@@ -99,8 +99,8 @@ | |||
], | |||
"source": [ | |||
"# 使用内置函数下载 mnist 数据集\n", | |||
"train_set = mnist.MNIST('./data', train=True, download=True)\n", | |||
"test_set = mnist.MNIST('./data', train=False, download=True)" | |||
"train_set = mnist.MNIST('../../data/mnist', train=True, download=True)\n", | |||
"test_set = mnist.MNIST('../../data/mnist', train=False, download=True)" | |||
] | |||
}, | |||
{ | |||
@@ -491,7 +491,7 @@ | |||
" train_loss += loss.data[0]\n", | |||
" # 计算分类的准确率\n", | |||
" _, pred = out.max(1)\n", | |||
" num_correct = (pred == label).sum().data[0]\n", | |||
" num_correct = float((pred == label).sum().data[0])\n", | |||
" acc = num_correct / im.shape[0]\n", | |||
" train_acc += acc\n", | |||
" \n", | |||
@@ -510,7 +510,7 @@ | |||
" eval_loss += loss.data[0]\n", | |||
" # 记录准确率\n", | |||
" _, pred = out.max(1)\n", | |||
" num_correct = (pred == label).sum().data[0]\n", | |||
" num_correct = flot((pred == label).sum().data[0])\n", | |||
" acc = num_correct / im.shape[0]\n", | |||
" eval_acc += acc\n", | |||
" \n", | |||
@@ -0,0 +1,233 @@ | |||
# -*- coding: utf-8 -*- | |||
# --- | |||
# jupyter: | |||
# jupytext_format_version: '1.2' | |||
# kernelspec: | |||
# display_name: Python 3 | |||
# language: python | |||
# name: python3 | |||
# language_info: | |||
# codemirror_mode: | |||
# name: ipython | |||
# version: 3 | |||
# file_extension: .py | |||
# mimetype: text/x-python | |||
# name: python | |||
# nbconvert_exporter: python | |||
# pygments_lexer: ipython3 | |||
# version: 3.5.2 | |||
# --- | |||
# # 深层神经网络 | |||
# 前面一章我们简要介绍了神经网络的一些基本知识,同时也是示范了如何用神经网络构建一个复杂的非线性二分类器,更多的情况神经网络适合使用在更加复杂的情况,比如图像分类的问题,下面我们用深度学习的入门级数据集 MNIST 手写体分类来说明一下更深层神经网络的优良表现。 | |||
# | |||
# ## MNIST 数据集 | |||
# mnist 数据集是一个非常出名的数据集,基本上很多网络都将其作为一个测试的标准,其来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST)。 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员,一共有 60000 张图片。 测试集(test set) 也是同样比例的手写数字数据,一共有 10000 张图片。 | |||
# | |||
# 每张图片大小是 28 x 28 的灰度图,如下 | |||
# | |||
#  | |||
# | |||
# 所以我们的任务就是给出一张图片,我们希望区别出其到底属于 0 到 9 这 10 个数字中的哪一个。 | |||
# | |||
# ## 多分类问题 | |||
# 前面我们讲过二分类问题,现在处理的问题更加复杂,是一个 10 分类问题,统称为多分类问题,对于多分类问题而言,我们的 loss 函数使用一个更加复杂的函数,叫交叉熵。 | |||
# | |||
# ### softmax | |||
# 提到交叉熵,我们先讲一下 softmax 函数,前面我们见过了 sigmoid 函数,如下 | |||
# | |||
# $$s(x) = \frac{1}{1 + e^{-x}}$$ | |||
# | |||
# 可以将任何一个值转换到 0 ~ 1 之间,当然对于一个二分类问题,这样就足够了,因为对于二分类问题,如果不属于第一类,那么必定属于第二类,所以只需要用一个值来表示其属于其中一类概率,但是对于多分类问题,这样并不行,需要知道其属于每一类的概率,这个时候就需要 softmax 函数了。 | |||
# | |||
# softmax 函数示例如下 | |||
# | |||
#  | |||
# | |||
# 对于网络的输出 $z_1, z_2, \cdots z_k$,我们首先对他们每个都取指数变成 $e^{z_1}, e^{z_2}, \cdots, e^{z_k}$,那么每一项都除以他们的求和,也就是 | |||
# | |||
# $$ | |||
# z_i \rightarrow \frac{e^{z_i}}{\sum_{j=1}^{k} e^{z_j}} | |||
# $$ | |||
# | |||
# 如果对经过 softmax 函数的所有项求和就等于 1,所以他们每一项都分别表示属于其中某一类的概率。 | |||
# | |||
# ## 交叉熵 | |||
# 交叉熵衡量两个分布相似性的一种度量方式,前面讲的二分类问题的 loss 函数就是交叉熵的一种特殊情况,交叉熵的一般公式为 | |||
# | |||
# $$ | |||
# cross\_entropy(p, q) = E_{p}[-\log q] = - \frac{1}{m} \sum_{x} p(x) \log q(x) | |||
# $$ | |||
# | |||
# 对于二分类问题我们可以写成 | |||
# | |||
# $$ | |||
# -\frac{1}{m} \sum_{i=1}^m (y^{i} \log sigmoid(x^{i}) + (1 - y^{i}) \log (1 - sigmoid(x^{i})) | |||
# $$ | |||
# | |||
# 这就是我们之前讲的二分类问题的 loss,当时我们并没有解释原因,只是给出了公式,然后解释了其合理性,现在我们给出了公式去证明这样取 loss 函数是合理的 | |||
# | |||
# 交叉熵是信息理论里面的内容,这里不再具体展开,更多的内容,可以看到下面的[链接](http://blog.csdn.net/rtygbwwwerr/article/details/50778098) | |||
# | |||
# 下面我们直接用 mnist 举例,讲一讲深度神经网络 | |||
# + | |||
import numpy as np | |||
import torch | |||
from torchvision.datasets import mnist # 导入 pytorch 内置的 mnist 数据 | |||
from torch import nn | |||
from torch.autograd import Variable | |||
# - | |||
# 使用内置函数下载 mnist 数据集 | |||
train_set = mnist.MNIST('../../data/mnist', train=True, download=True) | |||
test_set = mnist.MNIST('../../data/mnist', train=False, download=True) | |||
# 我们可以看看其中的一个数据是什么样子的 | |||
a_data, a_label = train_set[0] | |||
a_data | |||
a_label | |||
# 这里的读入的数据是 PIL 库中的格式,我们可以非常方便地将其转换为 numpy array | |||
a_data = np.array(a_data, dtype='float32') | |||
print(a_data.shape) | |||
# 这里我们可以看到这种图片的大小是 28 x 28 | |||
print(a_data) | |||
# 我们可以将数组展示出来,里面的 0 就表示黑色,255 表示白色 | |||
# | |||
# 对于神经网络,我们第一层的输入就是 28 x 28 = 784,所以必须将得到的数据我们做一个变换,使用 reshape 将他们拉平成一个一维向量 | |||
# + | |||
def data_tf(x): | |||
x = np.array(x, dtype='float32') / 255 | |||
x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到 | |||
x = x.reshape((-1,)) # 拉平 | |||
x = torch.from_numpy(x) | |||
return x | |||
train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换 | |||
test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True) | |||
# - | |||
a, a_label = train_set[0] | |||
print(a.shape) | |||
print(a_label) | |||
from torch.utils.data import DataLoader | |||
# 使用 pytorch 自带的 DataLoader 定义一个数据迭代器 | |||
train_data = DataLoader(train_set, batch_size=64, shuffle=True) | |||
test_data = DataLoader(test_set, batch_size=128, shuffle=False) | |||
# 使用这样的数据迭代器是非常有必要的,如果数据量太大,就无法一次将他们全部读入内存,所以需要使用 python 迭代器,每次生成一个批次的数据 | |||
a, a_label = next(iter(train_data)) | |||
# 打印出一个批次的数据大小 | |||
print(a.shape) | |||
print(a_label.shape) | |||
# 使用 Sequential 定义 4 层神经网络 | |||
net = nn.Sequential( | |||
nn.Linear(784, 400), | |||
nn.ReLU(), | |||
nn.Linear(400, 200), | |||
nn.ReLU(), | |||
nn.Linear(200, 100), | |||
nn.ReLU(), | |||
nn.Linear(100, 10) | |||
) | |||
net | |||
# 交叉熵在 pytorch 中已经内置了,交叉熵的数值稳定性更差,所以内置的函数已经帮我们解决了这个问题 | |||
# 定义 loss 函数 | |||
criterion = nn.CrossEntropyLoss() | |||
optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1 | |||
# + {"scrolled": true} | |||
# 开始训练 | |||
losses = [] | |||
acces = [] | |||
eval_losses = [] | |||
eval_acces = [] | |||
for e in range(20): | |||
train_loss = 0 | |||
train_acc = 0 | |||
net.train() | |||
for im, label in train_data: | |||
im = Variable(im) | |||
label = Variable(label) | |||
# 前向传播 | |||
out = net(im) | |||
loss = criterion(out, label) | |||
# 反向传播 | |||
optimizer.zero_grad() | |||
loss.backward() | |||
optimizer.step() | |||
# 记录误差 | |||
train_loss += loss.data[0] | |||
# 计算分类的准确率 | |||
_, pred = out.max(1) | |||
num_correct = float((pred == label).sum().data[0]) | |||
acc = num_correct / im.shape[0] | |||
train_acc += acc | |||
losses.append(train_loss / len(train_data)) | |||
acces.append(train_acc / len(train_data)) | |||
# 在测试集上检验效果 | |||
eval_loss = 0 | |||
eval_acc = 0 | |||
net.eval() # 将模型改为预测模式 | |||
for im, label in test_data: | |||
im = Variable(im) | |||
label = Variable(label) | |||
out = net(im) | |||
loss = criterion(out, label) | |||
# 记录误差 | |||
eval_loss += loss.data[0] | |||
# 记录准确率 | |||
_, pred = out.max(1) | |||
num_correct = flot((pred == label).sum().data[0]) | |||
acc = num_correct / im.shape[0] | |||
eval_acc += acc | |||
eval_losses.append(eval_loss / len(test_data)) | |||
eval_acces.append(eval_acc / len(test_data)) | |||
print('epoch: {}, Train Loss: {:.6f}, Train Acc: {:.6f}, Eval Loss: {:.6f}, Eval Acc: {:.6f}' | |||
.format(e, train_loss / len(train_data), train_acc / len(train_data), | |||
eval_loss / len(test_data), eval_acc / len(test_data))) | |||
# - | |||
# 画出 loss 曲线和 准确率曲线 | |||
import matplotlib.pyplot as plt | |||
# %matplotlib inline | |||
plt.title('train loss') | |||
plt.plot(np.arange(len(losses)), losses) | |||
plt.plot(np.arange(len(acces)), acces) | |||
plt.title('train acc') | |||
plt.plot(np.arange(len(eval_losses)), eval_losses) | |||
plt.title('test loss') | |||
plt.plot(np.arange(len(eval_acces)), eval_acces) | |||
plt.title('test acc') | |||
# 可以看到我们的三层网络在训练集上能够达到 99.9% 的准确率,测试集上能够达到 98.20% 的准确率 | |||
# **小练习:看一看上面的训练过程,看一下准确率是怎么计算出来的,特别注意 max 这个函数** | |||
# | |||
# **自己重新实现一个新的网络,试试改变隐藏层的数目和激活函数,看看有什么新的结果** |
@@ -47,9 +47,7 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 1, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"def adam(parameters, vs, sqrs, lr, t, beta1=0.9, beta2=0.999):\n", | |||
@@ -65,9 +63,7 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 2, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"import numpy as np\n", | |||
@@ -87,8 +83,8 @@ | |||
" x = torch.from_numpy(x)\n", | |||
" return x\n", | |||
"\n", | |||
"train_set = MNIST('./data', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换\n", | |||
"test_set = MNIST('./data', train=False, transform=data_tf, download=True)\n", | |||
"train_set = MNIST('../../../data/mnist', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换\n", | |||
"test_set = MNIST('../../../data/mnist', train=False, transform=data_tf, download=True)\n", | |||
"\n", | |||
"# 定义 loss 函数\n", | |||
"criterion = nn.CrossEntropyLoss()" | |||
@@ -79,8 +79,8 @@ def data_tf(x): | |||
x = torch.from_numpy(x) | |||
return x | |||
train_set = MNIST('./data', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换 | |||
test_set = MNIST('./data', train=False, transform=data_tf, download=True) | |||
train_set = MNIST('../../../data/mnist', train=True, transform=data_tf, download=True) # 载入数据集,申明定义的数据变换 | |||
test_set = MNIST('../../../data/mnist', train=False, transform=data_tf, download=True) | |||
# 定义 loss 函数 | |||
criterion = nn.CrossEntropyLoss() | |||
@@ -64,8 +64,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-23T06:50:51.579067Z", | |||
"start_time": "2017-12-23T06:50:51.575693Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -82,8 +81,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-23T07:14:11.077807Z", | |||
"start_time": "2017-12-23T07:14:11.060849Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -168,8 +166,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-23T07:32:48.025709Z", | |||
"start_time": "2017-12-23T07:32:48.005892Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -196,9 +193,7 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 5, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"import numpy as np\n", | |||
@@ -215,8 +210,8 @@ | |||
"outputs": [], | |||
"source": [ | |||
"# 使用内置函数下载 mnist 数据集\n", | |||
"train_set = mnist.MNIST('./data', train=True)\n", | |||
"test_set = mnist.MNIST('./data', train=False)\n", | |||
"train_set = mnist.MNIST('../../data/mnist', train=True)\n", | |||
"test_set = mnist.MNIST('../../data/mnist', train=False)\n", | |||
"\n", | |||
"def data_tf(x):\n", | |||
" x = np.array(x, dtype='float32') / 255\n", | |||
@@ -225,8 +220,8 @@ | |||
" x = torch.from_numpy(x)\n", | |||
" return x\n", | |||
"\n", | |||
"train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换\n", | |||
"test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)\n", | |||
"train_set = mnist.MNIST('../../data/mnist', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换\n", | |||
"test_set = mnist.MNIST('../../data/mnist', train=False, transform=data_tf, download=True)\n", | |||
"train_data = DataLoader(train_set, batch_size=64, shuffle=True)\n", | |||
"test_data = DataLoader(test_set, batch_size=128, shuffle=False)" | |||
] | |||
@@ -234,9 +229,7 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 7, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"class multi_network(nn.Module):\n", | |||
@@ -263,9 +256,7 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 8, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"net = multi_network()" | |||
@@ -426,9 +417,7 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"def data_tf(x):\n", | |||
@@ -438,8 +427,8 @@ | |||
" x = x.unsqueeze(0)\n", | |||
" return x\n", | |||
"\n", | |||
"train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换\n", | |||
"test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)\n", | |||
"train_set = mnist.MNIST('../../data/mnist', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换\n", | |||
"test_set = mnist.MNIST('../../data/mnist', train=False, transform=data_tf, download=True)\n", | |||
"train_data = DataLoader(train_set, batch_size=64, shuffle=True)\n", | |||
"test_data = DataLoader(test_set, batch_size=128, shuffle=False)" | |||
] | |||
@@ -500,9 +489,7 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 76, | |||
"metadata": { | |||
"collapsed": true | |||
}, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"# 不使用批标准化\n", | |||
@@ -110,8 +110,8 @@ from torch.autograd import Variable | |||
# + | |||
# 使用内置函数下载 mnist 数据集 | |||
train_set = mnist.MNIST('./data', train=True) | |||
test_set = mnist.MNIST('./data', train=False) | |||
train_set = mnist.MNIST('../../data/mnist', train=True) | |||
test_set = mnist.MNIST('../../data/mnist', train=False) | |||
def data_tf(x): | |||
x = np.array(x, dtype='float32') / 255 | |||
@@ -120,8 +120,8 @@ def data_tf(x): | |||
x = torch.from_numpy(x) | |||
return x | |||
train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换 | |||
test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True) | |||
train_set = mnist.MNIST('../../data/mnist', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换 | |||
test_set = mnist.MNIST('../../data/mnist', train=False, transform=data_tf, download=True) | |||
train_data = DataLoader(train_set, batch_size=64, shuffle=True) | |||
test_data = DataLoader(test_set, batch_size=128, shuffle=False) | |||
# - | |||
@@ -193,8 +193,8 @@ def data_tf(x): | |||
x = x.unsqueeze(0) | |||
return x | |||
train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换 | |||
test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True) | |||
train_set = mnist.MNIST('../../data/mnist', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换 | |||
test_set = mnist.MNIST('../../data/mnist', train=False, transform=data_tf, download=True) | |||
train_data = DataLoader(train_set, batch_size=64, shuffle=True) | |||
test_data = DataLoader(test_set, batch_size=128, shuffle=False) | |||
@@ -35,8 +35,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-22T15:38:31.113030Z", | |||
"start_time": "2017-12-22T15:38:30.612922Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -64,8 +63,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-22T15:38:31.121249Z", | |||
"start_time": "2017-12-22T15:38:31.115369Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -92,8 +90,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-22T15:38:31.145274Z", | |||
"start_time": "2017-12-22T15:38:31.123363Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -163,8 +160,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-22T15:38:31.222120Z", | |||
"start_time": "2017-12-22T15:38:31.215770Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -226,8 +222,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-22T15:38:31.318822Z", | |||
"start_time": "2017-12-22T15:38:31.236857Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -298,8 +293,7 @@ | |||
"ExecuteTime": { | |||
"end_time": "2017-12-22T15:38:32.894729Z", | |||
"start_time": "2017-12-22T15:38:31.656356Z" | |||
}, | |||
"collapsed": true | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -313,9 +307,9 @@ | |||
" x = torch.from_numpy(x)\n", | |||
" return x\n", | |||
" \n", | |||
"train_set = CIFAR10('./data', train=True, transform=data_tf)\n", | |||
"train_set = CIFAR10('../../data', train=True, transform=data_tf)\n", | |||
"train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)\n", | |||
"test_set = CIFAR10('./data', train=False, transform=data_tf)\n", | |||
"test_set = CIFAR10('../../data', train=False, transform=data_tf)\n", | |||
"test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)\n", | |||
"\n", | |||
"net = densenet(3, 10)\n", | |||
@@ -162,9 +162,9 @@ def data_tf(x): | |||
x = torch.from_numpy(x) | |||
return x | |||
train_set = CIFAR10('./data', train=True, transform=data_tf) | |||
train_set = CIFAR10('../../data', train=True, transform=data_tf) | |||
train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True) | |||
test_set = CIFAR10('./data', train=False, transform=data_tf) | |||
test_set = CIFAR10('../../data', train=False, transform=data_tf) | |||
test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False) | |||
net = densenet(3, 10) | |||
@@ -377,7 +377,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.3" | |||
"version": "3.5.2" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -0,0 +1,144 @@ | |||
# -*- coding: utf-8 -*- | |||
# --- | |||
# jupyter: | |||
# jupytext_format_version: '1.2' | |||
# kernelspec: | |||
# display_name: Python 3 | |||
# language: python | |||
# name: python3 | |||
# language_info: | |||
# codemirror_mode: | |||
# name: ipython | |||
# version: 3 | |||
# file_extension: .py | |||
# mimetype: text/x-python | |||
# name: python | |||
# nbconvert_exporter: python | |||
# pygments_lexer: ipython3 | |||
# version: 3.5.2 | |||
# --- | |||
# # RNN 用于时间序列的分析 | |||
# 前面我们讲到使用 RNN 做简单的图像分类的问题,但是 RNN 并不擅长此类问题,下面我们讲一讲如何将 RNN 用到时间序列的问题上,因为对于时序数据,后面的数据会用到前面的数据,LSTM 的记忆特性非常适合这种场景。 | |||
# 首先我们可以读入数据,这个数据是 10 年飞机月流量,可视化得到下面的效果。 | |||
import numpy as np | |||
import pandas as pd | |||
import matplotlib.pyplot as plt | |||
# %matplotlib inline | |||
data_csv = pd.read_csv('./data.csv', usecols=[1]) | |||
plt.plot(data_csv) | |||
# 首先我们进行预处理,将数据中 `na` 的数据去掉,然后将数据标准化到 0 ~ 1 之间。 | |||
# 数据预处理 | |||
data_csv = data_csv.dropna() | |||
dataset = data_csv.values | |||
dataset = dataset.astype('float32') | |||
max_value = np.max(dataset) | |||
min_value = np.min(dataset) | |||
scalar = max_value - min_value | |||
dataset = list(map(lambda x: x / scalar, dataset)) | |||
# 接着我们进行数据集的创建,我们想通过前面几个月的流量来预测当月的流量,比如我们希望通过前两个月的流量来预测当月的流量,我们可以将前两个月的流量当做输入,当月的流量当做输出。同时我们需要将我们的数据集分为训练集和测试集,通过测试集的效果来测试模型的性能,这里我们简单的将前面几年的数据作为训练集,后面两年的数据作为测试集。 | |||
def create_dataset(dataset, look_back=2): | |||
dataX, dataY = [], [] | |||
for i in range(len(dataset) - look_back): | |||
a = dataset[i:(i + look_back)] | |||
dataX.append(a) | |||
dataY.append(dataset[i + look_back]) | |||
return np.array(dataX), np.array(dataY) | |||
# 创建好输入输出 | |||
data_X, data_Y = create_dataset(dataset) | |||
# 划分训练集和测试集,70% 作为训练集 | |||
train_size = int(len(data_X) * 0.7) | |||
test_size = len(data_X) - train_size | |||
train_X = data_X[:train_size] | |||
train_Y = data_Y[:train_size] | |||
test_X = data_X[train_size:] | |||
test_Y = data_Y[train_size:] | |||
# 最后,我们需要将数据改变一下形状,因为 RNN 读入的数据维度是 (seq, batch, feature),所以要重新改变一下数据的维度,这里只有一个序列,所以 batch 是 1,而输入的 feature 就是我们希望依据的几个月份,这里我们定的是两个月份,所以 feature 就是 2. | |||
# + | |||
import torch | |||
train_X = train_X.reshape(-1, 1, 2) | |||
train_Y = train_Y.reshape(-1, 1, 1) | |||
test_X = test_X.reshape(-1, 1, 2) | |||
train_x = torch.from_numpy(train_X) | |||
train_y = torch.from_numpy(train_Y) | |||
test_x = torch.from_numpy(test_X) | |||
# - | |||
from torch import nn | |||
from torch.autograd import Variable | |||
# 这里定义好模型,模型的第一部分是一个两层的 RNN,每一步模型接受两个月的输入作为特征,得到一个输出特征。接着通过一个线性层将 RNN 的输出回归到流量的具体数值,这里我们需要用 `view` 来重新排列,因为 `nn.Linear` 不接受三维的输入,所以我们先将前两维合并在一起,然后经过线性层之后再将其分开,最后输出结果。 | |||
# 定义模型 | |||
class lstm_reg(nn.Module): | |||
def __init__(self, input_size, hidden_size, output_size=1, num_layers=2): | |||
super(lstm_reg, self).__init__() | |||
self.rnn = nn.LSTM(input_size, hidden_size, num_layers) # rnn | |||
self.reg = nn.Linear(hidden_size, output_size) # 回归 | |||
def forward(self, x): | |||
x, _ = self.rnn(x) # (seq, batch, hidden) | |||
s, b, h = x.shape | |||
x = x.view(s*b, h) # 转换成线性层的输入格式 | |||
x = self.reg(x) | |||
x = x.view(s, b, -1) | |||
return x | |||
# + | |||
net = lstm_reg(2, 4) | |||
criterion = nn.MSELoss() | |||
optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) | |||
# - | |||
# 定义好网络结构,输入的维度是 2,因为我们使用两个月的流量作为输入,隐藏层的维度可以任意指定,这里我们选的 4 | |||
# 开始训练 | |||
for e in range(1000): | |||
var_x = Variable(train_x) | |||
var_y = Variable(train_y) | |||
# 前向传播 | |||
out = net(var_x) | |||
loss = criterion(out, var_y) | |||
# 反向传播 | |||
optimizer.zero_grad() | |||
loss.backward() | |||
optimizer.step() | |||
if (e + 1) % 100 == 0: # 每 100 次输出结果 | |||
print('Epoch: {}, Loss: {:.5f}'.format(e + 1, loss.data[0])) | |||
# 训练完成之后,我们可以用训练好的模型去预测后面的结果 | |||
net = net.eval() # 转换成测试模式 | |||
data_X = data_X.reshape(-1, 1, 2) | |||
data_X = torch.from_numpy(data_X) | |||
var_data = Variable(data_X) | |||
pred_test = net(var_data) # 测试集的预测结果 | |||
# 改变输出的格式 | |||
pred_test = pred_test.view(-1).data.numpy() | |||
# 画出实际结果和预测的结果 | |||
plt.plot(pred_test, 'r', label='prediction') | |||
plt.plot(dataset, 'b', label='real') | |||
plt.legend(loc='best') | |||
# 这里蓝色的是真实的数据集,红色的是预测的结果,我们能够看到,使用 lstm 能够得到比较相近的结果,预测的趋势也与真实的数据集是相同的,因为其能够记忆之前的信息,而单纯的使用线性回归并不能得到较好的结果,从这个例子也说明了 RNN 对于序列有着非常好的性能。 | |||
# **小练习:试试改变隐藏状态输出的特征数,看看有没有什么改变,同时试试使用简单的线性回归模型,看看会得到什么样的结果** |
@@ -1,533 +0,0 @@ | |||
# -*- coding: utf-8 -*- | |||
# --- | |||
# jupyter: | |||
# jupytext_format_version: '1.2' | |||
# kernelspec: | |||
# display_name: Python 3 | |||
# language: python | |||
# name: python3 | |||
# language_info: | |||
# codemirror_mode: | |||
# name: ipython | |||
# version: 3 | |||
# file_extension: .py | |||
# mimetype: text/x-python | |||
# name: python | |||
# nbconvert_exporter: python | |||
# pygments_lexer: ipython3 | |||
# version: 3.5.2 | |||
# --- | |||
# # PyTorch快速入门 | |||
# | |||
# PyTorch的简洁设计使得它入门很简单,在深入介绍PyTorch之前,本节将先介绍一些PyTorch的基础知识,使得读者能够对PyTorch有一个大致的了解,并能够用PyTorch搭建一个简单的神经网络。部分内容读者可能暂时不太理解,可先不予以深究,后续的课程将会对此进行深入讲解。 | |||
# | |||
# 本节内容参考了PyTorch官方教程[^1]并做了相应的增删修改,使得内容更贴合新版本的PyTorch接口,同时也更适合新手快速入门。另外本书需要读者先掌握基础的Numpy使用,其他相关知识推荐读者参考CS231n的教程[^2]。 | |||
# | |||
# [^1]: http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html | |||
# [^2]: http://cs231n.github.io/python-numpy-tutorial/ | |||
# ### Tensor | |||
# | |||
# Tensor是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)以及更高维的数组。Tensor和Numpy的ndarrays类似,但Tensor可以使用GPU进行加速。Tensor的使用和Numpy及Matlab的接口十分相似,下面通过几个例子来看看Tensor的基本使用。 | |||
from __future__ import print_function | |||
import torch as t | |||
# 构建 5x3 矩阵,只是分配了空间,未初始化 | |||
x = t.Tensor(5, 3) | |||
x | |||
# 使用[0,1]均匀分布随机初始化二维数组 | |||
x = t.rand(5, 3) | |||
x | |||
print(x.size()) # 查看x的形状 | |||
x.size()[1], x.size(1) # 查看列的个数, 两种写法等价 | |||
# `torch.Size` 是tuple对象的子类,因此它支持tuple的所有操作,如x.size()[0] | |||
y = t.rand(5, 3) | |||
# 加法的第一种写法 | |||
x + y | |||
# 加法的第二种写法 | |||
t.add(x, y) | |||
# 加法的第三种写法:指定加法结果的输出目标为result | |||
result = t.Tensor(5, 3) # 预先分配空间 | |||
t.add(x, y, out=result) # 输入到result | |||
result | |||
# + | |||
print('最初y') | |||
print(y) | |||
print('第一种加法,y的结果') | |||
y.add(x) # 普通加法,不改变y的内容 | |||
print(y) | |||
print('第二种加法,y的结果') | |||
y.add_(x) # inplace 加法,y变了 | |||
print(y) | |||
# - | |||
# 注意,函数名后面带下划线**`_`** 的函数会修改Tensor本身。例如,`x.add_(y)`和`x.t_()`会改变 `x`,但`x.add(y)`和`x.t()`返回一个新的Tensor, 而`x`不变。 | |||
# Tensor的选取操作与Numpy类似 | |||
x[:, 1] | |||
# Tensor还支持很多操作,包括数学运算、线性代数、选择、切片等等,其接口设计与Numpy极为相似。更详细的使用方法,会在第三章系统讲解。 | |||
# | |||
# Tensor和Numpy的数组之间的互操作非常容易且快速。对于Tensor不支持的操作,可以先转为Numpy数组处理,之后再转回Tensor。 | |||
a = t.ones(5) # 新建一个全1的Tensor | |||
a | |||
b = a.numpy() # Tensor -> Numpy | |||
b | |||
import numpy as np | |||
a = np.ones(5) | |||
b = t.from_numpy(a) # Numpy->Tensor | |||
print(a) | |||
print(b) | |||
# Tensor和numpy对象共享内存,所以他们之间的转换很快,而且几乎不会消耗什么资源。但这也意味着,如果其中一个变了,另外一个也会随之改变。 | |||
b.add_(1) # 以`_`结尾的函数会修改自身 | |||
print(a) | |||
print(b) # Tensor和Numpy共享内存 | |||
# Tensor可通过`.cuda` 方法转为GPU的Tensor,从而享受GPU带来的加速运算。 | |||
# 在不支持CUDA的机器下,下一步不会运行 | |||
if t.cuda.is_available(): | |||
x = x.cuda() | |||
y = y.cuda() | |||
x + y | |||
# 此处可能发现GPU运算的速度并未提升太多,这是因为x和y太小且运算也较为简单,而且将数据从内存转移到显存还需要花费额外的开销。GPU的优势需在大规模数据和复杂运算下才能体现出来。 | |||
# | |||
# ### Autograd: 自动微分 | |||
# | |||
# 深度学习的算法本质上是通过反向传播求导数,而PyTorch的**`Autograd`**模块则实现了此功能。在Tensor上的所有操作,Autograd都能为它们自动提供微分,避免了手动计算导数的复杂过程。 | |||
# | |||
# `autograd.Variable`是Autograd中的核心类,它简单封装了Tensor,并支持几乎所有Tensor有的操作。Tensor在被封装为Variable之后,可以调用它的`.backward`实现反向传播,自动计算所有梯度。Variable的数据结构如图2-6所示。 | |||
# | |||
# | |||
#  | |||
# | |||
# | |||
# Variable主要包含三个属性。 | |||
# - `data`:保存Variable所包含的Tensor | |||
# - `grad`:保存`data`对应的梯度,`grad`也是个Variable,而不是Tensor,它和`data`的形状一样。 | |||
# - `grad_fn`:指向一个`Function`对象,这个`Function`用来反向传播计算输入的梯度,具体细节会在下一章讲解。 | |||
from torch.autograd import Variable | |||
# + {"scrolled": true} | |||
# 使用Tensor新建一个Variable | |||
x = Variable(t.ones(2, 2), requires_grad = True) | |||
x | |||
# + {"scrolled": true} | |||
y = x.sum() | |||
y | |||
# - | |||
y.grad_fn | |||
y.backward() # 反向传播,计算梯度 | |||
# y = x.sum() = (x[0][0] + x[0][1] + x[1][0] + x[1][1]) | |||
# 每个值的梯度都为1 | |||
x.grad | |||
# 注意:`grad`在反向传播过程中是累加的(accumulated),**这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以反向传播之前需把梯度清零。** | |||
y.backward() | |||
x.grad | |||
# + {"scrolled": true} | |||
y.backward() | |||
x.grad | |||
# - | |||
# 以下划线结束的函数是inplace操作,就像add_ | |||
x.grad.data.zero_() | |||
y.backward() | |||
x.grad | |||
# Variable和Tensor具有近乎一致的接口,在实际使用中可以无缝切换。 | |||
x = Variable(t.ones(4,5)) | |||
y = t.cos(x) | |||
x_tensor_cos = t.cos(x.data) | |||
print(y) | |||
x_tensor_cos | |||
# ### 神经网络 | |||
# | |||
# Autograd实现了反向传播功能,但是直接用来写深度学习的代码在很多情况下还是稍显复杂,torch.nn是专门为神经网络设计的模块化接口。nn构建于 Autograd之上,可用来定义和运行神经网络。nn.Module是nn中最重要的类,可把它看成是一个网络的封装,包含网络各层定义以及forward方法,调用forward(input)方法,可返回前向传播的结果。下面就以最早的卷积神经网络:LeNet为例,来看看如何用`nn.Module`实现。LeNet的网络结构如图2-7所示。 | |||
# | |||
#  | |||
# | |||
# 这是一个基础的前向传播(feed-forward)网络: 接收输入,经过层层传递运算,得到输出。 | |||
# | |||
# #### 定义网络 | |||
# | |||
# 定义网络时,需要继承`nn.Module`,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数`__init__`中。如果某一层(如ReLU)不具有可学习的参数,则既可以放在构造函数中,也可以不放,但建议不放在其中,而在forward中使用`nn.functional`代替。 | |||
# + | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
class Net(nn.Module): | |||
def __init__(self): | |||
# nn.Module子类的函数必须在构造函数中执行父类的构造函数 | |||
# 下式等价于nn.Module.__init__(self) | |||
super(Net, self).__init__() | |||
# 卷积层 '1'表示输入图片为单通道, '6'表示输出通道数,'5'表示卷积核为5*5 | |||
self.conv1 = nn.Conv2d(1, 6, 5) | |||
# 卷积层 | |||
self.conv2 = nn.Conv2d(6, 16, 5) | |||
# 仿射层/全连接层,y = Wx + b | |||
self.fc1 = nn.Linear(16*5*5, 120) | |||
self.fc2 = nn.Linear(120, 84) | |||
self.fc3 = nn.Linear(84, 10) | |||
def forward(self, x): | |||
# 卷积 -> 激活 -> 池化 | |||
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) | |||
x = F.max_pool2d(F.relu(self.conv2(x)), 2) | |||
# reshape,‘-1’表示自适应 | |||
x = x.view(x.size()[0], -1) | |||
x = F.relu(self.fc1(x)) | |||
x = F.relu(self.fc2(x)) | |||
x = self.fc3(x) | |||
return x | |||
net = Net() | |||
print(net) | |||
# - | |||
# 只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用`Autograd`)。在`forward` 函数中可使用任何Variable支持的函数,还可以使用if、for循环、print、log等Python语法,写法和标准的Python写法一致。 | |||
# | |||
# 网络的可学习参数通过`net.parameters()`返回,`net.named_parameters`可同时返回可学习的参数及名称。 | |||
params = list(net.parameters()) | |||
print(len(params)) | |||
for name,parameters in net.named_parameters(): | |||
print(name,':',parameters.size()) | |||
# forward函数的输入和输出都是Variable,只有Variable才具有自动求导功能,而Tensor是没有的,所以在输入时,需把Tensor封装成Variable。 | |||
# + {"scrolled": true} | |||
input = Variable(t.randn(1, 1, 32, 32)) | |||
out = net(input) | |||
out.size() | |||
# - | |||
net.zero_grad() # 所有参数的梯度清零 | |||
out.backward(Variable(t.ones(1,10))) # 反向传播 | |||
# 需要注意的是,torch.nn只支持mini-batches,不支持一次只输入一个样本,即一次必须是一个batch。但如果只想输入一个样本,则用 `input.unsqueeze(0)`将batch_size设为1。例如 `nn.Conv2d` 输入必须是4维的,形如$nSamples \times nChannels \times Height \times Width$。可将nSample设为1,即$1 \times nChannels \times Height \times Width$。 | |||
# #### 损失函数 | |||
# | |||
# nn实现了神经网络中大多数的损失函数,例如nn.MSELoss用来计算均方误差,nn.CrossEntropyLoss用来计算交叉熵损失。 | |||
# + {"scrolled": true} | |||
output = net(input) | |||
target = Variable(t.arange(0,10)) | |||
criterion = nn.MSELoss() | |||
loss = criterion(output, target) | |||
loss | |||
# - | |||
# 如果对loss进行反向传播溯源(使用`gradfn`属性),可看到它的计算图如下: | |||
# | |||
# ``` | |||
# input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d | |||
# -> view -> linear -> relu -> linear -> relu -> linear | |||
# -> MSELoss | |||
# -> loss | |||
# ``` | |||
# | |||
# 当调用`loss.backward()`时,该图会动态生成并自动微分,也即会自动计算图中参数(Parameter)的导数。 | |||
# 运行.backward,观察调用之前和调用之后的grad | |||
net.zero_grad() # 把net中所有可学习参数的梯度清零 | |||
print('反向传播之前 conv1.bias的梯度') | |||
print(net.conv1.bias.grad) | |||
loss.backward() | |||
print('反向传播之后 conv1.bias的梯度') | |||
print(net.conv1.bias.grad) | |||
# #### 优化器 | |||
# 在反向传播计算完所有参数的梯度后,还需要使用优化方法来更新网络的权重和参数,例如随机梯度下降法(SGD)的更新策略如下: | |||
# ``` | |||
# weight = weight - learning_rate * gradient | |||
# ``` | |||
# | |||
# 手动实现如下: | |||
# | |||
# ```python | |||
# learning_rate = 0.01 | |||
# for f in net.parameters(): | |||
# f.data.sub_(f.grad.data * learning_rate)# inplace 减法 | |||
# ``` | |||
# | |||
# `torch.optim`中实现了深度学习中绝大多数的优化方法,例如RMSProp、Adam、SGD等,更便于使用,因此大多数时候并不需要手动写上述代码。 | |||
# + | |||
import torch.optim as optim | |||
#新建一个优化器,指定要调整的参数和学习率 | |||
optimizer = optim.SGD(net.parameters(), lr = 0.01) | |||
# 在训练过程中 | |||
# 先梯度清零(与net.zero_grad()效果一样) | |||
optimizer.zero_grad() | |||
# 计算损失 | |||
output = net(input) | |||
loss = criterion(output, target) | |||
#反向传播 | |||
loss.backward() | |||
#更新参数 | |||
optimizer.step() | |||
# - | |||
# | |||
# | |||
# #### 数据加载与预处理 | |||
# | |||
# 在深度学习中数据加载及预处理是非常复杂繁琐的,但PyTorch提供了一些可极大简化和加快数据处理流程的工具。同时,对于常用的数据集,PyTorch也提供了封装好的接口供用户快速调用,这些数据集主要保存在torchvison中。 | |||
# | |||
# `torchvision`实现了常用的图像数据加载功能,例如Imagenet、CIFAR10、MNIST等,以及常用的数据转换操作,这极大地方便了数据加载,并且代码具有可重用性。 | |||
# | |||
# | |||
# ### 小试牛刀:CIFAR-10分类 | |||
# | |||
# 下面我们来尝试实现对CIFAR-10数据集的分类,步骤如下: | |||
# | |||
# 1. 使用torchvision加载并预处理CIFAR-10数据集 | |||
# 2. 定义网络 | |||
# 3. 定义损失函数和优化器 | |||
# 4. 训练网络并更新网络参数 | |||
# 5. 测试网络 | |||
# | |||
# #### CIFAR-10数据加载及预处理 | |||
# | |||
# CIFAR-10[^3]是一个常用的彩色图片数据集,它有10个类别: 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'。每张图片都是$3\times32\times32$,也即3-通道彩色图片,分辨率为$32\times32$。 | |||
# | |||
# [^3]: http://www.cs.toronto.edu/~kriz/cifar.html | |||
import torch as t | |||
import torchvision as tv | |||
import torchvision.transforms as transforms | |||
from torchvision.transforms import ToPILImage | |||
show = ToPILImage() # 可以把Tensor转成Image,方便可视化 | |||
# + | |||
# 第一次运行程序torchvision会自动下载CIFAR-10数据集, | |||
# 大约100M,需花费一定的时间, | |||
# 如果已经下载有CIFAR-10,可通过root参数指定 | |||
# 定义对数据的预处理 | |||
transform = transforms.Compose([ | |||
transforms.ToTensor(), # 转为Tensor | |||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化 | |||
]) | |||
# 训练集 | |||
trainset = tv.datasets.CIFAR10( | |||
root='../data/', | |||
train=True, | |||
download=True, | |||
transform=transform) | |||
trainloader = t.utils.data.DataLoader( | |||
trainset, | |||
batch_size=4, | |||
shuffle=True, | |||
num_workers=2) | |||
# 测试集 | |||
testset = tv.datasets.CIFAR10( | |||
'../data/', | |||
train=False, | |||
download=True, | |||
transform=transform) | |||
testloader = t.utils.data.DataLoader( | |||
testset, | |||
batch_size=4, | |||
shuffle=False, | |||
num_workers=2) | |||
classes = ('plane', 'car', 'bird', 'cat', | |||
'deer', 'dog', 'frog', 'horse', 'ship', 'truck') | |||
# - | |||
# Dataset对象是一个数据集,可以按下标访问,返回形如(data, label)的数据。 | |||
# + | |||
(data, label) = trainset[100] | |||
print(classes[label]) | |||
# (data + 1) / 2是为了还原被归一化的数据 | |||
show((data + 1) / 2).resize((100, 100)) | |||
# - | |||
# Dataloader是一个可迭代的对象,它将dataset返回的每一条数据拼接成一个batch,并提供多线程加速优化和数据打乱等操作。当程序对dataset的所有数据遍历完一遍之后,相应的对Dataloader也完成了一次迭代。 | |||
dataiter = iter(trainloader) | |||
images, labels = dataiter.next() # 返回4张图片及标签 | |||
print(' '.join('%11s'%classes[labels[j]] for j in range(4))) | |||
show(tv.utils.make_grid((images+1)/2)).resize((400,100)) | |||
# #### 定义网络 | |||
# | |||
# 拷贝上面的LeNet网络,修改self.conv1第一个参数为3通道,因CIFAR-10是3通道彩图。 | |||
# + | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
class Net(nn.Module): | |||
def __init__(self): | |||
super(Net, self).__init__() | |||
self.conv1 = nn.Conv2d(3, 6, 5) | |||
self.conv2 = nn.Conv2d(6, 16, 5) | |||
self.fc1 = nn.Linear(16*5*5, 120) | |||
self.fc2 = nn.Linear(120, 84) | |||
self.fc3 = nn.Linear(84, 10) | |||
def forward(self, x): | |||
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) | |||
x = F.max_pool2d(F.relu(self.conv2(x)), 2) | |||
x = x.view(x.size()[0], -1) | |||
x = F.relu(self.fc1(x)) | |||
x = F.relu(self.fc2(x)) | |||
x = self.fc3(x) | |||
return x | |||
net = Net() | |||
print(net) | |||
# - | |||
# #### 定义损失函数和优化器(loss和optimizer) | |||
from torch import optim | |||
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数 | |||
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) | |||
# ### 训练网络 | |||
# | |||
# 所有网络的训练流程都是类似的,不断地执行如下流程: | |||
# | |||
# - 输入数据 | |||
# - 前向传播+反向传播 | |||
# - 更新参数 | |||
# | |||
# + | |||
from torch.autograd import Variable | |||
t.set_num_threads(8) | |||
for epoch in range(2): | |||
running_loss = 0.0 | |||
for i, data in enumerate(trainloader, 0): | |||
# 输入数据 | |||
inputs, labels = data | |||
inputs, labels = Variable(inputs), Variable(labels) | |||
# 梯度清零 | |||
optimizer.zero_grad() | |||
# forward + backward | |||
outputs = net(inputs) | |||
loss = criterion(outputs, labels) | |||
loss.backward() | |||
# 更新参数 | |||
optimizer.step() | |||
# 打印log信息 | |||
running_loss += loss.data[0] | |||
if i % 2000 == 1999: # 每2000个batch打印一下训练状态 | |||
print('[%d, %5d] loss: %.3f' \ | |||
% (epoch+1, i+1, running_loss / 2000)) | |||
running_loss = 0.0 | |||
print('Finished Training') | |||
# - | |||
# 此处仅训练了2个epoch(遍历完一遍数据集称为一个epoch),来看看网络有没有效果。将测试图片输入到网络中,计算它的label,然后与实际的label进行比较。 | |||
dataiter = iter(testloader) | |||
images, labels = dataiter.next() # 一个batch返回4张图片 | |||
print('实际的label: ', ' '.join(\ | |||
'%08s'%classes[labels[j]] for j in range(4))) | |||
show(tv.utils.make_grid(images / 2 - 0.5)).resize((400,100)) | |||
# 接着计算网络预测的label: | |||
# + | |||
# 计算图片在每个类别上的分数 | |||
outputs = net(Variable(images)) | |||
# 得分最高的那个类 | |||
_, predicted = t.max(outputs.data, 1) | |||
print('预测结果: ', ' '.join('%5s'\ | |||
% classes[predicted[j]] for j in range(4))) | |||
# - | |||
# 已经可以看出效果,准确率50%,但这只是一部分的图片,再来看看在整个测试集上的效果。 | |||
# + | |||
correct = 0 # 预测正确的图片数 | |||
total = 0 # 总共的图片数 | |||
for data in testloader: | |||
images, labels = data | |||
outputs = net(Variable(images)) | |||
_, predicted = t.max(outputs.data, 1) | |||
total += labels.size(0) | |||
correct += (predicted == labels).sum() | |||
print('10000张测试集中的准确率为: %d %%' % (100 * correct / total)) | |||
# - | |||
# 训练的准确率远比随机猜测(准确率10%)好,证明网络确实学到了东西。 | |||
# #### 在GPU训练 | |||
# 就像之前把Tensor从CPU转到GPU一样,模型也可以类似地从CPU转到GPU。 | |||
if t.cuda.is_available(): | |||
net.cuda() | |||
images = images.cuda() | |||
labels = labels.cuda() | |||
output = net(Variable(images)) | |||
loss= criterion(output,Variable(labels)) | |||
# 如果发现在GPU上并没有比CPU提速很多,实际上是因为网络比较小,GPU没有完全发挥自己的真正实力。 | |||
# 对PyTorch的基础介绍至此结束。总结一下,本节主要包含以下内容。 | |||
# | |||
# 1. Tensor: 类似Numpy数组的数据结构,与Numpy接口类似,可方便地互相转换。 | |||
# 2. autograd/Variable: Variable封装了Tensor,并提供自动求导功能。 | |||
# 3. nn: 专门为神经网络设计的接口,提供了很多有用的功能(神经网络层,损失函数,优化器等)。 | |||
# 4. 神经网络训练: 以CIFAR-10分类为例演示了神经网络的训练流程,包括数据加载、网络搭建、训练及测试。 | |||
# | |||
# 通过本节的学习,相信读者可以体会出PyTorch具有接口简单、使用灵活等特点。从下一章开始,本书将深入系统地讲解PyTorch的各部分知识。 |
@@ -1,8 +1,8 @@ | |||
# Python与机器学习 | |||
本教程包含了一些使用Python来学习机器学习的notebook,通过本教程能够引导学习Python的基础知识和机器学习的理论知识和实际编程,并学习如何解决实际问题。 | |||
本教程包含了一些使用Python来学习机器学习的notebook,通过本教程能够引导学习Python的基础知识、机器学习的理论知识与实际编程,并学习如何解决实际问题。 | |||
由于**本课程需要大量的编程练习才能取得比较好的学习效果**,因此需要认真把作业和报告完成。作业的地址是:https://gitee.com/machinelearning2018/pr_homework 请按照里面的说明进行操作。 | |||
由于**本课程需要大量的编程练习才能取得比较好的学习效果**,因此需要认真把作业和报告完成。作业的地址是:https://gitee.com/machinelearning2018/pr_homework 请按照里面的说明进行操作,并提交作业。 | |||
## 内容 | |||
@@ -28,7 +28,7 @@ | |||
- [Multi-layer Perceptron & BP](1_nn/mlp_bp.ipynb) | |||
- [Softmax & cross-entroy](1_nn/softmax_ce.ipynb) | |||
7. [PyTorch](2_pytorch/) | |||
- [short tutorial](PyTorch快速入门.ipynb) | |||
- [short tutorial](2_pytorch/PyTorch_quick_intro.ipynb) | |||
- [basic/Tensor-and-Variable](2_pytorch/0_basic/Tensor-and-Variable.ipynb) | |||
- [basic/autograd](2_pytorch/0_basic/autograd.ipynb) | |||
- [basic/dynamic-graph](2_pytorch/0_basic/dynamic-graph.ipynb) | |||
@@ -40,7 +40,6 @@ | |||
- [nn/param_initialize](2_pytorch/1_NN/param_initialize.ipynb) | |||
- [optim/sgd](2_pytorch/1_NN/optimizer/sgd.ipynb) | |||
- [optim/adam](2_pytorch/1_NN/optimizer/adam.ipynb) | |||
- [optim/adam](2_pytorch/1_NN/optimizer/adam.ipynb) | |||
- [cnn/basic_conv](2_pytorch/2_CNN/basic_conv.ipynb) | |||
- [cnn/batch-normalization](2_pytorch/2_CNN/batch-normalization.ipynb) | |||
- [cnn/regularization](2_pytorch/2_CNN/regularization.ipynb) | |||
@@ -1,19 +1,24 @@ | |||
import time | |||
import torch as t | |||
from torch import nn, optim | |||
import torch.nn.functional as F | |||
from torch.autograd import Variable | |||
from torch.utils.data import DataLoader | |||
from torchvision import transforms | |||
from torchvision import datasets | |||
import time | |||
# 定义超参数 | |||
""" | |||
Use pytorch nn.Module to implement logistic regression | |||
""" | |||
# define hyper parameters | |||
batch_size = 32 | |||
learning_rate = 1e-3 | |||
num_epoches = 100 | |||
# 下载训练集 MNIST 手写数字训练集 | |||
# download/load MNIST dataset | |||
dataset_path = "../data/mnist" | |||
train_dataset = datasets.MNIST( | |||
@@ -26,7 +31,7 @@ train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) | |||
# 定义 Logistic Regression 模型 | |||
# define Logistic Regression model | |||
class Logstic_Regression(nn.Module): | |||
def __init__(self, in_dim, n_class): | |||
super(Logstic_Regression, self).__init__() | |||
@@ -37,18 +42,17 @@ class Logstic_Regression(nn.Module): | |||
return out | |||
model = Logstic_Regression(28 * 28, 10) # 图片大小是28x28 | |||
use_gpu = t.cuda.is_available() # 判断是否有GPU加速 | |||
if use_gpu: | |||
model = model.cuda() | |||
model = Logstic_Regression(28 * 28, 10) # model's input/output node size | |||
use_gpu = t.cuda.is_available() # GPU use or not | |||
if use_gpu: model = model.cuda() | |||
# 定义loss和optimizer | |||
# define loss & optimizer | |||
criterion = nn.CrossEntropyLoss() | |||
optimizer = optim.SGD(model.parameters(), lr=learning_rate) | |||
# 开始训练 | |||
# training | |||
for epoch in range(num_epoches): | |||
print('*' * 10) | |||
print('-' * 40) | |||
print('epoch {}'.format(epoch + 1)) | |||
since = time.time() | |||
@@ -56,7 +60,7 @@ for epoch in range(num_epoches): | |||
running_acc = 0.0 | |||
for i, data in enumerate(train_loader, 1): | |||
img, label = data | |||
img = img.view(img.size(0), -1) # 将图片展开成 28x28 | |||
img = img.view(img.size(0), -1) # convert input image to dimensions of (n, 28x28) | |||
if use_gpu: | |||
img = Variable(img).cuda() | |||
label = Variable(label).cuda() | |||
@@ -64,15 +68,15 @@ for epoch in range(num_epoches): | |||
img = Variable(img) | |||
label = Variable(label) | |||
# 向前传播 | |||
# forward calculation | |||
out = model(img) | |||
loss = criterion(out, label) | |||
running_loss += loss.data[0] * label.size(0) | |||
_, pred = t.max(out, 1) | |||
num_correct = (pred == label).sum() | |||
running_acc += num_correct.data[0] | |||
running_acc += float(num_correct.data[0]) | |||
# 向后传播 | |||
# bp | |||
optimizer.zero_grad() | |||
loss.backward() | |||
optimizer.step() | |||
@@ -104,12 +108,13 @@ for epoch in range(num_epoches): | |||
eval_loss += loss.data[0] * label.size(0) | |||
_, pred = t.max(out, 1) | |||
num_correct = (pred == label).sum() | |||
eval_acc += num_correct.data[0] | |||
eval_acc += float(num_correct.data[0]) | |||
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len( | |||
test_dataset)), eval_acc / (len(test_dataset)))) | |||
print('Test Loss: {:.6f}, Acc: {:.6f}'.format( | |||
eval_loss / (len(test_dataset)), | |||
eval_acc / (len(test_dataset)))) | |||
print('Time:{:.1f} s'.format(time.time() - since)) | |||
print() | |||
# 保存模型 | |||
t.save(model.state_dict(), './model_LogsticRegression.pth') | |||
# save model's parameters | |||
#t.save(model.state_dict(), './model_LogsticRegression.pth') |
@@ -7,7 +7,7 @@ import matplotlib.pyplot as plt | |||
""" | |||
Polynomial fitting by pytorch | |||
Polynomial fitting by pytorch | |||
""" | |||
# define the real model's parameters | |||
@@ -31,9 +31,9 @@ test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | |||
# define Network | |||
class Net(nn.Module): | |||
class NN_FC1(nn.Module): | |||
def __init__(self): | |||
super(Net, self).__init__() | |||
super(NN_FC1, self).__init__() | |||
self.l1 = nn.Linear(784, 520) | |||
self.l2 = nn.Linear(520, 320) | |||
self.l3 = nn.Linear(320, 240) | |||
@@ -48,8 +48,30 @@ class Net(nn.Module): | |||
x = F.relu(self.l4(x)) | |||
return self.l5(x) | |||
# Define the network | |||
class NN_FC2(nn.Module): | |||
def __init__(self): | |||
super(NN_FC2, self).__init__() | |||
in_dim = 28*28 | |||
n_hidden_1 = 300 | |||
n_hidden_2 = 100 | |||
out_dim = 10 | |||
self.layer1 = nn.Linear(in_dim, n_hidden_1) | |||
self.layer2 = nn.Linear(n_hidden_1, n_hidden_2) | |||
self.layer3 = nn.Linear(n_hidden_2, out_dim) | |||
def forward(self, x): | |||
x = x.view(-1, 784) | |||
x = F.relu(self.layer1(x)) | |||
x = F.relu(self.layer2(x)) | |||
x = self.layer3(x) | |||
return x | |||
model = Net() | |||
# create the NN object | |||
model = NN_FC2() | |||
criterion = nn.CrossEntropyLoss() | |||
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) |
@@ -1,110 +0,0 @@ | |||
import torch | |||
from torch import nn, optim | |||
from torch.autograd import Variable | |||
from torch.utils.data import DataLoader | |||
import torch.nn.functional as F | |||
from torchvision import transforms | |||
from torchvision import datasets | |||
# set parameters | |||
batch_size = 32 | |||
learning_rate = 1e-2 | |||
num_epoches = 50 | |||
# download & load MNIST dataset | |||
dataset_path = "../data/mnist" | |||
train_dataset = datasets.MNIST( | |||
root=dataset_path, train=True, transform=transforms.ToTensor(), download=True) | |||
test_dataset = datasets.MNIST( | |||
root=dataset_path, train=False, transform=transforms.ToTensor()) | |||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) | |||
# Define the network | |||
class NeuralNetwork(nn.Module): | |||
def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim): | |||
super(NeuralNetwork, self).__init__() | |||
self.layer1 = nn.Linear(in_dim, n_hidden_1) | |||
self.layer2 = nn.Linear(n_hidden_1, n_hidden_2) | |||
self.layer3 = nn.Linear(n_hidden_2, out_dim) | |||
def forward(self, x): | |||
x = F.relu(self.layer1(x)) | |||
x = F.relu(self.layer2(x)) | |||
x = self.layer3(x) | |||
return x | |||
# create network & define loss function | |||
model = NeuralNetwork(28 * 28, 300, 100, 10) | |||
criterion = nn.CrossEntropyLoss() | |||
optimizer = optim.SGD(model.parameters(), lr=learning_rate) | |||
# train | |||
for epoch in range(num_epoches): | |||
print("epoch %6d" % int(epoch+1)) | |||
print('-' * 40) | |||
running_loss = 0.0 | |||
running_acc = 0.0 | |||
for i, data in enumerate(train_loader, 1): | |||
img, label = data | |||
img = Variable(img.view(img.size(0), -1)) | |||
label = Variable(label) | |||
# 向前传播 | |||
optimizer.zero_grad() | |||
out = model(img) | |||
loss = criterion(out, label) | |||
running_loss += loss.data[0] * label.size(0) | |||
pred = out.data.max(1, keepdim=True)[1] | |||
running_acc += float(pred.eq(label.data.view_as(pred)).cpu().sum()) | |||
# 向后传播 | |||
loss.backward() | |||
optimizer.step() | |||
if i % 300 == 0: | |||
print('[{}/{}] Loss: {:.6f}, Acc: {:.2f}%'.format( | |||
epoch + 1, num_epoches, | |||
1.0*running_loss / (batch_size * i), | |||
100.0*running_acc / (batch_size * i))) | |||
# do test | |||
model.eval() | |||
eval_loss = 0. | |||
eval_acc = 0. | |||
for data in test_loader: | |||
img, label = data | |||
img = img.view(img.size(0), -1) | |||
img = Variable(img) | |||
label = Variable(label) | |||
out = model(img) | |||
loss = criterion(out, label) | |||
eval_loss += loss.data[0] * label.size(0) | |||
pred = out.data.max(1, keepdim=True)[1] | |||
eval_acc += float(pred.eq(label.data.view_as(pred)).cpu().sum()) | |||
print('\nTest Loss: {:.6f}, Acc: {:.2f}%'.format( | |||
1.0*eval_loss / (len(test_dataset)), | |||
100.0*eval_acc / (len(test_dataset)))) | |||
print() | |||
# save model | |||
torch.save(model.state_dict(), './model_Neural_Network.pth') |