Browse Source

Update references

pull/7/head
bushuhui 3 years ago
parent
commit
3c55122846
2 changed files with 26 additions and 24 deletions
  1. +2
    -4
      README.md
  2. +24
    -20
      References.md

+ 2
- 4
README.md View File

@@ -81,21 +81,19 @@



## 3. 参考资料
## 3. [参考资料](References.md)
* [教程、代码](References.md)
* 资料速查
* [相关学习参考资料汇总](References.md)
* [一些速查手册](references_tips/cheatsheet)

* 机器学习方面技巧等
* [Confusion Matrix](references_tips/confusion_matrix.ipynb)
* [Datasets](references_tips/datasets.ipynb)
* [构建深度神经网络的一些实战建议](references_tips/构建深度神经网络的一些实战建议.md)
* [Intro to Deep Learning](references_tips/Intro_to_Deep_Learning.pdf)

* Python技巧等
* [安装Python环境](references_tips/InstallPython.md)
* [Python tips](references_tips/python)

* [Git教程](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/git/README.md)
* [Markdown教程](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/markdown/README.md)



+ 24
- 20
References.md View File

@@ -1,11 +1,27 @@
# References
# 参考资料
可以自行在下属列表找找到适合自己的学习资料,虽然罗列的比较多,但是个人最好选择一个深入阅读、练习。当练习到一定程度,可以再看看其他的资料,这样弥补单一学习资料可能存在的欠缺。

列表等在 https://gitee.com/pi-lab/pilab_research_fields/blob/master/references/ML_References.md


## 1. 教程、代码

## References
### 1.1 教程

* [《动手学深度学习》 — 动手学深度学习 2.0.0-alpha2 documentation](https://zh-v2.d2l.ai/index.html)
* [Introduction — Neuromatch Academy: Deep Learning](https://deeplearning.neuromatch.io/tutorials/intro.html)


### 1.2 代码

* [《统计学习方法》的代码](https://gitee.com/afishoutis/MachineLearning)
* [《统计学习方法》pytorch实现](https://github.com/fengdu78/lihang-code)
* [pytorch-cifar100](https://github.com/weiaicunzai/pytorch-cifar100) 实现ResNet, DenseNet, VGG, GoogleNet, InceptionV3, InceptionV4, Inception-ResNetv2, Xception, Resnet In Resnet, ResNext,ShuffleNet, ShuffleNetv2, MobileNet, MobileNetv2, SqueezeNet, NasNet, Residual Attention Network, SENet, WideResNet
* [Attention: xmu-xiaoma666/External-Attention-pytorch: Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐ (github.com)](https://github.com/xmu-xiaoma666/External-Attention-pytorch) 注意力机制,多层神经网络,重参数。
* [Python TheAlgorithms/Python: All Algorithms implemented in Python (github.com)](https://github.com/TheAlgorithms/Python)
* PytTorch 训练手册 https://github.com/zergtant/pytorch-handbook

## 2. 工具、技巧

* [形象直观了解谷歌大脑新型优化器LAMB](https://www.toutiao.com/i6687162064395305475/)
* [梯度下降方法的视觉解释(动量,AdaGrad,RMSProp,Adam)](https://www.toutiao.com/i6836422484028293640/)
@@ -35,21 +51,8 @@



## Course & Code

- Course
- [《动手学深度学习》 — 动手学深度学习 2.0.0-alpha2 documentation](https://zh-v2.d2l.ai/index.html)
- [连接高校和企业 - 蓝桥云课](https://www.lanqiao.cn/)
- [Introduction — Neuromatch Academy: Deep Learning](https://deeplearning.neuromatch.io/tutorials/intro.html)
- code
- [《统计学习方法》的代码](https://gitee.com/afishoutis/MachineLearning)
- [《统计学习方法》pytorch实现](https://github.com/fengdu78/lihang-code)
- [pytorch-cifar100](https://github.com/weiaicunzai/pytorch-cifar100) 实现ResNet, DenseNet, VGG, GoogleNet, InceptionV3, InceptionV4, Inception-ResNetv2, Xception, Resnet In Resnet, ResNext,ShuffleNet, ShuffleNetv2, MobileNet, MobileNetv2, SqueezeNet, NasNet, Residual Attention Network, SENet, WideResNet
- [Attention: xmu-xiaoma666/External-Attention-pytorch: 🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐ (github.com)](https://github.com/xmu-xiaoma666/External-Attention-pytorch) 注意力机制,多层神经网络,重参数。
- [Python TheAlgorithms/Python: All Algorithms implemented in Python (github.com)](https://github.com/TheAlgorithms/Python)
- PytTorch 训练手册 https://github.com/zergtant/pytorch-handbook

## Exercise
## 3. 练习
* http://sofasofa.io/competitions.php?type=practice
* https://www.kaggle.com/competitions
* Machine learning project ideas
@@ -64,8 +67,9 @@
* Python 小项目 https://github.com/kyclark/tiny_python_projects


## Method
## 4. 机器学习方法

### 4.1 经典机器学习方法
* Programming Multiclass Logistic Regression
notebooks/MachineLearningNotebooks/05.%20Logistic%20Regression.ipynb

@@ -86,7 +90,7 @@ http://localhost:8889/notebooks/machineLearning/10_digits_classification.ipynb
http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selection%20and%20Assessment.ipynb


## NN
### 4.2 NN
* 神经网络——梯度下降&反向传播 https://blog.csdn.net/skullfang/article/details/78634317
* 零基础入门深度学习(3) - 神经网络和反向传播算法 https://www.zybuluo.com/hanbingtao/note/476663
* 如何直观地解释 backpropagation 算法? https://www.zhihu.com/question/27239198
@@ -97,10 +101,10 @@ http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selec
* https://www.python-course.eu/neural_networks_with_python_numpy.php


## k-Means
### 4.3 k-Means
* [如何使用 Keras 实现无监督聚类](http://m.sohu.com/a/236221126_717210)

## AutoEncoder (自编码/非监督学习)
### 4.4 AutoEncoder (自编码/非监督学习)
* https://morvanzhou.github.io/tutorials/machine-learning/torch/4-04-autoencoder/
* https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/404_autoencoder.py
* pytorch AutoEncoder 自编码 https://www.jianshu.com/p/f0929f427d03

Loading…
Cancel
Save