@@ -2,3 +2,4 @@ | |||
.idea | |||
*.tar.gz | |||
*.pth | |||
__pycache__ |
@@ -22,28 +22,28 @@ | |||
{ | |||
"data": { | |||
"text/plain": [ | |||
"['0-ipython_notebook.ipynb',\n", | |||
" '0-ipython_notebook_EN.ipynb',\n", | |||
" '1_Basics.ipynb',\n", | |||
"['.ipynb_checkpoints',\n", | |||
" 'Python.pdf',\n", | |||
" '1_Basics_EN.ipynb',\n", | |||
" '2_Print_Statement.ipynb',\n", | |||
" '2_Print_Statement_EN.ipynb',\n", | |||
" '3_Data_Structure_1.ipynb',\n", | |||
" '3_Data_Structure_1_EN.ipynb',\n", | |||
" '4_Data_Structure_2.ipynb',\n", | |||
" '4_Data_Structure_2_EN.ipynb',\n", | |||
" '5_Control_Flow.ipynb',\n", | |||
" '5_Control_Flow_EN.ipynb',\n", | |||
" '6_Function.ipynb',\n", | |||
" '6_Function_EN.ipynb',\n", | |||
" '7_Class.ipynb',\n", | |||
" '3_Data_Structure_1_EN.ipynb',\n", | |||
" '7_Class_EN.ipynb',\n", | |||
" 'Python.pdf',\n", | |||
" 'README.md',\n", | |||
" 'README_ENG.md',\n", | |||
" 'images',\n", | |||
" '0-ipython_notebook_EN.ipynb',\n", | |||
" 'test.txt',\n", | |||
" '.ipynb_checkpoints']" | |||
" 'README_ENG.md',\n", | |||
" '0-ipython_notebook.ipynb',\n", | |||
" '1_Basics.ipynb',\n", | |||
" '2_Print_Statement.ipynb',\n", | |||
" '3_Data_Structure_1.ipynb',\n", | |||
" '4_Data_Structure_2.ipynb',\n", | |||
" '5_Control_Flow.ipynb',\n", | |||
" '6_Function.ipynb',\n", | |||
" '7_Class.ipynb',\n", | |||
" 'README.md']" | |||
] | |||
}, | |||
"execution_count": 1, | |||
@@ -135,9 +135,7 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 3, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"x = 2\n", | |||
@@ -171,10 +169,8 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 5, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"execution_count": 6, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"x = y = 1" | |||
@@ -182,7 +178,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 7, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -228,7 +224,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 7, | |||
"execution_count": 8, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -237,7 +233,7 @@ | |||
"3" | |||
] | |||
}, | |||
"execution_count": 7, | |||
"execution_count": 8, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -248,7 +244,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 8, | |||
"execution_count": 9, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -257,7 +253,7 @@ | |||
"1" | |||
] | |||
}, | |||
"execution_count": 8, | |||
"execution_count": 9, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -268,7 +264,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 9, | |||
"execution_count": 10, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -277,7 +273,7 @@ | |||
"2" | |||
] | |||
}, | |||
"execution_count": 9, | |||
"execution_count": 10, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -288,7 +284,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 10, | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -297,7 +293,7 @@ | |||
"0.5" | |||
] | |||
}, | |||
"execution_count": 10, | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -315,7 +311,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 11, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -324,7 +320,7 @@ | |||
"0.5" | |||
] | |||
}, | |||
"execution_count": 11, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -335,7 +331,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 12, | |||
"execution_count": 13, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -344,7 +340,7 @@ | |||
"0.5" | |||
] | |||
}, | |||
"execution_count": 12, | |||
"execution_count": 13, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -355,7 +351,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 13, | |||
"execution_count": 14, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -364,7 +360,7 @@ | |||
"5" | |||
] | |||
}, | |||
"execution_count": 13, | |||
"execution_count": 14, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -382,7 +378,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 14, | |||
"execution_count": 15, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -391,7 +387,7 @@ | |||
"1.0" | |||
] | |||
}, | |||
"execution_count": 14, | |||
"execution_count": 15, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -423,10 +419,8 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 15, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"execution_count": 16, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"z = 1" | |||
@@ -434,7 +428,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 16, | |||
"execution_count": 17, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -443,7 +437,7 @@ | |||
"True" | |||
] | |||
}, | |||
"execution_count": 16, | |||
"execution_count": 17, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -454,7 +448,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 17, | |||
"execution_count": 18, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -463,7 +457,7 @@ | |||
"False" | |||
] | |||
}, | |||
"execution_count": 17, | |||
"execution_count": 18, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -495,10 +489,8 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 18, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"execution_count": 19, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"a = 2 #10\n", | |||
@@ -507,7 +499,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 19, | |||
"execution_count": 21, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -526,7 +518,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 20, | |||
"execution_count": 22, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -535,7 +527,7 @@ | |||
"2" | |||
] | |||
}, | |||
"execution_count": 20, | |||
"execution_count": 22, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -557,7 +549,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 21, | |||
"execution_count": 23, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -566,7 +558,7 @@ | |||
"10" | |||
] | |||
}, | |||
"execution_count": 21, | |||
"execution_count": 23, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -616,7 +608,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 22, | |||
"execution_count": 24, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -625,7 +617,7 @@ | |||
"'0xaa'" | |||
] | |||
}, | |||
"execution_count": 22, | |||
"execution_count": 24, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -636,7 +628,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 23, | |||
"execution_count": 25, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -645,7 +637,7 @@ | |||
"170" | |||
] | |||
}, | |||
"execution_count": 23, | |||
"execution_count": 25, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -656,7 +648,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 24, | |||
"execution_count": 26, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -665,7 +657,7 @@ | |||
"'0o10'" | |||
] | |||
}, | |||
"execution_count": 24, | |||
"execution_count": 26, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -683,7 +675,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 25, | |||
"execution_count": 27, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -711,7 +703,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 26, | |||
"execution_count": 28, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -737,7 +729,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 27, | |||
"execution_count": 29, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -746,7 +738,7 @@ | |||
"'b'" | |||
] | |||
}, | |||
"execution_count": 27, | |||
"execution_count": 29, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -757,7 +749,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 28, | |||
"execution_count": 30, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -766,7 +758,7 @@ | |||
"98" | |||
] | |||
}, | |||
"execution_count": 28, | |||
"execution_count": 30, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -791,7 +783,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 29, | |||
"execution_count": 31, | |||
"metadata": { | |||
"scrolled": false | |||
}, | |||
@@ -819,7 +811,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 30, | |||
"execution_count": 32, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -844,7 +836,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 31, | |||
"execution_count": 34, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -853,7 +845,7 @@ | |||
"(4, 1)" | |||
] | |||
}, | |||
"execution_count": 31, | |||
"execution_count": 34, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -871,7 +863,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 32, | |||
"execution_count": 35, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -925,7 +917,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 38, | |||
"execution_count": 36, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -960,14 +952,14 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 35, | |||
"execution_count": 39, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"Type something here and it will be stored in variable abc \thello\n" | |||
"Type something here and it will be stored in variable abc \t10\n" | |||
] | |||
} | |||
], | |||
@@ -977,7 +969,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 36, | |||
"execution_count": 40, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -986,7 +978,7 @@ | |||
"str" | |||
] | |||
}, | |||
"execution_count": 36, | |||
"execution_count": 40, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -84,7 +84,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 4, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -112,7 +112,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 3, | |||
"execution_count": 5, | |||
"metadata": { | |||
"scrolled": true | |||
}, | |||
@@ -143,7 +143,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 4, | |||
"execution_count": 6, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -174,7 +174,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 5, | |||
"execution_count": 9, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -207,7 +207,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 10, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -239,7 +239,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 9, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -270,7 +270,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 10, | |||
"execution_count": 13, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -287,7 +287,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 11, | |||
"execution_count": 14, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -304,7 +304,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 12, | |||
"execution_count": 15, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -328,7 +328,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 13, | |||
"execution_count": 16, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -352,7 +352,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 14, | |||
"execution_count": 17, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -369,7 +369,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 15, | |||
"execution_count": 18, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -411,7 +411,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 16, | |||
"execution_count": 19, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -420,7 +420,7 @@ | |||
"'3.121312'" | |||
] | |||
}, | |||
"execution_count": 16, | |||
"execution_count": 19, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -438,7 +438,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 17, | |||
"execution_count": 20, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -447,7 +447,7 @@ | |||
"'3.12131'" | |||
] | |||
}, | |||
"execution_count": 17, | |||
"execution_count": 20, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -465,7 +465,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 18, | |||
"execution_count": 21, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -474,7 +474,7 @@ | |||
"'-33.12131'" | |||
] | |||
}, | |||
"execution_count": 18, | |||
"execution_count": 21, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -492,7 +492,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 19, | |||
"execution_count": 22, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -501,7 +501,7 @@ | |||
"'00000000000003.12131'" | |||
] | |||
}, | |||
"execution_count": 19, | |||
"execution_count": 22, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -519,7 +519,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 21, | |||
"execution_count": 23, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -545,7 +545,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 23, | |||
"execution_count": 24, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -571,7 +571,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 16, | |||
"execution_count": 25, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -580,7 +580,7 @@ | |||
"'3.121 '" | |||
] | |||
}, | |||
"execution_count": 16, | |||
"execution_count": 25, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -18,10 +18,8 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 2, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"execution_count": 1, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"String0 = 'Taj Mahal is beautiful'\n", | |||
@@ -63,7 +61,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 3, | |||
"execution_count": 5, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -71,13 +69,15 @@ | |||
"output_type": "stream", | |||
"text": [ | |||
"M\n", | |||
"Mahal is beautiful\n" | |||
"Mahal is beautiful\n", | |||
"l\n" | |||
] | |||
} | |||
], | |||
"source": [ | |||
"print(String0[4])\n", | |||
"print(String0[4:])" | |||
"print(String0[4:])\n", | |||
"print(String0[-1])" | |||
] | |||
}, | |||
{ | |||
@@ -96,7 +96,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 3, | |||
"execution_count": 4, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -124,7 +124,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 4, | |||
"execution_count": 6, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -148,7 +148,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 5, | |||
"execution_count": 7, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -174,7 +174,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 8, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -199,7 +199,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 7, | |||
"execution_count": 9, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -208,7 +208,7 @@ | |||
"' Taj Mahal is beautiful '" | |||
] | |||
}, | |||
"execution_count": 7, | |||
"execution_count": 9, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -226,7 +226,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 8, | |||
"execution_count": 10, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -235,7 +235,7 @@ | |||
"'------------------------Taj Mahal is beautiful------------------------'" | |||
] | |||
}, | |||
"execution_count": 8, | |||
"execution_count": 10, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -253,7 +253,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 9, | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -262,7 +262,7 @@ | |||
"'00000000Taj Mahal is beautiful'" | |||
] | |||
}, | |||
"execution_count": 9, | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -280,7 +280,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 11, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -327,8 +327,8 @@ | |||
"evalue": "substring not found", | |||
"output_type": "error", | |||
"traceback": [ | |||
"\u001b[0;31m------------------------------------------\u001b[0m", | |||
"\u001b[0;31mValueError\u001b[0mTraceback (most recent call last)", | |||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |||
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |||
"\u001b[0;32m<ipython-input-13-a7d6b97b4839>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Taj'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Mahal'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mString0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Mahal'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |||
"\u001b[0;31mValueError\u001b[0m: substring not found" | |||
] | |||
@@ -557,7 +557,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 22, | |||
"execution_count": 21, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -584,7 +584,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 23, | |||
"execution_count": 22, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -610,7 +610,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 24, | |||
"execution_count": 23, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -619,7 +619,7 @@ | |||
"'TAJ MAHAL IS BEAUTIFUL'" | |||
] | |||
}, | |||
"execution_count": 24, | |||
"execution_count": 23, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -637,7 +637,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 25, | |||
"execution_count": 24, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -646,7 +646,7 @@ | |||
"'Bengaluru is beautiful'" | |||
] | |||
}, | |||
"execution_count": 25, | |||
"execution_count": 24, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -664,10 +664,8 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 27, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"execution_count": 25, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"f = ' hello '" | |||
@@ -682,7 +680,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 28, | |||
"execution_count": 27, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -691,7 +689,7 @@ | |||
"'hello'" | |||
] | |||
}, | |||
"execution_count": 28, | |||
"execution_count": 27, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -709,10 +707,8 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 29, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"execution_count": 30, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"f = ' ***----hello---******* '" | |||
@@ -720,22 +716,22 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 30, | |||
"execution_count": 32, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"data": { | |||
"text/plain": [ | |||
"' ***----hello---******* '" | |||
"'hello'" | |||
] | |||
}, | |||
"execution_count": 30, | |||
"execution_count": 32, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
], | |||
"source": [ | |||
"f.strip('*')" | |||
"f.strip(' *-')" | |||
] | |||
}, | |||
{ | |||
@@ -813,7 +809,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 2, | |||
"execution_count": 33, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -839,7 +835,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 3, | |||
"execution_count": 35, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -858,7 +854,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 36, | |||
"execution_count": 37, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -883,7 +879,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 4, | |||
"execution_count": 38, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -907,10 +903,8 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 5, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"execution_count": 39, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"names = ['One', 'Two', 'Three', 'Four', 'Five']\n", | |||
@@ -926,7 +920,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 40, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -944,7 +938,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 7, | |||
"execution_count": 42, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1005,7 +999,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 8, | |||
"execution_count": 43, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1031,7 +1025,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 9, | |||
"execution_count": 44, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1049,7 +1043,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 46, | |||
"execution_count": 45, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1075,7 +1069,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 10, | |||
"execution_count": 46, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1084,7 +1078,7 @@ | |||
"dict_values([1, 2, 3, 4, 5])" | |||
] | |||
}, | |||
"execution_count": 10, | |||
"execution_count": 46, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -1102,7 +1096,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 11, | |||
"execution_count": 47, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1111,7 +1105,7 @@ | |||
"dict_keys(['One', 'Two', 'Three', 'Four', 'Five'])" | |||
] | |||
}, | |||
"execution_count": 11, | |||
"execution_count": 47, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -1129,7 +1123,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 12, | |||
"execution_count": 48, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1160,23 +1154,23 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 13, | |||
"execution_count": 52, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"ename": "TypeError", | |||
"evalue": "pop expected at least 1 arguments, got 0", | |||
"ename": "KeyError", | |||
"evalue": "'One'", | |||
"output_type": "error", | |||
"traceback": [ | |||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |||
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |||
"\u001b[0;32m<ipython-input-13-a0907f1327c5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |||
"\u001b[0;31mTypeError\u001b[0m: pop expected at least 1 arguments, got 0" | |||
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", | |||
"\u001b[0;32m<ipython-input-52-436d4737aff5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'One'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |||
"\u001b[0;31mKeyError\u001b[0m: 'One'" | |||
] | |||
} | |||
], | |||
"source": [ | |||
"a2 = a1.pop()\n", | |||
"a2 = a1.pop('One')\n", | |||
"print(a1)\n", | |||
"print(a2)" | |||
] | |||
@@ -26,7 +26,9 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 1, | |||
"metadata": {}, | |||
"metadata": { | |||
"scrolled": true | |||
}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
@@ -45,6 +47,16 @@ | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 2, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"x = 4\n", | |||
"if x > 10: print(\"Hello\")" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
@@ -66,7 +78,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 2, | |||
"execution_count": 3, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -194,7 +206,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 5, | |||
"execution_count": 4, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -216,7 +228,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 5, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -245,7 +257,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 7, | |||
"execution_count": 6, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -273,7 +285,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 8, | |||
"execution_count": 7, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -321,7 +333,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 9, | |||
"execution_count": 8, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -375,7 +387,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 10, | |||
"execution_count": 9, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -416,7 +428,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 11, | |||
"execution_count": 10, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -489,7 +501,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 13, | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -498,7 +510,7 @@ | |||
"[27, 54, 81, 108, 135, 162, 189, 216, 243, 270]" | |||
] | |||
}, | |||
"execution_count": 13, | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -523,7 +535,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 14, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -532,7 +544,7 @@ | |||
"[27, 54, 81, 108, 135, 162, 189, 216, 243, 270]" | |||
] | |||
}, | |||
"execution_count": 14, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -543,7 +555,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 15, | |||
"execution_count": 13, | |||
"metadata": { | |||
"scrolled": true | |||
}, | |||
@@ -563,7 +575,7 @@ | |||
" '270': 270}" | |||
] | |||
}, | |||
"execution_count": 15, | |||
"execution_count": 13, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -574,7 +586,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 16, | |||
"execution_count": 14, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -583,7 +595,7 @@ | |||
"(27, 54, 81, 108, 135, 162, 189, 216, 243, 270)" | |||
] | |||
}, | |||
"execution_count": 16, | |||
"execution_count": 14, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -601,7 +613,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 17, | |||
"execution_count": 15, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -610,7 +622,7 @@ | |||
"[1, 2, 3, 4, 28, 29, 30, 31, 55, 56, 57, 58]" | |||
] | |||
}, | |||
"execution_count": 17, | |||
"execution_count": 15, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -109,7 +109,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 4, | |||
"execution_count": 5, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -120,14 +120,14 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 5, | |||
"execution_count": 6, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"Please enter your name : Jack\n" | |||
"Please enter your name : Tom\n" | |||
] | |||
} | |||
], | |||
@@ -144,15 +144,15 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 7, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"Hey Jack!\n", | |||
"Jack, How do you do?\n" | |||
"Hey Tom!\n", | |||
"Tom, How do you do?\n" | |||
] | |||
} | |||
], | |||
@@ -169,7 +169,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 7, | |||
"execution_count": 8, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -183,16 +183,16 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 8, | |||
"execution_count": 9, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"Please enter your name : Tom\n", | |||
"Hey Tom!\n", | |||
"Tom, How do you do?\n" | |||
"Please enter your name : Jack\n", | |||
"Hey Jack!\n", | |||
"Jack, How do you do?\n" | |||
] | |||
} | |||
], | |||
@@ -216,7 +216,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 9, | |||
"execution_count": 10, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -234,7 +234,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 10, | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -266,7 +266,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 11, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -277,7 +277,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 12, | |||
"execution_count": 13, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -302,8 +302,10 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 13, | |||
"metadata": {}, | |||
"execution_count": 14, | |||
"metadata": { | |||
"scrolled": true | |||
}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
@@ -323,7 +325,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 14, | |||
"execution_count": 15, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -339,7 +341,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 15, | |||
"execution_count": 16, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -348,7 +350,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 16, | |||
"execution_count": 17, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -369,7 +371,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 17, | |||
"execution_count": 18, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -387,7 +389,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 18, | |||
"execution_count": 19, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -422,7 +424,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 19, | |||
"execution_count": 20, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -446,7 +448,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 20, | |||
"execution_count": 21, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -455,7 +457,7 @@ | |||
"7" | |||
] | |||
}, | |||
"execution_count": 20, | |||
"execution_count": 21, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -473,7 +475,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 21, | |||
"execution_count": 22, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -482,7 +484,7 @@ | |||
"8" | |||
] | |||
}, | |||
"execution_count": 21, | |||
"execution_count": 22, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -493,7 +495,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 22, | |||
"execution_count": 23, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -502,7 +504,7 @@ | |||
"11" | |||
] | |||
}, | |||
"execution_count": 22, | |||
"execution_count": 23, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -527,7 +529,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 23, | |||
"execution_count": 24, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -549,7 +551,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 24, | |||
"execution_count": 25, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -565,7 +567,7 @@ | |||
"15" | |||
] | |||
}, | |||
"execution_count": 24, | |||
"execution_count": 25, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -576,7 +578,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 25, | |||
"execution_count": 26, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -592,7 +594,7 @@ | |||
"6" | |||
] | |||
}, | |||
"execution_count": 25, | |||
"execution_count": 26, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -610,7 +612,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 26, | |||
"execution_count": 28, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -626,7 +628,7 @@ | |||
"60" | |||
] | |||
}, | |||
"execution_count": 26, | |||
"execution_count": 28, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -659,7 +661,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 27, | |||
"execution_count": 29, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -675,7 +677,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 28, | |||
"execution_count": 30, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -695,7 +697,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 29, | |||
"execution_count": 31, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -741,7 +743,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 30, | |||
"execution_count": 32, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -750,7 +752,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 31, | |||
"execution_count": 33, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -759,7 +761,7 @@ | |||
"64" | |||
] | |||
}, | |||
"execution_count": 31, | |||
"execution_count": 33, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -770,7 +772,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 32, | |||
"execution_count": 35, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -779,7 +781,7 @@ | |||
"(6, 8)" | |||
] | |||
}, | |||
"execution_count": 32, | |||
"execution_count": 35, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -791,7 +793,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 33, | |||
"execution_count": 36, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -800,7 +802,7 @@ | |||
"function" | |||
] | |||
}, | |||
"execution_count": 33, | |||
"execution_count": 36, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -811,7 +813,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 34, | |||
"execution_count": 37, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -820,7 +822,7 @@ | |||
"function" | |||
] | |||
}, | |||
"execution_count": 34, | |||
"execution_count": 37, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -848,7 +850,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 35, | |||
"execution_count": 38, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -857,7 +859,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 36, | |||
"execution_count": 40, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -875,7 +877,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 37, | |||
"execution_count": 41, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -900,7 +902,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 38, | |||
"execution_count": 42, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -909,7 +911,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 39, | |||
"execution_count": 43, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -966,7 +968,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 41, | |||
"execution_count": 44, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -982,7 +984,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 42, | |||
"execution_count": 45, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1007,22 +1009,22 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 43, | |||
"execution_count": 47, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"data": { | |||
"text/plain": [ | |||
"<map at 0x7f7bb06c6590>" | |||
"[True, True, True, True, False, False, False, False, False]" | |||
] | |||
}, | |||
"execution_count": 43, | |||
"execution_count": 47, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
], | |||
"source": [ | |||
"map(lambda x:x<5, list1)" | |||
"list(map(lambda x:x<5, list1))" | |||
] | |||
}, | |||
{ | |||
@@ -1034,22 +1036,22 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 44, | |||
"execution_count": 49, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"data": { | |||
"text/plain": [ | |||
"<filter at 0x7f7bb06ddf10>" | |||
"[4, 8]" | |||
] | |||
}, | |||
"execution_count": 44, | |||
"execution_count": 49, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
], | |||
"source": [ | |||
"filter(lambda x:x%4==0,list1)" | |||
"list(filter(lambda x:x%4==0,list1))" | |||
] | |||
} | |||
], | |||
@@ -34,7 +34,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 1, | |||
"execution_count": 3, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -59,7 +59,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 2, | |||
"execution_count": 4, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -68,7 +68,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 3, | |||
"execution_count": 5, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -77,7 +77,7 @@ | |||
"__main__.FirstClass" | |||
] | |||
}, | |||
"execution_count": 3, | |||
"execution_count": 5, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -88,7 +88,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 4, | |||
"execution_count": 6, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -97,7 +97,7 @@ | |||
"type" | |||
] | |||
}, | |||
"execution_count": 4, | |||
"execution_count": 6, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -138,7 +138,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 5, | |||
"execution_count": 7, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -159,7 +159,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 8, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -169,7 +169,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 7, | |||
"execution_count": 9, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -197,7 +197,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 8, | |||
"execution_count": 10, | |||
"metadata": { | |||
"scrolled": false | |||
}, | |||
@@ -234,7 +234,7 @@ | |||
" 'class_var']" | |||
] | |||
}, | |||
"execution_count": 8, | |||
"execution_count": 10, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -245,7 +245,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 9, | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -254,7 +254,7 @@ | |||
"'My first class'" | |||
] | |||
}, | |||
"execution_count": 9, | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -272,7 +272,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 10, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -309,7 +309,7 @@ | |||
" 'value']" | |||
] | |||
}, | |||
"execution_count": 10, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -327,7 +327,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 11, | |||
"execution_count": 13, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -346,7 +346,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 12, | |||
"execution_count": 14, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -356,7 +356,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 13, | |||
"execution_count": 15, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -366,7 +366,7 @@ | |||
"traceback": [ | |||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |||
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", | |||
"\u001b[0;32m<ipython-input-13-4ab7dec1c737>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0meg1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0meg1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0meg2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0meg2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |||
"\u001b[0;32m<ipython-input-15-4ab7dec1c737>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0meg1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0meg1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0meg2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0meg2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |||
"\u001b[0;31mAttributeError\u001b[0m: 'FirstClass' object has no attribute 'name'" | |||
] | |||
} | |||
@@ -385,7 +385,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 15, | |||
"execution_count": 16, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -421,7 +421,7 @@ | |||
" 'v']" | |||
] | |||
}, | |||
"execution_count": 15, | |||
"execution_count": 16, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -432,7 +432,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 16, | |||
"execution_count": 17, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -512,7 +512,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 20, | |||
"execution_count": 18, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -522,7 +522,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 21, | |||
"execution_count": 19, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -559,7 +559,7 @@ | |||
" 'v']" | |||
] | |||
}, | |||
"execution_count": 21, | |||
"execution_count": 19, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -583,7 +583,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 22, | |||
"execution_count": 20, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -603,7 +603,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 23, | |||
"execution_count": 22, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -623,7 +623,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 24, | |||
"execution_count": 23, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -647,7 +647,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 25, | |||
"execution_count": 24, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -665,7 +665,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 26, | |||
"execution_count": 25, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -674,7 +674,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 27, | |||
"execution_count": 26, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -693,7 +693,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 28, | |||
"execution_count": 27, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -702,7 +702,7 @@ | |||
"10" | |||
] | |||
}, | |||
"execution_count": 28, | |||
"execution_count": 27, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -720,7 +720,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 29, | |||
"execution_count": 28, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -729,7 +729,7 @@ | |||
"10" | |||
] | |||
}, | |||
"execution_count": 29, | |||
"execution_count": 28, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -761,7 +761,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 30, | |||
"execution_count": 29, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -776,7 +776,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 31, | |||
"execution_count": 30, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -785,7 +785,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 32, | |||
"execution_count": 31, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -802,7 +802,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 33, | |||
"execution_count": 32, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -837,7 +837,7 @@ | |||
" 'salary']" | |||
] | |||
}, | |||
"execution_count": 33, | |||
"execution_count": 32, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -967,7 +967,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 39, | |||
"execution_count": 40, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -976,7 +976,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 40, | |||
"execution_count": 41, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1012,7 +1012,7 @@ | |||
" 'salary']" | |||
] | |||
}, | |||
"execution_count": 40, | |||
"execution_count": 41, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -1023,7 +1023,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 41, | |||
"execution_count": 42, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1049,7 +1049,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 42, | |||
"execution_count": 44, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -1065,7 +1065,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 43, | |||
"execution_count": 45, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -1074,7 +1074,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 44, | |||
"execution_count": 46, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1101,7 +1101,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 45, | |||
"execution_count": 47, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -1112,7 +1112,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 46, | |||
"execution_count": 48, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -1121,7 +1121,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 47, | |||
"execution_count": 49, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -1130,7 +1130,7 @@ | |||
"'I Do Not Know What To Type'" | |||
] | |||
}, | |||
"execution_count": 47, | |||
"execution_count": 49, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -65,7 +65,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 1, | |||
"execution_count": 2, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -79,7 +79,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 2, | |||
"execution_count": 3, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -97,7 +97,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 3, | |||
"execution_count": 4, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -106,17 +106,17 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 4, | |||
"execution_count": 5, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"data": { | |||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAAAAABXZoBIAAABAElEQVR4nGNgGMyAWUhIqK5jvdSy/9/rGRgYGFhgEnJsVjYCwQwMDAxPJgV+vniQgYGBgREqZ7iXH8r6l/SV4dn7m8gmCt3++/fv37/Htn3/iMW+gDnZf/+e5WbQnoXNNXyMs/5GoQoxwVmf/n9kSGFiwAW49/11wynJoPzx4YIcRlyygR/+/i2XxCWru+vv32nSuGQFYv/83Y3b4p9/fzpAmSyoMnohpiwM1w5h06Q+5enfv39/bcMiJVF09+/fv39P+mFKiTtd/fv3799jgZiBJLT69t+/f/8eDuDEkDJf8+jv379/v7Ryo4qzMDAwMAQGMjBc3/y35wM2V1IfAABFF16Aa0wAOwAAAABJRU5ErkJggg==\n", | |||
"text/plain": [ | |||
"<PIL.Image.Image image mode=L size=28x28 at 0x7FF1658A5278>" | |||
"<PIL.Image.Image image mode=L size=28x28 at 0x7F552C598970>" | |||
] | |||
}, | |||
"execution_count": 4, | |||
"execution_count": 5, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -127,16 +127,16 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 5, | |||
"execution_count": 6, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"data": { | |||
"text/plain": [ | |||
"tensor(5)" | |||
"5" | |||
] | |||
}, | |||
"execution_count": 5, | |||
"execution_count": 6, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -154,7 +154,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 7, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -179,7 +179,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 7, | |||
"execution_count": 8, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -260,7 +260,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 23, | |||
"execution_count": 9, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -277,7 +277,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 24, | |||
"execution_count": 10, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -285,7 +285,7 @@ | |||
"output_type": "stream", | |||
"text": [ | |||
"torch.Size([784])\n", | |||
"tensor(5)\n" | |||
"5\n" | |||
] | |||
} | |||
], | |||
@@ -297,7 +297,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 25, | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -316,7 +316,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 28, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -325,7 +325,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 27, | |||
"execution_count": 13, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -345,7 +345,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 38, | |||
"execution_count": 14, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -363,7 +363,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 39, | |||
"execution_count": 15, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -380,7 +380,7 @@ | |||
")" | |||
] | |||
}, | |||
"execution_count": 39, | |||
"execution_count": 15, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
@@ -398,7 +398,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 40, | |||
"execution_count": 16, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -409,45 +409,24 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 42, | |||
"execution_count": null, | |||
"metadata": { | |||
"scrolled": true | |||
}, | |||
"outputs": [ | |||
{ | |||
"name": "stderr", | |||
"output_type": "stream", | |||
"text": [ | |||
"/home/bushuhui/.virtualenv/dl/lib/python3.5/site-packages/ipykernel_launcher.py:22: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number\n", | |||
"/home/bushuhui/.virtualenv/dl/lib/python3.5/site-packages/ipykernel_launcher.py:25: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number\n", | |||
"/home/bushuhui/.virtualenv/dl/lib/python3.5/site-packages/ipykernel_launcher.py:41: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number\n", | |||
"/home/bushuhui/.virtualenv/dl/lib/python3.5/site-packages/ipykernel_launcher.py:44: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number\n" | |||
] | |||
}, | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"epoch: 0, Train Loss: 0.166705, Train Acc: 0.947978, Eval Loss: 0.129106, Eval Acc: 0.959157\n", | |||
"epoch: 1, Train Loss: 0.117714, Train Acc: 0.962836, Eval Loss: 0.097123, Eval Acc: 0.969838\n", | |||
"epoch: 2, Train Loss: 0.092098, Train Acc: 0.970532, Eval Loss: 0.098194, Eval Acc: 0.969541\n", | |||
"epoch: 3, Train Loss: 0.074442, Train Acc: 0.975880, Eval Loss: 0.077213, Eval Acc: 0.975574\n", | |||
"epoch: 4, Train Loss: 0.062742, Train Acc: 0.979594, Eval Loss: 0.149892, Eval Acc: 0.955301\n", | |||
"epoch: 5, Train Loss: 0.052319, Train Acc: 0.983276, Eval Loss: 0.124755, Eval Acc: 0.961531\n", | |||
"epoch: 6, Train Loss: 0.045134, Train Acc: 0.985091, Eval Loss: 0.085263, Eval Acc: 0.975178\n", | |||
"epoch: 7, Train Loss: 0.038610, Train Acc: 0.987423, Eval Loss: 0.063986, Eval Acc: 0.980123\n", | |||
"epoch: 8, Train Loss: 0.033068, Train Acc: 0.988906, Eval Loss: 0.074201, Eval Acc: 0.977453\n", | |||
"epoch: 9, Train Loss: 0.029478, Train Acc: 0.990155, Eval Loss: 0.066254, Eval Acc: 0.980123\n", | |||
"epoch: 10, Train Loss: 0.024885, Train Acc: 0.992237, Eval Loss: 0.067818, Eval Acc: 0.979727\n", | |||
"epoch: 11, Train Loss: 0.020706, Train Acc: 0.993237, Eval Loss: 0.174131, Eval Acc: 0.958070\n", | |||
"epoch: 12, Train Loss: 0.019527, Train Acc: 0.993553, Eval Loss: 0.066838, Eval Acc: 0.982199\n", | |||
"epoch: 13, Train Loss: 0.016248, Train Acc: 0.994620, Eval Loss: 0.080457, Eval Acc: 0.978738\n", | |||
"epoch: 14, Train Loss: 0.017617, Train Acc: 0.994603, Eval Loss: 0.064320, Eval Acc: 0.982496\n", | |||
"epoch: 15, Train Loss: 0.012970, Train Acc: 0.995985, Eval Loss: 0.079791, Eval Acc: 0.979925\n", | |||
"epoch: 16, Train Loss: 0.012162, Train Acc: 0.995736, Eval Loss: 0.083829, Eval Acc: 0.979727\n", | |||
"epoch: 17, Train Loss: 0.011916, Train Acc: 0.996185, Eval Loss: 0.079493, Eval Acc: 0.981507\n", | |||
"epoch: 18, Train Loss: 0.008972, Train Acc: 0.997385, Eval Loss: 0.074135, Eval Acc: 0.981507\n", | |||
"epoch: 19, Train Loss: 0.008857, Train Acc: 0.997018, Eval Loss: 0.074056, Eval Acc: 0.983188\n" | |||
"epoch: 0, Train Loss: 0.511304, Train Acc: 0.830540, Eval Loss: 0.232364, Eval Acc: 0.925732\n", | |||
"epoch: 1, Train Loss: 0.167128, Train Acc: 0.948744, Eval Loss: 0.171745, Eval Acc: 0.942148\n", | |||
"epoch: 2, Train Loss: 0.118102, Train Acc: 0.963420, Eval Loss: 0.107683, Eval Acc: 0.965882\n", | |||
"epoch: 3, Train Loss: 0.092869, Train Acc: 0.971565, Eval Loss: 0.090614, Eval Acc: 0.970728\n", | |||
"epoch: 4, Train Loss: 0.073340, Train Acc: 0.977229, Eval Loss: 0.081820, Eval Acc: 0.972805\n", | |||
"epoch: 5, Train Loss: 0.060981, Train Acc: 0.980727, Eval Loss: 0.087822, Eval Acc: 0.972211\n", | |||
"epoch: 6, Train Loss: 0.051884, Train Acc: 0.982809, Eval Loss: 0.127961, Eval Acc: 0.958564\n", | |||
"epoch: 7, Train Loss: 0.044878, Train Acc: 0.985741, Eval Loss: 0.102081, Eval Acc: 0.967366\n", | |||
"epoch: 8, Train Loss: 0.039214, Train Acc: 0.987223, Eval Loss: 0.067912, Eval Acc: 0.977551\n" | |||
] | |||
} | |||
], | |||
@@ -473,10 +452,10 @@ | |||
" loss.backward()\n", | |||
" optimizer.step()\n", | |||
" # 记录误差\n", | |||
" train_loss += loss.data[0]\n", | |||
" train_loss += loss.item()\n", | |||
" # 计算分类的准确率\n", | |||
" _, pred = out.max(1)\n", | |||
" num_correct = float((pred == label).sum().data[0])\n", | |||
" num_correct = float((pred == label).sum().item())\n", | |||
" acc = num_correct / im.shape[0]\n", | |||
" train_acc += acc\n", | |||
" \n", | |||
@@ -492,10 +471,10 @@ | |||
" out = net(im)\n", | |||
" loss = criterion(out, label)\n", | |||
" # 记录误差\n", | |||
" eval_loss += loss.data[0]\n", | |||
" eval_loss += loss.item()\n", | |||
" # 记录准确率\n", | |||
" _, pred = out.max(1)\n", | |||
" num_correct = float((pred == label).sum().data[0])\n", | |||
" num_correct = float((pred == label).sum().item())\n", | |||
" acc = num_correct / im.shape[0]\n", | |||
" eval_acc += acc\n", | |||
" \n", | |||
@@ -515,7 +494,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 43, | |||
"execution_count": null, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -674,7 +653,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -688,7 +667,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -71,13 +71,13 @@ | |||
"output_type": "stream", | |||
"text": [ | |||
"Parameter containing:\n", | |||
"tensor([[ 0.0276, -0.1197, -0.0397, ..., 0.0759, -0.1630, 0.1599],\n", | |||
" [ 0.1419, 0.0903, -0.1630, ..., -0.0615, 0.1502, 0.0596],\n", | |||
" [-0.0451, 0.1103, 0.1070, ..., -0.1506, -0.1346, 0.1284],\n", | |||
"tensor([[-0.0784, 0.1559, 0.0451, ..., 0.0432, 0.0325, -0.0626],\n", | |||
" [ 0.0436, 0.0976, 0.1529, ..., -0.1601, -0.1227, -0.0831],\n", | |||
" [ 0.0890, 0.0343, 0.1744, ..., -0.0332, 0.0897, 0.0002],\n", | |||
" ...,\n", | |||
" [-0.0975, -0.1264, 0.0738, ..., -0.1058, -0.1396, 0.1800],\n", | |||
" [-0.1352, 0.0287, 0.0779, ..., 0.1773, -0.1585, 0.1046],\n", | |||
" [-0.1194, 0.1526, -0.0018, ..., 0.0946, -0.1453, -0.1512]],\n", | |||
" [-0.1447, -0.0411, -0.0851, ..., 0.0117, 0.1457, 0.0585],\n", | |||
" [ 0.1642, 0.0744, -0.1118, ..., 0.0623, -0.0591, 0.0512],\n", | |||
" [-0.1610, 0.0070, 0.0184, ..., -0.1529, -0.0314, 0.1748]],\n", | |||
" requires_grad=True)\n" | |||
] | |||
} | |||
@@ -113,13 +113,13 @@ | |||
"output_type": "stream", | |||
"text": [ | |||
"Parameter containing:\n", | |||
"tensor([[3.0403, 4.7550, 4.9311, ..., 3.0626, 4.3593, 3.9823],\n", | |||
" [4.4812, 4.5463, 4.4052, ..., 3.7669, 3.4201, 4.6582],\n", | |||
" [3.7711, 3.3997, 4.1416, ..., 3.4086, 3.1681, 4.0410],\n", | |||
"tensor([[3.5493, 3.2984, 4.3041, ..., 4.5181, 3.7561, 4.5633],\n", | |||
" [4.4523, 3.7956, 3.7448, ..., 3.5031, 3.9477, 4.8617],\n", | |||
" [3.5174, 4.1082, 4.6358, ..., 3.5759, 4.5291, 3.9545],\n", | |||
" ...,\n", | |||
" [4.4137, 4.1779, 4.8741, ..., 3.4678, 3.4457, 4.7489],\n", | |||
" [3.8246, 4.2699, 4.9944, ..., 4.8576, 3.8945, 4.5525],\n", | |||
" [3.4959, 3.6991, 4.4047, ..., 4.7308, 3.5796, 3.2013]],\n", | |||
" [3.6757, 4.2100, 3.9763, ..., 3.2017, 3.4422, 4.0191],\n", | |||
" [3.0283, 3.8147, 3.1705, ..., 3.9442, 4.1054, 4.9491],\n", | |||
" [3.5879, 3.7237, 4.0656, ..., 3.2279, 3.1818, 4.7489]],\n", | |||
" dtype=torch.float64, requires_grad=True)\n" | |||
] | |||
} | |||
@@ -173,9 +173,7 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 8, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"class sim_net(nn.Module):\n", | |||
@@ -208,9 +206,7 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 9, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"net2 = sim_net()" | |||
@@ -226,15 +222,15 @@ | |||
"output_type": "stream", | |||
"text": [ | |||
"Sequential(\n", | |||
" (0): Linear(in_features=30, out_features=40)\n", | |||
" (0): Linear(in_features=30, out_features=40, bias=True)\n", | |||
" (1): ReLU()\n", | |||
")\n", | |||
"Sequential(\n", | |||
" (0): Linear(in_features=40, out_features=50)\n", | |||
" (0): Linear(in_features=40, out_features=50, bias=True)\n", | |||
" (1): ReLU()\n", | |||
")\n", | |||
"Sequential(\n", | |||
" (0): Linear(in_features=50, out_features=10)\n", | |||
" (0): Linear(in_features=50, out_features=10, bias=True)\n", | |||
" (1): ReLU()\n", | |||
")\n" | |||
] | |||
@@ -257,35 +253,35 @@ | |||
"text": [ | |||
"sim_net(\n", | |||
" (l1): Sequential(\n", | |||
" (0): Linear(in_features=30, out_features=40)\n", | |||
" (0): Linear(in_features=30, out_features=40, bias=True)\n", | |||
" (1): ReLU()\n", | |||
" )\n", | |||
" (l2): Sequential(\n", | |||
" (0): Linear(in_features=40, out_features=50)\n", | |||
" (0): Linear(in_features=40, out_features=50, bias=True)\n", | |||
" (1): ReLU()\n", | |||
" )\n", | |||
" (l3): Sequential(\n", | |||
" (0): Linear(in_features=50, out_features=10)\n", | |||
" (0): Linear(in_features=50, out_features=10, bias=True)\n", | |||
" (1): ReLU()\n", | |||
" )\n", | |||
")\n", | |||
"Sequential(\n", | |||
" (0): Linear(in_features=30, out_features=40)\n", | |||
" (0): Linear(in_features=30, out_features=40, bias=True)\n", | |||
" (1): ReLU()\n", | |||
")\n", | |||
"Linear(in_features=30, out_features=40)\n", | |||
"Linear(in_features=30, out_features=40, bias=True)\n", | |||
"ReLU()\n", | |||
"Sequential(\n", | |||
" (0): Linear(in_features=40, out_features=50)\n", | |||
" (0): Linear(in_features=40, out_features=50, bias=True)\n", | |||
" (1): ReLU()\n", | |||
")\n", | |||
"Linear(in_features=40, out_features=50)\n", | |||
"Linear(in_features=40, out_features=50, bias=True)\n", | |||
"ReLU()\n", | |||
"Sequential(\n", | |||
" (0): Linear(in_features=50, out_features=10)\n", | |||
" (0): Linear(in_features=50, out_features=10, bias=True)\n", | |||
" (1): ReLU()\n", | |||
")\n", | |||
"Linear(in_features=50, out_features=10)\n", | |||
"Linear(in_features=50, out_features=10, bias=True)\n", | |||
"ReLU()\n" | |||
] | |||
} | |||
@@ -334,7 +330,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 7, | |||
"execution_count": 13, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -343,7 +339,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 8, | |||
"execution_count": 14, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -351,13 +347,13 @@ | |||
"output_type": "stream", | |||
"text": [ | |||
"Parameter containing:\n", | |||
"tensor([[3.0403, 4.7550, 4.9311, ..., 3.0626, 4.3593, 3.9823],\n", | |||
" [4.4812, 4.5463, 4.4052, ..., 3.7669, 3.4201, 4.6582],\n", | |||
" [3.7711, 3.3997, 4.1416, ..., 3.4086, 3.1681, 4.0410],\n", | |||
"tensor([[ 0.2725, -0.2262, -0.4229, ..., -0.2451, 0.2344, 0.1583],\n", | |||
" [ 0.1886, 0.3226, -0.5023, ..., -0.2228, 0.5089, -0.6994],\n", | |||
" [-0.4689, 0.2612, 0.3464, ..., -0.0423, -0.2999, -0.5813],\n", | |||
" ...,\n", | |||
" [4.4137, 4.1779, 4.8741, ..., 3.4678, 3.4457, 4.7489],\n", | |||
" [3.8246, 4.2699, 4.9944, ..., 4.8576, 3.8945, 4.5525],\n", | |||
" [3.4959, 3.6991, 4.4047, ..., 4.7308, 3.5796, 3.2013]],\n", | |||
" [ 0.4200, 0.2091, -0.3690, ..., 0.4142, 0.1120, 0.0771],\n", | |||
" [ 0.6540, 0.0475, 0.0594, ..., 0.1726, -0.2264, 0.1510],\n", | |||
" [-1.0729, -0.2862, 0.4953, ..., 0.4702, 0.5555, -0.2246]],\n", | |||
" dtype=torch.float64, requires_grad=True)\n" | |||
] | |||
} | |||
@@ -368,43 +364,35 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 9, | |||
"execution_count": 16, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"name": "stderr", | |||
"output_type": "stream", | |||
"text": [ | |||
"/home/bushuhui/.virtualenv/dl/lib/python3.5/site-packages/ipykernel_launcher.py:1: UserWarning: nn.init.xavier_uniform is now deprecated in favor of nn.init.xavier_uniform_.\n", | |||
" \"\"\"Entry point for launching an IPython kernel.\n" | |||
] | |||
}, | |||
{ | |||
"data": { | |||
"text/plain": [ | |||
"Parameter containing:\n", | |||
"tensor([[-0.0889, 0.2279, 0.1816, ..., 0.1091, 0.0207, -0.2063],\n", | |||
" [ 0.0394, 0.1860, 0.1261, ..., 0.2250, -0.2881, 0.0727],\n", | |||
" [-0.2252, -0.0639, 0.2077, ..., 0.0328, -0.0075, 0.0339],\n", | |||
"tensor([[ 0.1173, -0.0864, 0.1008, ..., -0.1053, 0.2642, -0.1045],\n", | |||
" [-0.0244, 0.1722, 0.1330, ..., 0.2443, -0.2385, 0.1613],\n", | |||
" [-0.1767, 0.0678, 0.1282, ..., 0.1033, -0.2423, -0.0864],\n", | |||
" ...,\n", | |||
" [-0.0932, 0.2806, -0.2377, ..., -0.2087, 0.0325, 0.0504],\n", | |||
" [-0.2305, 0.2866, -0.1872, ..., 0.2127, 0.1487, 0.0645],\n", | |||
" [-0.0072, 0.2771, 0.0928, ..., -0.0234, -0.1238, 0.1197]],\n", | |||
" [-0.1673, -0.1338, -0.0839, ..., 0.0267, 0.1693, -0.2911],\n", | |||
" [ 0.2146, 0.0194, 0.2873, ..., 0.1486, 0.2775, 0.2740],\n", | |||
" [-0.0400, 0.2231, 0.0800, ..., 0.2804, 0.2121, 0.2764]],\n", | |||
" dtype=torch.float64, requires_grad=True)" | |||
] | |||
}, | |||
"execution_count": 9, | |||
"execution_count": 16, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
], | |||
"source": [ | |||
"init.xavier_uniform(net1[0].weight) # 这就是上面我们讲过的 Xavier 初始化方法,PyTorch 直接内置了其实现" | |||
"init.xavier_uniform_(net1[0].weight) # 这就是上面我们讲过的 Xavier 初始化方法,PyTorch 直接内置了其实现" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 10, | |||
"execution_count": 17, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
@@ -412,13 +400,13 @@ | |||
"output_type": "stream", | |||
"text": [ | |||
"Parameter containing:\n", | |||
"tensor([[-0.0889, 0.2279, 0.1816, ..., 0.1091, 0.0207, -0.2063],\n", | |||
" [ 0.0394, 0.1860, 0.1261, ..., 0.2250, -0.2881, 0.0727],\n", | |||
" [-0.2252, -0.0639, 0.2077, ..., 0.0328, -0.0075, 0.0339],\n", | |||
"tensor([[ 0.1173, -0.0864, 0.1008, ..., -0.1053, 0.2642, -0.1045],\n", | |||
" [-0.0244, 0.1722, 0.1330, ..., 0.2443, -0.2385, 0.1613],\n", | |||
" [-0.1767, 0.0678, 0.1282, ..., 0.1033, -0.2423, -0.0864],\n", | |||
" ...,\n", | |||
" [-0.0932, 0.2806, -0.2377, ..., -0.2087, 0.0325, 0.0504],\n", | |||
" [-0.2305, 0.2866, -0.1872, ..., 0.2127, 0.1487, 0.0645],\n", | |||
" [-0.0072, 0.2771, 0.0928, ..., -0.0234, -0.1238, 0.1197]],\n", | |||
" [-0.1673, -0.1338, -0.0839, ..., 0.0267, 0.1693, -0.2911],\n", | |||
" [ 0.2146, 0.0194, 0.2873, ..., 0.1486, 0.2775, 0.2740],\n", | |||
" [-0.0400, 0.2231, 0.0800, ..., 0.2804, 0.2121, 0.2764]],\n", | |||
" dtype=torch.float64, requires_grad=True)\n" | |||
] | |||
} | |||
@@ -448,7 +436,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -462,7 +450,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -1933,7 +1933,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -1947,7 +1947,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, |
@@ -104,8 +104,8 @@ | |||
" x = torch.from_numpy(x)\n", | |||
" return x\n", | |||
"\n", | |||
"train_set = MNIST('./data', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换\n", | |||
"test_set = MNIST('./data', train=False, transform=data_tf, download=True)\n", | |||
"train_set = MNIST('../../../data/mnist', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换\n", | |||
"test_set = MNIST('../../../data/mnist', train=False, transform=data_tf, download=True)\n", | |||
"\n", | |||
"# 定义 loss 函数\n", | |||
"criterion = nn.CrossEntropyLoss()" | |||
@@ -374,7 +374,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -388,7 +388,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -132,9 +132,9 @@ | |||
" loss.backward()\n", | |||
" sgd_adagrad(net.parameters(), sqrs, 1e-2) # 学习率设为 0.01\n", | |||
" # 记录误差\n", | |||
" train_loss += loss.data[0]\n", | |||
" train_loss += loss.item()\n", | |||
" if idx % 30 == 0:\n", | |||
" losses.append(loss.data[0])\n", | |||
" losses.append(loss.item())\n", | |||
" idx += 1\n", | |||
" print('epoch: {}, Train Loss: {:.6f}'\n", | |||
" .format(e, train_loss / len(train_data)))\n", | |||
@@ -232,7 +232,7 @@ | |||
" loss.backward()\n", | |||
" optimizer.step()\n", | |||
" # 记录误差\n", | |||
" train_loss += loss.data[0]\n", | |||
" train_loss += loss.item()\n", | |||
" print('epoch: {}, Train Loss: {:.6f}'\n", | |||
" .format(e, train_loss / len(train_data)))\n", | |||
"end = time.time() # 计时结束\n", | |||
@@ -242,7 +242,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -256,7 +256,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -66,8 +66,8 @@ | |||
" x = torch.from_numpy(x)\n", | |||
" return x\n", | |||
"\n", | |||
"train_set = MNIST('./data', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换\n", | |||
"test_set = MNIST('./data', train=False, transform=data_tf, download=True)\n", | |||
"train_set = MNIST('../../../data/mnist', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换\n", | |||
"test_set = MNIST('../../../data/mnist', train=False, transform=data_tf, download=True)\n", | |||
"\n", | |||
"# 定义 loss 函数\n", | |||
"criterion = nn.CrossEntropyLoss()" | |||
@@ -122,9 +122,9 @@ | |||
" loss.backward()\n", | |||
" rmsprop(net.parameters(), sqrs, 1e-3, 0.9) # 学习率设为 0.001,alpha 设为 0.9\n", | |||
" # 记录误差\n", | |||
" train_loss += loss.data[0]\n", | |||
" train_loss += loss.item()\n", | |||
" if idx % 30 == 0:\n", | |||
" losses.append(loss.data[0])\n", | |||
" losses.append(loss.item())\n", | |||
" idx += 1\n", | |||
" print('epoch: {}, Train Loss: {:.6f}'\n", | |||
" .format(e, train_loss / len(train_data)))\n", | |||
@@ -214,9 +214,9 @@ | |||
" loss.backward()\n", | |||
" rmsprop(net.parameters(), sqrs, 1e-3, 0.999) # 学习率设为 0.001,alpha 设为 0.999\n", | |||
" # 记录误差\n", | |||
" train_loss += loss.data[0]\n", | |||
" train_loss += loss.item()\n", | |||
" if idx % 30 == 0:\n", | |||
" losses.append(loss.data[0])\n", | |||
" losses.append(loss.item())\n", | |||
" idx += 1\n", | |||
" print('epoch: {}, Train Loss: {:.6f}'\n", | |||
" .format(e, train_loss / len(train_data)))\n", | |||
@@ -315,7 +315,7 @@ | |||
" loss.backward()\n", | |||
" optimizer.step()\n", | |||
" # 记录误差\n", | |||
" train_loss += loss.data[0]\n", | |||
" train_loss += loss.item()\n", | |||
" print('epoch: {}, Train Loss: {:.6f}'\n", | |||
" .format(e, train_loss / len(train_data)))\n", | |||
"end = time.time() # 计时结束\n", | |||
@@ -325,7 +325,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -339,7 +339,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -77,8 +77,8 @@ | |||
" x = torch.from_numpy(x)\n", | |||
" return x\n", | |||
"\n", | |||
"train_set = MNIST('./data', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换\n", | |||
"test_set = MNIST('./data', train=False, transform=data_tf, download=True)\n", | |||
"train_set = MNIST('../../../data/mnist', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换\n", | |||
"test_set = MNIST('../../../data/mnist', train=False, transform=data_tf, download=True)\n", | |||
"\n", | |||
"# 定义 loss 函数\n", | |||
"criterion = nn.CrossEntropyLoss()" | |||
@@ -135,9 +135,9 @@ | |||
" loss.backward()\n", | |||
" adadelta(net.parameters(), sqrs, deltas, 0.9) # rho 设置为 0.9\n", | |||
" # 记录误差\n", | |||
" train_loss += loss.data[0]\n", | |||
" train_loss += loss.item()\n", | |||
" if idx % 30 == 0:\n", | |||
" losses.append(loss.data[0])\n", | |||
" losses.append(loss.item())\n", | |||
" idx += 1\n", | |||
" print('epoch: {}, Train Loss: {:.6f}'\n", | |||
" .format(e, train_loss / len(train_data)))\n", | |||
@@ -242,7 +242,7 @@ | |||
" loss.backward()\n", | |||
" optimizer.step()\n", | |||
" # 记录误差\n", | |||
" train_loss += loss.data[0]\n", | |||
" train_loss += loss.item()\n", | |||
" print('epoch: {}, Train Loss: {:.6f}'\n", | |||
" .format(e, train_loss / len(train_data)))\n", | |||
"end = time.time() # 计时结束\n", | |||
@@ -259,7 +259,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -273,7 +273,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.5.2" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -143,9 +143,9 @@ | |||
" adam(net.parameters(), vs, sqrs, 1e-3, t) # 学习率设为 0.001\n", | |||
" t += 1\n", | |||
" # 记录误差\n", | |||
" train_loss += loss.data[0]\n", | |||
" train_loss += loss.item()\n", | |||
" if idx % 30 == 0:\n", | |||
" losses.append(loss.data[0])\n", | |||
" losses.append(loss.item())\n", | |||
" idx += 1\n", | |||
" print('epoch: {}, Train Loss: {:.6f}'\n", | |||
" .format(e, train_loss / len(train_data)))\n", | |||
@@ -238,7 +238,7 @@ | |||
" loss.backward()\n", | |||
" optimizer.step()\n", | |||
" # 记录误差\n", | |||
" train_loss += loss.data[0]\n", | |||
" train_loss += loss.item()\n", | |||
" print('epoch: {}, Train Loss: {:.6f}'\n", | |||
" .format(e, train_loss / len(train_data)))\n", | |||
"end = time.time() # 计时结束\n", | |||
@@ -267,7 +267,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -281,7 +281,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -431,7 +431,7 @@ | |||
" return x\n", | |||
"\n", | |||
"train_set = mnist.MNIST('../../data/mnist', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换\n", | |||
"test_set = mnist.MNIST('../../data/mnist', train=False, transform=data_tf, download=True)\n", | |||
"test_set = mnist.MNIST('../../data/mnist', train=False, transform=data_tf, download=True)\n", | |||
"train_data = DataLoader(train_set, batch_size=64, shuffle=True)\n", | |||
"test_data = DataLoader(test_set, batch_size=128, shuffle=False)" | |||
] | |||
@@ -558,7 +558,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -572,7 +572,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.7.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -201,9 +201,9 @@ | |||
" x = im_aug(x)\n", | |||
" return x\n", | |||
"\n", | |||
"train_set = CIFAR10('./data', train=True, transform=train_tf)\n", | |||
"train_set = CIFAR10('../../data', train=True, transform=train_tf)\n", | |||
"train_data = torch.utils.data.DataLoader(train_set, batch_size=256, shuffle=True, num_workers=4)\n", | |||
"valid_set = CIFAR10('./data', train=False, transform=test_tf)\n", | |||
"valid_set = CIFAR10('../../data', train=False, transform=test_tf)\n", | |||
"valid_data = torch.utils.data.DataLoader(valid_set, batch_size=256, shuffle=False, num_workers=4)\n", | |||
"\n", | |||
"net = resnet(3, 10)\n", | |||
@@ -389,7 +389,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -403,7 +403,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -51,8 +51,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-24T08:02:11.903459Z", | |||
"start_time": "2017-12-24T08:02:11.383170Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -76,8 +75,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-24T08:02:13.120502Z", | |||
"start_time": "2017-12-24T08:02:11.905617Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -90,9 +88,9 @@ | |||
" x = im_aug(x)\n", | |||
" return x\n", | |||
"\n", | |||
"train_set = CIFAR10('./data', train=True, transform=data_tf)\n", | |||
"train_set = CIFAR10('../../data', train=True, transform=data_tf)\n", | |||
"train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True, num_workers=4)\n", | |||
"test_set = CIFAR10('./data', train=False, transform=data_tf)\n", | |||
"test_set = CIFAR10('../../data', train=False, transform=data_tf)\n", | |||
"test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False, num_workers=4)\n", | |||
"\n", | |||
"net = resnet(3, 10)\n", | |||
@@ -102,7 +100,7 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 3, | |||
"execution_count": 4, | |||
"metadata": { | |||
"ExecuteTime": { | |||
"end_time": "2017-12-24T08:11:36.106177Z", | |||
@@ -111,29 +109,15 @@ | |||
}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"Epoch 0. Train Loss: 1.429834, Train Acc: 0.476982, Valid Loss: 1.261334, Valid Acc: 0.546776, Time 00:00:26\n", | |||
"Epoch 1. Train Loss: 0.994539, Train Acc: 0.645400, Valid Loss: 1.310620, Valid Acc: 0.554688, Time 00:00:27\n", | |||
"Epoch 2. Train Loss: 0.788570, Train Acc: 0.723585, Valid Loss: 1.256101, Valid Acc: 0.577433, Time 00:00:28\n", | |||
"Epoch 3. Train Loss: 0.629832, Train Acc: 0.780411, Valid Loss: 1.222015, Valid Acc: 0.609474, Time 00:00:27\n", | |||
"Epoch 4. Train Loss: 0.500406, Train Acc: 0.825288, Valid Loss: 0.831702, Valid Acc: 0.720332, Time 00:00:27\n", | |||
"Epoch 5. Train Loss: 0.388376, Train Acc: 0.868646, Valid Loss: 0.829582, Valid Acc: 0.726760, Time 00:00:27\n", | |||
"Epoch 6. Train Loss: 0.291237, Train Acc: 0.902094, Valid Loss: 1.499777, Valid Acc: 0.623714, Time 00:00:28\n", | |||
"Epoch 7. Train Loss: 0.222401, Train Acc: 0.925072, Valid Loss: 1.832660, Valid Acc: 0.558643, Time 00:00:28\n", | |||
"Epoch 8. Train Loss: 0.157753, Train Acc: 0.947990, Valid Loss: 1.255313, Valid Acc: 0.668117, Time 00:00:28\n", | |||
"Epoch 9. Train Loss: 0.111407, Train Acc: 0.963595, Valid Loss: 1.004693, Valid Acc: 0.724782, Time 00:00:27\n", | |||
"Epoch 10. Train Loss: 0.084960, Train Acc: 0.972926, Valid Loss: 0.867961, Valid Acc: 0.775119, Time 00:00:27\n", | |||
"Epoch 11. Train Loss: 0.066854, Train Acc: 0.979280, Valid Loss: 1.011263, Valid Acc: 0.749604, Time 00:00:28\n", | |||
"Epoch 12. Train Loss: 0.048280, Train Acc: 0.985534, Valid Loss: 2.438345, Valid Acc: 0.576938, Time 00:00:27\n", | |||
"Epoch 13. Train Loss: 0.046176, Train Acc: 0.985614, Valid Loss: 1.008425, Valid Acc: 0.756527, Time 00:00:27\n", | |||
"Epoch 14. Train Loss: 0.039515, Train Acc: 0.988411, Valid Loss: 0.945017, Valid Acc: 0.766317, Time 00:00:27\n", | |||
"Epoch 15. Train Loss: 0.025882, Train Acc: 0.992667, Valid Loss: 0.918691, Valid Acc: 0.784217, Time 00:00:27\n", | |||
"Epoch 16. Train Loss: 0.018592, Train Acc: 0.994985, Valid Loss: 1.507427, Valid Acc: 0.680281, Time 00:00:27\n", | |||
"Epoch 17. Train Loss: 0.021062, Train Acc: 0.994246, Valid Loss: 2.976452, Valid Acc: 0.558940, Time 00:00:27\n", | |||
"Epoch 18. Train Loss: 0.021458, Train Acc: 0.993926, Valid Loss: 0.927871, Valid Acc: 0.785898, Time 00:00:27\n", | |||
"Epoch 19. Train Loss: 0.015656, Train Acc: 0.995824, Valid Loss: 0.962502, Valid Acc: 0.782832, Time 00:00:27\n" | |||
"ename": "IndexError", | |||
"evalue": "invalid index of a 0-dim tensor. Use `tensor.item()` in Python or `tensor.item<T>()` in C++ to convert a 0-dim tensor to a number", | |||
"output_type": "error", | |||
"traceback": [ | |||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |||
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", | |||
"\u001b[0;32m/tmp/ipykernel_10317/3705871991.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mutils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtrain\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnet\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m20\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcriterion\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |||
"\u001b[0;32m~-data/msdk/my_progs/pi-lab/courses/machine_learning/machinelearning_notebook/6_pytorch/2_CNN/utils.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(net, train_data, valid_data, num_epochs, optimizer, criterion)\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 39\u001b[0;31m \u001b[0mtrain_loss\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 40\u001b[0m \u001b[0mtrain_acc\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mget_acc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |||
"\u001b[0;31mIndexError\u001b[0m: invalid index of a 0-dim tensor. Use `tensor.item()` in Python or `tensor.item<T>()` in C++ to convert a 0-dim tensor to a number" | |||
] | |||
} | |||
], | |||
@@ -145,7 +129,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -159,7 +143,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -340,9 +340,9 @@ | |||
" x = torch.from_numpy(x)\n", | |||
" return x\n", | |||
" \n", | |||
"train_set = CIFAR10('./data', train=True, transform=data_tf)\n", | |||
"train_set = CIFAR10('../../data', train=True, transform=data_tf)\n", | |||
"train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)\n", | |||
"test_set = CIFAR10('./data', train=False, transform=data_tf)\n", | |||
"test_set = CIFAR10('../../data', train=False, transform=data_tf)\n", | |||
"test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)\n", | |||
"\n", | |||
"net = vgg()\n", | |||
@@ -401,7 +401,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -415,7 +415,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -296,9 +296,9 @@ | |||
" x = torch.from_numpy(x)\n", | |||
" return x\n", | |||
" \n", | |||
"train_set = CIFAR10('./data', train=True, transform=data_tf)\n", | |||
"train_set = CIFAR10('../../data', train=True, transform=data_tf)\n", | |||
"train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)\n", | |||
"test_set = CIFAR10('./data', train=False, transform=data_tf)\n", | |||
"test_set = CIFAR10('../../data', train=False, transform=data_tf)\n", | |||
"test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)\n", | |||
"\n", | |||
"net = googlenet(3, 10)\n", | |||
@@ -363,7 +363,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -377,7 +377,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.8" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -294,9 +294,9 @@ | |||
" x = torch.from_numpy(x)\n", | |||
" return x\n", | |||
" \n", | |||
"train_set = CIFAR10('./data', train=True, transform=data_tf)\n", | |||
"train_set = CIFAR10('../../data', train=True, transform=data_tf)\n", | |||
"train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)\n", | |||
"test_set = CIFAR10('./data', train=False, transform=data_tf)\n", | |||
"test_set = CIFAR10('../../data', train=False, transform=data_tf)\n", | |||
"test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)\n", | |||
"\n", | |||
"net = resnet(3, 10)\n", | |||
@@ -359,7 +359,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -373,7 +373,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -368,7 +368,7 @@ | |||
], | |||
"metadata": { | |||
"kernelspec": { | |||
"display_name": "Python 3", | |||
"display_name": "Python 3 (ipykernel)", | |||
"language": "python", | |||
"name": "python3" | |||
}, | |||
@@ -382,7 +382,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.5.2" | |||
"version": "3.9.7" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -9,7 +9,7 @@ from torch.autograd import Variable | |||
def get_acc(output, label): | |||
total = output.shape[0] | |||
_, pred_label = output.max(1) | |||
num_correct = (pred_label == label).sum().data[0] | |||
num_correct = (pred_label == label).sum().item() | |||
return num_correct / total | |||
@@ -36,7 +36,7 @@ def train(net, train_data, valid_data, num_epochs, optimizer, criterion): | |||
loss.backward() | |||
optimizer.step() | |||
train_loss += loss.data[0] | |||
train_loss += loss.item() | |||
train_acc += get_acc(output, label) | |||
cur_time = datetime.now() | |||
@@ -56,7 +56,7 @@ def train(net, train_data, valid_data, num_epochs, optimizer, criterion): | |||
label = Variable(label, volatile=True) | |||
output = net(im) | |||
loss = criterion(output, label) | |||
valid_loss += loss.data[0] | |||
valid_loss += loss.item() | |||
valid_acc += get_acc(output, label) | |||
epoch_str = ( | |||
"Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, " | |||