Browse Source

Add some md docs

fetches/feikei/master
Shuhui Bu 6 years ago
parent
commit
176bac555e
5 changed files with 121 additions and 124 deletions
  1. +63
    -0
      InstallPython.md
  2. +4
    -27
      README.md
  3. +52
    -0
      References.md
  4. +0
    -94
      install_python.ipynb
  5. +2
    -3
      matplotlib/matplotlib_ani2.ipynb

+ 63
- 0
InstallPython.md View File

@@ -0,0 +1,63 @@
# Installing Python environments

这章,讲解如何安装Python的环境

## 1. Windows

### 安装Anaconda

由于Anaconda集成了大部分的python包,因此能够很方便的开始使用。由于网络下载速度较慢,因此推荐使用镜像来提高下载的速度。

在这里找到适合自己的安装文件,然后下载
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

设置软件源 https://mirror.tuna.tsinghua.edu.cn/help/anaconda/
```
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
```

### 安装Pytorch
```
conda install pytorch -c pytorch
pip3 install torchvision
```


## 2. Linux

### 安装pip
```
sudo apt-get install python3-pip
```

### 设置PIP源
```
pip config set global.index-url 'https://mirrors.ustc.edu.cn/pypi/web/simple'
```

### 安装常用的包
```
pip install -r requirements.txt
```

或者手动安装
```
sudo pip install scipy
sudo pip install scikit-learn
sudo pip install numpy
sudo pip install matplotlib
sudo pip install pandas
sudo pip install ipython
sudo pip install jupyter
```

### 安装pytorch
到[pytorch 官网](https://pytorch.org),根据自己的操作系统、CUDA版本,选择合适的安装命令。

例如Linux, Python3.5, CUDA 9.0:
```
pip3 install torch torchvision
```


+ 4
- 27
README.md View File

@@ -1,31 +1,8 @@
# Python和机器学习的notebook

本notebook教程包含了一些使用Python来学习机器学习的教程通过本教程能够引导学习Python的基础知识和机器学习的背景和实际编程。
本notebook教程包含了一些使用Python来学习机器学习的教程通过本教程能够引导学习Python的基础知识和机器学习的背景和实际编程。


## References
更多的学习资料,可以自行在下属列表找找到适合自己的学习资料。

### Python & IPython
* [Python教程](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000)
* [Python-Lectures](https://github.com/rajathkmp/Python-Lectures)
* [A gallery of interesting Jupyter Notebooks](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks)
* [IPython tutorials](https://nbviewer.jupyter.org/github/ipython/ipython/blob/master/examples/IPython%20Kernel/Index.ipynb)
* [Examples from the IPython mini-book](https://github.com/rossant/ipython-minibook)
* [Code of the IPython Cookbook, Second Edition (2018)](https://github.com/ipython-books/cookbook-2nd-code)
* [scientific-python-lectures](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/tree/master/)


### Libs
* [numpy](http://www.numpy.org/)
* [matplotlib - 2D and 3D plotting in Python](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb)
* [scipy](https://www.scipy.org/)
* [pytorch](https://pytorch.org/)
* [tensorflow](https://www.tensorflow.org/)


### Machine learning

* [ipython-notebooks: A collection of IPython notebooks covering various topics](https://github.com/jdwittenauer/ipython-notebooks)
* [Learn Data Science](http://learnds.com/)
* [AM207 2016](https://github.com/AM207/2016/tree/master)
内容
* [安装Python环境](InstallPython.md)
* [参考资料等](References.md)

+ 52
- 0
References.md View File

@@ -0,0 +1,52 @@
# References
更多的学习资料,可以自行在下属列表找找到适合自己的学习资料。

## Python & IPython
* [Python教程](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000)
* [Python-Lectures](https://github.com/rajathkmp/Python-Lectures)
* [A gallery of interesting Jupyter Notebooks](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks)
* [IPython tutorials](https://nbviewer.jupyter.org/github/ipython/ipython/blob/master/examples/IPython%20Kernel/Index.ipynb)
* [Examples from the IPython mini-book](https://github.com/rossant/ipython-minibook)
* [Code of the IPython Cookbook, Second Edition (2018)](https://github.com/ipython-books/cookbook-2nd-code)
* [scientific-python-lectures](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/tree/master/)


## Libs
* [numpy](http://www.numpy.org/)
* [matplotlib - 2D and 3D plotting in Python](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb)
* [scipy](https://www.scipy.org/)
* [pytorch](https://pytorch.org/)
* [tensorflow](https://www.tensorflow.org/)


## Machine learning

* [ipython-notebooks: A collection of IPython notebooks covering various topics](https://github.com/jdwittenauer/ipython-notebooks)
* [Learn Data Science](http://learnds.com/)
* [AM207 2016](https://github.com/AM207/2016/tree/master)


## Awesome series
* [Awesome Cmputer Vision](https://github.com/jbhuang0604/awesome-computer-vision)
* [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning)
* [Awesome - Most Cited Deep Learning Papers](https://github.com/terryum/awesome-deep-learning-papers)
* [Awesome Deep Vision](https://github.com/kjw0612/awesome-deep-vision)
* [Awesome 3D Reconstruction](https://github.com/openMVG/awesome_3DReconstruction_list)

## Lectures
* [Machine Learning](https://www.coursera.org/learn/machine-learning)
* [CS229: Machine Learning](http://cs229.stanford.edu/)
* [CS 20: Tensorflow for Deep Learning Research](http://web.stanford.edu/class/cs20si/index.html)
* [CS 294: Deep Reinforcement Learning, UC Berkeley](http://rll.berkeley.edu/deeprlcourse/)
* [Deep Learning Book](https://github.com/exacity/deeplearningbook-chinese)
* [Machine Learning Crash Course with TensorFlow APIs](https://developers.google.cn/machine-learning/crash-course/)
* [ Nvidia DLI](https://www.nvidia.com/zh-cn/deep-learning-ai/education/)
* [Introduction to Machine Learning](https://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551.htm)
* [Computer Vision @ ETHZ](http://cvg.ethz.ch/teaching/compvis/)
* [SFMedu: A Structure from Motion System for Education](http://robots.princeton.edu/courses/SFMedu/)
* [Scene understanding of computer vision](http://vision.princeton.edu/courses/COS598/2014sp/)
* [Autonomous Navigation for Flying Robots](http://vision.in.tum.de/teaching/ss2015/autonavx)
* [Multiple View Geometry](http://vision.in.tum.de/teaching/ss2015/mvg2015)
* [Deep Learning for Self-Driving Cars](https://selfdrivingcars.mit.edu/)
* [史上最全TensorFlow学习资源汇总](https://www.toutiao.com/a6543679835670053380/)
* [Oxford Deep NLP 2017 course](https://github.com/oxford-cs-deepnlp-2017/lectures)

+ 0
- 94
install_python.ipynb View File

@@ -1,94 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2. Installing Python environments\n",
"\n",
"这章,讲解如何安装Python的环境"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Windows\n",
"\n",
"### 安装Anaconda\n",
"\n",
"由于Anaconda集成了大部分的python包,因此能够很方便的开始使用。由于网络下载速度较慢,因此推荐使用镜像来提高下载的速度。\n",
"\n",
"在这里找到适合自己的安装文件,然后下载\n",
"https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/\n",
"\n",
"设置软件源 https://mirror.tuna.tsinghua.edu.cn/help/anaconda/\n",
"```\n",
"conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/\n",
"conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/\n",
"conda config --set show_channel_urls yes\n",
"```\n",
"\n",
"### 安装Pytorch\n",
"```\n",
"conda install pytorch -c pytorch \n",
"pip3 install torchvision\n",
"```\n",
"\n",
"\n",
"## Linux\n",
"\n",
"### 安装pip\n",
"```\n",
"sudo apt-get install python3-pip\n",
"```\n",
"\n",
"### 设置PIP源\n",
"```\n",
"pip config set global.index-url 'https://mirrors.ustc.edu.cn/pypi/web/simple'\n",
"```\n",
"\n",
"### 安装常用的包\n",
"```\n",
"sudo pip install scipy\n",
"sudo pip install scikit-learn\n",
"sudo pip install numpy\n",
"sudo pip install matplotlib\n",
"sudo pip install pandas\n",
"sudo pip install ipython\n",
"sudo pip install jupyter\n",
"```\n",
"\n",
"### 安装pytorch\n",
"到[pytorch 官网](https://pytorch.org),根据自己的操作系统、CUDA版本,选择合适的安装命令。\n",
"\n",
"例如Linux, Python3.5, CUDA 9.0:\n",
"```\n",
"pip3 install torch torchvision\n",
"```\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

+ 2
- 3
matplotlib/matplotlib_ani2.ipynb
File diff suppressed because it is too large
View File


Loading…
Cancel
Save