|
|
@@ -1,6 +1,6 @@ |
|
|
|
# 机器学习 |
|
|
|
|
|
|
|
机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识、实际编程,并学习如何解决实际问题。 |
|
|
|
机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题。 |
|
|
|
|
|
|
|
由于**本课程需要大量的编程练习才能取得比较好的学习效果**,因此需要认真去完成[《机器学习-作业和报告》](https://gitee.com/pi-lab/machinelearning_homework),写作业的过程可以查阅网上的资料,但是不能直接照抄,需要自己独立思考并独立写出代码。 |
|
|
|
|
|
|
@@ -19,24 +19,24 @@ |
|
|
|
- [Function](0_python/6_Function.ipynb) |
|
|
|
- [Class](0_python/7_Class.ipynb) |
|
|
|
3. [numpy & matplotlib](1_numpy_matplotlib_scipy_sympy/) |
|
|
|
- [numpy](1_numpy_matplotlib_scipy_sympy/numpy_tutorial.ipynb) |
|
|
|
- [matplotlib](1_numpy_matplotlib_scipy_sympy/matplotlib_simple_tutorial.ipynb) |
|
|
|
- [ipython & notebook](1_numpy_matplotlib_scipy_sympy/ipython_notebook.ipynb) |
|
|
|
- [numpy](1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb) |
|
|
|
- [matplotlib](1_numpy_matplotlib_scipy_sympy/2-matplotlib_tutorial.ipynb) |
|
|
|
- [ipython & notebook](1_numpy_matplotlib_scipy_sympy/3-ipython_notebook.ipynb) |
|
|
|
4. [knn](2_knn/knn_classification.ipynb) |
|
|
|
5. [kMenas](3_kmeans/k-means.ipynb) |
|
|
|
5. [kMenas](3_kmeans/1-k-means.ipynb) |
|
|
|
6. [Logistic Regression](4_logistic_regression/) |
|
|
|
- [Least squares](4_logistic_regression/Least_squares.ipynb) |
|
|
|
- [Logistic regression](4_logistic_regression/Logistic_regression.ipynb) |
|
|
|
- [Least squares](4_logistic_regression/1-Least_squares.ipynb) |
|
|
|
- [Logistic regression](4_logistic_regression/2-Logistic_regression.ipynb) |
|
|
|
7. [Neural Network](5_nn/) |
|
|
|
- [Perceptron](5_nn/Perceptron.ipynb) |
|
|
|
- [Multi-layer Perceptron & BP](5_nn/mlp_bp.ipynb) |
|
|
|
- [Softmax & cross-entroy](5_nn/softmax_ce.ipynb) |
|
|
|
- [Perceptron](5_nn/1-Perceptron.ipynb) |
|
|
|
- [Multi-layer Perceptron & BP](5_nn/2-mlp_bp.ipynb) |
|
|
|
- [Softmax & cross-entroy](5_nn/3-softmax_ce.ipynb) |
|
|
|
8. [PyTorch](6_pytorch/) |
|
|
|
- Basic |
|
|
|
- [short tutorial](6_pytorch/PyTorch_quick_intro.ipynb) |
|
|
|
- [basic/Tensor-and-Variable](6_pytorch/0_basic/Tensor-and-Variable.ipynb) |
|
|
|
- [basic/autograd](6_pytorch/0_basic/autograd.ipynb) |
|
|
|
- [basic/dynamic-graph](6_pytorch/0_basic/dynamic-graph.ipynb) |
|
|
|
- [basic/Tensor-and-Variable](6_pytorch/0_basic/1-Tensor-and-Variable.ipynb) |
|
|
|
- [basic/autograd](6_pytorch/0_basic/2-autograd.ipynb) |
|
|
|
- [basic/dynamic-graph](6_pytorch/0_basic/3-dynamic-graph.ipynb) |
|
|
|
- NN & Optimization |
|
|
|
- [nn/linear-regression-gradient-descend](6_pytorch/1_NN/linear-regression-gradient-descend.ipynb) |
|
|
|
- [nn/logistic-regression](6_pytorch/1_NN/logistic-regression.ipynb) |
|
|
@@ -99,7 +99,7 @@ |
|
|
|
* [Git系统学习 - 廖雪峰的Git教程](https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000) |
|
|
|
|
|
|
|
* Markdown |
|
|
|
* [Markdown——入门指南](https://www.jianshu.com/p/1e402922ee32) |
|
|
|
* [Markdown—入门指南](https://www.jianshu.com/p/1e402922ee32) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|