43rHtnaM5VuILWbzHZGH8e+8iab45oIi6sCgAGdm6fVYZl764l45KIDIrX//RxbCPu0b5aWNa/YsblaFUscsc7cW09MKz5aihlS7zlvGPp1cDNe1FuVTUr3RvXL8cAPRxo8Z8KP6yqFfCFg97kcYZrMXUwqmbLPUQ+hZo45d2Q3/PXdBdl1rABkOtcOzRvh+pMGJCt/G9uJeFwJYJgnSH53lNnVJRu3MN3N0cTBXkzLmfvRXNfCrtkzlx2Md+aszUmQv0q+pspMwkmuKm4nUrVH3Efra9j+n449JrR6ORAtviQTydg6r0sP/GAkXpy+ChVh9WmKjOtO6I9mDevhDOJzwKQT5+30/QN74NA+bfO6+G/aoB4uOawXrnp6RvK7OM8BJcV5ocj3kl4VIqIIFPXLBSqrcz2z29tvVL888v3XXxFzbz0xb27/Js7avxvO2t8el0tFPb+2EZVidRkWihyiTiSqFitQiTvCTFehBeOaBarsJyRXdViy2cc1/qTwkyP7ZNy2pbfgbNvUvlhOJueSCTeHpePGpG2za2918nOrxqnJ6JwR0SY76l2t8NyQyO2GNFzRrqmT4M5sGNa9FWau2OykrUyWDd+SefKQTk79raWk3zfTwqNpiGDahZCR0AX6ZevSqnEy9TRp/wJqZ5s1rIfrTuhfsOPbcDUfZmOI7NY6N2NICFEQa0hDYkFhG+o80cKzfus1e3LBsG4tMXPlltDfrjiqD9Zv24PvZWHFevLSAzGZmGgmjChFtj/5zTH4dmdl7GPF6YcL9EepUf1yUubXYke9ZuN/cRiueWYmjh/YKb99KEErnQ8LRTkkbGBEGSqmYDvqezGTtvykwZ3w4IeL8aPDelm3izMx5TqmiEKUfp86tDMqq2pw2nB70HfS595yF4Z1b4WKtk0xoFNz3HxqwkVxwe0noTzihXTtiZXLF4yLtk8a3MmZUNSQXNDWDanzl5FvnL61n3GtkBTa+eEXx/bDhu17CtyL3DCcGCvoik4tG2Fg5xa4/uQBGbf1C7+WQqC0izlHLXR7RL92uOe8YRm9ClxwZP8ORqGoVZMGuPc7w7Nq/5C+7XBIxKQGV43uh3lrt+GQPu1w34eLyft1aNEoLU65FIiTdr7UGNSlJd78Zf4LLrP7HJNGwJ8zwviwbapqo8N/8f+ivS3aNWuID399NABg1eZdpH2oHD+oE+6YMNdpm2FI6cbNQAiBswmWHMq1PWFQJzSqX443lDiPsKQNmV7qrieWWBmlIi/w4xfbdCmzRem2X5slG/w4liiWolzz48N74bVZ30Tax/eojR2W4+gmXnPcPm4aKhJ8S/zUG0dn5aIaRxCoX16G1686nNY+oscUFQon877qMiZE1q5LnT1FZikGm+/buQUmXncUAPO1LWSa8MhkDODO3MQfTo+ftKSuonodnTgovxYqF7BQlENcTyCm9nS/6CYNEm4FPQsYBxDVKkJh3FlDIgeM5wrbJO0qzjtX65J47pDBnfT4FhfmcpdDhm5NBS49rDf++Hp2Avxfzt8PD364GPv1aI3Zq7dat/31if0xqqINnpqyAkDuYgd+O2YgfjsmWorw4d1b46JDKnDp4XbrMROPdlnGsuVaVikGt+d84vp8R1a0wQtXHJKMNy1VimUcZPNeySwTZX6YaoM7Xb6RUibnqUP7mmv4FSuF93GqpTSuXx7rBfbL0eaq6D76w6wvWCvaNcW/fzgSd587LHoHHJGLSfX8UT1wvKZ5yPfkTcoq56hPLrS1L195aOSUsBQaNwj68x/ppVXuFqMmSi6IYuEqcyDFdm3VGLecNgjlZSLjsa84qi9GKpnkikknX14mcMtpg2Lfx2JZTNV2cn2di2lM5hJqVsUoRdf379E6Y0bYIkyQGMBsKcpvx/0sp1HcoZt7dd6G92hl3S7fbqz54vYzhuCAitbYp1MRZD0swRcCW4pyxKnDuuCet+dH3s8WsErRmtTzKkePHpiqhn7kPu3RPovg0dINmstdv+1ujm6O66R+TpYTv6kL+lx36eG9cMZ+XTOOM1vCAOp1s72Yu7ZqjFWbd9GTHeRgiBTy2AyTDfv3aI1ZK7egTRYFjPOFiwW6qbSAzmu/OAzTln+b9fFKhWJJvf27UweiX8dmOLp/h8wbe3x2/bH4+3sL8esMSVcuGNUjo4dACXiRpjGseys8d/khBe3DgM6JUg492xSHkjQKLBQ5RJ1HystEeJ2iiJPN45eMwtqtu9O+N2USCgvQfOySUZGOWXLkcf5OxXWZZ0vqLc60XTH59Wc6JSEESfC2CWku3sN9OzRLxsft36MVpi3fnH2jDJlsbuF/Lz0QK7/d6awvTHR+O2ZfnD+qO3qUQAp2F9N+B69kQqYaSz3bNkXPtsWbvts1xSESJTJKRs2K2rRhPYw9KXNSEb3OVSnh149zlb7bJVIm0vTv170VBndtWejuRIaFojwTdbIJq/YuZSJDTRimjHXZMKhrC4z/MlrAtskikIt0p/nM1pVPDVoxiEQUuewXx2Z2+aTg4trefOpA/OG1r3Fw77b458SFDnoVHaos27pJQkvdNMeFjkuFQyNmy6qLtG/eECcP6ZSz9Pn1y8swoFOLnLTtGhfzY4fmifflacPsWUfrGmFlAWob9UKSH5UK3Vo3iVSGI98IIUpSIAJYKMoL6uSdzbqPFM+SAx3P0K6tAEQLmjP5THd0lLrT12QO7dYqcr2Kod2yf1htC1/q4j7TvdKP8cvR+2Dyko2ktintRUKY/9zPkW921Ex3YfRu3wyPXlxYyyj1LK49vj96tGmCkwaXXoYenaYNyrFDqc/F5IbyMoF/fm9E6G8vXXko9lbV5LlHhcPFm65N0waYdcvxaJZnxUSxu6TfefZQHHTHu3jhisK6YWWifnlxX8e6xCWH9sLDnywpdDeyhoUih+hruvDH1fwQjxma+/oIJmxTSzHmnN+/R2u8c80R6BOxaODHvzk65xnsqNN01wzFFHUh4arR/QBkb5WJWC0p6+MVigtG9cDnS/MfB0AV7hrVL8cPDq7IbWfyTLHEIuSC135+GKYXcVxJbQ0cN+FqqLVoRIsrqkuYCpOruChlkA1TbjjWSQFfxg3nHdAND3+ypCjXi1EoXfthERNXezEygxvY6cO7AsiNCxplGGej3frX9/ZPtOFwzdS3Q/PIi7BurZugSRZaQb+WUasm2b9IMwX5llJMkZNjOF5QHzMgEZwbdp2beRmKsk2RXErcevqgnCleimek5o7BXVvWOiGWKQy1QXdATVKRKzq0aISWDt7DjBuK3fpJhS1FOcBfy/7h9MH4/auz0aWVG5exy4/sjYsPrUCjPAcIulibd64l+f5/ObofrjiqT17uQa5kIhfNBgQYR3NhPtPUHtGvHe46ZyhOzUEsQRHJsgF+cHBFzhf1teO1mB/Y5TA+LRrXR4N6pavTrQ3PSW1ZBNs4oFcb6+9CFO98byLn6fxL7HrosFCUQ47Ypz3evfaowHe2AZlpMAkh8i4QBY8fZduozoPuycXDn897UAxzSz4nONe3K1Pc17kjuzs+onfcAt+5KDVVXFHqL8JC8NkNx6Kymi9cHMrLRLLG0CF9Sq9AZKnd9WHdWmLmyi3BL2u/TJTRGjbz5uNRXULP8B1nDcnokRSX2mD9BFgoygm2wZHrcRN3QWaPKcotk284Fjsdakx7t2uKxRt2OGsvKq4mh4N7t8X/vliJAyrcTmJxuqcLuU3V4q2l807IC4UUEN655ghjZsp8EDb2G9cvR+ccZMUsdZpzLEtkzhvZDc9OXVnobmRNqa0f/3PpgVixKZguv9TOIReUWjzaBaN65Kztvu2b4aJDKnDhIRU5O0Y+YKEoz1gtRfnrRiQaeKkrW+TIh9hFRrrXfn5YxiripYZfiLdTy8K5HprGZL+OzfPajzgUSnNVyOe4b4fC3BebMubrP5yQx54wtZk7zx6KcWcNLXQ3sqasxN5VLRrVx6AuiaytR/dvj4nz1uPGMQPz2odc1J07Y3gXHNi79CyNxUhZmcAtpw0qdDeyhoUih1CsNDYtsouUxHGxHfmg3m1w45h9ce6I3LgbuUDNiX/N8fvgZ09OR5cCCRNlRWpHjmJFfPTiAwK1KvJxRqW2UDBRl13JwuIManNGOib3PP/Tg7F1dxWAxFjSh1Ndft4Kwf0/GIltuyvRNs9Jap6+7GDsc+MEp7Gnfzl/P3eNMbUCFopyQNQAxGLP7y6EyLpYYLOGCXerigyVw11wytAuOGVo4YrxHVwLNE9H9U9kbpu/dpvztv93+cGYsWJz2ve1ZelcTFkD80UdPGUmT4zoaQ92L0WaNyrdpVeDemV5F4gA1DpPEKY4KciTKYS4C8CpAPYCWATgYinlZu+36wH8CEA1gF9IKd8sRB/j4AtDHVqYJ4y6qjTt26E5Hr5oJA6qBQKDieaN6mHb7irnFg9XrcXJFtSrXVMc1b89fjl6H0e9AEZWtMHIitwvdHihnn/q6vzGFI5SHHM92yaUgyNyFPReG/Fv85n7dStoP5jaTaFyWr4NYLCUciiA+QCuBwAhxEAA5wMYBOBEAP8UQpRMda4G9crwl+8Mx7M/Odi4Tbh7SeL/Qi7i8vFeOWZAx6xqBBU9Rb4Ij5OEo355GR69eBSGhRSGPKp/+9jthlGvPDfTUSkumkqNP545BO2bN0zGHzJMvihF5YevN2tcwGyypUZZmcDMm4/HnWcPKXRXmFpMQd5gUsq3pJRV3p+fAfBF/9MBPC2l3COlXAJgIYBRhehjXM7Yryu6WGryhC3Q/K+iLi4fufgA/OO7+0fah8k9rhfhrt/52fTv9V8cjt+dkgiwdS1r5KJmUCEoZGxgLrGNm7NHdMPnvx1da+LCXHHZEdm5HTO1E185WhddbbOhZeP6OVOeMQxQHDFFlwB4xvvcFQkhyWel910aQojLAFwGAD165C7NoGvClgxxF6lHe3EfLsjV1HxghuJnTGkxsEsLDOzSIidtN21QjvMP6I5zRpS2e0RNLV3ndGjeEGu37inpopn55oaT98UNJ+9b6G7UakrRElwM3iEMw6STM6FICPEOgE4hP/1WSvmyt81vAVQB+G/U9qWUDwB4AABGjhzJU4tHRdvcJzKgMvfWE1GPNcdpNKhXhr1VNeTtXV1B31WjXllxLmqFEBh3dumn262t3HbGEPz48anYL8SVkmEYOr5QxJYihikuciYUSSlH234XQlwE4BQAx8qUv8kqAGre527ed7WGsPS0pwztggc/WuLE8tMopo9yXJef6b87zqipi9uX2s7rvzgMkxZtzPtxf3XiALRsXB+nDy8eN7VXfnYo5q/dnpO2/ZTiLpNE1GWaehkkS1EzzzDFhF+2gWUihikuCpV97kQAvwZwpJRSLZP8CoAnhRD3AOgCoB+AKQXoYl4Z1r0Vlo4bU9A+xJ2cWzdt4LYjJUzPdk3w1aqtKM+wauzboTmpyKbrF2azhvVwzfH9nbXnF5Vt1jB+Ud+h3VphaLdWjnoUpEG9soI8V728tPP9Ixa4ff6nB+P9eetz0SUnNPOEzM4FLCbMMLWBuHHEDMPklkLFFP0fgIYA3vYsJ59JKS+XUs4WQjwL4Gsk3OqulFJWF6iPDBOJRy8ehenLNweKnrqgWDXzN50yEAf1boNRHDcWwNcC9+kQzZV1RM82RV2TZWi3VvjbBfvh2AHuYhkZpi7iJyRhSxHDFBcFEYqklH0tv90O4PY8dodhnNCuWUMcN7Cj83aL9cXZuEE5Th8emgel5DhuYEdUVdPjvGx0atkIANC/Y24SUhSS02pJhkCm9lCs86MNX8/FMUUMU1wUQ/a5OoWv9X/8klFYtmmnfeM8wnNz8ZHMUFTYbtQJHvzhSGdtjejZGi9deSiGdG3prE2GYWoPfmwxz+0MU1ywUJQnzt6/G56fthLHeK4nR+zTvsA9CsK+zcVHPy/u6NA+bQvcEyYqwzlDG8PkhWJ1L7aRyj5X2H4wDBOEhaI80bt9Ir6gmeN4E1ewpaj4GNilBabeOBptOZlFGu2aNcRVo/sVuhsMwzCRKSuSQkVvXH04lm8sHo8Vhik0xblCZ/IOy0TFSbtmDQvdhaJk6o3WjP8MwzBFSyqmqKDdwIBOLTCgU+2LfWSYuBRnFUcm7/Ro06TQXWAYhmGYWk/nVolkLCcNCatvzzBMoWBLUZ6IWxw1X5SXlaBjNsMwDMOUGB2aN8KXtxxftO70DFNX4Scyz5RiUCjDMAzDMO5o3ih+0WuGYXIDu88xDMMwDMMwDFOnYaGIYRiGYRiGYZg6DQtFDMMwDMMwDMPUaVgoYhiGYRimpPBr/50xvGuBe8IwTG2BEy0wDMPE4O5zh+HD+esL3Q2GqZN0btkYS+44GYKzFzGOOX5gR7z19dpCd4MpACwU5YmTh3TG3W/Nx+lErdagLtEKql14cE/MXLklTtcYhonBOSO64ZwR3QrdDYaps7BAxOSC//vu/tixp6rQ3WAKAAtFeaJ3+2ZYOm4Madv3rj0S7Zs3jNT+708fHKdbDMMwDMMwjEeDemVoUK9BobvBFAAWioqQ3u2bFboLDMMwDMMwDFNn4EQLDMMwDMMwDMPUadhSxCS5+dSBOLBX20J3g2EYhmEYhmHyCgtFTJKLD+1V6C4wDMMwDMMwTN5h9zmGYRiGYRiGYeo0LBQxDMMwDMMwDFOnYaGIYRiGYRiGYZg6DQtFDMMwDMMwDMPUaVgoYhiGYRiGYRimTsNCEcMwDMMwDMMwdRoWihiGYRiGYRiGqdOwUMQwDMMwDMMwTJ1GSCkL3YesEUKsB7Cs0P3waAdgQ6E7wTAGeHwyxQqPTaaY4fHJFCs8NqPRU0rZPuyHWiEUFRNCiKlSypGF7gfDhMHjkylWeGwyxQyPT6ZY4bHpDnafYxiGYRiGYRimTsNCEcMwDMMwDMMwdRoWitzzQKE7wDAWeHwyxQqPTaaY4fHJFCs8Nh3BMUUMwzAMwzAMw9Rp2FLEMAzDMAzDMEydhoUihmEYhmEYhmHqNCwUERBCPCyEWCeE+Er5brgQ4jMhxAwhxFQhxCjveyGE+JsQYqEQYpYQYn9lnwuFEAu8fxcW4lyY2kXEsXmUEGKL9/0MIcRNyj4nCiHmeeN2bCHOhal9GMbnMCHEJCHEl0KIV4UQLZTfrvfG4DwhxAnK9zw+GadEGZtCiAohxC5l7rxP2WeEt/1C790vCnE+TO1CCNFdCDFRCPG1EGK2EOIq7/s2Qoi3vXXk20KI1t73vPZ0gZSS/2X4B+AIAPsD+Er57i0AJ3mfTwbwvvJ5AgAB4CAAk73v2wBY7P3f2vvcutDnxv9K+1/EsXkUgNdC2igHsAhAbwANAMwEMLDQ58b/Sv+fYXx+DuBI7/MlAG71Pg/0xl5DAL28MVnO45P/5eJfxLFZoW6ntTPFe9cL791/UqHPjf+V/j8AnQHs731uDmC+N0f+CcBY7/uxAO70PvPa08E/thQRkFJ+CGCT/jUAX8PZEsBq7/PpAB6XCT4D0EoI0RnACQDellJuklJ+C+BtACfmvvdMbSbi2DQxCsBCKeViKeVeAE8jMY4ZJisM43MfAB96n98GcLb3+XQAT0sp90gplwBYiMTY5PHJOCfi2AzFe7e3kFJ+JhMr0McBnOG4q0wdREr5jZRymvd5G4A5ALoiMfc95m32GFLjjdeeDmChKD5XA7hLCLECwN0Arve+7wpghbLdSu870/cM45qrET42AeBgIcRMIcQEIcQg7zsem0w+mY2UUHMugO7eZ547mUJjGpsA0EsIMV0I8YEQ4nDvu65IjEcfHpuMc4QQFQD2AzAZQEcp5TfeT2sAdPQ+8/zpABaK4vNTAL+UUnYH8EsADxW4PwzjYxqb0wD0lFIOA/B3AC8VpntMHecSAFcIIb5Awi1kb4H7wzA+prH5DYAeUsr9AFwD4Ek1Fo5hcoUQohmA5wFcLaXcqv7mWSe5ro5DWCiKz4UAXvA+P4eEiwcArEJQu9TN+870PcO4JnRsSim3Sim3e59fB1BfCNEOPDaZPCKlnCulPF5KOQLAU0jECwE8dzIFxjQ2PZfOjd7nL7zv90FiHHZTmuCxyThDCFEfCYHov1JK/52+1nOL890313nf8/zpABaK4rMawJHe52MALPA+vwLgh14mkIMAbPFMnW8COF4I0drLFnK89x3DuCZ0bAohOvmZkbyMdGUANiIRXNxPCNFLCNEAwPlIjGOGcY4QooP3fxmAGwH4mbxeAXC+EKKhEKIXgH5IBLHz+GTygmlsCiHaCyHKvc+9kRibi713+1YhxEHe3PpDAC8XpPNMrcIbTw8BmCOlvEf56RUkFJ/w/n9Z+Z7XnllSr9AdKAWEEE8hkbmrnRBiJYCbAfwYwF+FEPUA7AZwmbf560hkAVkIYCeAiwFASrlJCHErEi94APiDlFIP8mSYSEQcm+cA+KkQogrALgDne+b3KiHEz5CYKMsBPCylnJ3fM2FqI4bx2UwIcaW3yQsAHgEAKeVsIcSzAL4GUAXgSilltdcOj0/GKVHGJhKZ6v4ghKgEUAPgcuX9fQWARwE0RiL714S8nABT2zkUwA8AfCmEmOF9dwOAcQCeFUL8CMAyAOd5v/Ha0wEisSZiGIZhGIZhGIapm7D7HMMwDMMwDMMwdRoWihiGYRiGYRiGqdOwUMQwDMMwDMMwTJ2GhSKGYRiGYRiGYeo0LBQxDMMwDMMwDFOnYaGIYRiGYRiGYZg6DQtFDMMwTJ3GL8zJMAzD1F1YKGIYhmFKBiHEH4QQVyt/3y6EuEoI8SshxOdCiFlCiN8rv78khPhCCDFbCHGZ8v12IcSfhRAzARyc37NgGIZhig0WihiGYZhS4mEAPwQAIUQZgPMBrAHQD8AoAMMBjBBCHOFtf4mUcgSAkQB+IYRo633fFMBkKeUwKeXHeew/wzAMU4TUK3QHGIZhGIaKlHKpEGKjEGI/AB0BTAdwAIDjvc8A0AwJIelDJAShM73vu3vfbwRQDeD5fPadYRiGKV5YKGIYhmFKjX8DuAhAJyQsR8cCuENKeb+6kRDiKACjARwspdwphHgfQCPv591Syuo89ZdhGIYpcth9jmEYhik1XgRwIhIWoje9f5cIIZoBgBCiqxCiA4CWAL71BKIBAA4qVIcZhmGY4oYtRQzDMExJIaXcK4SYCGCzZ+15SwixL4BJQggA2A7g+wDeAHC5EGIOgHkAPitUnxmGYZjiRkgpC90HhmEYhiHjJViYBuBcKeWCQveHYRiGKX3YfY5hGIYpGYQQAwEsBPAuC0QMwzCMK9hSxDAMwzAMwzBMnYYtRQzDMAzDMAzD1GlYKGIYhmEYhmEYpk7DQhHDMAzDMAzDMHUaFooYhmEYhmEYhqnTsFDEMAzDMAzDMEyd5v8BgT8yOH4j7u4AAAAASUVORK5CYII=\n",
  846. "text/plain": [
  847. "<Figure size 1008x288 with 1 Axes>"
  848. ]
  849. },
  850. "metadata": {
  851. "needs_background": "light"
  852. },
  853. "output_type": "display_data"
  854. }
  855. ],
  856. "source": [
  857. "%matplotlib inline\n",
  858. "import matplotlib.pyplot as plt\n",
  859. "\n",
  860. "fig, ax = plt.subplots(figsize=(14,4))\n",
  861. "ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5])\n",
  862. "ax.axis('tight')\n",
  863. "ax.set_title('tempeatures in Stockholm')\n",
  864. "ax.set_xlabel('year')\n",
  865. "ax.set_ylabel('temperature (C)');"
  866. ]
  867. },
  868. {
  869. "cell_type": "markdown",
  870. "metadata": {},
  871. "source": [
  872. "使用`numpy.savetxt`我们可以将一个Numpy数组以CSV格式存入:"
  873. ]
  874. },
  875. {
  876. "cell_type": "code",
  877. "execution_count": 36,
  878. "metadata": {},
  879. "outputs": [
  880. {
  881. "data": {
  882. "text/plain": [
  883. "array([[0.14040248, 0.96924573, 0.53434945],\n",
  884. " [0.77573698, 0.21286524, 0.68518057],\n",
  885. " [0.32862765, 0.70297393, 0.39513101]])"
  886. ]
  887. },
  888. "execution_count": 36,
  889. "metadata": {},
  890. "output_type": "execute_result"
  891. }
  892. ],
  893. "source": [
  894. "M = np.random.rand(3,3)\n",
  895. "\n",
  896. "M"
  897. ]
  898. },
  899. {
  900. "cell_type": "code",
  901. "execution_count": 37,
  902. "metadata": {},
  903. "outputs": [],
  904. "source": [
  905. "np.savetxt(\"random-matrix.csv\", M)"
  906. ]
  907. },
  908. {
  909. "cell_type": "code",
  910. "execution_count": 38,
  911. "metadata": {},
  912. "outputs": [
  913. {
  914. "name": "stdout",
  915. "output_type": "stream",
  916. "text": [
  917. "1.404024772095778806e-01 9.692457261060815066e-01 5.343494544483793351e-01\r\n",
  918. "7.757369846310477879e-01 2.128652371287943490e-01 6.851805738917894351e-01\r\n",
  919. "3.286276500132384593e-01 7.029739262669426614e-01 3.951310081778761640e-01\r\n"
  920. ]
  921. }
  922. ],
  923. "source": [
  924. "!cat random-matrix.csv"
  925. ]
  926. },
  927. {
  928. "cell_type": "code",
  929. "execution_count": 39,
  930. "metadata": {},
  931. "outputs": [
  932. {
  933. "name": "stdout",
  934. "output_type": "stream",
  935. "text": [
  936. "0.14040 0.96925 0.53435\r\n",
  937. "0.77574 0.21287 0.68518\r\n",
  938. "0.32863 0.70297 0.39513\r\n"
  939. ]
  940. }
  941. ],
  942. "source": [
  943. "np.savetxt(\"random-matrix.csv\", M, fmt='%.5f') # fmt 确定格式\n",
  944. "\n",
  945. "!cat random-matrix.csv"
  946. ]
  947. },
  948. {
  949. "cell_type": "markdown",
  950. "metadata": {},
  951. "source": [
  952. "### 3.2 numpy 的本地文件格式"
  953. ]
  954. },
  955. {
  956. "cell_type": "markdown",
  957. "metadata": {},
  958. "source": [
  959. "当存储和读取numpy数组时非常有用。利用函数`numpy.save`和`numpy.load`:"
  960. ]
  961. },
  962. {
  963. "cell_type": "code",
  964. "execution_count": 40,
  965. "metadata": {},
  966. "outputs": [
  967. {
  968. "name": "stdout",
  969. "output_type": "stream",
  970. "text": [
  971. "random-matrix.npy: data\r\n"
  972. ]
  973. }
  974. ],
  975. "source": [
  976. "np.save(\"random-matrix.npy\", M)\n",
  977. "\n",
  978. "!file random-matrix.npy"
  979. ]
  980. },
  981. {
  982. "cell_type": "code",
  983. "execution_count": 41,
  984. "metadata": {},
  985. "outputs": [
  986. {
  987. "data": {
  988. "text/plain": [
  989. "array([[0.14040248, 0.96924573, 0.53434945],\n",
  990. " [0.77573698, 0.21286524, 0.68518057],\n",
  991. " [0.32862765, 0.70297393, 0.39513101]])"
  992. ]
  993. },
  994. "execution_count": 41,
  995. "metadata": {},
  996. "output_type": "execute_result"
  997. }
  998. ],
  999. "source": [
  1000. "np.load(\"random-matrix.npy\")"
  1001. ]
  1002. },
  1003. {
  1004. "cell_type": "markdown",
  1005. "metadata": {},
  1006. "source": [
  1007. "## 4. 更多Numpy数组的性质"
  1008. ]
  1009. },
  1010. {
  1011. "cell_type": "code",
  1012. "execution_count": 4,
  1013. "metadata": {},
  1014. "outputs": [
  1015. {
  1016. "name": "stdout",
  1017. "output_type": "stream",
  1018. "text": [
  1019. "int64\n",
  1020. "8\n"
  1021. ]
  1022. }
  1023. ],
  1024. "source": [
  1025. "M = np.array([[1, 2], [3, 4], [5, 6]])\n",
  1026. "\n",
  1027. "print(M.dtype)\n",
  1028. "print(M.itemsize) # 每个元素的字节数\n"
  1029. ]
  1030. },
  1031. {
  1032. "cell_type": "code",
  1033. "execution_count": 5,
  1034. "metadata": {},
  1035. "outputs": [
  1036. {
  1037. "data": {
  1038. "text/plain": [
  1039. "48"
  1040. ]
  1041. },
  1042. "execution_count": 5,
  1043. "metadata": {},
  1044. "output_type": "execute_result"
  1045. }
  1046. ],
  1047. "source": [
  1048. "M.nbytes # 字节数"
  1049. ]
  1050. },
  1051. {
  1052. "cell_type": "code",
  1053. "execution_count": 6,
  1054. "metadata": {},
  1055. "outputs": [
  1056. {
  1057. "data": {
  1058. "text/plain": [
  1059. "2"
  1060. ]
  1061. },
  1062. "execution_count": 6,
  1063. "metadata": {},
  1064. "output_type": "execute_result"
  1065. }
  1066. ],
  1067. "source": [
  1068. "M.ndim # 维度"
  1069. ]
  1070. },
  1071. {
  1072. "cell_type": "markdown",
  1073. "metadata": {},
  1074. "source": [
  1075. "## 5. 操作数组"
  1076. ]
  1077. },
  1078. {
  1079. "cell_type": "markdown",
  1080. "metadata": {},
  1081. "source": [
  1082. "### 5.1 索引"
  1083. ]
  1084. },
  1085. {
  1086. "cell_type": "markdown",
  1087. "metadata": {},
  1088. "source": [
  1089. "我们可以用方括号和下标索引元素:"
  1090. ]
  1091. },
  1092. {
  1093. "cell_type": "code",
  1094. "execution_count": 7,
  1095. "metadata": {},
  1096. "outputs": [
  1097. {
  1098. "data": {
  1099. "text/plain": [
  1100. "1"
  1101. ]
  1102. },
  1103. "execution_count": 7,
  1104. "metadata": {},
  1105. "output_type": "execute_result"
  1106. }
  1107. ],
  1108. "source": [
  1109. "v = np.array([1, 2, 3, 4, 5])\n",
  1110. "# v 是一个向量,仅仅只有一维,取一个索引\n",
  1111. "v[0]"
  1112. ]
  1113. },
  1114. {
  1115. "cell_type": "code",
  1116. "execution_count": 8,
  1117. "metadata": {},
  1118. "outputs": [
  1119. {
  1120. "name": "stdout",
  1121. "output_type": "stream",
  1122. "text": [
  1123. "4\n",
  1124. "4\n",
  1125. "[3 4]\n"
  1126. ]
  1127. }
  1128. ],
  1129. "source": [
  1130. "\n",
  1131. "# M 是一个矩阵或者是一个二维的数组,取两个索引 \n",
  1132. "print(M[1,1])\n",
  1133. "print(M[1][1])\n",
  1134. "print(M[1])"
  1135. ]
  1136. },
  1137. {
  1138. "cell_type": "markdown",
  1139. "metadata": {},
  1140. "source": [
  1141. "如果我们省略了一个多维数组的索引,它将会返回整行(或者,总的来说,一个 N-1 维的数组)"
  1142. ]
  1143. },
  1144. {
  1145. "cell_type": "code",
  1146. "execution_count": 9,
  1147. "metadata": {},
  1148. "outputs": [
  1149. {
  1150. "data": {
  1151. "text/plain": [
  1152. "array([[1, 2],\n",
  1153. " [3, 4],\n",
  1154. " [5, 6]])"
  1155. ]
  1156. },
  1157. "execution_count": 9,
  1158. "metadata": {},
  1159. "output_type": "execute_result"
  1160. }
  1161. ],
  1162. "source": [
  1163. "M"
  1164. ]
  1165. },
  1166. {
  1167. "cell_type": "code",
  1168. "execution_count": 10,
  1169. "metadata": {},
  1170. "outputs": [
  1171. {
  1172. "data": {
  1173. "text/plain": [
  1174. "array([3, 4])"
  1175. ]
  1176. },
  1177. "execution_count": 10,
  1178. "metadata": {},
  1179. "output_type": "execute_result"
  1180. }
  1181. ],
  1182. "source": [
  1183. "M[1]"
  1184. ]
  1185. },
  1186. {
  1187. "cell_type": "markdown",
  1188. "metadata": {},
  1189. "source": [
  1190. "相同的事情可以利用`:`而不是索引来实现:"
  1191. ]
  1192. },
  1193. {
  1194. "cell_type": "code",
  1195. "execution_count": 11,
  1196. "metadata": {},
  1197. "outputs": [
  1198. {
  1199. "data": {
  1200. "text/plain": [
  1201. "array([3, 4])"
  1202. ]
  1203. },
  1204. "execution_count": 11,
  1205. "metadata": {},
  1206. "output_type": "execute_result"
  1207. }
  1208. ],
  1209. "source": [
  1210. "M[1,:] # 行 1"
  1211. ]
  1212. },
  1213. {
  1214. "cell_type": "code",
  1215. "execution_count": 12,
  1216. "metadata": {},
  1217. "outputs": [
  1218. {
  1219. "data": {
  1220. "text/plain": [
  1221. "array([2, 4, 6])"
  1222. ]
  1223. },
  1224. "execution_count": 12,
  1225. "metadata": {},
  1226. "output_type": "execute_result"
  1227. }
  1228. ],
  1229. "source": [
  1230. "M[:,1] # 列 1"
  1231. ]
  1232. },
  1233. {
  1234. "cell_type": "markdown",
  1235. "metadata": {},
  1236. "source": [
  1237. "我们可以用索引赋新的值给数组中的元素:"
  1238. ]
  1239. },
  1240. {
  1241. "cell_type": "code",
  1242. "execution_count": 13,
  1243. "metadata": {},
  1244. "outputs": [],
  1245. "source": [
  1246. "M[0,0] = 1"
  1247. ]
  1248. },
  1249. {
  1250. "cell_type": "code",
  1251. "execution_count": 14,
  1252. "metadata": {},
  1253. "outputs": [
  1254. {
  1255. "data": {
  1256. "text/plain": [
  1257. "array([[1, 2],\n",
  1258. " [3, 4],\n",
  1259. " [5, 6]])"
  1260. ]
  1261. },
  1262. "execution_count": 14,
  1263. "metadata": {},
  1264. "output_type": "execute_result"
  1265. }
  1266. ],
  1267. "source": [
  1268. "M"
  1269. ]
  1270. },
  1271. {
  1272. "cell_type": "code",
  1273. "execution_count": 16,
  1274. "metadata": {},
  1275. "outputs": [],
  1276. "source": [
  1277. "# 对行和列也同样有用\n",
  1278. "M[1,:] = 0\n",
  1279. "M[:,1] = -1"
  1280. ]
  1281. },
  1282. {
  1283. "cell_type": "code",
  1284. "execution_count": 51,
  1285. "metadata": {},
  1286. "outputs": [
  1287. {
  1288. "data": {
  1289. "text/plain": [
  1290. "array([[ 1. , 0.96924573, -1. ],\n",
  1291. " [ 0. , 0. , -1. ],\n",
  1292. " [ 0.32862765, 0.70297393, -1. ]])"
  1293. ]
  1294. },
  1295. "execution_count": 51,
  1296. "metadata": {},
  1297. "output_type": "execute_result"
  1298. }
  1299. ],
  1300. "source": [
  1301. "M"
  1302. ]
  1303. },
  1304. {
  1305. "cell_type": "markdown",
  1306. "metadata": {},
  1307. "source": [
  1308. "### 5.2 切片索引"
  1309. ]
  1310. },
  1311. {
  1312. "cell_type": "markdown",
  1313. "metadata": {},
  1314. "source": [
  1315. "切片索引是语法`M[lower:upper:step]`的技术名称,用于提取数组的一部分:"
  1316. ]
  1317. },
  1318. {
  1319. "cell_type": "code",
  1320. "execution_count": 17,
  1321. "metadata": {},
  1322. "outputs": [
  1323. {
  1324. "data": {
  1325. "text/plain": [
  1326. "array([1, 2, 3, 4, 5])"
  1327. ]
  1328. },
  1329. "execution_count": 17,
  1330. "metadata": {},
  1331. "output_type": "execute_result"
  1332. }
  1333. ],
  1334. "source": [
  1335. "A = np.array([1,2,3,4,5])\n",
  1336. "A"
  1337. ]
  1338. },
  1339. {
  1340. "cell_type": "code",
  1341. "execution_count": 18,
  1342. "metadata": {},
  1343. "outputs": [
  1344. {
  1345. "data": {
  1346. "text/plain": [
  1347. "array([2, 3])"
  1348. ]
  1349. },
  1350. "execution_count": 18,
  1351. "metadata": {},
  1352. "output_type": "execute_result"
  1353. }
  1354. ],
  1355. "source": [
  1356. "A[1:3]"
  1357. ]
  1358. },
  1359. {
  1360. "cell_type": "markdown",
  1361. "metadata": {},
  1362. "source": [
  1363. "切片索引是*可变的*: 如果它们被分配了一个新值,那么从其中提取切片的原始数组将被修改:\n"
  1364. ]
  1365. },
  1366. {
  1367. "cell_type": "code",
  1368. "execution_count": 19,
  1369. "metadata": {},
  1370. "outputs": [
  1371. {
  1372. "data": {
  1373. "text/plain": [
  1374. "array([ 1, -2, -3, 4, 5])"
  1375. ]
  1376. },
  1377. "execution_count": 19,
  1378. "metadata": {},
  1379. "output_type": "execute_result"
  1380. }
  1381. ],
  1382. "source": [
  1383. "A[1:3] = [-2,-3] # auto convert type\n",
  1384. "A[1:3] = np.array([-2, -3]) \n",
  1385. "\n",
  1386. "A"
  1387. ]
  1388. },
  1389. {
  1390. "cell_type": "markdown",
  1391. "metadata": {},
  1392. "source": [
  1393. "我们可以省略`M[lower:upper:step]`中任意的三个值\n",
  1394. "We can omit any of the three parameters in `M[lower:upper:step]`:"
  1395. ]
  1396. },
  1397. {
  1398. "cell_type": "code",
  1399. "execution_count": 20,
  1400. "metadata": {},
  1401. "outputs": [
  1402. {
  1403. "data": {
  1404. "text/plain": [
  1405. "array([ 1, -2, -3, 4, 5])"
  1406. ]
  1407. },
  1408. "execution_count": 20,
  1409. "metadata": {},
  1410. "output_type": "execute_result"
  1411. }
  1412. ],
  1413. "source": [
  1414. "A[::] # lower, upper, step 都取默认值"
  1415. ]
  1416. },
  1417. {
  1418. "cell_type": "code",
  1419. "execution_count": 57,
  1420. "metadata": {},
  1421. "outputs": [
  1422. {
  1423. "data": {
  1424. "text/plain": [
  1425. "array([ 1, -2, -3, 4, 5])"
  1426. ]
  1427. },
  1428. "execution_count": 57,
  1429. "metadata": {},
  1430. "output_type": "execute_result"
  1431. }
  1432. ],
  1433. "source": [
  1434. "A[:]"
  1435. ]
  1436. },
  1437. {
  1438. "cell_type": "code",
  1439. "execution_count": 58,
  1440. "metadata": {},
  1441. "outputs": [
  1442. {
  1443. "data": {
  1444. "text/plain": [
  1445. "array([ 1, -3, 5])"
  1446. ]
  1447. },
  1448. "execution_count": 58,
  1449. "metadata": {},
  1450. "output_type": "execute_result"
  1451. }
  1452. ],
  1453. "source": [
  1454. "A[::2] # step is 2, lower and upper 代表数组的开始和结束"
  1455. ]
  1456. },
  1457. {
  1458. "cell_type": "code",
  1459. "execution_count": 59,
  1460. "metadata": {},
  1461. "outputs": [
  1462. {
  1463. "data": {
  1464. "text/plain": [
  1465. "array([ 1, -2, -3])"
  1466. ]
  1467. },
  1468. "execution_count": 59,
  1469. "metadata": {},
  1470. "output_type": "execute_result"
  1471. }
  1472. ],
  1473. "source": [
  1474. "A[:3] # 前3个元素"
  1475. ]
  1476. },
  1477. {
  1478. "cell_type": "code",
  1479. "execution_count": 60,
  1480. "metadata": {},
  1481. "outputs": [
  1482. {
  1483. "data": {
  1484. "text/plain": [
  1485. "array([4, 5])"
  1486. ]
  1487. },
  1488. "execution_count": 60,
  1489. "metadata": {},
  1490. "output_type": "execute_result"
  1491. }
  1492. ],
  1493. "source": [
  1494. "A[3:] # 从索引3开始的元素"
  1495. ]
  1496. },
  1497. {
  1498. "cell_type": "markdown",
  1499. "metadata": {},
  1500. "source": [
  1501. "负索引计数从数组的结束(正索引从开始):"
  1502. ]
  1503. },
  1504. {
  1505. "cell_type": "code",
  1506. "execution_count": 61,
  1507. "metadata": {},
  1508. "outputs": [],
  1509. "source": [
  1510. "A = np.array([1,2,3,4,5])"
  1511. ]
  1512. },
  1513. {
  1514. "cell_type": "code",
  1515. "execution_count": 62,
  1516. "metadata": {},
  1517. "outputs": [
  1518. {
  1519. "data": {
  1520. "text/plain": [
  1521. "5"
  1522. ]
  1523. },
  1524. "execution_count": 62,
  1525. "metadata": {},
  1526. "output_type": "execute_result"
  1527. }
  1528. ],
  1529. "source": [
  1530. "A[-1] # 数组中最后一个元素"
  1531. ]
  1532. },
  1533. {
  1534. "cell_type": "code",
  1535. "execution_count": 63,
  1536. "metadata": {},
  1537. "outputs": [
  1538. {
  1539. "data": {
  1540. "text/plain": [
  1541. "array([3, 4, 5])"
  1542. ]
  1543. },
  1544. "execution_count": 63,
  1545. "metadata": {},
  1546. "output_type": "execute_result"
  1547. }
  1548. ],
  1549. "source": [
  1550. "A[-3:] # 最后三个元素"
  1551. ]
  1552. },
  1553. {
  1554. "cell_type": "markdown",
  1555. "metadata": {},
  1556. "source": [
  1557. "索引切片的工作方式与多维数组完全相同:"
  1558. ]
  1559. },
  1560. {
  1561. "cell_type": "code",
  1562. "execution_count": 24,
  1563. "metadata": {},
  1564. "outputs": [
  1565. {
  1566. "data": {
  1567. "text/plain": [
  1568. "array([[ 0, 1, 2, 3, 4],\n",
  1569. " [10, 11, 12, 13, 14],\n",
  1570. " [20, 21, 22, 23, 24],\n",
  1571. " [30, 31, 32, 33, 34],\n",
  1572. " [40, 41, 42, 43, 44]])"
  1573. ]
  1574. },
  1575. "execution_count": 24,
  1576. "metadata": {},
  1577. "output_type": "execute_result"
  1578. }
  1579. ],
  1580. "source": [
  1581. "A = np.array([[n+m*10 for n in range(5)] for m in range(5)])\n",
  1582. "\n",
  1583. "A"
  1584. ]
  1585. },
  1586. {
  1587. "cell_type": "code",
  1588. "execution_count": 25,
  1589. "metadata": {},
  1590. "outputs": [
  1591. {
  1592. "data": {
  1593. "text/plain": [
  1594. "array([[11, 12, 13],\n",
  1595. " [21, 22, 23],\n",
  1596. " [31, 32, 33]])"
  1597. ]
  1598. },
  1599. "execution_count": 25,
  1600. "metadata": {},
  1601. "output_type": "execute_result"
  1602. }
  1603. ],
  1604. "source": [
  1605. "# 原始数组中的一个块\n",
  1606. "A[1:4, 1:4]"
  1607. ]
  1608. },
  1609. {
  1610. "cell_type": "code",
  1611. "execution_count": 66,
  1612. "metadata": {},
  1613. "outputs": [
  1614. {
  1615. "data": {
  1616. "text/plain": [
  1617. "array([[ 0, 2, 4],\n",
  1618. " [20, 22, 24],\n",
  1619. " [40, 42, 44]])"
  1620. ]
  1621. },
  1622. "execution_count": 66,
  1623. "metadata": {},
  1624. "output_type": "execute_result"
  1625. }
  1626. ],
  1627. "source": [
  1628. "# 步长\n",
  1629. "A[::2, ::2]"
  1630. ]
  1631. },
  1632. {
  1633. "cell_type": "markdown",
  1634. "metadata": {},
  1635. "source": [
  1636. "### 5.3 花式索引"
  1637. ]
  1638. },
  1639. {
  1640. "cell_type": "markdown",
  1641. "metadata": {},
  1642. "source": [
  1643. "Fancy索引是一个名称时,一个数组或列表被使用在一个索引:"
  1644. ]
  1645. },
  1646. {
  1647. "cell_type": "code",
  1648. "execution_count": 26,
  1649. "metadata": {},
  1650. "outputs": [
  1651. {
  1652. "name": "stdout",
  1653. "output_type": "stream",
  1654. "text": [
  1655. "[[10 11 12 13 14]\n",
  1656. " [20 21 22 23 24]\n",
  1657. " [30 31 32 33 34]]\n",
  1658. "[[ 0 1 2 3 4]\n",
  1659. " [10 11 12 13 14]\n",
  1660. " [20 21 22 23 24]\n",
  1661. " [30 31 32 33 34]\n",
  1662. " [40 41 42 43 44]]\n"
  1663. ]
  1664. }
  1665. ],
  1666. "source": [
  1667. "A = np.array([[n+m*10 for n in range(5)] for m in range(5)])\n",
  1668. "\n",
  1669. "row_indices = [1, 2, 3]\n",
  1670. "print(A[row_indices])\n",
  1671. "print(A)"
  1672. ]
  1673. },
  1674. {
  1675. "cell_type": "code",
  1676. "execution_count": 27,
  1677. "metadata": {},
  1678. "outputs": [
  1679. {
  1680. "data": {
  1681. "text/plain": [
  1682. "array([11, 21, 34])"
  1683. ]
  1684. },
  1685. "execution_count": 27,
  1686. "metadata": {},
  1687. "output_type": "execute_result"
  1688. }
  1689. ],
  1690. "source": [
  1691. "col_indices = [1, 1, -1] # 索引-1 代表最后一个元素\n",
  1692. "A[row_indices, col_indices]"
  1693. ]
  1694. },
  1695. {
  1696. "cell_type": "markdown",
  1697. "metadata": {},
  1698. "source": [
  1699. "我们也可以使用索引掩码:如果索引掩码是一个数据类型`bool`的Numpy数组,那么一个元素被选择(True)或不(False)取决于索引掩码在每个元素位置的值:"
  1700. ]
  1701. },
  1702. {
  1703. "cell_type": "code",
  1704. "execution_count": 28,
  1705. "metadata": {},
  1706. "outputs": [
  1707. {
  1708. "data": {
  1709. "text/plain": [
  1710. "array([0, 1, 2, 3, 4])"
  1711. ]
  1712. },
  1713. "execution_count": 28,
  1714. "metadata": {},
  1715. "output_type": "execute_result"
  1716. }
  1717. ],
  1718. "source": [
  1719. "B = array([n for n in range(5)])\n",
  1720. "B"
  1721. ]
  1722. },
  1723. {
  1724. "cell_type": "code",
  1725. "execution_count": 29,
  1726. "metadata": {},
  1727. "outputs": [
  1728. {
  1729. "data": {
  1730. "text/plain": [
  1731. "array([0, 2])"
  1732. ]
  1733. },
  1734. "execution_count": 29,
  1735. "metadata": {},
  1736. "output_type": "execute_result"
  1737. }
  1738. ],
  1739. "source": [
  1740. "row_mask = array([True, False, True, False, False])\n",
  1741. "B[row_mask]"
  1742. ]
  1743. },
  1744. {
  1745. "cell_type": "code",
  1746. "execution_count": 72,
  1747. "metadata": {},
  1748. "outputs": [
  1749. {
  1750. "data": {
  1751. "text/plain": [
  1752. "array([0, 2])"
  1753. ]
  1754. },
  1755. "execution_count": 72,
  1756. "metadata": {},
  1757. "output_type": "execute_result"
  1758. }
  1759. ],
  1760. "source": [
  1761. "# 相同的事情\n",
  1762. "row_mask = array([1,0,1,0,0], dtype=bool)\n",
  1763. "B[row_mask]"
  1764. ]
  1765. },
  1766. {
  1767. "cell_type": "markdown",
  1768. "metadata": {},
  1769. "source": [
  1770. "这个特性对于有条件地从数组中选择元素非常有用,例如使用比较运算符:"
  1771. ]
  1772. },
  1773. {
  1774. "cell_type": "code",
  1775. "execution_count": 73,
  1776. "metadata": {},
  1777. "outputs": [
  1778. {
  1779. "data": {
  1780. "text/plain": [
  1781. "array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. ,\n",
  1782. " 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])"
  1783. ]
  1784. },
  1785. "execution_count": 73,
  1786. "metadata": {},
  1787. "output_type": "execute_result"
  1788. }
  1789. ],
  1790. "source": [
  1791. "x = np.arange(0, 10, 0.5)\n",
  1792. "x"
  1793. ]
  1794. },
  1795. {
  1796. "cell_type": "code",
  1797. "execution_count": 74,
  1798. "metadata": {},
  1799. "outputs": [
  1800. {
  1801. "data": {
  1802. "text/plain": [
  1803. "array([False, False, False, False, False, False, False, False, False,\n",
  1804. " False, False, True, True, True, True, False, False, False,\n",
  1805. " False, False])"
  1806. ]
  1807. },
  1808. "execution_count": 74,
  1809. "metadata": {},
  1810. "output_type": "execute_result"
  1811. }
  1812. ],
  1813. "source": [
  1814. "mask = (5 < x) * (x < 7.5)\n",
  1815. "\n",
  1816. "mask"
  1817. ]
  1818. },
  1819. {
  1820. "cell_type": "code",
  1821. "execution_count": 72,
  1822. "metadata": {},
  1823. "outputs": [
  1824. {
  1825. "data": {
  1826. "text/plain": [
  1827. "array([5.5, 6. , 6.5, 7. ])"
  1828. ]
  1829. },
  1830. "execution_count": 72,
  1831. "metadata": {},
  1832. "output_type": "execute_result"
  1833. }
  1834. ],
  1835. "source": [
  1836. "x[mask]"
  1837. ]
  1838. },
  1839. {
  1840. "cell_type": "code",
  1841. "execution_count": 75,
  1842. "metadata": {},
  1843. "outputs": [
  1844. {
  1845. "data": {
  1846. "text/plain": [
  1847. "array([3.5, 4. , 4.5, 5. , 5.5])"
  1848. ]
  1849. },
  1850. "execution_count": 75,
  1851. "metadata": {},
  1852. "output_type": "execute_result"
  1853. }
  1854. ],
  1855. "source": [
  1856. "x[(3<x) * (x<6)]"
  1857. ]
  1858. },
  1859. {
  1860. "cell_type": "markdown",
  1861. "metadata": {},
  1862. "source": [
  1863. "## 6. 用于从数组中提取数据和创建数组的函数"
  1864. ]
  1865. },
  1866. {
  1867. "cell_type": "markdown",
  1868. "metadata": {},
  1869. "source": [
  1870. "### 6.1 where"
  1871. ]
  1872. },
  1873. {
  1874. "cell_type": "markdown",
  1875. "metadata": {},
  1876. "source": [
  1877. "索引掩码可以使用`where`函数转换为位置索引"
  1878. ]
  1879. },
  1880. {
  1881. "cell_type": "code",
  1882. "execution_count": 32,
  1883. "metadata": {},
  1884. "outputs": [
  1885. {
  1886. "data": {
  1887. "text/plain": [
  1888. "(array([11, 12, 13, 14]),)"
  1889. ]
  1890. },
  1891. "execution_count": 32,
  1892. "metadata": {},
  1893. "output_type": "execute_result"
  1894. }
  1895. ],
  1896. "source": [
  1897. "x = np.arange(0, 10, 0.5)\n",
  1898. "mask = (5 < x) * (x < 7.5)\n",
  1899. "\n",
  1900. "indices = np.where(mask)\n",
  1901. "\n",
  1902. "indices"
  1903. ]
  1904. },
  1905. {
  1906. "cell_type": "code",
  1907. "execution_count": 33,
  1908. "metadata": {},
  1909. "outputs": [
  1910. {
  1911. "data": {
  1912. "text/plain": [
  1913. "array([5.5, 6. , 6.5, 7. ])"
  1914. ]
  1915. },
  1916. "execution_count": 33,
  1917. "metadata": {},
  1918. "output_type": "execute_result"
  1919. }
  1920. ],
  1921. "source": [
  1922. "x[indices] # 这个索引等同于花式索引x[mask]"
  1923. ]
  1924. },
  1925. {
  1926. "cell_type": "markdown",
  1927. "metadata": {},
  1928. "source": [
  1929. "### 6.2 diag"
  1930. ]
  1931. },
  1932. {
  1933. "cell_type": "markdown",
  1934. "metadata": {},
  1935. "source": [
  1936. "使用diag函数,我们还可以提取一个数组的对角线和亚对角线:"
  1937. ]
  1938. },
  1939. {
  1940. "cell_type": "code",
  1941. "execution_count": 34,
  1942. "metadata": {},
  1943. "outputs": [
  1944. {
  1945. "data": {
  1946. "text/plain": [
  1947. "array([ 0, 11, 22, 33, 44])"
  1948. ]
  1949. },
  1950. "execution_count": 34,
  1951. "metadata": {},
  1952. "output_type": "execute_result"
  1953. }
  1954. ],
  1955. "source": [
  1956. "np.diag(A)"
  1957. ]
  1958. },
  1959. {
  1960. "cell_type": "code",
  1961. "execution_count": 35,
  1962. "metadata": {},
  1963. "outputs": [
  1964. {
  1965. "data": {
  1966. "text/plain": [
  1967. "array([10, 21, 32, 43])"
  1968. ]
  1969. },
  1970. "execution_count": 35,
  1971. "metadata": {},
  1972. "output_type": "execute_result"
  1973. }
  1974. ],
  1975. "source": [
  1976. "np.diag(A, -1)"
  1977. ]
  1978. },
  1979. {
  1980. "cell_type": "markdown",
  1981. "metadata": {},
  1982. "source": [
  1983. "### 6.3 take"
  1984. ]
  1985. },
  1986. {
  1987. "cell_type": "markdown",
  1988. "metadata": {},
  1989. "source": [
  1990. "`take` 函数和上面描述的花式索引类似"
  1991. ]
  1992. },
  1993. {
  1994. "cell_type": "code",
  1995. "execution_count": 36,
  1996. "metadata": {},
  1997. "outputs": [
  1998. {
  1999. "data": {
  2000. "text/plain": [
  2001. "array([-3, -2, -1, 0, 1, 2])"
  2002. ]
  2003. },
  2004. "execution_count": 36,
  2005. "metadata": {},
  2006. "output_type": "execute_result"
  2007. }
  2008. ],
  2009. "source": [
  2010. "v2 = np.arange(-3,3)\n",
  2011. "v2"
  2012. ]
  2013. },
  2014. {
  2015. "cell_type": "code",
  2016. "execution_count": 37,
  2017. "metadata": {},
  2018. "outputs": [
  2019. {
  2020. "data": {
  2021. "text/plain": [
  2022. "array([-2, 0, 2])"
  2023. ]
  2024. },
  2025. "execution_count": 37,
  2026. "metadata": {},
  2027. "output_type": "execute_result"
  2028. }
  2029. ],
  2030. "source": [
  2031. "row_indices = [1, 3, 5]\n",
  2032. "v2[row_indices] # 花式索引"
  2033. ]
  2034. },
  2035. {
  2036. "cell_type": "code",
  2037. "execution_count": 38,
  2038. "metadata": {},
  2039. "outputs": [
  2040. {
  2041. "data": {
  2042. "text/plain": [
  2043. "array([-2, 0, 2])"
  2044. ]
  2045. },
  2046. "execution_count": 38,
  2047. "metadata": {},
  2048. "output_type": "execute_result"
  2049. }
  2050. ],
  2051. "source": [
  2052. "v2.take(row_indices)"
  2053. ]
  2054. },
  2055. {
  2056. "cell_type": "markdown",
  2057. "metadata": {},
  2058. "source": [
  2059. "但是`take`也作用在列表和其他的物体上:"
  2060. ]
  2061. },
  2062. {
  2063. "cell_type": "code",
  2064. "execution_count": 39,
  2065. "metadata": {},
  2066. "outputs": [
  2067. {
  2068. "data": {
  2069. "text/plain": [
  2070. "array([-2, 0, 2])"
  2071. ]
  2072. },
  2073. "execution_count": 39,
  2074. "metadata": {},
  2075. "output_type": "execute_result"
  2076. }
  2077. ],
  2078. "source": [
  2079. "np.take([-3, -2, -1, 0, 1, 2], row_indices)"
  2080. ]
  2081. },
  2082. {
  2083. "cell_type": "markdown",
  2084. "metadata": {},
  2085. "source": [
  2086. "### 6.4 choose"
  2087. ]
  2088. },
  2089. {
  2090. "cell_type": "markdown",
  2091. "metadata": {},
  2092. "source": [
  2093. "通过从几个数组中选择元素来构造一个数组:"
  2094. ]
  2095. },
  2096. {
  2097. "cell_type": "code",
  2098. "execution_count": 84,
  2099. "metadata": {},
  2100. "outputs": [
  2101. {
  2102. "data": {
  2103. "text/plain": [
  2104. "array([ 5, -2, 5, -2])"
  2105. ]
  2106. },
  2107. "execution_count": 84,
  2108. "metadata": {},
  2109. "output_type": "execute_result"
  2110. }
  2111. ],
  2112. "source": [
  2113. "which = [1, 0, 1, 0]\n",
  2114. "choices = [[-2,-2,-2,-2], [5,5,5,5]]\n",
  2115. "\n",
  2116. "np.choose(which, choices)"
  2117. ]
  2118. },
  2119. {
  2120. "cell_type": "markdown",
  2121. "metadata": {},
  2122. "source": [
  2123. "## 7. 线性代数"
  2124. ]
  2125. },
  2126. {
  2127. "cell_type": "markdown",
  2128. "metadata": {},
  2129. "source": [
  2130. "向量化代码是使用Python/Numpy编写高效数值计算的关键。这意味着尽可能多的程序应该用矩阵和向量运算来表示,比如矩阵-矩阵乘法。"
  2131. ]
  2132. },
  2133. {
  2134. "cell_type": "markdown",
  2135. "metadata": {},
  2136. "source": [
  2137. "### 7.1 Scalar-array 操作"
  2138. ]
  2139. },
  2140. {
  2141. "cell_type": "markdown",
  2142. "metadata": {},
  2143. "source": [
  2144. "我们可以使用常用的算术运算符来对标量数组进行乘、加、减和除运算。"
  2145. ]
  2146. },
  2147. {
  2148. "cell_type": "code",
  2149. "execution_count": 40,
  2150. "metadata": {},
  2151. "outputs": [],
  2152. "source": [
  2153. "import numpy as np\n",
  2154. "\n",
  2155. "v1 = np.arange(0, 5)"
  2156. ]
  2157. },
  2158. {
  2159. "cell_type": "code",
  2160. "execution_count": 41,
  2161. "metadata": {},
  2162. "outputs": [
  2163. {
  2164. "data": {
  2165. "text/plain": [
  2166. "array([0, 2, 4, 6, 8])"
  2167. ]
  2168. },
  2169. "execution_count": 41,
  2170. "metadata": {},
  2171. "output_type": "execute_result"
  2172. }
  2173. ],
  2174. "source": [
  2175. "v1 * 2"
  2176. ]
  2177. },
  2178. {
  2179. "cell_type": "code",
  2180. "execution_count": 42,
  2181. "metadata": {},
  2182. "outputs": [
  2183. {
  2184. "data": {
  2185. "text/plain": [
  2186. "array([2, 3, 4, 5, 6])"
  2187. ]
  2188. },
  2189. "execution_count": 42,
  2190. "metadata": {},
  2191. "output_type": "execute_result"
  2192. }
  2193. ],
  2194. "source": [
  2195. "v1 + 2"
  2196. ]
  2197. },
  2198. {
  2199. "cell_type": "code",
  2200. "execution_count": 43,
  2201. "metadata": {},
  2202. "outputs": [
  2203. {
  2204. "data": {
  2205. "text/plain": [
  2206. "(array([[ 0, 2, 4, 6, 8],\n",
  2207. " [20, 22, 24, 26, 28],\n",
  2208. " [40, 42, 44, 46, 48],\n",
  2209. " [60, 62, 64, 66, 68],\n",
  2210. " [80, 82, 84, 86, 88]]),\n",
  2211. " array([[ 2, 3, 4, 5, 6],\n",
  2212. " [12, 13, 14, 15, 16],\n",
  2213. " [22, 23, 24, 25, 26],\n",
  2214. " [32, 33, 34, 35, 36],\n",
  2215. " [42, 43, 44, 45, 46]]))"
  2216. ]
  2217. },
  2218. "execution_count": 43,
  2219. "metadata": {},
  2220. "output_type": "execute_result"
  2221. }
  2222. ],
  2223. "source": [
  2224. "A = np.array([[n+m*10 for n in range(5)] for m in range(5)])\n",
  2225. "\n",
  2226. "A * 2, A + 2"
  2227. ]
  2228. },
  2229. {
  2230. "cell_type": "markdown",
  2231. "metadata": {},
  2232. "source": [
  2233. "### 7.2 数组间的元素操作"
  2234. ]
  2235. },
  2236. {
  2237. "cell_type": "markdown",
  2238. "metadata": {},
  2239. "source": [
  2240. "当我们对数组进行加法、减法、乘法和除法时,默认的行为是**element-wise**操作:"
  2241. ]
  2242. },
  2243. {
  2244. "cell_type": "code",
  2245. "execution_count": 44,
  2246. "metadata": {},
  2247. "outputs": [
  2248. {
  2249. "data": {
  2250. "text/plain": [
  2251. "array([[0.01114895, 0.05665904, 0.29848178],\n",
  2252. " [0.05093977, 0.00040534, 0.14069349]])"
  2253. ]
  2254. },
  2255. "execution_count": 44,
  2256. "metadata": {},
  2257. "output_type": "execute_result"
  2258. }
  2259. ],
  2260. "source": [
  2261. "A = np.random.rand(2, 3)\n",
  2262. "\n",
  2263. "A * A # element-wise 乘法"
  2264. ]
  2265. },
  2266. {
  2267. "cell_type": "code",
  2268. "execution_count": 45,
  2269. "metadata": {},
  2270. "outputs": [
  2271. {
  2272. "data": {
  2273. "text/plain": [
  2274. "array([ 0, 1, 4, 9, 16])"
  2275. ]
  2276. },
  2277. "execution_count": 45,
  2278. "metadata": {},
  2279. "output_type": "execute_result"
  2280. }
  2281. ],
  2282. "source": [
  2283. "v1 * v1"
  2284. ]
  2285. },
  2286. {
  2287. "cell_type": "markdown",
  2288. "metadata": {},
  2289. "source": [
  2290. "如果我们用兼容的形状进行数组的乘法,我们会得到每一行的对位相乘结果:"
  2291. ]
  2292. },
  2293. {
  2294. "cell_type": "code",
  2295. "execution_count": 46,
  2296. "metadata": {},
  2297. "outputs": [
  2298. {
  2299. "data": {
  2300. "text/plain": [
  2301. "((2, 3), (5,))"
  2302. ]
  2303. },
  2304. "execution_count": 46,
  2305. "metadata": {},
  2306. "output_type": "execute_result"
  2307. }
  2308. ],
  2309. "source": [
  2310. "A.shape, v1.shape"
  2311. ]
  2312. },
  2313. {
  2314. "cell_type": "code",
  2315. "execution_count": 47,
  2316. "metadata": {},
  2317. "outputs": [
  2318. {
  2319. "ename": "ValueError",
  2320. "evalue": "operands could not be broadcast together with shapes (2,3) (5,) ",
  2321. "output_type": "error",
  2322. "traceback": [
  2323. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  2324. "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
  2325. "\u001b[0;32m<ipython-input-47-1af134c5c5d0>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mA\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mv1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  2326. "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,3) (5,) "
  2327. ]
  2328. }
  2329. ],
  2330. "source": [
  2331. "A * v1"
  2332. ]
  2333. },
  2334. {
  2335. "cell_type": "markdown",
  2336. "metadata": {},
  2337. "source": [
  2338. "### 7.4 矩阵代数"
  2339. ]
  2340. },
  2341. {
  2342. "cell_type": "markdown",
  2343. "metadata": {},
  2344. "source": [
  2345. "那么矩阵的乘法呢?有两种方法。我们可以使用点函数,它对两个参数应用矩阵-矩阵、矩阵-向量或内向量乘法"
  2346. ]
  2347. },
  2348. {
  2349. "cell_type": "code",
  2350. "execution_count": 48,
  2351. "metadata": {},
  2352. "outputs": [
  2353. {
  2354. "data": {
  2355. "text/plain": [
  2356. "array([[1.903065 , 1.67919746, 2.3622027 , 1.88412044, 1.11105008],\n",
  2357. " [1.41054459, 1.8120306 , 1.88727633, 1.43014072, 0.86699677],\n",
  2358. " [1.66542157, 1.50549264, 1.92165524, 1.68084913, 0.96953227],\n",
  2359. " [2.60415277, 2.45432125, 3.10136235, 2.57384453, 1.3456306 ],\n",
  2360. " [1.2318307 , 1.12068957, 1.38086198, 1.18571816, 0.5442449 ]])"
  2361. ]
  2362. },
  2363. "execution_count": 48,
  2364. "metadata": {},
  2365. "output_type": "execute_result"
  2366. }
  2367. ],
  2368. "source": [
  2369. "A = np.random.rand(5, 5)\n",
  2370. "v = np.random.rand(5, 1)\n",
  2371. "\n",
  2372. "np.dot(A, A)"
  2373. ]
  2374. },
  2375. {
  2376. "cell_type": "code",
  2377. "execution_count": 49,
  2378. "metadata": {},
  2379. "outputs": [
  2380. {
  2381. "data": {
  2382. "text/plain": [
  2383. "array([5.14498999, 4.21899366, 6.02247961, 7.06795814, 2.91510261])"
  2384. ]
  2385. },
  2386. "execution_count": 49,
  2387. "metadata": {},
  2388. "output_type": "execute_result"
  2389. }
  2390. ],
  2391. "source": [
  2392. "np.dot(A, v1)"
  2393. ]
  2394. },
  2395. {
  2396. "cell_type": "code",
  2397. "execution_count": 50,
  2398. "metadata": {},
  2399. "outputs": [
  2400. {
  2401. "data": {
  2402. "text/plain": [
  2403. "30"
  2404. ]
  2405. },
  2406. "execution_count": 50,
  2407. "metadata": {},
  2408. "output_type": "execute_result"
  2409. }
  2410. ],
  2411. "source": [
  2412. "np.dot(v1, v1)"
  2413. ]
  2414. },
  2415. {
  2416. "cell_type": "markdown",
  2417. "metadata": {},
  2418. "source": [
  2419. "另外,我们可以将数组对象投到`matrix`类型上。这将改变标准算术运算符`+, -, *` 的行为,以使用矩阵代数。"
  2420. ]
  2421. },
  2422. {
  2423. "cell_type": "code",
  2424. "execution_count": 51,
  2425. "metadata": {},
  2426. "outputs": [],
  2427. "source": [
  2428. "M = np.matrix(A)\n",
  2429. "v = np.matrix(v1).T # make it a column vector"
  2430. ]
  2431. },
  2432. {
  2433. "cell_type": "code",
  2434. "execution_count": 52,
  2435. "metadata": {},
  2436. "outputs": [
  2437. {
  2438. "data": {
  2439. "text/plain": [
  2440. "matrix([[0],\n",
  2441. " [1],\n",
  2442. " [2],\n",
  2443. " [3],\n",
  2444. " [4]])"
  2445. ]
  2446. },
  2447. "execution_count": 52,
  2448. "metadata": {},
  2449. "output_type": "execute_result"
  2450. }
  2451. ],
  2452. "source": [
  2453. "v"
  2454. ]
  2455. },
  2456. {
  2457. "cell_type": "code",
  2458. "execution_count": 15,
  2459. "metadata": {},
  2460. "outputs": [
  2461. {
  2462. "data": {
  2463. "text/plain": [
  2464. "matrix([[0.72376121, 1.02741179, 1.84320475, 1.4644025 , 0.93766737],\n",
  2465. " [0.93371216, 1.36026092, 1.81889819, 1.83440464, 1.04760436],\n",
  2466. " [1.09260054, 1.80363181, 2.27237106, 2.28907943, 1.42251772],\n",
  2467. " [0.53394728, 1.08528537, 1.22967423, 1.23649788, 0.90293134],\n",
  2468. " [0.71121961, 1.11261141, 1.74864104, 1.46510406, 0.95440664]])"
  2469. ]
  2470. },
  2471. "execution_count": 15,
  2472. "metadata": {},
  2473. "output_type": "execute_result"
  2474. }
  2475. ],
  2476. "source": [
  2477. "M * M"
  2478. ]
  2479. },
  2480. {
  2481. "cell_type": "code",
  2482. "execution_count": 16,
  2483. "metadata": {},
  2484. "outputs": [
  2485. {
  2486. "data": {
  2487. "text/plain": [
  2488. "matrix([[5.346923 ],\n",
  2489. " [6.32008278],\n",
  2490. " [7.66667311],\n",
  2491. " [3.19229347],\n",
  2492. " [4.84861051]])"
  2493. ]
  2494. },
  2495. "execution_count": 16,
  2496. "metadata": {},
  2497. "output_type": "execute_result"
  2498. }
  2499. ],
  2500. "source": [
  2501. "M * v"
  2502. ]
  2503. },
  2504. {
  2505. "cell_type": "code",
  2506. "execution_count": 18,
  2507. "metadata": {},
  2508. "outputs": [
  2509. {
  2510. "data": {
  2511. "text/plain": [
  2512. "matrix([[30]])"
  2513. ]
  2514. },
  2515. "execution_count": 18,
  2516. "metadata": {},
  2517. "output_type": "execute_result"
  2518. }
  2519. ],
  2520. "source": [
  2521. "# 內积\n",
  2522. "v.T * v"
  2523. ]
  2524. },
  2525. {
  2526. "cell_type": "code",
  2527. "execution_count": 19,
  2528. "metadata": {},
  2529. "outputs": [
  2530. {
  2531. "data": {
  2532. "text/plain": [
  2533. "matrix([[5.346923 ],\n",
  2534. " [7.32008278],\n",
  2535. " [9.66667311],\n",
  2536. " [6.19229347],\n",
  2537. " [8.84861051]])"
  2538. ]
  2539. },
  2540. "execution_count": 19,
  2541. "metadata": {},
  2542. "output_type": "execute_result"
  2543. }
  2544. ],
  2545. "source": [
  2546. "# 对于矩阵对象,适用标准的矩阵代数\n",
  2547. "v + M*v"
  2548. ]
  2549. },
  2550. {
  2551. "cell_type": "markdown",
  2552. "metadata": {},
  2553. "source": [
  2554. "如果我们尝试用不相配的矩阵形状加,减或者乘我们会得到错误:"
  2555. ]
  2556. },
  2557. {
  2558. "cell_type": "code",
  2559. "execution_count": 125,
  2560. "metadata": {},
  2561. "outputs": [],
  2562. "source": [
  2563. "v = np.matrix([1,2,3,4,5,6]).T"
  2564. ]
  2565. },
  2566. {
  2567. "cell_type": "code",
  2568. "execution_count": 20,
  2569. "metadata": {},
  2570. "outputs": [
  2571. {
  2572. "data": {
  2573. "text/plain": [
  2574. "((5, 5), (5, 1))"
  2575. ]
  2576. },
  2577. "execution_count": 20,
  2578. "metadata": {},
  2579. "output_type": "execute_result"
  2580. }
  2581. ],
  2582. "source": [
  2583. "np.shape(M), np.shape(v)"
  2584. ]
  2585. },
  2586. {
  2587. "cell_type": "code",
  2588. "execution_count": 21,
  2589. "metadata": {},
  2590. "outputs": [
  2591. {
  2592. "data": {
  2593. "text/plain": [
  2594. "matrix([[5.346923 ],\n",
  2595. " [6.32008278],\n",
  2596. " [7.66667311],\n",
  2597. " [3.19229347],\n",
  2598. " [4.84861051]])"
  2599. ]
  2600. },
  2601. "execution_count": 21,
  2602. "metadata": {},
  2603. "output_type": "execute_result"
  2604. }
  2605. ],
  2606. "source": [
  2607. "M * v"
  2608. ]
  2609. },
  2610. {
  2611. "cell_type": "markdown",
  2612. "metadata": {},
  2613. "source": [
  2614. "同样了解相关的函数:`inner`, `outer`, `cross`, `kron`, `tensordot`。例如用`help(kron)`。"
  2615. ]
  2616. },
  2617. {
  2618. "cell_type": "markdown",
  2619. "metadata": {},
  2620. "source": [
  2621. "### 7.5 数组/矩阵转换"
  2622. ]
  2623. },
  2624. {
  2625. "cell_type": "markdown",
  2626. "metadata": {},
  2627. "source": [
  2628. "同样我们也用`.T`对矩阵目标`v`进行转置。我们也可以利用`transpose`函数去实现同样的事情。\n",
  2629. "\n",
  2630. "变换矩阵对象的其他数学函数有:"
  2631. ]
  2632. },
  2633. {
  2634. "cell_type": "code",
  2635. "execution_count": 53,
  2636. "metadata": {},
  2637. "outputs": [
  2638. {
  2639. "name": "stdout",
  2640. "output_type": "stream",
  2641. "text": [
  2642. "[[0.45130455 0.64330743 0.28059702 0.37347175]\n",
  2643. " [0.88485087 0.9022088 0.6700072 0.10678579]\n",
  2644. " [0.98276964 0.05115262 0.29053376 0.40809875]]\n",
  2645. "[[0.45130455 0.88485087 0.98276964]\n",
  2646. " [0.64330743 0.9022088 0.05115262]\n",
  2647. " [0.28059702 0.6700072 0.29053376]\n",
  2648. " [0.37347175 0.10678579 0.40809875]]\n"
  2649. ]
  2650. }
  2651. ],
  2652. "source": [
  2653. "A = np.random.rand(3,4)\n",
  2654. "print(A)\n",
  2655. "print(A.T)"
  2656. ]
  2657. },
  2658. {
  2659. "cell_type": "code",
  2660. "execution_count": 54,
  2661. "metadata": {},
  2662. "outputs": [
  2663. {
  2664. "data": {
  2665. "text/plain": [
  2666. "matrix([[0.+1.j, 0.+2.j],\n",
  2667. " [0.+3.j, 0.+4.j]])"
  2668. ]
  2669. },
  2670. "execution_count": 54,
  2671. "metadata": {},
  2672. "output_type": "execute_result"
  2673. }
  2674. ],
  2675. "source": [
  2676. "C = np.matrix([[1j, 2j], [3j, 4j]])\n",
  2677. "C"
  2678. ]
  2679. },
  2680. {
  2681. "cell_type": "code",
  2682. "execution_count": 55,
  2683. "metadata": {},
  2684. "outputs": [
  2685. {
  2686. "data": {
  2687. "text/plain": [
  2688. "matrix([[0.-1.j, 0.-2.j],\n",
  2689. " [0.-3.j, 0.-4.j]])"
  2690. ]
  2691. },
  2692. "execution_count": 55,
  2693. "metadata": {},
  2694. "output_type": "execute_result"
  2695. }
  2696. ],
  2697. "source": [
  2698. "np.conjugate(C)"
  2699. ]
  2700. },
  2701. {
  2702. "cell_type": "markdown",
  2703. "metadata": {},
  2704. "source": [
  2705. "厄米共轭:转置+共轭"
  2706. ]
  2707. },
  2708. {
  2709. "cell_type": "code",
  2710. "execution_count": 56,
  2711. "metadata": {},
  2712. "outputs": [
  2713. {
  2714. "data": {
  2715. "text/plain": [
  2716. "matrix([[0.-1.j, 0.-3.j],\n",
  2717. " [0.-2.j, 0.-4.j]])"
  2718. ]
  2719. },
  2720. "execution_count": 56,
  2721. "metadata": {},
  2722. "output_type": "execute_result"
  2723. }
  2724. ],
  2725. "source": [
  2726. "C.H"
  2727. ]
  2728. },
  2729. {
  2730. "cell_type": "markdown",
  2731. "metadata": {},
  2732. "source": [
  2733. "我们可以将复数数组的实部和虚部提取出来并用`real`和`imag`来表示:"
  2734. ]
  2735. },
  2736. {
  2737. "cell_type": "code",
  2738. "execution_count": 57,
  2739. "metadata": {},
  2740. "outputs": [
  2741. {
  2742. "data": {
  2743. "text/plain": [
  2744. "matrix([[0., 0.],\n",
  2745. " [0., 0.]])"
  2746. ]
  2747. },
  2748. "execution_count": 57,
  2749. "metadata": {},
  2750. "output_type": "execute_result"
  2751. }
  2752. ],
  2753. "source": [
  2754. "np.real(C) # same as: C.real"
  2755. ]
  2756. },
  2757. {
  2758. "cell_type": "code",
  2759. "execution_count": 58,
  2760. "metadata": {},
  2761. "outputs": [
  2762. {
  2763. "data": {
  2764. "text/plain": [
  2765. "matrix([[1., 2.],\n",
  2766. " [3., 4.]])"
  2767. ]
  2768. },
  2769. "execution_count": 58,
  2770. "metadata": {},
  2771. "output_type": "execute_result"
  2772. }
  2773. ],
  2774. "source": [
  2775. "np.imag(C) # same as: C.imag"
  2776. ]
  2777. },
  2778. {
  2779. "cell_type": "markdown",
  2780. "metadata": {},
  2781. "source": [
  2782. "或者说复数和绝对值"
  2783. ]
  2784. },
  2785. {
  2786. "cell_type": "code",
  2787. "execution_count": 59,
  2788. "metadata": {},
  2789. "outputs": [
  2790. {
  2791. "data": {
  2792. "text/plain": [
  2793. "matrix([[0.78539816, 1.10714872],\n",
  2794. " [1.24904577, 1.32581766]])"
  2795. ]
  2796. },
  2797. "execution_count": 59,
  2798. "metadata": {},
  2799. "output_type": "execute_result"
  2800. }
  2801. ],
  2802. "source": [
  2803. "np.angle(C+1) # heads up MATLAB Users, angle is used instead of arg"
  2804. ]
  2805. },
  2806. {
  2807. "cell_type": "code",
  2808. "execution_count": 60,
  2809. "metadata": {},
  2810. "outputs": [
  2811. {
  2812. "data": {
  2813. "text/plain": [
  2814. "matrix([[1., 2.],\n",
  2815. " [3., 4.]])"
  2816. ]
  2817. },
  2818. "execution_count": 60,
  2819. "metadata": {},
  2820. "output_type": "execute_result"
  2821. }
  2822. ],
  2823. "source": [
  2824. "np.abs(C)"
  2825. ]
  2826. },
  2827. {
  2828. "cell_type": "markdown",
  2829. "metadata": {},
  2830. "source": [
  2831. "### 7.6 矩阵计算"
  2832. ]
  2833. },
  2834. {
  2835. "cell_type": "markdown",
  2836. "metadata": {},
  2837. "source": [
  2838. "#### 求逆"
  2839. ]
  2840. },
  2841. {
  2842. "cell_type": "code",
  2843. "execution_count": 61,
  2844. "metadata": {},
  2845. "outputs": [
  2846. {
  2847. "data": {
  2848. "text/plain": [
  2849. "matrix([[0.+2.j , 0.-1.j ],\n",
  2850. " [0.-1.5j, 0.+0.5j]])"
  2851. ]
  2852. },
  2853. "execution_count": 61,
  2854. "metadata": {},
  2855. "output_type": "execute_result"
  2856. }
  2857. ],
  2858. "source": [
  2859. "np.linalg.inv(C) # equivalent to C.I "
  2860. ]
  2861. },
  2862. {
  2863. "cell_type": "code",
  2864. "execution_count": 62,
  2865. "metadata": {},
  2866. "outputs": [
  2867. {
  2868. "data": {
  2869. "text/plain": [
  2870. "matrix([[1.00000000e+00+0.j, 0.00000000e+00+0.j],\n",
  2871. " [1.11022302e-16+0.j, 1.00000000e+00+0.j]])"
  2872. ]
  2873. },
  2874. "execution_count": 62,
  2875. "metadata": {},
  2876. "output_type": "execute_result"
  2877. }
  2878. ],
  2879. "source": [
  2880. "C.I * C"
  2881. ]
  2882. },
  2883. {
  2884. "cell_type": "markdown",
  2885. "metadata": {},
  2886. "source": [
  2887. "#### 行列式"
  2888. ]
  2889. },
  2890. {
  2891. "cell_type": "code",
  2892. "execution_count": 63,
  2893. "metadata": {},
  2894. "outputs": [
  2895. {
  2896. "data": {
  2897. "text/plain": [
  2898. "(2.0000000000000004+0j)"
  2899. ]
  2900. },
  2901. "execution_count": 63,
  2902. "metadata": {},
  2903. "output_type": "execute_result"
  2904. }
  2905. ],
  2906. "source": [
  2907. "np.linalg.det(C)"
  2908. ]
  2909. },
  2910. {
  2911. "cell_type": "code",
  2912. "execution_count": 64,
  2913. "metadata": {},
  2914. "outputs": [
  2915. {
  2916. "data": {
  2917. "text/plain": [
  2918. "(0.49999999999999967+0j)"
  2919. ]
  2920. },
  2921. "execution_count": 64,
  2922. "metadata": {},
  2923. "output_type": "execute_result"
  2924. }
  2925. ],
  2926. "source": [
  2927. "np.linalg.det(C.I)"
  2928. ]
  2929. },
  2930. {
  2931. "cell_type": "markdown",
  2932. "metadata": {},
  2933. "source": [
  2934. "### 7.7 数据处理"
  2935. ]
  2936. },
  2937. {
  2938. "cell_type": "markdown",
  2939. "metadata": {},
  2940. "source": [
  2941. "通常将数据集存储在Numpy数组中是非常有用的。Numpy提供了许多函数用于计算数组中数据集的统计。\n",
  2942. "\n",
  2943. "例如,让我们从上面使用的斯德哥尔摩温度数据集计算一些属性。"
  2944. ]
  2945. },
  2946. {
  2947. "cell_type": "code",
  2948. "execution_count": 65,
  2949. "metadata": {},
  2950. "outputs": [
  2951. {
  2952. "data": {
  2953. "text/plain": [
  2954. "(77431, 7)"
  2955. ]
  2956. },
  2957. "execution_count": 65,
  2958. "metadata": {},
  2959. "output_type": "execute_result"
  2960. }
  2961. ],
  2962. "source": [
  2963. "import numpy as np\n",
  2964. "data = np.genfromtxt('stockholm_td_adj.dat')\n",
  2965. "\n",
  2966. "# 提醒一下,温度数据集存储在数据变量中:\n",
  2967. "np.shape(data)"
  2968. ]
  2969. },
  2970. {
  2971. "cell_type": "markdown",
  2972. "metadata": {},
  2973. "source": [
  2974. "#### mean"
  2975. ]
  2976. },
  2977. {
  2978. "cell_type": "code",
  2979. "execution_count": 66,
  2980. "metadata": {},
  2981. "outputs": [
  2982. {
  2983. "name": "stdout",
  2984. "output_type": "stream",
  2985. "text": [
  2986. "(77431, 7)\n"
  2987. ]
  2988. },
  2989. {
  2990. "data": {
  2991. "text/plain": [
  2992. "6.197109684751585"
  2993. ]
  2994. },
  2995. "execution_count": 66,
  2996. "metadata": {},
  2997. "output_type": "execute_result"
  2998. }
  2999. ],
  3000. "source": [
  3001. "# 温度数据在第三列中\n",
  3002. "print(data.shape)\n",
  3003. "np.mean(data[:,3])"
  3004. ]
  3005. },
  3006. {
  3007. "cell_type": "code",
  3008. "execution_count": 67,
  3009. "metadata": {},
  3010. "outputs": [
  3011. {
  3012. "data": {
  3013. "text/plain": [
  3014. "0.536617668205844"
  3015. ]
  3016. },
  3017. "execution_count": 67,
  3018. "metadata": {},
  3019. "output_type": "execute_result"
  3020. }
  3021. ],
  3022. "source": [
  3023. "A = np.random.rand(4, 3)\n",
  3024. "np.mean(A)"
  3025. ]
  3026. },
  3027. {
  3028. "cell_type": "markdown",
  3029. "metadata": {},
  3030. "source": [
  3031. "在过去的200年里,斯德哥尔摩每天的平均气温大约是6.2 C。"
  3032. ]
  3033. },
  3034. {
  3035. "cell_type": "markdown",
  3036. "metadata": {},
  3037. "source": [
  3038. "#### 标准差和方差"
  3039. ]
  3040. },
  3041. {
  3042. "cell_type": "code",
  3043. "execution_count": 68,
  3044. "metadata": {},
  3045. "outputs": [
  3046. {
  3047. "data": {
  3048. "text/plain": [
  3049. "(8.282271621340573, 68.59602320966341)"
  3050. ]
  3051. },
  3052. "execution_count": 68,
  3053. "metadata": {},
  3054. "output_type": "execute_result"
  3055. }
  3056. ],
  3057. "source": [
  3058. "np.std(data[:,3]), np.var(data[:,3])"
  3059. ]
  3060. },
  3061. {
  3062. "cell_type": "markdown",
  3063. "metadata": {},
  3064. "source": [
  3065. "#### 最小值和最大值"
  3066. ]
  3067. },
  3068. {
  3069. "cell_type": "code",
  3070. "execution_count": 69,
  3071. "metadata": {},
  3072. "outputs": [
  3073. {
  3074. "data": {
  3075. "text/plain": [
  3076. "-25.8"
  3077. ]
  3078. },
  3079. "execution_count": 69,
  3080. "metadata": {},
  3081. "output_type": "execute_result"
  3082. }
  3083. ],
  3084. "source": [
  3085. "# 最低日平均温度\n",
  3086. "data[:,3].min()"
  3087. ]
  3088. },
  3089. {
  3090. "cell_type": "code",
  3091. "execution_count": 70,
  3092. "metadata": {},
  3093. "outputs": [
  3094. {
  3095. "data": {
  3096. "text/plain": [
  3097. "28.3"
  3098. ]
  3099. },
  3100. "execution_count": 70,
  3101. "metadata": {},
  3102. "output_type": "execute_result"
  3103. }
  3104. ],
  3105. "source": [
  3106. "# 最高日平均温度\n",
  3107. "data[:,3].max()"
  3108. ]
  3109. },
  3110. {
  3111. "cell_type": "markdown",
  3112. "metadata": {},
  3113. "source": [
  3114. "#### sum, prod, and trace"
  3115. ]
  3116. },
  3117. {
  3118. "cell_type": "code",
  3119. "execution_count": 44,
  3120. "metadata": {},
  3121. "outputs": [
  3122. {
  3123. "data": {
  3124. "text/plain": [
  3125. "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
  3126. ]
  3127. },
  3128. "execution_count": 44,
  3129. "metadata": {},
  3130. "output_type": "execute_result"
  3131. }
  3132. ],
  3133. "source": [
  3134. "d = np.arange(0, 10)\n",
  3135. "d"
  3136. ]
  3137. },
  3138. {
  3139. "cell_type": "code",
  3140. "execution_count": 45,
  3141. "metadata": {},
  3142. "outputs": [
  3143. {
  3144. "data": {
  3145. "text/plain": [
  3146. "45"
  3147. ]
  3148. },
  3149. "execution_count": 45,
  3150. "metadata": {},
  3151. "output_type": "execute_result"
  3152. }
  3153. ],
  3154. "source": [
  3155. "# 将所有的元素相加\n",
  3156. "np.sum(d)"
  3157. ]
  3158. },
  3159. {
  3160. "cell_type": "code",
  3161. "execution_count": 46,
  3162. "metadata": {},
  3163. "outputs": [
  3164. {
  3165. "data": {
  3166. "text/plain": [
  3167. "3628800"
  3168. ]
  3169. },
  3170. "execution_count": 46,
  3171. "metadata": {},
  3172. "output_type": "execute_result"
  3173. }
  3174. ],
  3175. "source": [
  3176. "# 全元素积分\n",
  3177. "np.prod(d+1)"
  3178. ]
  3179. },
  3180. {
  3181. "cell_type": "code",
  3182. "execution_count": 47,
  3183. "metadata": {},
  3184. "outputs": [
  3185. {
  3186. "data": {
  3187. "text/plain": [
  3188. "array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45])"
  3189. ]
  3190. },
  3191. "execution_count": 47,
  3192. "metadata": {},
  3193. "output_type": "execute_result"
  3194. }
  3195. ],
  3196. "source": [
  3197. "# 累计求和\n",
  3198. "np.cumsum(d)"
  3199. ]
  3200. },
  3201. {
  3202. "cell_type": "code",
  3203. "execution_count": 48,
  3204. "metadata": {},
  3205. "outputs": [
  3206. {
  3207. "data": {
  3208. "text/plain": [
  3209. "array([ 1, 2, 6, 24, 120, 720, 5040,\n",
  3210. " 40320, 362880, 3628800])"
  3211. ]
  3212. },
  3213. "execution_count": 48,
  3214. "metadata": {},
  3215. "output_type": "execute_result"
  3216. }
  3217. ],
  3218. "source": [
  3219. "# 累计成绩\n",
  3220. "np.cumprod(d+1)"
  3221. ]
  3222. },
  3223. {
  3224. "cell_type": "code",
  3225. "execution_count": 49,
  3226. "metadata": {},
  3227. "outputs": [
  3228. {
  3229. "data": {
  3230. "text/plain": [
  3231. "1.5460218417057932"
  3232. ]
  3233. },
  3234. "execution_count": 49,
  3235. "metadata": {},
  3236. "output_type": "execute_result"
  3237. }
  3238. ],
  3239. "source": [
  3240. "# 计算对角线元素的和,和diag(A).sum()一样\n",
  3241. "np.trace(A)"
  3242. ]
  3243. },
  3244. {
  3245. "cell_type": "markdown",
  3246. "metadata": {},
  3247. "source": [
  3248. "### 7.8 数组子集的计算"
  3249. ]
  3250. },
  3251. {
  3252. "cell_type": "markdown",
  3253. "metadata": {},
  3254. "source": [
  3255. "我们可以使用索引、花式索引和从数组中提取数据的其他方法(如上所述)来计算数组中的数据子集。\n",
  3256. "\n",
  3257. "例如,让我们回到温度数据集:"
  3258. ]
  3259. },
  3260. {
  3261. "cell_type": "code",
  3262. "execution_count": 50,
  3263. "metadata": {},
  3264. "outputs": [
  3265. {
  3266. "name": "stdout",
  3267. "output_type": "stream",
  3268. "text": [
  3269. "1800 1 1 -6.1 -6.1 -6.1 1\r\n",
  3270. "1800 1 2 -15.4 -15.4 -15.4 1\r\n",
  3271. "1800 1 3 -15.0 -15.0 -15.0 1\r\n"
  3272. ]
  3273. }
  3274. ],
  3275. "source": [
  3276. "!head -n 3 stockholm_td_adj.dat"
  3277. ]
  3278. },
  3279. {
  3280. "cell_type": "markdown",
  3281. "metadata": {},
  3282. "source": [
  3283. "数据集的格式是:年,月,日,日平均气温,低,高,位置。\n",
  3284. "\n",
  3285. "如果我们对某个特定月份的平均温度感兴趣,比如二月,然后我们可以创建一个索引掩码,使用它来选择当月的数据:"
  3286. ]
  3287. },
  3288. {
  3289. "cell_type": "code",
  3290. "execution_count": 51,
  3291. "metadata": {},
  3292. "outputs": [
  3293. {
  3294. "data": {
  3295. "text/plain": [
  3296. "array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.])"
  3297. ]
  3298. },
  3299. "execution_count": 51,
  3300. "metadata": {},
  3301. "output_type": "execute_result"
  3302. }
  3303. ],
  3304. "source": [
  3305. "np.unique(data[:,1]) # 列的值从1到12"
  3306. ]
  3307. },
  3308. {
  3309. "cell_type": "code",
  3310. "execution_count": 52,
  3311. "metadata": {},
  3312. "outputs": [
  3313. {
  3314. "name": "stdout",
  3315. "output_type": "stream",
  3316. "text": [
  3317. "[False False False ... False False False]\n"
  3318. ]
  3319. }
  3320. ],
  3321. "source": [
  3322. "mask_feb = data[:,1] == 2\n",
  3323. "print(mask_feb)"
  3324. ]
  3325. },
  3326. {
  3327. "cell_type": "code",
  3328. "execution_count": 53,
  3329. "metadata": {},
  3330. "outputs": [
  3331. {
  3332. "name": "stdout",
  3333. "output_type": "stream",
  3334. "text": [
  3335. "-3.212109570736596\n",
  3336. "5.090390768766271\n"
  3337. ]
  3338. }
  3339. ],
  3340. "source": [
  3341. "# 温度数据实在第三行\n",
  3342. "print(np.mean(data[mask_feb,3]))\n",
  3343. "print(np.std(data[mask_feb,3]))"
  3344. ]
  3345. },
  3346. {
  3347. "cell_type": "markdown",
  3348. "metadata": {},
  3349. "source": [
  3350. "有了这些工具,我们就有了非常强大的数据处理能力。例如,提取每年每个月的平均气温只需要几行代码:"
  3351. ]
  3352. },
  3353. {
  3354. "cell_type": "code",
  3355. "execution_count": 55,
  3356. "metadata": {},
  3357. "outputs": [
  3358. {
  3359. "data": {
  3360. "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAARfElEQVR4nO3da7BkVXnG8f8jEyOCiMqIRhwPWpYWEkQzRVSMQY0JipckpYl4CSoRE8RLtIyjSQrMBzNG8UKZUkGIdyyLeEFnQBAFTLwOighegpJBQeSiCaImGODNh96jh8nMmU2f3t3TZ/1/VV2ne3X3Xu+umnnOOmvvvXaqCklSO2436wIkSdNl8EtSYwx+SWqMwS9JjTH4Jakxq2ZdQB977bVXLSwszLoMSZorF1xwwXVVtXrr9rkI/oWFBTZt2jTrMiRpriS5fFvtTvVIUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGjMXF3BJ82Bh3YaJb3Pz+sMmvk3JEb8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQY1+qR5syk1wRyPaD2OOKXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjRks+JOckuSaJBcvajsuyZVJLuweTxiqf0nStg054n8XcOg22t9UVQd2j40D9i9J2obBgr+qzgd+PNT2JUnjmcUc/zFJLuqmgu4yg/4lqWnTDv63AfcDDgSuAo7f3geTHJVkU5JN11577ZTKk6SVb6rBX1VXV9XNVXULcBJw0BKfPbGq1lbV2tWrV0+vSEla4aYa/EnuuejlHwEXb++zkqRhDLY6Z5JTgUOAvZJcARwLHJLkQKCAzcALhupf2mLSq1mCK1pqvg0W/FV1+DaaTx6qP0lSP165K0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNWTXOl5J8oqqeOOliJO08FtZtmOj2Nq8/bKLb0/jGHfE/f6JVSJKmpteIP8ntgQcCBXy7qq4atCpJ0mB2GPxJDgPeDnwXCLBvkhdU1RlDFydJmrw+I/7jgUdX1XcAktwP2AAY/JI0h/rM8d+wJfQ7lwE3DFSPJGlgfUb8m5JsBD7EaI7/acCXk/wxQFV9eMD6JEkT1if47wBcDfxu9/paYFfgSYx+ERj8kjRHdhj8VfXcaRQiSZqOPmf17Au8CFhY/PmqevJwZUmShtJnquejwMnAx4FbBq1GkjS4PsH/P1V1wuCVSJKmok/wvyXJscBZwI1bGqvqK4NVJUkaTJ/g/03g2cBj+NVUT3WvJUlzpk/wPw24b1X9YuhiJEnD63Pl7sXAnrd1w0lOSXJNkosXtd01ydlJLu1+3uW2bleStDx9gn9P4FtJPpnk9C2PHt97F3DoVm3rgHOq6v7AOd1rSdIU9ZnqOXacDVfV+UkWtmp+CnBI9/zdwLnAK8fZviRpPH2u3D0vyX2A+1fVp5LcEdhlzP72XrSW/w+Bvbf3wSRHAUcBrFmzZszuJElb2+FUT5LnA6cB7+ia7sXooq5lqapidHbQ9t4/sarWVtXa1atXL7c7SVKnzxz/C4GDgZ8AVNWlwN3H7O/qJPcE6H5eM+Z2JElj6hP8Ny4+lTPJKpYYqe/A6cAR3fMjgI+NuR1J0pj6HNw9L8mrgV2TPA44mtG6PUtKciqjA7l7JbmC0UHi9cCHkhwJXA78ybiFa/4trNsw8W1uXn/YxLcprTR9gn8dcCTwdeAFwMaqOmlHX6qqw7fz1mP7lydJmrQ+wf+iqnoL8MuwT/KSrk2SNGf6zPEfsY2250y4DknSlGx3xJ/kcOAZwL5bXal7J+DHQxcmSRrGUlM9nwOuAvYCjl/UfgNw0ZBFSZKGs93gr6rLGZ158/DplSNJGlqfOX5J0gpi8EtSYwx+SWrMWMGf5LgJ1yFJmpJxR/wXTLQKSdLUjBX8VbXDtXokSTunHS7ZkOSEbTRfD2yqKlfXlKQ502fEfwfgQODS7nEAsA9wZJI3D1aZJGkQfRZpOwA4uKpuBkjyNuCzwCMZrdgpSZojfUb8dwF2X/R6N+Cu3S+CGwepSpI0mD4j/n8ELkxyLhDgUcBrk+wGfGrA2iRJA9hh8FfVyUk2Agd1Ta+uqh90z18xWGWSpEH0Oavn48AHgNOr6mfDlyRJGlKfOf43AL8DfCPJaUmemuQOA9clSRpIn6me8xjdcH0X4DHA84FTgD0Grk2SNIA+B3dJsivwJOBPgYcC7x6yKEnScPrM8X+I0YHdM4G3AudV1S1DFyZJGkafEf/JwOFbLuCSJM23PnP8n0yyf5L9GC3fsKX9PYNWJkkaRJ+pnmOBQ4D9gI3A44F/BQx+SZpDfaZ6ngo8GPhqVT03yd7A+4YtS1ILFtZtmPg2N68/bOLbXGn6nMf/393B3JuS7AFcA9x72LIkSUPpM+LflGRP4CRGd976KfD5IYuSJA2nz8Hdo7unb09yJrBHVV00bFmSpKH0uoBri6raPFAdkqQpGfdm65KkOWXwS1Jjdhj8SY5P8qBpFCNJGl6fEf83gROTfDHJXyS589BFSZKGs8Pgr6p3VtXBwJ8BC8BFST6Q5NFDFydJmrxec/zdWvwP7B7XAV8DXpbkgwPWJkkaQJ+1et7EaC3+c4DXVtWXurdel+TbQxYnSZq8PufxXwT87Xbut3vQNtokSTux7QZ/kod2T78GPCDJrd6vqq9U1fUD1iZJGsBSI/7jl3ivGN1/dyxJNgM3ADcDN1XV2nG3JUm6bbYb/FU19Fk7j66q6wbuQ5K0lb43W38Eo1M5f/l578AlSfOpz1k97wXuB1zIaGoGRlM9ywn+As5KUsA7qurEbfR7FHAUwJo1a5bRlSRpsT4j/rXAflVVE+z3kVV1ZZK7A2cn+VZVnb/4A90vgxMB1q5dO8m+JalpfS7guhi4xyQ7raoru5/XAB/B00IlaWqWOp3z44ymZO4EfCPJl4Abt7xfVU8ep8MkuwG3q6obuue/D/z9ONuSJN12S031vGGgPvcGPtJdF7AK+EBVnTlQX5KkrSx1Oud5AEleV1WvXPxektcB543TYVVdBjx4nO9Kkpavzxz/47bR9vhJFyJJmo6l5vj/EjgauG+SxTdXvxPwuaELkyQNY6k5/g8AZwD/AKxb1H5DVf140KokSYNZao7/euB64PBuPf69u8/vnmT3qvrelGqUJE1Qnyt3jwGOA64GbumaCzhguLIkSUPpc+XuS4EHVNWPBq5FO5GFdRsmur3N6w+b6PYkja/PWT3fZzTlI0laAfqM+C8Dzk2ygVtfufvGwaqSJA2mT/B/r3vcvntIkubYDoO/ql4DkGT37vVPhy5KkjScHc7xJ9k/yVeBS4BLklyQ5EHDlyZJGkKfg7snAi+rqvtU1X2AlwMnDVuWJGkofYJ/t6r6zJYXVXUusNtgFUmSBtXrrJ4kfwe8t3v9LEZn+kiS5lCfEf/zgNXAh7vH6q5NkjSH+pzV85/Ai6dQiyRpCpZalvn0pb447q0XJUmztdSI/+GMlms4FfgikKlUJEka1FLBfw9Gd986HHgGsAE4taoumUZhkqRhbPfgblXdXFVnVtURwMOA7zBas+eYqVUnSZq4JQ/uJvl14DBGo/4F4ATgI8OXJUkaylIHd98D7A9sBF5TVRdPrSpJ0mCWGvE/C/gZ8BLgxckvj+0GqKraY+DaJEkDWOqeu30u7pKknd6k7ygH831XOcNdkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxswk+JMcmuTbSb6TZN0sapCkVk09+JPsAvwT8HhgP+DwJPtNuw5JatUsRvwHAd+pqsuq6hfAB4GnzKAOSWpSqmq6HSZPBQ6tqj/vXj8b+O2qOmarzx0FHAWwZs2a37r88svH6m9at1yb137m+fZx0s5mZ7vFY5ILqmrt1u077cHdqjqxqtZW1drVq1fPuhxJWjFmEfxXAvde9Hqfrk2SNAWzCP4vA/dPsm+S2wNPB06fQR2S1KRV0+6wqm5KcgzwSWAX4JSqumTadUhSq6Ye/ABVtRHYOIu+Jal1O+3BXUnSMAx+SWrMTKZ6ND7Pu5e0XI74JakxBr8kNcbgl6TGOMcvSRMyL8fgHPFLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhqz4m/EMi83RpCkaXHEL0mNWfEj/mnxLwtJ88IRvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNSZVNesadijJtcDls65jQvYCrpt1ERO0kvZnJe0LuD87s2nty32qavXWjXMR/CtJkk1VtXbWdUzKStqflbQv4P7szGa9L071SFJjDH5JaozBP30nzrqACVtJ+7OS9gXcn53ZTPfFOX5JaowjfklqjMEvSY0x+Kckyb2TfCbJN5JckuQls65puZLskuSrST4x61qWK8meSU5L8q0k30zy8FnXtBxJ/qr7d3ZxklOT3GHWNfWV5JQk1yS5eFHbXZOcneTS7uddZlnjbbGd/Xl992/toiQfSbLnNGsy+KfnJuDlVbUf8DDghUn2m3FNy/US4JuzLmJC3gKcWVUPBB7MHO9XknsBLwbWVtX+wC7A02db1W3yLuDQrdrWAedU1f2Bc7rX8+Jd/P/9ORvYv6oOAP4deNU0CzL4p6Sqrqqqr3TPb2AULPeabVXjS7IPcBjwzlnXslxJ7gw8CjgZoKp+UVX/NdOilm8VsGuSVcAdgR/MuJ7equp84MdbNT8FeHf3/N3AH06zpuXY1v5U1VlVdVP38gvAPtOsyeCfgSQLwEOAL864lOV4M/DXwC0zrmMS9gWuBf65m7p6Z5LdZl3UuKrqSuANwPeAq4Drq+qs2Va1bHtX1VXd8x8Ce8+ymAl7HnDGNDs0+Kcsye7AvwAvraqfzLqecSR5InBNVV0w61omZBXwUOBtVfUQ4GfM11TCrXTz309h9AvtN4DdkjxrtlVNTo3OQV8R56En+RtG08Dvn2a/Bv8UJfk1RqH//qr68KzrWYaDgScn2Qx8EHhMkvfNtqRluQK4oqq2/AV2GqNfBPPq94D/qKprq+p/gQ8Dj5hxTct1dZJ7AnQ/r5lxPcuW5DnAE4Fn1pQvqDL4pyRJGM0hf7Oq3jjrepajql5VVftU1QKjg4afrqq5HVFW1Q+B7yd5QNf0WOAbMyxpub4HPCzJHbt/d49ljg9Wd04HjuieHwF8bIa1LFuSQxlNlT65qn4+7f4N/uk5GHg2o9Hxhd3jCbMuSr/0IuD9SS4CDgReO9tyxtf95XIa8BXg64z+n8/NcgdJTgU+DzwgyRVJjgTWA49Lcimjv2jWz7LG22I7+/NW4E7A2V0WvH2qNblkgyS1xRG/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH4JSFKLL0JLsirJteOuPNqt9nn0oteHrIRVTLUyGPzSyM+A/ZPs2r1+HHDlMra3J3D0jj4kzYLBL/3KRkYrjgIcDpy65Y1uPfiPduunfyHJAV37cd166+cmuSzJi7uvrAfu112c8/qubfdFa/6/v7uqVpo6g1/6lQ8CT+9uWnIAt1499TXAV7v1018NvGfRew8E/gA4CDi2W5NpHfDdqjqwql7Rfe4hwEuB/YD7MrqaW5o6g1/qVNVFwAKj0f7Grd5+JPDe7nOfBu6WZI/uvQ1VdWNVXcdo8bDtLRn8paq6oqpuAS7s+pKmbtWsC5B2MqczWsv+EOBuPb9z46LnN7P9/1d9PycNyhG/dGunAK+pqq9v1f5Z4JkwOkMHuG4H91O4gdEiXNJOxxGHtEhVXQGcsI23jgNO6Vbv/Dm/WiJ4e9v5UZJ/626wfQawYdK1SuNydU5JaoxTPZLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNeb/AGb7TuHgiT13AAAAAElFTkSuQmCC\n",
  3361. "text/plain": [
  3362. "<Figure size 432x288 with 1 Axes>"
  3363. ]
  3364. },
  3365. "metadata": {
  3366. "needs_background": "light"
  3367. },
  3368. "output_type": "display_data"
  3369. }
  3370. ],
  3371. "source": [
  3372. "%matplotlib inline\n",
  3373. "import matplotlib.pyplot as plt\n",
  3374. "\n",
  3375. "months = np.arange(1,13)\n",
  3376. "monthly_mean = [np.mean(data[data[:,1] == month, 3]) for month in months]\n",
  3377. "\n",
  3378. "fig, ax = plt.subplots()\n",
  3379. "ax.bar(months, monthly_mean)\n",
  3380. "ax.set_xlabel(\"Month\")\n",
  3381. "ax.set_ylabel(\"Monthly avg. temp.\");"
  3382. ]
  3383. },
  3384. {
  3385. "cell_type": "markdown",
  3386. "metadata": {},
  3387. "source": [
  3388. "### 7.9 高维数据的计算"
  3389. ]
  3390. },
  3391. {
  3392. "cell_type": "markdown",
  3393. "metadata": {},
  3394. "source": [
  3395. "当例如`min`, `max`等函数应用在高维数组上时,有时将计算应用于整个数组是有用的,而且很多时候有时只基于行或列。用`axis`参数我们可以决定这个函数应该怎样表现:"
  3396. ]
  3397. },
  3398. {
  3399. "cell_type": "code",
  3400. "execution_count": 60,
  3401. "metadata": {},
  3402. "outputs": [
  3403. {
  3404. "data": {
  3405. "text/plain": [
  3406. "array([[0.46711096, 0.38705469, 0.62367441],\n",
  3407. " [0.50990001, 0.88175455, 0.04836426],\n",
  3408. " [0.31805034, 0.91664942, 0.47970972],\n",
  3409. " [0.85967069, 0.14985438, 0.17380319]])"
  3410. ]
  3411. },
  3412. "execution_count": 60,
  3413. "metadata": {},
  3414. "output_type": "execute_result"
  3415. }
  3416. ],
  3417. "source": [
  3418. "import numpy as np\n",
  3419. "\n",
  3420. "m = np.random.rand(4,3)\n",
  3421. "m"
  3422. ]
  3423. },
  3424. {
  3425. "cell_type": "code",
  3426. "execution_count": 61,
  3427. "metadata": {},
  3428. "outputs": [
  3429. {
  3430. "data": {
  3431. "text/plain": [
  3432. "0.916649423466619"
  3433. ]
  3434. },
  3435. "execution_count": 61,
  3436. "metadata": {},
  3437. "output_type": "execute_result"
  3438. }
  3439. ],
  3440. "source": [
  3441. "# global max\n",
  3442. "m.max()"
  3443. ]
  3444. },
  3445. {
  3446. "cell_type": "code",
  3447. "execution_count": 62,
  3448. "metadata": {},
  3449. "outputs": [
  3450. {
  3451. "data": {
  3452. "text/plain": [
  3453. "array([0.85967069, 0.91664942, 0.62367441])"
  3454. ]
  3455. },
  3456. "execution_count": 62,
  3457. "metadata": {},
  3458. "output_type": "execute_result"
  3459. }
  3460. ],
  3461. "source": [
  3462. "# max in each column\n",
  3463. "m.max(axis=0)"
  3464. ]
  3465. },
  3466. {
  3467. "cell_type": "code",
  3468. "execution_count": 63,
  3469. "metadata": {},
  3470. "outputs": [
  3471. {
  3472. "data": {
  3473. "text/plain": [
  3474. "array([0.62367441, 0.88175455, 0.91664942, 0.85967069])"
  3475. ]
  3476. },
  3477. "execution_count": 63,
  3478. "metadata": {},
  3479. "output_type": "execute_result"
  3480. }
  3481. ],
  3482. "source": [
  3483. "# max in each row\n",
  3484. "m.max(axis=1)"
  3485. ]
  3486. },
  3487. {
  3488. "cell_type": "markdown",
  3489. "metadata": {},
  3490. "source": [
  3491. "许多其他的在`array` 和`matrix`类中的函数和方法接受同样(可选的)的关键字参数`axis`"
  3492. ]
  3493. },
  3494. {
  3495. "cell_type": "markdown",
  3496. "metadata": {},
  3497. "source": [
  3498. "## 8. 阵列的重塑、调整大小和堆叠"
  3499. ]
  3500. },
  3501. {
  3502. "cell_type": "markdown",
  3503. "metadata": {},
  3504. "source": [
  3505. "Numpy数组的形状可以被确定而无需复制底层数据,这使得即使对于大型数组也能有较快的操作。"
  3506. ]
  3507. },
  3508. {
  3509. "cell_type": "code",
  3510. "execution_count": 64,
  3511. "metadata": {},
  3512. "outputs": [
  3513. {
  3514. "name": "stdout",
  3515. "output_type": "stream",
  3516. "text": [
  3517. "[[0.20200219 0.38766948 0.49383531]\n",
  3518. " [0.88519418 0.96898662 0.39487907]\n",
  3519. " [0.09463889 0.99524018 0.86314414]\n",
  3520. " [0.73508854 0.14591709 0.73610788]]\n"
  3521. ]
  3522. }
  3523. ],
  3524. "source": [
  3525. "import numpy as np\n",
  3526. "\n",
  3527. "A = np.random.rand(4, 3)\n",
  3528. "print(A)"
  3529. ]
  3530. },
  3531. {
  3532. "cell_type": "code",
  3533. "execution_count": 65,
  3534. "metadata": {},
  3535. "outputs": [
  3536. {
  3537. "name": "stdout",
  3538. "output_type": "stream",
  3539. "text": [
  3540. "4 3\n"
  3541. ]
  3542. }
  3543. ],
  3544. "source": [
  3545. "n, m = A.shape\n",
  3546. "print(n, m)"
  3547. ]
  3548. },
  3549. {
  3550. "cell_type": "code",
  3551. "execution_count": 66,
  3552. "metadata": {},
  3553. "outputs": [
  3554. {
  3555. "data": {
  3556. "text/plain": [
  3557. "array([[0.20200219, 0.38766948, 0.49383531, 0.88519418, 0.96898662,\n",
  3558. " 0.39487907, 0.09463889, 0.99524018, 0.86314414, 0.73508854,\n",
  3559. " 0.14591709, 0.73610788]])"
  3560. ]
  3561. },
  3562. "execution_count": 66,
  3563. "metadata": {},
  3564. "output_type": "execute_result"
  3565. }
  3566. ],
  3567. "source": [
  3568. "B = A.reshape((1,n*m))\n",
  3569. "B"
  3570. ]
  3571. },
  3572. {
  3573. "cell_type": "code",
  3574. "execution_count": 68,
  3575. "metadata": {},
  3576. "outputs": [
  3577. {
  3578. "name": "stdout",
  3579. "output_type": "stream",
  3580. "text": [
  3581. "[[0.20200219]\n",
  3582. " [0.38766948]\n",
  3583. " [0.49383531]\n",
  3584. " [0.88519418]\n",
  3585. " [0.96898662]\n",
  3586. " [0.39487907]\n",
  3587. " [0.09463889]\n",
  3588. " [0.99524018]\n",
  3589. " [0.86314414]\n",
  3590. " [0.73508854]\n",
  3591. " [0.14591709]\n",
  3592. " [0.73610788]]\n",
  3593. "(12, 1)\n"
  3594. ]
  3595. }
  3596. ],
  3597. "source": [
  3598. "B2 = A.reshape((n*m, 1))\n",
  3599. "print(B2)\n",
  3600. "print(B2.shape)"
  3601. ]
  3602. },
  3603. {
  3604. "cell_type": "code",
  3605. "execution_count": 69,
  3606. "metadata": {},
  3607. "outputs": [
  3608. {
  3609. "data": {
  3610. "text/plain": [
  3611. "array([[5. , 5. , 5. , 5. , 5. ,\n",
  3612. " 0.39487907, 0.09463889, 0.99524018, 0.86314414, 0.73508854,\n",
  3613. " 0.14591709, 0.73610788]])"
  3614. ]
  3615. },
  3616. "execution_count": 69,
  3617. "metadata": {},
  3618. "output_type": "execute_result"
  3619. }
  3620. ],
  3621. "source": [
  3622. "B[0,0:5] = 5 # modify the array\n",
  3623. "\n",
  3624. "B"
  3625. ]
  3626. },
  3627. {
  3628. "cell_type": "code",
  3629. "execution_count": 71,
  3630. "metadata": {},
  3631. "outputs": [
  3632. {
  3633. "data": {
  3634. "text/plain": [
  3635. "array([[5. , 5. , 5. ],\n",
  3636. " [5. , 5. , 0.39487907],\n",
  3637. " [0.09463889, 0.99524018, 0.86314414],\n",
  3638. " [0.73508854, 0.14591709, 0.73610788]])"
  3639. ]
  3640. },
  3641. "execution_count": 71,
  3642. "metadata": {},
  3643. "output_type": "execute_result"
  3644. }
  3645. ],
  3646. "source": [
  3647. "A # and the original variable is also changed. B is only a different view of the same data"
  3648. ]
  3649. },
  3650. {
  3651. "cell_type": "markdown",
  3652. "metadata": {},
  3653. "source": [
  3654. "We can also use the function `flatten` to make a higher-dimensional array into a vector. But this function create a copy of the data."
  3655. ]
  3656. },
  3657. {
  3658. "cell_type": "code",
  3659. "execution_count": 72,
  3660. "metadata": {},
  3661. "outputs": [
  3662. {
  3663. "data": {
  3664. "text/plain": [
  3665. "array([5. , 5. , 5. , 5. , 5. ,\n",
  3666. " 0.39487907, 0.09463889, 0.99524018, 0.86314414, 0.73508854,\n",
  3667. " 0.14591709, 0.73610788])"
  3668. ]
  3669. },
  3670. "execution_count": 72,
  3671. "metadata": {},
  3672. "output_type": "execute_result"
  3673. }
  3674. ],
  3675. "source": [
  3676. "B = A.flatten()\n",
  3677. "\n",
  3678. "B"
  3679. ]
  3680. },
  3681. {
  3682. "cell_type": "code",
  3683. "execution_count": 73,
  3684. "metadata": {},
  3685. "outputs": [
  3686. {
  3687. "name": "stdout",
  3688. "output_type": "stream",
  3689. "text": [
  3690. "(12,)\n"
  3691. ]
  3692. }
  3693. ],
  3694. "source": [
  3695. "print(B.shape)"
  3696. ]
  3697. },
  3698. {
  3699. "cell_type": "code",
  3700. "execution_count": 74,
  3701. "metadata": {},
  3702. "outputs": [
  3703. {
  3704. "name": "stdout",
  3705. "output_type": "stream",
  3706. "text": [
  3707. "[0.77426238 0.40929437 0.81432176 0.59972899 0.09676193 0.4449954\n",
  3708. " 0.01480282 0.26308856 0.58481209 0.74216626 0.22289527 0.46716741\n",
  3709. " 0.33195174 0.52399378 0.88372986 0.60158331 0.58945001 0.31668276\n",
  3710. " 0.11818297 0.27049194 0.11884623 0.29952595 0.32792733 0.43436396\n",
  3711. " 0.646646 0.05237262 0.93389673 0.34454685 0.93967772 0.75029801\n",
  3712. " 0.55267409 0.30308383 0.13671956 0.87033557 0.21616756 0.82525033\n",
  3713. " 0.63810353 0.71845323 0.85226858 0.01932045 0.18269591 0.62072905\n",
  3714. " 0.71238228 0.20326271 0.35548277 0.07583335 0.52520661 0.66373958\n",
  3715. " 0.50652788 0.97000506 0.36231248 0.76321265 0.87553314 0.39389339\n",
  3716. " 0.13004269 0.23257985 0.5075587 0.24471816 0.97082036 0.5918958 ]\n"
  3717. ]
  3718. }
  3719. ],
  3720. "source": [
  3721. "T = np.random.rand(3, 4, 5)\n",
  3722. "T2 = T.flatten()\n",
  3723. "print(T2)"
  3724. ]
  3725. },
  3726. {
  3727. "cell_type": "code",
  3728. "execution_count": 75,
  3729. "metadata": {},
  3730. "outputs": [
  3731. {
  3732. "data": {
  3733. "text/plain": [
  3734. "array([10. , 10. , 10. , 10. , 10. ,\n",
  3735. " 0.39487907, 0.09463889, 0.99524018, 0.86314414, 0.73508854,\n",
  3736. " 0.14591709, 0.73610788])"
  3737. ]
  3738. },
  3739. "execution_count": 75,
  3740. "metadata": {},
  3741. "output_type": "execute_result"
  3742. }
  3743. ],
  3744. "source": [
  3745. "B[0:5] = 10\n",
  3746. "\n",
  3747. "B"
  3748. ]
  3749. },
  3750. {
  3751. "cell_type": "code",
  3752. "execution_count": 76,
  3753. "metadata": {},
  3754. "outputs": [
  3755. {
  3756. "data": {
  3757. "text/plain": [
  3758. "array([[5. , 5. , 5. ],\n",
  3759. " [5. , 5. , 0.39487907],\n",
  3760. " [0.09463889, 0.99524018, 0.86314414],\n",
  3761. " [0.73508854, 0.14591709, 0.73610788]])"
  3762. ]
  3763. },
  3764. "execution_count": 76,
  3765. "metadata": {},
  3766. "output_type": "execute_result"
  3767. }
  3768. ],
  3769. "source": [
  3770. "A # 现在A并没有改变,因为B的数值是A的复制,并不指向同样的值。"
  3771. ]
  3772. },
  3773. {
  3774. "cell_type": "markdown",
  3775. "metadata": {},
  3776. "source": [
  3777. "## 9. 添加、删除维度:newaxis、squeeze"
  3778. ]
  3779. },
  3780. {
  3781. "cell_type": "markdown",
  3782. "metadata": {},
  3783. "source": [
  3784. "当矩阵乘法的时候,需要两个矩阵的对应的纬度保持一致才可以正确执行,有了`newaxis`,我们可以在数组中插入新的维度,例如将一个向量转换为列或行矩阵:"
  3785. ]
  3786. },
  3787. {
  3788. "cell_type": "code",
  3789. "execution_count": 78,
  3790. "metadata": {},
  3791. "outputs": [],
  3792. "source": [
  3793. "v = np.array([1,2,3])"
  3794. ]
  3795. },
  3796. {
  3797. "cell_type": "code",
  3798. "execution_count": 79,
  3799. "metadata": {},
  3800. "outputs": [
  3801. {
  3802. "name": "stdout",
  3803. "output_type": "stream",
  3804. "text": [
  3805. "(3,)\n",
  3806. "[1 2 3]\n"
  3807. ]
  3808. }
  3809. ],
  3810. "source": [
  3811. "print(np.shape(v))\n",
  3812. "print(v)"
  3813. ]
  3814. },
  3815. {
  3816. "cell_type": "code",
  3817. "execution_count": 80,
  3818. "metadata": {},
  3819. "outputs": [
  3820. {
  3821. "name": "stdout",
  3822. "output_type": "stream",
  3823. "text": [
  3824. "(3, 1)\n"
  3825. ]
  3826. }
  3827. ],
  3828. "source": [
  3829. "v2 = v.reshape(3, 1)\n",
  3830. "print(v2.shape)"
  3831. ]
  3832. },
  3833. {
  3834. "cell_type": "code",
  3835. "execution_count": 81,
  3836. "metadata": {},
  3837. "outputs": [
  3838. {
  3839. "name": "stdout",
  3840. "output_type": "stream",
  3841. "text": [
  3842. "(3,)\n",
  3843. "(3, 1)\n"
  3844. ]
  3845. }
  3846. ],
  3847. "source": [
  3848. "# 做一个向量v的列矩阵\n",
  3849. "v2 = v[:, np.newaxis]\n",
  3850. "print(v.shape)\n",
  3851. "print(v2.shape)\n"
  3852. ]
  3853. },
  3854. {
  3855. "cell_type": "code",
  3856. "execution_count": 82,
  3857. "metadata": {},
  3858. "outputs": [
  3859. {
  3860. "data": {
  3861. "text/plain": [
  3862. "(3, 1)"
  3863. ]
  3864. },
  3865. "execution_count": 82,
  3866. "metadata": {},
  3867. "output_type": "execute_result"
  3868. }
  3869. ],
  3870. "source": [
  3871. "# 列矩阵\n",
  3872. "v[:,np.newaxis].shape"
  3873. ]
  3874. },
  3875. {
  3876. "cell_type": "code",
  3877. "execution_count": 83,
  3878. "metadata": {},
  3879. "outputs": [
  3880. {
  3881. "data": {
  3882. "text/plain": [
  3883. "(1, 3)"
  3884. ]
  3885. },
  3886. "execution_count": 83,
  3887. "metadata": {},
  3888. "output_type": "execute_result"
  3889. }
  3890. ],
  3891. "source": [
  3892. "# 行矩阵\n",
  3893. "v[np.newaxis,:].shape"
  3894. ]
  3895. },
  3896. {
  3897. "cell_type": "markdown",
  3898. "metadata": {},
  3899. "source": [
  3900. "也可以通过`np.expand_dims`来实现类似的操作"
  3901. ]
  3902. },
  3903. {
  3904. "cell_type": "code",
  3905. "execution_count": 85,
  3906. "metadata": {},
  3907. "outputs": [
  3908. {
  3909. "name": "stdout",
  3910. "output_type": "stream",
  3911. "text": [
  3912. "(3, 1)\n",
  3913. "[[1]\n",
  3914. " [2]\n",
  3915. " [3]]\n"
  3916. ]
  3917. }
  3918. ],
  3919. "source": [
  3920. "v = np.array([1,2,3])\n",
  3921. "v3 = np.expand_dims(v, 1)\n",
  3922. "print(v3.shape)\n",
  3923. "print(v3)"
  3924. ]
  3925. },
  3926. {
  3927. "cell_type": "markdown",
  3928. "metadata": {},
  3929. "source": [
  3930. "在某些情况,需要将纬度为1的那个纬度删除掉,可以使用`np.squeeze`实现"
  3931. ]
  3932. },
  3933. {
  3934. "cell_type": "code",
  3935. "execution_count": 86,
  3936. "metadata": {},
  3937. "outputs": [
  3938. {
  3939. "name": "stdout",
  3940. "output_type": "stream",
  3941. "text": [
  3942. "(1, 2, 3)\n",
  3943. "[[[1 2 3]\n",
  3944. " [2 3 4]]]\n"
  3945. ]
  3946. }
  3947. ],
  3948. "source": [
  3949. "arr = np.array([[[1, 2, 3], [2, 3, 4]]])\n",
  3950. "print(arr.shape)\n",
  3951. "print(arr)"
  3952. ]
  3953. },
  3954. {
  3955. "cell_type": "code",
  3956. "execution_count": 87,
  3957. "metadata": {},
  3958. "outputs": [
  3959. {
  3960. "name": "stdout",
  3961. "output_type": "stream",
  3962. "text": [
  3963. "(2, 3)\n",
  3964. "[[1 2 3]\n",
  3965. " [2 3 4]]\n"
  3966. ]
  3967. }
  3968. ],
  3969. "source": [
  3970. "# 实际上第一个纬度为`1`,我们不需要\n",
  3971. "arr2 = np.squeeze(arr, 0)\n",
  3972. "print(arr2.shape)\n",
  3973. "print(arr2)"
  3974. ]
  3975. },
  3976. {
  3977. "cell_type": "markdown",
  3978. "metadata": {},
  3979. "source": [
  3980. "需要注意:只有数组长度在该纬度上为1,那么该纬度才可以被删除;否则会报错。"
  3981. ]
  3982. },
  3983. {
  3984. "cell_type": "markdown",
  3985. "metadata": {},
  3986. "source": [
  3987. "## 10. 叠加和重复数组"
  3988. ]
  3989. },
  3990. {
  3991. "cell_type": "markdown",
  3992. "metadata": {},
  3993. "source": [
  3994. "利用函数`repeat`, `tile`, `vstack`, `hstack`, 和`concatenate` 我们可以用较小的向量和矩阵来创建更大的向量和矩阵:"
  3995. ]
  3996. },
  3997. {
  3998. "cell_type": "markdown",
  3999. "metadata": {},
  4000. "source": [
  4001. "### 10.1 tile and repeat"
  4002. ]
  4003. },
  4004. {
  4005. "cell_type": "code",
  4006. "execution_count": 89,
  4007. "metadata": {},
  4008. "outputs": [
  4009. {
  4010. "name": "stdout",
  4011. "output_type": "stream",
  4012. "text": [
  4013. "[[1 2]\n",
  4014. " [3 4]]\n"
  4015. ]
  4016. }
  4017. ],
  4018. "source": [
  4019. "a = np.array([[1, 2], [3, 4]])\n",
  4020. "print(a)"
  4021. ]
  4022. },
  4023. {
  4024. "cell_type": "code",
  4025. "execution_count": 90,
  4026. "metadata": {},
  4027. "outputs": [
  4028. {
  4029. "data": {
  4030. "text/plain": [
  4031. "array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4])"
  4032. ]
  4033. },
  4034. "execution_count": 90,
  4035. "metadata": {},
  4036. "output_type": "execute_result"
  4037. }
  4038. ],
  4039. "source": [
  4040. "# 重复每一个元素三次\n",
  4041. "np.repeat(a, 3)"
  4042. ]
  4043. },
  4044. {
  4045. "cell_type": "code",
  4046. "execution_count": 91,
  4047. "metadata": {},
  4048. "outputs": [
  4049. {
  4050. "data": {
  4051. "text/plain": [
  4052. "array([[1, 2, 1, 2, 1, 2],\n",
  4053. " [3, 4, 3, 4, 3, 4]])"
  4054. ]
  4055. },
  4056. "execution_count": 91,
  4057. "metadata": {},
  4058. "output_type": "execute_result"
  4059. }
  4060. ],
  4061. "source": [
  4062. "# tile the matrix 3 times \n",
  4063. "np.tile(a, 3)"
  4064. ]
  4065. },
  4066. {
  4067. "cell_type": "code",
  4068. "execution_count": 92,
  4069. "metadata": {},
  4070. "outputs": [
  4071. {
  4072. "data": {
  4073. "text/plain": [
  4074. "array([[1, 2, 1, 2, 1, 2],\n",
  4075. " [3, 4, 3, 4, 3, 4]])"
  4076. ]
  4077. },
  4078. "execution_count": 92,
  4079. "metadata": {},
  4080. "output_type": "execute_result"
  4081. }
  4082. ],
  4083. "source": [
  4084. "# 更好的方案\n",
  4085. "np.tile(a, (1, 3))"
  4086. ]
  4087. },
  4088. {
  4089. "cell_type": "code",
  4090. "execution_count": 93,
  4091. "metadata": {},
  4092. "outputs": [
  4093. {
  4094. "data": {
  4095. "text/plain": [
  4096. "array([[1, 2],\n",
  4097. " [3, 4],\n",
  4098. " [1, 2],\n",
  4099. " [3, 4],\n",
  4100. " [1, 2],\n",
  4101. " [3, 4]])"
  4102. ]
  4103. },
  4104. "execution_count": 93,
  4105. "metadata": {},
  4106. "output_type": "execute_result"
  4107. }
  4108. ],
  4109. "source": [
  4110. "np.tile(a, (3, 1))"
  4111. ]
  4112. },
  4113. {
  4114. "cell_type": "markdown",
  4115. "metadata": {},
  4116. "source": [
  4117. "### 10.2 concatenate"
  4118. ]
  4119. },
  4120. {
  4121. "cell_type": "code",
  4122. "execution_count": 94,
  4123. "metadata": {},
  4124. "outputs": [],
  4125. "source": [
  4126. "b = np.array([[5, 6]])"
  4127. ]
  4128. },
  4129. {
  4130. "cell_type": "code",
  4131. "execution_count": 95,
  4132. "metadata": {},
  4133. "outputs": [
  4134. {
  4135. "data": {
  4136. "text/plain": [
  4137. "array([[1, 2],\n",
  4138. " [3, 4],\n",
  4139. " [5, 6]])"
  4140. ]
  4141. },
  4142. "execution_count": 95,
  4143. "metadata": {},
  4144. "output_type": "execute_result"
  4145. }
  4146. ],
  4147. "source": [
  4148. "np.concatenate((a, b), axis=0)"
  4149. ]
  4150. },
  4151. {
  4152. "cell_type": "code",
  4153. "execution_count": 96,
  4154. "metadata": {},
  4155. "outputs": [
  4156. {
  4157. "data": {
  4158. "text/plain": [
  4159. "array([[1, 2, 5],\n",
  4160. " [3, 4, 6]])"
  4161. ]
  4162. },
  4163. "execution_count": 96,
  4164. "metadata": {},
  4165. "output_type": "execute_result"
  4166. }
  4167. ],
  4168. "source": [
  4169. "np.concatenate((a, b.T), axis=1)"
  4170. ]
  4171. },
  4172. {
  4173. "cell_type": "markdown",
  4174. "metadata": {},
  4175. "source": [
  4176. "### 10.3 hstack and vstack"
  4177. ]
  4178. },
  4179. {
  4180. "cell_type": "code",
  4181. "execution_count": 97,
  4182. "metadata": {},
  4183. "outputs": [
  4184. {
  4185. "data": {
  4186. "text/plain": [
  4187. "array([[1, 2],\n",
  4188. " [3, 4],\n",
  4189. " [5, 6]])"
  4190. ]
  4191. },
  4192. "execution_count": 97,
  4193. "metadata": {},
  4194. "output_type": "execute_result"
  4195. }
  4196. ],
  4197. "source": [
  4198. "np.vstack((a,b))"
  4199. ]
  4200. },
  4201. {
  4202. "cell_type": "code",
  4203. "execution_count": 98,
  4204. "metadata": {},
  4205. "outputs": [
  4206. {
  4207. "data": {
  4208. "text/plain": [
  4209. "array([[1, 2, 5],\n",
  4210. " [3, 4, 6]])"
  4211. ]
  4212. },
  4213. "execution_count": 98,
  4214. "metadata": {},
  4215. "output_type": "execute_result"
  4216. }
  4217. ],
  4218. "source": [
  4219. "np.hstack((a,b.T))"
  4220. ]
  4221. },
  4222. {
  4223. "cell_type": "markdown",
  4224. "metadata": {},
  4225. "source": [
  4226. "## 11. 复制和“深度复制”"
  4227. ]
  4228. },
  4229. {
  4230. "cell_type": "markdown",
  4231. "metadata": {},
  4232. "source": [
  4233. "为了获得高性能,Python中的赋值通常不复制底层对象。例如,在函数之间传递对象时,这一点非常重要,以避免不必要时大量的内存复制(技术术语:通过引用传递)。"
  4234. ]
  4235. },
  4236. {
  4237. "cell_type": "code",
  4238. "execution_count": 99,
  4239. "metadata": {},
  4240. "outputs": [
  4241. {
  4242. "data": {
  4243. "text/plain": [
  4244. "array([[1, 2],\n",
  4245. " [3, 4]])"
  4246. ]
  4247. },
  4248. "execution_count": 99,
  4249. "metadata": {},
  4250. "output_type": "execute_result"
  4251. }
  4252. ],
  4253. "source": [
  4254. "A = np.array([[1, 2], [3, 4]])\n",
  4255. "\n",
  4256. "A"
  4257. ]
  4258. },
  4259. {
  4260. "cell_type": "code",
  4261. "execution_count": 100,
  4262. "metadata": {},
  4263. "outputs": [],
  4264. "source": [
  4265. "# 现在B和A指的是同一个数组数据\n",
  4266. "B = A "
  4267. ]
  4268. },
  4269. {
  4270. "cell_type": "code",
  4271. "execution_count": 101,
  4272. "metadata": {},
  4273. "outputs": [
  4274. {
  4275. "data": {
  4276. "text/plain": [
  4277. "array([[10, 2],\n",
  4278. " [ 3, 4]])"
  4279. ]
  4280. },
  4281. "execution_count": 101,
  4282. "metadata": {},
  4283. "output_type": "execute_result"
  4284. }
  4285. ],
  4286. "source": [
  4287. "# 改变B影响A\n",
  4288. "B[0,0] = 10\n",
  4289. "\n",
  4290. "B"
  4291. ]
  4292. },
  4293. {
  4294. "cell_type": "code",
  4295. "execution_count": 102,
  4296. "metadata": {},
  4297. "outputs": [
  4298. {
  4299. "data": {
  4300. "text/plain": [
  4301. "array([[10, 2],\n",
  4302. " [ 3, 4]])"
  4303. ]
  4304. },
  4305. "execution_count": 102,
  4306. "metadata": {},
  4307. "output_type": "execute_result"
  4308. }
  4309. ],
  4310. "source": [
  4311. "A"
  4312. ]
  4313. },
  4314. {
  4315. "cell_type": "markdown",
  4316. "metadata": {},
  4317. "source": [
  4318. "如果我们想避免这种行为,那么当我们从`A`中复制一个新的完全独立的对象`B`时,我们需要使用函数`copy`来做一个所谓的“深度复制”:"
  4319. ]
  4320. },
  4321. {
  4322. "cell_type": "code",
  4323. "execution_count": 103,
  4324. "metadata": {},
  4325. "outputs": [],
  4326. "source": [
  4327. "B = np.copy(A)"
  4328. ]
  4329. },
  4330. {
  4331. "cell_type": "code",
  4332. "execution_count": 104,
  4333. "metadata": {},
  4334. "outputs": [
  4335. {
  4336. "data": {
  4337. "text/plain": [
  4338. "array([[-5, 2],\n",
  4339. " [ 3, 4]])"
  4340. ]
  4341. },
  4342. "execution_count": 104,
  4343. "metadata": {},
  4344. "output_type": "execute_result"
  4345. }
  4346. ],
  4347. "source": [
  4348. "# 现在如果我们改变B,A不受影响\n",
  4349. "B[0,0] = -5\n",
  4350. "\n",
  4351. "B"
  4352. ]
  4353. },
  4354. {
  4355. "cell_type": "code",
  4356. "execution_count": 105,
  4357. "metadata": {},
  4358. "outputs": [
  4359. {
  4360. "data": {
  4361. "text/plain": [
  4362. "array([[10, 2],\n",
  4363. " [ 3, 4]])"
  4364. ]
  4365. },
  4366. "execution_count": 105,
  4367. "metadata": {},
  4368. "output_type": "execute_result"
  4369. }
  4370. ],
  4371. "source": [
  4372. "A"
  4373. ]
  4374. },
  4375. {
  4376. "cell_type": "markdown",
  4377. "metadata": {},
  4378. "source": [
  4379. "## 12. 遍历数组元素"
  4380. ]
  4381. },
  4382. {
  4383. "cell_type": "markdown",
  4384. "metadata": {},
  4385. "source": [
  4386. "通常,我们希望尽可能避免遍历数组元素(不惜一切代价)。原因是在像Python(或MATLAB)这样的解释语言中,迭代与向量化操作相比真的很慢。\n",
  4387. "\n",
  4388. "然而,有时迭代是不可避免的。对于这种情况,Python的For循环是最方便的遍历数组的方法:"
  4389. ]
  4390. },
  4391. {
  4392. "cell_type": "code",
  4393. "execution_count": 106,
  4394. "metadata": {},
  4395. "outputs": [
  4396. {
  4397. "name": "stdout",
  4398. "output_type": "stream",
  4399. "text": [
  4400. "1\n",
  4401. "2\n",
  4402. "3\n",
  4403. "4\n"
  4404. ]
  4405. }
  4406. ],
  4407. "source": [
  4408. "v = np.array([1,2,3,4])\n",
  4409. "\n",
  4410. "for element in v:\n",
  4411. " print(element)"
  4412. ]
  4413. },
  4414. {
  4415. "cell_type": "code",
  4416. "execution_count": 107,
  4417. "metadata": {},
  4418. "outputs": [
  4419. {
  4420. "name": "stdout",
  4421. "output_type": "stream",
  4422. "text": [
  4423. "row [1 2]\n",
  4424. "1\n",
  4425. "2\n",
  4426. "row [3 4]\n",
  4427. "3\n",
  4428. "4\n"
  4429. ]
  4430. }
  4431. ],
  4432. "source": [
  4433. "M = np.array([[1,2], [3,4]])\n",
  4434. "\n",
  4435. "for row in M:\n",
  4436. " print(\"row\", row)\n",
  4437. " \n",
  4438. " for element in row:\n",
  4439. " print(element)"
  4440. ]
  4441. },
  4442. {
  4443. "cell_type": "markdown",
  4444. "metadata": {},
  4445. "source": [
  4446. "当我们需要去\n",
  4447. "当我们需要遍历一个数组的每个元素并修改它的元素时,使用`enumerate`函数可以方便地在`for`循环中获得元素及其索引:"
  4448. ]
  4449. },
  4450. {
  4451. "cell_type": "code",
  4452. "execution_count": 108,
  4453. "metadata": {},
  4454. "outputs": [
  4455. {
  4456. "name": "stdout",
  4457. "output_type": "stream",
  4458. "text": [
  4459. "row_idx 0 row [1 2]\n",
  4460. "col_idx 0 element 1\n",
  4461. "col_idx 1 element 2\n",
  4462. "row_idx 1 row [3 4]\n",
  4463. "col_idx 0 element 3\n",
  4464. "col_idx 1 element 4\n"
  4465. ]
  4466. }
  4467. ],
  4468. "source": [
  4469. "for row_idx, row in enumerate(M):\n",
  4470. " print(\"row_idx\", row_idx, \"row\", row)\n",
  4471. " \n",
  4472. " for col_idx, element in enumerate(row):\n",
  4473. " print(\"col_idx\", col_idx, \"element\", element)\n",
  4474. " \n",
  4475. " # 更新矩阵:对每个元素求平方\n",
  4476. " M[row_idx, col_idx] = element ** 2"
  4477. ]
  4478. },
  4479. {
  4480. "cell_type": "code",
  4481. "execution_count": 109,
  4482. "metadata": {},
  4483. "outputs": [
  4484. {
  4485. "data": {
  4486. "text/plain": [
  4487. "array([[ 1, 4],\n",
  4488. " [ 9, 16]])"
  4489. ]
  4490. },
  4491. "execution_count": 109,
  4492. "metadata": {},
  4493. "output_type": "execute_result"
  4494. }
  4495. ],
  4496. "source": [
  4497. "# 现在矩阵里的每一个元素都已经求得平方\n",
  4498. "M"
  4499. ]
  4500. },
  4501. {
  4502. "cell_type": "markdown",
  4503. "metadata": {},
  4504. "source": [
  4505. "## 13. 向量化功能"
  4506. ]
  4507. },
  4508. {
  4509. "cell_type": "markdown",
  4510. "metadata": {},
  4511. "source": [
  4512. "正如前面多次提到的,为了获得良好的性能,我们应该尽量避免对向量和矩阵中的元素进行循环,而应该使用向量化算法。将标量算法转换为向量化算法的第一步是确保我们编写的函数使用向量输入。"
  4513. ]
  4514. },
  4515. {
  4516. "cell_type": "code",
  4517. "execution_count": 122,
  4518. "metadata": {},
  4519. "outputs": [],
  4520. "source": [
  4521. "def Theta(x):\n",
  4522. " \"\"\"\n",
  4523. " Heaviside阶跃函数的标量实现\n",
  4524. " \"\"\"\n",
  4525. " if x >= 0:\n",
  4526. " return 1\n",
  4527. " else:\n",
  4528. " return 0"
  4529. ]
  4530. },
  4531. {
  4532. "cell_type": "code",
  4533. "execution_count": 123,
  4534. "metadata": {},
  4535. "outputs": [
  4536. {
  4537. "ename": "ValueError",
  4538. "evalue": "The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()",
  4539. "output_type": "error",
  4540. "traceback": [
  4541. "\u001b[0;31m-----------------------------------------------------------\u001b[0m",
  4542. "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
  4543. "\u001b[0;32m<ipython-input-123-b49266106206>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mTheta\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  4544. "\u001b[0;32m<ipython-input-122-5990c144f91d>\u001b[0m in \u001b[0;36mTheta\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mHeaviside阶跃函数的标量实现\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \"\"\"\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  4545. "\u001b[0;31mValueError\u001b[0m: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()"
  4546. ]
  4547. }
  4548. ],
  4549. "source": [
  4550. "Theta(np.array([-3,-2,-1,0,1,2,3]))"
  4551. ]
  4552. },
  4553. {
  4554. "cell_type": "markdown",
  4555. "metadata": {},
  4556. "source": [
  4557. "这个操作并不可行因为我们没有写`Theta`函数去解决一个向量输入\n",
  4558. "\n",
  4559. "为了得到向量化的版本,我们可以使用Numpy函数`vectorize`。在许多情况下,它可以自动向量化一个函数:"
  4560. ]
  4561. },
  4562. {
  4563. "cell_type": "code",
  4564. "execution_count": 124,
  4565. "metadata": {},
  4566. "outputs": [],
  4567. "source": [
  4568. "Theta_vec = np.vectorize(Theta)"
  4569. ]
  4570. },
  4571. {
  4572. "cell_type": "code",
  4573. "execution_count": 125,
  4574. "metadata": {},
  4575. "outputs": [
  4576. {
  4577. "data": {
  4578. "text/plain": [
  4579. "array([0, 0, 0, 1, 1, 1, 1])"
  4580. ]
  4581. },
  4582. "execution_count": 125,
  4583. "metadata": {},
  4584. "output_type": "execute_result"
  4585. }
  4586. ],
  4587. "source": [
  4588. "Theta_vec(np.array([-3,-2,-1,0,1,2,3]))"
  4589. ]
  4590. },
  4591. {
  4592. "cell_type": "markdown",
  4593. "metadata": {},
  4594. "source": [
  4595. "我们也可以实现从一开始就接受矢量输入的函数(需要更多的计算,但可能会有更好的性能):"
  4596. ]
  4597. },
  4598. {
  4599. "cell_type": "code",
  4600. "execution_count": 126,
  4601. "metadata": {},
  4602. "outputs": [],
  4603. "source": [
  4604. "def Theta(x):\n",
  4605. " \"\"\"\n",
  4606. " Heaviside阶跃函数的矢量感知实现。\n",
  4607. " \"\"\"\n",
  4608. " return 1 * (x >= 0)"
  4609. ]
  4610. },
  4611. {
  4612. "cell_type": "code",
  4613. "execution_count": 127,
  4614. "metadata": {},
  4615. "outputs": [
  4616. {
  4617. "data": {
  4618. "text/plain": [
  4619. "array([0, 0, 0, 1, 1, 1, 1])"
  4620. ]
  4621. },
  4622. "execution_count": 127,
  4623. "metadata": {},
  4624. "output_type": "execute_result"
  4625. }
  4626. ],
  4627. "source": [
  4628. "Theta(np.array([-3,-2,-1,0,1,2,3]))"
  4629. ]
  4630. },
  4631. {
  4632. "cell_type": "code",
  4633. "execution_count": 221,
  4634. "metadata": {},
  4635. "outputs": [
  4636. {
  4637. "name": "stdout",
  4638. "output_type": "stream",
  4639. "text": [
  4640. "[False False False True True True True]\n"
  4641. ]
  4642. },
  4643. {
  4644. "data": {
  4645. "text/plain": [
  4646. "array([0, 0, 0, 1, 1, 1, 1])"
  4647. ]
  4648. },
  4649. "execution_count": 221,
  4650. "metadata": {},
  4651. "output_type": "execute_result"
  4652. }
  4653. ],
  4654. "source": [
  4655. "a = np.array([-3,-2,-1,0,1,2,3])\n",
  4656. "b = a>=0\n",
  4657. "print(b)\n",
  4658. "b*1"
  4659. ]
  4660. },
  4661. {
  4662. "cell_type": "code",
  4663. "execution_count": 128,
  4664. "metadata": {},
  4665. "outputs": [
  4666. {
  4667. "data": {
  4668. "text/plain": [
  4669. "(0, 1)"
  4670. ]
  4671. },
  4672. "execution_count": 128,
  4673. "metadata": {},
  4674. "output_type": "execute_result"
  4675. }
  4676. ],
  4677. "source": [
  4678. "# 同样适用于标量\n",
  4679. "Theta(-1.2), Theta(2.6)"
  4680. ]
  4681. },
  4682. {
  4683. "cell_type": "markdown",
  4684. "metadata": {},
  4685. "source": [
  4686. "## 14. 在条件中使用数组"
  4687. ]
  4688. },
  4689. {
  4690. "cell_type": "markdown",
  4691. "metadata": {},
  4692. "source": [
  4693. "当在条件中使用数组时,例如`if`语句和其他布尔表达,一个需要用`any`或者`all`,这让数组任何或者所有元素都等于`True`。"
  4694. ]
  4695. },
  4696. {
  4697. "cell_type": "code",
  4698. "execution_count": 129,
  4699. "metadata": {},
  4700. "outputs": [
  4701. {
  4702. "data": {
  4703. "text/plain": [
  4704. "array([[1, 2],\n",
  4705. " [3, 4]])"
  4706. ]
  4707. },
  4708. "execution_count": 129,
  4709. "metadata": {},
  4710. "output_type": "execute_result"
  4711. }
  4712. ],
  4713. "source": [
  4714. "M = np.array([[1, 2], [3, 4]])\n",
  4715. "M"
  4716. ]
  4717. },
  4718. {
  4719. "cell_type": "code",
  4720. "execution_count": 132,
  4721. "metadata": {},
  4722. "outputs": [
  4723. {
  4724. "data": {
  4725. "text/plain": [
  4726. "True"
  4727. ]
  4728. },
  4729. "execution_count": 132,
  4730. "metadata": {},
  4731. "output_type": "execute_result"
  4732. }
  4733. ],
  4734. "source": [
  4735. "(M > 2).any()"
  4736. ]
  4737. },
  4738. {
  4739. "cell_type": "code",
  4740. "execution_count": 133,
  4741. "metadata": {},
  4742. "outputs": [
  4743. {
  4744. "name": "stdout",
  4745. "output_type": "stream",
  4746. "text": [
  4747. "at least one element in M is larger than 2\n"
  4748. ]
  4749. }
  4750. ],
  4751. "source": [
  4752. "if (M > 2).any():\n",
  4753. " print(\"at least one element in M is larger than 2\")\n",
  4754. "else:\n",
  4755. " print(\"no element in M is larger than 2\")"
  4756. ]
  4757. },
  4758. {
  4759. "cell_type": "code",
  4760. "execution_count": 134,
  4761. "metadata": {},
  4762. "outputs": [
  4763. {
  4764. "name": "stdout",
  4765. "output_type": "stream",
  4766. "text": [
  4767. "all elements in M are not larger than 5\n"
  4768. ]
  4769. }
  4770. ],
  4771. "source": [
  4772. "if (M > 5).all():\n",
  4773. " print(\"all elements in M are larger than 5\")\n",
  4774. "else:\n",
  4775. " print(\"all elements in M are not larger than 5\")"
  4776. ]
  4777. },
  4778. {
  4779. "cell_type": "markdown",
  4780. "metadata": {},
  4781. "source": [
  4782. "## 15. 类型转换"
  4783. ]
  4784. },
  4785. {
  4786. "cell_type": "markdown",
  4787. "metadata": {},
  4788. "source": [
  4789. "因为Numpy数组是*静态类型*,数组的类型一旦创建就不会改变。但是我们可以用`astype`函数(参见类似的“asarray”函数)显式地转换一个数组的类型到其他的类型,这总是创建一个新类型的新数组。"
  4790. ]
  4791. },
  4792. {
  4793. "cell_type": "code",
  4794. "execution_count": 142,
  4795. "metadata": {},
  4796. "outputs": [
  4797. {
  4798. "data": {
  4799. "text/plain": [
  4800. "dtype('int64')"
  4801. ]
  4802. },
  4803. "execution_count": 142,
  4804. "metadata": {},
  4805. "output_type": "execute_result"
  4806. }
  4807. ],
  4808. "source": [
  4809. "M.dtype\n"
  4810. ]
  4811. },
  4812. {
  4813. "cell_type": "code",
  4814. "execution_count": 140,
  4815. "metadata": {},
  4816. "outputs": [
  4817. {
  4818. "data": {
  4819. "text/plain": [
  4820. "array([[10., 2.],\n",
  4821. " [ 3., 4.]])"
  4822. ]
  4823. },
  4824. "execution_count": 140,
  4825. "metadata": {},
  4826. "output_type": "execute_result"
  4827. }
  4828. ],
  4829. "source": [
  4830. "M2 = M.astype(float)\n",
  4831. "\n",
  4832. "M2"
  4833. ]
  4834. },
  4835. {
  4836. "cell_type": "code",
  4837. "execution_count": 229,
  4838. "metadata": {},
  4839. "outputs": [
  4840. {
  4841. "data": {
  4842. "text/plain": [
  4843. "dtype('float64')"
  4844. ]
  4845. },
  4846. "execution_count": 229,
  4847. "metadata": {},
  4848. "output_type": "execute_result"
  4849. }
  4850. ],
  4851. "source": [
  4852. "M2.dtype"
  4853. ]
  4854. },
  4855. {
  4856. "cell_type": "code",
  4857. "execution_count": 230,
  4858. "metadata": {},
  4859. "outputs": [
  4860. {
  4861. "data": {
  4862. "text/plain": [
  4863. "array([[ True, True],\n",
  4864. " [ True, True]])"
  4865. ]
  4866. },
  4867. "execution_count": 230,
  4868. "metadata": {},
  4869. "output_type": "execute_result"
  4870. }
  4871. ],
  4872. "source": [
  4873. "M3 = M.astype(bool)\n",
  4874. "\n",
  4875. "M3"
  4876. ]
  4877. },
  4878. {
  4879. "cell_type": "markdown",
  4880. "metadata": {},
  4881. "source": [
  4882. "## 进一步的阅读"
  4883. ]
  4884. },
  4885. {
  4886. "cell_type": "markdown",
  4887. "metadata": {},
  4888. "source": [
  4889. "* [NumPy 简易教程](https://www.runoob.com/numpy/numpy-tutorial.html)\n",
  4890. "* [NumPy 官方用户指南](https://www.numpy.org.cn/user/)\n",
  4891. "* [NumPy 官方参考手册](https://www.numpy.org.cn/reference/)\n",
  4892. "* [NumPy Tutorial](http://scipy.org/Tentative_NumPy_Tutorial)\n",
  4893. "* [一个针对MATLAB使用者的Numpy教程](http://scipy.org/NumPy_for_Matlab_Users)"
  4894. ]
  4895. }
  4896. ],
  4897. "metadata": {
  4898. "kernelspec": {
  4899. "display_name": "Python 3",
  4900. "language": "python",
  4901. "name": "python3"
  4902. },
  4903. "language_info": {
  4904. "codemirror_mode": {
  4905. "name": "ipython",
  4906. "version": 3
  4907. },
  4908. "file_extension": ".py",
  4909. "mimetype": "text/x-python",
  4910. "name": "python",
  4911. "nbconvert_exporter": "python",
  4912. "pygments_lexer": "ipython3",
  4913. "version": "3.6.9"
  4914. }
  4915. },
  4916. "nbformat": 4,
  4917. "nbformat_minor": 1
  4918. }

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。