Browse Source

Add bp

fetches/feikei/master
Shuhui Bu 6 years ago
parent
commit
5ec6bbd517
56 changed files with 4370 additions and 7 deletions
  1. +0
    -1
      .gitignore
  2. +52
    -2
      1_logistic_regression/Least_squares.ipynb
  3. +48
    -2
      1_logistic_regression/Least_squares.py
  4. BIN
      1_logistic_regression/images/gd_stepsize.png
  5. BIN
      1_logistic_regression/images/gradient_descent.png
  6. +12
    -2
      README.md
  7. BIN
      nn/images/bp_loss.png
  8. BIN
      nn/images/bp_weight_update.png
  9. BIN
      nn/images/eqn_13_16.png
  10. BIN
      nn/images/eqn_17_20.png
  11. BIN
      nn/images/eqn_21_22.png
  12. BIN
      nn/images/eqn_23_25.png
  13. BIN
      nn/images/eqn_26.png
  14. BIN
      nn/images/eqn_27_29.png
  15. BIN
      nn/images/eqn_30_31.png
  16. BIN
      nn/images/eqn_32_34.png
  17. BIN
      nn/images/eqn_35_40.png
  18. BIN
      nn/images/eqn_3_4.png
  19. BIN
      nn/images/eqn_5_6.png
  20. BIN
      nn/images/eqn_7_12.png
  21. BIN
      nn/images/eqn_delta_hidden.png
  22. BIN
      nn/images/eqn_delta_j.png
  23. BIN
      nn/images/eqn_ed_net_j.png
  24. BIN
      nn/images/eqn_hidden_units.png
  25. BIN
      nn/images/eqn_matrix1.png
  26. BIN
      nn/images/eqn_w41_update.png
  27. BIN
      nn/images/eqn_w4b_update.png
  28. BIN
      nn/images/eqn_w84_update.png
  29. BIN
      nn/images/formular_2.png
  30. BIN
      nn/images/formular_3.png
  31. BIN
      nn/images/formular_4.png
  32. BIN
      nn/images/formular_5.png
  33. BIN
      nn/images/forumlar_delta4.png
  34. BIN
      nn/images/forumlar_delta8.png
  35. BIN
      nn/images/neuron.gif
  36. BIN
      nn/images/nn1.jpeg
  37. BIN
      nn/images/nn2.png
  38. BIN
      nn/images/nn3.png
  39. BIN
      nn/images/nn_parameters_demo.png
  40. BIN
      nn/images/sigmod.jpg
  41. +600
    -0
      nn/mlp_bp.ipynb
  42. +307
    -0
      nn/mlp_bp.py
  43. +408
    -0
      references/logistic_regression_demo/3a - Linear regression 1D.ipynb
  44. +433
    -0
      references/logistic_regression_demo/3b - Linear regression 2D.ipynb
  45. +658
    -0
      references/logistic_regression_demo/4 - Logistic Regression.ipynb
  46. +500
    -0
      references/logistic_regression_demo/data/artifical_lin.txt
  47. +500
    -0
      references/logistic_regression_demo/data/artifical_lin_2.txt
  48. +699
    -0
      references/logistic_regression_demo/data/breast-cancer-wisconsin.data
  49. +15
    -0
      references/logistic_regression_demo/ipython_notebook_config.py
  50. +25
    -0
      references/logistic_regression_demo/utility.py
  51. BIN
      references/nn/.nn_2.py.kate-swp
  52. +0
    -0
      references/nn/nn-from-scratch
  53. +98
    -0
      references/nn/nn_1.py
  54. +15
    -0
      references/nn/nn_2.py
  55. +0
    -0
      references/supervised_learning/Recognizing hand-written digits - SVM.ipynb
  56. +0
    -0
      references/supervised_learning/supervised learning.ipynb

+ 0
- 1
.gitignore View File

@@ -1,4 +1,3 @@
.ipynb_checkpoints
.idea
references


+ 52
- 2
1_logistic_regression/Least_squares.ipynb View File

@@ -160,7 +160,54 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## How to use iterative method to estimate parameters?\n"
"## 如何使用迭代的方法求出模型参数\n",
"\n",
"当数据比较多的时候,或者模型比较复杂,无法直接使用解析的方式求出模型参数。因此更为常用的方式是,通过迭代的方式逐步逼近模型的参数。\n",
"\n",
"### 梯度下降法\n",
"在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数,接下来便是通过优化算法对损失函数进行优化,以便寻找到最优的参数。在求解机器学习参数的优化算法中,使用较多的是基于梯度下降的优化算法(Gradient Descent, GD)。\n",
"\n",
"梯度下降法有很多优点,其中,在梯度下降法的求解过程中,只需求解损失函数的一阶导数,计算的代价比较小,这使得梯度下降法能在很多大规模数据集上得到应用。梯度下降法的含义是通过当前点的梯度方向寻找到新的迭代点。\n",
"\n",
"梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方走,同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走。然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。\n",
"\n",
"\n",
"我们同时可以假设这座山最陡峭的地方是无法通过肉眼立马观察出来的,而是需要一个复杂的工具来测量,同时,这个人此时正好拥有测量出最陡峭方向的能力。所以,此人每走一段距离,都需要一段时间来测量所在位置最陡峭的方向,这是比较耗时的。那么为了在太阳下山之前到达山底,就要尽可能的减少测量方向的次数。这是一个两难的选择,如果测量的频繁,可以保证下山的方向是绝对正确的,但又非常耗时,如果测量的过少,又有偏离轨道的风险。所以需要找到一个合适的测量方向的频率,来确保下山的方向不错误,同时又不至于耗时太多!\n",
"\n",
"\n",
"![gradient_descent](images/gradient_descent.png)\n",
"\n",
"如上图所示,得到了局部最优解。x,y表示的是$\\theta_0$和$\\theta_1$,z方向表示的是花费函数,很明显出发点不同,最后到达的收敛点可能不一样。当然如果是碗状的,那么收敛点就应该是一样的。\n",
"\n",
"对于某一个损失函数\n",
"$$\n",
"L = \\sum_{i=1}^{N} (y_i - a x_i + b)^2\n",
"$$\n",
"\n",
"我们更新的策略是:\n",
"$$\n",
"\\theta^1 = \\theta^0 - \\alpha \\triangledown L(\\theta)\n",
"$$\n",
"其中$\\theta$代表了模型中的参数,例如$a$, $b$\n",
"\n",
"此公式的意义是:L是关于$\\theta$的一个函数,我们当前所处的位置为$\\theta_0$点,要从这个点走到L的最小值点,也就是山底。首先我们先确定前进的方向,也就是梯度的反向,然后走一段距离的步长,也就是$\\alpha$,走完这个段步长,就到达了$\\theta_1$这个点!\n",
"\n",
"下面就这个公式的几个常见的疑问:\n",
"\n",
"* **$\\alpha$是什么含义?**\n",
"$\\alpha$在梯度下降算法中被称作为学习率或者步长,意味着我们可以通过$\\alpha$来控制每一步走的距离,以保证不要步子跨的太大扯着蛋,哈哈,其实就是不要走太快,错过了最低点。同时也要保证不要走的太慢,导致太阳下山了,还没有走到山下。所以$\\alpha$的选择在梯度下降法中往往是很重要的!$\\alpha$不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点!\n",
"![gd_stepsize](images/gd_stepsize.png)\n",
"\n",
"* **为什么要梯度要乘以一个负号?**\n",
"梯度前加一个负号,就意味着朝着梯度相反的方向前进!我们在前文提到,梯度的方向实际就是函数在此点上升最快的方向!而我们需要朝着下降最快的方向走,自然就是负的梯度的方向,所以此处需要加上负号\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Program"
]
},
{
@@ -4889,7 +4936,10 @@
"source": [
"## How to use batch update method?\n",
"\n",
"If some data is outliear, then the "
"If some data is outliear, then only use one data can make the learning inaccuracy and slow.\n",
"\n",
"\n",
"* [梯度下降方法的几种形式](https://blog.csdn.net/u010402786/article/details/51188876)"
]
},
{


+ 48
- 2
1_logistic_regression/Least_squares.py View File

@@ -1,3 +1,4 @@
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext_format_version: '1.2'
@@ -113,8 +114,50 @@ plt.legend()
plt.show()
# -

# ## How to use iterative method to estimate parameters?
# ## 如何使用迭代的方法求出模型参数
#
# 当数据比较多的时候,或者模型比较复杂,无法直接使用解析的方式求出模型参数。因此更为常用的方式是,通过迭代的方式逐步逼近模型的参数。
#
# ### 梯度下降法
# 在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数,接下来便是通过优化算法对损失函数进行优化,以便寻找到最优的参数。在求解机器学习参数的优化算法中,使用较多的是基于梯度下降的优化算法(Gradient Descent, GD)。
#
# 梯度下降法有很多优点,其中,在梯度下降法的求解过程中,只需求解损失函数的一阶导数,计算的代价比较小,这使得梯度下降法能在很多大规模数据集上得到应用。梯度下降法的含义是通过当前点的梯度方向寻找到新的迭代点。
#
# 梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方走,同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走。然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。
#
#
# 我们同时可以假设这座山最陡峭的地方是无法通过肉眼立马观察出来的,而是需要一个复杂的工具来测量,同时,这个人此时正好拥有测量出最陡峭方向的能力。所以,此人每走一段距离,都需要一段时间来测量所在位置最陡峭的方向,这是比较耗时的。那么为了在太阳下山之前到达山底,就要尽可能的减少测量方向的次数。这是一个两难的选择,如果测量的频繁,可以保证下山的方向是绝对正确的,但又非常耗时,如果测量的过少,又有偏离轨道的风险。所以需要找到一个合适的测量方向的频率,来确保下山的方向不错误,同时又不至于耗时太多!
#
#
# ![gradient_descent](images/gradient_descent.png)
#
# 如上图所示,得到了局部最优解。x,y表示的是$\theta_0$和$\theta_1$,z方向表示的是花费函数,很明显出发点不同,最后到达的收敛点可能不一样。当然如果是碗状的,那么收敛点就应该是一样的。
#
# 对于某一个损失函数
# $$
# L = \sum_{i=1}^{N} (y_i - a x_i + b)^2
# $$
#
# 我们更新的策略是:
# $$
# \theta^1 = \theta^0 - \alpha \triangledown L(\theta)
# $$
# 其中$\theta$代表了模型中的参数,例如$a$, $b$
#
# 此公式的意义是:L是关于$\theta$的一个函数,我们当前所处的位置为$\theta_0$点,要从这个点走到L的最小值点,也就是山底。首先我们先确定前进的方向,也就是梯度的反向,然后走一段距离的步长,也就是$\alpha$,走完这个段步长,就到达了$\theta_1$这个点!
#
# 下面就这个公式的几个常见的疑问:
#
# * **$\alpha$是什么含义?**
# $\alpha$在梯度下降算法中被称作为学习率或者步长,意味着我们可以通过$\alpha$来控制每一步走的距离,以保证不要步子跨的太大扯着蛋,哈哈,其实就是不要走太快,错过了最低点。同时也要保证不要走的太慢,导致太阳下山了,还没有走到山下。所以$\alpha$的选择在梯度下降法中往往是很重要的!$\alpha$不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点!
# ![gd_stepsize](images/gd_stepsize.png)
#
# * **为什么要梯度要乘以一个负号?**
# 梯度前加一个负号,就意味着朝着梯度相反的方向前进!我们在前文提到,梯度的方向实际就是函数在此点上升最快的方向!而我们需要朝着下降最快的方向走,自然就是负的梯度的方向,所以此处需要加上负号
#
#

# ### Program

# +
n_epoch = 3000 # epoch size
@@ -183,7 +226,10 @@ plt.show()

# ## How to use batch update method?
#
# If some data is outliear, then the
# If some data is outliear, then only use one data can make the learning inaccuracy and slow.
#
#
# * [梯度下降方法的几种形式](https://blog.csdn.net/u010402786/article/details/51188876)

# ## How to fit polynomial function?
#


BIN
1_logistic_regression/images/gd_stepsize.png View File

Before After
Width: 827  |  Height: 383  |  Size: 74 kB

BIN
1_logistic_regression/images/gradient_descent.png View File

Before After
Width: 510  |  Height: 270  |  Size: 135 kB

+ 12
- 2
README.md View File

@@ -2,7 +2,17 @@

本notebook教程包含了一些使用Python来学习机器学习的教程,通过本教程能够引导学习Python的基础知识和机器学习的背景和实际编程。

## 内容
1. [Python基础](0_python/)
2. [numpy & matplotlib](0_numpy_matplotlib_scipy_sympy/)
3. [kMenas](1_kmeans/)
4. [knn](1_knn/)
5. [Logistic Regression](1_logistic_regression/)
6. [Neural Network](nn/)
7. CNN
8. PyTorch

内容
## 其他参考
* [安装Python环境](InstallPython.md)
* [参考资料等](References.md)
* [参考资料等](References.md)
* [confusion matrix](metric/confusion_matrix.ipynb)

BIN
nn/images/bp_loss.png View File

Before After
Width: 286  |  Height: 81  |  Size: 5.3 kB

BIN
nn/images/bp_weight_update.png View File

Before After
Width: 230  |  Height: 77  |  Size: 4.4 kB

BIN
nn/images/eqn_13_16.png View File

Before After
Width: 565  |  Height: 137  |  Size: 14 kB

BIN
nn/images/eqn_17_20.png View File

Before After
Width: 521  |  Height: 117  |  Size: 15 kB

BIN
nn/images/eqn_21_22.png View File

Before After
Width: 517  |  Height: 90  |  Size: 7.2 kB

BIN
nn/images/eqn_23_25.png View File

Before After
Width: 567  |  Height: 189  |  Size: 21 kB

BIN
nn/images/eqn_26.png View File

Before After
Width: 535  |  Height: 73  |  Size: 8.5 kB

BIN
nn/images/eqn_27_29.png View File

Before After
Width: 571  |  Height: 168  |  Size: 17 kB

BIN
nn/images/eqn_30_31.png View File

Before After
Width: 577  |  Height: 117  |  Size: 12 kB

BIN
nn/images/eqn_32_34.png View File

Before After
Width: 601  |  Height: 131  |  Size: 15 kB

BIN
nn/images/eqn_35_40.png View File

Before After
Width: 619  |  Height: 379  |  Size: 54 kB

BIN
nn/images/eqn_3_4.png View File

Before After
Width: 633  |  Height: 78  |  Size: 13 kB

BIN
nn/images/eqn_5_6.png View File

Before After
Width: 659  |  Height: 74  |  Size: 14 kB

BIN
nn/images/eqn_7_12.png View File

Before After
Width: 648  |  Height: 254  |  Size: 27 kB

BIN
nn/images/eqn_delta_hidden.png View File

Before After
Width: 375  |  Height: 73  |  Size: 7.0 kB

BIN
nn/images/eqn_delta_j.png View File

Before After
Width: 253  |  Height: 49  |  Size: 3.9 kB

BIN
nn/images/eqn_ed_net_j.png View File

Before After
Width: 303  |  Height: 66  |  Size: 5.9 kB

BIN
nn/images/eqn_hidden_units.png View File

Before After
Width: 417  |  Height: 131  |  Size: 29 kB

BIN
nn/images/eqn_matrix1.png View File

Before After
Width: 740  |  Height: 169  |  Size: 27 kB

BIN
nn/images/eqn_w41_update.png View File

Before After
Width: 199  |  Height: 40  |  Size: 2.8 kB

BIN
nn/images/eqn_w4b_update.png View File

Before After
Width: 188  |  Height: 42  |  Size: 2.7 kB

BIN
nn/images/eqn_w84_update.png View File

Before After
Width: 213  |  Height: 40  |  Size: 3.2 kB

BIN
nn/images/formular_2.png View File

Before After
Width: 339  |  Height: 54  |  Size: 3.7 kB

BIN
nn/images/formular_3.png View File

Before After
Width: 342  |  Height: 49  |  Size: 5.0 kB

BIN
nn/images/formular_4.png View File

Before After
Width: 360  |  Height: 62  |  Size: 6.7 kB

BIN
nn/images/formular_5.png View File

Before After
Width: 291  |  Height: 49  |  Size: 4.5 kB

BIN
nn/images/forumlar_delta4.png View File

Before After
Width: 310  |  Height: 52  |  Size: 5.2 kB

BIN
nn/images/forumlar_delta8.png View File

Before After
Width: 254  |  Height: 46  |  Size: 3.5 kB

BIN
nn/images/neuron.gif View File

Before After
Width: 503  |  Height: 177  |  Size: 3.0 kB

BIN
nn/images/nn1.jpeg View File

Before After
Width: 511  |  Height: 350  |  Size: 42 kB

BIN
nn/images/nn2.png View File

Before After
Width: 476  |  Height: 266  |  Size: 120 kB

BIN
nn/images/nn3.png View File

Before After
Width: 479  |  Height: 259  |  Size: 122 kB

BIN
nn/images/nn_parameters_demo.png View File

Before After
Width: 475  |  Height: 276  |  Size: 84 kB

BIN
nn/images/sigmod.jpg View File

Before After
Width: 300  |  Height: 240  |  Size: 9.4 kB

+ 600
- 0
nn/mlp_bp.ipynb
File diff suppressed because it is too large
View File


+ 307
- 0
nn/mlp_bp.py View File

@@ -0,0 +1,307 @@
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext_format_version: '1.2'
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# language_info:
# codemirror_mode:
# name: ipython
# version: 3
# file_extension: .py
# mimetype: text/x-python
# name: python
# nbconvert_exporter: python
# pygments_lexer: ipython3
# version: 3.5.2
# ---

# # 多层神经网络和反向传播
#

# ## 神经元
#
# 神经元和感知器本质上是一样的,只不过我们说感知器的时候,它的激活函数是阶跃函数;而当我们说神经元时,激活函数往往选择为sigmoid函数或tanh函数。如下图所示:
# ![neuron](images/neuron.gif)
#
# 计算一个神经元的输出的方法和计算一个感知器的输出是一样的。假设神经元的输入是向量$\vec{x}$,权重向量是$\vec{w}$(偏置项是$w_0$),激活函数是sigmoid函数,则其输出y:
# $$
# y = sigmod(\vec{w}^T \cdot \vec{x})
# $$
#
# sigmoid函数的定义如下:
# $$
# sigmod(x) = \frac{1}{1+e^{-x}}
# $$
# 将其带入前面的式子,得到
# $$
# y = \frac{1}{1+e^{-\vec{w}^T \cdot \vec{x}}}
# $$
#
# sigmoid函数是一个非线性函数,值域是(0,1)。函数图像如下图所示
# ![sigmod_function](images/sigmod.jpg)
#
# sigmoid函数的导数是:
# $$
# y = sigmod(x) \ \ \ \ \ \ (1) \\
# y' = y(1-y)
# $$
# 可以看到,sigmoid函数的导数非常有趣,它可以用sigmoid函数自身来表示。这样,一旦计算出sigmoid函数的值,计算它的导数的值就非常方便。
#
#

# ## 神经网络是啥?
#
# ![nn1](images/nn1.jpeg)
#
# 神经网络其实就是按照一定规则连接起来的多个神经元。上图展示了一个全连接(full connected, FC)神经网络,通过观察上面的图,我们可以发现它的规则包括:
#
# * 神经元按照层来布局。最左边的层叫做输入层,负责接收输入数据;最右边的层叫输出层,我们可以从这层获取神经网络输出数据。输入层和输出层之间的层叫做隐藏层,因为它们对于外部来说是不可见的。
# * 同一层的神经元之间没有连接。
# * 第N层的每个神经元和第N-1层的所有神经元相连(这就是full connected的含义),第N-1层神经元的输出就是第N层神经元的输入。
# * 每个连接都有一个权值。
#
# 上面这些规则定义了全连接神经网络的结构。事实上还存在很多其它结构的神经网络,比如卷积神经网络(CNN)、循环神经网络(RNN),他们都具有不同的连接规则。
#

# ## 计算神经网络的输出
#
# 神经网络实际上就是一个输入向量$\vec{x}$到输出向量$\vec{y}$的函数,即:
#
# $$
# \vec{y} = f_{network}(\vec{x})
# $$
# 根据输入计算神经网络的输出,需要首先将输入向量$\vec{x}$的每个元素的值$x_i$赋给神经网络的输入层的对应神经元,然后根据式1依次向前计算每一层的每个神经元的值,直到最后一层输出层的所有神经元的值计算完毕。最后,将输出层每个神经元的值串在一起就得到了输出向量$\vec{y}$。
#
# 接下来举一个例子来说明这个过程,我们先给神经网络的每个单元写上编号。
#
# ![nn2](images/nn2.png)
#
# 如上图,输入层有三个节点,我们将其依次编号为1、2、3;隐藏层的4个节点,编号依次为4、5、6、7;最后输出层的两个节点编号为8、9。因为我们这个神经网络是全连接网络,所以可以看到每个节点都和上一层的所有节点有连接。比如,我们可以看到隐藏层的节点4,它和输入层的三个节点1、2、3之间都有连接,其连接上的权重分别为$w_{41}$,$w_{42}$,$w_{43}$。那么,我们怎样计算节点4的输出值$a_4$呢?
#
#
# 为了计算节点4的输出值,我们必须先得到其所有上游节点(也就是节点1、2、3)的输出值。节点1、2、3是输入层的节点,所以,他们的输出值就是输入向量$\vec{x}$本身。按照上图画出的对应关系,可以看到节点1、2、3的输出值分别是$x_1$,$x_2$,$x_3$。我们要求输入向量的维度和输入层神经元个数相同,而输入向量的某个元素对应到哪个输入节点是可以自由决定的,你偏非要把$x_1$赋值给节点2也是完全没有问题的,但这样除了把自己弄晕之外,并没有什么价值。
#
# 一旦我们有了节点1、2、3的输出值,我们就可以根据式1计算节点4的输出值$a_4$:
# ![eqn_3_4](images/eqn_3_4.png)
#
# 上式的$w_{4b}$是节点4的偏置项,图中没有画出来。而$w_{41}$,$w_{42}$,$w_{43}$分别为节点1、2、3到节点4连接的权重,在给权重$w_{ji}$编号时,我们把目标节点的编号$j$放在前面,把源节点的编号$i$放在后面。
#
# 同样,我们可以继续计算出节点5、6、7的输出值$a_5$,$a_6$,$a_7$。这样,隐藏层的4个节点的输出值就计算完成了,我们就可以接着计算输出层的节点8的输出值$y_1$:
# ![eqn_5_6](images/eqn_5_6.png)
#
# 同理,我们还可以计算出$y_2$的值。这样输出层所有节点的输出值计算完毕,我们就得到了在输入向量$\vec{x} = (x_1, x_2, x_3)^T$时,神经网络的输出向量$\vec{y} = (y_1, y_2)^T$。这里我们也看到,输出向量的维度和输出层神经元个数相同。
#
#

# ## 神经网络的矩阵表示
#
# 神经网络的计算如果用矩阵来表示会很方便(当然逼格也更高),我们先来看看隐藏层的矩阵表示。
#
# 首先我们把隐藏层4个节点的计算依次排列出来:
# ![eqn_hidden_units](images/eqn_hidden_units.png)
#
# 接着,定义网络的输入向量$\vec{x}$和隐藏层每个节点的权重向量$\vec{w}$。令
#
# ![eqn_7_12](images/eqn_7_12.png)
#
# 代入到前面的一组式子,得到:
#
# ![eqn_13_16](images/eqn_13_16.png)
#
# 现在,我们把上述计算$a_4$, $a_5$,$a_6$,$a_7$的四个式子写到一个矩阵里面,每个式子作为矩阵的一行,就可以利用矩阵来表示它们的计算了。令
# ![eqn_matrix1](images/eqn_matrix1.png)
#
# 带入前面的一组式子,得到
# ![formular_2](images/formular_2.png)
#
# 在式2中,$f$是激活函数,在本例中是$sigmod$函数;$W$是某一层的权重矩阵;$\vec{x}$是某层的输入向量;$\vec{a}$是某层的输出向量。式2说明神经网络的每一层的作用实际上就是先将输入向量左乘一个数组进行线性变换,得到一个新的向量,然后再对这个向量逐元素应用一个激活函数。
#
# 每一层的算法都是一样的。比如,对于包含一个输入层,一个输出层和三个隐藏层的神经网络,我们假设其权重矩阵分别为$W_1$,$W_2$,$W_3$,$W_4$,每个隐藏层的输出分别是$\vec{a}_1$,$\vec{a}_2$,$\vec{a}_3$,神经网络的输入为$\vec{x}$,神经网络的输出为$\vec{y}$,如下图所示:
# ![nn_parameters_demo](images/nn_parameters_demo.png)
#
# 则每一层的输出向量的计算可以表示为:
# ![eqn_17_20](images/eqn_17_20.png)
#
#
# 这就是神经网络输出值的矩阵计算方法。
#

# ## 神经网络的训练 - 反向传播算法
#
# 现在,我们需要知道一个神经网络的每个连接上的权值是如何得到的。我们可以说神经网络是一个模型,那么这些权值就是模型的参数,也就是模型要学习的东西。然而,一个神经网络的连接方式、网络的层数、每层的节点数这些参数,则不是学习出来的,而是人为事先设置的。对于这些人为设置的参数,我们称之为超参数(Hyper-Parameters)。
#
# 反向传播算法其实就是链式求导法则的应用。然而,这个如此简单且显而易见的方法,却是在Roseblatt提出感知器算法将近30年之后才被发明和普及的。对此,Bengio这样回应道:
#
# > 很多看似显而易见的想法只有在事后才变得显而易见。
#
# 按照机器学习的通用套路,我们先确定神经网络的目标函数,然后用随机梯度下降优化算法去求目标函数最小值时的参数值。
#
# 我们取网络所有输出层节点的误差平方和作为目标函数:
# ![bp_loss](images/bp_loss.png)
#
# 其中,$E_d$表示是样本$d$的误差。
#
# 然后,使用随机梯度下降算法对目标函数进行优化:
# ![bp_weight_update](images/bp_weight_update.png)
#
# 随机梯度下降算法也就是需要求出误差$E_d$对于每个权重$w_{ji}$的偏导数(也就是梯度),怎么求呢?
# ![nn3](images/nn3.png)
#
# 观察上图,我们发现权重$w_{ji}$仅能通过影响节点$j$的输入值影响网络的其它部分,设$net_j$是节点$j$的加权输入,即
# ![eqn_21_22](images/eqn_21_22.png)
#
# $E_d$是$net_j$的函数,而$net_j$是$w_{ji}$的函数。根据链式求导法则,可以得到:
#
# ![eqn_23_25](images/eqn_23_25.png)
#
#
# 上式中,$x_{ji}$是节点传递给节点$j$的输入值,也就是节点$i$的输出值。
#
# 对于的$\frac{\partial E_d}{\partial net_j}$推导,需要区分输出层和隐藏层两种情况。
#
#

# ### 输出层权值训练
#
# ![nn3](images/nn3.png)
#
# 对于输出层来说,$net_j$仅能通过节点$j$的输出值$y_j$来影响网络其它部分,也就是说$E_d$是$y_j$的函数,而$y_j$是$net_j$的函数,其中$y_j = sigmod(net_j)$。所以我们可以再次使用链式求导法则:
# ![eqn_26](images/eqn_26.png)
#
# 考虑上式第一项:
# ![eqn_27_29](images/eqn_27_29.png)
#
#
# 考虑上式第二项:
# ![eqn_30_31](images/eqn_30_31.png)
#
# 将第一项和第二项带入,得到:
# ![eqn_ed_net_j.png](images/eqn_ed_net_j.png)
#
# 如果令$\delta_j = - \frac{\partial E_d}{\partial net_j}$,也就是一个节点的误差项$\delta$是网络误差对这个节点输入的偏导数的相反数。带入上式,得到:
# ![eqn_delta_j.png](images/eqn_delta_j.png)
#
# 将上述推导带入随机梯度下降公式,得到:
# ![eqn_32_34.png](images/eqn_32_34.png)
#

# ### 隐藏层权值训练
#
# 现在我们要推导出隐藏层的$\frac{\partial E_d}{\partial net_j}$。
#
# ![nn3](images/nn3.png)
#
# 首先,我们需要定义节点$j$的所有直接下游节点的集合$Downstream(j)$。例如,对于节点4来说,它的直接下游节点是节点8、节点9。可以看到$net_j$只能通过影响$Downstream(j)$再影响$E_d$。设$net_k$是节点$j$的下游节点的输入,则$E_d$是$net_k$的函数,而$net_k$是$net_j$的函数。因为$net_k$有多个,我们应用全导数公式,可以做出如下推导:
# ![eqn_35_40](images/eqn_35_40.png)
#
# 因为$\delta_j = - \frac{\partial E_d}{\partial net_j}$,带入上式得到:
# ![eqn_delta_hidden.png](images/eqn_delta_hidden.png)
#
#
# 至此,我们已经推导出了反向传播算法。需要注意的是,我们刚刚推导出的训练规则是根据激活函数是sigmoid函数、平方和误差、全连接网络、随机梯度下降优化算法。如果激活函数不同、误差计算方式不同、网络连接结构不同、优化算法不同,则具体的训练规则也会不一样。但是无论怎样,训练规则的推导方式都是一样的,应用链式求导法则进行推导即可。
#

# ### 具体解释
#
# 我们假设每个训练样本为$(\vec{x}, \vec{t})$,其中向量$\vec{x}$是训练样本的特征,而$\vec{t}$是样本的目标值。
#
# ![nn3](images/nn3.png)
#
# 首先,我们根据上一节介绍的算法,用样本的特征$\vec{x}$,计算出神经网络中每个隐藏层节点的输出$a_i$,以及输出层每个节点的输出$y_i$。
#
# 然后,我们按照下面的方法计算出每个节点的误差项$\delta_i$:
#
# * **对于输出层节点$i$**
# ![formular_3.png](images/formular_3.png)
# 其中,$\delta_i$是节点$i$的误差项,$y_i$是节点$i$的输出值,$t_i$是样本对应于节点$i$的目标值。举个例子,根据上图,对于输出层节点8来说,它的输出值是$y_1$,而样本的目标值是$t_1$,带入上面的公式得到节点8的误差项应该是:
# ![forumlar_delta8.png](images/forumlar_delta8.png)
#
# * **对于隐藏层节点**
# ![formular_4.png](images/formular_4.png)
#
# 其中,$a_i$是节点$i$的输出值,$w_{ki}$是节点$i$到它的下一层节点$k$的连接的权重,$\delta_k$是节点$i$的下一层节点$k$的误差项。例如,对于隐藏层节点4来说,计算方法如下:
# ![forumlar_delta4.png](images/forumlar_delta4.png)
#
#
# 最后,更新每个连接上的权值:
# ![formular_5.png](images/formular_5.png)
#
# 其中,$w_{ji}$是节点$i$到节点$j$的权重,$\eta$是一个成为学习速率的常数,$\delta_j$是节点$j$的误差项,$x_{ji}$是节点$i$传递给节点$j$的输入。例如,权重$w_{84}$的更新方法如下:
# ![eqn_w84_update.png](images/eqn_w84_update.png)
#
# 类似的,权重$w_{41}$的更新方法如下:
# ![eqn_w41_update.png](images/eqn_w41_update.png)
#
#
# 偏置项的输入值永远为1。例如,节点4的偏置项$w_{4b}$应该按照下面的方法计算:
# ![eqn_w4b_update.png](images/eqn_w4b_update.png)
#
# 我们已经介绍了神经网络每个节点误差项的计算和权重更新方法。显然,计算一个节点的误差项,需要先计算每个与其相连的下一层节点的误差项。这就要求误差项的计算顺序必须是从输出层开始,然后反向依次计算每个隐藏层的误差项,直到与输入层相连的那个隐藏层。这就是反向传播算法的名字的含义。当所有节点的误差项计算完毕后,我们就可以根据式5来更新所有的权重。
#
#

# ## Program

# +
% matplotlib inline

import numpy as np
from sklearn import datasets, linear_model
import matplotlib.pyplot as plt

# generate sample data
np.random.seed(0)
X, y = datasets.make_moons(200, noise=0.20)

# plot data
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
plt.show()

# +
# generate the NN model
class NN_Model:
epsilon = 0.01 # learning rate
n_epoch = 1000 # iterative number
nn = NN_Model()
nn.n_input_dim = X.shape[1] # input size
nn.n_output_dim = 2 # output node size
nn.n_hide_dim = 3 # hidden node size

# initial weight array
nn.W1 = np.random.randn(nn.n_input_dim, nn.n_hide_dim) / np.sqrt(nn.n_input_dim)
nn.b1 = np.zeros((1, nn.n_hide_dim))
nn.W2 = np.random.randn(nn.n_hide_dim, nn.n_output_dim) / np.sqrt(nn.n_hide_dim)
nn.b2 = np.zeros((1, nn.n_output_dim))

# defin sigmod & its derivate function
def sigmod(X):
return 1.0/(1+np.exp(-X))

def sigmod_derivative(X):
f = sigmod(X)
return f*(1-f)

# network forward calculation
def forward(n, X):
n.z1 = sigmod(X.dot(n.W1) + n.b1)
n.z2 = sigmod(n.z1.dot(n.W2) + n.b2)
return n

# use random weight to perdict
forward(nn, X)
y = nn.z2[:, 0]>nn.z2[:,1]
y_pred = np.zeros(nn.z2.shape[0])
y_pred[np.where(nn.z2[:,0]<nn.z2[:,1])] = 1
print(y_pred)
print(nn.z2)
# -

# ## References
# * [零基础入门深度学习(3) - 神经网络和反向传播算法](https://www.zybuluo.com/hanbingtao/note/476663)
# * [Neural Network Using Python and Numpy](https://www.python-course.eu/neural_networks_with_python_numpy.php)
# * http://www.cedar.buffalo.edu/%7Esrihari/CSE574/Chap5/Chap5.3-BackProp.pdf
# * https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

+ 408
- 0
references/logistic_regression_demo/3a - Linear regression 1D.ipynb
File diff suppressed because it is too large
View File


+ 433
- 0
references/logistic_regression_demo/3b - Linear regression 2D.ipynb
File diff suppressed because it is too large
View File


+ 658
- 0
references/logistic_regression_demo/4 - Logistic Regression.ipynb
File diff suppressed because it is too large
View File


+ 500
- 0
references/logistic_regression_demo/data/artifical_lin.txt View File

@@ -0,0 +1,500 @@
7.475811838082768723e-03 4.320836189610323119e-01 1.450549175723391038e+00
4.991058415580543750e-01 2.094374801667562291e-01 1.102532698521218268e+00
1.193536163361264002e-01 5.963489824485116442e-01 1.338273355186238245e+00
4.769187785997547335e-01 9.109195645869490043e-01 2.602219201834365947e+00
7.303936733915606938e-01 8.857684867949857654e-01 2.210152595170989276e+00
9.664601349489546633e-01 7.502994138032407223e-01 2.611077802324385910e+00
2.542019778882254055e-02 7.428502628957164289e-01 1.710698945274088834e+00
1.778136599348375535e-01 5.930384510525207320e-01 2.233352927908840435e+00
4.492592286670140656e-01 8.931411427088303823e-01 3.102819283880683177e+00
8.370430987882071516e-02 2.614373501818388901e-01 8.640697795350422705e-01
8.341080791107999826e-01 6.784596613777602592e-01 3.226838828319181562e+00
7.167018545861755241e-01 1.103531872063134855e-02 3.812269666339226926e-02
8.183226795351219440e-01 6.657461817854845032e-01 1.547628048238904874e+00
2.834730567607464113e-01 3.260372156848528880e-01 1.066274317849608133e+00
4.816520737750709102e-01 9.933843474355296133e-01 3.471689866478016473e+00
5.507062166025468164e-01 1.219201174732618131e-01 -3.873755702169334736e-02
9.275675675329209113e-01 7.595330167450311531e-01 2.289908502396237111e+00
7.561238363026515641e-01 6.840828577303232905e-01 2.519846561855788813e+00
4.957723968953803295e-01 8.670850445766850045e-01 2.935924016824970284e+00
5.408335800327461751e-01 3.247707156381132165e-01 8.585149457083230962e-01
6.892698013969100757e-02 9.085711937091790480e-01 2.274493253938949078e+00
6.741864184517211145e-01 7.817210669276070112e-01 2.513319828565115710e+00
8.243668219151468746e-01 2.917544002350455079e-01 1.599121705167765972e+00
8.776077707996776667e-01 1.677106045886949115e-01 7.843847468722240368e-01
2.500776223292151546e-01 3.588873034434612030e-01 1.653274592743033899e+00
2.021786578617587038e-01 1.418393464135232485e-01 3.933672100694594609e-01
2.685507556945776475e-02 7.321598812138923051e-01 2.127765105548871993e+00
8.195523222775495942e-01 3.451370805481794868e-01 1.377961502837144137e+00
1.971981386783976387e-01 4.517957732604490628e-01 1.883090356939532306e+00
9.324125360887314251e-02 8.518183180329133020e-01 2.720069834246886309e+00
2.682640801887333781e-01 7.666508565073675285e-01 2.133635338893320910e+00
5.988554394607304987e-01 5.078756300002995605e-02 -1.323176605521795279e-01
4.132057609719871349e-01 7.733878480448631576e-01 2.669836471857727211e+00
8.968299298666455588e-01 1.759543852410582199e-01 9.980225650229066492e-01
6.604143061271943171e-01 6.340983996248182875e-01 2.105840665588138982e+00
5.266614520604195882e-02 1.525488634313088010e-02 -2.153966553289855534e-01
6.974062198613504293e-01 5.944606189059847834e-01 1.763717859467236915e+00
5.387863758358174548e-01 1.019159109038116906e-01 9.558460757183967482e-02
6.249043870655015542e-01 4.299862339088595942e-01 1.522006406940794809e+00
6.661354880603580497e-01 6.036168002547487310e-01 1.930785326585231942e+00
4.085927067704629989e-01 3.085466034371613375e-01 8.242125987920496666e-01
2.645712089691105717e-01 7.794962481435983026e-01 2.138245618867576248e+00
5.732978944125887155e-01 4.848706031355866086e-01 1.080208500702684260e+00
2.713139146988112760e-01 1.379451495861444554e-01 4.228339638555064228e-01
2.755820924890763912e-01 8.530702479483407430e-01 3.322053433962536939e+00
2.091501940600326570e-02 2.048108692344442483e-01 4.191702012093132534e-01
1.534394912084446894e-02 9.148363421420675490e-01 1.800710510442548484e+00
1.278958637503535556e-01 3.910178296001215470e-01 1.326305294981870109e+00
7.343913194845445025e-01 9.578241564768665839e-01 3.666444442007755988e+00
8.728738265684310438e-01 8.137136652443932583e-02 -6.680219410291982074e-02
3.434930909495775841e-01 3.668093961439626849e-01 1.298070495530361690e+00
6.340750930182676992e-01 4.293034895647808158e-01 1.753627303728895637e+00
7.916753701139102040e-01 8.792271853310851260e-01 2.593999286745963584e+00
1.783997341756226040e-01 3.861425389666840458e-01 9.128976540430178144e-01
5.928812756610245538e-01 4.438943836328812509e-02 1.000094214885776989e+00
9.664522600713033595e-01 9.466939185617491148e-01 2.906269893635449630e+00
4.066561253239548979e-01 9.171665625609342065e-01 2.742986919040616645e+00
8.236115710884057695e-01 2.647959880978716374e-01 9.459738056948978624e-01
6.320423316726820895e-01 8.360438827586792465e-01 3.216488737449289648e+00
5.138224534917832376e-01 5.374361346225066116e-01 1.527247360071752880e+00
4.579382292678627620e-01 3.949198869420947888e-01 1.501425648147641345e+00
9.576670559259582438e-01 3.983246523147065954e-01 1.237575342612352136e+00
1.138067686089871966e-01 1.567309453549632359e-01 7.005322455414590976e-01
6.404494439786647675e-01 1.780641159603901791e-01 7.938637139365654072e-01
1.387840471133794384e-02 6.237823673113149781e-01 1.476386204302320593e+00
3.030445989624356296e-01 6.198141088519637520e-02 4.567005603096885302e-01
3.802531980402333867e-01 5.409927006646785275e-01 1.883581189342869333e+00
6.705087997031178304e-02 1.741428118633180366e-01 9.121942481269487146e-01
8.211668779283721742e-01 5.249226808311039383e-01 2.170534841817413074e+00
2.069294306883516787e-01 2.366319826124895220e-01 1.542613224726550936e+00
9.532381178881612627e-01 8.535486150346145440e-01 2.356388047056950708e+00
7.960224813956610079e-01 3.619061945798818236e-02 5.172188609486845223e-01
8.877672702671365323e-01 9.713145572816609397e-01 3.306905373104077839e+00
7.489306869397681643e-01 8.473656034978621632e-01 2.535918702634719413e+00
7.177108320559019150e-01 1.087337598575145448e-01 1.586935432727936135e-01
2.447720414767670105e-01 5.109625703599354196e-01 1.407260059648873574e+00
9.890927331418312152e-01 2.953923437136736219e-01 1.072070459129647713e+00
1.086920779608940846e-01 6.318071227439751025e-01 1.557679918613608994e+00
9.644991742126940437e-01 4.703489200292593209e-01 1.636317030674938611e+00
6.213140595058208593e-02 8.477486902449127282e-02 3.813767326246751410e-01
4.952571105530045870e-01 5.700052493447709256e-01 1.934233726936544162e+00
2.726756709341970897e-01 2.146651782929371866e-01 7.986346066861963466e-01
8.917441922488205108e-01 9.560923675042851677e-01 3.119016030037050413e+00
7.707565352454615049e-02 1.161474483544463476e-01 -1.644060962672083126e-01
8.619330010808275988e-01 5.483846347652111541e-01 1.887271595787430201e+00
6.756497088473898405e-01 1.596640416697148179e-02 3.250751138478518709e-01
6.078153373128571957e-01 3.720033630724720597e-01 1.411933889913144835e+00
3.174037326900748246e-01 1.549614002822162773e-01 8.161302398949438208e-01
4.476293363565838623e-01 8.210638934292713298e-01 2.480054998404300992e+00
7.084428331937857592e-01 6.952726744740225229e-01 1.912595645951341350e+00
7.313728224808281331e-01 4.590841357253414579e-01 1.092024568392572004e+00
8.346529609846853326e-01 6.280661067885178195e-01 1.703742672110366119e+00
1.949849239944413393e-01 7.815804264527685952e-01 2.740131052532522649e+00
3.618961197943663111e-01 9.493746530596582911e-01 3.483716212818180669e+00
9.426901777014041750e-01 5.218380228405639087e-02 4.376997690535605612e-01
8.226362345946165444e-01 4.809419675081207934e-01 1.458586094754612761e+00
7.067354980129005870e-01 7.228649825823781905e-01 2.419791589190408487e+00
1.023755386264367795e-01 7.922838157573184326e-01 2.441085427209842340e+00
2.289851593560128240e-01 5.546786377010594071e-01 1.647696527055220850e+00
4.460650478440573163e-01 2.191506522298012349e-01 1.024946687942562829e+00
4.483396050145066480e-01 2.429242359343196656e-01 1.309989269584039384e+00
9.430377189635058555e-01 8.411778387111719102e-01 3.432728797502154983e+00
2.864482468911577762e-02 8.546327218757242550e-01 2.722370794510544201e+00
2.241511135464431259e-01 7.859659876748782414e-01 2.491116071935152387e+00
9.966196752234992573e-01 6.955150962623877220e-01 3.093102615008462841e+00
2.477410776072497267e-01 8.178117265377349288e-02 7.342611816274411396e-01
3.790620764631877915e-01 9.593005540814388832e-01 3.171558355615661906e+00
7.558769731762405852e-01 2.294088007751564628e-01 5.538922276913116338e-01
7.192011532951225750e-02 6.754074740436515345e-01 2.527960192024258479e+00
3.234731742291891976e-01 8.990872474399824732e-02 2.308891315011747103e-01
1.105033974749317638e-01 3.560288831966261780e-01 1.355952289465385707e+00
4.316861899693822391e-01 6.140824910286386551e-01 2.175048267024927817e+00
4.173677249147860202e-01 8.307176675711246405e-01 2.891136308161926127e+00
4.878284313449211540e-01 1.217117118902810713e-02 3.765562264346458687e-02
5.698100028891839308e-02 9.369647431950471894e-01 2.828524603619942734e+00
7.937063049510053592e-01 9.965934172054009554e-01 3.621790555298875613e+00
9.185931909842128817e-01 6.488091171997073525e-01 2.143860442680804557e+00
9.007204053721260539e-01 8.537714025365400472e-01 2.646754629169127071e+00
8.278514553747188254e-01 2.005889941342431371e-01 7.271439836489447250e-01
2.373489829046158128e-01 1.418258400242289330e-02 -6.020465063396163163e-01
6.117272773480567638e-01 6.369715377051763383e-01 1.454500098779854422e+00
9.961403950188231216e-01 3.421270980816193408e-01 1.695221418633425792e+00
3.060008110713063889e-02 6.001080183202910368e-01 2.002526417406803372e+00
2.164319231564044710e-01 8.136362177731774059e-01 1.757163156232044887e+00
4.320315166604467016e-01 4.720548127901512681e-01 1.795390386829843532e+00
9.817822535962430486e-01 9.617769716915969269e-01 2.665581707035302728e+00
7.824931791481782861e-01 8.442127024468111252e-01 3.127126340389913661e+00
9.034259616014704841e-01 3.510687988820446748e-01 1.524380717380441341e+00
9.340361687788649725e-01 6.443396379643503424e-01 1.577033167963769245e+00
9.349627019103919912e-01 9.740965725817858356e-01 2.777737402561453184e+00
5.903568814739056370e-01 3.993580841930692849e-01 9.865016362870495659e-01
4.310475296439005843e-01 4.231135093604750930e-01 6.160817574532500007e-01
4.066501997846739824e-01 7.450933101505008427e-01 2.074051841595779599e+00
1.029377684482553068e-01 3.799493301021364955e-01 1.256140270860516495e+00
2.166875813791702132e-01 5.680548857183227440e-01 1.860536057054025694e+00
7.361620363451337745e-03 6.692094353896700376e-01 2.297233859209406592e+00
2.251381419088346325e-01 8.652108236891861148e-01 2.666916298098993998e+00
1.504251225087782640e-01 1.130070792465698304e-02 -5.110469555600358760e-01
5.937063067825341101e-01 2.716007117804829507e-01 1.267438724867238964e+00
4.634541081507811411e-01 6.681602022681033537e-01 2.564355938834183224e+00
2.250187085316336377e-01 9.707240268187979915e-01 2.676052205504153569e+00
9.815037489648346103e-01 2.641637699209509194e-02 1.554105300329002293e-01
5.798419531491214585e-01 7.299465348305756995e-01 2.111624689082501227e+00
8.972502355513533034e-01 9.156452851300300733e-01 3.126488976232349337e+00
4.125381992536247822e-01 3.249668969776204897e-01 1.830878545388462175e+00
8.269411939892717944e-01 7.979113620685827080e-01 2.707397108997154689e+00
9.993682944332172857e-01 6.221934355638074621e-01 2.549876142740037821e+00
1.309511636557203484e-02 3.505925898386655915e-01 1.305297897892122805e+00
4.102824415325945218e-02 7.457568198685821104e-01 1.543540270208316301e+00
8.117891142542627003e-01 1.272650640958630230e-01 1.082974948650097691e+00
7.481657398409454762e-01 9.308262831414119143e-01 2.578937787382042934e+00
5.088769917590663105e-03 5.245899619502442102e-01 1.727984379791936531e+00
6.400399192179795360e-01 9.629290544827761034e-01 2.938595199549385306e+00
2.773619565845855117e-01 4.542961730983430257e-01 1.168737911397091711e+00
6.686043177934657411e-01 7.553176981648601629e-01 1.644825403924084384e+00
2.637964834961262772e-01 9.844424430040311647e-01 3.632246264813325798e+00
4.529904429357893836e-01 5.591014088518869718e-01 1.421411174425226243e+00
5.914692044780885949e-01 5.224614059870554827e-01 1.501115101695089438e+00
5.278611861799314964e-01 8.706323340559083412e-01 2.599792319687709963e+00
7.265719805715095125e-01 4.647055521928602495e-01 1.623872125626333318e+00
2.374412593234882518e-01 6.781222697832595125e-01 2.978750721035211768e+00
1.096602828167132504e-01 6.233577231346018044e-01 1.686962232177067644e+00
8.285502135116481481e-01 3.054139242298121726e-01 1.144537009942264483e+00
7.915711302950751982e-01 7.848184053509537073e-01 2.892002414681882794e+00
1.762498459189343336e-02 4.855504085991589891e-01 1.619558293913433200e+00
6.262818009408183118e-01 1.603201032517899138e-01 6.252513064490023975e-01
2.830688286014748645e-02 5.242293138669631425e-01 1.202461608418680550e+00
3.427022322407036192e-01 7.081650882875548669e-01 2.150677972793977322e+00
5.135236067462749521e-01 2.438597121143804003e-01 6.384817981414274701e-01
2.868808958191264580e-01 7.384571396801111742e-01 3.105295444220282697e+00
9.736860152443834737e-01 2.079390705386722216e-01 1.557250606379207980e-01
6.894495333611394550e-02 6.130594376948936830e-01 2.315876000332821594e+00
1.168590212315750998e-01 4.037889878947520383e-02 3.152764638159926136e-01
3.147609473561659987e-01 8.448606103547418034e-02 3.681880790089999689e-01
1.905475300857236709e-01 5.576451121753612794e-01 1.735782833118906243e+00
8.174670994045084571e-01 7.522671285033422084e-02 2.910705593068040886e-01
2.930085957594632529e-01 9.567630851274011583e-01 3.172637074347888664e+00
7.861908323714857927e-01 1.787212591142121054e-01 8.352226099770573287e-01
8.722257250051403954e-01 8.081061274551285534e-01 2.732557324289121681e+00
6.899075115902838506e-01 9.443001359106594217e-01 3.398727077247677641e+00
6.031118963945732991e-01 3.453224833949740669e-01 1.425321208931602079e+00
3.407956303640705675e-01 9.140476767703493710e-01 3.401458356178787668e+00
1.945621485096249437e-01 5.923940054625942420e-01 2.566378888181803930e+00
3.161255927431180224e-01 7.527318319996485485e-01 1.902379634338783321e+00
9.542504369658332264e-01 7.563093485068556054e-01 1.960997642569395571e+00
7.503283219779900426e-01 5.828935470434386534e-01 2.446196965775033760e+00
4.578297753833164840e-01 3.519832708438854763e-01 8.666562129287116445e-01
6.068951551160934876e-01 3.577481854345385681e-01 1.279663020567587850e+00
9.286620665777755024e-01 1.989483889154278762e-01 4.980914890658610372e-01
9.089161333377616669e-01 9.360413652931209860e-01 2.729168699217892513e+00
2.715020470435951516e-01 6.263210538722676635e-01 1.953520274587866812e+00
4.484390918011750271e-01 6.187772636825238370e-01 2.289293295258222116e+00
6.530080949979680804e-01 3.122995150457112956e-01 1.618902454343966735e-01
2.463316498886304329e-01 5.226564427863324980e-01 1.229133364816173302e+00
4.141071607560687928e-01 4.798880667179711290e-01 1.484116980207792924e+00
3.744430435917297517e-01 3.136728207944586844e-01 1.394232745042316868e+00
9.704834640778647881e-03 2.409452879945052084e-01 1.099945707772545633e+00
1.247533430143018540e-01 9.278300040342389865e-01 1.969712680896271717e+00
9.639914914830710613e-01 7.146319051580746207e-01 1.916158759622974328e+00
9.697007427592747586e-01 4.344846988263826315e-01 1.529407530737709742e+00
6.432789358766941579e-01 1.159531498655849147e-01 8.070333907812549112e-02
7.954444389320014519e-02 7.857091264773297112e-03 -3.041162080678399410e-02
2.056292786003366402e-02 9.139983937786330115e-01 2.283253682769141424e+00
6.896932244254023736e-01 4.071345432110594631e-01 1.608724082101808062e+00
1.179590669697371252e-01 2.516637324101815842e-01 6.254825903210164961e-01
5.717954038454533539e-01 7.118334045214347316e-02 4.939509993242007790e-01
7.652646562234205474e-01 3.355166863650271836e-01 6.348712599175490023e-01
8.211691611012003067e-01 8.338493619363586129e-01 2.737468720090254326e+00
2.169688389528605654e-01 3.278673542269121555e-01 1.327212744232495689e+00
8.825445819422383931e-01 3.988053665091583211e-01 1.838918711522194549e+00
7.630053686338290619e-01 7.118875637069269624e-01 2.036324433274867118e+00
8.682088181253480030e-01 8.022112043828562022e-01 2.771127215122880294e+00
1.617129307945597283e-01 3.235671693450348219e-02 2.576392368990635950e-01
2.998997587073576332e-01 9.881916976518770879e-01 3.636341806624223238e+00
4.166599629826496232e-01 4.948038506801873959e-01 1.604337709904139819e+00
5.346101161310027328e-01 3.346227769794102302e-01 1.407399360732258575e+00
5.586469090878520838e-01 9.291034722693523040e-01 2.834402154732535095e+00
7.495713414978937283e-01 2.230812889919575603e-02 -2.557682884596298445e-01
1.776544927826729792e-01 8.330048151716381577e-01 3.165953386815831827e+00
2.370892922909140221e-01 9.645650999746180343e-01 2.848768860709277373e+00
6.461924835393765276e-01 9.880609977186249893e-02 1.668412393504021818e-01
1.553521768486154642e-02 6.646524478743683906e-01 2.595752388284229717e+00
2.304588954137405388e-01 6.865243600025272563e-02 5.432053718528367936e-01
2.895677903304353373e-01 6.671957989519927690e-02 1.011850249507597832e+00
1.509853317223704972e-01 4.906855357405467410e-01 1.149671642059096444e+00
2.695189180420017871e-01 6.034853329583748094e-01 1.407443348919456216e+00
3.459764986793533170e-01 2.784403907717262205e-01 1.269648748329526677e+00
6.512027084577440839e-01 8.181789021711619592e-01 2.478800034415616693e+00
3.889098625215544613e-01 3.863808815073727088e-01 1.725517777318716028e+00
1.566168732205782677e-01 5.040095278958177660e-01 1.445050834954967778e+00
1.506836183177537869e-01 7.794054440250003379e-01 1.827809424017371231e+00
6.008472067370227432e-01 6.576294941390324889e-01 2.840072456764028530e+00
3.529786254613809238e-02 7.906953468826860565e-02 2.914537265792652709e-01
5.838745443766220067e-01 4.772899699307178167e-01 1.562650054560695834e+00
1.146386622596683447e-01 9.203557773271238140e-01 2.689497621397455962e+00
7.527449308386525706e-01 6.556932866566937967e-01 1.353679760380875008e+00
5.772945696666064164e-01 9.877894057653435755e-02 7.237928965909140588e-01
8.474621057352611508e-01 4.665830019054897360e-01 1.901384774582225878e+00
4.727060331868276899e-01 3.727054816128867465e-01 1.321924051574254966e+00
5.098999975310586352e-01 9.609943282665764919e-01 3.645184030881743364e+00
6.906392732383714872e-02 6.549105132437355037e-01 3.089488200682487751e+00
7.823921352054278300e-01 9.097819054222342494e-01 2.846727756943917775e+00
9.943033096890919742e-01 8.444706344914977292e-01 3.381869668356601633e+00
5.178662245948807419e-01 4.365645138590940055e-01 1.617148994110577664e+00
9.534817465122435998e-02 1.230465622023014793e-01 5.958602476658144687e-01
9.136055467588631851e-01 9.813729037345580997e-01 2.801133207970882388e+00
8.333185088873177326e-01 3.682929206749316897e-01 1.581381594818430436e+00
4.771459736855861999e-01 5.740580398746287782e-01 1.045186811835778551e+00
3.367532669053258099e-01 9.863295921596789695e-01 3.324781710758984765e+00
1.594746085675310399e-01 1.159932473938930508e-01 1.169134788908752665e+00
1.194465875871124627e-01 7.888348212226486966e-01 1.975195364474281234e+00
9.220174949309249968e-01 1.121314629070164770e-01 3.351474538644472201e-01
2.541061042050157814e-01 9.685797070542766507e-01 2.153441410522853872e+00
8.307572662553505127e-01 2.508448740688680179e-01 5.784611982958615117e-01
1.376235448843345921e-01 3.617318129659841119e-02 6.221258106163279900e-03
1.840436481673137781e-01 6.808323222169596622e-01 1.882607549485687315e+00
6.342511202490156430e-01 6.365513878416173554e-02 4.041269791780713883e-01
6.123378869386941759e-01 8.101128409854028156e-01 2.459317063345435983e+00
1.397822621492095241e-02 6.212810177816235901e-01 2.486015825552446934e+00
2.648893147818288663e-01 7.721405542346180262e-01 2.969950102138114278e+00
4.355738705629145224e-01 5.015560297114354249e-01 1.631130975396188676e+00
6.767645550708526470e-01 6.719988217135804964e-01 2.402001209385296487e+00
8.969482811011396661e-01 6.216162704899576008e-01 2.391939545978828185e+00
2.807005865638156905e-01 8.765866332782691339e-01 2.445553814010947402e+00
8.776631729638195711e-01 4.409557801676966537e-02 3.437035580118271705e-01
1.132318932995939331e-01 3.878734620588315529e-01 1.126828874551153659e+00
6.505608066743523432e-01 5.570322166309906731e-01 1.405162532082802507e+00
6.352826777968835215e-01 9.032073994924333382e-01 2.875864603770365679e+00
6.075075314259952286e-01 9.988317036228566703e-02 2.788370701672525653e-01
5.520087431768604391e-01 9.498021697608852731e-01 2.877145609157186534e+00
3.487420901728126577e-01 3.894438219111665545e-01 1.967127108295036342e+00
9.888404807347624947e-01 9.617904325249965192e-01 2.959924223051830339e+00
4.969393094569252156e-01 7.919237167339300276e-01 3.236077804420792958e+00
4.616402216694177607e-01 7.207236959796187170e-01 2.939117327649773515e+00
3.099152128633931857e-01 8.613633170191453692e-01 3.079330776691408644e+00
7.086847469763453145e-01 8.869181625632798216e-01 2.871147840108290161e+00
5.377941856756937034e-01 6.587775309256123091e-01 2.160967816912532591e+00
7.646364267701427631e-01 2.455421095608366633e-01 8.572966621828197464e-01
8.622835239476616120e-01 3.000231196956705260e-01 1.259991882594763801e+00
3.345859103381273458e-01 6.329893531710280019e-01 2.681060716320600612e+00
9.934007225599694735e-01 4.543513071834827111e-01 1.315428869334155149e+00
5.759080950066908233e-02 2.884858963551498734e-01 -7.850174925890418542e-02
4.269505081601583374e-01 8.051743259836636746e-01 1.978542162816029570e+00
6.524171982482834808e-01 9.279905907169705426e-01 3.060068499975705070e+00
6.734843198314031110e-01 6.334571393198266120e-01 1.336145401266799482e+00
3.575328041680904123e-01 3.986721918236949547e-01 7.723321667448483918e-01
9.403819198182535866e-01 6.083547482391497008e-01 2.086252971355057717e+00
8.261928456459203263e-01 7.570886069856381795e-01 2.281536649939948092e+00
9.971820442967808118e-01 7.992046415584097563e-01 2.704741105823545322e+00
5.172650976969177528e-01 3.724498668637581389e-01 1.673405379121174485e+00
8.705251688169839408e-01 2.588070565460098837e-02 2.202940496938309289e-01
1.833966134012716687e-01 4.876258081198566741e-01 1.679427029342003275e+00
1.513744990398393497e-01 1.073838804974480698e-01 5.451570316432030605e-02
4.189926345521661766e-01 8.098320316679730180e-02 8.531055954522728801e-02
7.543787800059154058e-02 9.848391042115073324e-01 3.320126219861897710e+00
9.443531958206554666e-01 3.626975445534534881e-01 1.522215910344035361e+00
9.301133473836653565e-03 7.468683831400360074e-01 2.334020525485814623e+00
9.642102501462823660e-02 9.376298281258887979e-01 2.880496019421884935e+00
8.756395279972406520e-03 3.716757697309374109e-01 1.208645232007073744e+00
4.687172502852384737e-01 3.820892126647807974e-01 1.854532680014708834e+00
5.913476236001140585e-01 2.189669997631138454e-01 1.012501326332066132e+00
7.387636329667006674e-01 5.920302587231973668e-01 2.412974575569116098e+00
8.630538270295081693e-01 7.792900613671284171e-01 1.878971948852477647e+00
3.338134227415587851e-01 5.674753975143114193e-01 1.695213821857337599e+00
9.584543540591695665e-01 5.927514450250956912e-01 1.370840158264928110e+00
6.241369121140725174e-01 6.771593195494135520e-01 2.488457865425464988e+00
9.371467607092121010e-02 5.101183721846589414e-01 1.744021612594066850e+00
2.493145976044208734e-02 8.668047761071785429e-01 2.752694079365073154e+00
4.464666703723130237e-02 6.965892190700817554e-02 3.990281308246132475e-02
5.023918872272138403e-01 2.040379432923519198e-01 5.516673767989469512e-01
5.877438415473072997e-01 6.615594275407946645e-01 2.239059703919524136e+00
2.542344007676432538e-01 2.107911890480862471e-02 -1.814458337391371134e-01
2.605715458050029687e-01 3.705245057473609549e-01 1.623875658479395634e+00
3.079127212378973688e-02 5.645134485765185284e-01 1.396775220088774416e+00
2.935412713526179829e-01 6.360212413725220282e-01 1.784000484477348714e+00
6.921359345671137531e-01 4.471545089601747236e-02 6.832107745984026259e-01
6.008873041498907774e-01 7.245640966372686176e-01 2.449924662944541254e+00
4.188308403428122606e-01 8.643009544846647074e-01 2.760272756702002894e+00
7.900049678498655137e-01 5.336134216172517819e-01 2.017342915403988357e+00
8.916015312642323609e-01 5.935368189827650021e-02 6.154584039205877044e-01
6.886796487300256286e-01 7.351803922338089325e-01 1.955426791912523221e+00
4.097948721282183016e-01 8.938378872878225412e-01 3.119817310501979524e+00
7.971993055816052332e-01 2.098045641727298571e-01 1.283885910722696089e+00
2.983937173575484936e-01 5.264553012450376990e-01 1.531566251661298006e+00
7.088314414946647046e-01 8.127418738639392570e-01 2.358159220704926007e+00
2.794745935386844238e-02 4.257614762297438071e-01 2.267702959680207631e+00
1.442114455984099264e-01 8.172152263897196622e-01 2.893849234749763077e+00
5.483618677638720795e-01 5.176509315932831257e-04 1.301219352870777612e+00
6.427378960850457235e-01 7.552474603789007812e-01 2.472390033497665840e+00
9.012632286266673010e-01 3.977661209204516046e-01 1.584245481446183046e+00
7.751416839326413788e-01 6.567156244957739197e-01 2.375680585799090139e+00
7.881789859035825963e-02 1.398809975130443917e-02 1.062458766386323861e+00
7.285305002856791168e-01 7.524358560494234238e-01 1.777475646463399617e+00
2.379830689652752129e-01 8.531137154968296832e-01 3.784977853443068696e+00
6.570932175321538837e-01 6.318373986277122656e-01 2.448493198991143593e+00
1.769712777161163153e-01 4.881231080553715129e-01 1.218194871634332488e+00
9.787091902618055839e-01 7.234517063722307739e-01 2.078608673775485638e+00
5.325543940594856807e-01 3.878463636417355254e-01 1.117218762232110807e+00
3.776294030850475547e-01 2.938102869436330922e-01 1.323709562131879736e+00
4.523604325372018176e-01 1.784904810357289540e-01 4.552447289805042763e-01
1.181792173078843877e-02 8.635937518630699694e-01 3.410988741402070090e+00
7.034518033946576265e-01 3.367757382672672550e-01 8.910639855322948222e-01
8.948050446054094387e-01 8.843895733410821469e-01 3.156833444330739091e+00
6.259623697221685656e-01 5.704639272128342320e-02 1.958388498885558493e-01
5.235755207298292691e-01 3.340819322875727693e-01 6.268974481184578229e-01
8.638754732141373793e-02 2.774203914755931644e-01 2.935415055568650899e-01
4.317114149216787489e-01 4.650713813752526127e-01 1.995060795329805625e+00
8.917705774149951026e-01 1.697700091575871095e-01 5.572552195849169721e-01
1.752132038065331576e-01 4.061422078489875798e-01 2.293701656882313422e+00
2.928100157108124435e-01 4.671233284818390175e-01 1.080626851389180132e+00
7.819621667662703945e-01 8.008189799725141667e-01 3.080348037192132793e+00
3.690479178198524668e-02 4.992162633659427140e-01 1.440659064292583391e+00
4.255218965268586784e-01 4.299491437783846681e-01 1.718854994552853732e+00
6.508378905405213244e-01 5.125476346950736950e-01 1.590678829535723260e+00
5.072290338100746698e-01 1.864644592367400433e-01 4.459607970314258818e-01
4.276686579201467442e-01 2.301907304104228169e-01 9.303368310914639228e-01
3.476699595249291841e-01 8.611313302243546186e-01 3.033742925183159134e+00
5.490920356870296892e-01 2.171881655774017261e-01 4.104681509594124700e-01
7.510282078843535380e-01 4.979744383443573952e-01 1.696128527266623331e+00
3.906216874866195177e-01 1.165731551035269487e-01 1.438532496121395221e-01
6.050298171092189925e-01 5.186689934233152943e-01 1.479263961155669271e+00
1.317855929821913907e-01 8.963483353857124580e-01 3.139096945167396679e+00
1.652283583767804043e-01 5.119575423296794936e-01 8.744003971758654847e-01
3.282157425301530651e-01 4.670372656905332764e-01 1.516522852725733284e+00
5.574891210005790132e-01 6.653447637772980094e-02 7.154585981647222370e-01
7.897971783219093211e-02 9.666951250533402096e-01 2.778803608643247713e+00
5.317142691264395982e-01 8.525494190186935217e-01 2.189194935042349410e+00
9.139282861202384645e-01 8.300394780564672725e-01 2.314393252321646166e+00
7.003936096648044618e-02 3.614369733524737116e-01 1.458722832872220376e+00
3.329160644636194322e-01 7.612584046270625127e-01 1.728766841894803008e+00
7.223716278606399088e-01 3.424502960158398723e-01 1.475182310351810244e+00
7.579486958675392128e-01 1.404431732978919101e-01 7.638063148058644725e-01
4.879941143072841214e-01 8.776430610393899379e-01 2.590578637109576032e+00
5.059776587492628153e-01 6.011431791188193152e-01 1.727646528689702032e+00
1.235219504874963681e-01 1.179922675331297466e-01 2.158455983551904600e-02
7.725252796637381847e-01 2.402553529530193632e-01 6.088324063553911536e-01
6.044899109013432970e-01 3.526318875917974216e-01 9.820642697335023596e-01
2.788842141255436502e-01 9.449528134942402069e-01 2.637117406174539269e+00
8.124980818899407708e-01 9.135864179859349843e-01 2.976694424729694699e+00
1.430100926327314559e-01 3.895334755875521360e-01 1.484207112180311761e+00
1.346184020583984786e-02 9.470172860355422495e-01 2.018323715053156331e+00
5.315817357323743275e-01 7.364967952142569274e-01 1.340839329042298633e+00
4.307840966796572246e-02 2.388285466023543080e-02 -1.547847363833975143e-01
1.108508058799980711e-01 6.309926088062709493e-01 1.846453177067780338e+00
1.369271739615056660e-01 9.521833918572530919e-02 -1.367807803943321687e-02
8.709137663984527489e-01 5.830997774574926407e-01 1.470710178479174957e+00
5.120154121503293077e-01 4.166566820874566535e-01 7.946903526350351799e-01
1.315315743704883467e-01 6.371999314248233404e-01 2.694171092891537000e+00
2.153395548126788572e-01 8.908231491211437980e-01 2.548016980999377346e+00
6.774899744365372456e-01 1.475000211999840660e-01 1.016389505906764912e+00
7.205521389499305318e-01 5.167944263926570470e-01 1.439864432386541271e+00
6.298537683329488157e-01 1.103889021762568534e-01 5.788912312050239484e-01
3.003320757630068005e-01 2.839265518953392187e-01 7.902651533713537235e-01
1.358787769867572104e-01 5.338502558571581735e-01 1.242159045055135191e+00
7.211422730895343802e-01 6.832532426805910664e-01 2.427868407009705631e+00
5.077081666456587650e-01 2.692338638244742288e-01 9.469604095963046753e-01
9.076515738388084564e-01 2.492821227198076528e-01 3.774681688921412981e-01
3.057001659291251894e-01 3.716474170584588288e-01 1.981864586654419114e+00
2.393124933107569907e-01 7.217250161625320404e-01 2.590482589440039618e+00
2.651245410444329487e-01 3.496052218356904273e-01 1.227039102958267680e+00
2.431967384773501273e-01 9.985048262565618948e-01 3.235888446285136943e+00
2.698483691693887021e-02 9.743108744110025032e-01 3.342329366195278428e+00
2.279608585095488360e-01 8.859818045797949182e-01 2.942464448708598912e+00
4.483609672705520799e-01 6.670998887972758862e-01 2.076419722111321420e+00
8.904753906462610225e-01 3.111374055960492990e-01 1.456989638885515248e+00
1.514761014203253042e-01 1.678783474502699713e-01 1.167981405462522382e+00
7.520504570944019918e-01 4.375530060069278138e-01 1.481577723376456435e+00
2.397778092861350130e-01 7.997618535980651755e-01 2.342757484666917911e+00
2.531206670418394422e-01 4.615506965402542683e-01 1.636592790074103743e+00
7.435728910834795702e-01 3.736777422149617500e-03 -3.830974855301556015e-01
3.688643214472042686e-01 1.883043946844410454e-01 5.667628887874931465e-01
2.618105734985738398e-01 7.634161407858581772e-01 2.196219235036334094e+00
9.804012704778609644e-01 6.778374519788783470e-01 2.062332573557930537e+00
4.626539226850950870e-01 2.165404571632910669e-01 6.080610405596087453e-01
8.806516367168518711e-01 8.681734757726988772e-01 3.521148834689036278e+00
9.023441618521538254e-01 3.364042065683817695e-01 6.872849186385355802e-01
4.269233628358508614e-01 8.040080415256076751e-01 2.145076436418656751e+00
4.600117779487580272e-01 3.367630808640548201e-01 5.949168512934720487e-01
1.807768509788476585e-03 2.420663221130627818e-01 7.130138029462870231e-01
4.099820340838236099e-01 7.899034529768680368e-01 2.385191132276404335e+00
4.849960694889798862e-02 1.982840001315443468e-01 6.301584230118260077e-01
8.996124640016156526e-01 7.420756892900272073e-01 2.209456858526119838e+00
1.492016935091921015e-01 2.147096921654393364e-01 1.314425927159785124e+00
1.361244278677032904e-01 1.899184959262427697e-01 6.815115507105167225e-01
5.070936213629948508e-01 8.151840969923447311e-01 2.572251842372536235e+00
4.659745595556220588e-01 9.428226134576906947e-01 3.071537444706702757e+00
9.429245506623894491e-01 6.629318320075742177e-01 2.498955264337161974e+00
1.802342851054937745e-01 3.490106428957023832e-01 9.240467110042074328e-01
8.098958385965702167e-01 1.226346777314701875e-02 -3.309643649656411890e-01
5.417547087050482713e-01 6.658204838297733241e-01 1.509700168401965970e+00
9.456770645166309164e-01 3.030826325980775504e-01 1.073362218932768508e+00
4.844072092975458821e-01 7.530251506190279720e-01 2.253037890330522153e+00
1.874829847214434242e-01 1.996541089309411543e-02 -3.827100215589169796e-01
5.894178411794452899e-01 4.522767998056613781e-01 9.605762030309467070e-01
7.873570305224111276e-01 6.561221564940420414e-01 2.147138860156095674e+00
1.426527504041810168e-01 9.867494222735424536e-01 3.020454741531790166e+00
9.391927900435999010e-01 6.852766761662199002e-01 2.251124587022512724e+00
2.368729390231125720e-01 8.279672581331573022e-01 2.296374797803339085e+00
7.486337179086945959e-01 6.735218106509133218e-02 -4.227848779936776991e-02
8.866159120116020587e-01 2.321480186461521988e-02 4.525468707059353557e-01
8.845205620098687271e-01 8.477203631758970515e-01 2.299410628329696671e+00
1.569325367885284761e-01 5.465081367442979898e-01 9.567354628390964955e-01
4.175773650674116100e-01 7.437289433230617197e-01 2.075641144696740881e+00
6.766508167025210296e-01 1.401104088860956054e-01 8.133522740106857718e-02
2.437293122123680433e-01 1.741358823378642562e-01 9.869212503030849737e-02
5.354261087357714555e-02 5.238690518893841519e-01 1.827060912740871679e+00
8.985079867885620297e-01 4.541127439489960338e-01 1.284689462189573028e+00
9.859180124719979510e-02 2.425293585860593959e-01 1.794219286375581479e+00
3.104681315904065375e-01 4.366134028470973760e-01 9.124668454612738788e-01
2.914313030904192026e-02 3.635290659195751228e-01 6.599022168391472931e-01
3.850158813867096130e-01 1.568035139584514903e-01 4.341784148718722536e-01
9.497671415857267263e-02 8.881066740374826685e-01 1.856075846989231337e+00
4.979692524704951717e-01 3.101180946379102910e-01 1.361135155764561899e+00
6.715576315226775561e-01 6.363144202920870685e-01 1.740954301332964027e+00
2.471059521149722160e-01 9.509378395509832105e-01 3.021130562435957678e+00
5.031370421739999044e-01 3.645016208974644067e-01 1.768883080217330317e+00
9.759302242105675207e-01 1.773781471130541076e-01 9.632829436705716564e-01
9.453444859710471437e-01 9.036040116608030637e-01 2.750251783594621191e+00
4.426946929417193699e-01 8.918920263333366405e-01 2.828866422749941378e+00
9.111891321942485744e-01 3.253675627557718331e-01 1.231973602741280427e+00
4.970636523091295222e-01 3.228304762823941410e-02 5.036444899974941158e-01
3.193557603678188750e-01 3.889202362317200068e-01 1.004191383201526344e+00
3.485843550016007875e-01 8.262768964751382450e-01 2.565665132595759346e+00
5.833289580151596043e-01 1.596871640559106575e-01 7.812570651796820753e-01
4.402007532660496825e-01 5.064557025928083656e-01 1.774856594303265922e+00
5.628722233494043437e-01 9.995482018959611636e-03 -2.601902637070271918e-01
2.950397190587025209e-01 1.288467888888046309e-01 7.000016542288067800e-01
4.125472898302278146e-01 5.288952843785157398e-01 1.681793552162739180e+00
8.269697309788622830e-01 2.497309294178413630e-01 9.397450583987179140e-01
5.574931907283097177e-01 3.858638212528101574e-01 1.180284844401800814e+00
2.215280295953003797e-01 6.958626403994585541e-01 1.731253414679733815e+00
7.510261583555487563e-01 1.788188634455023518e-01 1.299925429501493923e+00
2.635068227062731250e-01 5.956180221311812018e-01 1.595594858207789235e+00
5.746838584203813882e-01 6.007903034197219494e-01 2.482844353550380578e+00
5.740375370137625888e-01 3.261523485439853376e-01 7.240137689199145354e-01
8.724587612099971023e-01 8.990685917081793210e-01 1.735138035221868380e+00
5.785830373398077597e-01 6.128477676944743546e-01 1.987830964497920849e+00
3.085802115660345457e-01 5.502498020075829999e-01 1.973949401517510527e+00
5.162006561767278345e-01 3.647541951345616429e-01 7.132521642174485255e-01
8.616414380258615724e-01 3.072826265633465948e-01 1.136706872178240069e+00
3.367459218196163784e-01 7.189389091626905426e-01 2.520265143634899729e+00
9.396466651065726872e-02 6.951274172570279797e-01 1.824043186306287589e+00
1.065124086653937985e-01 5.595047494642528818e-01 1.298440379292570501e+00
1.381754126276079075e-01 2.549005463370730418e-01 1.155870242740047127e+00
1.253495284869140525e-01 9.311165344688681067e-01 3.488381325091368446e+00
9.178938763431406800e-01 5.723086887159402059e-01 2.382892900012446802e+00
7.714372705401217889e-01 5.399780067964872199e-01 1.248773051140989132e+00
5.804936310782647935e-01 1.589546100553630437e-01 9.328016607099975932e-02
4.427299235563127988e-01 7.233402821966863350e-01 2.006316910364275508e+00
9.348250418258826633e-01 9.206452652236770673e-01 2.723270530799336786e+00
3.916080401109484077e-01 6.031447716605714549e-01 2.610184334768270720e+00
9.743011306032670626e-01 5.991816078526247535e-01 1.947173168675800481e+00
9.688051256697772784e-01 2.367515763185765731e-01 1.165564742156855793e+00
7.373234204899167255e-01 7.897627365541004529e-02 -4.823097352893258027e-01
6.319097362953710606e-01 7.778166682524637610e-01 3.200794474196090977e+00
8.796209364071548853e-01 3.472706073402113125e-01 1.250685385265472238e+00
9.980931791489400240e-03 5.344631825592538465e-01 2.151465895779983484e+00
1.037284470534557412e-01 6.808117120647625420e-01 2.051178607733819437e+00
7.160352138637519070e-01 5.160321394322857635e-01 2.134852334773936100e+00
4.220681228603470059e-01 2.297364297620837492e-01 6.227097790945155253e-01

+ 500
- 0
references/logistic_regression_demo/data/artifical_lin_2.txt View File

@@ -0,0 +1,500 @@
8.902553502043442091e-01 7.193530285868554586e-03 4.722861935711917702e+00
5.187697179813973714e-01 6.626770873501095505e-01 2.117691187792796192e+00
6.324427967744761236e-01 4.150316424384996594e-01 2.702997323313629963e+00
5.340072258966490626e-01 7.297102861553304010e-01 2.848763845110981130e+00
7.562907835710708238e-02 3.484983252202819015e-01 5.146583752179294535e-01
6.459029351260444640e-01 1.788244889218169043e-01 2.483893007426155375e+00
1.388942812241027447e-01 7.757611799635943939e-01 8.890859526034898819e-01
5.376807862498653723e-01 6.867758089571460722e-01 2.784178074435446071e+00
7.935116785508896653e-01 4.153415179689987635e-01 4.285964429548942967e+00
1.253406552553094633e-01 6.240312870134454570e-01 7.336055984814593423e-01
2.151430327831104217e-01 8.613651676712985594e-01 7.756012896092056019e-01
5.991670323278381893e-01 2.579790094794917055e-01 2.761184029097501380e+00
6.977054736867238649e-02 7.383416443956168917e-01 7.741753201883817548e-01
9.587867685558741915e-01 2.751722383328303323e-02 4.905116787264796940e+00
2.817130961862280847e-01 3.875394124534615736e-01 1.252643285526846562e+00
7.237968908416224645e-01 3.861207672558994997e-01 3.225284852878170128e+00
2.583450592711957761e-01 3.719396745654124370e-01 1.656527019070396234e+00
8.765418000733125048e-01 2.969654372399725961e-01 4.737000161453560843e+00
2.530576672013497008e-01 2.907461634243216908e-01 8.456199138660842607e-01
8.104234330079270743e-01 2.912753898366352567e-01 3.560448387613745158e+00
3.132662218424453471e-01 8.104371841944167931e-01 2.379701935140821067e+00
5.658656150123088091e-01 3.817405960024843337e-01 2.783999692048556795e+00
9.320637820750818925e-01 2.055182814725818874e-01 4.620336288127786517e+00
6.968573654044996069e-01 2.551101782246331107e-01 3.703069846077785332e+00
5.708332849426074329e-01 1.685198486129718676e-01 2.654030427193004638e+00
3.705122845651063201e-01 9.348592942833078290e-02 1.297476213773902654e+00
7.970337772561465473e-01 9.127383875190620000e-02 4.005564186422864381e+00
4.620883032895647391e-01 7.090573460005439310e-01 1.811161547965992380e+00
1.606139397731517482e-01 6.657830134602090721e-01 1.103191166302748938e+00
1.500945265064396184e-01 3.770079899236062904e-01 1.175213496736928320e+00
1.879123817299752641e-01 3.239600575201229127e-03 1.281344024824248251e+00
9.413500161180935466e-01 5.335380202142231409e-01 5.062085445358230906e+00
5.461756304730255307e-01 8.901292332727767098e-01 3.493524911885176554e+00
8.081365858242761657e-01 8.100848584189198620e-01 4.117091361112418468e+00
3.625810857166555934e-02 4.741567524987179150e-01 3.201028028192264840e-01
1.739556227654529552e-01 7.803527316212930387e-01 6.499576998325453658e-01
9.118433002076955507e-01 6.407675739336321508e-01 5.042263269352003086e+00
9.998784077161502193e-01 7.483976874124339540e-01 5.558845672463395005e+00
1.406330017950156996e-01 8.131089126127777345e-01 8.529366417981125714e-01
7.427175211937184773e-01 1.786391147649002420e-04 4.025158756424569440e+00
8.071400872932689152e-01 3.301877988765022920e-01 4.274905913060541351e+00
6.132877578731208423e-01 1.388406393319641108e-02 3.188711023622514684e+00
5.057427384266398596e-01 8.405641769019488452e-01 2.349412155304785976e+00
2.031797303967974866e-02 4.719344647695818962e-01 3.813620389379724918e-01
4.736517272410867285e-02 1.534027798909988194e-01 3.593867733048692337e-01
4.776335617360186747e-01 4.987151799687639109e-02 1.830409779965475714e+00
1.976771659235542211e-01 8.102491563458151802e-01 1.465082449387908214e+00
8.945277437407285204e-01 5.392442740263292400e-03 3.947977295918374985e+00
8.287561257675116755e-01 9.743429561462796373e-01 4.534874261370233306e+00
1.688380953731634104e-01 4.118891207022779000e-02 1.279418479007899734e+00
1.448747667435124065e-02 8.478624793678177785e-01 1.227845464298549794e-01
7.742161855443102647e-01 4.517992793261232931e-01 3.799220840937802990e+00
6.114291464929603181e-01 7.721238794474678535e-01 2.582738843687039321e+00
5.332141338542684128e-02 1.811323490623216736e-01 -5.532764692228755443e-01
9.408886628973710531e-01 1.556565907796476633e-01 4.862013173368588959e+00
1.867209140598263817e-01 1.414268718940004943e-01 5.030266519738164632e-01
4.213143040736690992e-01 8.981987503649613291e-01 2.185246694783867127e+00
9.078690166323477584e-01 2.985901095637112368e-01 4.347341964190630570e+00
6.110259216367625035e-01 2.740891329508408081e-01 3.112286516279270110e+00
2.864246944057999844e-01 4.440232541035162850e-01 1.501611354202824433e+00
7.976000361064515820e-01 9.521214723407201985e-01 4.676176245403160792e+00
9.395323120171954479e-01 3.682769163024779413e-01 3.837826959829171436e+00
4.915802305852885468e-01 1.325592992176947149e-01 3.045887408887914205e+00
6.912135045495396701e-01 9.095021180520060922e-01 3.901784361171318771e+00
8.365021221710774446e-01 2.330423758527274680e-01 4.692752544016114413e+00
8.994373430431622518e-01 5.579966443853318081e-01 4.651076766571110355e+00
8.840047829869890350e-01 7.946302924232317988e-02 4.495470865914159120e+00
4.870030547843984259e-02 1.130417536936701994e-01 -1.979842822663985258e-01
2.566144231215066185e-01 8.004514469172895330e-01 1.846141508114071073e+00
2.939425243328720461e-01 5.546059304307632276e-01 1.672088188764273786e+00
3.887721728600385118e-01 3.277396764886075786e-01 1.622788204200148465e+00
2.765333636294917685e-01 9.149313567016718052e-01 1.274653239072587319e+00
5.173775106636566701e-01 4.149392656687573844e-01 2.246544924727742032e+00
9.891094556265209725e-01 6.923113664898092878e-01 4.836418038491469673e+00
3.981472653836684028e-01 4.207151626684387802e-01 2.622178491653474275e+00
8.827783903913843933e-02 5.398600383984650808e-01 5.854720332511057501e-01
8.695327093477914771e-01 9.037758084512063084e-01 4.217357887069312916e+00
9.261141014600784427e-01 8.648792135202629794e-01 4.362203110770590975e+00
9.612459417162249053e-01 7.050786237077200092e-02 4.819714013999864655e+00
2.175702969902234551e-01 5.383503237913629391e-01 6.422898183962644225e-01
1.141591865049933485e-01 3.067751231168288628e-01 9.708775886892598850e-01
9.272686854457729000e-01 7.215902803912347396e-01 4.912604569584945402e+00
5.142798403237214266e-02 1.323898218486864176e-01 -2.901656550987544714e-01
3.477567836222974496e-01 7.258162872275639721e-01 1.499258770144148878e+00
3.235652288022236034e-01 8.369419714161933088e-01 1.571424800555489609e+00
7.203814453323311717e-01 4.727506656800010143e-01 3.610536347843415150e+00
7.960667136507829644e-01 3.151108943578667665e-01 3.752957460338226969e+00
2.288503628882998520e-01 4.024954251467381949e-01 1.371885357377812920e+00
4.597628562196365287e-01 8.536134369011283418e-01 2.732575733060945478e+00
6.347368854302326557e-01 6.357899574546558297e-01 3.034337764857596209e+00
4.550391785745410145e-01 4.880784332075441823e-01 2.755172191061923570e+00
1.614857391711226331e-01 4.614475762528154057e-01 1.499379129535866273e+00
6.643461971390929310e-01 7.954073913580996802e-01 3.531564275970451749e+00
1.965089225797753691e-01 7.636878482296945991e-01 1.451592487989275648e+00
1.038971224149078942e-01 3.766159557047549233e-01 -1.836209249054253645e-01
8.677666738428043702e-01 7.301133471076725057e-01 5.089526743702606382e+00
2.111611745437268484e-01 6.009916007985899311e-01 1.282591111998210964e+00
8.165867355173265230e-01 8.691451449107020499e-01 4.150710836202859966e+00
3.541549885223922445e-01 4.126823205016850737e-01 1.746130910505607536e+00
2.682537411455077070e-01 5.898466928168949464e-01 1.688764412028580075e+00
8.679848596269212901e-01 5.608438559562867187e-01 3.835160975999336141e+00
5.776833370668147394e-01 2.731663343536713251e-01 2.505993440852065657e+00
8.138648125452317972e-01 3.718807175174709823e-02 4.028457616581778034e+00
2.282377830458008905e-01 8.730998562571533617e-01 1.516197472423553627e+00
3.461019532650697617e-01 5.821410153889622352e-01 1.004111206774395804e+00
3.783886586420059928e-01 8.135627697992697804e-01 2.115310715120200857e+00
8.534863514661925610e-01 4.892294575400191192e-03 4.447818431098251146e+00
6.481313117292060166e-01 3.244210515162255781e-01 3.658318972809582625e+00
4.068552360857179417e-01 1.308692143986797118e-01 1.909640133336931278e+00
3.470492019114007620e-01 3.248366399862634424e-02 1.229853411392451301e+00
1.803367765699718239e-01 1.822694920673567642e-01 8.396573726461289411e-01
5.827091441604549393e-01 9.670590760160453492e-01 2.859802087839336426e+00
8.866423412642148172e-01 5.889083209276405606e-01 4.575011256779902169e+00
4.625427554234465832e-01 2.062725334982733472e-01 2.831277898318763420e+00
7.681228254469802952e-01 3.103104106796082950e-01 4.387633281419768494e+00
2.526355891537099829e-01 7.617333331965988608e-01 1.114869422139043609e+00
7.603477278415293750e-01 4.241384240546804962e-01 3.749759653376115054e+00
6.203407641210935131e-01 7.137261472194282863e-01 3.845803566538283924e+00
5.460065626420126383e-01 6.961595933740327702e-02 2.607109568577683056e+00
2.002964571171567121e-01 9.836069085534716594e-01 9.439292093204048051e-01
4.111579845363828589e-01 4.942143050291614159e-04 2.014214453147192607e+00
5.645844948925443640e-01 3.598987404824569580e-01 3.443453989379621216e+00
9.792195162518624318e-01 7.976062421249713319e-01 4.888998610361928066e+00
3.919576698632000200e-01 8.298716087831260468e-01 2.368435603719456051e+00
8.273517898490360123e-01 8.978670536590080964e-01 4.394100575666468167e+00
7.946735660263274381e-01 6.215152458852629680e-01 3.747096732015856801e+00
5.961957851041439493e-01 2.461206941442136698e-01 3.374475969432942257e+00
2.859418838668200680e-01 4.253262462006508482e-01 1.236450630546637841e+00
9.284125059869496877e-02 1.023211363768292692e-01 8.078131097547296413e-01
9.942014694080807402e-01 4.401475622539808841e-01 4.478781628662761527e+00
9.660790698231932483e-01 2.157934563130896599e-01 5.139668619561629015e+00
1.819280091787371934e-01 2.450541968023522976e-02 3.235996722822381821e-01
6.228574615567123995e-01 3.175805215380118618e-01 3.061935718089351166e+00
4.106235935497739575e-01 9.932038108499299245e-01 1.527363224316587553e+00
8.241855016207615403e-01 6.723237130512089710e-01 4.292850669843126354e+00
4.942330091732183295e-02 9.734433703964097129e-01 8.522371467976199710e-01
7.928026671381125379e-01 5.377329766501475206e-01 4.269632283568844500e+00
4.019913504018723938e-01 6.641977194508473792e-01 2.015170053280050499e+00
6.727365172965377171e-01 9.472694398556646966e-01 3.377089737324597163e+00
8.471272616565498348e-01 5.881538977075595476e-01 4.392336826747588852e+00
9.953130974848735102e-01 5.148218292773272253e-01 5.277731189116402710e+00
6.172057967770711029e-01 5.483888340607580014e-01 3.115421823647429367e+00
7.667299866969052857e-01 9.708997836540530502e-01 4.815854014705881703e+00
8.781626806683332509e-01 6.634197225683624577e-02 5.365951496188033687e+00
4.294200428945138537e-02 6.696048344399376795e-01 -2.275716814686346567e-01
5.440453006410250758e-01 6.064316601914145899e-01 3.356510781321417003e+00
1.399761884378478705e-01 3.518806601919229893e-01 3.577695275566450395e-01
8.617267230190176486e-01 5.817745672790290978e-01 4.380852978567977729e+00
8.264449990414002301e-02 8.814671293110630801e-01 8.430203107240037408e-01
3.554315087585453448e-01 1.052810186720425367e-01 1.697177576687770806e+00
3.434478849249136267e-01 4.693421423115070601e-01 1.634727581041684141e+00
4.811747232410813480e-01 2.085887053917928613e-01 2.177694796147195966e+00
7.302922441145309751e-02 5.158455228807825588e-01 -5.309006260347731709e-02
3.658734359575759321e-01 9.328332684465587832e-01 2.523958506341843044e+00
3.657999960478349744e-01 4.081630405036833498e-01 2.111385140904039837e+00
6.443174387789217805e-01 5.491135794316760466e-01 3.366581180589497180e+00
9.523794802263382264e-01 1.383789433423351367e-01 4.929200293322493209e+00
4.546913387947764118e-01 9.715774690687235537e-01 1.675694272311694988e+00
9.968356156113117317e-01 4.849172172090066013e-02 5.499251190168591208e+00
1.080802422921062211e-01 8.101819144197683897e-01 5.936288997891117081e-01
9.968880256402596896e-01 6.114623789164482792e-01 5.284518758584743736e+00
5.632787639975594951e-01 9.298242639666138842e-01 3.107059073342421485e+00
9.929753879792999616e-01 8.277738257041842296e-01 5.322221163042863523e+00
2.017873440820810993e-01 3.930041059519143731e-01 1.662831985484818809e+00
9.988387775047696815e-01 6.406545347041754379e-01 5.024155855036609886e+00
7.928318114305882292e-01 9.562120145401467042e-01 3.880440662985864986e+00
8.491150745182682869e-01 3.159146326781765435e-01 4.153138632374417050e+00
2.538959571592438458e-01 9.152979260463364186e-01 1.425816156136774593e+00
1.593521171925258439e-01 7.912454811296263379e-01 6.645027624838938385e-01
4.687429644847865839e-01 6.169269754948423223e-01 2.318841373712335674e+00
5.917214079785239056e-01 4.910927510555839204e-01 2.613624254253550827e+00
5.159279263802796223e-01 5.365655117605450108e-02 2.356555547714634269e+00
6.591863970099155479e-01 6.717663880576866253e-01 3.565002125565192248e+00
2.353643520705253067e-01 6.117795523900337873e-02 1.053403399203287849e+00
9.050467773061064980e-01 5.916260158603710018e-01 5.032003229394669930e+00
5.130829149189519711e-01 7.054695271858724137e-01 3.023972070674382895e+00
5.946913876118109510e-01 6.759359176617056875e-01 3.668847014476045221e+00
6.245089498291649388e-01 5.991354645614580532e-01 3.174217498078534483e+00
9.175513731195615863e-01 2.008496049192866062e-01 4.481042734737560096e+00
2.627023761581419592e-01 6.756838359786891957e-01 1.962880687582638339e+00
4.080917878138698995e-01 3.550958257571504850e-01 1.773222645699008559e+00
6.761975173333450995e-01 7.035843745311997077e-01 3.646215505941157176e+00
1.213245902031894197e-01 8.304395741316301649e-01 1.428499551425091774e+00
4.429739754493243753e-01 6.792941621952564013e-01 1.740577045825967062e+00
8.086469038977305290e-01 2.632471450436880689e-01 3.600809383061207125e+00
6.793637147200348725e-01 8.130003247485133588e-01 3.578466665421228932e+00
3.278330562730565889e-01 3.053195962968354715e-01 2.017123323688825742e+00
5.601724056241701444e-01 9.502574964657128920e-01 3.787256636353711237e+00
2.812221250012958418e-01 6.256619352802152978e-01 1.354117263602656385e+00
4.591503551836220165e-01 6.994040558540611796e-01 2.611546123315748424e+00
1.741841616904893364e-02 1.994594239735637542e-01 2.180155993493790301e-03
7.947968108101745033e-01 5.809813800307277454e-01 4.108806760165046867e+00
6.951791123019658292e-01 7.531792040448515024e-03 3.524650861968446680e+00
8.555011297950287918e-01 6.592057432749437451e-01 4.132370780325799409e+00
8.561582747701000917e-01 3.718286774329542244e-01 4.512464374466206962e+00
2.654009300233250990e-01 5.850267012824045265e-01 1.276558037832541403e+00
2.768625995117022232e-01 3.081426789498873386e-01 1.187842454855385643e+00
3.941124620889586705e-01 7.509965570437445725e-01 2.507479506634473054e+00
6.713386114230961432e-01 7.578530303471531226e-02 3.568353984972153725e+00
7.560506967163682646e-01 1.024499151114731665e-01 3.723865621757185274e+00
1.806270859597414180e-02 7.109895257280992587e-01 -3.821610113221962646e-03
5.304541601357893876e-01 5.440232983860595617e-01 2.372159670668812836e+00
4.083183069007400023e-01 8.747853423214335677e-02 1.282918692687436302e+00
1.106452590284701110e-01 1.071864798143432607e-01 3.860397439482302628e-01
1.177711726368863010e-01 9.525478610767630361e-01 7.523116950455114305e-01
7.032665632909994580e-01 2.710214934413025523e-01 3.381370525555345452e+00
1.010749651379918568e-01 3.332479537340378162e-01 9.455254057624443709e-01
1.063975870085455133e-01 6.182755188765054477e-02 4.008501639690126295e-01
1.496747909510319774e-01 1.796009792503032720e-01 9.225866852352979652e-01
7.127826032464666950e-01 2.014182235583916736e-03 3.551616246980145775e+00
1.120445926250559499e-01 7.697964015004733485e-01 4.989883878130709216e-01
3.480537144688354845e-01 6.064120155352608066e-01 1.700370020689161432e+00
5.903050320993662448e-01 5.874799979352398616e-01 3.397164990386770889e+00
2.999418794752777284e-01 4.745115611223454932e-01 9.544355780523869903e-01
8.161672816912131090e-01 2.376170388099575481e-01 4.245337357280297930e+00
7.841150676575880940e-01 4.246443328555549179e-02 3.544431586715989013e+00
1.888468662989832847e-01 1.588353013347186815e-01 1.355757381154146790e+00
7.833663614903485506e-02 4.261665732398400852e-02 6.109301450525963517e-01
9.026481770631714641e-01 3.076573390407671971e-01 4.432786615971243016e+00
2.670964823025856472e-02 4.677940032664674730e-01 -3.801484706112182033e-02
9.314633957246650775e-01 6.983712531909573862e-01 4.951670684342587947e+00
5.325406900292606327e-02 3.723933969945265599e-01 4.343157639521054714e-01
7.344499009926139799e-01 6.992355376368768471e-01 3.846558295644644687e+00
2.695096457961408953e-01 5.117833729099821038e-01 8.956853997660404465e-01
1.107737426657140478e-02 7.820856802133314689e-01 3.419652185585412285e-01
1.266328546384232201e-02 9.737762952534544381e-01 3.208850087732688650e-01
9.742103929520157246e-01 2.465152312553294811e-01 4.908928922838748932e+00
9.431512191776294518e-01 5.445640124298737339e-01 4.371405740503699455e+00
4.685842404870689260e-01 1.940286296095491414e-01 2.960018317863545967e+00
4.069078704231012811e-01 4.086612490605914250e-01 1.997713291886546783e+00
8.203293619248421820e-01 4.842311857959981092e-01 4.288152129869915896e+00
1.655870282244578107e-01 9.263402953726815880e-01 -1.371848231998213929e-01
8.051375479173161764e-01 5.648739416463132157e-01 3.871323705867104614e+00
4.958101601140715298e-01 4.550976109219856403e-01 2.342683755862304817e+00
3.022921738409011239e-01 5.850906911661442056e-01 1.733913846286263771e+00
8.261508186840310630e-01 5.673235742902436041e-01 4.102463670415864350e+00
5.050822352032021678e-01 1.688141234528890422e-01 1.991936616609028654e+00
2.515172464477288816e-01 1.681478490960512939e-01 1.121911802395029190e+00
5.263810435223783557e-01 8.514030391672555709e-02 2.511142190287897868e+00
7.740604474300135651e-01 1.710906378902935510e-01 4.069337549008531063e+00
8.136210720851223543e-01 4.886343242359501016e-01 4.212500435358648154e+00
4.661160735365488250e-01 7.058440886560580774e-01 3.037085615343088296e+00
4.242240344439670574e-01 4.237200424056742909e-01 3.328482059929308789e+00
9.716365604834359404e-01 1.390851225906999389e-01 5.150097438849347675e+00
1.118418607702701406e-01 8.254801758072631834e-01 7.667690156887928543e-01
9.040859471999541652e-01 4.915470453646719751e-01 4.760751852537422835e+00
2.424823162795021192e-01 5.742061383399259533e-01 1.319183405974152956e+00
3.543391246477066714e-01 6.755905890131740366e-01 1.704998683481461441e+00
2.135852723294864308e-01 8.904816047166850268e-01 1.442281712505609992e+00
1.903698799876129000e-01 4.516535191118928871e-01 9.761455706688600964e-01
3.530153476827597725e-01 5.250488936431743081e-01 1.430971316469179744e+00
4.277753743395051877e-01 4.628648328438786930e-01 1.878709286548413626e+00
5.369675195416835356e-01 2.580986218837634238e-01 2.600615011120702480e+00
2.546915474505969668e-01 7.775789294357958736e-01 9.063075077892018827e-01
8.729387250977393986e-01 8.663100694350281961e-01 4.798971238209840173e+00
9.117683396985862831e-01 3.159908020608167556e-01 3.706562475407189527e+00
7.745796600423543454e-01 4.953520921860106174e-01 3.876554941068059978e+00
4.177153720805908410e-01 7.170787294717717586e-02 2.269550443272649431e+00
9.397554111882033823e-01 2.314113511233855114e-01 4.868031352435417958e+00
6.978906283403238930e-01 6.027190710947856189e-01 3.272065933823683714e+00
9.867946174870922960e-01 7.554518113060578743e-01 5.158494636624732621e+00
3.959843884024971672e-02 3.616724225907808066e-01 6.469027443911796738e-01
9.578756271735796579e-01 3.539823400375810003e-01 5.485371760677108632e+00
6.152670093561325437e-01 5.115356310380463345e-01 2.754818503780777306e+00
9.810151687727044489e-01 8.692210052251059249e-02 4.284886585260795577e+00
2.830662491111537449e-01 7.957951723069504046e-01 1.680928689766612472e+00
6.034150706678950149e-01 4.126116473219870739e-01 3.784414542578703244e+00
5.779951770432674163e-01 6.716316996626865432e-01 3.334913580380273856e+00
6.201337006852551959e-01 4.488529673797322372e-01 3.347552394360280736e+00
3.476405497810753920e-01 5.062354840316863891e-01 1.983774287074308029e+00
7.921736986669751790e-01 2.884214658967099165e-02 4.243078657594337777e+00
1.943616200067197486e-01 4.807304187292147368e-01 1.571193852163393245e+00
8.452039072298875855e-01 9.667501309157785494e-01 5.063179028495235379e+00
9.935088542838369507e-01 8.305038283104202446e-01 5.408675447077476939e+00
7.490785446071297482e-01 9.481095336535100282e-01 4.147884154780753008e+00
9.325198926247071363e-01 4.952448235763340367e-02 4.747077465701705634e+00
6.681437517817250260e-01 9.327321958943725067e-01 3.118946774472070693e+00
9.738751147927149354e-02 2.117023718252546427e-01 -2.727828504450833247e-01
3.401885988134277783e-01 7.137427129138051995e-01 1.141184534163143027e+00
9.112289752867522852e-01 9.614208039275407014e-01 5.660917284666649785e+00
1.703223790937545834e-01 3.280258260817743299e-01 7.837825596359903058e-01
3.908042827512103745e-02 9.518434040550575181e-01 3.677968104146689399e-02
3.039489810078243037e-01 5.120114777313169441e-01 9.805833554165650501e-01
6.380574901082720629e-01 4.867615974021388681e-01 3.109859668341811378e+00
6.342403097055698824e-01 7.546286985064016850e-01 3.397502497295331381e+00
5.638698020701464753e-01 8.923442495380846662e-01 2.369266542220243910e+00
3.575636917065314613e-01 1.547211110349390184e-01 1.292296987015075782e+00
6.303122673573039458e-01 3.083555354371561030e-01 2.616369001864625954e+00
5.210461831411086209e-01 6.749954577903509723e-01 1.975368681996582998e+00
5.942703722928894816e-01 4.871116855642279031e-01 3.718527256418860283e+00
3.533922613993187856e-01 8.017186938272113927e-01 2.050415758601479066e+00
7.949563516492000881e-01 7.569940514803505938e-01 4.381287648780601174e+00
8.501907066323004525e-01 7.393984740440502357e-01 4.919093916773214836e+00
9.200298009768502761e-01 9.938852717343175103e-01 4.259044777638105295e+00
8.644560207454676792e-01 9.975330340514554361e-01 4.682193981225292845e+00
1.088519527208741122e-01 1.963812665577030492e-01 1.070733100207510891e+00
4.556158466394802931e-01 4.899313216767148260e-01 2.769691407307627529e+00
2.974315517605302661e-01 8.173500794692589722e-01 1.735941272044910555e+00
2.396113243268572779e-01 3.906404844484276939e-01 1.406972990200790807e+00
8.100658765102481951e-01 2.648888092432173380e-01 4.658400777557799799e+00
4.277788414474006373e-01 4.022644362132115070e-01 2.772478440852416792e+00
5.822175634400963418e-01 8.206669741395847817e-01 3.404000987263741784e+00
7.125901857884929802e-01 5.928688878268014717e-01 2.746991602948760658e+00
2.979836332894291173e-01 3.986253846989663563e-01 1.703858007849015976e+00
7.997698902784957653e-01 4.059258984225663225e-01 3.534310292757433025e+00
4.522283778821561961e-01 8.710208434442369141e-01 3.019092050051808584e+00
7.581376719297696631e-01 8.220998888792908632e-01 4.418695479960300432e+00
1.972428942832202825e-01 1.154221742223087155e-01 8.425430296432390165e-01
6.223627999722493032e-01 7.314930526686147516e-02 2.314344759304361787e+00
5.808300754248821862e-01 6.781466720147005800e-01 2.602975187488947739e+00
9.576552439612673329e-02 9.928949432726992264e-01 5.030806356841338589e-01
4.100191968015015620e-01 1.766477706761815369e-02 2.199085868051550374e+00
2.892753633894417087e-01 5.249937301651120825e-01 1.510928050123241828e+00
5.480326803984194584e-01 6.765224924869054357e-01 2.256073738015950347e+00
4.653862840236095977e-01 1.475417366536124764e-01 1.938120603143478560e+00
1.481108453258558333e-01 4.675039260192945800e-01 1.311026471697977147e+00
1.299439650181278827e-01 1.994133519847534064e-01 5.454775900606607664e-01
1.106819435806695173e-01 7.764336624926136965e-01 9.666599147513424972e-01
5.566539743940633889e-01 8.994534645058296363e-01 2.927366595661727633e+00
9.067406463349181323e-02 8.621879052072318750e-01 8.315219299702474309e-01
6.938256790006662733e-01 6.065923110957928133e-01 3.284626404618808948e+00
8.614276617758029886e-01 2.475854633144438655e-01 4.680055810944661943e+00
2.167196015288621602e-01 7.132989102141332749e-01 1.149718497607195244e+00
8.413586552623651960e-01 5.516499469071780570e-01 3.311758835415347768e+00
3.907179200432292498e-01 4.357109683062667660e-01 2.274073788004209895e+00
1.589735395931844986e-01 8.208887640617014148e-01 1.015565884492410476e+00
9.613965492088401010e-01 4.809474690694466315e-01 5.157947985083261244e+00
8.297755466368100796e-01 1.644098554161677050e-01 3.586618888242581349e+00
8.388098815227268412e-01 4.476810509068985811e-01 5.040051653054658409e+00
2.279856297891573735e-01 2.433050868928676724e-01 1.550905751489106921e+00
7.893810651517562116e-01 3.221654836020699797e-01 3.997764308421166035e+00
6.561675210916022571e-01 4.351741126163224394e-01 3.039802858379251571e+00
5.740090150255279244e-01 5.948497497584274152e-01 2.908245846269567725e+00
7.328360080277063204e-01 2.134127006746993072e-01 4.568117657375682761e+00
4.946637824629790403e-01 9.510041338062535932e-02 1.822473122426795378e+00
8.627953936010578362e-01 7.932255036082680455e-02 4.492409540273036406e+00
2.082514147474257005e-01 4.924490887581506326e-01 1.043094182591048469e+00
6.138460921037049989e-01 4.272596946961463305e-01 2.219129657444722348e+00
9.252039330093201341e-01 3.945180092044131559e-01 4.436142674559070187e+00
1.821449462205293468e-01 3.871847528554943629e-01 1.422428385194712819e+00
4.041894486358277305e-02 4.730473946927595819e-01 -3.012226300897136166e-02
3.636686652037771639e-01 5.873537929400659552e-01 1.851504192678116612e+00
6.978650572978981614e-01 3.882536807361431919e-01 3.060444352409822155e+00
1.078527797771136054e-01 6.957852579382399760e-01 -6.518479046929900322e-01
9.325503438800145650e-01 2.143804208718624871e-02 4.610707268249928603e+00
6.663415478668331948e-01 9.281821628240296551e-01 3.002954918326525835e+00
4.813244567031937926e-02 7.079686934907392093e-02 6.160699011960787397e-01
2.257010966384187522e-02 7.687909081325765559e-01 4.691271534502503560e-01
6.061116229161606084e-01 4.191344814402613306e-01 3.747818547247798282e+00
4.655677615800267732e-01 5.827148457971130791e-01 2.376212361555217978e+00
2.825891342108899362e-02 3.532841522503780141e-01 6.620932360305411546e-01
6.009826152607300465e-02 7.905021321943074275e-01 3.638498600086091939e-01
8.827068713844454795e-02 4.438307876100586746e-01 5.808743778595876206e-01
7.991261876646593709e-01 7.854151510467033415e-02 4.204719952423675799e+00
1.189838444905066961e-01 7.416370166532364472e-01 8.322146103945595730e-01
6.225837692759601527e-01 6.310620232117586381e-01 3.453154489543852623e+00
7.311956651166588994e-01 3.168642488438819793e-01 4.352727674411122294e+00
5.756564763243883220e-01 2.828406554721885069e-01 3.947408034545492939e+00
9.382055486044094117e-01 7.168147601660477264e-01 4.948352770080884255e+00
9.546660828884934169e-02 1.437744534916255423e-01 4.844118257903424207e-01
1.151229123196606530e-02 5.435892212943771451e-02 -7.713427384278788157e-01
4.289306534746354371e-01 7.585115118695228142e-01 1.672943511274438855e+00
2.720841418364485786e-01 1.683401564116593363e-01 9.880622913101808624e-01
9.553521920108963839e-01 5.848667324267601275e-01 4.808516969944884423e+00
9.560671618377164505e-01 5.181438446082220484e-01 4.933951664828871486e+00
5.196770028592577750e-01 7.306585795529608740e-01 3.451093432477776446e+00
5.349779123318809670e-02 2.328861462583488029e-01 7.704348747284186505e-01
3.859630940832011747e-01 9.789769759429359786e-01 2.074017873792239453e+00
7.490205155897455835e-01 3.267712126974233744e-01 3.651412368265581243e+00
1.668441368245933143e-01 9.133330140609380310e-01 1.243613443703563526e+00
2.205754665833413730e-01 7.832697007249476151e-01 8.595611522198556287e-01
9.404829422756235680e-01 9.929289525804722016e-01 5.870103925445858906e+00
1.885613455195433996e-01 9.627881098859110143e-01 3.800423621122401840e-01
2.979547345918899248e-01 4.730276887758750881e-01 1.935528123129407918e+00
8.519970016958130499e-01 5.943420665775437373e-01 4.310612038812805302e+00
7.865511680844923248e-01 9.416708270931484215e-02 3.582760101894609139e+00
3.547299087599004030e-01 8.445259368683057932e-01 2.127252690320021067e+00
8.516151544949630559e-01 8.147740388614883589e-01 4.810189857293523552e+00
9.837521205417909531e-01 9.499682533043930510e-01 4.754976751498949383e+00
3.737339448736265446e-02 5.689895437011959212e-01 -1.117927867466818603e-01
1.248452393691709128e-01 3.108682762971861635e-01 3.059567719721493773e-01
8.485331105413984609e-02 8.067137657807001982e-01 7.644506990207884378e-01
8.493746129016015445e-01 9.598202598405187747e-01 4.648012803649603342e+00
1.661884326471347872e-01 9.545306174615980632e-01 1.210655276442758055e+00
2.115569588053255456e-01 7.917981136715546153e-01 4.492708813379883148e-01
7.973993318061458613e-01 9.554658728242193533e-02 4.119536471100667008e+00
4.199405150546330345e-01 3.148719730595287425e-01 1.236848839470887640e+00
6.762135448160583318e-01 5.604047250520123313e-01 2.910528104527299931e+00
1.793503471079430645e-01 6.921908683206966506e-01 1.611537779389007552e+00
3.393629583105367553e-01 7.712311693730592443e-01 1.848155157842310992e+00
8.362277165385599842e-01 8.309138865141540986e-01 4.206771899349675436e+00
7.851254371836934309e-01 3.006834116028120896e-01 3.505872113422314307e+00
4.007973546322256553e-01 8.691050993207729558e-01 2.328489728285702220e+00
8.735930802668734341e-01 6.962474167713060824e-01 3.580318220057124634e+00
5.871151497198540126e-01 1.153138340802493111e-01 2.539780065278996801e+00
6.462095801076146451e-01 1.281924764607952349e-01 4.137574844925852702e+00
9.236416657093560190e-01 7.178359759200697576e-01 4.226289114208362285e+00
9.194376552125794744e-01 3.121869331310231921e-01 5.213485048810325928e+00
4.384694901432926173e-01 8.387390970367403220e-02 2.743511503146341290e+00
7.152802840844866283e-01 2.143176360763772159e-01 3.858880502287514336e+00
7.475678434845520748e-01 2.674533934032751192e-01 3.273610117647138384e+00
3.411257136223635467e-01 6.670886650940466289e-02 1.864105062920903277e+00
2.132768386275984973e-02 9.256663982227738563e-01 -1.163649561141600342e-01
5.897306418192969080e-01 7.003134124765836299e-01 3.359490726121215687e+00
4.802798226410556204e-01 6.483683637597190685e-01 1.993783201669373506e+00
8.176621480896004712e-01 1.043603729430799820e-01 4.091295839545188606e+00
7.855212575202087377e-01 7.157119340511944872e-01 4.507042197180223475e+00
5.684528941022698456e-01 2.856354236553743098e-01 2.437751537534779800e+00
9.930883471075108160e-01 7.712736516485831917e-01 4.929021629209715982e+00
6.530624944143862409e-01 8.343149271709339176e-01 2.913924188638919777e+00
5.819676274191801779e-01 2.540258043319393311e-01 2.757011911636317869e+00
4.486322285661017428e-01 3.548077819389158227e-01 2.008724623551346511e+00
5.337060915547677808e-01 2.134512399881538514e-01 2.045276372596628978e+00
5.266467762777323758e-01 9.431487670339336882e-01 2.872547719207049433e+00
8.101758718861310493e-01 9.025539622773742776e-01 4.449909344161872227e+00
7.699639056639613344e-01 9.683912061347941247e-01 4.472990741094066358e+00
9.233466972407796680e-01 5.286249270385992016e-01 3.977771758806475155e+00
8.623248714303998197e-01 1.334532827503559504e-01 4.578051879720754336e+00
2.045649072490571818e-01 8.511360791325676134e-01 1.622138715515219820e+00
8.808425032518121256e-01 3.278457833231640528e-02 4.767460771953611953e+00
1.747261335267188409e-01 5.208159514249149913e-01 9.107489734808142945e-01
9.038321562587570135e-02 5.097515707018624997e-01 8.679635110003780518e-01
2.667337674975465145e-01 3.395183568046972189e-01 3.954282994748328228e-01
8.942288885142990473e-01 1.218536601033595179e-01 4.516544786048811488e+00
2.495138014351878653e-01 3.362240006002403803e-02 7.274186371739601586e-01
6.632655291795690466e-01 1.051626646997456671e-01 3.366351748724312198e+00
4.636131384771519093e-01 7.391689207887839341e-01 9.190924064812198147e-01
9.849727748399310645e-01 4.105825659188074850e-01 5.081535606333690502e+00
8.200513987740756239e-01 7.870989941024173486e-01 5.105767638351050408e+00
8.345258582652974599e-01 6.504287753442997699e-01 4.469356354417690191e+00
5.530559412316298218e-01 3.014739582304205578e-01 2.221987665263402967e+00
5.728205136550856835e-01 6.961249314381353637e-01 3.332064394953069275e+00
7.728992910594711940e-02 7.465071614300229363e-01 5.072220713377015855e-01
3.553351520590779522e-01 5.618566588746031210e-01 1.805773594922777336e+00
7.780093699322522260e-01 6.370279516433825506e-01 3.796003212735603594e+00
4.200421460868658530e-01 8.648496031052255173e-02 2.073022179648955188e+00
7.015632316649023092e-01 6.484387924575446549e-01 3.559606914505504260e+00
2.405632780665224457e-01 3.195669345676046547e-01 7.324100489677702885e-01
3.311074230748540792e-01 8.685757534288673920e-02 1.123436154899798867e+00
3.998601941346905386e-01 5.552870830766860610e-01 1.915775874339034512e+00
3.912244127302044738e-01 9.760058205599845271e-01 1.832042737206649452e+00
7.545640111214302337e-01 6.239422861366119566e-01 3.933844589523757929e+00
1.731020325733930720e-01 8.307779734406610661e-01 1.584837322370275192e+00
9.140779443033931750e-01 1.761632572799414209e-01 4.635617983734372949e+00
6.406597700159744058e-01 4.449920268218388042e-02 3.619782604199833553e+00
1.801895938347751747e-01 2.885096528520691983e-02 9.253929900355385429e-01
3.038534282472222792e-01 8.109008691606200969e-02 1.931362524069328845e+00
2.364111047450501157e-01 9.621771163112075032e-01 1.175931679959700382e+00
1.888579567058331632e-01 2.989827457994593818e-01 1.331691847396279549e+00
4.017801235588650544e-01 5.746849052510728528e-01 2.284038251179917545e+00
7.691213425655432090e-01 3.395055574798373499e-01 3.100343064061910958e+00
6.550934968984141182e-01 3.720036956270784678e-01 3.491089545507741754e+00
4.023686635365519848e-02 9.581326531584744011e-01 3.637448978915412967e-01
6.285091574769069434e-01 9.827706180286350790e-01 3.274648861414132028e+00
7.868202014082179563e-01 5.408929245820974785e-01 4.063026715844942238e+00
3.910870713585677949e-01 4.115275676678212813e-01 1.977382791230766657e+00
4.810888481033770425e-01 2.335910309083686354e-01 2.112886227322197108e+00
9.483244100044019298e-02 3.605432105348165273e-01 2.671379064678270909e-01
3.615132104900360410e-01 8.959298980423738845e-01 1.439109578489957020e+00
3.496088798675596188e-01 1.159868538215188538e-01 1.100416491082838011e+00
1.752584989807870475e-01 8.500433679768688577e-01 9.456504046667791874e-01
5.696541721886292375e-01 2.719451527203955443e-01 3.207022932205441546e+00
1.257906969503060912e-01 5.102860482935389630e-01 4.391573016080443370e-01
9.659180041815862428e-02 6.949380529845092802e-01 7.072119294438530268e-01
2.054150544247815846e-01 5.882009510622373538e-01 5.779033712916188392e-01
2.210044142168009484e-01 4.618615594701123150e-01 9.140878975298083464e-01
4.154650354296188786e-01 4.045679816906707638e-01 2.198907643480010332e+00
7.371618606847257782e-01 3.338129400401774749e-01 3.245693217291083954e+00
3.937950341162077539e-01 2.663433002832898966e-01 1.386067558419330936e+00
3.114390166515048630e-01 6.835068649679199027e-01 1.388705802372090403e+00
2.969984169267261276e-01 2.167207871474979841e-01 1.225921547211908269e+00
8.665887431269525543e-01 2.719244077785530900e-01 4.962370196944209333e+00
5.920168417723699061e-01 5.686248008396056486e-01 3.691946248409955444e+00
7.039049387710701877e-01 9.766367763810511748e-01 4.356350940590338006e+00
3.805298246038364418e-01 8.410053556422516507e-01 1.971952595700146027e+00
2.261698816689344804e-01 5.125989413008203988e-01 4.317032515586423091e-01
8.080180552046107856e-01 1.312926632015042339e-01 3.368419745332182469e+00
7.284160939898801645e-01 5.059757554471627783e-01 4.317314105858608642e+00
4.129099719860259698e-01 1.671213862046826426e-01 2.035668918620091805e+00
6.233205366576620721e-01 6.614357814101893274e-01 3.208310246239634456e+00
8.109529878867841601e-01 3.114791270951091651e-01 4.178127503612525828e+00
5.568666377962800951e-01 7.908161752846655235e-01 3.274160032551334254e+00
6.584994598486142436e-01 7.441165751555391950e-01 3.849476891377942245e+00
8.838710503302456001e-01 1.582292539619044591e-01 4.073499503581468062e+00
7.647528413413395842e-02 9.997612698905589124e-01 2.572544553349556118e-01
8.560337057837326125e-01 1.906169904574519514e-01 3.681701253116876682e+00
4.132389782657139854e-01 6.875371741120974711e-01 2.352924830879973062e+00
5.916647208438258199e-01 6.878460327662490048e-01 3.104853608287138744e+00
2.782180868122997586e-01 6.776851436298622078e-01 1.761580580541214802e+00
9.266054863421087084e-01 2.627492879721394781e-01 4.628763757826364511e+00
5.523392520960408447e-01 6.644924434656053203e-01 3.125174246926364141e+00
5.287394139091310397e-01 6.394872222310177268e-02 3.117993250820441098e+00
3.686558096442410504e-01 6.268691773262476952e-01 1.936875223460121642e+00
9.508303497338959076e-01 2.603495644055497937e-01 5.539503503356506542e+00
4.974170422761559074e-02 5.234160700859691318e-01 9.854439982145415389e-01
9.343567329844875147e-01 1.007677945281176823e-01 5.049580527766805105e+00
3.951543969490975972e-01 5.731481704547733980e-01 2.435359065439732795e+00
2.593456023940206023e-01 9.908603604474142124e-02 1.265386858376813972e+00
1.945948991403323447e-03 7.928332931112429538e-01 -7.151524026985970339e-01
8.014805253134763552e-01 6.015755345876689919e-01 4.634065213613259182e+00

+ 699
- 0
references/logistic_regression_demo/data/breast-cancer-wisconsin.data View File

@@ -0,0 +1,699 @@
1000025,5,1,1,1,2,1,3,1,1,2
1002945,5,4,4,5,7,10,3,2,1,2
1015425,3,1,1,1,2,2,3,1,1,2
1016277,6,8,8,1,3,4,3,7,1,2
1017023,4,1,1,3,2,1,3,1,1,2
1017122,8,10,10,8,7,10,9,7,1,4
1018099,1,1,1,1,2,10,3,1,1,2
1018561,2,1,2,1,2,1,3,1,1,2
1033078,2,1,1,1,2,1,1,1,5,2
1033078,4,2,1,1,2,1,2,1,1,2
1035283,1,1,1,1,1,1,3,1,1,2
1036172,2,1,1,1,2,1,2,1,1,2
1041801,5,3,3,3,2,3,4,4,1,4
1043999,1,1,1,1,2,3,3,1,1,2
1044572,8,7,5,10,7,9,5,5,4,4
1047630,7,4,6,4,6,1,4,3,1,4
1048672,4,1,1,1,2,1,2,1,1,2
1049815,4,1,1,1,2,1,3,1,1,2
1050670,10,7,7,6,4,10,4,1,2,4
1050718,6,1,1,1,2,1,3,1,1,2
1054590,7,3,2,10,5,10,5,4,4,4
1054593,10,5,5,3,6,7,7,10,1,4
1056784,3,1,1,1,2,1,2,1,1,2
1057013,8,4,5,1,2,?,7,3,1,4
1059552,1,1,1,1,2,1,3,1,1,2
1065726,5,2,3,4,2,7,3,6,1,4
1066373,3,2,1,1,1,1,2,1,1,2
1066979,5,1,1,1,2,1,2,1,1,2
1067444,2,1,1,1,2,1,2,1,1,2
1070935,1,1,3,1,2,1,1,1,1,2
1070935,3,1,1,1,1,1,2,1,1,2
1071760,2,1,1,1,2,1,3,1,1,2
1072179,10,7,7,3,8,5,7,4,3,4
1074610,2,1,1,2,2,1,3,1,1,2
1075123,3,1,2,1,2,1,2,1,1,2
1079304,2,1,1,1,2,1,2,1,1,2
1080185,10,10,10,8,6,1,8,9,1,4
1081791,6,2,1,1,1,1,7,1,1,2
1084584,5,4,4,9,2,10,5,6,1,4
1091262,2,5,3,3,6,7,7,5,1,4
1096800,6,6,6,9,6,?,7,8,1,2
1099510,10,4,3,1,3,3,6,5,2,4
1100524,6,10,10,2,8,10,7,3,3,4
1102573,5,6,5,6,10,1,3,1,1,4
1103608,10,10,10,4,8,1,8,10,1,4
1103722,1,1,1,1,2,1,2,1,2,2
1105257,3,7,7,4,4,9,4,8,1,4
1105524,1,1,1,1,2,1,2,1,1,2
1106095,4,1,1,3,2,1,3,1,1,2
1106829,7,8,7,2,4,8,3,8,2,4
1108370,9,5,8,1,2,3,2,1,5,4
1108449,5,3,3,4,2,4,3,4,1,4
1110102,10,3,6,2,3,5,4,10,2,4
1110503,5,5,5,8,10,8,7,3,7,4
1110524,10,5,5,6,8,8,7,1,1,4
1111249,10,6,6,3,4,5,3,6,1,4
1112209,8,10,10,1,3,6,3,9,1,4
1113038,8,2,4,1,5,1,5,4,4,4
1113483,5,2,3,1,6,10,5,1,1,4
1113906,9,5,5,2,2,2,5,1,1,4
1115282,5,3,5,5,3,3,4,10,1,4
1115293,1,1,1,1,2,2,2,1,1,2
1116116,9,10,10,1,10,8,3,3,1,4
1116132,6,3,4,1,5,2,3,9,1,4
1116192,1,1,1,1,2,1,2,1,1,2
1116998,10,4,2,1,3,2,4,3,10,4
1117152,4,1,1,1,2,1,3,1,1,2
1118039,5,3,4,1,8,10,4,9,1,4
1120559,8,3,8,3,4,9,8,9,8,4
1121732,1,1,1,1,2,1,3,2,1,2
1121919,5,1,3,1,2,1,2,1,1,2
1123061,6,10,2,8,10,2,7,8,10,4
1124651,1,3,3,2,2,1,7,2,1,2
1125035,9,4,5,10,6,10,4,8,1,4
1126417,10,6,4,1,3,4,3,2,3,4
1131294,1,1,2,1,2,2,4,2,1,2
1132347,1,1,4,1,2,1,2,1,1,2
1133041,5,3,1,2,2,1,2,1,1,2
1133136,3,1,1,1,2,3,3,1,1,2
1136142,2,1,1,1,3,1,2,1,1,2
1137156,2,2,2,1,1,1,7,1,1,2
1143978,4,1,1,2,2,1,2,1,1,2
1143978,5,2,1,1,2,1,3,1,1,2
1147044,3,1,1,1,2,2,7,1,1,2
1147699,3,5,7,8,8,9,7,10,7,4
1147748,5,10,6,1,10,4,4,10,10,4
1148278,3,3,6,4,5,8,4,4,1,4
1148873,3,6,6,6,5,10,6,8,3,4
1152331,4,1,1,1,2,1,3,1,1,2
1155546,2,1,1,2,3,1,2,1,1,2
1156272,1,1,1,1,2,1,3,1,1,2
1156948,3,1,1,2,2,1,1,1,1,2
1157734,4,1,1,1,2,1,3,1,1,2
1158247,1,1,1,1,2,1,2,1,1,2
1160476,2,1,1,1,2,1,3,1,1,2
1164066,1,1,1,1,2,1,3,1,1,2
1165297,2,1,1,2,2,1,1,1,1,2
1165790,5,1,1,1,2,1,3,1,1,2
1165926,9,6,9,2,10,6,2,9,10,4
1166630,7,5,6,10,5,10,7,9,4,4
1166654,10,3,5,1,10,5,3,10,2,4
1167439,2,3,4,4,2,5,2,5,1,4
1167471,4,1,2,1,2,1,3,1,1,2
1168359,8,2,3,1,6,3,7,1,1,4
1168736,10,10,10,10,10,1,8,8,8,4
1169049,7,3,4,4,3,3,3,2,7,4
1170419,10,10,10,8,2,10,4,1,1,4
1170420,1,6,8,10,8,10,5,7,1,4
1171710,1,1,1,1,2,1,2,3,1,2
1171710,6,5,4,4,3,9,7,8,3,4
1171795,1,3,1,2,2,2,5,3,2,2
1171845,8,6,4,3,5,9,3,1,1,4
1172152,10,3,3,10,2,10,7,3,3,4
1173216,10,10,10,3,10,8,8,1,1,4
1173235,3,3,2,1,2,3,3,1,1,2
1173347,1,1,1,1,2,5,1,1,1,2
1173347,8,3,3,1,2,2,3,2,1,2
1173509,4,5,5,10,4,10,7,5,8,4
1173514,1,1,1,1,4,3,1,1,1,2
1173681,3,2,1,1,2,2,3,1,1,2
1174057,1,1,2,2,2,1,3,1,1,2
1174057,4,2,1,1,2,2,3,1,1,2
1174131,10,10,10,2,10,10,5,3,3,4
1174428,5,3,5,1,8,10,5,3,1,4
1175937,5,4,6,7,9,7,8,10,1,4
1176406,1,1,1,1,2,1,2,1,1,2
1176881,7,5,3,7,4,10,7,5,5,4
1177027,3,1,1,1,2,1,3,1,1,2
1177399,8,3,5,4,5,10,1,6,2,4
1177512,1,1,1,1,10,1,1,1,1,2
1178580,5,1,3,1,2,1,2,1,1,2
1179818,2,1,1,1,2,1,3,1,1,2
1180194,5,10,8,10,8,10,3,6,3,4
1180523,3,1,1,1,2,1,2,2,1,2
1180831,3,1,1,1,3,1,2,1,1,2
1181356,5,1,1,1,2,2,3,3,1,2
1182404,4,1,1,1,2,1,2,1,1,2
1182410,3,1,1,1,2,1,1,1,1,2
1183240,4,1,2,1,2,1,2,1,1,2
1183246,1,1,1,1,1,?,2,1,1,2
1183516,3,1,1,1,2,1,1,1,1,2
1183911,2,1,1,1,2,1,1,1,1,2
1183983,9,5,5,4,4,5,4,3,3,4
1184184,1,1,1,1,2,5,1,1,1,2
1184241,2,1,1,1,2,1,2,1,1,2
1184840,1,1,3,1,2,?,2,1,1,2
1185609,3,4,5,2,6,8,4,1,1,4
1185610,1,1,1,1,3,2,2,1,1,2
1187457,3,1,1,3,8,1,5,8,1,2
1187805,8,8,7,4,10,10,7,8,7,4
1188472,1,1,1,1,1,1,3,1,1,2
1189266,7,2,4,1,6,10,5,4,3,4
1189286,10,10,8,6,4,5,8,10,1,4
1190394,4,1,1,1,2,3,1,1,1,2
1190485,1,1,1,1,2,1,1,1,1,2
1192325,5,5,5,6,3,10,3,1,1,4
1193091,1,2,2,1,2,1,2,1,1,2
1193210,2,1,1,1,2,1,3,1,1,2
1193683,1,1,2,1,3,?,1,1,1,2
1196295,9,9,10,3,6,10,7,10,6,4
1196915,10,7,7,4,5,10,5,7,2,4
1197080,4,1,1,1,2,1,3,2,1,2
1197270,3,1,1,1,2,1,3,1,1,2
1197440,1,1,1,2,1,3,1,1,7,2
1197510,5,1,1,1,2,?,3,1,1,2
1197979,4,1,1,1,2,2,3,2,1,2
1197993,5,6,7,8,8,10,3,10,3,4
1198128,10,8,10,10,6,1,3,1,10,4
1198641,3,1,1,1,2,1,3,1,1,2
1199219,1,1,1,2,1,1,1,1,1,2
1199731,3,1,1,1,2,1,1,1,1,2
1199983,1,1,1,1,2,1,3,1,1,2
1200772,1,1,1,1,2,1,2,1,1,2
1200847,6,10,10,10,8,10,10,10,7,4
1200892,8,6,5,4,3,10,6,1,1,4
1200952,5,8,7,7,10,10,5,7,1,4
1201834,2,1,1,1,2,1,3,1,1,2
1201936,5,10,10,3,8,1,5,10,3,4
1202125,4,1,1,1,2,1,3,1,1,2
1202812,5,3,3,3,6,10,3,1,1,4
1203096,1,1,1,1,1,1,3,1,1,2
1204242,1,1,1,1,2,1,1,1,1,2
1204898,6,1,1,1,2,1,3,1,1,2
1205138,5,8,8,8,5,10,7,8,1,4
1205579,8,7,6,4,4,10,5,1,1,4
1206089,2,1,1,1,1,1,3,1,1,2
1206695,1,5,8,6,5,8,7,10,1,4
1206841,10,5,6,10,6,10,7,7,10,4
1207986,5,8,4,10,5,8,9,10,1,4
1208301,1,2,3,1,2,1,3,1,1,2
1210963,10,10,10,8,6,8,7,10,1,4
1211202,7,5,10,10,10,10,4,10,3,4
1212232,5,1,1,1,2,1,2,1,1,2
1212251,1,1,1,1,2,1,3,1,1,2
1212422,3,1,1,1,2,1,3,1,1,2
1212422,4,1,1,1,2,1,3,1,1,2
1213375,8,4,4,5,4,7,7,8,2,2
1213383,5,1,1,4,2,1,3,1,1,2
1214092,1,1,1,1,2,1,1,1,1,2
1214556,3,1,1,1,2,1,2,1,1,2
1214966,9,7,7,5,5,10,7,8,3,4
1216694,10,8,8,4,10,10,8,1,1,4
1216947,1,1,1,1,2,1,3,1,1,2
1217051,5,1,1,1,2,1,3,1,1,2
1217264,1,1,1,1,2,1,3,1,1,2
1218105,5,10,10,9,6,10,7,10,5,4
1218741,10,10,9,3,7,5,3,5,1,4
1218860,1,1,1,1,1,1,3,1,1,2
1218860,1,1,1,1,1,1,3,1,1,2
1219406,5,1,1,1,1,1,3,1,1,2
1219525,8,10,10,10,5,10,8,10,6,4
1219859,8,10,8,8,4,8,7,7,1,4
1220330,1,1,1,1,2,1,3,1,1,2
1221863,10,10,10,10,7,10,7,10,4,4
1222047,10,10,10,10,3,10,10,6,1,4
1222936,8,7,8,7,5,5,5,10,2,4
1223282,1,1,1,1,2,1,2,1,1,2
1223426,1,1,1,1,2,1,3,1,1,2
1223793,6,10,7,7,6,4,8,10,2,4
1223967,6,1,3,1,2,1,3,1,1,2
1224329,1,1,1,2,2,1,3,1,1,2
1225799,10,6,4,3,10,10,9,10,1,4
1226012,4,1,1,3,1,5,2,1,1,4
1226612,7,5,6,3,3,8,7,4,1,4
1227210,10,5,5,6,3,10,7,9,2,4
1227244,1,1,1,1,2,1,2,1,1,2
1227481,10,5,7,4,4,10,8,9,1,4
1228152,8,9,9,5,3,5,7,7,1,4
1228311,1,1,1,1,1,1,3,1,1,2
1230175,10,10,10,3,10,10,9,10,1,4
1230688,7,4,7,4,3,7,7,6,1,4
1231387,6,8,7,5,6,8,8,9,2,4
1231706,8,4,6,3,3,1,4,3,1,2
1232225,10,4,5,5,5,10,4,1,1,4
1236043,3,3,2,1,3,1,3,6,1,2
1241232,3,1,4,1,2,?,3,1,1,2
1241559,10,8,8,2,8,10,4,8,10,4
1241679,9,8,8,5,6,2,4,10,4,4
1242364,8,10,10,8,6,9,3,10,10,4
1243256,10,4,3,2,3,10,5,3,2,4
1270479,5,1,3,3,2,2,2,3,1,2
1276091,3,1,1,3,1,1,3,1,1,2
1277018,2,1,1,1,2,1,3,1,1,2
128059,1,1,1,1,2,5,5,1,1,2
1285531,1,1,1,1,2,1,3,1,1,2
1287775,5,1,1,2,2,2,3,1,1,2
144888,8,10,10,8,5,10,7,8,1,4
145447,8,4,4,1,2,9,3,3,1,4
167528,4,1,1,1,2,1,3,6,1,2
169356,3,1,1,1,2,?,3,1,1,2
183913,1,2,2,1,2,1,1,1,1,2
191250,10,4,4,10,2,10,5,3,3,4
1017023,6,3,3,5,3,10,3,5,3,2
1100524,6,10,10,2,8,10,7,3,3,4
1116116,9,10,10,1,10,8,3,3,1,4
1168736,5,6,6,2,4,10,3,6,1,4
1182404,3,1,1,1,2,1,1,1,1,2
1182404,3,1,1,1,2,1,2,1,1,2
1198641,3,1,1,1,2,1,3,1,1,2
242970,5,7,7,1,5,8,3,4,1,2
255644,10,5,8,10,3,10,5,1,3,4
263538,5,10,10,6,10,10,10,6,5,4
274137,8,8,9,4,5,10,7,8,1,4
303213,10,4,4,10,6,10,5,5,1,4
314428,7,9,4,10,10,3,5,3,3,4
1182404,5,1,4,1,2,1,3,2,1,2
1198641,10,10,6,3,3,10,4,3,2,4
320675,3,3,5,2,3,10,7,1,1,4
324427,10,8,8,2,3,4,8,7,8,4
385103,1,1,1,1,2,1,3,1,1,2
390840,8,4,7,1,3,10,3,9,2,4
411453,5,1,1,1,2,1,3,1,1,2
320675,3,3,5,2,3,10,7,1,1,4
428903,7,2,4,1,3,4,3,3,1,4
431495,3,1,1,1,2,1,3,2,1,2
432809,3,1,3,1,2,?,2,1,1,2
434518,3,1,1,1,2,1,2,1,1,2
452264,1,1,1,1,2,1,2,1,1,2
456282,1,1,1,1,2,1,3,1,1,2
476903,10,5,7,3,3,7,3,3,8,4
486283,3,1,1,1,2,1,3,1,1,2
486662,2,1,1,2,2,1,3,1,1,2
488173,1,4,3,10,4,10,5,6,1,4
492268,10,4,6,1,2,10,5,3,1,4
508234,7,4,5,10,2,10,3,8,2,4
527363,8,10,10,10,8,10,10,7,3,4
529329,10,10,10,10,10,10,4,10,10,4
535331,3,1,1,1,3,1,2,1,1,2
543558,6,1,3,1,4,5,5,10,1,4
555977,5,6,6,8,6,10,4,10,4,4
560680,1,1,1,1,2,1,1,1,1,2
561477,1,1,1,1,2,1,3,1,1,2
563649,8,8,8,1,2,?,6,10,1,4
601265,10,4,4,6,2,10,2,3,1,4
606140,1,1,1,1,2,?,2,1,1,2
606722,5,5,7,8,6,10,7,4,1,4
616240,5,3,4,3,4,5,4,7,1,2
61634,5,4,3,1,2,?,2,3,1,2
625201,8,2,1,1,5,1,1,1,1,2
63375,9,1,2,6,4,10,7,7,2,4
635844,8,4,10,5,4,4,7,10,1,4
636130,1,1,1,1,2,1,3,1,1,2
640744,10,10,10,7,9,10,7,10,10,4
646904,1,1,1,1,2,1,3,1,1,2
653777,8,3,4,9,3,10,3,3,1,4
659642,10,8,4,4,4,10,3,10,4,4
666090,1,1,1,1,2,1,3,1,1,2
666942,1,1,1,1,2,1,3,1,1,2
667204,7,8,7,6,4,3,8,8,4,4
673637,3,1,1,1,2,5,5,1,1,2
684955,2,1,1,1,3,1,2,1,1,2
688033,1,1,1,1,2,1,1,1,1,2
691628,8,6,4,10,10,1,3,5,1,4
693702,1,1,1,1,2,1,1,1,1,2
704097,1,1,1,1,1,1,2,1,1,2
704168,4,6,5,6,7,?,4,9,1,2
706426,5,5,5,2,5,10,4,3,1,4
709287,6,8,7,8,6,8,8,9,1,4
718641,1,1,1,1,5,1,3,1,1,2
721482,4,4,4,4,6,5,7,3,1,2
730881,7,6,3,2,5,10,7,4,6,4
733639,3,1,1,1,2,?,3,1,1,2
733639,3,1,1,1,2,1,3,1,1,2
733823,5,4,6,10,2,10,4,1,1,4
740492,1,1,1,1,2,1,3,1,1,2
743348,3,2,2,1,2,1,2,3,1,2
752904,10,1,1,1,2,10,5,4,1,4
756136,1,1,1,1,2,1,2,1,1,2
760001,8,10,3,2,6,4,3,10,1,4
760239,10,4,6,4,5,10,7,1,1,4
76389,10,4,7,2,2,8,6,1,1,4
764974,5,1,1,1,2,1,3,1,2,2
770066,5,2,2,2,2,1,2,2,1,2
785208,5,4,6,6,4,10,4,3,1,4
785615,8,6,7,3,3,10,3,4,2,4
792744,1,1,1,1,2,1,1,1,1,2
797327,6,5,5,8,4,10,3,4,1,4
798429,1,1,1,1,2,1,3,1,1,2
704097,1,1,1,1,1,1,2,1,1,2
806423,8,5,5,5,2,10,4,3,1,4
809912,10,3,3,1,2,10,7,6,1,4
810104,1,1,1,1,2,1,3,1,1,2
814265,2,1,1,1,2,1,1,1,1,2
814911,1,1,1,1,2,1,1,1,1,2
822829,7,6,4,8,10,10,9,5,3,4
826923,1,1,1,1,2,1,1,1,1,2
830690,5,2,2,2,3,1,1,3,1,2
831268,1,1,1,1,1,1,1,3,1,2
832226,3,4,4,10,5,1,3,3,1,4
832567,4,2,3,5,3,8,7,6,1,4
836433,5,1,1,3,2,1,1,1,1,2
837082,2,1,1,1,2,1,3,1,1,2
846832,3,4,5,3,7,3,4,6,1,2
850831,2,7,10,10,7,10,4,9,4,4
855524,1,1,1,1,2,1,2,1,1,2
857774,4,1,1,1,3,1,2,2,1,2
859164,5,3,3,1,3,3,3,3,3,4
859350,8,10,10,7,10,10,7,3,8,4
866325,8,10,5,3,8,4,4,10,3,4
873549,10,3,5,4,3,7,3,5,3,4
877291,6,10,10,10,10,10,8,10,10,4
877943,3,10,3,10,6,10,5,1,4,4
888169,3,2,2,1,4,3,2,1,1,2
888523,4,4,4,2,2,3,2,1,1,2
896404,2,1,1,1,2,1,3,1,1,2
897172,2,1,1,1,2,1,2,1,1,2
95719,6,10,10,10,8,10,7,10,7,4
160296,5,8,8,10,5,10,8,10,3,4
342245,1,1,3,1,2,1,1,1,1,2
428598,1,1,3,1,1,1,2,1,1,2
492561,4,3,2,1,3,1,2,1,1,2
493452,1,1,3,1,2,1,1,1,1,2
493452,4,1,2,1,2,1,2,1,1,2
521441,5,1,1,2,2,1,2,1,1,2
560680,3,1,2,1,2,1,2,1,1,2
636437,1,1,1,1,2,1,1,1,1,2
640712,1,1,1,1,2,1,2,1,1,2
654244,1,1,1,1,1,1,2,1,1,2
657753,3,1,1,4,3,1,2,2,1,2
685977,5,3,4,1,4,1,3,1,1,2
805448,1,1,1,1,2,1,1,1,1,2
846423,10,6,3,6,4,10,7,8,4,4
1002504,3,2,2,2,2,1,3,2,1,2
1022257,2,1,1,1,2,1,1,1,1,2
1026122,2,1,1,1,2,1,1,1,1,2
1071084,3,3,2,2,3,1,1,2,3,2
1080233,7,6,6,3,2,10,7,1,1,4
1114570,5,3,3,2,3,1,3,1,1,2
1114570,2,1,1,1,2,1,2,2,1,2
1116715,5,1,1,1,3,2,2,2,1,2
1131411,1,1,1,2,2,1,2,1,1,2
1151734,10,8,7,4,3,10,7,9,1,4
1156017,3,1,1,1,2,1,2,1,1,2
1158247,1,1,1,1,1,1,1,1,1,2
1158405,1,2,3,1,2,1,2,1,1,2
1168278,3,1,1,1,2,1,2,1,1,2
1176187,3,1,1,1,2,1,3,1,1,2
1196263,4,1,1,1,2,1,1,1,1,2
1196475,3,2,1,1,2,1,2,2,1,2
1206314,1,2,3,1,2,1,1,1,1,2
1211265,3,10,8,7,6,9,9,3,8,4
1213784,3,1,1,1,2,1,1,1,1,2
1223003,5,3,3,1,2,1,2,1,1,2
1223306,3,1,1,1,2,4,1,1,1,2
1223543,1,2,1,3,2,1,1,2,1,2
1229929,1,1,1,1,2,1,2,1,1,2
1231853,4,2,2,1,2,1,2,1,1,2
1234554,1,1,1,1,2,1,2,1,1,2
1236837,2,3,2,2,2,2,3,1,1,2
1237674,3,1,2,1,2,1,2,1,1,2
1238021,1,1,1,1,2,1,2,1,1,2
1238464,1,1,1,1,1,?,2,1,1,2
1238633,10,10,10,6,8,4,8,5,1,4
1238915,5,1,2,1,2,1,3,1,1,2
1238948,8,5,6,2,3,10,6,6,1,4
1239232,3,3,2,6,3,3,3,5,1,2
1239347,8,7,8,5,10,10,7,2,1,4
1239967,1,1,1,1,2,1,2,1,1,2
1240337,5,2,2,2,2,2,3,2,2,2
1253505,2,3,1,1,5,1,1,1,1,2
1255384,3,2,2,3,2,3,3,1,1,2
1257200,10,10,10,7,10,10,8,2,1,4
1257648,4,3,3,1,2,1,3,3,1,2
1257815,5,1,3,1,2,1,2,1,1,2
1257938,3,1,1,1,2,1,1,1,1,2
1258549,9,10,10,10,10,10,10,10,1,4
1258556,5,3,6,1,2,1,1,1,1,2
1266154,8,7,8,2,4,2,5,10,1,4
1272039,1,1,1,1,2,1,2,1,1,2
1276091,2,1,1,1,2,1,2,1,1,2
1276091,1,3,1,1,2,1,2,2,1,2
1276091,5,1,1,3,4,1,3,2,1,2
1277629,5,1,1,1,2,1,2,2,1,2
1293439,3,2,2,3,2,1,1,1,1,2
1293439,6,9,7,5,5,8,4,2,1,2
1294562,10,8,10,1,3,10,5,1,1,4
1295186,10,10,10,1,6,1,2,8,1,4
527337,4,1,1,1,2,1,1,1,1,2
558538,4,1,3,3,2,1,1,1,1,2
566509,5,1,1,1,2,1,1,1,1,2
608157,10,4,3,10,4,10,10,1,1,4
677910,5,2,2,4,2,4,1,1,1,2
734111,1,1,1,3,2,3,1,1,1,2
734111,1,1,1,1,2,2,1,1,1,2
780555,5,1,1,6,3,1,2,1,1,2
827627,2,1,1,1,2,1,1,1,1,2
1049837,1,1,1,1,2,1,1,1,1,2
1058849,5,1,1,1,2,1,1,1,1,2
1182404,1,1,1,1,1,1,1,1,1,2
1193544,5,7,9,8,6,10,8,10,1,4
1201870,4,1,1,3,1,1,2,1,1,2
1202253,5,1,1,1,2,1,1,1,1,2
1227081,3,1,1,3,2,1,1,1,1,2
1230994,4,5,5,8,6,10,10,7,1,4
1238410,2,3,1,1,3,1,1,1,1,2
1246562,10,2,2,1,2,6,1,1,2,4
1257470,10,6,5,8,5,10,8,6,1,4
1259008,8,8,9,6,6,3,10,10,1,4
1266124,5,1,2,1,2,1,1,1,1,2
1267898,5,1,3,1,2,1,1,1,1,2
1268313,5,1,1,3,2,1,1,1,1,2
1268804,3,1,1,1,2,5,1,1,1,2
1276091,6,1,1,3,2,1,1,1,1,2
1280258,4,1,1,1,2,1,1,2,1,2
1293966,4,1,1,1,2,1,1,1,1,2
1296572,10,9,8,7,6,4,7,10,3,4
1298416,10,6,6,2,4,10,9,7,1,4
1299596,6,6,6,5,4,10,7,6,2,4
1105524,4,1,1,1,2,1,1,1,1,2
1181685,1,1,2,1,2,1,2,1,1,2
1211594,3,1,1,1,1,1,2,1,1,2
1238777,6,1,1,3,2,1,1,1,1,2
1257608,6,1,1,1,1,1,1,1,1,2
1269574,4,1,1,1,2,1,1,1,1,2
1277145,5,1,1,1,2,1,1,1,1,2
1287282,3,1,1,1,2,1,1,1,1,2
1296025,4,1,2,1,2,1,1,1,1,2
1296263,4,1,1,1,2,1,1,1,1,2
1296593,5,2,1,1,2,1,1,1,1,2
1299161,4,8,7,10,4,10,7,5,1,4
1301945,5,1,1,1,1,1,1,1,1,2
1302428,5,3,2,4,2,1,1,1,1,2
1318169,9,10,10,10,10,5,10,10,10,4
474162,8,7,8,5,5,10,9,10,1,4
787451,5,1,2,1,2,1,1,1,1,2
1002025,1,1,1,3,1,3,1,1,1,2
1070522,3,1,1,1,1,1,2,1,1,2
1073960,10,10,10,10,6,10,8,1,5,4
1076352,3,6,4,10,3,3,3,4,1,4
1084139,6,3,2,1,3,4,4,1,1,4
1115293,1,1,1,1,2,1,1,1,1,2
1119189,5,8,9,4,3,10,7,1,1,4
1133991,4,1,1,1,1,1,2,1,1,2
1142706,5,10,10,10,6,10,6,5,2,4
1155967,5,1,2,10,4,5,2,1,1,2
1170945,3,1,1,1,1,1,2,1,1,2
1181567,1,1,1,1,1,1,1,1,1,2
1182404,4,2,1,1,2,1,1,1,1,2
1204558,4,1,1,1,2,1,2,1,1,2
1217952,4,1,1,1,2,1,2,1,1,2
1224565,6,1,1,1,2,1,3,1,1,2
1238186,4,1,1,1,2,1,2,1,1,2
1253917,4,1,1,2,2,1,2,1,1,2
1265899,4,1,1,1,2,1,3,1,1,2
1268766,1,1,1,1,2,1,1,1,1,2
1277268,3,3,1,1,2,1,1,1,1,2
1286943,8,10,10,10,7,5,4,8,7,4
1295508,1,1,1,1,2,4,1,1,1,2
1297327,5,1,1,1,2,1,1,1,1,2
1297522,2,1,1,1,2,1,1,1,1,2
1298360,1,1,1,1,2,1,1,1,1,2
1299924,5,1,1,1,2,1,2,1,1,2
1299994,5,1,1,1,2,1,1,1,1,2
1304595,3,1,1,1,1,1,2,1,1,2
1306282,6,6,7,10,3,10,8,10,2,4
1313325,4,10,4,7,3,10,9,10,1,4
1320077,1,1,1,1,1,1,1,1,1,2
1320077,1,1,1,1,1,1,2,1,1,2
1320304,3,1,2,2,2,1,1,1,1,2
1330439,4,7,8,3,4,10,9,1,1,4
333093,1,1,1,1,3,1,1,1,1,2
369565,4,1,1,1,3,1,1,1,1,2
412300,10,4,5,4,3,5,7,3,1,4
672113,7,5,6,10,4,10,5,3,1,4
749653,3,1,1,1,2,1,2,1,1,2
769612,3,1,1,2,2,1,1,1,1,2
769612,4,1,1,1,2,1,1,1,1,2
798429,4,1,1,1,2,1,3,1,1,2
807657,6,1,3,2,2,1,1,1,1,2
8233704,4,1,1,1,1,1,2,1,1,2
837480,7,4,4,3,4,10,6,9,1,4
867392,4,2,2,1,2,1,2,1,1,2
869828,1,1,1,1,1,1,3,1,1,2
1043068,3,1,1,1,2,1,2,1,1,2
1056171,2,1,1,1,2,1,2,1,1,2
1061990,1,1,3,2,2,1,3,1,1,2
1113061,5,1,1,1,2,1,3,1,1,2
1116192,5,1,2,1,2,1,3,1,1,2
1135090,4,1,1,1,2,1,2,1,1,2
1145420,6,1,1,1,2,1,2,1,1,2
1158157,5,1,1,1,2,2,2,1,1,2
1171578,3,1,1,1,2,1,1,1,1,2
1174841,5,3,1,1,2,1,1,1,1,2
1184586,4,1,1,1,2,1,2,1,1,2
1186936,2,1,3,2,2,1,2,1,1,2
1197527,5,1,1,1,2,1,2,1,1,2
1222464,6,10,10,10,4,10,7,10,1,4
1240603,2,1,1,1,1,1,1,1,1,2
1240603,3,1,1,1,1,1,1,1,1,2
1241035,7,8,3,7,4,5,7,8,2,4
1287971,3,1,1,1,2,1,2,1,1,2
1289391,1,1,1,1,2,1,3,1,1,2
1299924,3,2,2,2,2,1,4,2,1,2
1306339,4,4,2,1,2,5,2,1,2,2
1313658,3,1,1,1,2,1,1,1,1,2
1313982,4,3,1,1,2,1,4,8,1,2
1321264,5,2,2,2,1,1,2,1,1,2
1321321,5,1,1,3,2,1,1,1,1,2
1321348,2,1,1,1,2,1,2,1,1,2
1321931,5,1,1,1,2,1,2,1,1,2
1321942,5,1,1,1,2,1,3,1,1,2
1321942,5,1,1,1,2,1,3,1,1,2
1328331,1,1,1,1,2,1,3,1,1,2
1328755,3,1,1,1,2,1,2,1,1,2
1331405,4,1,1,1,2,1,3,2,1,2
1331412,5,7,10,10,5,10,10,10,1,4
1333104,3,1,2,1,2,1,3,1,1,2
1334071,4,1,1,1,2,3,2,1,1,2
1343068,8,4,4,1,6,10,2,5,2,4
1343374,10,10,8,10,6,5,10,3,1,4
1344121,8,10,4,4,8,10,8,2,1,4
142932,7,6,10,5,3,10,9,10,2,4
183936,3,1,1,1,2,1,2,1,1,2
324382,1,1,1,1,2,1,2,1,1,2
378275,10,9,7,3,4,2,7,7,1,4
385103,5,1,2,1,2,1,3,1,1,2
690557,5,1,1,1,2,1,2,1,1,2
695091,1,1,1,1,2,1,2,1,1,2
695219,1,1,1,1,2,1,2,1,1,2
824249,1,1,1,1,2,1,3,1,1,2
871549,5,1,2,1,2,1,2,1,1,2
878358,5,7,10,6,5,10,7,5,1,4
1107684,6,10,5,5,4,10,6,10,1,4
1115762,3,1,1,1,2,1,1,1,1,2
1217717,5,1,1,6,3,1,1,1,1,2
1239420,1,1,1,1,2,1,1,1,1,2
1254538,8,10,10,10,6,10,10,10,1,4
1261751,5,1,1,1,2,1,2,2,1,2
1268275,9,8,8,9,6,3,4,1,1,4
1272166,5,1,1,1,2,1,1,1,1,2
1294261,4,10,8,5,4,1,10,1,1,4
1295529,2,5,7,6,4,10,7,6,1,4
1298484,10,3,4,5,3,10,4,1,1,4
1311875,5,1,2,1,2,1,1,1,1,2
1315506,4,8,6,3,4,10,7,1,1,4
1320141,5,1,1,1,2,1,2,1,1,2
1325309,4,1,2,1,2,1,2,1,1,2
1333063,5,1,3,1,2,1,3,1,1,2
1333495,3,1,1,1,2,1,2,1,1,2
1334659,5,2,4,1,1,1,1,1,1,2
1336798,3,1,1,1,2,1,2,1,1,2
1344449,1,1,1,1,1,1,2,1,1,2
1350568,4,1,1,1,2,1,2,1,1,2
1352663,5,4,6,8,4,1,8,10,1,4
188336,5,3,2,8,5,10,8,1,2,4
352431,10,5,10,3,5,8,7,8,3,4
353098,4,1,1,2,2,1,1,1,1,2
411453,1,1,1,1,2,1,1,1,1,2
557583,5,10,10,10,10,10,10,1,1,4
636375,5,1,1,1,2,1,1,1,1,2
736150,10,4,3,10,3,10,7,1,2,4
803531,5,10,10,10,5,2,8,5,1,4
822829,8,10,10,10,6,10,10,10,10,4
1016634,2,3,1,1,2,1,2,1,1,2
1031608,2,1,1,1,1,1,2,1,1,2
1041043,4,1,3,1,2,1,2,1,1,2
1042252,3,1,1,1,2,1,2,1,1,2
1057067,1,1,1,1,1,?,1,1,1,2
1061990,4,1,1,1,2,1,2,1,1,2
1073836,5,1,1,1,2,1,2,1,1,2
1083817,3,1,1,1,2,1,2,1,1,2
1096352,6,3,3,3,3,2,6,1,1,2
1140597,7,1,2,3,2,1,2,1,1,2
1149548,1,1,1,1,2,1,1,1,1,2
1174009,5,1,1,2,1,1,2,1,1,2
1183596,3,1,3,1,3,4,1,1,1,2
1190386,4,6,6,5,7,6,7,7,3,4
1190546,2,1,1,1,2,5,1,1,1,2
1213273,2,1,1,1,2,1,1,1,1,2
1218982,4,1,1,1,2,1,1,1,1,2
1225382,6,2,3,1,2,1,1,1,1,2
1235807,5,1,1,1,2,1,2,1,1,2
1238777,1,1,1,1,2,1,1,1,1,2
1253955,8,7,4,4,5,3,5,10,1,4
1257366,3,1,1,1,2,1,1,1,1,2
1260659,3,1,4,1,2,1,1,1,1,2
1268952,10,10,7,8,7,1,10,10,3,4
1275807,4,2,4,3,2,2,2,1,1,2
1277792,4,1,1,1,2,1,1,1,1,2
1277792,5,1,1,3,2,1,1,1,1,2
1285722,4,1,1,3,2,1,1,1,1,2
1288608,3,1,1,1,2,1,2,1,1,2
1290203,3,1,1,1,2,1,2,1,1,2
1294413,1,1,1,1,2,1,1,1,1,2
1299596,2,1,1,1,2,1,1,1,1,2
1303489,3,1,1,1,2,1,2,1,1,2
1311033,1,2,2,1,2,1,1,1,1,2
1311108,1,1,1,3,2,1,1,1,1,2
1315807,5,10,10,10,10,2,10,10,10,4
1318671,3,1,1,1,2,1,2,1,1,2
1319609,3,1,1,2,3,4,1,1,1,2
1323477,1,2,1,3,2,1,2,1,1,2
1324572,5,1,1,1,2,1,2,2,1,2
1324681,4,1,1,1,2,1,2,1,1,2
1325159,3,1,1,1,2,1,3,1,1,2
1326892,3,1,1,1,2,1,2,1,1,2
1330361,5,1,1,1,2,1,2,1,1,2
1333877,5,4,5,1,8,1,3,6,1,2
1334015,7,8,8,7,3,10,7,2,3,4
1334667,1,1,1,1,2,1,1,1,1,2
1339781,1,1,1,1,2,1,2,1,1,2
1339781,4,1,1,1,2,1,3,1,1,2
13454352,1,1,3,1,2,1,2,1,1,2
1345452,1,1,3,1,2,1,2,1,1,2
1345593,3,1,1,3,2,1,2,1,1,2
1347749,1,1,1,1,2,1,1,1,1,2
1347943,5,2,2,2,2,1,1,1,2,2
1348851,3,1,1,1,2,1,3,1,1,2
1350319,5,7,4,1,6,1,7,10,3,4
1350423,5,10,10,8,5,5,7,10,1,4
1352848,3,10,7,8,5,8,7,4,1,4
1353092,3,2,1,2,2,1,3,1,1,2
1354840,2,1,1,1,2,1,3,1,1,2
1354840,5,3,2,1,3,1,1,1,1,2
1355260,1,1,1,1,2,1,2,1,1,2
1365075,4,1,4,1,2,1,1,1,1,2
1365328,1,1,2,1,2,1,2,1,1,2
1368267,5,1,1,1,2,1,1,1,1,2
1368273,1,1,1,1,2,1,1,1,1,2
1368882,2,1,1,1,2,1,1,1,1,2
1369821,10,10,10,10,5,10,10,10,7,4
1371026,5,10,10,10,4,10,5,6,3,4
1371920,5,1,1,1,2,1,3,2,1,2
466906,1,1,1,1,2,1,1,1,1,2
466906,1,1,1,1,2,1,1,1,1,2
534555,1,1,1,1,2,1,1,1,1,2
536708,1,1,1,1,2,1,1,1,1,2
566346,3,1,1,1,2,1,2,3,1,2
603148,4,1,1,1,2,1,1,1,1,2
654546,1,1,1,1,2,1,1,1,8,2
654546,1,1,1,3,2,1,1,1,1,2
695091,5,10,10,5,4,5,4,4,1,4
714039,3,1,1,1,2,1,1,1,1,2
763235,3,1,1,1,2,1,2,1,2,2
776715,3,1,1,1,3,2,1,1,1,2
841769,2,1,1,1,2,1,1,1,1,2
888820,5,10,10,3,7,3,8,10,2,4
897471,4,8,6,4,3,4,10,6,1,4
897471,4,8,8,5,4,5,10,4,1,4

+ 15
- 0
references/logistic_regression_demo/ipython_notebook_config.py View File

@@ -0,0 +1,15 @@
import os
c = get_config()

# Kernel config
c.IPKernelApp.pylab = 'inline' # if you want plotting support always

# Notebook config
#c.NotebookApp.certfile = os.path.join(os.getcwd(), u'mycert.pem')
#c.NotebookApp.ip = '*'
c.NotebookApp.open_browser = True
#c.NotebookApp.NotebookManager.notebook_dir = os.path.join(os.environ["HOME"], "Desktop", "Tutorial")
#c.NotebookApp.notebook_dir = os.path.join(os.environ["HOME"], "Desktop", "Tutorial")
# It's a good idea to put it on a known, fixed port
c.NotebookApp.port = 9999
#c.NotebookApp.password = u'sha1:60e7d2645fb4:97064d28bad2a4a12950055c830d9637b652c9ec'

+ 25
- 0
references/logistic_regression_demo/utility.py View File

@@ -0,0 +1,25 @@
import numpy as np
import matplotlib.pyplot as plt


def plot_decision_boundary(clf, X):
w = clf.coef_.ravel()
a = -w[0] / w[1]
xx = np.linspace(np.min(X[:, 0]), np.max(X[:, 0]))
yy = a * xx - clf.intercept_ / w[1]
plt.plot(xx, yy)
plt.xticks(())
plt.yticks(())

def plotEllipse(pos,P,edge='k',face='none',line_width='.1'):
from numpy.linalg import svd
from matplotlib.patches import Ellipse
import math
from numpy import pi
from matplotlib.pyplot import gca
U, s , Vh = svd(P)
orient = math.atan2(U[1,0],U[0,0])*180/pi
ellipsePlot = Ellipse(xy=pos, width=2.0*math.sqrt(s[0]), height=2.0*math.sqrt(s[1]), angle=orient,facecolor=face, edgecolor=edge, lw=line_width)
ax = gca()
ax.add_patch(ellipsePlot);
return ellipsePlot

BIN
references/nn/.nn_2.py.kate-swp View File


nn/nn-from-scratch → references/nn/nn-from-scratch View File


+ 98
- 0
references/nn/nn_1.py View File

@@ -0,0 +1,98 @@
#
# BP demo code
#
# reference:
# https://www.2cto.com/kf/201612/543750.html
#

import numpy as np
from sklearn import datasets, linear_model
import matplotlib.pyplot as plt

class Config:
nn_input_dim = 2
nn_output_dim = 2
epsilon = 0.01
reg_lambda = 0.01
def generate_data():
np.random.seed(0)
X, y = datasets.make_moons(200, noise=0.20)
return X, y
def visualize(X, y, model):
plot_decision_boundary(lambda x:predict(model,x), X, y)
plt.title("Logistic Regression")
def plot_decision_boundary(pred_func, X, y):
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
plt.show()
def predict(model, x):
W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
z1 = x.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
exp_scores = np.exp(z2)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
return np.argmax(probs, axis=1)
def build_model(X, y, nn_hdim, num_passes=20000, print_loss=False):
num_examples = len(X)
np.random.seed(0)
W1 = np.random.randn(Config.nn_input_dim, nn_hdim) / np.sqrt(Config.nn_input_dim)
b1 = np.zeros((1, nn_hdim))
W2 = np.random.randn(nn_hdim, Config.nn_output_dim) / np.sqrt(nn_hdim)
b2 = np.zeros((1, Config.nn_output_dim))
model = {}
for i in range(0, num_passes):
z1 = X.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
exp_scores = np.exp(z2)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
delta3 = probs
delta3[range(num_examples), y] -= 1
dW2 = (a1.T).dot(delta3)
db2 = np.sum(delta3, axis=0, keepdims=True)
delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2))
dW1 = np.dot(X.T, delta2)
db1 = np.sum(delta2, axis=0)
dW2 += Config.reg_lambda * W2
dW1 += Config.reg_lambda * W1
W1 += -Config.epsilon * dW1
b1 += -Config.epsilon * db1
W2 += -Config.epsilon * dW2
b2 += -Config.epsilon * db2
model = {'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}
return model
def main():
X, y = generate_data()
model = build_model(X, y, 3)
visualize(X, y, model)
if __name__ == "__main__":
main()

+ 15
- 0
references/nn/nn_2.py View File

@@ -0,0 +1,15 @@
import numpy as np
from sklearn import datasets, linear_model
import matplotlib.pyplot as plt


class nn:
epsilon = 0.01
def generate_data():
np.random.seed(0)
X, y = datasets.make_moons(200, noise=0.20)
return X, y


supervised_learning/Recognizing hand-written digits - SVM.ipynb → references/supervised_learning/Recognizing hand-written digits - SVM.ipynb View File


supervised_learning/supervised learning.ipynb → references/supervised_learning/supervised learning.ipynb View File


Loading…
Cancel
Save