|
@@ -41,14 +41,11 @@ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"\n", |
|
|
|
|
|
"1.00000e-07 *\n", |
|
|
|
|
|
" 0.0000 0.0000 5.3571\n", |
|
|
|
|
|
" 0.0000 0.0000 0.0000\n", |
|
|
|
|
|
" 0.0000 0.0000 0.0000\n", |
|
|
|
|
|
" 0.0000 5.4822 0.0000\n", |
|
|
|
|
|
" 5.4823 0.0000 5.4823\n", |
|
|
|
|
|
"[torch.FloatTensor of size 5x3]" |
|
|
|
|
|
|
|
|
"tensor([[5.0275e-38, 0.0000e+00, 5.7453e-44],\n", |
|
|
|
|
|
" [0.0000e+00, nan, 4.5886e-41],\n", |
|
|
|
|
|
" [1.3733e-14, 6.4076e+07, 2.0706e-19],\n", |
|
|
|
|
|
" [7.3909e+22, 2.4176e-12, 1.1625e+33],\n", |
|
|
|
|
|
" [8.9605e-01, 1.1632e+33, 5.6003e-02]])" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 2, |
|
|
"execution_count": 2, |
|
@@ -70,13 +67,11 @@ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"\n", |
|
|
|
|
|
" 0.3673 0.2522 0.3553\n", |
|
|
|
|
|
" 0.0070 0.7138 0.0463\n", |
|
|
|
|
|
" 0.6198 0.6019 0.3752\n", |
|
|
|
|
|
" 0.4755 0.3675 0.3032\n", |
|
|
|
|
|
" 0.5824 0.5104 0.5759\n", |
|
|
|
|
|
"[torch.FloatTensor of size 5x3]" |
|
|
|
|
|
|
|
|
"tensor([[0.7334, 0.3729, 0.2952],\n", |
|
|
|
|
|
" [0.0380, 0.1581, 0.2454],\n", |
|
|
|
|
|
" [0.6000, 0.1633, 0.7892],\n", |
|
|
|
|
|
" [0.1951, 0.5389, 0.3149],\n", |
|
|
|
|
|
" [0.6041, 0.8072, 0.5542]])" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 3, |
|
|
"execution_count": 3, |
|
@@ -133,13 +128,11 @@ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"\n", |
|
|
|
|
|
" 0.4063 0.7378 1.2411\n", |
|
|
|
|
|
" 0.0687 0.7725 0.0634\n", |
|
|
|
|
|
" 1.1016 1.4291 0.7324\n", |
|
|
|
|
|
" 0.7604 1.2880 0.4597\n", |
|
|
|
|
|
" 0.6020 1.0124 1.0185\n", |
|
|
|
|
|
"[torch.FloatTensor of size 5x3]" |
|
|
|
|
|
|
|
|
"tensor([[1.7112, 1.2969, 0.3289],\n", |
|
|
|
|
|
" [0.7841, 1.0128, 0.7596],\n", |
|
|
|
|
|
" [1.1364, 1.1541, 0.8970],\n", |
|
|
|
|
|
" [0.8831, 0.7063, 0.3158],\n", |
|
|
|
|
|
" [1.5160, 1.3610, 0.8437]])" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 5, |
|
|
"execution_count": 5, |
|
@@ -182,22 +175,20 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 7, |
|
|
|
|
|
|
|
|
"execution_count": 6, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"\n", |
|
|
|
|
|
" 0.4063 0.7378 1.2411\n", |
|
|
|
|
|
" 0.0687 0.7725 0.0634\n", |
|
|
|
|
|
" 1.1016 1.4291 0.7324\n", |
|
|
|
|
|
" 0.7604 1.2880 0.4597\n", |
|
|
|
|
|
" 0.6020 1.0124 1.0185\n", |
|
|
|
|
|
"[torch.FloatTensor of size 5x3]" |
|
|
|
|
|
|
|
|
"tensor([[1.7112, 1.2969, 0.3289],\n", |
|
|
|
|
|
" [0.7841, 1.0128, 0.7596],\n", |
|
|
|
|
|
" [1.1364, 1.1541, 0.8970],\n", |
|
|
|
|
|
" [0.8831, 0.7063, 0.3158],\n", |
|
|
|
|
|
" [1.5160, 1.3610, 0.8437]])" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 7, |
|
|
|
|
|
|
|
|
"execution_count": 6, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"output_type": "execute_result" |
|
|
"output_type": "execute_result" |
|
|
} |
|
|
} |
|
@@ -211,7 +202,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 8, |
|
|
|
|
|
|
|
|
"execution_count": 7, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
@@ -219,32 +210,23 @@ |
|
|
"output_type": "stream", |
|
|
"output_type": "stream", |
|
|
"text": [ |
|
|
"text": [ |
|
|
"最初y\n", |
|
|
"最初y\n", |
|
|
"\n", |
|
|
|
|
|
" 0.0390 0.4856 0.8858\n", |
|
|
|
|
|
" 0.0617 0.0587 0.0171\n", |
|
|
|
|
|
" 0.4818 0.8272 0.3572\n", |
|
|
|
|
|
" 0.2849 0.9205 0.1565\n", |
|
|
|
|
|
" 0.0196 0.5020 0.4426\n", |
|
|
|
|
|
"[torch.FloatTensor of size 5x3]\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
|
|
|
"tensor([[0.9778, 0.9240, 0.0337],\n", |
|
|
|
|
|
" [0.7461, 0.8548, 0.5141],\n", |
|
|
|
|
|
" [0.5364, 0.9908, 0.1078],\n", |
|
|
|
|
|
" [0.6880, 0.1675, 0.0010],\n", |
|
|
|
|
|
" [0.9120, 0.5539, 0.2896]])\n", |
|
|
"第一种加法,y的结果\n", |
|
|
"第一种加法,y的结果\n", |
|
|
"\n", |
|
|
|
|
|
" 0.0390 0.4856 0.8858\n", |
|
|
|
|
|
" 0.0617 0.0587 0.0171\n", |
|
|
|
|
|
" 0.4818 0.8272 0.3572\n", |
|
|
|
|
|
" 0.2849 0.9205 0.1565\n", |
|
|
|
|
|
" 0.0196 0.5020 0.4426\n", |
|
|
|
|
|
"[torch.FloatTensor of size 5x3]\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
|
|
|
"tensor([[0.9778, 0.9240, 0.0337],\n", |
|
|
|
|
|
" [0.7461, 0.8548, 0.5141],\n", |
|
|
|
|
|
" [0.5364, 0.9908, 0.1078],\n", |
|
|
|
|
|
" [0.6880, 0.1675, 0.0010],\n", |
|
|
|
|
|
" [0.9120, 0.5539, 0.2896]])\n", |
|
|
"第二种加法,y的结果\n", |
|
|
"第二种加法,y的结果\n", |
|
|
"\n", |
|
|
|
|
|
" 0.4063 0.7378 1.2411\n", |
|
|
|
|
|
" 0.0687 0.7725 0.0634\n", |
|
|
|
|
|
" 1.1016 1.4291 0.7324\n", |
|
|
|
|
|
" 0.7604 1.2880 0.4597\n", |
|
|
|
|
|
" 0.6020 1.0124 1.0185\n", |
|
|
|
|
|
"[torch.FloatTensor of size 5x3]\n", |
|
|
|
|
|
"\n" |
|
|
|
|
|
|
|
|
"tensor([[1.7112, 1.2969, 0.3289],\n", |
|
|
|
|
|
" [0.7841, 1.0128, 0.7596],\n", |
|
|
|
|
|
" [1.1364, 1.1541, 0.8970],\n", |
|
|
|
|
|
" [0.8831, 0.7063, 0.3158],\n", |
|
|
|
|
|
" [1.5160, 1.3610, 0.8437]])\n" |
|
|
] |
|
|
] |
|
|
} |
|
|
} |
|
|
], |
|
|
], |
|
@@ -306,22 +288,16 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 10, |
|
|
|
|
|
|
|
|
"execution_count": 8, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"\n", |
|
|
|
|
|
" 1\n", |
|
|
|
|
|
" 1\n", |
|
|
|
|
|
" 1\n", |
|
|
|
|
|
" 1\n", |
|
|
|
|
|
" 1\n", |
|
|
|
|
|
"[torch.FloatTensor of size 5]" |
|
|
|
|
|
|
|
|
"tensor([1., 1., 1., 1., 1.])" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 10, |
|
|
|
|
|
|
|
|
"execution_count": 8, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"output_type": "execute_result" |
|
|
"output_type": "execute_result" |
|
|
} |
|
|
} |
|
@@ -333,7 +309,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 11, |
|
|
|
|
|
|
|
|
"execution_count": 9, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
@@ -342,7 +318,7 @@ |
|
|
"array([1., 1., 1., 1., 1.], dtype=float32)" |
|
|
"array([1., 1., 1., 1., 1.], dtype=float32)" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 11, |
|
|
|
|
|
|
|
|
"execution_count": 9, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"output_type": "execute_result" |
|
|
"output_type": "execute_result" |
|
|
} |
|
|
} |
|
@@ -354,7 +330,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 12, |
|
|
|
|
|
|
|
|
"execution_count": 10, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
@@ -362,14 +338,7 @@ |
|
|
"output_type": "stream", |
|
|
"output_type": "stream", |
|
|
"text": [ |
|
|
"text": [ |
|
|
"[1. 1. 1. 1. 1.]\n", |
|
|
"[1. 1. 1. 1. 1.]\n", |
|
|
"\n", |
|
|
|
|
|
" 1\n", |
|
|
|
|
|
" 1\n", |
|
|
|
|
|
" 1\n", |
|
|
|
|
|
" 1\n", |
|
|
|
|
|
" 1\n", |
|
|
|
|
|
"[torch.DoubleTensor of size 5]\n", |
|
|
|
|
|
"\n" |
|
|
|
|
|
|
|
|
"tensor([1., 1., 1., 1., 1.], dtype=torch.float64)\n" |
|
|
] |
|
|
] |
|
|
} |
|
|
} |
|
|
], |
|
|
], |
|
@@ -424,15 +393,28 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 14, |
|
|
|
|
|
|
|
|
"execution_count": 15, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [], |
|
|
|
|
|
|
|
|
"outputs": [ |
|
|
|
|
|
{ |
|
|
|
|
|
"name": "stdout", |
|
|
|
|
|
"output_type": "stream", |
|
|
|
|
|
"text": [ |
|
|
|
|
|
"tensor([[2.4446, 1.6699, 0.6242],\n", |
|
|
|
|
|
" [0.8222, 1.1709, 1.0050],\n", |
|
|
|
|
|
" [1.7364, 1.3174, 1.6862],\n", |
|
|
|
|
|
" [1.0782, 1.2452, 0.6307],\n", |
|
|
|
|
|
" [2.1201, 2.1682, 1.3979]], device='cuda:0')\n" |
|
|
|
|
|
] |
|
|
|
|
|
} |
|
|
|
|
|
], |
|
|
"source": [ |
|
|
"source": [ |
|
|
"# 在不支持CUDA的机器下,下一步不会运行\n", |
|
|
"# 在不支持CUDA的机器下,下一步不会运行\n", |
|
|
"if t.cuda.is_available():\n", |
|
|
"if t.cuda.is_available():\n", |
|
|
" x = x.cuda()\n", |
|
|
" x = x.cuda()\n", |
|
|
" y = y.cuda()\n", |
|
|
" y = y.cuda()\n", |
|
|
" x + y" |
|
|
|
|
|
|
|
|
" x + y\n", |
|
|
|
|
|
"print(x+y)" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
@@ -459,7 +441,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 15, |
|
|
|
|
|
|
|
|
"execution_count": 16, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [], |
|
|
"outputs": [], |
|
|
"source": [ |
|
|
"source": [ |
|
@@ -468,7 +450,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 16, |
|
|
|
|
|
|
|
|
"execution_count": 19, |
|
|
"metadata": { |
|
|
"metadata": { |
|
|
"scrolled": true |
|
|
"scrolled": true |
|
|
}, |
|
|
}, |
|
@@ -476,13 +458,11 @@ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"Variable containing:\n", |
|
|
|
|
|
" 1 1\n", |
|
|
|
|
|
" 1 1\n", |
|
|
|
|
|
"[torch.FloatTensor of size 2x2]" |
|
|
|
|
|
|
|
|
"tensor([[1., 1.],\n", |
|
|
|
|
|
" [1., 1.]], requires_grad=True)" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 16, |
|
|
|
|
|
|
|
|
"execution_count": 19, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"output_type": "execute_result" |
|
|
"output_type": "execute_result" |
|
|
} |
|
|
} |
|
@@ -495,7 +475,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 17, |
|
|
|
|
|
|
|
|
"execution_count": 20, |
|
|
"metadata": { |
|
|
"metadata": { |
|
|
"scrolled": true |
|
|
"scrolled": true |
|
|
}, |
|
|
}, |
|
@@ -503,12 +483,10 @@ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"Variable containing:\n", |
|
|
|
|
|
" 4\n", |
|
|
|
|
|
"[torch.FloatTensor of size 1]" |
|
|
|
|
|
|
|
|
"tensor(4., grad_fn=<SumBackward0>)" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 17, |
|
|
|
|
|
|
|
|
"execution_count": 20, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"output_type": "execute_result" |
|
|
"output_type": "execute_result" |
|
|
} |
|
|
} |
|
@@ -520,16 +498,16 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 18, |
|
|
|
|
|
|
|
|
"execution_count": 21, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"<SumBackward0 at 0x7fc14824b860>" |
|
|
|
|
|
|
|
|
"<SumBackward0 at 0x7fe8cf72c908>" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 18, |
|
|
|
|
|
|
|
|
"execution_count": 21, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"output_type": "execute_result" |
|
|
"output_type": "execute_result" |
|
|
} |
|
|
} |
|
@@ -540,7 +518,7 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 19, |
|
|
|
|
|
|
|
|
"execution_count": 22, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [], |
|
|
"outputs": [], |
|
|
"source": [ |
|
|
"source": [ |
|
@@ -549,19 +527,17 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 20, |
|
|
|
|
|
|
|
|
"execution_count": 23, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"Variable containing:\n", |
|
|
|
|
|
" 1 1\n", |
|
|
|
|
|
" 1 1\n", |
|
|
|
|
|
"[torch.FloatTensor of size 2x2]" |
|
|
|
|
|
|
|
|
"tensor([[1., 1.],\n", |
|
|
|
|
|
" [1., 1.]])" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 20, |
|
|
|
|
|
|
|
|
"execution_count": 23, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"output_type": "execute_result" |
|
|
"output_type": "execute_result" |
|
|
} |
|
|
} |
|
@@ -581,19 +557,17 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 21, |
|
|
|
|
|
|
|
|
"execution_count": 24, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"Variable containing:\n", |
|
|
|
|
|
" 2 2\n", |
|
|
|
|
|
" 2 2\n", |
|
|
|
|
|
"[torch.FloatTensor of size 2x2]" |
|
|
|
|
|
|
|
|
"tensor([[2., 2.],\n", |
|
|
|
|
|
" [2., 2.]])" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 21, |
|
|
|
|
|
|
|
|
"execution_count": 24, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"output_type": "execute_result" |
|
|
"output_type": "execute_result" |
|
|
} |
|
|
} |
|
@@ -631,19 +605,17 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 23, |
|
|
|
|
|
|
|
|
"execution_count": 25, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"\n", |
|
|
|
|
|
" 0 0\n", |
|
|
|
|
|
" 0 0\n", |
|
|
|
|
|
"[torch.FloatTensor of size 2x2]" |
|
|
|
|
|
|
|
|
"tensor([[0., 0.],\n", |
|
|
|
|
|
" [0., 0.]])" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 23, |
|
|
|
|
|
|
|
|
"execution_count": 25, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"output_type": "execute_result" |
|
|
"output_type": "execute_result" |
|
|
} |
|
|
} |
|
@@ -655,19 +627,17 @@ |
|
|
}, |
|
|
}, |
|
|
{ |
|
|
{ |
|
|
"cell_type": "code", |
|
|
"cell_type": "code", |
|
|
"execution_count": 24, |
|
|
|
|
|
|
|
|
"execution_count": 26, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"outputs": [ |
|
|
"outputs": [ |
|
|
{ |
|
|
{ |
|
|
"data": { |
|
|
"data": { |
|
|
"text/plain": [ |
|
|
"text/plain": [ |
|
|
"Variable containing:\n", |
|
|
|
|
|
" 1 1\n", |
|
|
|
|
|
" 1 1\n", |
|
|
|
|
|
"[torch.FloatTensor of size 2x2]" |
|
|
|
|
|
|
|
|
"tensor([[1., 1.],\n", |
|
|
|
|
|
" [1., 1.]])" |
|
|
] |
|
|
] |
|
|
}, |
|
|
}, |
|
|
"execution_count": 24, |
|
|
|
|
|
|
|
|
"execution_count": 26, |
|
|
"metadata": {}, |
|
|
"metadata": {}, |
|
|
"output_type": "execute_result" |
|
|
"output_type": "execute_result" |
|
|
} |
|
|
} |
|
|