|
|
@@ -32,32 +32,37 @@ |
|
|
|
- [Multi-layer Perceptron & BP](5_nn/mlp_bp.ipynb) |
|
|
|
- [Softmax & cross-entroy](5_nn/softmax_ce.ipynb) |
|
|
|
7. [PyTorch](6_pytorch/) |
|
|
|
- [short tutorial](6_pytorch/PyTorch_quick_intro.ipynb) |
|
|
|
- [basic/Tensor-and-Variable](6_pytorch/0_basic/Tensor-and-Variable.ipynb) |
|
|
|
- [basic/autograd](6_pytorch/0_basic/autograd.ipynb) |
|
|
|
- [basic/dynamic-graph](6_pytorch/0_basic/dynamic-graph.ipynb) |
|
|
|
- [nn/linear-regression-gradient-descend](6_pytorch/1_NN/linear-regression-gradient-descend.ipynb) |
|
|
|
- [nn/logistic-regression](6_pytorch/1_NN/logistic-regression.ipynb) |
|
|
|
- [nn/nn-sequential-module](6_pytorch/1_NN/nn-sequential-module.ipynb) |
|
|
|
- [nn/bp](6_pytorch/1_NN/bp.ipynb) |
|
|
|
- [nn/deep-nn](6_pytorch/1_NN/deep-nn.ipynb) |
|
|
|
- [nn/param_initialize](6_pytorch/1_NN/param_initialize.ipynb) |
|
|
|
- [optim/sgd](6_pytorch/1_NN/optimizer/sgd.ipynb) |
|
|
|
- [optim/adam](6_pytorch/1_NN/optimizer/adam.ipynb) |
|
|
|
- [cnn/basic_conv](6_pytorch/2_CNN/basic_conv.ipynb) |
|
|
|
- [cnn/batch-normalization](6_pytorch/2_CNN/batch-normalization.ipynb) |
|
|
|
- [cnn/regularization](6_pytorch/2_CNN/regularization.ipynb) |
|
|
|
- [cnn/lr-decay](6_pytorch/2_CNN/lr-decay.ipynb) |
|
|
|
- [cnn/vgg](6_pytorch/2_CNN/vgg.ipynb) |
|
|
|
- [cnn/googlenet](6_pytorch/2_CNN/googlenet.ipynb) |
|
|
|
- [cnn/densenet](6_pytorch/2_CNN/densenet.ipynb) |
|
|
|
- [cnn/resnet](6_pytorch/2_CNN/resnet.ipynb) |
|
|
|
- [rnn/pytorch-rnn](6_pytorch/3_RNN/pytorch-rnn.ipynb) |
|
|
|
- [rnn/rnn-for-image](6_pytorch/3_RNN/rnn-for-image.ipynb) |
|
|
|
- [rnn/lstm-time-series](6_pytorch/3_RNN/time-series/lstm-time-series.ipynb) |
|
|
|
- [gan/autoencoder](6_pytorch/4_GNN/autoencoder.ipynb) |
|
|
|
- [gan/vae](6_pytorch/4_GNN/vae.ipynb) |
|
|
|
- [gan/gan](6_pytorch/4_GNN/gan.ipynb) |
|
|
|
- Basic |
|
|
|
- [short tutorial](6_pytorch/PyTorch_quick_intro.ipynb) |
|
|
|
- [basic/Tensor-and-Variable](6_pytorch/0_basic/Tensor-and-Variable.ipynb) |
|
|
|
- [basic/autograd](6_pytorch/0_basic/autograd.ipynb) |
|
|
|
- [basic/dynamic-graph](6_pytorch/0_basic/dynamic-graph.ipynb) |
|
|
|
- NN & Optimization |
|
|
|
- [nn/linear-regression-gradient-descend](6_pytorch/1_NN/linear-regression-gradient-descend.ipynb) |
|
|
|
- [nn/logistic-regression](6_pytorch/1_NN/logistic-regression.ipynb) |
|
|
|
- [nn/nn-sequential-module](6_pytorch/1_NN/nn-sequential-module.ipynb) |
|
|
|
- [nn/bp](6_pytorch/1_NN/bp.ipynb) |
|
|
|
- [nn/deep-nn](6_pytorch/1_NN/deep-nn.ipynb) |
|
|
|
- [nn/param_initialize](6_pytorch/1_NN/param_initialize.ipynb) |
|
|
|
- [optim/sgd](6_pytorch/1_NN/optimizer/sgd.ipynb) |
|
|
|
- [optim/adam](6_pytorch/1_NN/optimizer/adam.ipynb) |
|
|
|
- CNN |
|
|
|
- [cnn/basic_conv](6_pytorch/2_CNN/basic_conv.ipynb) |
|
|
|
- [cnn/batch-normalization](6_pytorch/2_CNN/batch-normalization.ipynb) |
|
|
|
- [cnn/regularization](6_pytorch/2_CNN/regularization.ipynb) |
|
|
|
- [cnn/lr-decay](6_pytorch/2_CNN/lr-decay.ipynb) |
|
|
|
- [cnn/vgg](6_pytorch/2_CNN/vgg.ipynb) |
|
|
|
- [cnn/googlenet](6_pytorch/2_CNN/googlenet.ipynb) |
|
|
|
- [cnn/densenet](6_pytorch/2_CNN/densenet.ipynb) |
|
|
|
- [cnn/resnet](6_pytorch/2_CNN/resnet.ipynb) |
|
|
|
- RNN |
|
|
|
- [rnn/pytorch-rnn](6_pytorch/3_RNN/pytorch-rnn.ipynb) |
|
|
|
- [rnn/rnn-for-image](6_pytorch/3_RNN/rnn-for-image.ipynb) |
|
|
|
- [rnn/lstm-time-series](6_pytorch/3_RNN/time-series/lstm-time-series.ipynb) |
|
|
|
- GAN |
|
|
|
- [gan/autoencoder](6_pytorch/4_GAN/autoencoder.ipynb) |
|
|
|
- [gan/vae](6_pytorch/4_GAN/vae.ipynb) |
|
|
|
- [gan/gan](6_pytorch/4_GAN/gan.ipynb) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|