@@ -0,0 +1,63 @@ | |||
# Installing Python environments | |||
这章,讲解如何安装Python的环境 | |||
## 1. Windows | |||
### 安装Anaconda | |||
由于Anaconda集成了大部分的python包,因此能够很方便的开始使用。由于网络下载速度较慢,因此推荐使用镜像来提高下载的速度。 | |||
在这里找到适合自己的安装文件,然后下载 | |||
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ | |||
设置软件源 https://mirror.tuna.tsinghua.edu.cn/help/anaconda/ | |||
``` | |||
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ | |||
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ | |||
conda config --set show_channel_urls yes | |||
``` | |||
### 安装Pytorch | |||
``` | |||
conda install pytorch -c pytorch | |||
pip3 install torchvision | |||
``` | |||
## 2. Linux | |||
### 安装pip | |||
``` | |||
sudo apt-get install python3-pip | |||
``` | |||
### 设置PIP源 | |||
``` | |||
pip config set global.index-url 'https://mirrors.ustc.edu.cn/pypi/web/simple' | |||
``` | |||
### 安装常用的包 | |||
``` | |||
pip install -r requirements.txt | |||
``` | |||
或者手动安装 | |||
``` | |||
sudo pip install scipy | |||
sudo pip install scikit-learn | |||
sudo pip install numpy | |||
sudo pip install matplotlib | |||
sudo pip install pandas | |||
sudo pip install ipython | |||
sudo pip install jupyter | |||
``` | |||
### 安装pytorch | |||
到[pytorch 官网](https://pytorch.org),根据自己的操作系统、CUDA版本,选择合适的安装命令。 | |||
例如Linux, Python3.5, CUDA 9.0: | |||
``` | |||
pip3 install torch torchvision | |||
``` | |||
@@ -1,31 +1,8 @@ | |||
# Python和机器学习的notebook | |||
本notebook教程包含了一些使用Python来学习机器学习的教程。通过本教程能够引导学习Python的基础知识和机器学习的背景和实际编程。 | |||
本notebook教程包含了一些使用Python来学习机器学习的教程,通过本教程能够引导学习Python的基础知识和机器学习的背景和实际编程。 | |||
## References | |||
更多的学习资料,可以自行在下属列表找找到适合自己的学习资料。 | |||
### Python & IPython | |||
* [Python教程](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000) | |||
* [Python-Lectures](https://github.com/rajathkmp/Python-Lectures) | |||
* [A gallery of interesting Jupyter Notebooks](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks) | |||
* [IPython tutorials](https://nbviewer.jupyter.org/github/ipython/ipython/blob/master/examples/IPython%20Kernel/Index.ipynb) | |||
* [Examples from the IPython mini-book](https://github.com/rossant/ipython-minibook) | |||
* [Code of the IPython Cookbook, Second Edition (2018)](https://github.com/ipython-books/cookbook-2nd-code) | |||
* [scientific-python-lectures](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/tree/master/) | |||
### Libs | |||
* [numpy](http://www.numpy.org/) | |||
* [matplotlib - 2D and 3D plotting in Python](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb) | |||
* [scipy](https://www.scipy.org/) | |||
* [pytorch](https://pytorch.org/) | |||
* [tensorflow](https://www.tensorflow.org/) | |||
### Machine learning | |||
* [ipython-notebooks: A collection of IPython notebooks covering various topics](https://github.com/jdwittenauer/ipython-notebooks) | |||
* [Learn Data Science](http://learnds.com/) | |||
* [AM207 2016](https://github.com/AM207/2016/tree/master) | |||
内容 | |||
* [安装Python环境](InstallPython.md) | |||
* [参考资料等](References.md) |
@@ -0,0 +1,52 @@ | |||
# References | |||
更多的学习资料,可以自行在下属列表找找到适合自己的学习资料。 | |||
## Python & IPython | |||
* [Python教程](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000) | |||
* [Python-Lectures](https://github.com/rajathkmp/Python-Lectures) | |||
* [A gallery of interesting Jupyter Notebooks](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks) | |||
* [IPython tutorials](https://nbviewer.jupyter.org/github/ipython/ipython/blob/master/examples/IPython%20Kernel/Index.ipynb) | |||
* [Examples from the IPython mini-book](https://github.com/rossant/ipython-minibook) | |||
* [Code of the IPython Cookbook, Second Edition (2018)](https://github.com/ipython-books/cookbook-2nd-code) | |||
* [scientific-python-lectures](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/tree/master/) | |||
## Libs | |||
* [numpy](http://www.numpy.org/) | |||
* [matplotlib - 2D and 3D plotting in Python](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb) | |||
* [scipy](https://www.scipy.org/) | |||
* [pytorch](https://pytorch.org/) | |||
* [tensorflow](https://www.tensorflow.org/) | |||
## Machine learning | |||
* [ipython-notebooks: A collection of IPython notebooks covering various topics](https://github.com/jdwittenauer/ipython-notebooks) | |||
* [Learn Data Science](http://learnds.com/) | |||
* [AM207 2016](https://github.com/AM207/2016/tree/master) | |||
## Awesome series | |||
* [Awesome Cmputer Vision](https://github.com/jbhuang0604/awesome-computer-vision) | |||
* [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning) | |||
* [Awesome - Most Cited Deep Learning Papers](https://github.com/terryum/awesome-deep-learning-papers) | |||
* [Awesome Deep Vision](https://github.com/kjw0612/awesome-deep-vision) | |||
* [Awesome 3D Reconstruction](https://github.com/openMVG/awesome_3DReconstruction_list) | |||
## Lectures | |||
* [Machine Learning](https://www.coursera.org/learn/machine-learning) | |||
* [CS229: Machine Learning](http://cs229.stanford.edu/) | |||
* [CS 20: Tensorflow for Deep Learning Research](http://web.stanford.edu/class/cs20si/index.html) | |||
* [CS 294: Deep Reinforcement Learning, UC Berkeley](http://rll.berkeley.edu/deeprlcourse/) | |||
* [Deep Learning Book](https://github.com/exacity/deeplearningbook-chinese) | |||
* [Machine Learning Crash Course with TensorFlow APIs](https://developers.google.cn/machine-learning/crash-course/) | |||
* [ Nvidia DLI](https://www.nvidia.com/zh-cn/deep-learning-ai/education/) | |||
* [Introduction to Machine Learning](https://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551.htm) | |||
* [Computer Vision @ ETHZ](http://cvg.ethz.ch/teaching/compvis/) | |||
* [SFMedu: A Structure from Motion System for Education](http://robots.princeton.edu/courses/SFMedu/) | |||
* [Scene understanding of computer vision](http://vision.princeton.edu/courses/COS598/2014sp/) | |||
* [Autonomous Navigation for Flying Robots](http://vision.in.tum.de/teaching/ss2015/autonavx) | |||
* [Multiple View Geometry](http://vision.in.tum.de/teaching/ss2015/mvg2015) | |||
* [Deep Learning for Self-Driving Cars](https://selfdrivingcars.mit.edu/) | |||
* [史上最全TensorFlow学习资源汇总](https://www.toutiao.com/a6543679835670053380/) | |||
* [Oxford Deep NLP 2017 course](https://github.com/oxford-cs-deepnlp-2017/lectures) |
@@ -1,94 +0,0 @@ | |||
{ | |||
"cells": [ | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"# Chapter 2. Installing Python environments\n", | |||
"\n", | |||
"这章,讲解如何安装Python的环境" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"## Windows\n", | |||
"\n", | |||
"### 安装Anaconda\n", | |||
"\n", | |||
"由于Anaconda集成了大部分的python包,因此能够很方便的开始使用。由于网络下载速度较慢,因此推荐使用镜像来提高下载的速度。\n", | |||
"\n", | |||
"在这里找到适合自己的安装文件,然后下载\n", | |||
"https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/\n", | |||
"\n", | |||
"设置软件源 https://mirror.tuna.tsinghua.edu.cn/help/anaconda/\n", | |||
"```\n", | |||
"conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/\n", | |||
"conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/\n", | |||
"conda config --set show_channel_urls yes\n", | |||
"```\n", | |||
"\n", | |||
"### 安装Pytorch\n", | |||
"```\n", | |||
"conda install pytorch -c pytorch \n", | |||
"pip3 install torchvision\n", | |||
"```\n", | |||
"\n", | |||
"\n", | |||
"## Linux\n", | |||
"\n", | |||
"### 安装pip\n", | |||
"```\n", | |||
"sudo apt-get install python3-pip\n", | |||
"```\n", | |||
"\n", | |||
"### 设置PIP源\n", | |||
"```\n", | |||
"pip config set global.index-url 'https://mirrors.ustc.edu.cn/pypi/web/simple'\n", | |||
"```\n", | |||
"\n", | |||
"### 安装常用的包\n", | |||
"```\n", | |||
"sudo pip install scipy\n", | |||
"sudo pip install scikit-learn\n", | |||
"sudo pip install numpy\n", | |||
"sudo pip install matplotlib\n", | |||
"sudo pip install pandas\n", | |||
"sudo pip install ipython\n", | |||
"sudo pip install jupyter\n", | |||
"```\n", | |||
"\n", | |||
"### 安装pytorch\n", | |||
"到[pytorch 官网](https://pytorch.org),根据自己的操作系统、CUDA版本,选择合适的安装命令。\n", | |||
"\n", | |||
"例如Linux, Python3.5, CUDA 9.0:\n", | |||
"```\n", | |||
"pip3 install torch torchvision\n", | |||
"```\n", | |||
"\n" | |||
] | |||
} | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
"language_info": { | |||
"codemirror_mode": { | |||
"name": "ipython", | |||
"version": 3 | |||
}, | |||
"file_extension": ".py", | |||
"mimetype": "text/x-python", | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.5.2" | |||
} | |||
}, | |||
"nbformat": 4, | |||
"nbformat_minor": 2 | |||
} |