|
@@ -10,7 +10,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 2, |
|
|
|
|
|
|
|
|
"execution_count": 1, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [], |
|
|
"outputs": [], |
|
|
"source": [ |
|
|
"source": [ |
|
@@ -28,7 +28,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 3, |
|
|
|
|
|
|
|
|
"execution_count": 2, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
@@ -67,7 +67,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 4, |
|
|
|
|
|
|
|
|
"execution_count": 3, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
@@ -93,7 +93,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 25, |
|
|
|
|
|
|
|
|
"execution_count": 4, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
@@ -115,7 +115,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 26, |
|
|
|
|
|
|
|
|
"execution_count": 5, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [], |
|
|
"outputs": [], |
|
|
"source": [ |
|
|
"source": [ |
|
@@ -127,12 +127,12 @@ |
|
|
"cell_type": "markdown", |
|
|
"cell_type": "markdown", |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"source": [ |
|
|
"source": [ |
|
|
"如果你对矩阵乘法不熟悉,可以查看下面的[网址进行复习](https://baike.baidu.com/item/%E7%9F%A9%E9%98%B5%E4%B9%98%E6%B3%95/5446029?fr=aladdin)" |
|
|
|
|
|
|
|
|
"如果你对矩阵乘法不熟悉,可以查看下面的[《矩阵乘法说明》](https://baike.baidu.com/item/%E7%9F%A9%E9%98%B5%E4%B9%98%E6%B3%95/5446029?fr=aladdin)进行复习" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 27, |
|
|
|
|
|
|
|
|
"execution_count": 6, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
@@ -326,7 +326,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 20, |
|
|
|
|
|
|
|
|
"execution_count": 16, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
@@ -345,7 +345,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 21, |
|
|
|
|
|
|
|
|
"execution_count": 17, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [], |
|
|
"outputs": [], |
|
|
"source": [ |
|
|
"source": [ |
|
@@ -354,7 +354,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 22, |
|
|
|
|
|
|
|
|
"execution_count": 18, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
@@ -371,7 +371,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 23, |
|
|
|
|
|
|
|
|
"execution_count": 19, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [], |
|
|
"outputs": [], |
|
|
"source": [ |
|
|
"source": [ |
|
@@ -413,7 +413,7 @@ |
|
|
"cell_type": "markdown", |
|
|
"cell_type": "markdown", |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"source": [ |
|
|
"source": [ |
|
|
"## 4 练习题\n", |
|
|
|
|
|
|
|
|
"## 4. 练习题\n", |
|
|
"\n", |
|
|
"\n", |
|
|
"定义\n", |
|
|
"定义\n", |
|
|
"\n", |
|
|
"\n", |
|
@@ -462,7 +462,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 29, |
|
|
|
|
|
|
|
|
"execution_count": 25, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [], |
|
|
"outputs": [], |
|
|
"source": [ |
|
|
"source": [ |
|
@@ -475,18 +475,31 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 18, |
|
|
|
|
|
|
|
|
"execution_count": 29, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [], |
|
|
|
|
|
|
|
|
"outputs": [ |
|
|
|
|
|
{ |
|
|
|
|
|
"name": "stdout", |
|
|
|
|
|
"output_type": "stream", |
|
|
|
|
|
"text": [ |
|
|
|
|
|
"tensor([2., 3., 4.], requires_grad=True)\n", |
|
|
|
|
|
"tensor([2., 0., 0.])\n" |
|
|
|
|
|
] |
|
|
|
|
|
} |
|
|
|
|
|
], |
|
|
"source": [ |
|
|
"source": [ |
|
|
"#k.backward(torch.ones_like(k)) \n", |
|
|
|
|
|
"#print(x.grad)\n", |
|
|
|
|
|
"# 和上一个的区别在于该算法是求得导数和,并不是分布求解。" |
|
|
|
|
|
|
|
|
"# demo to show how to use `.backward`\n", |
|
|
|
|
|
"x = torch.tensor([2,3,4], dtype=torch.float, requires_grad=True)\n", |
|
|
|
|
|
"print(x)\n", |
|
|
|
|
|
"y = x*2\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"y.backward(torch.tensor([1, 0, 0], dtype=torch.float))\n", |
|
|
|
|
|
"print(x.grad)" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 30, |
|
|
|
|
|
|
|
|
"execution_count": 26, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
@@ -500,6 +513,7 @@ |
|
|
} |
|
|
} |
|
|
], |
|
|
], |
|
|
"source": [ |
|
|
"source": [ |
|
|
|
|
|
"# calc k_0 -> (x_0, x_1)\n", |
|
|
"j = torch.zeros(2, 2)\n", |
|
|
"j = torch.zeros(2, 2)\n", |
|
|
"k.backward(torch.FloatTensor([1, 0]), retain_graph=True)\n", |
|
|
"k.backward(torch.FloatTensor([1, 0]), retain_graph=True)\n", |
|
|
"print(k)\n", |
|
|
"print(k)\n", |
|
@@ -508,6 +522,7 @@ |
|
|
"\n", |
|
|
"\n", |
|
|
"x.grad.data.zero_() # 归零之前求得的梯度\n", |
|
|
"x.grad.data.zero_() # 归零之前求得的梯度\n", |
|
|
"\n", |
|
|
"\n", |
|
|
|
|
|
"# calc k_1 -> (x_0, x_1)\n", |
|
|
"k.backward(torch.FloatTensor([0, 1]))\n", |
|
|
"k.backward(torch.FloatTensor([0, 1]))\n", |
|
|
"j[1] = x.grad.data\n", |
|
|
"j[1] = x.grad.data\n", |
|
|
"print(x.grad.data)\n" |
|
|
"print(x.grad.data)\n" |
|
@@ -515,24 +530,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 31, |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"outputs": [ |
|
|
|
|
|
{ |
|
|
|
|
|
"name": "stdout", |
|
|
|
|
|
"output_type": "stream", |
|
|
|
|
|
"text": [ |
|
|
|
|
|
"tensor([13., 13.], grad_fn=<CopySlices>)\n" |
|
|
|
|
|
] |
|
|
|
|
|
} |
|
|
|
|
|
], |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"print(k)" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "code", |
|
|
|
|
|
"execution_count": 32, |
|
|
|
|
|
|
|
|
"execution_count": 30, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
|