@@ -113,6 +113,78 @@ plt.legend() | |||
plt.show() | |||
# - | |||
# ## How to use iterative method to estimate parameters? | |||
# | |||
# + | |||
n_epoch = 3000 # epoch size | |||
a, b = 1, 1 # initial parameters | |||
epsilon = 0.001 # learning rate | |||
for i in range(n_epoch): | |||
for j in range(N): | |||
a = a + epsilon*2*(Y[j] - a*X[j] - b)*X[j] | |||
b = b + epsilon*2*(Y[j] - a*X[j] - b) | |||
L = 0 | |||
for j in range(N): | |||
L = L + (Y[j]-a*X[j]-b)**2 | |||
print("epoch %4d: loss = %f, a = %f, b = %f" % (i, L, a, b)) | |||
x_min = np.min(X) | |||
x_max = np.max(X) | |||
y_min = a * x_min + b | |||
y_max = a * x_max + b | |||
plt.scatter(X, Y, label='original data') | |||
plt.plot([x_min, x_max], [y_min, y_max], 'r', label='model') | |||
plt.legend() | |||
plt.show() | |||
# - | |||
# ## How to show the iterative process | |||
# + | |||
# %matplotlib nbagg | |||
import matplotlib.pyplot as plt | |||
import matplotlib.animation as animation | |||
n_epoch = 3000 # epoch size | |||
a, b = 1, 1 # initial parameters | |||
epsilon = 0.001 # learning rate | |||
fig = plt.figure() | |||
imgs = [] | |||
for i in range(n_epoch): | |||
for j in range(N): | |||
a = a + epsilon*2*(Y[j] - a*X[j] - b)*X[j] | |||
b = b + epsilon*2*(Y[j] - a*X[j] - b) | |||
L = 0 | |||
for j in range(N): | |||
L = L + (Y[j]-a*X[j]-b)**2 | |||
#print("epoch %4d: loss = %f, a = %f, b = %f" % (i, L, a, b)) | |||
if i % 50 == 0: | |||
x_min = np.min(X) | |||
x_max = np.max(X) | |||
y_min = a * x_min + b | |||
y_max = a * x_max + b | |||
img = plt.scatter(X, Y, label='original data') | |||
img = plt.plot([x_min, x_max], [y_min, y_max], 'r', label='model') | |||
imgs.append(img) | |||
ani = animation.ArtistAnimation(fig, imgs) | |||
plt.show() | |||
# - | |||
# ## How to use batch update method? | |||
# | |||
# If some data is outliear, then the | |||
# ## How to fit polynomial function? | |||
# | |||
# If we observe a missle at some time, then how to estimate the trajectory? Acoording the physical theory, the trajectory can be formulated as: | |||
@@ -217,8 +289,9 @@ Y_est = regr.predict(X_test) | |||
print("Y_est = ", Y_est) | |||
print("Y_test = ", Y_test) | |||
err = (Y_est - Y_test)**2 | |||
err2 = sklearn.metrics.mean_squared_error(Y_test, Y_est) | |||
score = regr.score(X_test, Y_test) | |||
print("err = %f, score = %f" % (np.sqrt(np.sum(err))/N_test, score)) | |||
print("err = %f (%f), score = %f" % (np.sqrt(np.sum(err))/N_test, np.sqrt(err2), score)) | |||
# plot data | |||
@@ -5,12 +5,28 @@ | |||
"metadata": {}, | |||
"source": [ | |||
"# Logistic Regression\n", | |||
"\n", | |||
"逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。本节主要详述逻辑回归模型的基础。\n", | |||
"\n", | |||
"\n", | |||
"## 1 逻辑回归模型\n", | |||
"回归是一种比较容易理解的模型,就相当于$y=f(x)$,表明自变量$x$与因变量$y$的关系。最常见问题有如医生治病时的望、闻、问、切,之后判定病人是否生病或生了什么病,其中的望闻问切就是获取自变量$x$,即特征数据,判断是否生病就相当于获取因变量$y$,即预测分类。\n", | |||
"\n", | |||
"最简单的回归是线性回归,在此借用Andrew NG的讲义,有如图所示,$X$为数据点——肿瘤的大小,$Y$为观测值——是否是恶性肿瘤。通过构建线性回归模型,如$h_\\theta(x)$所示,构建线性回归模型后,即可以根据肿瘤大小,预测是否为恶性肿瘤$h_\\theta(x)) \\ge 0.5$为恶性,$h_\\theta(x) \\lt 0.5$为良性。\n", | |||
"\n", | |||
"\n", | |||
"\n", | |||
"然而线性回归的鲁棒性很差,例如在上图的数据集上建立回归,因最右边噪点的存在,使回归模型在训练集上表现都很差。这主要是由于线性回归在整个实数域内敏感度一致,而分类范围,需要在$[0,1]$。\n", | |||
"\n", | |||
"逻辑回归就是一种减小预测范围,将预测值限定为$[0,1]$间的一种回归模型,其回归方程与回归曲线如图2所示。逻辑曲线在$z=0$时,十分敏感,在$z>>0$或$z<<0$处,都不敏感,将预测值限定为$(0,1)$。\n", | |||
"\n", | |||
"\n", | |||
"\n" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 23, | |||
"execution_count": 2, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
@@ -171,6 +187,16 @@ | |||
"logistic.train(200)\n", | |||
"plot_decision_boundary(lambda x: logistic.predict(x), data, label)" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"## References\n", | |||
"\n", | |||
"* [逻辑回归模型(Logistic Regression, LR)基础](https://www.cnblogs.com/sparkwen/p/3441197.html)\n", | |||
"* [逻辑回归(Logistic Regression)](http://www.cnblogs.com/BYRans/p/4713624.html)" | |||
] | |||
} | |||
], | |||
"metadata": { | |||
@@ -0,0 +1,132 @@ | |||
# -*- coding: utf-8 -*- | |||
# --- | |||
# jupyter: | |||
# jupytext_format_version: '1.2' | |||
# kernelspec: | |||
# display_name: Python 3 | |||
# language: python | |||
# name: python3 | |||
# language_info: | |||
# codemirror_mode: | |||
# name: ipython | |||
# version: 3 | |||
# file_extension: .py | |||
# mimetype: text/x-python | |||
# name: python | |||
# nbconvert_exporter: python | |||
# pygments_lexer: ipython3 | |||
# version: 3.5.2 | |||
# --- | |||
# # Logistic Regression | |||
# | |||
# 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。本节主要详述逻辑回归模型的基础。 | |||
# | |||
# | |||
# ## 1 逻辑回归模型 | |||
# 回归是一种比较容易理解的模型,就相当于$y=f(x)$,表明自变量$x$与因变量$y$的关系。最常见问题有如医生治病时的望、闻、问、切,之后判定病人是否生病或生了什么病,其中的望闻问切就是获取自变量$x$,即特征数据,判断是否生病就相当于获取因变量$y$,即预测分类。 | |||
# | |||
# 最简单的回归是线性回归,在此借用Andrew NG的讲义,有如图所示,$X$为数据点——肿瘤的大小,$Y$为观测值——是否是恶性肿瘤。通过构建线性回归模型,如$h_\theta(x)$所示,构建线性回归模型后,即可以根据肿瘤大小,预测是否为恶性肿瘤$h_\theta(x)) \ge 0.5$为恶性,$h_\theta(x) \lt 0.5$为良性。 | |||
# | |||
#  | |||
# | |||
# 然而线性回归的鲁棒性很差,例如在上图的数据集上建立回归,因最右边噪点的存在,使回归模型在训练集上表现都很差。这主要是由于线性回归在整个实数域内敏感度一致,而分类范围,需要在$[0,1]$。 | |||
# | |||
# 逻辑回归就是一种减小预测范围,将预测值限定为$[0,1]$间的一种回归模型,其回归方程与回归曲线如图2所示。逻辑曲线在$z=0$时,十分敏感,在$z>>0$或$z<<0$处,都不敏感,将预测值限定为$(0,1)$。 | |||
# | |||
#  | |||
# | |||
# | |||
# + | |||
# %matplotlib inline | |||
from __future__ import division | |||
import numpy as np | |||
import sklearn.datasets | |||
import matplotlib.pyplot as plt | |||
np.random.seed(0) | |||
# + | |||
# load sample data | |||
data, label = sklearn.datasets.make_moons(200, noise=0.30) | |||
print("data = ", data[:10, :]) | |||
print("label = ", label[:10]) | |||
plt.scatter(data[:,0], data[:,1], c=label) | |||
plt.title("Original Data") | |||
# + | |||
def plot_decision_boundary(predict_func, data, label): | |||
"""画出结果图 | |||
Args: | |||
pred_func (callable): 预测函数 | |||
data (numpy.ndarray): 训练数据集合 | |||
label (numpy.ndarray): 训练数据标签 | |||
""" | |||
x_min, x_max = data[:, 0].min() - .5, data[:, 0].max() + .5 | |||
y_min, y_max = data[:, 1].min() - .5, data[:, 1].max() + .5 | |||
h = 0.01 | |||
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) | |||
Z = predict_func(np.c_[xx.ravel(), yy.ravel()]) | |||
Z = Z.reshape(xx.shape) | |||
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral) | |||
plt.show() | |||
# + | |||
def sigmoid(x): | |||
return 1.0 / (1 + np.exp(-x)) | |||
class Logistic(object): | |||
"""logistic回归模型""" | |||
def __init__(self, data, label): | |||
self.data = data | |||
self.label = label | |||
self.data_num, n = np.shape(data) | |||
self.weights = np.ones(n) | |||
self.b = 1 | |||
def train(self, num_iteration=150): | |||
"""随机梯度上升算法 | |||
Args: | |||
data (numpy.ndarray): 训练数据集 | |||
labels (numpy.ndarray): 训练标签 | |||
num_iteration (int): 迭代次数 | |||
""" | |||
for j in range(num_iteration): | |||
data_index = list(range(self.data_num)) | |||
for i in range(self.data_num): | |||
# 学习速率 | |||
alpha = 0.01 | |||
rand_index = int(np.random.uniform(0, len(data_index))) | |||
error = self.label[rand_index] - sigmoid(sum(self.data[rand_index] * self.weights + self.b)) | |||
self.weights += alpha * error * self.data[rand_index] | |||
self.b += alpha * error | |||
del(data_index[rand_index]) | |||
def predict(self, predict_data): | |||
"""预测函数""" | |||
result = list(map(lambda x: 1 if sum(self.weights * x + self.b) > 0 else 0, | |||
predict_data)) | |||
return np.array(result) | |||
# - | |||
logistic = Logistic(data, label) | |||
logistic.train(200) | |||
plot_decision_boundary(lambda x: logistic.predict(x), data, label) | |||
# ## References | |||
# | |||
# * [逻辑回归模型(Logistic Regression, LR)基础](https://www.cnblogs.com/sparkwen/p/3441197.html) | |||
# * [逻辑回归(Logistic Regression)](http://www.cnblogs.com/BYRans/p/4713624.html) |
@@ -1,66 +0,0 @@ | |||
import matplotlib.pyplot as plt | |||
import numpy as np | |||
import sklearn | |||
from sklearn import datasets | |||
# load data | |||
d = datasets.load_diabetes() | |||
X = d.data[:, 2] | |||
Y = d.target | |||
# draw original data | |||
plt.scatter(X, Y) | |||
plt.show() | |||
############################################################################### | |||
# Least squares | |||
############################################################################### | |||
# L = \sum_{i=1, N} (y_i - a*x_i - b)^2 | |||
N = X.shape[0] | |||
S_X2 = np.sum(X*X) | |||
S_X = np.sum(X) | |||
S_XY = np.sum(X*Y) | |||
S_Y = np.sum(Y) | |||
A1 = np.array([[S_X2, S_X], [S_X, N]]) | |||
B1 = np.array([S_XY, S_Y]) | |||
coeff = np.linalg.inv(A1).dot(B1) | |||
x_min = np.min(X) | |||
x_max = np.max(X) | |||
y_min = coeff[0] * x_min + coeff[1] | |||
y_max = coeff[0] * x_max + coeff[1] | |||
plt.scatter(X, Y) | |||
plt.plot([x_min, x_max], [y_min, y_max], 'r') | |||
plt.show() | |||
############################################################################### | |||
# Linear regression | |||
############################################################################### | |||
# the loss function | |||
# L = \sum_{i=1, N} (y_i - a*x_i - b)^2 | |||
n_train = 1000 | |||
a, b = 1, 1 | |||
epsilon = 0.001 | |||
for i in range(n_train): | |||
for j in range(N): | |||
a = a + epsilon*2*(Y[j] - a*X[j] - b)*X[j] | |||
b = b + epsilon*2*(Y[j] - a*X[j] - b) | |||
L = 0 | |||
for j in range(N): | |||
L = L + (Y[j]-a*X[j]-b)**2 | |||
print("epoch %4d: loss = %f" % (i, L)) | |||
@@ -1,70 +0,0 @@ | |||
# -*- coding=utf8 -*- | |||
from __future__ import division | |||
import numpy as np | |||
import sklearn.datasets | |||
import matplotlib.pyplot as plt | |||
np.random.seed(0) | |||
data, label = sklearn.datasets.make_moons(200, noise=0.30) | |||
def plot_decision_boundary(predict_func, data, label): | |||
"""画出结果图 | |||
Args: | |||
pred_func (callable): 预测函数 | |||
data (numpy.ndarray): 训练数据集合 | |||
label (numpy.ndarray): 训练数据标签 | |||
""" | |||
x_min, x_max = data[:, 0].min() - .5, data[:, 0].max() + .5 | |||
y_min, y_max = data[:, 1].min() - .5, data[:, 1].max() + .5 | |||
h = 0.01 | |||
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) | |||
Z = predict_func(np.c_[xx.ravel(), yy.ravel()]) | |||
Z = Z.reshape(xx.shape) | |||
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral) | |||
plt.show() | |||
def sigmoid(x): | |||
return 1.0 / (1 + np.exp(-x)) | |||
class Logistic(object): | |||
"""logistic回归模型""" | |||
def __init__(self, data, label): | |||
self.data = data | |||
self.label = label | |||
self.data_num, n = np.shape(data) | |||
self.weights = np.ones(n) | |||
self.b = 1 | |||
def train(self, num_iteration=150): | |||
"""随机梯度上升算法 | |||
Args: | |||
data (numpy.ndarray): 训练数据集 | |||
labels (numpy.ndarray): 训练标签 | |||
num_iteration (int): 迭代次数 | |||
""" | |||
for j in range(num_iteration): | |||
data_index = list(range(self.data_num)) | |||
for i in range(self.data_num): | |||
# 学习速率 | |||
alpha = 0.01 | |||
rand_index = int(np.random.uniform(0, len(data_index))) | |||
error = self.label[rand_index] - sigmoid(sum(self.data[rand_index] * self.weights + self.b)) | |||
self.weights += alpha * error * self.data[rand_index] | |||
self.b += alpha * error | |||
del(data_index[rand_index]) | |||
def predict(self, predict_data): | |||
"""预测函数""" | |||
result = list(map(lambda x: 1 if sum(self.weights * x + self.b) > 0 else 0, | |||
predict_data)) | |||
return np.array(result) | |||
if __name__ == '__main__': | |||
logistic = Logistic(data, label) | |||
logistic.train(200) | |||
plot_decision_boundary(lambda x: logistic.predict(x), data, label) |
@@ -1,72 +0,0 @@ | |||
# -*- coding=utf8 -*- | |||
from __future__ import division | |||
import numpy as np | |||
import sklearn.datasets | |||
import matplotlib.pyplot as plt | |||
np.random.seed(0) | |||
data, label = sklearn.datasets.make_moons(200, noise=0.30) | |||
def plot_decision_boundary(predict_func, data, label): | |||
"""画出结果图 | |||
Args: | |||
pred_func (callable): 预测函数 | |||
data (numpy.ndarray): 训练数据集合 | |||
label (numpy.ndarray): 训练数据标签 | |||
""" | |||
x_min, x_max = data[:, 0].min() - .5, data[:, 0].max() + .5 | |||
y_min, y_max = data[:, 1].min() - .5, data[:, 1].max() + .5 | |||
h = 0.01 | |||
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) | |||
Z = predict_func(np.c_[xx.ravel(), yy.ravel()]) | |||
print(Z.shape) | |||
Z = Z.reshape(xx.shape) | |||
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral) | |||
plt.show() | |||
def sigmoid(x): | |||
return 1.0 / (1 + np.exp(-x)) | |||
class Logistic(object): | |||
"""logistic回归模型""" | |||
def __init__(self, data, label): | |||
self.data = data | |||
self.label = label | |||
self.data_num, n = np.shape(data) | |||
self.weights = np.ones(n) | |||
self.b = 1 | |||
def train(self, num_iteration=150): | |||
"""随机梯度上升算法 | |||
Args: | |||
data (numpy.ndarray): 训练数据集 | |||
labels (numpy.ndarray): 训练标签 | |||
num_iteration (int): 迭代次数 | |||
""" | |||
for j in range(num_iteration): | |||
data_index = range(self.data_num) | |||
for i in range(self.data_num): | |||
# 学习速率 | |||
alpha = 0.01 | |||
rand_index = int(np.random.uniform(0, len(data_index))) | |||
error = self.label[rand_index] - sigmoid(sum(self.data[rand_index] * self.weights + self.b)) | |||
self.weights += alpha * error * self.data[rand_index] | |||
self.b += alpha * error | |||
def predict(self, predict_data): | |||
"""预测函数""" | |||
result = map(lambda x: 1 if sum(self.weights * x + self.b) > 0 else 0, | |||
predict_data) | |||
print(result) | |||
return np.array(result) | |||
if __name__ == '__main__': | |||
logistic = Logistic(data, label) | |||
logistic.train(200) | |||
plot_decision_boundary(lambda x: logistic.predict(x), data, label) |