@@ -1,11 +1,27 @@
# References
# 参考资料
可以自行在下属列表找找到适合自己的学习资料,虽然罗列的比较多,但是个人最好选择一个深入阅读、练习。当练习到一定程度,可以再看看其他的资料,这样弥补单一学习资料可能存在的欠缺。
可以自行在下属列表找找到适合自己的学习资料,虽然罗列的比较多,但是个人最好选择一个深入阅读、练习。当练习到一定程度,可以再看看其他的资料,这样弥补单一学习资料可能存在的欠缺。
列表等在 https://gitee.com/pi-lab/pilab_research_fields/blob/master/references/ML_References.md
列表等在 https://gitee.com/pi-lab/pilab_research_fields/blob/master/references/ML_References.md
## 1. 教程、代码
## References
### 1.1 教程
* [《动手学深度学习》 — 动手学深度学习 2.0.0-alpha2 documentation](https://zh-v2.d2l.ai/index.html)
* [Introduction — Neuromatch Academy: Deep Learning](https://deeplearning.neuromatch.io/tutorials/intro.html)
### 1.2 代码
* [《统计学习方法》的代码](https://gitee.com/afishoutis/MachineLearning)
* [《统计学习方法》pytorch实现](https://github.com/fengdu78/lihang-code)
* [pytorch-cifar100](https://github.com/weiaicunzai/pytorch-cifar100) 实现ResNet, DenseNet, VGG, GoogleNet, InceptionV3, InceptionV4, Inception-ResNetv2, Xception, Resnet In Resnet, ResNext,ShuffleNet, ShuffleNetv2, MobileNet, MobileNetv2, SqueezeNet, NasNet, Residual Attention Network, SENet, WideResNet
* [Attention: xmu-xiaoma666/External-Attention-pytorch: Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐ (github.com)](https://github.com/xmu-xiaoma666/External-Attention-pytorch) 注意力机制,多层神经网络,重参数。
* [Python TheAlgorithms/Python: All Algorithms implemented in Python (github.com)](https://github.com/TheAlgorithms/Python)
* PytTorch 训练手册 https://github.com/zergtant/pytorch-handbook
## 2. 工具、技巧
* [形象直观了解谷歌大脑新型优化器LAMB](https://www.toutiao.com/i6687162064395305475/)
* [形象直观了解谷歌大脑新型优化器LAMB](https://www.toutiao.com/i6687162064395305475/)
* [梯度下降方法的视觉解释(动量,AdaGrad,RMSProp,Adam)](https://www.toutiao.com/i6836422484028293640/)
* [梯度下降方法的视觉解释(动量,AdaGrad,RMSProp,Adam)](https://www.toutiao.com/i6836422484028293640/)
@@ -35,21 +51,8 @@
## Course & Code
- Course
- [《动手学深度学习》 — 动手学深度学习 2.0.0-alpha2 documentation](https://zh-v2.d2l.ai/index.html)
- [连接高校和企业 - 蓝桥云课](https://www.lanqiao.cn/)
- [Introduction — Neuromatch Academy: Deep Learning](https://deeplearning.neuromatch.io/tutorials/intro.html)
- code
- [《统计学习方法》的代码](https://gitee.com/afishoutis/MachineLearning)
- [《统计学习方法》pytorch实现](https://github.com/fengdu78/lihang-code)
- [pytorch-cifar100](https://github.com/weiaicunzai/pytorch-cifar100) 实现ResNet, DenseNet, VGG, GoogleNet, InceptionV3, InceptionV4, Inception-ResNetv2, Xception, Resnet In Resnet, ResNext,ShuffleNet, ShuffleNetv2, MobileNet, MobileNetv2, SqueezeNet, NasNet, Residual Attention Network, SENet, WideResNet
- [Attention: xmu-xiaoma666/External-Attention-pytorch: 🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐ (github.com)](https://github.com/xmu-xiaoma666/External-Attention-pytorch) 注意力机制,多层神经网络,重参数。
- [Python TheAlgorithms/Python: All Algorithms implemented in Python (github.com)](https://github.com/TheAlgorithms/Python)
- PytTorch 训练手册 https://github.com/zergtant/pytorch-handbook
## Exercise
## 3. 练习
* http://sofasofa.io/competitions.php?type=practice
* http://sofasofa.io/competitions.php?type=practice
* https://www.kaggle.com/competitions
* https://www.kaggle.com/competitions
* Machine learning project ideas
* Machine learning project ideas
@@ -64,8 +67,9 @@
* Python 小项目 https://github.com/kyclark/tiny_python_projects
* Python 小项目 https://github.com/kyclark/tiny_python_projects
## Method
## 4. 机器学习方法
### 4.1 经典机器学习方法
* Programming Multiclass Logistic Regression
* Programming Multiclass Logistic Regression
notebooks/MachineLearningNotebooks/05.%20Logistic%20Regression.ipynb
notebooks/MachineLearningNotebooks/05.%20Logistic%20Regression.ipynb
@@ -86,7 +90,7 @@ http://localhost:8889/notebooks/machineLearning/10_digits_classification.ipynb
http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selection%20and%20Assessment.ipynb
http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selection%20and%20Assessment.ipynb
## NN
### 4.2 NN
* 神经网络——梯度下降&反向传播 https://blog.csdn.net/skullfang/article/details/78634317
* 神经网络——梯度下降&反向传播 https://blog.csdn.net/skullfang/article/details/78634317
* 零基础入门深度学习(3) - 神经网络和反向传播算法 https://www.zybuluo.com/hanbingtao/note/476663
* 零基础入门深度学习(3) - 神经网络和反向传播算法 https://www.zybuluo.com/hanbingtao/note/476663
* 如何直观地解释 backpropagation 算法? https://www.zhihu.com/question/27239198
* 如何直观地解释 backpropagation 算法? https://www.zhihu.com/question/27239198
@@ -97,10 +101,10 @@ http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selec
* https://www.python-course.eu/neural_networks_with_python_numpy.php
* https://www.python-course.eu/neural_networks_with_python_numpy.php
## k-Means
### 4.3 k-Means
* [如何使用 Keras 实现无监督聚类](http://m.sohu.com/a/236221126_717210)
* [如何使用 Keras 实现无监督聚类](http://m.sohu.com/a/236221126_717210)
## AutoEncoder (自编码/非监督学习)
### 4.4 AutoEncoder (自编码/非监督学习)
* https://morvanzhou.github.io/tutorials/machine-learning/torch/4-04-autoencoder/
* https://morvanzhou.github.io/tutorials/machine-learning/torch/4-04-autoencoder/
* https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/404_autoencoder.py
* https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/404_autoencoder.py
* pytorch AutoEncoder 自编码 https://www.jianshu.com/p/f0929f427d03
* pytorch AutoEncoder 自编码 https://www.jianshu.com/p/f0929f427d03