diff --git a/4_logistic_regression/Least_squares.ipynb b/4_logistic_regression/Least_squares.ipynb index 42bbd81..e2af4ce 100644 --- a/4_logistic_regression/Least_squares.ipynb +++ b/4_logistic_regression/Least_squares.ipynb @@ -26,7 +26,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -83,7 +83,8 @@ "\n", "如何构建函数来评估模型输出与观测数据之间的误差是一个关键问题,这里我们使用观测数据与模型输出的平方和来作为评估函数(也被称为损失函数Loss function):\n", "$$\n", - "L = \\sum_{i=1}^{N} (y_i - a x_i - b)^2\n", + "L = \\sum_{i=1}^{N} (y_i - a x_i - b)^2 \\\\\n", + "L = \\sum_{i=1}^{N} \\{y_i - (a x_i + b)\\}^2\n", "$$\n", "\n", "使误差函数最小,那么我们就可以求出模型的参数:\n", @@ -114,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -220,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -1156,7 +1157,13 @@ "epoch 926: loss = 1741938.470661, a = 800.256095, b = 152.614425\n", "epoch 927: loss = 1741850.081082, a = 800.552373, b = 152.614236\n", "epoch 928: loss = 1741762.043319, a = 800.848058, b = 152.614047\n", - "epoch 929: loss = 1741674.355969, a = 801.143152, b = 152.613859\n", + "epoch 929: loss = 1741674.355969, a = 801.143152, b = 152.613859\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 930: loss = 1741587.017634, a = 801.437656, b = 152.613670\n", "epoch 931: loss = 1741500.026924, a = 801.731571, b = 152.613483\n", "epoch 932: loss = 1741413.382452, a = 802.024898, b = 152.613295\n", @@ -1186,13 +1193,7 @@ "epoch 956: loss = 1739434.277612, a = 808.891453, b = 152.608910\n", "epoch 957: loss = 1739355.854363, a = 809.170463, b = 152.608732\n", "epoch 958: loss = 1739277.743190, a = 809.448915, b = 152.608554\n", - "epoch 959: loss = 1739199.942847, a = 809.726810, b = 152.608376\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 959: loss = 1739199.942847, a = 809.726810, b = 152.608376\n", "epoch 960: loss = 1739122.452096, a = 810.004149, b = 152.608199\n", "epoch 961: loss = 1739045.269701, a = 810.280934, b = 152.608022\n", "epoch 962: loss = 1738968.394433, a = 810.557165, b = 152.607846\n", @@ -1433,13 +1434,7 @@ "epoch 1197: loss = 1727262.359044, a = 862.289047, b = 152.574805\n", "epoch 1198: loss = 1727232.327005, a = 862.461279, b = 152.574695\n", "epoch 1199: loss = 1727202.414181, a = 862.633167, b = 152.574585\n", - "epoch 1200: loss = 1727172.620097, a = 862.804711, b = 152.574476\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 1200: loss = 1727172.620097, a = 862.804711, b = 152.574476\n", "epoch 1201: loss = 1727142.944280, a = 862.975912, b = 152.574366\n", "epoch 1202: loss = 1727113.386259, a = 863.146771, b = 152.574257\n", "epoch 1203: loss = 1727083.945566, a = 863.317288, b = 152.574148\n", @@ -1697,13 +1692,7 @@ "epoch 1455: loss = 1722405.759587, a = 897.030088, b = 152.552616\n", "epoch 1456: loss = 1722394.975336, a = 897.132850, b = 152.552550\n", "epoch 1457: loss = 1722384.233710, a = 897.235407, b = 152.552485\n", - "epoch 1458: loss = 1722373.534540, a = 897.337758, b = 152.552419\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 1458: loss = 1722373.534540, a = 897.337758, b = 152.552419\n", "epoch 1459: loss = 1722362.877657, a = 897.439904, b = 152.552354\n", "epoch 1460: loss = 1722352.262894, a = 897.541846, b = 152.552289\n", "epoch 1461: loss = 1722341.690083, a = 897.643585, b = 152.552224\n", @@ -1885,7 +1874,13 @@ "epoch 1637: loss = 1721003.777210, a = 912.720300, b = 152.542595\n", "epoch 1638: loss = 1720998.523911, a = 912.791687, b = 152.542549\n", "epoch 1639: loss = 1720993.291280, a = 912.862931, b = 152.542504\n", - "epoch 1640: loss = 1720988.079235, a = 912.934032, b = 152.542458\n", + "epoch 1640: loss = 1720988.079235, a = 912.934032, b = 152.542458\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 1641: loss = 1720982.887695, a = 913.004991, b = 152.542413\n", "epoch 1642: loss = 1720977.716578, a = 913.075808, b = 152.542368\n", "epoch 1643: loss = 1720972.565804, a = 913.146484, b = 152.542322\n", @@ -2173,7 +2168,13 @@ "epoch 1925: loss = 1720096.340125, a = 928.361108, b = 152.532605\n", "epoch 1926: loss = 1720094.642123, a = 928.401218, b = 152.532579\n", "epoch 1927: loss = 1720092.950726, a = 928.441248, b = 152.532554\n", - "epoch 1928: loss = 1720091.265906, a = 928.481197, b = 152.532528\n", + "epoch 1928: loss = 1720091.265906, a = 928.481197, b = 152.532528\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 1929: loss = 1720089.587638, a = 928.521067, b = 152.532503\n", "epoch 1930: loss = 1720087.915897, a = 928.560858, b = 152.532477\n", "epoch 1931: loss = 1720086.250656, a = 928.600568, b = 152.532452\n", @@ -2495,13 +2496,7 @@ "epoch 2247: loss = 1719783.365139, a = 937.890737, b = 152.526518\n", "epoch 2248: loss = 1719782.874794, a = 937.911791, b = 152.526505\n", "epoch 2249: loss = 1719782.386313, a = 937.932803, b = 152.526492\n", - "epoch 2250: loss = 1719781.899690, a = 937.953773, b = 152.526478\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 2250: loss = 1719781.899690, a = 937.953773, b = 152.526478\n", "epoch 2251: loss = 1719781.414916, a = 937.974701, b = 152.526465\n", "epoch 2252: loss = 1719780.931986, a = 937.995587, b = 152.526451\n", "epoch 2253: loss = 1719780.450892, a = 938.016431, b = 152.526438\n", @@ -2679,7 +2674,13 @@ "epoch 2425: loss = 1719719.760650, a = 941.046575, b = 152.524503\n", "epoch 2426: loss = 1719719.510258, a = 941.061318, b = 152.524493\n", "epoch 2427: loss = 1719719.260800, a = 941.076032, b = 152.524484\n", - "epoch 2428: loss = 1719719.012273, a = 941.090716, b = 152.524475\n", + "epoch 2428: loss = 1719719.012273, a = 941.090716, b = 152.524475\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 2429: loss = 1719718.764672, a = 941.105371, b = 152.524465\n", "epoch 2430: loss = 1719718.517995, a = 941.119997, b = 152.524456\n", "epoch 2431: loss = 1719718.272238, a = 941.134594, b = 152.524447\n", @@ -2708,13 +2709,7 @@ "epoch 2454: loss = 1719712.865738, a = 941.462375, b = 152.524237\n", "epoch 2455: loss = 1719712.641027, a = 941.476287, b = 152.524228\n", "epoch 2456: loss = 1719712.417151, a = 941.490171, b = 152.524219\n", - "epoch 2457: loss = 1719712.194107, a = 941.504027, b = 152.524211\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 2457: loss = 1719712.194107, a = 941.504027, b = 152.524211\n", "epoch 2458: loss = 1719711.971892, a = 941.517856, b = 152.524202\n", "epoch 2459: loss = 1719711.750502, a = 941.531657, b = 152.524193\n", "epoch 2460: loss = 1719711.529935, a = 941.545430, b = 152.524184\n", @@ -3127,7 +3122,13 @@ "epoch 2867: loss = 1719664.917619, a = 945.375777, b = 152.521738\n", "epoch 2868: loss = 1719664.866907, a = 945.381863, b = 152.521734\n", "epoch 2869: loss = 1719664.816370, a = 945.387938, b = 152.521730\n", - "epoch 2870: loss = 1719664.766007, a = 945.394000, b = 152.521726\n", + "epoch 2870: loss = 1719664.766007, a = 945.394000, b = 152.521726\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 2871: loss = 1719664.715819, a = 945.400050, b = 152.521722\n", "epoch 2872: loss = 1719664.665804, a = 945.406087, b = 152.521718\n", "epoch 2873: loss = 1719664.615962, a = 945.412113, b = 152.521714\n", @@ -3213,13 +3214,7 @@ "epoch 2953: loss = 1719661.135884, a = 945.857112, b = 152.521430\n", "epoch 2954: loss = 1719661.098120, a = 945.862236, b = 152.521427\n", "epoch 2955: loss = 1719661.060484, a = 945.867350, b = 152.521424\n", - "epoch 2956: loss = 1719661.022975, a = 945.872453, b = 152.521420\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 2956: loss = 1719661.022975, a = 945.872453, b = 152.521420\n", "epoch 2957: loss = 1719660.985594, a = 945.877546, b = 152.521417\n", "epoch 2958: loss = 1719660.948338, a = 945.882629, b = 152.521414\n", "epoch 2959: loss = 1719660.911209, a = 945.887702, b = 152.521411\n", @@ -3313,7 +3308,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -4099,7 +4094,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -4107,228 +4102,902 @@ }, "metadata": {}, "output_type": "display_data" - } - ], - "source": [ - "%matplotlib nbagg\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import matplotlib.animation as animation\n", - "\n", - "n_epoch = 3000 # epoch size\n", - "a, b = 1, 1 # initial parameters\n", - "epsilon = 0.001 # learning rate\n", - "\n", - "fig = plt.figure()\n", - "imgs = []\n", - "\n", - "for i in range(n_epoch):\n", - " for j in range(N):\n", - " a = a + epsilon*2*(Y[j] - a*X[j] - b)*X[j]\n", - " b = b + epsilon*2*(Y[j] - a*X[j] - b)\n", - "\n", - " L = 0\n", - " for j in range(N):\n", - " L = L + (Y[j]-a*X[j]-b)**2\n", - " #print(\"epoch %4d: loss = %f, a = %f, b = %f\" % (i, L, a, b))\n", - " \n", - " if i % 50 == 0:\n", - " x_min = np.min(X)\n", - " x_max = np.max(X)\n", - " y_min = a * x_min + b\n", - " y_max = a * x_max + b\n", - "\n", - " img = plt.scatter(X, Y, label='original data')\n", - " img = plt.plot([x_min, x_max], [y_min, y_max], 'r', label='model')\n", - " imgs.append(img)\n", - " \n", - "ani = animation.ArtistAnimation(fig, imgs)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. 如何使用批次更新的方法?\n", - "\n", - "如果有一些数据包含比较大的错误(异常数据),因此每次更新仅仅使用一个数据会导致不精确,同时每次仅仅使用一个数据来计算更新也导致计算效率比较低。\n", - "\n", - "\n", - "* [梯度下降方法的几种形式](https://blog.csdn.net/u010402786/article/details/51188876)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. 如何拟合多项式函数?\n", - "\n", - "需要设计一个弹道导弹防御系统,通过观测导弹的飞行路径,预测未来导弹的飞行轨迹,从而完成摧毁的任务。按照物理学,可以得知模型为:\n", - "$$\n", - "y = at^2 + bt + c\n", - "$$\n", - "我们需要求解三个模型参数$a, b, c$。\n", - "\n", - "损失函数的定义为:\n", - "$$\n", - "L = \\sum_{i=1}^N (y_i - at^2 - bt - c)^2\n", - "$$\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Traceback (most recent call last):\n", - " File \"/home/bushuhui/.virtualenv/dl/lib/python3.5/site-packages/matplotlib/cbook/__init__.py\", line 215, in process\n", - " func(*args, **kwargs)\n", - " File \"/home/bushuhui/.virtualenv/dl/lib/python3.5/site-packages/matplotlib/animation.py\", line 1462, in _stop\n", - " self.event_source.remove_callback(self._loop_delay)\n", - "AttributeError: 'NoneType' object has no attribute 'remove_callback'\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAEo1JREFUeJzt3X+MndV95/H3pzYkA9tlCJlaMCZrqiB3V4mC6YglSxvt4qaENAoWSiOq3Y2FrLp/oDYpklvY/yqtlESuljb/oLWwus5uQkIJP6wsCkFAVu0foTvGFBOIG4eG4OGHpxSTTXB3gX73jzlOBheYOzN3fD2H90u6uuc5z3nu8z2y/Jlnzn3u3FQVkqR+/dyoC5AkrSyDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktS5taMuAODd7353bdiwYdRlSNKqsm/fvr+rqomFxp0SQb9hwwamp6dHXYYkrSpJnhpknEs3ktQ5g16SOmfQS1LnDHpJ6pxBL0mdGyjok3w6yWNJvpPkM63vXUnuS/K99nx260+SLyQ5lOTRJBevVPF37Z/hss89wAU3/E8u+9wD3LV/ZqVOJUmr1oJBn+R9wG8DlwAfAD6W5L3ADcD9VXUhcH/bBrgSuLA9tgM3r0Dd3LV/hhvvOMDM0WMUMHP0GDfeccCwl6QTDHJF/y+Bh6rq5ap6FfhfwNXAVcCeNmYPsKW1rwK+WHO+DYwnOXfIdbPz3oMce+W11/Ude+U1dt57cNinkqRVbZCgfwz41STnJDkD+ChwPrCuqp5tY54D1rX2JPD0vOMPt77XSbI9yXSS6dnZ2UUX/szRY4vql6S3qwWDvqqeAD4PfBP4BvAI8NoJYwpY1LeMV9WuqpqqqqmJiQU/wftPnDc+tqh+SXq7GujN2KraXVW/XFUfAl4E/gZ4/viSTHs+0obPMHfFf9z61jdUO67YyNhpa17XN3baGnZcsXHYp5KkVW3Qu25+oT2/h7n1+S8De4GtbchW4O7W3gt8qt19cynw0rwlnqHZsmmSz179fibHxwgwOT7GZ69+P1s2/ZNVIkl6Wxv0j5p9Lck5wCvAdVV1NMnngNuSbAOeAj7Zxt7D3Dr+IeBl4Noh1/xTWzZNGuyStICBgr6qfvUN+l4ANr9BfwHXLb80SdIw+MlYSeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknq3KB/AkEayF37Z9h570GeOXqM88bH2HHFRv9MhTRiBr2G5vi3fh3/Qpjj3/oFGPbSCLl0o6HxW7+kU5NBr6HxW7+kU5NBr6HxW7+kU5NBr6HxW7+kU5Nvxmpojr/h6l030qnFoNdQ+a1f0qnHpRtJ6pxBL0mdM+glqXMGvSR1bqCgT/L7Sb6T5LEktyZ5Z5ILkjyU5FCSryY5vY19R9s+1PZvWMkJSJLe2oJBn2QS+D1gqqreB6wBrgE+D9xUVe8FXgS2tUO2AS+2/pvaOEnSiAy6dLMWGEuyFjgDeBa4HLi97d8DbGntq9o2bf/mJBlOuZKkxVow6KtqBvhj4IfMBfxLwD7gaFW92oYdBo7fPD0JPN2OfbWNP+fE102yPcl0kunZ2dnlzkOS9CYGWbo5m7mr9AuA84AzgY8s98RVtauqpqpqamJiYrkvJ0l6E4Ms3fwa8LdVNVtVrwB3AJcB420pB2A9MNPaM8D5AG3/WcALQ61akjSwQYL+h8ClSc5oa+2bgceBB4FPtDFbgbtbe2/bpu1/oKpqeCVLkhZjkDX6h5h7U/Vh4EA7Zhfwh8D1SQ4xtwa/ux2yGzin9V8P3LACdUuSBpRT4WJ7amqqpqenR12GJK0qSfZV1dRC4/xkrCR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOrdg0CfZmOSReY8fJflMkncluS/J99rz2W18knwhyaEkjya5eOWnIUl6MwsGfVUdrKqLquoi4JeBl4E7gRuA+6vqQuD+tg1wJXBhe2wHbl6JwiVJg1ns0s1m4PtV9RRwFbCn9e8BtrT2VcAXa863gfEk5w6lWknSoi026K8Bbm3tdVX1bGs/B6xr7Ung6XnHHG59kqQRGDjok5wOfBz48xP3VVUBtZgTJ9meZDrJ9Ozs7GIOlSQtwmKu6K8EHq6q59v288eXZNrzkdY/A5w/77j1re91qmpXVU1V1dTExMTiK5ckDWQxQf9b/GzZBmAvsLW1twJ3z+v/VLv75lLgpXlLPJKkk2ztIIOSnAl8GPided2fA25Lsg14Cvhk678H+ChwiLk7dK4dWrWSpEUbKOir6ifAOSf0vcDcXTgnji3guqFUJ0laNj8ZK0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknq3EBfPCJp9bpr/ww77z3IM0ePcd74GDuu2MiWTZOjLksnkUEvdeyu/TPceMcBjr3yGgAzR49x4x0HAAz7txGXbqSO7bz34E9D/rhjr7zGznsPjqgijYJBL3XsmaPHFtWvPhn0UsfOGx9bVL/6NFDQJxlPcnuS7yZ5IskHk7wryX1Jvteez25jk+QLSQ4leTTJxSs7BUlvZscVGxk7bc3r+sZOW8OOKzaOqCKNwqBX9H8KfKOqfgn4APAEcANwf1VdCNzftgGuBC5sj+3AzUOtWNLAtmya5LNXv5/J8TECTI6P8dmr3+8bsW8zqaq3HpCcBTwC/GLNG5zkIPBvq+rZJOcC36qqjUn+a2vfeuK4NzvH1NRUTU9PD2E6kvT2kWRfVU0tNG6QK/oLgFngz5LsT3JLkjOBdfPC+zlgXWtPAk/PO/5w65MkjcAgQb8WuBi4uao2AT/hZ8s0ALQr/bf+1eAESbYnmU4yPTs7u5hDJUmLMEjQHwYOV9VDbft25oL/+bZkQ3s+0vbPAOfPO35963udqtpVVVNVNTUxMbHU+iVJC1gw6KvqOeDpJMffpt8MPA7sBba2vq3A3a29F/hUu/vmUuClt1qflyStrEH/BMLvAl9KcjrwJHAtcz8kbkuyDXgK+GQbew/wUeAQ8HIbK0kakYGCvqoeAd7ond3NbzC2gOuWWZckaUj8ZKwkdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wYK+iQ/SHIgySNJplvfu5Lcl+R77fns1p8kX0hyKMmjSS5eyQlIkt7aYq7o/11VXVRVU237BuD+qroQuL9tA1wJXNge24Gbh1WsJGnxlrN0cxWwp7X3AFvm9X+x5nwbGE9y7jLOI0lahkGDvoBvJtmXZHvrW1dVz7b2c8C61p4Enp537OHWJ0kagbUDjvuVqppJ8gvAfUm+O39nVVWSWsyJ2w+M7QDvec97FnOoJGkRBrqir6qZ9nwEuBO4BHj++JJMez7Shs8A5887fH3rO/E1d1XVVFVNTUxMLH0GkqS3tGDQJzkzyc8fbwO/DjwG7AW2tmFbgbtbey/wqXb3zaXAS/OWeCRJJ9kgSzfrgDuTHB//5ar6RpL/DdyWZBvwFPDJNv4e4KPAIeBl4NqhVy1JGtiCQV9VTwIfeIP+F4DNb9BfwHVDqU6StGx+MlaSOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwMHfZI1SfYn+XrbviDJQ0kOJflqktNb/zva9qG2f8PKlC5JGsRirug/DTwxb/vzwE1V9V7gRWBb698GvNj6b2rjJEkjMlDQJ1kP/AZwS9sOcDlwexuyB9jS2le1bdr+zW28JGkEBr2i/xPgD4B/bNvnAEer6tW2fRiYbO1J4GmAtv+lNl6SNAILBn2SjwFHqmrfME+cZHuS6STTs7Ozw3xpSdI8g1zRXwZ8PMkPgK8wt2Tzp8B4krVtzHpgprVngPMB2v6zgBdOfNGq2lVVU1U1NTExsaxJSJLe3IJBX1U3VtX6qtoAXAM8UFX/HngQ+EQbthW4u7X3tm3a/geqqoZatSRpYMu5j/4PgeuTHGJuDX53698NnNP6rwduWF6JkqTlWLvwkJ+pqm8B32rtJ4FL3mDMPwC/OYTaJElD4CdjJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjq3YNAneWeSv0ry10m+k+SPWv8FSR5KcijJV5Oc3vrf0bYPtf0bVnYKkqS3MsgV/f8FLq+qDwAXAR9JcinweeCmqnov8CKwrY3fBrzY+m9q4yRJI7Jg0NecH7fN09qjgMuB21v/HmBLa1/Vtmn7NyfJ0CqWJC3KQGv0SdYkeQQ4AtwHfB84WlWvtiGHgcnWngSeBmj7XwLOGWbRkqTBDRT0VfVaVV0ErAcuAX5puSdOsj3JdJLp2dnZ5b6cJOlNLOqum6o6CjwIfBAYT7K27VoPzLT2DHA+QNt/FvDCG7zWrqqaqqqpiYmJJZYvSVrIIHfdTCQZb+0x4MPAE8wF/ifasK3A3a29t23T9j9QVTXMoiVJg1u78BDOBfYkWcPcD4bbqurrSR4HvpLkPwP7gd1t/G7gvyc5BPw9cM0K1C1JGtCCQV9VjwKb3qD/SebW60/s/wfgN4dSnSRp2fxkrCR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TODfK3biRJQ3TX/hl23nuQZ44e47zxMXZcsZEtmyYXPnCJDHpJOonu2j/DjXcc4NgrrwEwc/QYN95xAGDFwt6lG0k6iXbee/CnIX/csVdeY+e9B1fsnAa9JJ1Ezxw9tqj+YTDoJekkOm98bFH9w2DQS9JJtOOKjYydtuZ1fWOnrWHHFRtX7Jy+GStJJ9HxN1y960aSOrZl0+SKBvuJXLqRpM4Z9JLUOYNekjpn0EtS5wx6SepcqmrUNZBkFnhqGS/xbuDvhlTOKPUyD+hnLr3MA5zLqWi58/gXVTWx0KBTIuiXK8l0VU2Nuo7l6mUe0M9cepkHOJdT0cmah0s3ktQ5g16SOtdL0O8adQFD0ss8oJ+59DIPcC6nopMyjy7W6CVJb66XK3pJ0ptYtUGf5PwkDyZ5PMl3knx61DUtVZJ3JvmrJH/d5vJHo65pOZKsSbI/yddHXctyJPlBkgNJHkkyPep6liPJeJLbk3w3yRNJPjjqmhYrycb2b3H88aMknxl1XUuV5Pfb//fHktya5J0rdq7VunST5Fzg3Kp6OMnPA/uALVX1+IhLW7QkAc6sqh8nOQ34S+DTVfXtEZe2JEmuB6aAf15VHxt1PUuV5AfAVFWt+vu1k+wB/qKqbklyOnBGVR0ddV1LlWQNMAP866pazmdwRiLJJHP/z/9VVR1LchtwT1X9t5U436q9oq+qZ6vq4db+P8ATwMn7u59DVHN+3DZPa49V+RM4yXrgN4BbRl2L5iQ5C/gQsBugqv7fag75ZjPw/dUY8vOsBcaSrAXOAJ5ZqROt2qCfL8kGYBPw0GgrWbq23PEIcAS4r6pW61z+BPgD4B9HXcgQFPDNJPuSbB91MctwATAL/FlbUrslyZmjLmqZrgFuHXURS1VVM8AfAz8EngVeqqpvrtT5Vn3QJ/lnwNeAz1TVj0Zdz1JV1WtVdRGwHrgkyftGXdNiJfkYcKSq9o26liH5laq6GLgSuC7Jh0Zd0BKtBS4Gbq6qTcBPgBtGW9LStaWnjwN/PupalirJ2cBVzP0QPg84M8l/WKnzreqgb+vZXwO+VFV3jLqeYWi/Uj8IfGTUtSzBZcDH29r2V4DLk/yP0Za0dO2qi6o6AtwJXDLaipbsMHB43m+JtzMX/KvVlcDDVfX8qAtZhl8D/raqZqvqFeAO4N+s1MlWbdC3NzB3A09U1X8ZdT3LkWQiyXhrjwEfBr472qoWr6purKr1VbWBuV+tH6iqFbtKWUlJzmxv8tOWOX4deGy0VS1NVT0HPJ3k+LdPbwZW3U0L8/wWq3jZpvkhcGmSM1qWbWbufcYVsZq/M/Yy4D8CB9raNsB/qqp7RljTUp0L7Gl3EvwccFtVrepbEzuwDrhz7v8ga4EvV9U3RlvSsvwu8KW27PEkcO2I61mS9kP3w8DvjLqW5aiqh5LcDjwMvArsZwU/Jbtqb6+UJA1m1S7dSJIGY9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktS5/w+JUTkl5rwGCgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "%matplotlib inline\n", - "\n", - "t = np.array([2, 4, 6, 8])\n", - "#t = np.linspace(0, 10)\n", - "\n", - "pa = -20\n", - "pb = 90\n", - "pc = 800\n", - "\n", - "y = pa*t**2 + pb*t + pc\n", - "\n", - "\n", - "plt.scatter(t, y)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 5.1 如何得到更新项?\n", - "\n", - "$$\n", - "L = \\sum_{i=1}^N (y_i - at^2 - bt - c)^2\n", - "$$\n", - "\n", - "\\begin{eqnarray}\n", - "\\frac{\\partial L}{\\partial a} & = & - 2\\sum_{i=1}^N (y_i - at^2 - bt -c) t^2 \\\\\n", - "\\frac{\\partial L}{\\partial b} & = & - 2\\sum_{i=1}^N (y_i - at^2 - bt -c) t \\\\\n", - "\\frac{\\partial L}{\\partial c} & = & - 2\\sum_{i=1}^N (y_i - at^2 - bt -c)\n", - "\\end{eqnarray}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 6. 如何使用sklearn求解线性问题?\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "a = 949.435260, b = 152.133484\n" - ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJztnXl4VdXV/z8r4YIB+zOgvBYiCI5URaFQh9LXKlVxNtVWbbVqtdK+ta/FKiWoVUAULLVatbXV1zrVARWNWFSqglpRVDAMUkFBRYyoKAQHAmTYvz/OPeEOZ77nDknW53nyJDn3DHufe+/3rL322muJMQZFURSl41JW7AYoiqIo+UWFXlEUpYOjQq8oitLBUaFXFEXp4KjQK4qidHBU6BVFUTo4KvSKoigdHBV6RVGUDo4KvaIoSgenS7EbALDTTjuZAQMGFLsZiqIo7YqFCxd+aozp7bdfSQj9gAEDWLBgQbGboSiK0q4QkdVB9lPXjaIoSgdHhV5RFKWD4yv0IrKdiLwqIotFZJmITExuv1NE3hWRRcmfIcntIiI3ishKEVkiIt/MdycURVEUd4L46LcAI40xX4pIAnhRRJ5MvjbWGPNwxv7HAHsmfw4Cbkn+VhRFUYqAr0VvLL5M/ptI/nglsT8JuDt53HygUkT65N5URVEUJQqBfPQiUi4ii4BPgKeNMa8kX7o66Z65XkS6JbdVAWtSDv8guU1RFKVdUltXz4ipcxhYM4sRU+dQW1df7CaFIpDQG2NajDFDgF2AA0VkP2A8MAj4FtALGBfmwiIyWkQWiMiCdevWhWy2oihKYaitq2f8I0upb2jEAPUNjYx/ZGm7EvtQUTfGmAZgLnC0MWZt0j2zBbgDODC5Wz3QL+WwXZLbMs91qzFmuDFmeO/evvH+iqIoRWHa7BU0NrWkbWtsamHa7BVFalF4gkTd9BaRyuTfFcCRwHLb7y4iAlQDbyQPmQmclYy+ORjYaIxZm5fWK4rSoShFF8mHDY2htpciQaJu+gB3iUg51oPhQWPMP0Vkjoj0BgRYBPwiuf8TwLHASmAT8NP4m60oSkfDdpHY1rPtIgGoHlq8ab6+lRXUO4h638qKIrQmGr5Cb4xZAgx12D7SZX8DXJB70xRF6Ux4uUiKKfRjR+2d9gACqEiUM3bU3kVrU1hKIteNoigdg9q6eqbNXsGHDY30raxg7Ki9A4t0qbpI7PZH7VcpoEKvKEos5Op6KWUXSfXQqnYl7JlorhtFUWIh1+iUsaP2piJRnratvblIShW16BWlnZKLmyQf5Op66QguklJFhV5R2iGlGKESh+ulvbtIShV13ShKO6QUF/Go66V0UYteUdohpRihoq6X0kWFXlHaIaUaoaKul9JEXTeK0g5RN4kSBrXoFaUdom4SJQwq9IrSTimWm6TUwjoVf1ToFUUJTCmGdSr+qNArSkQ6o2VbqonHFG9U6BUlAp3Vsi3FsE7FH426UZQIlOKCpULgFr5Z7LBOxRsVekWJQGe1bDWsMwQtLf77FAh13ShFp9R83UHaE3TBUnvsmxca1hmAFSvgssvga1+DO+4odmsAFXqlyJSarztoe4JUHWqvffNDV7+6UF8PEyfC3/8OFRUwbhwYAyLFbpm6bpTiUmq+7qDtqR5axZSTB1NVWYEAVZUVTDl5cJoAtte+lQKlWCTclQ0boKYG9twT7rwTLrgAVq2Cyy8vCZEHteiVIlNqvu4w7fGzbEuhb6muGuOyT6nNK5TaSMiVxka46SaYOhUaGuCMM2DSJBg4sNgty0IteqWolFoUR5ztKXbfbMGs9xD5QrYnKCU/8mhuhttvtyz4cePgkEOgrg7uuackRR5U6JUiU6gojqCugDjbM3bU3iTK04fuiXIpWISKk2BmUooRM6UwEnLEGHj0URg8GH72M+jXD55/HmbNggMOKG7bfPAVehHZTkReFZHFIrJMRCYmtw8UkVdEZKWITBeRrsnt3ZL/r0y+PiC/XVDaM0F83bmSadnargAnsY+9PZmmtJdpHTNewpivex0HxR4JOfL88/Dtb8PJJ1t+90cfhZdegkMPLV6bQhDER78FGGmM+VJEEsCLIvIk8BvgemPMAyLyV+A84Jbk7w3GmD1E5HTgWuC0PLVf6QDkO4oj7LL9uNozbfYKmlrTlb2p1RQsXYBbCGhVZQXzakbm/fpRCRLRVDAWL4bx4+HJJ6GqynLZnHUWdGlf05u+Fr2x+DL5byL5Y4CRwMPJ7XcB1cm/T0r+T/L174mUyNSz0m7JJQqjWK6AYrsg2uvipkKM8nx5910480wYOhTmz4ff/x7efhvOPbfdiTwEjLoRkXJgIbAH8GdgFdBgjGlO7vIBYL8LVcAaAGNMs4hsBHYEPo2x3UonItcoDDfL1gAjps7J24KfYleBas+Lm4oWq//JJzB5Mvz1r5agjxtn/VRWFr4tMRJI6I0xLcAQEakEHgUG5XphERkNjAbo379/rqdTOjC5Zkx0cgXY5DN0Ly4XRC6rWXVxU0C++AKuu876aWyE886DK6+Evn2L3bJYCBV1Y4xpAOYChwCVImI/KHYB7LF0PdAPIPn6DsBnDue61Rgz3BgzvHfv3hGbr3QGcnWBpLoCnMhH6J4tzo1NLZQnPZdRXBBhJpKVCGzZAjfeCLvvbq1qPfpoWLYM/va3DiPyECzqpnfSkkdEKoAjgTexBP8Hyd3OBh5L/j0z+T/J1+cYYwoYa6Dkmyj+8lx87HFEYVQPrWJezUjcJovi9JunijNAizFtlnxY67rkY8rbK62tcO+9MGgQ/PrXVsjkq6/CQw/B3qU9hxGFIBZ9H2CuiCwBXgOeNsb8ExgH/EZEVmL54G9P7n87sGNy+2+AmvibrRSLKBZmrlZpnJOKhQjdi1Ociz2h2+Ewxoqg+eY3rcnWnj1h9mx45hn41reK3bq8ESTqZokxZqgxZn9jzH7GmEnJ7e8YYw40xuxhjPmhMWZLcvvm5P97JF9/J9+dUApHFBHLVfjijMIoRCRKnOJc2T3huL3UVrO2C+bPh8MPh2OPhS+/hPvvhwUL4KijSiYnTb5of3FCSlGJImJxCF9ck4qFiESJK9qmtq6eLzc3Z20v5OraDsHy5XDppdYip//6L7j5Zjj/fOjatdgtKxgq9EoooohYscMMM8l3JEpc0TZOC64AenTtopE0QfjgA5gwwcoJ36OHlXDsootg++2L3bKCo0KvhMJPxJxCAYu10rFYRT/iGjW4jXg2Njbl3MYOzfr1VkbJm26yJl0vvNCy6DtxdJ+UQkDM8OHDzYIFC4rdDIVg4ui2T+bCJrAEfcrJg4H8uUuc2gO4tqUUrOEg93nE1DntMoVBWGJ7IG/aZIVKXnstbNwIP/mJFTI5YEDsbS4VRGShMWa4734q9IqNl1AH+eIVQ5jc2tytSxkNDpZvPtoSVqiC3udc34/2QCx9bG62qjpNnAgffgjHHw/XXGOFTHZwggq9pilW2sg1OqYYoYBubXYS+Xy0JUroaJxVrKK0t5QqN+X0mTMGZsyAffeFn/8cdt0VXngBHn+8U4h8GNRHr7SRq1DnMunq5n7xs5TDCnfcE8BR0jMEuc+Z9+P604bkbMWXYuWmyJ+5uXOt8n2vvgr77AOPPQYnnNDhwySjokKvtJFrdEzUSVcnARr78GIwtEWduImSW5t7dk+wuak17xPAYYTKFm83Z6l9n90EecHq9cxaspYNm6zRSmVFggkn7htYpIM+lAo5iR36M1dXZ6UNnj3bKvxxxx2WL7683Hl/BVDXjZJCrouJoroanASoqcVkhRZmDulr6+rZtDU7zrwiUc6VJ+xbkFS3QVfaZqZFcGpz6ijGSZD/Mf/9NpEHaGhsYuxDiwO7X4I8lC6vXcpF0xcVLLdO4M/cqlXw4x9bK1pfew3+8Ad46y045xwV+QCoRa+0EUdYYJQY9TDuF3tfp0k8yLZy4xb2TGv38EG9mbGw3jfc1E3gwXoIpd7nMPcjTCETP+u5tq6ee+e/nzXiCJMpNCy+n7mPP4arrrKSjCUSVpjkb38LO+wQe1s6Mir0ShrFSGvrJkBu+4J7PdQe3cItJgrjpnByqcxYWM8pw6qYu3xdoHDTTASyooDC3A8I/mDwc615uZW85g9yde04fuY+/9yy2v/4R9i82VrJesUV0KdP5Ot0ZlTolaLjJECJcknz0cM2Uaqtq3cVwjDWcNjJSTeXytzl6xxDNoMU596hIjuXjdP9ENzLzQadQ/Gznr3und/8Qer5c2LLFrjlFrj6avj0Uzj1VKsQyJ575n7uTowKvVJ03ATIbZstLE6EiaoJGzETNkIkyEPnq63N1NbVp13P6X4cPqg3019bQ1NLutwnysLlvfEasbmNJAR85w9ydu20tFhpg6+4AlavhiOOgClTYLhviLgSABV6pSRwEyCn1aJuVnKiXDh8UG+GTPxXWxx9z+4JrjzBOTIlrECHjRAJ4oJpanH2sTvdj+G79mLi48siR9344TaSOOPg/r5Wf+T1CcbAE09YkTRLl1qTrbfdBkceGe18iiMq9Eq7wktQWloN981/n9aUbRs2NVmhmmQ/NMIKd9jwUa8ShqmEqZQVRyy918ipsnuCbl3K2NjY5Oh/jzVB3csvW/VY//1v2GMPmD4dfvADKNNgwLhRoVdiJd8x2F5WskOiR8Ddag4r3GGjkjL3B2c/u5OfPh8EWa+wYVMTFYly1wVasSSo+89/rOiZxx6Dr3/d8smfd54VVaPkBRV6JTYKsfIyqJWciZPVHCWcNKxVnbr/0En/SouDt8nnYs7UB2+ZCC0Zua0yff7g7XPPKQR3zRqr4PZdd1mpgidPhjFjrBTCSl5RoVdiw2+irraungkzlwXyn7th73vxg4uzRMsLN9dCLu6QsKOXBgeRd9oe16go88Eb5n55uZPc7plruz/7zJpYvflmyyc/Zoxl0e+4o2/7i5FmuiOiQq/kROqX0SsGu7aunrEPLU4Ll/Tyn3th7ztm+qJA++ejIlOU0UsQ/3bUUZGTKAYJ73QjSjWszHZPeuA19rr9Jva55xardN9ZZ1kZJvv3j3S+Yuflac/orIcSmczMjW70raxwrZZk+8/DUj20ikoX33aqK6Rn9wTTfnBA7OIQJetikOX+Uc7rlkEzyKKrRLmQKEv3HUWthmW3u0tLM2fUPcFTfz6Xff58LRx2GCxZYuWlCSDymeeziVpgXVGLXsmBIBajLRoXeVjfUUPzJpy4b9HytUcJMwzi345yXjdRLHfwyQOUi9BqTKgsoX582NAIxnDc8he5+N/3sNuGD3l1l334ZfV4Hv7H2FDnajtfiO2KNyr0BSYffseo58y1LV5fOoG0c3rle4maOrgQhb7diBpm6Dcn4HbeMhEG1swK9XBoMYaKRHmgB2Gu9+yET9/kvFm3csBHb7Nip/6cd8rveHb3A6nq2T3S+UqtznB7x9d1IyL9RGSuiPxHRJaJyK+T2yeISL2ILEr+HJtyzHgRWSkiK0RkVD470J6IUqQiX+eMoy1uX7qqygrenXoc82pGtgnI2FF7Z7kIIHf/efXQKubVjMy6Xr7JNdNnmPOCJdpu75PX+5D3DJ6vvw5HHcWNt4+l96aNXHzsRRzz05t4do+DqOjaJfL9yNf97awE8dE3AxcbY/YBDgYuEJF9kq9db4wZkvx5AiD52unAvsDRwF9ERPOIkh+/Y9RzxtGWMF/G6qFVTPvhAWl+ddt/DpRU1aMg5KP6k9N5yx1iLzPfJ6/3IW8PwpUr4fTTYdgwS+yvv54F/3qZ+f99PKasPOf7ka/721nxdd0YY9YCa5N/fyEibwJed/sk4AFjzBbgXRFZCRwIvBxDe9s1+fA7Rj1nHG3JdJ3sUJFABC6avohps1dkuRic3Ba5RFfE6QaLcq58ZfpMPe/AmlmO+6S+TwV1YX30EUyaZKUp6NoVLr8cLrkEdtiBE4ETD9ottksVI5NqRyWUj15EBgBDgVeAEcCvROQsYAGW1b8B6yEwP+WwD3B4MIjIaGA0QP+AM/HtnXz4HaOeM6622F/GMILtt4gnSJIsp+uNmb6ICTOXhc7/4nSui6YvYsz0RVm54uMgzEMl6PuUd1HcuBGmTYPrr4etW2H0aPjd76yVrUrJEzi8UkS2B2YAY4wxnwO3ALsDQ7As/uvCXNgYc6sxZrgxZnjv3r3DHNpuyYffMeo5425LUFdQ5tyA2yIev5GFW8RPQ2OT51yDU3Fsp3PZrYq7wlLYuZGi+6o3b7Zywu++u5U6+MQT4c034c9/VpFvRwQSehFJYIn8vcaYRwCMMR8bY1qMMa3AbVjuGYB6oF/K4bskt3V68uF3jHrOuNsS1BUUdBGP28jCFmqvGHG3uYao8eZxxm+7PRAnzFzmuH+xfNW1C97n6h/+lvqd+8PFF/PxnvvBwoVw//1WAjLFFSdjotj4um5ERIDbgTeNMX9M2d4n6b8H+D7wRvLvmcB9IvJHoC+wJ/BqrK1ux+RjiB31nKGXsnsQ1MUQZA7AzWINUrHJ6zph4839zhcFt4dKQ2NTVl56m4L6qo1h/p/uZN9rJlK9bjWLv74nlxw7hkV7fJMpsjPVhWlFu6VUV/QGsehHAD8BRmaEUv5eRJaKyBLgcOAiAGPMMuBB4D/AU8AFxpho67CVghM17DKoi8HNUi8X8bVYwyzpd7qOX7x52PNFwSmKxqboqz7nzYP//m8Ovuhcypub+OVJNZx01h95edcDdFVqQEp1RW+QqJsXsda/ZPKExzFXA1fn0C6lSEStIBQ08sMtzW0Qd0RQq9ptROA26rAnXO1FXZll++L0iXuNHIq26vONN6wkY48/Dn36cOmoC3hw8JE0l6fLQ5T2dbbEZKW6oldXxipp5PJBDeJiyCUUMEjFJgFOGebcDreHzOGDere1pypZts+p2HccVHn0oeCrPlevttIG3303/L//Z2WYvPBCnr9xPs0xRGSVqhsjn5Tqil4VeiWNQnxQgzwQbEuwvqGxzYdeWZEgUS6OOdRtDDB3+TrX60J2LdYZC+vTxGjGwvq8TXiOHbU3Yx9enHPt15z49FO45horckYELr7YKuXXq1dbG3MuLkIe68uWMHHdu7hRoVfSGDtq76x0wgUVIdzzqDc0NpEoE3p2T9Cwqck1Y2Z9Q6NrXpjMh4xTDVovMcrVFWHvG1ft11Dt+eorKw5+2jQrbfA558CECdCvX9pucS3AKpQbo5TcQ8XMv+SFCr2STeaMTB4rIDnhNena1Gro3rULdVcc5RlmmTqRDO6ugjBiFJcrIq4omsDtaWqyVrJOmgQffwzV1VZM/D77OJ02tjYWYnRYiu6hUlzRq/nolTSmzV6R5VYImzPeK444SIxx0PQNbgnAUvGLeHATHaftQSIqChlD7due1lZ44AH4xjfgggtg773hpZfg0Uc9RT4uCrHYq1SjXEoNteiVNHIdbntZWEAg68tv0tUW4cxhsleFKzfC+FT97k2hrUvP9jz9NNTUWAnHBg+GWbPgmGPyW6A2g0K4MUo1yqXUUKFX0sh1uO1nYQXxh3sVAM8U4dRhspsrx6vtYcTI794UevLRqT2D177NFfPugWtfh113tSJqfvxjKC9OAtl8uzFKNcql1FDXjZJGrsNtLwsrqPWVuuwfti0yshdTgXNaY6e2J8qFr7Y0e7pSgqby9bs3hbYuU9szcH09N9dO5fG7L2L/z96DG26AFSvgJz8pmsgXgqLnAmonqEWvpJHrcNvPwgpqfXmlZ/Bzj9htr+ye4MvNzTQ0NrnuGwa/e1No67J6aBXbrfuIzb+bwPGvPcHWRFeWnz+GQX+YaMXFdwJKNcql1BDjk+OjEAwfPtwsWLCg2M1QYsApH4298hWIvCrWxs09U1VZwbyakYH2zayZmqsopMb8O62qzUtMfkMD/P73luXe3Aw//7mVG37nneO9jlLSiMhCY8xwv/3UolccySU2ebtEWZuYO8WI51Lf1m2S1sk94pXbBtwt/DB9z3ywGWgT+1xy2ae2wS7o0rCpiQE9yrlp/Tz2u+vPsGGD5X+/6irYLb6CH0rHQ4VeySJq9IiTNb+luTVtnyiTc0GyVjq5R4KkTMicLA3bd7dc9k4jjKBktqGhsYny1hZ+8MazXPTiffT94lM+/vZh7Pzn62HIkEjXUDoXKvRKFn6RM27WrttxFz+4mIumL4rsKvHLWuk2+eYVvZNKquUfNnImjnDUzPuZ1gZjOOrt+Yx94W72/GwNi/rsxW+O/w1r9j+IeSrySkBU6JUs3ETKtm7drN2orpKo7QFv90jmRJ1T2UJIHw2EFe4oE7BuPv3M+3vgmjcY99ydDPtwOat67cLPqy9l9l6HgAiiceJKCFToY6SUcm7k0h438SoX8bR2o7hKguCVXtjPPZLqKnKbKE4dDYQV7rBJrJx8+qk0NrXwjXWrueT5O/neqtf4aPte1Iz6FQ/tfyQtZdvCCDVOXAmDxtHHRNSCHaXYnsMHOdfw9avvGiQlQer+QXE6r2D1KUyagSBl+cLGZYct9eflhtpl48dc98/rmPX3XzG8/k2mfvccDht9Kw8MOTpN5DVOXAmLWvQxUWopWXNpj1uaX7eSe24pCYK4StzIHI2cMqyKucvXubo7Uq/vhd9kcJS47DATzE4PuV6bNvKrl6ZzxqInMFLGfYeeSs9Jv+Pxlz9mS0MjlSlRN6UwUlTaHyr0MVFqOTe8/Owjps7xFDG/knteboqwrhInnCJf7BzxTiGWUR6oXm6tfC7bT3UNdd/ayM9eq+X8Vx+he9MWHhx8BH877EzGnDOS44ZWcdx3981LG5TOhwp9TBQz54aTaLm1x3Z5QPikYpkl92yfvR2NkymOUVcteo1G4nigFjO17dhRe3PFQ69T/dos/vel6fTe1MCTe32bPxz6Ezbvvpda60peUKGPiWJVlnETrVOGVaVVTgKyVm1C8KRidl/s/YIKZRTr2EvM43igFs3N1tpK9ZvPc+Q9l9Ljg9W83H8wlx43mePOr+ZZFXclj+hkbEyEnZSLCzfRmrt8XVZ7gqbx9etLvnOAe+WIjyOJVcHdbMbAU0/BsGFwxhn02LESnnySQ95bzG1/uUAteCXv+Fr0ItIPuBvYGcsgvNUY8ycR6QVMBwYA7wGnGmM2iIgAfwKOBTYB5xhjXs9P80uLYlSW8RItp7J5uSYVA+fEZJltySXUNMiIIuq5a+vqY50k9r32q6/CuHHw3HMwcCDcey+cfjqUqY2lFI4grptm4GJjzOsi8jVgoYg8DZwDPGuMmSoiNUANMA44Btgz+XMQcEvytxKSIKLi5sooE6G2rt7XJZOaxjeIcNXW1Tu6gOy22PsEde149dFpey4PELtdTiIfdZLY1be/YgVcdhnMmAG9e8ONN1qJx7p2DdTWQlFqaz+U/OAr9MaYtcDa5N9fiMibQBVwEnBYcre7gOewhP4k4G5jpcWcLyKVItIneR4lIEFFxW2Zf4sxWftnCmj3ruV8tbUlVBrfabNXuLqA7Pj7oD5wvz46PRRymUT1imF3m1ROFUKnkUBWv+rrYeJE+PvfoaLCKr79m9/A177m275CU4r1VpX8EGr8KCIDgKHAK8DOKeL9EZZrB6yHwJqUwz5IblNCENQPbvvTyx1KxLntP69mJNefNoRNW7NFz8/X7uXHvv+VNdTW1bu6djK3h/X1u+0/8fFlgeq0+vngMxeVZS4681wwtmGDVbpvjz3gzjutGq2rVsGVV5akyIPWW+1MBI66EZHtgRnAGGPM55IiLMYYIyKhEtuLyGhgNED//v3DHNopCDNhWD20ioumLwp1Hi/L3EsQvdIc2KMIEWv+MZPypDspao1Xt+0bNjWxYVP2qATS3T+V3RNt+7mRaqH7JVMD6Na0hQv/8xTsdiZs3AhnnAGTJln++BKn1NZ+KPkjkEUvIgkskb/XGPNIcvPHItIn+Xof4JPk9nqgX8rhuyS3pWGMudUYM9wYM7x3b+cl950Zr8iTOLb7ibkbY0ftjVd56camFkeRh20PgnoPkfe6ftAQysamFibMXJaVAuLLzc0kyv2LY9v3xuselbe2cNri2Tx/22gueOo2+Pa3YdEiuOeediHykPt9VtoPvkKfjKK5HXjTGPPHlJdmAmcn/z4beCxl+1licTCwUf3z4QkbRhh2f7cvsyTP5Ub10CrOOLi/p9i74ZQULZOwfXSjobEp61pNrYYeXbu0hY06ubtg271xvEfGMGrFS8y+/QKufeomug7YFZ5/HmbNgv33b9uttq4+kDupmGi91c5DEIt+BPATYKSILEr+HAtMBY4UkbeBI5L/AzwBvAOsBG4Dfhl/szs+YePynQpq224IJ5FxSxR2xsH9fSfiJlcP5oyD3d1tlRUJRwFx83HblItwyjD3WrG2KyW1WHhlRcLznJlsbGxqKwR+3akHeApd5j06+P0lPHrPJfyt9hqMCKO/fxm9Fi+AQw/NamspJbhzo1hrP5TCEyTq5kVwNeC+57C/AS7IsV2dllzC3cKsWs0lHr22rp4ZC51FqyJRzoQT93U8t1cpQLBcOzMW1jN8116e0Tl2zh1bkJ1i7rdLlDn641OtdL97YP++7aZHGfvcnRz27kLWbr8jY4+5kEf2+x5f77U9OIwKSi3BnRfFWPuhFB5NgVBCxBHuFkZkon7J3SYpy0XSLEKnc/tVfHJqq1ef7Hz0mWLtdC0nt4TnPXjnHaqvu4KT7ruPjd16cM1hP+Wubx7PlkQ3TxeHTnIqpYYKfQkRJv7czQoNUzw7Km7najXG0+1iF7reLlFGw6amwFE3fsLpJdaRRkeffGIV3P7b36BLF2TcOOYd8xNmvfQRWxsafYt+u0X3VHa33Ey6SEkpNCr0JUQQS9DL6gfnxGUQbyRFmMRiToWuKxLlXH/aEFdXTuZ5oiYyCzNiqa2r588z6zju6fsY/dqjbNfSRNl551lx8H37chxw3KH7BDqX21SEMbpISSkOmnCjCLhFZAQJd/Oy+t1i4/0iacLiFq1x+KDeWf3yaq9bFM1XW5rTJi6jRIeEiXqZ+co7LKuZzP2/P5Mx8+5n7sBhHDf6r9T+4gro29fzXjixsdE5Vn9jY5MuUlKKghifSIhCMHz4cLOrGwNiAAAgAElEQVRgwYJiN6MgOBXjSJQLPbp2oaGxKcsir0iUp/m9B9bMchVzcLbmAd6belwMrd/G5bVLuf+VNbQYQ7kIB+/Wk9ff35jlE3fzxwvw7tTjqK2rZ+Ljy7JcHZn9DuPucCt4khVR0toK993HhxeOpe+Gj5i36/5c+91zWNJnL8CKHurRrUtoF4tb8riqygrXhWL2/cgFdQl1PkRkoTFmuN9+6ropME4WXVOLacs3Y9jmfnHyBfu5MdwEBuITAjvqxg6XbDGGeavWZ+1nh0L6lR+cNntFltBnzk2EccP4znUYA08+CePHw5IlrN95d8adOol/DxiaFkXT0NgUKg+QjVf2zaDuqrCoS0jxQoW+wASZFLVFfl7NyDYXhC3Ohw/qzfTX1tDUsk08E+XiG2kSpxAESQ1gE6T8YC5RKqkPr8ruCYyhTZwdzzd/vpU2+IUXYPfd4f77+cU7O/HB51t8rxU0RNIrbHPB6vXcO//9rFFbrq619hTSqRQeFfoC45UrJpUPGxodxXn6q2uyLeTkv14CM2LqnNiEIEwET2r5QbeRRNTJ1sz745XHZvdP13DF/Hvh2hfhv/4Lbr4Zzj8funblEgdXjxtB++6WfXPGwvo0kRdwXSQWBg3pVLxQoS8wbmmFM+lbWeHs5mnNdoM0tZo2wXZzccQpBEEfVvYksJ/bxe2ebNranJVTP5UgI4s+n6/j1/Pu54dLn6G1e3cr4dhFF8H227ft4/SA3LS12fHBsUNFos0Hb7ul/MItvdprgLnL13keF4Ri1ixWSh8V+gKTKSqV3RN8ubk5TcDtobxbRkonvAQ716pKmdht85vGNwRzC9n7TJi5LM3tsmFTk2fBEq+HzQ6NX/DL+Q9xzsLHrYnOH53LHjdcQ+0HW5l286tZo4vMh5HjpHmZ8NXW5rY22vfTzQ2WOSeSzzUOxapZrLQPVOiLgJOoOLk2/FIGpOIm2LlUVXJrl5uvOZOqEA8Ru7+Z/nWvgiVObNe0mZ8ufJz/mf8w22/ZxOyhR3DMI7eyx4ABoeYpwlj5Tu10ulY+1zjkWmJR6dio0MdMlMgWN9eGY+m/MgEhbTLWS7C90hWcMswS14umL8pqq58oTq4ezPBde7U9jJzCQsNak0HdS059Km9t4dQlT/Preffx9S/X88zu3+LG7/2Uc39xIgywShBe/OBi/wpRKWS+LwNrZgVuv5ubJo775IbmrVHcUKGPkbhD3NysNKdtbqkHvIqEzFhY79rWMFEcAm0RLxsbmyJbk0H9zGnCbwzHrJjHJf++h93X17Oo3z7870nj+HC/4Wl1Zt1GNZnn83pQ+81NpLbT7aFlR1Sp1a0UEhX6GMlHiJubleZ3Pi/3Bjjnhk9tq185QKeIFzu1QdS+BvUz24J7yOrFjHv+ToasfZu3duzPuJ9cxbV3XcZDGRkl/SZt/YqaL1i9nrnL13m6XzLb6fZQsMNmFaWQqNDHSCmFuHmJm9eKVbutbgud7FzwXvVbc02z7Hf85F2bSNx2Bd9553Xqv9abS44dw5NDjuDqHwxxTBvsdf9TBdqtT6lzEanuF6eoG3tEEJc7S1HiQIU+RkopxM1L3KacPNh1oneHZCEPNzeHvT1s/dYwYu+676pVcPnlHP7AA2zdoZKbjv05N39jFDvttANXezxQ3N6XzLTKXu6WzP+dLPPMEUHqcUFDMBUlH2hSsxgJknyrUCXm3B4uVZUVVA+tYuyova2J3Qy+Ssauu0XM2NvD1G/NOWHXRx/BBRfAoEHw2GNw6aV0Xf0e/zvrr6z4w/eZVzPSN07f6X257tQDshZuBcXpoeA2ikpdT6AoxUCFPkb8SrMVssScW6nA+oZGRkydA8D222UP6JpajGtmydR0Cl9taQ7clsiuq88/h9/9DvbYw8oN/7OfWVb91VfDDjsEPo3f+2Ljds+ccHooeI0INDulUkzUdZMDXnHmThQyH0mqvzvTX2w/YLz89F4RP0HTBdiEdl1t2QK33GIJ+qefwqmnwuTJsOee4c6TQpDQQ6c+Hz6od1p0Erj72vO9KEpRoqJCH5EooZR+kSxxY4ubU9pcr8ySZSJtqQcy++KUM8eLUBOQLS1w771wxRWwejUccQRMmQLDfbOwxoZTn+31An4TzF4rhjUVgVJMVOgjEsU694tkyRdesfROETgtxrg+tMJYpmWCo4skC2Ng1iwrbfAbb8CwYfB//2cJfRHJHLH5hY7mMzulouSC+ugj4iZ49Q2NrhOtfpEs+aC2rt7Vz2z7qp0eNG6TqGEs00APsJdegkMPhRNOgM2bYfp0ePXVkhD5KPMpk6sHc/1pQ3znAxSlkPha9CLyd+B44BNjzH7JbROA8wE77d6lxpgnkq+NB84DWoALjTGz89DuouPlj00VBthmFVd5LKIJS9BUC27lBcHKDumVnMx+mGUW906US1YKBjA0NrWmHZ+aVTOLZcvg0kth5kz4+tctn/x550GiNApo5zKfEmQ+oNj9UzoXQSz6O4GjHbZfb4wZkvyxRX4f4HRg3+QxfxGR7KKgHQC3eqepZFrFUWqfOhHG2vRytWzY1OSZlKyye4IhE//FmOmL2q7V0NgEBnp2T6RZrJszRN71+u+/Dz/9Key/Pzz3nDXJunIl/OIXaSI/9uHFaf0b+/DivEQnuYW75nPxWyGjrxQFAgi9MeYFILtOnDMnAQ8YY7YYY94FVgIH5tC+kiUzZM+NVGEIGubnR5gC07lMAm7Y1ORYramp1dC9axfenXpcWwy7b2Hzzz6Diy+GvfaC++6DMWPgnXfgssugR4+0YyY+vixtxABW2OfEx5dF7osTXoIbpFB7VLRAuFJocpmM/ZWInAUsAC42xmwAqoD5Kft8kNzWIUkdorsVhM4UhjgyDHrND6SWHRw7au/AhU5ybYNbnpqaQ/tZYZK//z18+SWcdRZMnAj9+7ue2y0VsFcFqSh4Ce7YUXsz9qHFaXUCEmUSy6RqKaXKUDoHUSdjbwF2B4YAa4Hrwp5AREaLyAIRWbBuXe4VdopNXG6ZILhZlfaCqMw5gsxRRGUyzUGcbcgcrfT/WoL7WxdxwimHwuWXw2GHwZIlcMcdniKfL5xcNL6CmzlUiyk4Kp+jBUVxQkyAiA8RGQD8056MdXstORGLMWZK8rXZwARjzMte5x8+fLhZsGBB2LaXHGEn2KJOyDlVP3LLqhgkJ0tYKhLl7i6n1lZ4+GFL3N9+G77zHZg6FUaMcO1L5j3IrDSVypkH92dy9eBQ7XXqb0WinG5dyhyvY0+OB80+GeV9d2qPRucoYRGRhcYY34UmkYReRPoYY9Ym/74IOMgYc7qI7Avch+WX7ws8C+xpjPFUlPYi9HFGSuT6ZQ9apk6Ad6ce53p82MVaPbsnuPKEfZ3b+MwzUFMDCxfCfvvBlCnU9h3CtH+9lbbSdO7ydZ5lFE8ZVsX0V9c41scF6J4o45qT9w98793caj27J9jc1Or4HnhFIwl4rhS2+2D30+mzEuazpBE6ihuxCb2I3A8cBuwEfAxcmfx/CJYR+R7w8xThvww4F2gGxhhjnvRrRHsQ+ritMDfxiZqv3O185SJZybuCHJdJZUWCCSe6CPzChZbAP/OM5Za56io44wxql3wUaeRgZ3oc41EzN8y9H1gzy1G0Bbj+tCGOIhrkvlQkytkuUeY4d+CUojjKZyXf1r8+RNo3sVr0+aY9CH3cwuwlPrYFHtbqcxNVL2Fwa4fdFs/rvv225aJ58EHYcUfr7//5H+jWDQj+EHHivanHMcCndF+5CK3G+N6bKO9dru4tJ6J8VuL+3KWiLqT2T1Ch1xQILgR1jUSNlPDLXR82l469LWxd1EiVkNauhUmTrDQFXbtaAn/JJVkZJaOKvGD13y1lhI39mt+9CVq5KpXMpHBxEOWzks8InUIm2VOKi6ZAcMApvjpMutogHD6od9Y5g1Q78ou1DlIXNZVQ0UIbN1px73vsYYn86NFW2uCrrnJMGxw1h4+d1vdHB/ULfIzXvYm6fsHO2++1MK6yIhE4tfEOFYnQtQjyGaGjYZ6dB7XoHXAS2SB1QoNSW1fPjIX1aecU4JRh22Lsw34J/WrEuglDoPJ9mzfDX/5ixcOvXw+nn26J+x57OLbDPlcuTsEPGxrbomvufeV9gngYvQQq6voFv5KME07ct20/r9TGiTLhq63NbVE+QatvRRmNBKWUKqIp+UWF3gEvwbAn2XIpDef2IJm7fNt6grBfQj9B8nNTOPajpQXuuYdN4y+j+0cf8sKAodzx46s56dwTqN4je/+gfu1U3/pXW5odQxztfk6uHszk6sFpD5AyF5dOPgTKrySjfd/8Uhtv2tqcNWnb2NTCxQ8udjzeJmgd3Sjk8yGilBYq9A74JSzLdSIsiLUe9ksYVJD8qK2rZ9pTy9lnwfOMn3cPu338Hiv77sWU06/m5V0PAGC+gyVaW1fvOD+QSeZkn9uagMMH9U47LvVh5DaJmK/FaW5zGH4pi1NfH+gyseyVEjr1XLBN7G0XVa5in8+HiFJaqI/eAT+/bK4+TD+/q2292sVBwN+vvF3C+a30E6RUauvqeeiG+7nhzxdy2yNXYZqa+OVJNZx45nVtIg/Z/nBbeL1E3q20otvoZsbCelcfdvXQKk4ZVtV2b8pF0txeceL2WfhqS3OoJGReow2/uRdNgqbkilr0DnhFsEDuLgIvaz3TWrWLg3hZWmfc9nJWimCwnuKBrdw33mCnH5/Pvcvn8/H2vRg/6lc8NPgImsudPyKpDzsvtxFEW53r5daw5zjs96bFGGYsrGf4rr3yVpJx4uPL0lwvDY1NgXzsNn45h7yMh3xFx0Spkqa0T9Sid6F6aBXXnXpAXvLXeEWBhI22qa2rZ94q5+SizomDM1i9Gs4+G/bfn/3fXcq13z2b746+lfuHHO0q8pD+sPOb08h0w4D/wwG2uTUyLddCZ3+sHlpF967Z9yLMNe333C0Syct4yFd0jGbR7DyoRe9BPn2YbhOgYb/UE2Z6p+51tdA+/dSKovnLX0AELr6YUytGsHxrdsIzpzw6tuvCTlHsNafhZG0HFSkny7UYYYFxXNPuQ9j5hXxFx2h4ZedBLXofqodWMa9mZFru9XwSJm66tq7eNfmXTZaF9uWXVmjkbrvBjTfCmWdaK1ynTeMX3/+W4wjmjIP707N7+gPAdl3U1tX7zmk4+fTLQsTYZwpPkHvkVlDEbbsfccWzR4npz1dmVM2i2XlQi77ECBNtE3SIXd/QCE1NcNtt1orWjz+G6mrLot9nn7b9vEYwc5evcwwPnDZ7RZv/3WsVaWpZQr+J20wyhcfvHl1euzStQLfte16wen1afHsYn3ScoYh+Mf1OqS+mnDw49pGlhld2HlToS4ww7qIgQ2wxrRz/5r/5crcL2P6D1VYh7kcfhUMOcb1+FJeSfZxfARY333y5CD86qF/WQiMn4fG6R7V19Wkib9PY1ML9r6wJlR4i6DXjxG2CdMrJg3PObZOJhld2HlToS5Cgqzi9fOMYw3+/V8e45+9iv49X8dbOA7n17GuYsfNg+j7fyNjtLJdF0C95UD+xn5Xo9sBoNYbJ1YOzFhqlCnjmdifh8yqGHjY9RCZxVAfzo9D5ZwrRJ6X4qNC7EEf61nyngHUL2dt/7VuMe/5ORqxewpoddmbM8Rfz2D7fxYg1JWMX28bQlvM9rsRg1UOrWLB6fZv1bMe4g5WJ0U2E7QeGk/CECQP0Em23JGml5JPWCVIlH6jQOxBHfHFcMcpeD4vMofdBTZ9y3lO3c+R//s1nFf+PCd8bzX1DjmFrl+xImszi2+BtOQYd5jvFuE9/dQ3TX1vjeE3w9wuHsXLdRh4CgV1DxUTzzyj5QPPROxBHDvA4zhE4X/iHH/Lu//6WfrX3s6W8K7cd+H1u+9b3+apb90DXScWtIlVQwuagD5IzyCtnflVlRdqDB7LDFwU4I1mCsNQLbWiOeCUMmo8+B+IYPud6DrfcMWmWbEMDXHstzTfcQNXWZv4x5Fhu/vZpfNqjZ1uq3CqPxGFO9K2syEkMw7oYvB56dju8CqPYD5XUSUuvCJVS90nrBKmSD1ToHYhj+ByksIjbl9kvBPGzdQ0wbRpMmQIbNjDngO9x1cE/Yk3l19v2SU2+5mQlJsolzUcPlnAO2LEiJ5eT5wRxBqmrRDPvh1Oq31ScFnGlhnuWujA69derxqyi5IIumHIgjgUqXufwS1LlGoLY2sIPl/yL52//Bfz2t3DQQVBXx8+PvihN5G1SQx8zk4Cd9q1+nHZgv7QiGQaYt2p9Tsvi/RZPpdJiDLV19QyZ+C/GTF+Udj/unf++q8hXVVa4WvntYdLS6f3/x/z3NWmZkjdU6B2IWpEo6Dn8coxkiZUxHPXWyzz1918x7ckbSfSrgrlz4cknYciQQNkwnZKAzVqyNnBxkDAhiKn99qoy1bN7gvGPLHV0K3m5a+bVjKSqHa/qDJLnR3POKHHSKVw3UXzOcfhyoy4+SnV/HLjmDcY9dyfDPlzOql678Mq0Wzno4p9Z+WmS+GXDdPP1hyl8bYABNbPaFjbZ1Z/8+u2Whx3AGEIX37aFvD2v6gz60GwPoxOlfdDhhb4UU7H6+e/HjtqbO26Zya+f/Tsj31nA2u135NJjLuRf3zqazz5tZYdJTyMCDZua0pbIT5i5rM063i5R1rbkP0y6AT9ajOEf898H8BR7v75WViTY6DNBnOmHTxXyQk9axhmtE3Qeoz2MTpT2gW94pYj8HTge+MQYs19yWy9gOjAAeA841RizQUQE+BNwLLAJOMcY87pfI/IZXukV5jh21N5ZX14o/DJ3SAmhq9wKV1yBufdevujWg78c/AMeHXEy6025Zxz6KcOqsiYvnSYsU6msSLCluTW0VQ2WS2bVlGN99/Pqq1duHLtPpTBBGXfIY5CSixpSqQQhaHhlEKE/FPgSuDtF6H8PrDfGTBWRGqCnMWaciBwL/C+W0B8E/MkYc5BfI/Ip9F4x2BWJ8qwCzkj6YqJcv3BulmDm9ssO3IljH7sdbrkFysvhwguhpgZ69gwUm+626tMNAa4/bQiw7cFW2T3Bl5ub0yJxvHgvJd7eL4rI7R44CV7P7gmuPGHfkhE5t/ufWvs27ENIo26UOIgtjt4Y84KIDMjYfBJwWPLvu4DngHHJ7Xcb6+kxX0QqRaSPMWZt8KbHi9swuVwkS2CcBC6XPCN+bqPqoVXwxRfwxz/CSX+ATZvg3HPhyithl13azhPEVxvWPWPv7TaiCfJgsQnSz1xW2xYbt/tv3/Mo7sBSj+dXOhaBVsYmhf6fKRZ9gzGmMvm3ABuMMZUi8k9gqjHmxeRrzwLjjDGe5no+LXq3YXcYd0XQ1aK1dfVpJefcXCdVlRXM+8134G9/s3LDr1sHJ59spQ0eNKjtXLYAlgWw1ssEAhrigLPbxh69AIyZvsjz+O6JMk4etgtzl69zfSjkWkTdiWKsbA262jcf/VUULwq2MtYYY0Qk9GyfiIwGRgP0798/12Z40q1LWZug2W6BIFarTZBJsdq6esY+vDjN7eN0U8S0MvylJ+G28+Gdd+Cww2DqVCsmPuVcmXVjfTHWIqjU6yfKhLIyYUtzelHBikQ5ItkRL41NLUyYuSxrfyc2NbW2Tcq6ESYVQhCKNbHuV+/VJpcomVJPzaC0b6LG0X8sIn0Akr8/SW6vB/ql7LdLclsWxphbjTHDjTHDe/fOrikaB7YwpMZpb04W0XZa2JMoE2vFaApBQ/amzV7hOlkKgDF8952F/PPOMfzp8T/A175mxcHPmZMm8va5wk6QtmLNLdgulcqKBAhZol1ZkWDKyYNp2OQc8dLQ2BRpctYJgVgX/RSrxmnQtQFRo2T8FtApSq5EtehnAmcDU5O/H0vZ/isReQBrMnZjMf3zXsKQWhUpjqgbL2tuyIcrGPf8nRzy/lLWVH6dBVffxPCaX0KZ83M2F8uwxZg2i93pwfPF5mYgXKqCqBjg4gcXA/FY3MVM4ZvqU3dzBwYxCJws90LnoFc6H75CLyL3Y0287iQiHwBXYgn8gyJyHrAaODW5+xNYETcrscIrf5qHNgfGSxiCpP8Ng5Nw7v7ZGi554R6Oeesl1nWvZMKRv8Ccfz4Tf/jN0OcKg9diqBZjGP/IUsdwzHxgXw9yE3u7zmw+88kHdZ9EnUR2cz25vQe6YEqJiw6dpthtEs1rIjKXMErbR7/zF58y5sX7OHXpMzQmunHrgSdz+/CT+KpbdxJlwvbbdUlb7ORXaCMfiMC3d+vFvFXr83aNVCorEiy68qhIx3rdj7jizQuRHtgrTNPpAaaTu4ofQSdjO3SuG7fEYm4Tkbn4equHVnHDUbty5Yt38fytoznljTnc/c3j+O7o27hxxI/acsM3tRo2bGpy9cXaVmVjU4tnnhg/KisSnsnFjCF2kS8vc29vQ2NTZJ+zV53ZuIS4EP5/rzDNXJPoKYoXHVro3RKLuU1E1jc0MrBmFiOmzgknSo2NcO21HFf9HX760sNsd/qpdF35FpOO+Dmf9aj0PjRFTFIn5cBZAIIgwIQT920r4RcF+54FpWf3BNf98ADPh1NqP0dMnRP4XnvVmY3L2na7Rn3SzRcHbi4m+3OZSxI9RfGiw+e6cVqY4hVamWpp28e70twMd9wBEybAhx/Csccy56wx/O7dcj78238Cxb/DtgeM0/62Ze90HicXlF1NqXpoFRMfX+Z7bTfslZpB5goqEuVpK1ndYvDtuZGwIZL5Lq/n5f8HYgvhPHxQb8eQ1MMH9dYFVEpe6dAWvRtBcqZ7DtuNgUcegf32g9GjoX9/eP55aiffygVvtLSFyYVZreq1v9vQfsKJ+2ZZgtefNqStZN4Gl5FLEGYsrOfwQb0DjigMY6YvYvfxTzBm+iLcPDh9KysiuUjiqA/ghl+RlyDtC8rc5etCbVeUuOjwFr0TmVEToYpYPPeclYPmlVfgG9+ARx+Fk04CEaZNnZOXCVS3BGxeUUK5ClNjUwtzl6/jlGFV3P/KGh8htGL17X2cVujawnyRh7XvRj5TJQRdsxBHBEwxw0OVzk2nFHpId+m4RUOkuQYWLYLx4+Gpp6CqCm6/Hc46C7pYt7C2rt7TzRE27ULqcbaoOQmbW0ign3j07J7wtfjrGxpzSnPslPTLzW3m54bJl2sjqMjG4SYK4oLSFbJKPuiUrptMPF0D77wDZ5wBQ4fCK6/wxpjLOfzntzHwrZ0Z8YcXqK2rt0IrH1rsen6nybYbThviWiWpXKRtv1OGWeLoNHHptaLSS5huOG0IdVcc5Xp9mzKH6KQwtBrDu1OPS6vhmk83TBSCCHhc7fPru66QVfJFh46jD0OmJXX58F4c89jtVuKxLl1gzBhmHX0mlzz9flasNZg290UmXrHYTrHbdiK0KpcC2al52r2SidluEtekai5Fw20y8+ZEwS0OvJSsVsfC6QHWOuRyPbe+e9VO0Hh6xYnY8tEXglIQ+jY+/xyuu8762bwZzjvPShvct2/gLIap3HDaEE+RsL/49Q2NWdku3bJf+hUUsbNtDnAp42e/XltXn1aVys6AWVVZwVdbmh1rucI2l4xX/vogi41KRfBLpR1utROCZk9VOh8Fy17ZYdiyhSWXT6XfLdfT86uNzNnvUFonXcUR3z+0bZcok2ZORUYyJ1Krh1Y5PkTcxNzv0Wy7I6o8fMJOlmy3LtvE2avW63WnHpBVVKS+obEtDLQqgFiWUonHUgltzHcYqdJ5UaFvaYH77uOrmsvY/8M1zNt1f6495RyW9NmLitc3MWVAfZsIhM1B07N7Iit9cX1DI2Mfzk70FVfkRarP16uAtluY45jpi1iwer1nrdfUdkcVyVJM5FVsy749FzxXSpvOK/TGWGmCx4+HJUv4oO8eTD51Ev8eMNRKBEO28ATNSw6Wj/vKE/Zl4uPLsnzdTS2Gix5cxEXTF7UJShzZJEVIc5ekhiXaFrfdJ69r/WP++4zYvRfrv9qaJToTTtw3UFv8RDPXUMO4RTkfI4ywbWwvFbeU9kfn9NHPnw/jxsELL8Duu8PkyexW14NWyQ5CyvSPpn55ve6c7Zt385On4lbcOwrvOfhyoyRJKxfhulMPiCQ6QRKEec13VFYkmHCie83YfCQgi3sitBBJ0hRFk5o58eab8P3vwyGHwPLlcPPN8J//wOmn06dnD8dDMv2j1UOrmFczknenHucanmhvHzF1TqBm2YuTghS38CMz/HLE1DmMmb4o9AOkJZlHxu5raoikH0FWv3qtTm5obGLsQ4tdwwrzkYAs7sVMxSqSoihOdA6hX7PGip7Zbz949lmrTuuqVXDBBdC1KxAtvtvtmMMH9U5LThaEDxsa04T1ulMPCNHBbdhx15kJ0sKSS+bMIKJpJ5xzu05Tq3EVxXysMHWb8Iw6EaqrYJVSonMI/TXXwD/+Ab/+tbUA6vLLYfvt03Zxy3TpZ8Vul9h2C+0yfXOXrwttQe9QkchqT8/uCZe93bGtxijlCFM5eLeekY91E0cDaYu+qodW0erhOnQTxbhFGeJfyJWPNipKVDrHZOyECVZ+ml139dwtTASJkw/Wrs8axWpraGzi8tqlTK4e3LbtyhP2jVSAJA6r8b3P/M+RGYdvF14fO2pvxj602DG+PnOS02sS2k0U8xGdEvdEqEbQKKVE5xD6nXeO/ZRe4YlRuXf++wzftZdj1Izf5G8qtkB6uW16dk/weWOzax4bv4eFnfYhVcw3bGri4ocW86MD++GVzD41mmnAjs5CXya4imK+olPijKfXCBqllOicUTcRCRpxkwteUR5BVubakR2Ab/m9BavXO+ZH92uHX1vsFbZeCHD9aUNc0zTkUnpQUToLujI2RjJdFGGprEjw1dbmQLljvCxpJ3dAolzo0bULGxud87JkxsyXi3DKsG2W673z388S2kS5+LoYvNrpJ/KwLTe9264bI97rjkixF0LSKA4AAAorSURBVHIp7R8Veh9yLdQtwKIrjwr8sPCarIviDti0tTnt/xZjmLGwnuG79nIV2h5du/gKSS4LvPxy09vnV0orVYTSflGh9yHX6JUyEQbWzKJvZUXbqlK3lalBJuv8/MiX1y4NUCikpe1h4USmNe1kUY4dtbfnfIRbgrbUPDhu90Fw98+HIQ5LuNjWdCmmilDaHzmFV4rIeyKyVEQWiciC5LZeIvK0iLyd/B09Tq+AuBWszjWCpcWYrDq082pG8t7U49py0sdVEPry2qX8Y/77gQqF2MLlRJlIW//dcqQDnHlwf9fzG7bNx9olDt+belxbnp2BNbPYtLWZREbdwdSat7kQR273UsgPr/H4ShzEYdEfboz5NOX/GuBZY8xUEalJ/j8uhuvkDa/hsZ+Lwi9lcCqZlljcWRPvdZlYdcK2Tp3cUi3GtCVe87Io59WMbHMBOd0j24K3J3UzI3U2bGqiTKw5DLc5hqjEYQmXgjWtGS2VOMjHgqmTgLuSf98FVOfhGrHi9YX2KyTuJPJe+4e1xNxGGk77hYkEsgV1ysmDHYt5N7VYBb/dHnJ2P+zVvG7RlKn9nTBzWVZsfavJz8RrHJZwKVjTpVaRS2mf5Cr0BviXiCwUkdHJbTsbY9Ym//4IiD+IPWa8vtDVQ6s4ZViVV1h4GvbqWLc8OGEssTCugzA5VFJTDVurUwMf2kZmP4KsBHWbiDbJnzhdI3GsTC2F1a1RV2wrSiq5Cv13jDHfBI4BLhCRQ1NfNFaQvqOMiMhoEVkgIgvWrVuXYzNyw+8LPXf5usDWco9uVsTK2FF7Z/mfE2X+YYuphEmMFdTKDJNq2Oscmf3wsjztUUkQ4kr8FYclXCrWdNTkcopik5OP3hhTn/z9iYg8ChwIfCwifYwxa0WkD/CJy7G3AreCtWAql3bkit9y9cjD/cxhQMb/ueRszzy2snuCDZuyLeZuXcooF9iUrGm7ubmFBavXp12nsiIRaI2AgKsf3S30E9wXbrkRh2skjpWpurpV6ShEXhkrIj2AMmPMF8m/nwYmAd8DPkuZjO1ljPmt17lKYWVslKLNTtiTj375zXPJ2d6ze4LNTa1ZBa0R0hZlVSTK+Wb/HZi3an3WOc48uH9bXh2ndAZu7Q5LlDq7WgxbUYJRiHz0OwMvishi4FVgljHmKWAqcKSIvA0ckfy/5PEaHvtNyNoEGQXY2yc+vixSzvaKRDnGkHVsU6uhqcW0pf21fbnz39ng2I77X1nT9nf10Cqm/fCAtnmFzIFIEHdFlPDUnt0TWe4tnWhUlPiJ7LoxxrwDZCVNN8Z8hmXVdxi83BJuowCvsLjaunpHNwtk52x3uobXitIWY9rEsnpoleuipsxY+9RQz7CLhKKEp6aObNQ1oij5RZOa5YnLa5dm5ZGxXTNeNVuDuC2CuEPs8+w+/gnHBVTlIqyacqxvP4Lg5aZym//QyBFFyR0tJVhEauvqmbGwPisFgJ1MzC9xmR9BXEn2NX50UD/H1922R8EvPFXDAxWluGiumzzgFBZpsMI0wd2dkRrf7kWqS8evaIc94WrnvykX4UcH9UsrcJIrfqs3414BrChKOFTo84DfRKybOyNMfLstnm7RO6kjg8nVg2MV9kycKkqFXTOgKEr+UKHPA0EsXIgnPrtkYr191gwoilI8dDI2DwSJke9I+K0ZUBQlP2iFqSJSMlZ2gSiF5F+KorijQp8nOsMEpB0D7zYm1FS6ilIaqNArkfArsagrXBWldFChVyLhVWKxqoO7qhSlvaFCr0TCzf8uoBOwilJi6MpYJRKlUJRDUZRgqNArkSiVohyKovijrhslEp0thFRR2jMq9EpkOkMIqaJ0BNR1oyiK0sFRoVcURengqNAriqJ0cFToFUVROjgq9IqiKB2ckkhTLCLrgNURD98J+DTG5pQKHbVf0HH71lH7Bdq3UmVXY0xvv51KQuhzQUQWBMnH3N7oqP2Cjtu3jtov0L61d9R1oyiK0sFRoVcURengdAShv7XYDcgTHbVf0HH71lH7Bdq3dk2799EriqIo3nQEi15RFEXxoOSFXkR6icjTIvJ28ndPl/2eEpEGEflnxvaBIvKKiKwUkeki0rUwLfcnRN/OTu7ztoicnbL9ORFZISKLkj//VbjWO7bz6GR7VopIjcPr3ZLvwcrkezIg5bXxye0rRGRUIdsdhKh9E5EBItKY8h79tdBt9yNA3w4VkddFpFlEfpDxmuNnsxTIsV8tKe/ZzMK1Ok8YY0r6B/g9UJP8uwa41mW/7wEnAP/M2P4gcHry778C/1PsPoXpG9ALeCf5u2fy757J154Dhhe7H8m2lAOrgN2ArsBiYJ+MfX4J/DX59+nA9OTf+yT37wYMTJ6nvNh9iqlvA4A3it2HHPs2ANgfuBv4QZDPZrF/culX8rUvi92HOH9K3qIHTgLuSv59F1DttJMx5lngi9RtIiLASOBhv+OLRJC+jQKeNsasN8ZsAJ4Gji5Q+8JwILDSGPOOMWYr8ABW/1JJ7e/DwPeS79FJwAPGmC3GmHeBlcnzlQq59K3U8e2bMeY9Y8wSoDXj2FL+bObSrw5HexD6nY0xa5N/fwTsHOLYHYEGY0xz8v8PgFJKoB6kb1XAmpT/M/twR3J4+bsiC4tfO9P2Sb4nG7HeoyDHFpNc+gYwUETqROR5EfnvfDc2JLnc+1J+33Jt23YiskBE5otIKRmHkSiJwiMi8gzwdYeXLkv9xxhjRKRdhQnluW9nGGPqReRrwAzgJ1jDUKV0WAv0N8Z8JiLDgFoR2dcY83mxG6Z4smvyu7UbMEdElhpjVhW7UVEpCaE3xhzh9pqIfCwifYwxa0WkD/BJiFN/BlSKSJeklbULUJ9jc0MRQ9/qgcNS/t8FyzePMaY++fsLEbkPa7haLKGvB/ql/O90r+19PhCRLsAOWO9RkGOLSeS+GcvhuwXAGLNQRFYBewEL8t7qYORy710/myVATp+plO/WOyLyHDAUy+ffLmkPrpuZgD2bfzbwWNADk1+yuYA9ox7q+AIQpG+zgaNEpGcyKucoYLaIdBGRnQBEJAEcD7xRgDa78RqwZzLKqSvWhGRmtEJqf38AzEm+RzOB05ORKwOBPYFXC9TuIETum4j0FpFygKR1uCfWpGWpEKRvbjh+NvPUzrBE7leyP92Sf+8EjAD+k7eWFoJizwb7/WD5OZ8F3gaeAXoltw8H/i9lv38D64BGLH/cqOT23bBEYyXwENCt2H2K0Ldzk+1fCfw0ua0HsBBYAiwD/kSRI1WAY4G3sCyfy5LbJgEnJv/eLvkerEy+J7ulHHtZ8rgVwDHFfm/i6htwSvL9WQS8DpxQ7L5E6Nu3kt+pr7BGYMu8Ppul8hO1X8C3gaVYkTpLgfOK3Zdcf3RlrKIoSgenPbhuFEVRlBxQoVcURengqNAriqJ0cFToFUVROjgq9IqiKB0cFXpFUZQOjgq9oihKB0eFXlEUpYPz/wH/uNUjwSIOOgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from sklearn import linear_model\n", - "\n", - "# load data\n", - "d = datasets.load_diabetes()\n", - "\n", - "X = d.data[:, np.newaxis, 2]\n", - "Y = d.target\n", - "\n", - "# create regression model\n", - "regr = linear_model.LinearRegression()\n", - "regr.fit(X, Y)\n", - "\n", - "a, b = regr.coef_, regr.intercept_\n", - "print(\"a = %f, b = %f\" % (a, b))\n", - "\n", - "x_min = np.min(X)\n", - "x_max = np.max(X)\n", - "y_min = a * x_min + b\n", - "y_max = a * x_max + b\n", - "\n", - "plt.scatter(X, Y)\n", - "plt.plot([x_min, x_max], [y_min, y_max], 'r')\n", - "plt.show()" - ] - }, + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('
');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '
');\n", + " var titletext = $(\n", + " '
');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('
');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('
')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('