@@ -1,3 +1,4 @@ | |||
.ipynb_checkpoints | |||
.idea | |||
.tar.gz | |||
.pth |
@@ -0,0 +1,533 @@ | |||
# -*- coding: utf-8 -*- | |||
# --- | |||
# jupyter: | |||
# jupytext_format_version: '1.2' | |||
# kernelspec: | |||
# display_name: Python 3 | |||
# language: python | |||
# name: python3 | |||
# language_info: | |||
# codemirror_mode: | |||
# name: ipython | |||
# version: 3 | |||
# file_extension: .py | |||
# mimetype: text/x-python | |||
# name: python | |||
# nbconvert_exporter: python | |||
# pygments_lexer: ipython3 | |||
# version: 3.5.2 | |||
# --- | |||
# # PyTorch快速入门 | |||
# | |||
# PyTorch的简洁设计使得它入门很简单,在深入介绍PyTorch之前,本节将先介绍一些PyTorch的基础知识,使得读者能够对PyTorch有一个大致的了解,并能够用PyTorch搭建一个简单的神经网络。部分内容读者可能暂时不太理解,可先不予以深究,后续的课程将会对此进行深入讲解。 | |||
# | |||
# 本节内容参考了PyTorch官方教程[^1]并做了相应的增删修改,使得内容更贴合新版本的PyTorch接口,同时也更适合新手快速入门。另外本书需要读者先掌握基础的Numpy使用,其他相关知识推荐读者参考CS231n的教程[^2]。 | |||
# | |||
# [^1]: http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html | |||
# [^2]: http://cs231n.github.io/python-numpy-tutorial/ | |||
# ### Tensor | |||
# | |||
# Tensor是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)以及更高维的数组。Tensor和Numpy的ndarrays类似,但Tensor可以使用GPU进行加速。Tensor的使用和Numpy及Matlab的接口十分相似,下面通过几个例子来看看Tensor的基本使用。 | |||
from __future__ import print_function | |||
import torch as t | |||
# 构建 5x3 矩阵,只是分配了空间,未初始化 | |||
x = t.Tensor(5, 3) | |||
x | |||
# 使用[0,1]均匀分布随机初始化二维数组 | |||
x = t.rand(5, 3) | |||
x | |||
print(x.size()) # 查看x的形状 | |||
x.size()[1], x.size(1) # 查看列的个数, 两种写法等价 | |||
# `torch.Size` 是tuple对象的子类,因此它支持tuple的所有操作,如x.size()[0] | |||
y = t.rand(5, 3) | |||
# 加法的第一种写法 | |||
x + y | |||
# 加法的第二种写法 | |||
t.add(x, y) | |||
# 加法的第三种写法:指定加法结果的输出目标为result | |||
result = t.Tensor(5, 3) # 预先分配空间 | |||
t.add(x, y, out=result) # 输入到result | |||
result | |||
# + | |||
print('最初y') | |||
print(y) | |||
print('第一种加法,y的结果') | |||
y.add(x) # 普通加法,不改变y的内容 | |||
print(y) | |||
print('第二种加法,y的结果') | |||
y.add_(x) # inplace 加法,y变了 | |||
print(y) | |||
# - | |||
# 注意,函数名后面带下划线**`_`** 的函数会修改Tensor本身。例如,`x.add_(y)`和`x.t_()`会改变 `x`,但`x.add(y)`和`x.t()`返回一个新的Tensor, 而`x`不变。 | |||
# Tensor的选取操作与Numpy类似 | |||
x[:, 1] | |||
# Tensor还支持很多操作,包括数学运算、线性代数、选择、切片等等,其接口设计与Numpy极为相似。更详细的使用方法,会在第三章系统讲解。 | |||
# | |||
# Tensor和Numpy的数组之间的互操作非常容易且快速。对于Tensor不支持的操作,可以先转为Numpy数组处理,之后再转回Tensor。 | |||
a = t.ones(5) # 新建一个全1的Tensor | |||
a | |||
b = a.numpy() # Tensor -> Numpy | |||
b | |||
import numpy as np | |||
a = np.ones(5) | |||
b = t.from_numpy(a) # Numpy->Tensor | |||
print(a) | |||
print(b) | |||
# Tensor和numpy对象共享内存,所以他们之间的转换很快,而且几乎不会消耗什么资源。但这也意味着,如果其中一个变了,另外一个也会随之改变。 | |||
b.add_(1) # 以`_`结尾的函数会修改自身 | |||
print(a) | |||
print(b) # Tensor和Numpy共享内存 | |||
# Tensor可通过`.cuda` 方法转为GPU的Tensor,从而享受GPU带来的加速运算。 | |||
# 在不支持CUDA的机器下,下一步不会运行 | |||
if t.cuda.is_available(): | |||
x = x.cuda() | |||
y = y.cuda() | |||
x + y | |||
# 此处可能发现GPU运算的速度并未提升太多,这是因为x和y太小且运算也较为简单,而且将数据从内存转移到显存还需要花费额外的开销。GPU的优势需在大规模数据和复杂运算下才能体现出来。 | |||
# | |||
# ### Autograd: 自动微分 | |||
# | |||
# 深度学习的算法本质上是通过反向传播求导数,而PyTorch的**`Autograd`**模块则实现了此功能。在Tensor上的所有操作,Autograd都能为它们自动提供微分,避免了手动计算导数的复杂过程。 | |||
# | |||
# `autograd.Variable`是Autograd中的核心类,它简单封装了Tensor,并支持几乎所有Tensor有的操作。Tensor在被封装为Variable之后,可以调用它的`.backward`实现反向传播,自动计算所有梯度。Variable的数据结构如图2-6所示。 | |||
# | |||
# | |||
#  | |||
# | |||
# | |||
# Variable主要包含三个属性。 | |||
# - `data`:保存Variable所包含的Tensor | |||
# - `grad`:保存`data`对应的梯度,`grad`也是个Variable,而不是Tensor,它和`data`的形状一样。 | |||
# - `grad_fn`:指向一个`Function`对象,这个`Function`用来反向传播计算输入的梯度,具体细节会在下一章讲解。 | |||
from torch.autograd import Variable | |||
# + {"scrolled": true} | |||
# 使用Tensor新建一个Variable | |||
x = Variable(t.ones(2, 2), requires_grad = True) | |||
x | |||
# + {"scrolled": true} | |||
y = x.sum() | |||
y | |||
# - | |||
y.grad_fn | |||
y.backward() # 反向传播,计算梯度 | |||
# y = x.sum() = (x[0][0] + x[0][1] + x[1][0] + x[1][1]) | |||
# 每个值的梯度都为1 | |||
x.grad | |||
# 注意:`grad`在反向传播过程中是累加的(accumulated),**这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以反向传播之前需把梯度清零。** | |||
y.backward() | |||
x.grad | |||
# + {"scrolled": true} | |||
y.backward() | |||
x.grad | |||
# - | |||
# 以下划线结束的函数是inplace操作,就像add_ | |||
x.grad.data.zero_() | |||
y.backward() | |||
x.grad | |||
# Variable和Tensor具有近乎一致的接口,在实际使用中可以无缝切换。 | |||
x = Variable(t.ones(4,5)) | |||
y = t.cos(x) | |||
x_tensor_cos = t.cos(x.data) | |||
print(y) | |||
x_tensor_cos | |||
# ### 神经网络 | |||
# | |||
# Autograd实现了反向传播功能,但是直接用来写深度学习的代码在很多情况下还是稍显复杂,torch.nn是专门为神经网络设计的模块化接口。nn构建于 Autograd之上,可用来定义和运行神经网络。nn.Module是nn中最重要的类,可把它看成是一个网络的封装,包含网络各层定义以及forward方法,调用forward(input)方法,可返回前向传播的结果。下面就以最早的卷积神经网络:LeNet为例,来看看如何用`nn.Module`实现。LeNet的网络结构如图2-7所示。 | |||
# | |||
#  | |||
# | |||
# 这是一个基础的前向传播(feed-forward)网络: 接收输入,经过层层传递运算,得到输出。 | |||
# | |||
# #### 定义网络 | |||
# | |||
# 定义网络时,需要继承`nn.Module`,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数`__init__`中。如果某一层(如ReLU)不具有可学习的参数,则既可以放在构造函数中,也可以不放,但建议不放在其中,而在forward中使用`nn.functional`代替。 | |||
# + | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
class Net(nn.Module): | |||
def __init__(self): | |||
# nn.Module子类的函数必须在构造函数中执行父类的构造函数 | |||
# 下式等价于nn.Module.__init__(self) | |||
super(Net, self).__init__() | |||
# 卷积层 '1'表示输入图片为单通道, '6'表示输出通道数,'5'表示卷积核为5*5 | |||
self.conv1 = nn.Conv2d(1, 6, 5) | |||
# 卷积层 | |||
self.conv2 = nn.Conv2d(6, 16, 5) | |||
# 仿射层/全连接层,y = Wx + b | |||
self.fc1 = nn.Linear(16*5*5, 120) | |||
self.fc2 = nn.Linear(120, 84) | |||
self.fc3 = nn.Linear(84, 10) | |||
def forward(self, x): | |||
# 卷积 -> 激活 -> 池化 | |||
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) | |||
x = F.max_pool2d(F.relu(self.conv2(x)), 2) | |||
# reshape,‘-1’表示自适应 | |||
x = x.view(x.size()[0], -1) | |||
x = F.relu(self.fc1(x)) | |||
x = F.relu(self.fc2(x)) | |||
x = self.fc3(x) | |||
return x | |||
net = Net() | |||
print(net) | |||
# - | |||
# 只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用`Autograd`)。在`forward` 函数中可使用任何Variable支持的函数,还可以使用if、for循环、print、log等Python语法,写法和标准的Python写法一致。 | |||
# | |||
# 网络的可学习参数通过`net.parameters()`返回,`net.named_parameters`可同时返回可学习的参数及名称。 | |||
params = list(net.parameters()) | |||
print(len(params)) | |||
for name,parameters in net.named_parameters(): | |||
print(name,':',parameters.size()) | |||
# forward函数的输入和输出都是Variable,只有Variable才具有自动求导功能,而Tensor是没有的,所以在输入时,需把Tensor封装成Variable。 | |||
# + {"scrolled": true} | |||
input = Variable(t.randn(1, 1, 32, 32)) | |||
out = net(input) | |||
out.size() | |||
# - | |||
net.zero_grad() # 所有参数的梯度清零 | |||
out.backward(Variable(t.ones(1,10))) # 反向传播 | |||
# 需要注意的是,torch.nn只支持mini-batches,不支持一次只输入一个样本,即一次必须是一个batch。但如果只想输入一个样本,则用 `input.unsqueeze(0)`将batch_size设为1。例如 `nn.Conv2d` 输入必须是4维的,形如$nSamples \times nChannels \times Height \times Width$。可将nSample设为1,即$1 \times nChannels \times Height \times Width$。 | |||
# #### 损失函数 | |||
# | |||
# nn实现了神经网络中大多数的损失函数,例如nn.MSELoss用来计算均方误差,nn.CrossEntropyLoss用来计算交叉熵损失。 | |||
# + {"scrolled": true} | |||
output = net(input) | |||
target = Variable(t.arange(0,10)) | |||
criterion = nn.MSELoss() | |||
loss = criterion(output, target) | |||
loss | |||
# - | |||
# 如果对loss进行反向传播溯源(使用`gradfn`属性),可看到它的计算图如下: | |||
# | |||
# ``` | |||
# input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d | |||
# -> view -> linear -> relu -> linear -> relu -> linear | |||
# -> MSELoss | |||
# -> loss | |||
# ``` | |||
# | |||
# 当调用`loss.backward()`时,该图会动态生成并自动微分,也即会自动计算图中参数(Parameter)的导数。 | |||
# 运行.backward,观察调用之前和调用之后的grad | |||
net.zero_grad() # 把net中所有可学习参数的梯度清零 | |||
print('反向传播之前 conv1.bias的梯度') | |||
print(net.conv1.bias.grad) | |||
loss.backward() | |||
print('反向传播之后 conv1.bias的梯度') | |||
print(net.conv1.bias.grad) | |||
# #### 优化器 | |||
# 在反向传播计算完所有参数的梯度后,还需要使用优化方法来更新网络的权重和参数,例如随机梯度下降法(SGD)的更新策略如下: | |||
# ``` | |||
# weight = weight - learning_rate * gradient | |||
# ``` | |||
# | |||
# 手动实现如下: | |||
# | |||
# ```python | |||
# learning_rate = 0.01 | |||
# for f in net.parameters(): | |||
# f.data.sub_(f.grad.data * learning_rate)# inplace 减法 | |||
# ``` | |||
# | |||
# `torch.optim`中实现了深度学习中绝大多数的优化方法,例如RMSProp、Adam、SGD等,更便于使用,因此大多数时候并不需要手动写上述代码。 | |||
# + | |||
import torch.optim as optim | |||
#新建一个优化器,指定要调整的参数和学习率 | |||
optimizer = optim.SGD(net.parameters(), lr = 0.01) | |||
# 在训练过程中 | |||
# 先梯度清零(与net.zero_grad()效果一样) | |||
optimizer.zero_grad() | |||
# 计算损失 | |||
output = net(input) | |||
loss = criterion(output, target) | |||
#反向传播 | |||
loss.backward() | |||
#更新参数 | |||
optimizer.step() | |||
# - | |||
# | |||
# | |||
# #### 数据加载与预处理 | |||
# | |||
# 在深度学习中数据加载及预处理是非常复杂繁琐的,但PyTorch提供了一些可极大简化和加快数据处理流程的工具。同时,对于常用的数据集,PyTorch也提供了封装好的接口供用户快速调用,这些数据集主要保存在torchvison中。 | |||
# | |||
# `torchvision`实现了常用的图像数据加载功能,例如Imagenet、CIFAR10、MNIST等,以及常用的数据转换操作,这极大地方便了数据加载,并且代码具有可重用性。 | |||
# | |||
# | |||
# ### 小试牛刀:CIFAR-10分类 | |||
# | |||
# 下面我们来尝试实现对CIFAR-10数据集的分类,步骤如下: | |||
# | |||
# 1. 使用torchvision加载并预处理CIFAR-10数据集 | |||
# 2. 定义网络 | |||
# 3. 定义损失函数和优化器 | |||
# 4. 训练网络并更新网络参数 | |||
# 5. 测试网络 | |||
# | |||
# #### CIFAR-10数据加载及预处理 | |||
# | |||
# CIFAR-10[^3]是一个常用的彩色图片数据集,它有10个类别: 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'。每张图片都是$3\times32\times32$,也即3-通道彩色图片,分辨率为$32\times32$。 | |||
# | |||
# [^3]: http://www.cs.toronto.edu/~kriz/cifar.html | |||
import torch as t | |||
import torchvision as tv | |||
import torchvision.transforms as transforms | |||
from torchvision.transforms import ToPILImage | |||
show = ToPILImage() # 可以把Tensor转成Image,方便可视化 | |||
# + | |||
# 第一次运行程序torchvision会自动下载CIFAR-10数据集, | |||
# 大约100M,需花费一定的时间, | |||
# 如果已经下载有CIFAR-10,可通过root参数指定 | |||
# 定义对数据的预处理 | |||
transform = transforms.Compose([ | |||
transforms.ToTensor(), # 转为Tensor | |||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化 | |||
]) | |||
# 训练集 | |||
trainset = tv.datasets.CIFAR10( | |||
root='../data/', | |||
train=True, | |||
download=True, | |||
transform=transform) | |||
trainloader = t.utils.data.DataLoader( | |||
trainset, | |||
batch_size=4, | |||
shuffle=True, | |||
num_workers=2) | |||
# 测试集 | |||
testset = tv.datasets.CIFAR10( | |||
'../data/', | |||
train=False, | |||
download=True, | |||
transform=transform) | |||
testloader = t.utils.data.DataLoader( | |||
testset, | |||
batch_size=4, | |||
shuffle=False, | |||
num_workers=2) | |||
classes = ('plane', 'car', 'bird', 'cat', | |||
'deer', 'dog', 'frog', 'horse', 'ship', 'truck') | |||
# - | |||
# Dataset对象是一个数据集,可以按下标访问,返回形如(data, label)的数据。 | |||
# + | |||
(data, label) = trainset[100] | |||
print(classes[label]) | |||
# (data + 1) / 2是为了还原被归一化的数据 | |||
show((data + 1) / 2).resize((100, 100)) | |||
# - | |||
# Dataloader是一个可迭代的对象,它将dataset返回的每一条数据拼接成一个batch,并提供多线程加速优化和数据打乱等操作。当程序对dataset的所有数据遍历完一遍之后,相应的对Dataloader也完成了一次迭代。 | |||
dataiter = iter(trainloader) | |||
images, labels = dataiter.next() # 返回4张图片及标签 | |||
print(' '.join('%11s'%classes[labels[j]] for j in range(4))) | |||
show(tv.utils.make_grid((images+1)/2)).resize((400,100)) | |||
# #### 定义网络 | |||
# | |||
# 拷贝上面的LeNet网络,修改self.conv1第一个参数为3通道,因CIFAR-10是3通道彩图。 | |||
# + | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
class Net(nn.Module): | |||
def __init__(self): | |||
super(Net, self).__init__() | |||
self.conv1 = nn.Conv2d(3, 6, 5) | |||
self.conv2 = nn.Conv2d(6, 16, 5) | |||
self.fc1 = nn.Linear(16*5*5, 120) | |||
self.fc2 = nn.Linear(120, 84) | |||
self.fc3 = nn.Linear(84, 10) | |||
def forward(self, x): | |||
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) | |||
x = F.max_pool2d(F.relu(self.conv2(x)), 2) | |||
x = x.view(x.size()[0], -1) | |||
x = F.relu(self.fc1(x)) | |||
x = F.relu(self.fc2(x)) | |||
x = self.fc3(x) | |||
return x | |||
net = Net() | |||
print(net) | |||
# - | |||
# #### 定义损失函数和优化器(loss和optimizer) | |||
from torch import optim | |||
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数 | |||
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) | |||
# ### 训练网络 | |||
# | |||
# 所有网络的训练流程都是类似的,不断地执行如下流程: | |||
# | |||
# - 输入数据 | |||
# - 前向传播+反向传播 | |||
# - 更新参数 | |||
# | |||
# + | |||
from torch.autograd import Variable | |||
t.set_num_threads(8) | |||
for epoch in range(2): | |||
running_loss = 0.0 | |||
for i, data in enumerate(trainloader, 0): | |||
# 输入数据 | |||
inputs, labels = data | |||
inputs, labels = Variable(inputs), Variable(labels) | |||
# 梯度清零 | |||
optimizer.zero_grad() | |||
# forward + backward | |||
outputs = net(inputs) | |||
loss = criterion(outputs, labels) | |||
loss.backward() | |||
# 更新参数 | |||
optimizer.step() | |||
# 打印log信息 | |||
running_loss += loss.data[0] | |||
if i % 2000 == 1999: # 每2000个batch打印一下训练状态 | |||
print('[%d, %5d] loss: %.3f' \ | |||
% (epoch+1, i+1, running_loss / 2000)) | |||
running_loss = 0.0 | |||
print('Finished Training') | |||
# - | |||
# 此处仅训练了2个epoch(遍历完一遍数据集称为一个epoch),来看看网络有没有效果。将测试图片输入到网络中,计算它的label,然后与实际的label进行比较。 | |||
dataiter = iter(testloader) | |||
images, labels = dataiter.next() # 一个batch返回4张图片 | |||
print('实际的label: ', ' '.join(\ | |||
'%08s'%classes[labels[j]] for j in range(4))) | |||
show(tv.utils.make_grid(images / 2 - 0.5)).resize((400,100)) | |||
# 接着计算网络预测的label: | |||
# + | |||
# 计算图片在每个类别上的分数 | |||
outputs = net(Variable(images)) | |||
# 得分最高的那个类 | |||
_, predicted = t.max(outputs.data, 1) | |||
print('预测结果: ', ' '.join('%5s'\ | |||
% classes[predicted[j]] for j in range(4))) | |||
# - | |||
# 已经可以看出效果,准确率50%,但这只是一部分的图片,再来看看在整个测试集上的效果。 | |||
# + | |||
correct = 0 # 预测正确的图片数 | |||
total = 0 # 总共的图片数 | |||
for data in testloader: | |||
images, labels = data | |||
outputs = net(Variable(images)) | |||
_, predicted = t.max(outputs.data, 1) | |||
total += labels.size(0) | |||
correct += (predicted == labels).sum() | |||
print('10000张测试集中的准确率为: %d %%' % (100 * correct / total)) | |||
# - | |||
# 训练的准确率远比随机猜测(准确率10%)好,证明网络确实学到了东西。 | |||
# #### 在GPU训练 | |||
# 就像之前把Tensor从CPU转到GPU一样,模型也可以类似地从CPU转到GPU。 | |||
if t.cuda.is_available(): | |||
net.cuda() | |||
images = images.cuda() | |||
labels = labels.cuda() | |||
output = net(Variable(images)) | |||
loss= criterion(output,Variable(labels)) | |||
# 如果发现在GPU上并没有比CPU提速很多,实际上是因为网络比较小,GPU没有完全发挥自己的真正实力。 | |||
# 对PyTorch的基础介绍至此结束。总结一下,本节主要包含以下内容。 | |||
# | |||
# 1. Tensor: 类似Numpy数组的数据结构,与Numpy接口类似,可方便地互相转换。 | |||
# 2. autograd/Variable: Variable封装了Tensor,并提供自动求导功能。 | |||
# 3. nn: 专门为神经网络设计的接口,提供了很多有用的功能(神经网络层,损失函数,优化器等)。 | |||
# 4. 神经网络训练: 以CIFAR-10分类为例演示了神经网络的训练流程,包括数据加载、网络搭建、训练及测试。 | |||
# | |||
# 通过本节的学习,相信读者可以体会出PyTorch具有接口简单、使用灵活等特点。从下一章开始,本书将深入系统地讲解PyTorch的各部分知识。 |
@@ -0,0 +1 @@ | |||
<meta HTTP-EQUIV="REFRESH" content="0; url=http://www.cs.toronto.edu/~kriz/cifar.html"> |
@@ -0,0 +1,64 @@ | |||
import torch as t | |||
from torch import nn, optim | |||
from torch.autograd import Variable | |||
import numpy as np | |||
import matplotlib.pyplot as plt | |||
# create numpy data | |||
x_train = np.linspace(0, 10, 100) | |||
y_train = 10*x_train + 4.5 | |||
# convert to tensor (need to change nx1, float32 dtype) | |||
x_train = t.from_numpy(x_train.reshape(-1, 1).astype("float32")) | |||
y_train = t.from_numpy(y_train.reshape(-1, 1).astype("float32")) | |||
# Linear Regression Model | |||
class LinearRegression(nn.Module): | |||
def __init__(self): | |||
super(LinearRegression, self).__init__() | |||
self.linear = nn.Linear(1, 1) # input and output is 1 dimension | |||
def forward(self, x): | |||
out = self.linear(x) | |||
return out | |||
# create the model | |||
model = LinearRegression() | |||
# 定义loss和优化函数 | |||
criterion = nn.MSELoss() | |||
optimizer = optim.SGD(model.parameters(), lr=1e-4) | |||
# 开始训练 | |||
num_epochs = 1000 | |||
for epoch in range(num_epochs): | |||
inputs = Variable(x_train) | |||
target = Variable(y_train) | |||
# forward | |||
out = model(inputs) | |||
loss = criterion(out, target) | |||
# backward | |||
optimizer.zero_grad() | |||
loss.backward() | |||
optimizer.step() | |||
if (epoch+1) % 20 == 0: | |||
print('Epoch[{}/{}], loss: {:.6f}' | |||
.format(epoch+1, num_epochs, loss.data[0])) | |||
model.eval() | |||
predict = model(Variable(x_train)) | |||
predict = predict.data.numpy() | |||
plt.plot(x_train.numpy(), y_train.numpy(), 'ro', label='Original data') | |||
plt.plot(x_train.numpy(), predict, label='Fitting Line') | |||
# 显示图例 | |||
plt.legend() | |||
plt.show() | |||
# 保存模型 | |||
t.save(model.state_dict(), './model_LinearRegression.pth') |
@@ -0,0 +1,115 @@ | |||
import torch as t | |||
from torch import nn, optim | |||
import torch.nn.functional as F | |||
from torch.autograd import Variable | |||
from torch.utils.data import DataLoader | |||
from torchvision import transforms | |||
from torchvision import datasets | |||
import time | |||
# 定义超参数 | |||
batch_size = 32 | |||
learning_rate = 1e-3 | |||
num_epoches = 100 | |||
# 下载训练集 MNIST 手写数字训练集 | |||
dataset_path = "../data/mnist" | |||
train_dataset = datasets.MNIST( | |||
root=dataset_path, train=True, transform=transforms.ToTensor(), download=True) | |||
test_dataset = datasets.MNIST( | |||
root=dataset_path, train=False, transform=transforms.ToTensor()) | |||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) | |||
# 定义 Logistic Regression 模型 | |||
class Logstic_Regression(nn.Module): | |||
def __init__(self, in_dim, n_class): | |||
super(Logstic_Regression, self).__init__() | |||
self.logstic = nn.Linear(in_dim, n_class) | |||
def forward(self, x): | |||
out = self.logstic(x) | |||
return out | |||
model = Logstic_Regression(28 * 28, 10) # 图片大小是28x28 | |||
use_gpu = t.cuda.is_available() # 判断是否有GPU加速 | |||
if use_gpu: | |||
model = model.cuda() | |||
# 定义loss和optimizer | |||
criterion = nn.CrossEntropyLoss() | |||
optimizer = optim.SGD(model.parameters(), lr=learning_rate) | |||
# 开始训练 | |||
for epoch in range(num_epoches): | |||
print('*' * 10) | |||
print('epoch {}'.format(epoch + 1)) | |||
since = time.time() | |||
running_loss = 0.0 | |||
running_acc = 0.0 | |||
for i, data in enumerate(train_loader, 1): | |||
img, label = data | |||
img = img.view(img.size(0), -1) # 将图片展开成 28x28 | |||
if use_gpu: | |||
img = Variable(img).cuda() | |||
label = Variable(label).cuda() | |||
else: | |||
img = Variable(img) | |||
label = Variable(label) | |||
# 向前传播 | |||
out = model(img) | |||
loss = criterion(out, label) | |||
running_loss += loss.data[0] * label.size(0) | |||
_, pred = t.max(out, 1) | |||
num_correct = (pred == label).sum() | |||
running_acc += num_correct.data[0] | |||
# 向后传播 | |||
optimizer.zero_grad() | |||
loss.backward() | |||
optimizer.step() | |||
if i % 300 == 0: | |||
print('[{}/{}] Loss: {:.6f}, Acc: {:.6f}'.format( | |||
epoch + 1, num_epoches, running_loss / (batch_size * i), | |||
running_acc / (batch_size * i))) | |||
print('Finish {} epoch, Loss: {:.6f}, Acc: {:.6f}'.format( | |||
epoch + 1, running_loss / (len(train_dataset)), running_acc / (len( | |||
train_dataset)))) | |||
model.eval() | |||
eval_loss = 0. | |||
eval_acc = 0. | |||
for data in test_loader: | |||
img, label = data | |||
img = img.view(img.size(0), -1) | |||
if use_gpu: | |||
img = Variable(img, volatile=True).cuda() | |||
label = Variable(label, volatile=True).cuda() | |||
else: | |||
img = Variable(img, volatile=True) | |||
label = Variable(label, volatile=True) | |||
out = model(img) | |||
loss = criterion(out, label) | |||
eval_loss += loss.data[0] * label.size(0) | |||
_, pred = t.max(out, 1) | |||
num_correct = (pred == label).sum() | |||
eval_acc += num_correct.data[0] | |||
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len( | |||
test_dataset)), eval_acc / (len(test_dataset)))) | |||
print('Time:{:.1f} s'.format(time.time() - since)) | |||
print() | |||
# 保存模型 | |||
t.save(model.state_dict(), './model_LogsticRegression.pth') |
@@ -0,0 +1,104 @@ | |||
import torch | |||
from torch import nn, optim | |||
from torch.autograd import Variable | |||
from torch.utils.data import DataLoader | |||
from torchvision import transforms | |||
from torchvision import datasets | |||
batch_size = 32 | |||
learning_rate = 1e-2 | |||
num_epoches = 50 | |||
# 下载训练集 MNIST 手写数字训练集 | |||
dataset_path = "../data/mnist" | |||
train_dataset = datasets.MNIST( | |||
root=dataset_path, train=True, transform=transforms.ToTensor(), download=True) | |||
test_dataset = datasets.MNIST( | |||
root=dataset_path, train=False, transform=transforms.ToTensor()) | |||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) | |||
# 定义简单的前馈神经网络 | |||
class Neuralnetwork(nn.Module): | |||
def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim): | |||
super(Neuralnetwork, self).__init__() | |||
self.layer1 = nn.Linear(in_dim, n_hidden_1) | |||
self.layer2 = nn.Linear(n_hidden_1, n_hidden_2) | |||
self.layer3 = nn.Linear(n_hidden_2, out_dim) | |||
def forward(self, x): | |||
x = self.layer1(x) | |||
x = self.layer2(x) | |||
x = self.layer3(x) | |||
return x | |||
model = Neuralnetwork(28 * 28, 300, 100, 10) | |||
if torch.cuda.is_available(): | |||
model = model.cuda() | |||
criterion = nn.CrossEntropyLoss() | |||
optimizer = optim.SGD(model.parameters(), lr=learning_rate) | |||
for epoch in range(num_epoches): | |||
print('epoch {}'.format(epoch + 1)) | |||
print('*' * 10) | |||
running_loss = 0.0 | |||
running_acc = 0.0 | |||
for i, data in enumerate(train_loader, 1): | |||
img, label = data | |||
img = img.view(img.size(0), -1) | |||
if torch.cuda.is_available(): | |||
img = Variable(img).cuda() | |||
label = Variable(label).cuda() | |||
else: | |||
img = Variable(img) | |||
label = Variable(label) | |||
# 向前传播 | |||
out = model(img) | |||
loss = criterion(out, label) | |||
running_loss += loss.data[0] * label.size(0) | |||
_, pred = torch.max(out, 1) | |||
num_correct = (pred == label).sum() | |||
running_acc += num_correct.data[0] | |||
# 向后传播 | |||
optimizer.zero_grad() | |||
loss.backward() | |||
optimizer.step() | |||
if i % 300 == 0: | |||
print('[{}/{}] Loss: {:.6f}, Acc: {:.6f}'.format( | |||
epoch + 1, num_epoches, running_loss / (batch_size * i), | |||
running_acc / (batch_size * i))) | |||
print('Finish {} epoch, Loss: {:.6f}, Acc: {:.6f}'.format( | |||
epoch + 1, running_loss / (len(train_dataset)), running_acc / (len( | |||
train_dataset)))) | |||
model.eval() | |||
eval_loss = 0. | |||
eval_acc = 0. | |||
for data in test_loader: | |||
img, label = data | |||
img = img.view(img.size(0), -1) | |||
if torch.cuda.is_available(): | |||
img = Variable(img, volatile=True).cuda() | |||
label = Variable(label, volatile=True).cuda() | |||
else: | |||
img = Variable(img, volatile=True) | |||
label = Variable(label, volatile=True) | |||
out = model(img) | |||
loss = criterion(out, label) | |||
eval_loss += loss.data[0] * label.size(0) | |||
_, pred = torch.max(out, 1) | |||
num_correct = (pred == label).sum() | |||
eval_acc += num_correct.data[0] | |||
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len( | |||
test_dataset)), eval_acc / (len(test_dataset)))) | |||
print() | |||
# 保存模型 | |||
torch.save(model.state_dict(), './neural_network.pth') |
@@ -0,0 +1,54 @@ | |||
import os | |||
import torch as t | |||
import torchvision as tv | |||
import torchvision.transforms as transforms | |||
from torchvision.transforms import ToPILImage | |||
show = ToPILImage() # 可以把Tensor转成Image,方便可视化 | |||
# 第一次运行程序torchvision会自动下载CIFAR-10数据集, | |||
# 大约100M,需花费一定的时间, | |||
# 如果已经下载有CIFAR-10,可通过root参数指定 | |||
# 定义对数据的预处理 | |||
transform = transforms.Compose([ | |||
transforms.ToTensor(), # 转为Tensor | |||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化 | |||
]) | |||
# set data storage dir & check whether do download | |||
data_path = "../data/" | |||
p = os.path.join(data_path, "cifar-10-batches-py") | |||
do_download = True | |||
if os.path.isdir(p): | |||
do_download = False | |||
# 训练集 | |||
trainset = tv.datasets.CIFAR10( | |||
root=data_path, | |||
train=True, | |||
download=do_download, | |||
transform=transform) | |||
trainloader = t.utils.data.DataLoader( | |||
trainset, | |||
batch_size=4, | |||
shuffle=True, | |||
num_workers=2) | |||
# 测试集 | |||
testset = tv.datasets.CIFAR10( | |||
root=data_path, | |||
train=False, | |||
download=do_download, | |||
transform=transform) | |||
testloader = t.utils.data.DataLoader( | |||
testset, | |||
batch_size=4, | |||
shuffle=False, | |||
num_workers=2) | |||
classes = ('plane', 'car', 'bird', 'cat', 'deer', | |||
'dog', 'frog', 'horse', 'ship', 'truck') |
@@ -314,6 +314,75 @@ | |||
"data = np.concatenate((x, yy), axis=1)\n", | |||
"np.savetxt(\"dataset_circles.csv\", data, delimiter=\",\")" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"## CIFAR-10数据\n", | |||
"\n", | |||
"CIFAR-10[^3]是一个常用的彩色图片数据集,它有10个类别: 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'。每张图片都是$3\\times32\\times32$,也即3-通道彩色图片,分辨率为$32\\times32$。\n", | |||
"\n", | |||
"[^3]: http://www.cs.toronto.edu/~kriz/cifar.html" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"import torchvision as tv\n", | |||
"import torchvision.transforms as transforms\n", | |||
"from torchvision.transforms import ToPILImage\n", | |||
"show = ToPILImage() # 可以把Tensor转成Image,方便可视化" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"# 第一次运行程序torchvision会自动下载CIFAR-10数据集,\n", | |||
"# 大约100M,需花费一定的时间,\n", | |||
"# 如果已经下载有CIFAR-10,可通过root参数指定\n", | |||
"\n", | |||
"# 定义对数据的预处理\n", | |||
"transform = transforms.Compose([\n", | |||
" transforms.ToTensor(), # 转为Tensor\n", | |||
" transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化\n", | |||
" ])\n", | |||
"\n", | |||
"# 训练集\n", | |||
"trainset = tv.datasets.CIFAR10(\n", | |||
" root='../data/', \n", | |||
" train=True, \n", | |||
" download=True,\n", | |||
" transform=transform)\n", | |||
"\n", | |||
"trainloader = t.utils.data.DataLoader(\n", | |||
" trainset, \n", | |||
" batch_size=4,\n", | |||
" shuffle=True, \n", | |||
" num_workers=2)\n", | |||
"\n", | |||
"# 测试集\n", | |||
"testset = tv.datasets.CIFAR10(\n", | |||
" '../data/',\n", | |||
" train=False, \n", | |||
" download=True, \n", | |||
" transform=transform)\n", | |||
"\n", | |||
"testloader = t.utils.data.DataLoader(\n", | |||
" testset,\n", | |||
" batch_size=4, \n", | |||
" shuffle=False,\n", | |||
" num_workers=2)\n", | |||
"\n", | |||
"classes = ('plane', 'car', 'bird', 'cat', 'deer', \n", | |||
" 'dog', 'frog', 'horse', 'ship', 'truck')" | |||
] | |||
} | |||
], | |||
"metadata": { | |||
@@ -174,3 +174,55 @@ plt.show() | |||
yy = y.reshape(-1, 1) | |||
data = np.concatenate((x, yy), axis=1) | |||
np.savetxt("dataset_circles.csv", data, delimiter=",") | |||
# - | |||
# ## CIFAR-10数据 | |||
# | |||
# CIFAR-10[^3]是一个常用的彩色图片数据集,它有10个类别: 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'。每张图片都是$3\times32\times32$,也即3-通道彩色图片,分辨率为$32\times32$。 | |||
# | |||
# [^3]: http://www.cs.toronto.edu/~kriz/cifar.html | |||
import torchvision as tv | |||
import torchvision.transforms as transforms | |||
from torchvision.transforms import ToPILImage | |||
show = ToPILImage() # 可以把Tensor转成Image,方便可视化 | |||
# + | |||
# 第一次运行程序torchvision会自动下载CIFAR-10数据集, | |||
# 大约100M,需花费一定的时间, | |||
# 如果已经下载有CIFAR-10,可通过root参数指定 | |||
# 定义对数据的预处理 | |||
transform = transforms.Compose([ | |||
transforms.ToTensor(), # 转为Tensor | |||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化 | |||
]) | |||
# 训练集 | |||
trainset = tv.datasets.CIFAR10( | |||
root='../data/', | |||
train=True, | |||
download=True, | |||
transform=transform) | |||
trainloader = t.utils.data.DataLoader( | |||
trainset, | |||
batch_size=4, | |||
shuffle=True, | |||
num_workers=2) | |||
# 测试集 | |||
testset = tv.datasets.CIFAR10( | |||
'../data/', | |||
train=False, | |||
download=True, | |||
transform=transform) | |||
testloader = t.utils.data.DataLoader( | |||
testset, | |||
batch_size=4, | |||
shuffle=False, | |||
num_workers=2) | |||
classes = ('plane', 'car', 'bird', 'cat', 'deer', | |||
'dog', 'frog', 'horse', 'ship', 'truck') |