|
@@ -90,7 +90,7 @@ def train(epoch): |
|
|
if batch_idx % 100 == 0: |
|
|
if batch_idx % 100 == 0: |
|
|
print("Train epoch: %6d [%6d/%6d (%.0f %%)] \t Loss: %.6f" % ( |
|
|
print("Train epoch: %6d [%6d/%6d (%.0f %%)] \t Loss: %.6f" % ( |
|
|
epoch, batch_idx * len(data), len(train_loader.dataset), |
|
|
epoch, batch_idx * len(data), len(train_loader.dataset), |
|
|
100. * batch_idx / len(train_loader), loss.data[0]) ) |
|
|
|
|
|
|
|
|
100. * batch_idx / len(train_loader), loss.item()) ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test(): |
|
|
def test(): |
|
@@ -103,7 +103,7 @@ def test(): |
|
|
output = model(data) |
|
|
output = model(data) |
|
|
|
|
|
|
|
|
# sum up batch loss |
|
|
# sum up batch loss |
|
|
test_loss += criterion(output, target).data[0] |
|
|
|
|
|
|
|
|
test_loss += criterion(output, target).item() |
|
|
|
|
|
|
|
|
# get the index of the max |
|
|
# get the index of the max |
|
|
pred = output.data.max(1, keepdim=True)[1] |
|
|
pred = output.data.max(1, keepdim=True)[1] |
|
|