Browse Source

add english version to logestic regression

pull/1/MERGE
Geoff 4 years ago
parent
commit
6d564cdb6b
4 changed files with 215 additions and 955 deletions
  1. +1
    -1
      3_kmeans/1-k-means.ipynb
  2. +140
    -884
      4_logistic_regression/1-Least_squares_EN.ipynb
  3. +5
    -4
      4_logistic_regression/2-Logistic_regression.ipynb
  4. +69
    -66
      4_logistic_regression/2-Logistic_regression_EN.ipynb

+ 1
- 1
3_kmeans/1-k-means.ipynb View File

@@ -955,7 +955,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
"version": "3.6.8"
}
},
"nbformat": 4,


+ 140
- 884
4_logistic_regression/1-Least_squares_EN.ipynb
File diff suppressed because it is too large
View File


+ 5
- 4
4_logistic_regression/2-Logistic_regression.ipynb View File

@@ -114,7 +114,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数$g(z)$将为假设函数来预测。$g(z)$可以将连续值映射到0到1之间。线性回归模型的表达式带入$g(z)$,就得到逻辑回归的表达式:\n",
"逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数$g(z)$将为假设函数来预测。$g(z)$可以将连续值映射到0到1之间。线性回归模型的表达式带入$g(z)$,就得到逻辑回归的表达式:\n",
"\n",
"$$\n",
"h_\\theta(x) = g(\\theta^T x) = \\frac{1}{1+e^{-\\theta^T x}}\n",
@@ -262,6 +262,7 @@
" pred_func (callable): 预测函数\n",
" data (numpy.ndarray): 训练数据集合\n",
" label (numpy.ndarray): 训练数据标签\n",
" 散开数据,但是不在原来的数据上做修改\n",
" \"\"\"\n",
" x_min, x_max = data[:, 0].min() - .5, data[:, 0].max() + .5\n",
" y_min, y_max = data[:, 1].min() - .5, data[:, 1].max() + .5\n",
@@ -272,7 +273,7 @@
" Z = predict_func(np.c_[xx.ravel(), yy.ravel()])\n",
" Z = Z.reshape(xx.shape)\n",
"\n",
" plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)\n",
" plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) #画出登高线并填充\n",
" plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral)\n",
" plt.show()\n",
"\n"
@@ -350,7 +351,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. 如何使用sklearn解逻辑回归"
"## 2.如何用sklearn解逻辑回归问题?"
]
},
{
@@ -478,7 +479,7 @@
"\n",
"针对机器学习的问题,一个比较好的方法是通过降维的方法将原始的高维特征降到2-3维并可视化处理,通过这样的方法可以对所要处理的数据有一个初步的认识。这里介绍最简单的降维方法主成分分析(Principal Component Analysis, PCA).\n",
"\n",
"PCA寻求具有最大方差的特征的正交线性组合,因此可以更好地了解数据的结构。在这里,我们将使用Randomized PCA,因为当数据个数$N$比较大,计算的效率更好。\n"
"PCA寻求具有最大方差的特征的正交线性组合,因此可以更好地了解数据的结构。在这里,我们将使用Randomized PCA,因为当数据个数$N$比较大,计算的效率更好。\n"
]
},
{


+ 69
- 66
4_logistic_regression/2-Logistic_regression_EN.ipynb
File diff suppressed because it is too large
View File


Loading…
Cancel
Save