From b7b80b7ec5cb5973781ca178c0ba9f1d8d1c56e7 Mon Sep 17 00:00:00 2001 From: Shuhui Bu Date: Thu, 27 Sep 2018 23:10:42 +0800 Subject: [PATCH] Add contents in README.md --- 0_python/02 Print Statement.py | 134 ------- 0_python/03 Data Structure.py | 386 -------------------- 0_python/05 Control Flow.py | 175 --------- 0_python/07 Class.py | 298 --------------- ...{00 Introduction.ipynb => 0_Introduction.ipynb} | 0 0_python/{01 Basics.ipynb => 1_Basics.ipynb} | 0 ...int Statement.ipynb => 2_Print_Statement.ipynb} | 0 ...ta Structure.ipynb => 3_Data_Structure_1.ipynb} | 0 ... Structure 2.ipynb => 4_Data_Structure_2.ipynb} | 0 ...{05 Control Flow.ipynb => 5_Control_Flow.ipynb} | 0 0_python/{06 Function.ipynb => 6_Function.ipynb} | 0 0_python/{07 Class.ipynb => 7_Class.ipynb} | 0 1_logistic_regression/Least_squares.ipynb | 112 +++--- 1_logistic_regression/Least_squares.py | 15 + 1_logistic_regression/Logistic_regression.ipynb | 23 +- 1_logistic_regression/Logistic_regression.py | 1 + 1_nn/mlp_bp.ipynb | 2 +- 1_nn/mlp_bp.py | 2 +- 1_nn/softmax_ce.ipynb | 5 +- 1_nn/softmax_ce.py | 2 +- 2_pytorch/1_NN/{logistic-regression => }/data.txt | 0 .../logistic-regression.ipynb | 0 .../logistic-regression.py | 0 .../1_NN/{nn_intro.ipynb => nn_summary.ipynb} | 0 2_pytorch/2_CNN/googlenet.ipynb | 2 +- 2_pytorch/2_CNN/googlenet.py | 206 +++++++++++ 2_pytorch/2_CNN/resnet.ipynb | 2 +- 2_pytorch/2_CNN/resnet.py | 191 ++++++++++ 2_pytorch/imgs/Ipython-auto.png | Bin 0 -> 1669 bytes 2_pytorch/imgs/Ipython-help.png | Bin 0 -> 5523 bytes 2_pytorch/imgs/Jupyter主页面.png | Bin 0 -> 29929 bytes 2_pytorch/imgs/Notebook主界面.png | Bin 0 -> 47591 bytes 2_pytorch/imgs/autograd_Variable.png | Bin 0 -> 4477 bytes 2_pytorch/imgs/autograd_Variable.svg | 2 + 2_pytorch/imgs/del/img1.png | Bin 0 -> 55712 bytes 2_pytorch/imgs/del/img2.png | Bin 0 -> 56557 bytes 2_pytorch/imgs/install-1.png | Bin 0 -> 87539 bytes 2_pytorch/imgs/install-2.png | Bin 0 -> 68499 bytes 2_pytorch/imgs/nn_lenet.png | Bin 0 -> 16925 bytes README.md | 61 +++- References.md | 19 + dataset_circle.csv | 400 --------------------- 42 files changed, 575 insertions(+), 1463 deletions(-) delete mode 100644 0_python/02 Print Statement.py delete mode 100644 0_python/03 Data Structure.py delete mode 100644 0_python/05 Control Flow.py delete mode 100644 0_python/07 Class.py rename 0_python/{00 Introduction.ipynb => 0_Introduction.ipynb} (100%) rename 0_python/{01 Basics.ipynb => 1_Basics.ipynb} (100%) rename 0_python/{02 Print Statement.ipynb => 2_Print_Statement.ipynb} (100%) rename 0_python/{03 Data Structure.ipynb => 3_Data_Structure_1.ipynb} (100%) rename 0_python/{04 Data Structure 2.ipynb => 4_Data_Structure_2.ipynb} (100%) rename 0_python/{05 Control Flow.ipynb => 5_Control_Flow.ipynb} (100%) rename 0_python/{06 Function.ipynb => 6_Function.ipynb} (100%) rename 0_python/{07 Class.ipynb => 7_Class.ipynb} (100%) rename 2_pytorch/1_NN/{logistic-regression => }/data.txt (100%) rename 2_pytorch/1_NN/{logistic-regression => }/logistic-regression.ipynb (100%) rename 2_pytorch/1_NN/{logistic-regression => }/logistic-regression.py (100%) rename 2_pytorch/1_NN/{nn_intro.ipynb => nn_summary.ipynb} (100%) create mode 100644 2_pytorch/2_CNN/googlenet.py create mode 100644 2_pytorch/2_CNN/resnet.py create mode 100644 2_pytorch/imgs/Ipython-auto.png create mode 100644 2_pytorch/imgs/Ipython-help.png create mode 100644 2_pytorch/imgs/Jupyter主页面.png create mode 100644 2_pytorch/imgs/Notebook主界面.png create mode 100644 2_pytorch/imgs/autograd_Variable.png create mode 100644 2_pytorch/imgs/autograd_Variable.svg create mode 100644 2_pytorch/imgs/del/img1.png create mode 100644 2_pytorch/imgs/del/img2.png create mode 100644 2_pytorch/imgs/install-1.png create mode 100644 2_pytorch/imgs/install-2.png create mode 100644 2_pytorch/imgs/nn_lenet.png delete mode 100644 dataset_circle.csv diff --git a/0_python/02 Print Statement.py b/0_python/02 Print Statement.py deleted file mode 100644 index 487ed44..0000000 --- a/0_python/02 Print Statement.py +++ /dev/null @@ -1,134 +0,0 @@ -# --- -# jupyter: -# jupytext_format_version: '1.2' -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# language_info: -# codemirror_mode: -# name: ipython -# version: 3 -# file_extension: .py -# mimetype: text/x-python -# name: python -# nbconvert_exporter: python -# pygments_lexer: ipython3 -# version: 3.5.2 -# --- - -# All the IPython Notebooks in this lecture series are available at https://github.com/rajathkumarmp/Python-Lectures - -# # Print Statement - -# The **print** statement can be used in the following different ways : -# -# - print("Hello World") -# - print("Hello", ) -# - print("Hello" + ) -# - print("Hello %s" % ) - -print("Hello World") - -# In Python, single, double and triple quotes are used to denote a string. -# Most use single quotes when declaring a single character. -# Double quotes when declaring a line and triple quotes when declaring a paragraph/multiple lines. - -print('Hey') - -print("""My name is Rajath Kumar M.P. - -I love Python.""") - -# Strings can be assigned to variable say _string1_ and _string2_ which can called when using the print statement. - -# + {"scrolled": true} -string1 = 'World' -print('Hello', string1) - -string2 = '!' -print('Hello', string1, string2) -# - - -# String concatenation is the "addition" of two strings. Observe that while concatenating there will be no space between the strings. - -print('Hello' + string1 + string2) - -# **%s** is used to refer to a variable which contains a string. - -print("Hello %s" % string1) - -# Similarly, when using other data types -# -# - %s -> string -# - %d -> Integer -# - %f -> Float -# - %o -> Octal -# - %x -> Hexadecimal -# - %e -> exponential -# -# This can be used for conversions inside the print statement itself. - -print("Actual Number = %d" % 18) -print("Float of the number = %f" % 18) -print("Octal equivalent of the number = %o" % 18) -print("Hexadecimal equivalent of the number = %x" % 18) -print("Exponential equivalent of the number = %e" % 18) - -# When referring to multiple variables parenthesis is used. - -print "Hello %s %s" %(string1,string2) - -# ## Other Examples - -# The following are other different ways the print statement can be put to use. - -print("I want %%d to be printed %s" %'here') - -print('_A'*10) - -print("Jan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug") - -print("\n".join("Jan Feb Mar Apr May Jun Jul Aug".split(" "))) - -print("I want \\n to be printed.") - -print """ -Routine: -\t- Eat -\t- Sleep\n\t- Repeat -""" - -# # PrecisionWidth and FieldWidth - -# Fieldwidth is the width of the entire number and precision is the width towards the right. One can alter these widths based on the requirements. -# -# The default Precision Width is set to 6. - -"%f" % 3.121312312312 - -# Notice upto 6 decimal points are returned. To specify the number of decimal points, '%(fieldwidth).(precisionwidth)f' is used. - -"%.5f" % 3.121312312312 - -# If the field width is set more than the necessary than the data right aligns itself to adjust to the specified values. - -"%9.5f" % 3.121312312312 - -# Zero padding is done by adding a 0 at the start of fieldwidth. - -"%020.5f" % 3.121312312312 - -# For proper alignment, a space can be left blank in the field width so that when a negative number is used, proper alignment is maintained. - -print "% 9f" % 3.121312312312 -print "% 9f" % -3.121312312312 - -# '+' sign can be returned at the beginning of a positive number by adding a + sign at the beginning of the field width. - -print "%+9f" % 3.121312312312 -print "% 9f" % -3.121312312312 - -# As mentioned above, the data right aligns itself when the field width mentioned is larger than the actualy field width. But left alignment can be done by specifying a negative symbol in the field width. - -"%-9.3f" % 3.121312312312 diff --git a/0_python/03 Data Structure.py b/0_python/03 Data Structure.py deleted file mode 100644 index 38775c7..0000000 --- a/0_python/03 Data Structure.py +++ /dev/null @@ -1,386 +0,0 @@ -# --- -# jupyter: -# jupytext_format_version: '1.2' -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# language_info: -# codemirror_mode: -# name: ipython -# version: 3 -# file_extension: .py -# mimetype: text/x-python -# name: python -# nbconvert_exporter: python -# pygments_lexer: ipython3 -# version: 3.5.2 -# --- - -# All the IPython Notebooks in this lecture series are available at https://github.com/rajathkumarmp/Python-Lectures - -# # Data Structures - -# In simple terms, It is the the collection or group of data in a particular structure. - -# ## Lists - -# Lists are the most commonly used data structure. Think of it as a sequence of data that is enclosed in square brackets and data are separated by a comma. Each of these data can be accessed by calling it's index value. -# -# Lists are declared by just equating a variable to '[ ]' or list. - -a = [] - -print(type(a)) - -# One can directly assign the sequence of data to a list x as shown. - -x = ['apple', 'orange', 'peach'] - -# ### Indexing - -# In python, Indexing starts from 0. Thus now the list x, which has two elements will have apple at 0 index and orange at 1 index. - -x[0] - -# Indexing can also be done in reverse order. That is the last element can be accessed first. Here, indexing starts from -1. Thus index value -1 will be orange and index -2 will be apple. - -x[-1] - -# As you might have already guessed, x[0] = x[-2], x[1] = x[-1]. This concept can be extended towards lists with more many elements. - -y = ['carrot','potato'] - -# Here we have declared two lists x and y each containing its own data. Now, these two lists can again be put into another list say z which will have it's data as two lists. This list inside a list is called as nested lists and is how an array would be declared which we will see later. - -z = [x,y] -print(z) - -# Indexing in nested lists can be quite confusing if you do not understand how indexing works in python. So let us break it down and then arrive at a conclusion. -# -# Let us access the data 'apple' in the above nested list. -# First, at index 0 there is a list ['apple','orange'] and at index 1 there is another list ['carrot','potato']. Hence z[0] should give us the first list which contains 'apple'. - -z1 = z[0] -print(z1) - -# Now observe that z1 is not at all a nested list thus to access 'apple', z1 should be indexed at 0. - -z1[0] - -# Instead of doing the above, In python, you can access 'apple' by just writing the index values each time side by side. - -z[0][0] - -# If there was a list inside a list inside a list then you can access the innermost value by executing z[ ][ ][ ]. - -# ### Slicing - -# Indexing was only limited to accessing a single element, Slicing on the other hand is accessing a sequence of data inside the list. In other words "slicing" the list. -# -# Slicing is done by defining the index values of the first element and the last element from the parent list that is required in the sliced list. It is written as parentlist[ a : b ] where a,b are the index values from the parent list. If a or b is not defined then the index value is considered to be the first value for a if a is not defined and the last value for b when b is not defined. - -num = [0,1,2,3,4,5,6,7,8,9] - -print(num[0:4]) -print(num[4:]) - -# You can also slice a parent list with a fixed length or step length. - -num[:9:3] - -# ### Built in List Functions - -# To find the length of the list or the number of elements in a list, **len( )** is used. - -len(num) - -# If the list consists of all integer elements then **min( )** and **max( )** gives the minimum and maximum value in the list. - -min(num) - -max(num) - -# Lists can be concatenated by adding, '+' them. The resultant list will contain all the elements of the lists that were added. The resultant list will not be a nested list. - -[1,2,3] + [5,4,7] - -# There might arise a requirement where you might need to check if a particular element is there in a predefined list. Consider the below list. - -names = ['Earth','Air','Fire','Water'] - -# To check if 'Fire' and 'Rajath' is present in the list names. A conventional approach would be to use a for loop and iterate over the list and use the if condition. But in python you can use 'a in b' concept which would return 'True' if a is present in b and 'False' if not. - -'Fire' in names - -'Rajath' in names - -# In a list with elements as string, **max( )** and **min( )** is applicable. **max( )** would return a string element whose ASCII value is the highest and the lowest when **min( )** is used. Note that only the first index of each element is considered each time and if they value is the same then second index considered so on and so forth. - -mlist = ['bzaa','ds','nc','az','z','klm'] - -print(max(mlist)) -print(min(mlist)) - -# Here the first index of each element is considered and thus z has the highest ASCII value thus it is returned and minimum ASCII is a. But what if numbers are declared as strings? - -nlist = ['1','94','93','1000'] - -print(max(nlist)) -print(min(nlist)) - -# Even if the numbers are declared in a string the first index of each element is considered and the maximum and minimum values are returned accordingly. - -# But if you want to find the **max( )** string element based on the length of the string then another parameter 'key=len' is declared inside the **max( )** and **min( )** function. - -print(max(names, key=len)) -print(min(names, key=len)) - -# But even 'Water' has length 5. **max()** or **min()** function returns the first element when there are two or more elements with the same length. -# -# Any other built in function can be used or lambda function (will be discussed later) in place of len. -# -# A string can be converted into a list by using the **list()** function. - -list('hello') - -# **append( )** is used to add a element at the end of the list. - -lst = [1,1,4,8,7] - -lst.append(1) -print(lst) - -# **count( )** is used to count the number of a particular element that is present in the list. - -lst.count(1) - -# **append( )** function can also be used to add a entire list at the end. Observe that the resultant list becomes a nested list. - -lst1 = [5,4,2,8] - -lst.append(lst1) -print(lst) - -# But if nested list is not what is desired then **extend( )** function can be used. - -lst.extend(lst1) -print(lst) - -# **index( )** is used to find the index value of a particular element. Note that if there are multiple elements of the same value then the first index value of that element is returned. - -lst.index(1) - -# **insert(x,y)** is used to insert a element y at a specified index value x. **append( )** function made it only possible to insert at the end. - -lst.insert(5, 'name') -print(lst) - -# **insert(x,y)** inserts but does not replace element. If you want to replace the element with another element you simply assign the value to that particular index. - -lst[5] = 'Python' -print(lst) - -# **pop( )** function return the last element in the list. This is similar to the operation of a stack. Hence it wouldn't be wrong to tell that lists can be used as a stack. - -lst.pop() - -# Index value can be specified to pop a ceratin element corresponding to that index value. - -lst.pop(0) - -# **pop( )** is used to remove element based on it's index value which can be assigned to a variable. One can also remove element by specifying the element itself using the **remove( )** function. - -lst.remove('Python') -print(lst) - -# Alternative to **remove** function but with using index value is **del** - -del lst[1] -print(lst) - -# The entire elements present in the list can be reversed by using the **reverse()** function. - -lst.reverse() -print(lst) - -# Note that the nested list [5,4,2,8] is treated as a single element of the parent list lst. Thus the elements inside the nested list is not reversed. -# -# Python offers built in operation **sort( )** to arrange the elements in ascending order. - -lst.sort() -print(lst) - -# For descending order, By default the reverse condition will be False for reverse. Hence changing it to True would arrange the elements in descending order. - -lst.sort(reverse=True) -print(lst) - -# Similarly for lists containing string elements, **sort( )** would sort the elements based on it's ASCII value in ascending and by specifying reverse=True in descending. - -names.sort() -print(names) -names.sort(reverse=True) -print(names) - -# To sort based on length key=len should be specified as shown. - -names.sort(key=len) -print(names) -names.sort(key=len,reverse=True) -print(names) - -# ### Copying a list - -# Most of the new python programmers commit this mistake. Consider the following, - -lista= [2,1,4,3] - -listb = lista -print(listb) - -# Here, We have declared a list, lista = [2,1,4,3]. This list is copied to listb by assigning it's value and it get's copied as seen. Now we perform some random operations on lista. - -lista.pop() -print(lista) -lista.append(9) -print(lista) - -print listb - -# listb has also changed though no operation has been performed on it. This is because you have assigned the same memory space of lista to listb. So how do fix this? -# -# If you recall, in slicing we had seen that parentlist[a:b] returns a list from parent list with start index a and end index b and if a and b is not mentioned then by default it considers the first and last element. We use the same concept here. By doing so, we are assigning the data of lista to listb as a variable. - -lista = [2,1,4,3] - -listb = lista[:] -print(listb) - -lista.pop() -print(lista) -lista.append(9) -print(lista) - -print(listb) - -# ## Tuples - -# Tuples are similar to lists but only big difference is the elements inside a list can be changed but in tuple it cannot be changed. Think of tuples as something which has to be True for a particular something and cannot be True for no other values. For better understanding, Recall **divmod()** function. - -xyz = divmod(10,3) -print(xyz) -print(type(xyz)) - -# Here the quotient has to be 3 and the remainder has to be 1. These values cannot be changed whatsoever when 10 is divided by 3. Hence divmod returns these values in a tuple. - -# To define a tuple, A variable is assigned to paranthesis ( ) or tuple( ). - -tup = () -tup2 = tuple() - -# If you want to directly declare a tuple it can be done by using a comma at the end of the data. - -27, - -# 27 when multiplied by 2 yields 54, But when multiplied with a tuple the data is repeated twice. - -2*(27,) - -# Values can be assigned while declaring a tuple. It takes a list as input and converts it into a tuple or it takes a string and converts it into a tuple. - -# + {"scrolled": true} -tup3 = tuple([1,2,3]) -print(tup3) -tup4 = tuple('Hello') -print(tup4) -# - - -# It follows the same indexing and slicing as Lists. - -print(tup3[1]) -tup5 = tup4[:3] -print(tup5) - -# ### Mapping one tuple to another - -(a,b,c)= ('alpha','beta','gamma') - -print(a,b,c) - -d = tuple('RajathKumarMP') -print(d) - -# ### Built In Tuple functions - -# **count()** function counts the number of specified element that is present in the tuple. - -d.count('a') - -# **index()** function returns the index of the specified element. If the elements are more than one then the index of the first element of that specified element is returned - -d.index('a') - -# ## Sets - -# Sets are mainly used to eliminate repeated numbers in a sequence/list. It is also used to perform some standard set operations. -# -# Sets are declared as set() which will initialize a empty set. Also set([sequence]) can be executed to declare a set with elements - -set1 = set() -print(type(set1)) - -set0 = set([1,2,2,3,3,4]) -print(set0) - -# elements 2,3 which are repeated twice are seen only once. Thus in a set each element is distinct. - -# ### Built-in Functions - -set1 = set([1,2,3]) - -set2 = set([2,3,4,5]) - -# **union( )** function returns a set which contains all the elements of both the sets without repition. - -set1.union(set2) - -# **add( )** will add a particular element into the set. Note that the index of the newly added element is arbitrary and can be placed anywhere not neccessarily in the end. - -set1.add(0) -set1 - -# **intersection( )** function outputs a set which contains all the elements that are in both sets. - -set1.intersection(set2) - -# **difference( )** function ouptuts a set which contains elements that are in set1 and not in set2. - -set1.difference(set2) - -# **symmetric_difference( )** function ouputs a function which contains elements that are in one of the sets. - -set2.symmetric_difference(set1) - -# **issubset( ), isdisjoint( ), issuperset( )** is used to check if the set1/set2 is a subset, disjoint or superset of set2/set1 respectively. - -set1.issubset(set2) - -set2.isdisjoint(set1) - -set2.issuperset(set1) - -# **pop( )** is used to remove an arbitrary element in the set - -set1.pop() -print(set1) - -# **remove( )** function deletes the specified element from the set. - -set1.remove(2) -set1 - -# **clear( )** is used to clear all the elements and make that set an empty set. - -set1.clear() -set1 diff --git a/0_python/05 Control Flow.py b/0_python/05 Control Flow.py deleted file mode 100644 index 17588c4..0000000 --- a/0_python/05 Control Flow.py +++ /dev/null @@ -1,175 +0,0 @@ -# --- -# jupyter: -# jupytext_format_version: '1.2' -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# language_info: -# codemirror_mode: -# name: ipython -# version: 3 -# file_extension: .py -# mimetype: text/x-python -# name: python -# nbconvert_exporter: python -# pygments_lexer: ipython3 -# version: 3.5.2 -# --- - -# All the IPython Notebooks in this lecture series are available at https://github.com/rajathkumarmp/Python-Lectures - -# # Control Flow Statements - -# ## If - -# if some_condition: -# -# algorithm - -x = 12 -if x >10: - print("Hello") - -# ## If-else - -# if some_condition: -# -# algorithm -# -# else: -# -# algorithm - -x = 12 -if x > 10: - print("hello") -else: - print("world") - -# ## if-elif - -# if some_condition: -# -# algorithm -# -# elif some_condition: -# -# algorithm -# -# else: -# -# algorithm - -x = 10 -y = 12 -if x > y: - print("x>y") -elif x < y: - print("x y: - print("x>y") -elif x < y: - print("x=7: - break - -# ## Continue - -# This continues the rest of the loop. Sometimes when a condition is satisfied there are chances of the loop getting terminated. This can be avoided using continue statement. - -for i in range(10): - if i>4: - print("The end.") - continue - elif i<7: - print(i) - -# ## List Comprehensions - -# Python makes it simple to generate a required list with a single line of code using list comprehensions. For example If i need to generate multiples of say 27 I write the code using for loop as, - -res = [] -for i in range(1,11): - x = 27*i - res.append(x) -print res - -# Since you are generating another list altogether and that is what is required, List comprehensions is a more efficient way to solve this problem. - -[27*x for x in range(1,11)] - -# That's it!. Only remember to enclose it in square brackets - -# Understanding the code, The first bit of the code is always the algorithm and then leave a space and then write the necessary loop. But you might be wondering can nested loops be extended to list comprehensions? Yes you can. - -[27*x for x in range(1,20) if x<=10] - -# Let me add one more loop to make you understand better, - -[27*z for i in range(50) if i==27 for z in range(1,11)] diff --git a/0_python/07 Class.py b/0_python/07 Class.py deleted file mode 100644 index 81f6e37..0000000 --- a/0_python/07 Class.py +++ /dev/null @@ -1,298 +0,0 @@ -# --- -# jupyter: -# jupytext_format_version: '1.2' -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# language_info: -# codemirror_mode: -# name: ipython -# version: 3 -# file_extension: .py -# mimetype: text/x-python -# name: python -# nbconvert_exporter: python -# pygments_lexer: ipython3 -# version: 3.5.2 -# --- - -# All the IPython Notebooks in this lecture series are available at https://github.com/rajathkumarmp/Python-Lectures - -# # Classes - -# Variables, Lists, Dictionaries etc in python is a object. Without getting into the theory part of Object Oriented Programming, explanation of the concepts will be done along this tutorial. - -# A class is declared as follows - -# class class_name: -# -# Functions - -class FirstClass: - pass - -# **pass** in python means do nothing. - -# Above, a class object named "FirstClass" is declared now consider a "egclass" which has all the characteristics of "FirstClass". So all you have to do is, equate the "egclass" to "FirstClass". In python jargon this is called as creating an instance. "egclass" is the instance of "FirstClass" - -egclass = FirstClass() - -type(egclass) - -type(FirstClass) - -# Now let us add some "functionality" to the class. So that our "FirstClass" is defined in a better way. A function inside a class is called as a "Method" of that class - -# Most of the classes will have a function named "\_\_init\_\_". These are called as magic methods. In this method you basically initialize the variables of that class or any other initial algorithms which is applicable to all methods is specified in this method. A variable inside a class is called an attribute. - -# These helps simplify the process of initializing a instance. For example, -# -# Without the use of magic method or \_\_init\_\_ which is otherwise called as constructors. One had to define a **init( )** method and call the **init( )** function. - -eg0 = FirstClass() -eg0.init() - -# But when the constructor is defined the \_\_init\_\_ is called thus intializing the instance created. - -# We will make our "FirstClass" to accept two variables name and symbol. -# -# I will be explaining about the "self" in a while. - -class FirstClass: - def __init__(self,name,symbol): - self.name = name - self.symbol = symbol - -# Now that we have defined a function and added the \_\_init\_\_ method. We can create a instance of FirstClass which now accepts two arguments. - -eg1 = FirstClass('one',1) -eg2 = FirstClass('two',2) - -print(eg1.name, eg1.symbol) -print(eg2.name, eg2.symbol) - -# **dir( )** function comes very handy in looking into what the class contains and what all method it offers - -dir(FirstClass) - -# **dir( )** of an instance also shows it's defined attributes. - -dir(eg1) - -# Changing the FirstClass function a bit, - -class FirstClass: - def __init__(self,name,symbol): - self.n = name - self.s = symbol - -# Changing self.name and self.symbol to self.n and self.s respectively will yield, - -eg1 = FirstClass('one',1) -eg2 = FirstClass('two',2) - -print(eg1.name, eg1.symbol) -print(eg2.name, eg2.symbol) - -# AttributeError, Remember variables are nothing but attributes inside a class? So this means we have not given the correct attribute for the instance. - -dir(eg1) - -print(eg1.n, eg1.s) -print(eg2.n, eg2.s) - -# So now we have solved the error. Now let us compare the two examples that we saw. -# -# When I declared self.name and self.symbol, there was no attribute error for eg1.name and eg1.symbol and when I declared self.n and self.s, there was no attribute error for eg1.n and eg1.s -# -# From the above we can conclude that self is nothing but the instance itself. -# -# Remember, self is not predefined it is userdefined. You can make use of anything you are comfortable with. But it has become a common practice to use self. - -class FirstClass: - def __init__(asdf1234,name,symbol): - asdf1234.n = name - asdf1234.s = symbol - -eg1 = FirstClass('one',1) -eg2 = FirstClass('two',2) - -print(eg1.n, eg1.s) -print(eg2.n, eg2.s) - -# Since eg1 and eg2 are instances of FirstClass it need not necessarily be limited to FirstClass itself. It might extend itself by declaring other attributes without having the attribute to be declared inside the FirstClass. - -eg1.cube = 1 -eg2.cube = 8 - -dir(eg1) - -# Just like global and local variables as we saw earlier, even classes have it's own types of variables. -# -# Class Attribute : attributes defined outside the method and is applicable to all the instances. -# -# Instance Attribute : attributes defined inside a method and is applicable to only that method and is unique to each instance. - -class FirstClass: - test = 'test' - def __init__(self,name,symbol): - self.name = name - self.symbol = symbol - -# Here test is a class attribute and name is a instance attribute. - -eg3 = FirstClass('Three',3) - -print(eg3.test, eg3.name) - -# Let us add some more methods to FirstClass. - -class FirstClass: - def __init__(self,name,symbol): - self.name = name - self.symbol = symbol - def square(self): - return self.symbol * self.symbol - def cube(self): - return self.symbol * self.symbol * self.symbol - def multiply(self, x): - return self.symbol * x - -eg4 = FirstClass('Five',5) - -print eg4.square() -print eg4.cube() - -eg4.multiply(2) - -# The above can also be written as, - -FirstClass.multiply(eg4,2) - -# ## Inheritance - -# There might be cases where a new class would have all the previous characteristics of an already defined class. So the new class can "inherit" the previous class and add it's own methods to it. This is called as inheritance. - -# Consider class SoftwareEngineer which has a method salary. - -class SoftwareEngineer: - def __init__(self,name,age): - self.name = name - self.age = age - def salary(self, value): - self.money = value - print(self.name,"earns",self.money) - -a = SoftwareEngineer('Kartik',26) - -a.salary(40000) - -dir(SoftwareEngineer) - -# Now consider another class Artist which tells us about the amount of money an artist earns and his artform. - -class Artist: - def __init__(self,name,age): - self.name = name - self.age = age - def money(self,value): - self.money = value - print(self.name,"earns",self.money) - def artform(self, job): - self.job = job - print(self.name,"is a", self.job) - -b = Artist('Nitin',20) - -b.money(50000) -b.artform('Musician') - -dir(Artist) - -# money method and salary method are the same. So we can generalize the method to salary and inherit the SoftwareEngineer class to Artist class. Now the artist class becomes, - -class Artist(SoftwareEngineer): - def artform(self, job): - self.job = job - print(self.name,"is a", self.job) - -c = Artist('Nishanth',21) - -dir(Artist) - -c.salary(60000) -c.artform('Dancer') - -# Suppose say while inheriting a particular method is not suitable for the new class. One can override this method by defining again that method with the same name inside the new class. - -class Artist(SoftwareEngineer): - def artform(self, job): - self.job = job - print(self.name,"is a", self.job) - def salary(self, value): - self.money = value - print(self.name,"earns",self.money) - print("I am overriding the SoftwareEngineer class's salary method") - -c = Artist('Nishanth',21) - -c.salary(60000) -c.artform('Dancer') - -# If not sure how many times methods will be called it will become difficult to declare so many variables to carry each result hence it is better to declare a list and append the result. - -class emptylist: - def __init__(self): - self.data = [] - def one(self,x): - self.data.append(x) - def two(self, x ): - self.data.append(x**2) - def three(self, x): - self.data.append(x**3) - -xc = emptylist() - -xc.one(1) -print xc.data - -# Since xc.data is a list direct list operations can also be performed. - -xc.data.append(8) -print xc.data - -xc.two(3) -print xc.data - -# If the number of input arguments varies from instance to instance asterisk can be used as shown. - -class NotSure: - def __init__(self, *args): - self.data = ''.join(list(args)) - -yz = NotSure('I', 'Do' , 'Not', 'Know', 'What', 'To','Type') - -yz.data - -# # Where to go from here? - -# Practice alone can help you get the hang of python. Give your self problem statements and solve them. You can also sign up to any competitive coding platform for problem statements. The more you code the more you discover and the more you start appreciating the language. -# -# -# Now that you have been introduced to python, You can try out the different python libraries in the field of your interest. I highly recommend you to check out this curated list of Python frameworks, libraries and software http://awesome-python.com -# -# -# The official python documentation : https://docs.python.org/2/ -# -# -# You can also check out Python practice programs written by my friend, Kartik Kannapur. Github Repo : https://github.com/rajathkumarmp/Python-Lectures -# -# -# Enjoy solving problem statements because life is short, you need python! -# -# -# Peace. -# -# -# Rajath Kumar M.P ( rajathkumar dot exe at gmail dot com) diff --git a/0_python/00 Introduction.ipynb b/0_python/0_Introduction.ipynb similarity index 100% rename from 0_python/00 Introduction.ipynb rename to 0_python/0_Introduction.ipynb diff --git a/0_python/01 Basics.ipynb b/0_python/1_Basics.ipynb similarity index 100% rename from 0_python/01 Basics.ipynb rename to 0_python/1_Basics.ipynb diff --git a/0_python/02 Print Statement.ipynb b/0_python/2_Print_Statement.ipynb similarity index 100% rename from 0_python/02 Print Statement.ipynb rename to 0_python/2_Print_Statement.ipynb diff --git a/0_python/03 Data Structure.ipynb b/0_python/3_Data_Structure_1.ipynb similarity index 100% rename from 0_python/03 Data Structure.ipynb rename to 0_python/3_Data_Structure_1.ipynb diff --git a/0_python/04 Data Structure 2.ipynb b/0_python/4_Data_Structure_2.ipynb similarity index 100% rename from 0_python/04 Data Structure 2.ipynb rename to 0_python/4_Data_Structure_2.ipynb diff --git a/0_python/05 Control Flow.ipynb b/0_python/5_Control_Flow.ipynb similarity index 100% rename from 0_python/05 Control Flow.ipynb rename to 0_python/5_Control_Flow.ipynb diff --git a/0_python/06 Function.ipynb b/0_python/6_Function.ipynb similarity index 100% rename from 0_python/06 Function.ipynb rename to 0_python/6_Function.ipynb diff --git a/0_python/07 Class.ipynb b/0_python/7_Class.ipynb similarity index 100% rename from 0_python/07 Class.ipynb rename to 0_python/7_Class.ipynb diff --git a/1_logistic_regression/Least_squares.ipynb b/1_logistic_regression/Least_squares.ipynb index 10cd6c9..b5e6431 100644 --- a/1_logistic_regression/Least_squares.ipynb +++ b/1_logistic_regression/Least_squares.ipynb @@ -18,12 +18,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnX+UHFd15793Rm15xrAeCc+ycluyBHGkRQhrkGJ7o00WiWCBHdsTC2w4TiA/TrxZyG5kvLOMFzaWOGatRTEOe87GHGdJYg7GjG05g/wjCAeJzaIT2YyYkYWCtMi/JDcKFkhjsGYs9Yzu/tFVrerq9169qnrVVT1zP+fMme7q6ur3qmfufe/+JGaGIAiCIITpyHsAgiAIQjERBSEIgiAoEQUhCIIgKBEFIQiCICgRBSEIgiAoEQUhCIIgKBEFIQiCICgRBSEIgiAoEQUhCIIgKJmT9wDScNFFF/HixYvzHoYgCEJbsXfv3p8yc2/UeW2tIBYvXoyRkZG8hyEIgtBWENHLNueJiUkQBEFQIgpCEARBUJKZgiCi84noWSLaR0QHiGizd/xviOhFIhrzflZ6x4mI/icRHSai54jo3VmNTRAEQYgmSx/EaQDrmPl1IioB+C4R/Z332gAzPxo6/wMALvN+rgRwn/dbEARByIHMdhBc43Xvacn7MTWfuAHAV7z37QHQQ0QLshqfIAiCYCZTHwQRdRLRGIBXATzNzM94L33OMyPdS0RzvWNlAEcDb3/FOyYIgtCWDI9WsGbLTiwZfBJrtuzE8Ggl7yHFIlMFwczTzLwSwCUAriCidwK4A8AyAL8CYD6AT8W5JhHdSkQjRDRy/Phx52MWBEFwwfBoBXc8th+V8UkwgMr4JO54bH9bKYmWRDEx8ziAXQDez8zHPDPSaQB/DeAK77QKgIWBt13iHQtf635mXs3Mq3t7I/M8BEEQcmHrjkOYrE43HJusTmPrjkM5jSg+WUYx9RJRj/e4C8D7ABz0/QpERAD6AfzAe8t2AB/1opmuAvAaMx/LanyCIMwcimjK+fH4ZKzjRSTLKKYFAB4gok7UFNHDzPwEEe0kol4ABGAMwB955z8F4BoAhwFMAPi9DMcmCMIMwTfl+Kt135QDAP19+bkxL+7pQkWhDC7u6cphNMnITEEw83MA+hTH12nOZwCfyGo8giDMTEymnDwVxMD6pQ2KCwC6Sp0YWL80tzHFpa1rMQmCMDMYHq1g645D+PH4JC7u6cLA+qXWwr2ophx//EnnVQREQQiCkCtpTURFNuX095XbSiGEkVpMgiDkStpon4H1S9FV6mw41m6mnKIiOwhBmGWkMedkQVoT0Uww5RQVURCCMIsoYsSPCxNRu5tyioqYmARhFlHE5C0xERUX2UEIwiyiiBE/YiIqLqIgBGEWUdSIHzERFRMxMQnCLELMOUIcZAchCLMIMecIcRAFIQizjLzMOUULrxWiEQUhCELmFDG8VohGFIQgtJjZuJIuakE9wYwoCEFoIbN1JV3E8FohGoliEoQWUsREtVagC6PNO7xWMCMKQhBayGxdSUt4bXsiJiahbSmaLd9mPLaJau04NxMSXtueiIIQ2pKi2fJtx2PTZaxd5xaFZEu3H2JiEtqSotnybcfT31fG3TeuQLmnCwSg3NOFu29c0SA423VuRWB4tII1W3ZiyeCTWLNlJ4ZHK3kPqa2RHYTQlhTNlh9nPFEr6SLMLWhSYs05RfObFG3nNROQHYTQlhQtKsblePKemy9oKwbl0Mrx2NJOO512QRSE0Ja0KirG1mThcjwD65ei1EkNx0qd1LKIH5WgDVPECKQi7LxmGpkpCCI6n4ieJaJ9RHSAiDZ7x5cQ0TNEdJiIhojoPO/4XO/5Ye/1xVmNTWh/bGz5aQmvpH2ThUpJOB9PeOluWso7xiRQs7rXLsh75zUTIeZs/vKIiABcwMyvE1EJwHcB/AmATwJ4jJm/TkRfArCPme8joo8DeBcz/xERfRjAbzHzzabPWL16NY+MjGQyfkFYs2WnMiS13NOF3YPrZtznFuXzkxL2QQC1nU4RlVneENFeZl4ddV5mOwiu8br3tOT9MIB1AB71jj8AoN97fIP3HN7r7/WUjCAkJk1US14mi7xNJe2a1NaKXeVsI9MoJiLqBLAXwC8B+F8AngcwzsxT3imvAPC/vTKAowDAzFNE9BqAtwD4aZZjFGYuaaNadEltjNoqO6tEr7y7vrVzUpvkWrglUwXBzNMAVhJRD4C/BbAs7TWJ6FYAtwLAokWL0l5OmMGkrSCqSmrzyTKE0iaZzoY02c8iaAWgRVFMzDwOYBeAfwOgh4h8xXQJAH/PXwGwEAC81y8E8DPFte5n5tXMvLq3tzfzsQvtS1pTTdBkoSKLEEpfqE9Wp9HpWViTmEriONgFQUeWUUy93s4BRNQF4H0Afoiaovigd9rHAHzDe7zdew7v9Z2clQddyIUk/oA0PgQXUS39fWXsHlwHnTPMpV8gKNQBYJq5vnOIu5qXnADBBVnuIBYA2EVEzwH4HoCnmfkJAJ8C8EkiOoyaj+HL3vlfBvAW7/gnAQxmODahxSRZ0aZdBbt0trYihNKlUM/b0S3MDLKMYnqOmfuY+V3M/E5m/qx3/AVmvoKZf4mZP8TMp73jb3jPf8l7/YWsxia0niTCL63AdBnV0orIHpdCvae7pDwuOQFCHKQWk9ASkgg/FwLTlbO1FZE9rqKXhkcreP2NqabjrczGFmYGoiCElpBE+OUd7hkm68geV9FLW3ccQvVss/vugvPmSGSSEAtREEJLiBJ+qpBMVwIzLnk163G1S9HtsF6brKYeozC7yKzURiuQUhvFwUao6s4xlUgAsjPrqMYDoNDlGmzuc7uWyohL0brutRO2pTZEQQipSVsDJw+Bphvz3DkdGFestLMYS1wBZ3ufZ0NNotkwxyzJvRaTMHtIG22UR0imbswq5ZDFWJKE8LrsWpdkvEXq1CZ5Hq1BfBBCatIK+DTOaJ2ZKGplHlfgu3aMJykDYnOfw/fj3ptXpl5RF7FTm+R5tAZREEJq0kYbJXVGqwTXwKP7AEY9ikcnzHRjntddwhvVs5k7xuMIOF/o64zB/n3WCfKRl0/gyeeO4eREbXfU01XCpuuXWwt3W2XWSp9A0SLcZipiYhJSkzaJLKlJRCW4qtPcFOIZNj0Mj1YwcaY5T6Cr1Ik7r1vekpLRtpnZ4fIbqjEHd00qQf7VPUfqygEAxierGHhkn7WZyEaZfWZ4P24bGmtZ7ad2LUnebsgOQkiNi/DMJDkGccwJ/rkq5ybQvKp2rRDCq+u1y3qxbW8lMuxXpxiAmvIK3uc496N6lq2r2kat1odHK3hwz5GmHU6cyrlxaeeS5O2EKAjBCXmUh9YJLt25gL7f8gVz4yWRxTGnqEw/2/ZWsGFVGbsOHrcK+w1DQFNUVZz7AdgrlCgToMn8ZfKPpBXoUpI8e0RBCG2LSnCVOqnBBwGcE2bDoxWtAI2z+o7rtNWZfnYdPK4MndUpsSAXdjXXWlLdD4K+nbWtvT5qtW66d1H+keD1heIhCkJoW3SCS3fMF0gq4jg340YgxY24sVFWp85MYXi00vB5qvuxdlkvhr53FNXpRjVR6ohXl8m0WtftXAiI9I9kZYIS3CAKQmhrdIJLlV2sW5WXOglrl/Vi5eZv1fMg5nWXcOd16kifuII9bsSNjamoOq32Iajux+pL52Pz4wcSRzFFodu53HLVoshdhoSlFhtREMKswCSIps8yvrbnCM4Gjp2cqNZCZtGsbOIK/LhhvKZWp0HidMZzkQth2qn1dJcwd04HXpusKv0LEpbanoiCEApB1jH0plW5ovApAP0qPa7AjxtxEz4fUPsRVH6ILLDJNzk5UUVXqVObmJdX4UUhHaIghNxphQPTdlUeRrVKTxJiGXcVHzy/77Pfashj8CFdH1QHBBV2BxGmQzXbwj4NwOxTkLDU9kQUhJA7UQ7M4dEKNm0/YOUf0OGfe/vD+5qEnQmdCSSN2SbubmlcoRxUx13twsIKO879Mpm9dPfM9e5Rqry6QxSEkAvBf2JTDP3waAUDj+xrCFs1+QdM+OduHBqzOj+LDmxJdks29vukuzCVMLUJs9WRpPudy92jhNO6RUptCC0nXMlUx8U9XdruaL5/IC79fWX0aGz3QZPNvO4Stn7wcudCJUkVUpuyEkmuq6soa5NsV+oklDoabVxJu9+5rMoqVV7dIjsIoeXYrFB9YXObYbWfNERy0/XLc+slkCTc08Z+n+S6OmHaqfA5AEAnEc4yx6qaG4Xr8FcJp3WLKIg2IQu7atJrph2L6Z+VgIZrmuoRJQ2RzNNhmjTcM8rnobtuBxGWDD4ZS6lMM6Or1GmlQNPeM9fhrxJO65bMTExEtJCIdhHRPxHRASL6E+/4JiKqENGY93NN4D13ENFhIjpEROuzGlu7kaS5TFbXdDEW3T9ruacLL265FrsH19UFz8D6pU2mDCC9f6C/r4zdg+uaPi9rsqpCqrouUBP2uu/J9D20oqKtbtxp7odUeXVLZi1HiWgBgAXM/H0iejOAvQD6AdwE4HVm/rPQ+e8A8BCAKwBcDODvAfwyM2ttEbOl5WgWLTmTXtPFWOK2i9RFMQHtGTaZVZRNVGgq0Pg9FaVtp0QxtR7blqOZmZiY+RiAY97jXxDRDwGYvqUbAHydmU8DeJGIDqOmLP4xqzG2C1nYVZNe08VYwiaeC7tKIAJuGxrD1h2Hmv6hVeaVNNEqLgVIkmtlVYU0eN0lg08qzwl+T0XJTXB9P6TKqzta4oMgosUA+gA8A2ANgD8moo8CGAFwOzOfRE157Am87RUoFAoR3QrgVgBYtGhRpuMuClnYVZNe09VY/H/iOII+aoVsU/xN9Xkbh8awafuB2PWJVNe6bWgMG4fGmno1uCCOMrL9nkSYCiYyD3MlojcB2AZgIzP/HMB9AN4OYCVqO4x74lyPme9n5tXMvLq3t9f5eItIFnbVpNd0PRbbsMSw70OXvBW1k9FFUI1PVo2+lOHRCtZs2Yklg09izZaddWEdvpY/Ktcd1eL6fsQWL7gg0x0EEZVQUw4PMvNjAMDMPwm8/pcAnvCeVgAsDLz9Eu/YrCcLU0DSa7oei63JyjZ5S7eTsenQptuB6HY5UeNxWc5ap0g3bT9QqNIWYv9PThHvXWYKgogIwJcB/JCZvxA4vsDzTwDAbwH4gfd4O4CvEdEXUHNSXwbg2azG125kYQpIek2XJRNsTSE2Pg7dCtmmQ5vpc+LmC0RdLwk6xTY+WW3qC+HTavORZDEnp6j3LksT0xoAvwNgXSik9fNEtJ+IngOwFsBtAMDMBwA8DOCfAHwTwCdMEUxCsUga/mprCtHtDDqJIkMx45SOUH1OVL5A3OslodNQma8oWcKSxZycot67LKOYvota3lOYpwzv+RyAz2U1JiE7knYMszWF6MpF24Rk2q7idTsQ3S7Hd0T7pqtwe0+XNn/TTqUoWcIuo+2KaG7JkqJmgEsmteCENH/gNqaQNDZ1mw5tBGDDKvU4dMpp7bLe+njKXnvPXQePZyLUyoY5FCVL2FWEW1HNLVlS1AxwURCCE1rxB26jSILOaN9H0NNVQqmTlD0MfBjAroPHtZ8LNPd63ra30iDEtu2tZJpxPPDovtS9pbPEVVOg2di/uqgNlURBCE4YWL+0qSx3q4WXro/B+GQVpQ7CvO4Sxieq2gqylfFJbd2isHJS9bg2CbG0JhP/XFe9pbMw4biKnGqVuaVIZqyiJC2GEQUhuCPsccqw45kKkzO6epbRfd4cjP7p1dpyIQAaHOyA3qQRR4i5Mpm4ikrK0oTjYoyt2I0W0YxVxKRF6QchOGHrjkNN5o+4PRtUyWg2r/nYlgnRFbYLEhVBohNWquM2ESo283NFUSNmfFqR5Ff0e1AUZAchOCGtWcC0ogNgtdqLckb7wju8nTd1tNMRx2YcdW9avZotasSMTyvMLUW/B0VBFITghLRmgagVnY29XyW0fcLCO7id15mcTGOPI8Si7k2rnbJFjZgJkrW5pR3uQREQE5PghLRmAdOKzna1199XrvcxAM4ll/lJdACUZhzV2EudhFOnp4wmH9ueElH3ptWrWanTJPfAFtlBCE5IaxaIWtHZrvZMZUCizDj+2Hu6S3j9jal6/4m0Jp+oe9Pq1WxRI2ZaidwDOzJrGNQKZkvDoNmAqXkNgMRZ1D5xGh3pzg33ZE4rTII5G6os7FY37hFmD7k3DBJmJ2liy88vddSVgCrGP03/bJ3zWmXGMdVeAvQ7ijhzDytEBupKIk0vieAY/EZM4xNVWSELiRAFITgjaTSOavdweupswzlJnJY2VVxVZhyb0hxhJ3Lcuet6SaRpIxseg28isxmPIKgQBSE4IyoSSbe61r3v9of34bahscSr36gqrjqnpCkaKkhwpxE3EslFWHD4fkbNd6aXqxDcIwpCcIZOuIUb7IRXs0lNOknHA5jNOGEHpqq9KdC4+4gr8JM4pnU+C9sGRqbxCIIKCXMtAK3Mos1yPKaeDaadhU20TpIsV911fTNOVBlyP4T1npsujwyJjJNZDcQPswz22wDQlNznNzCKQuL8hTiIgsiZpI12ijietcvUPcKj+kfblL4Inm+L6rqE2pziKL5gfoWuOVFcgW9zzSA2TY+iGhhJnL8QFzEx5UzRShunGY+uXLauNaeu9IWNSUdH2Da/YVUZuw4e15plgp9vIspJniSuPo7j3UY5BhsYSRST4AJREDlTtJowJj/Cmi07jcIvqjWnqW5RUFjqciKiVr+qSCK/R4Mq1DWJIjaFsmZZHiIqssq/P0WsCCq0L2Jiypm4tmuXqHwNus/1TTMms5PJ5h8ugeELZ10JizjmFx/T7seFIs7THKgzlwH290cQ4iI7iJzJq5OULm5/w6pyQ6c0AE1ZvoB9sbzgyhawq8rqP3fZaMZFOYs8zYFSGkLIA1EQOZPXP75O2O06eLxukjEJVkBdLM+/dpx8B1cC1qQEXCjivM2BYj4SWk1mCoKIFgL4CoC3orYAvZ+Zv0hE8wEMAVgM4CUANzHzSSIiAF8EcA2ACQC/y8zfz2p8RSKPf3yTsFO110xbLA9QF9wLjyVNqQ6bHUzSaw+PVpw6z2X1L7QDWe4gpgDczszfJ6I3A9hLRE8D+F0A32bmLUQ0CGAQwKcAfADAZd7PlQDu834LMbERRrrVdgcRhkcrkaajYDlsG4E3PFpRmqr8sfjn2JqgTHNUHU8joP1xqZRDUud5u5e9EIU3O8hMQTDzMQDHvMe/IKIfAigDuAHAe7zTHgDwHdQUxA0AvsK18rJ7iKiHiBZ41xEssRVGunIS08xN54cFb/d5nTh1ZjpWOeytOw5pO7f5+RO2JqioOaqUSRoBbcpBCCbw6Qr3qXYe7Vz2YiYqPEFNS6KYiGgxgD4AzwB4a0Do/zNqJiigpjyOBt72indMiIFtr10/UkiVfas7f/fgOtx780pMnGkWllGZziY7/UPPHMXwaEVrggofj9tPWHf+5scPWGWMR/kYwtFM4WinqETBdkP6Oc8eMndSE9GbAGwDsJGZf04BgcTMTESxGlIQ0a0AbgWARYsWuRzqjCCOI7W/r4zbhsZiXce0EzAJPJOz29+1EAEqWdrpmb2S9pDWHT85UcXJieZdENBopurpLtXP0xHcEdhkPQPtW/Yib2e90Doy3UEQUQk15fAgMz/mHf4JES3wXl8A4FXveAXAwsDbL/GONcDM9zPzamZe3durLu0wm4mbVxH3eJQS0DGwfilMlYImq9NK5QCcUyAVg3Iwfb6tIJ6sTmPT9gNNuQ6vvzGFUmd0nSP/3tgIynYue5Fn7o7QWjJTEF5U0pcB/JCZvxB4aTuAj3mPPwbgG4HjH6UaVwF4TfwP8YlbEyju+aZEOpPA6+8r45arFhmVhA5Vsb8wceeoY3yy2vRZ1bOMC86bU0/c0xXF8+9NlKDsJNImthWtcKMK6ec8e8hyB7EGwO8AWEdEY97PNQC2AHgfEf0IwG94zwHgKQAvADgM4C8BfDzDsc1Y4mYhB88HorOcdRm9t1y1KNJBeVf/Ctxyld4s2NNVUgoenQ3fp5MIG1bpe1H7Jh9fsJd7utDTVTJeM8xrk1Xr6q5RCukss7FvdlEKN+pImukutB9ZRjF9F9AuGN+rOJ8BfCKr8cx00oQdxslyTpNPMDxawba9amHXVerEpuuXK69tahkK1ExQ2/ZWsPrS+cZoJ78mlC/IVTkT55c6lP6G4K4g6h74v29/eF+svImiFW40IUl7swPJpJ4BuAg7jCOckgoHnfM2bHJRXTuqIY5qrKY5+W09w0Je9Vkq84ltddc42dvi/BWKhlZBENFTAD7OzC+1bjhCEuLkD+hWvbblNNKgu5bJ5BIsXX1+qQPjE1XrKKYogWsS8i6SwOLutnTRUj3dNXOYJKcJrca0g/hrAN8iogcAfJ6ZzXF+Qm7YrDxNuwxAXZAPcBuZEqdgXni845NVdJU6ce/NK7Ump/B1khboi7NDihLaca6lc7UwS3KakA9aJzUzPwLg3QD+BYARIvrPRPRJ/6dlIxTq6CJcbMIOTbsMXW5DVGRSXHTRL2uX9TbNyzRenRP41OmpBodukmibOFFErp3Kr02q12CvTVYlOU3IhSgfxBkApwDMBfBmAGczH5GgRLWCHHh0HzZtP4DxyWrTDiAsCJPYtxluV6f9fWWMvHwCDz1zFNPM6CTCuxdd2FBe3BeyOn+DX0wQADY/fqDBJDM+WVWW3LA1y8RdpeuE9qbtBxKZgkw7niz9E2K6EnSYfBDvB/AF1PIT3s3MEy0bldCEShhVp7leD4lxzkxUVvyTR5lbVK/5oa+uBIgfxeRH9kwzY/fzJ5rO80NSo9qUbt1xqMlmH/a9xDHxxI0i0gnn8clqrDpVPqZqtLZmtbiI6UowYdpBfBrAh5j5QKsGI+ixWSn6ymH34Lq6qcQX6muX9WLoe0dRnT4ndEudFBm541KA2JagAOzalKZZVQeVXk93CcyoC3Xb60W1AfWxDVU17XhGXj6BB/ccMe4Sk9BOobVC69EqCGb+tVYORDBjK4x+PD6pFOpDzx5tXpF7T02Cac2Wnc4ESBxziL8LMu1ckjqhw/cnqs6S7nq6irgqbOeuq0a7bW+lQTkQoE0OjIOE1gomJA+iTbAVRhf3dKnNUWebzTXVs1wX9DpTjEsBYqvkfOd4lHlId08mzkw19bQIEmcnY1qlqxTrxJkppcK5sKtUb7zkm89UpkDb8TKAXQePW83BhItWrMLMRRREmxAWRj3dJbz+xlSD4PeFma5CqwqToE/bRS2MP7ao8r22znH/HN9R73Nyoqo1g5nKiocJCnCdHyasxMK7EwAodRBOnZmqj9G/nzpzXfizssxRyasnutAeiIJoI1TCSCW0okpTBNEJ+jRd1EzCVGVLD1OOoXz8+Yb9B6ZGQzb4vpzg+2z8MHF2Fapxqj4ryxyVNKVThJmPKIiCkCRSSGeCUbYI7SCA0OCkNgl6U1mMDatqQvm2obGmsUYJ07v6V2D1pfPrSiwqPNcGWzOYrWkpOIbh0YqyppLJDxP+XpYMPmk9fp05ycV90iF1lQQdoiAKgOtQQ92qUHVMV+LC1NxHlbfgf26cqBgC6hFEr01WE69ebe3oJpNMT1epaQymXVT4eiYFH+V7CY5TN0Y/Qk1W+UIrEQVRALIINdStCqOuF2WGUfVmCI41qm2oKoLIL6GRdK62dnSdoA6ak4JE7Th8wa5T8CMvn8Cug8eNZqLwOOOOURCyRBREAShSqKFJKIbzEoL4Y9UluPm9GEz9odOWK496f1yHrOn+B9+nm1PQ1xI0E6mimPwdiCuzmyC4QBREAShSqKFJKN594wqtA/xCrwGPzhzjH4/bHzqOkkiTiKZC972Ey5ObzELh56qdQHgHEnyfbSisIGRBpj2pBTtsisq1qhWlTimVe7rQ31fGwPqlNYd3iFNe7oEuAsk/Hqc/dBaF6Pr7yvXOcLsH10XmWai+l3tuurwpYc8WlTLR7dqC+SCCkAeiIApAf5+5hWMrW1HqWopWxiexZstOAMCbzm/eeFanWVtpNVi249TpKeux5J3NG/W9+OjumQqVMjHtQKRaq5AnYmLKAVOegIpW1ssJmmHC9vA4lVZtOrVFUYRs3qSmq7XLehuivQC9LyHrZDhBSIooiBaTJKQ1KjLINb5Q9EtDBDFVWu0gqpe4CM9FVdPJRLs5ZlVz9vM9ovwdpgzzIihJYfYiCqLFJNkNREUGZYUpF0IV0TTNrFV2cVbCHQSlKaddCO8Qo0J4s6zWKghpEB9Ei9EJysr4pNYBHRUZlAXDoxWtHd23xasUlM65HGclnLXiy5Kk/qK7+lfg3ptXRvo7BKGVZLaDIKK/AvCbAF5l5nd6xzYB+EMAfhnK/8rMT3mv3QHgDwBMA/hPzLwjq7HlicneHBQowLlVeNmQPBUX25IeujakQK1aqqnonq8Eg591YVcJpU5qKvUBMCarjY0Kg1Vms5pfVqTxF9n4O/KenzC7yHIH8TcA3q84fi8zr/R+fOXwDgAfBrDce89fEFFz0+EZgK6fcpDwKjxJb2UVcVa3JpPQyYmqsdheT3cJKzd/CxuHxuqfNT5ZBRiY111qWCG/UVV3sU3inB0erWDg0X0N8xt4dF8m0V66sOOsW4O2KppNEIAMFQQz/wOA5n6Sam4A8HVmPs3MLwI4DOCKrMaWJ+HQSR1BgWIbbhlFnMb3aZyjJyeqyu5s1bOM7vPmNOQg6D4nyedvfvxAww4FqIXfbn7cbVNEk6B2OZ8wcb4/QXBBHk7qPyaijwIYAXA7M58EUAawJ3DOK96xGUnQlKCKFAKaBYqLipsm/0ewPenA+qWxuqWlGYPLfgS6ktpRHePiYhLUA+uXYuCRfQ19Okod5MTZXKSSLMLsoNVO6vsAvB3ASgDHANwT9wJEdCsRjRDRyPHj6Ttq5Y0r85ENulWsnwgX9oGEdy09XjkNl2NwtTvKCpUpKVJQh7eGjnzuWe5OBEEFcYaRMES0GMATvpNa95rnoAYz3+29tgPAJmb+R9P1V69ezSMjI45H3XriOh6TOipV3c50VUaYfz+jAAAdJ0lEQVRtagbFpavU6Uz4q+5BuLNckN++ahHu6l8R+zNUu5u5czqUn+MHDdhWY03yvavGUySFKrQHRLSXmVdHntdKBUFEC5j5mPf4NgBXMvOHiWg5gK+h5ne4GMC3AVzGzEZJ1C4KwmXkSVohYdvOkgC8uOVa7fvjJunN6y7hzuuWW887PM61y3qx6+BxY7vVDavKGHr2qLL/NgB0lzrw3298l/UYdOa/ed0lvFE9q/wOTNFdBBgzy/05+PNU/a3E+VuSiCdBR+4KgogeAvAeABcB+AmAO73nK1FbtL4E4N8HFManAfw+gCkAG5n576I+ox0UhOtVn05oJe0XoLteJ1FTUTqb94Xp6Sph0/X2igFIvlPxK59uNPTkjnPvlww+qRT2BODem1cqha/NfekqdeL8UofSN6Iq9Z3kbyXr3YYon/YmdwXRCtpBQbgW6Cah5a/4464ydcLYJFB04/DHkkZo2CofFS9tuRaLI1p8dhLhLHPkGJN8d2nNcCqS/K24/rsLIqau9sdWQUipDcfYmnCSRp5E9Y6IW+vJPxa373KWnc+SKgdCbf660iQ+/mtR9yZJhFW42KELkvytZBnx1MrikUK+SKkNh6ji4+OUfbZh7bLepmvadDeLipW36bscJMvoq6SlNvzy2B+5cqH1e0z3JmmEld83w5QQ2dNVsi4RfmFXKXYvkCwjniTcdvYgOwiHqISzTR9iW4ZHK9i2t9JwTQKwYdW5HIm4/7xRPah1AiVud7YogjuvNEbPH49P1qOVHnzmCGwsqCbBljT/JKp166brl9fPM5UIL3UQTp2ZqkdN2Xbbc5lfEqZIHRCFbBEF4RCToPGdj2laSOoU0K6D5/JB4v7zRgmyKHOKi3BcW7t90Hdw6vSUMtTUn+dd/StwV/+KhjF0aExPWQi2qNat/n2IKhE+cWaqyZk9WZ3G7Q/vU77fx7UCD5Kl8hGKhSgIh0QV4ktrn7fZHcT957UVZFGowlKDq2Hdynd4tKL0f4QJO0F1OR1rl/U2vC+oxHTO1aySEnU+mqjS38HXl2gc7qbS6sFrAeeUhG9KS6skslQ+QrEQH4RDouzOaW20UXZlX0j7TX2AaLv5+SX1n0CUIAui8r08uOdIpC/Ef59JOehasOp2U9v2VrQ2+v6+MjasKtfvTSdRg3nOJbq/hVOnp2IV1zPtbqJ8S1LcT0iLKAiH+E5NnZM1rSkjqt+zLwyAc019TCu7W/7yH5tKbQO1P4o4q2pb3wvQqCRN5i2gphiChf0ANM0zjG9+UQlB34fjK6RpZqNCSYP/tzCvu7E8yfhkNZaQTrPoyKq4nyie2YMoCMf095Vxz02XZxLhY4qqiSsMhkcr2P28utiuugC3njg7o6CSjPLZhM1FQLRSAc6ZX8ICq9XVUPv7yug+r9mKG+cz0yw6soo2kqqyswfxQWRAljZanWM4rjDYtN1cAtsmUsZHZ29X1XnyTSx+qW+Tz2bb3gpWXzq/YQy2wk0Vl59HeKaLz/TnENd/klW0kYS5zh5kB5ER/X1l7B5c12QiyYo4ce/DoxVtUTufOCtCnenrlqsWGU0sUeYTlc+iI0aORFhg2dwjXSMg3fEoXOUjJMnJyCpXRarKzh5kBzFDiBO9ZCv4bTOBTTumXQePK8M0t+44VI/oMmUdB9uXRjm0w4QFVtQ9+szwfjy450h91+Pb1kdePmEVkaXCZUhokrDiu29c4XwnK2GuswdREDOEOGYtW1OAX7rCRqAkNX3574tqnKTzPXQS4SNXLmxKMFMJLNM9Gh6tNCgHn8nqNB565misMiS2n+kSXYmVu29ckbr0SRgJc509iIKYQdhm/Zps/0EYtTaeYUEA2AsHWzt41KpUp2jOMuOu/hVNCWZBwR8+rhKYW3cc0kZexS1DEsZFN8AoWl0fqRVzEvJHFIRjXJRBzrqUcpx2oicnqnUTUWV8EgOP7gMY9Z4Lrgre9feVMfLyifpq3c9RAGqVSXXC21c0KoEVp3ChSdjriv8VyeYujmMhC8RJ7RAX8eGuYsxNTlWVwzPsTNZRneamhjwuCt6pchSGnj2KgUf3aXc7UXbvOOGYpnasH7lyYcvawiZFHMdCFkg/CIe4qMHv4hpx6vUHO8Tp2o/aoOtAZ0vcHhA2Na1MPSvKPV1NZjNV6Y5bvFalRW+QIz0ahDhIP4gccLHNT3sNXW0jlT06LFQYjUUFdQXxVFzc05VKiMY1hZiUpT8OU0MjXxkFnbmmiJ+i29zFcSxkgSgIh7hITLJpCKQTAlGhoGEhrCuR4e9WVKvSUic1+CCAmsBd/JauWI2KbOetIphVHFUkMIxqlxQMuy26QDX16halILhGfBAOcZGYZFtvSeWfiCpDEVZUNiGo4eJ2N//KQtx8xcKG5jYMYPfzJ1KVX4hKmgsyzYzh0QpWbv4WNg6NRRYJ9Cn3dFnViCoqqu//q3uOSE0kITNEQTgkaQcy22tEOV1NQk6lqGyqw6qK2z353DFrX0WcUNDgvE1d5eZ1l3DHY/uV5i+TWWn34DqU29iZa1OHSmoiCS4RE5OBJDZ1F7bqpElnOjNNJ5FSUZlCUE2+DJvwWB8GsHjwyXpCm9/tTUVw3ro+CADAjFhjAM4pgHbOArZVtu2wGxLaA1EQGuLE0LeKKP+ESviVOghvOn8Obhsaw6btB0AEjE9UG0oxbNp+oL4aP7/UUS8tEaesRRTTzPjqniMAYFQSwTmp5trTVcJrEY7zsJ8hqABa7cx1Gf1k66dph92Q0B5kFuZKRH8F4DcBvMrM7/SOzQcwBGAxgJcA3MTMJ4mIAHwRwDUAJgD8LjN/P+ozsgxzNYWbDqxfmiq7OCk2oYxBgXRhVwmnzkyhOq3+jrtKndiwqtzk1I0Kd+3pKuH01NnYq3igtpt5/u5rIs8zzdVUu8mfUxEct65DT21as0poq2CDbZhrlgri1wG8DuArAQXxeQAnmHkLEQ0CmMfMnyKiawD8R9QUxJUAvsjMV0Z9RpYKwhRD31XqbFqlg9AgiNP+o+pWnnFWpDa5BbosYR0E4N6bVwI4pxB7ukt4/Y2ppgQ6HS8F8iWiorJ090AlKOd1l3DndcsLIxx19z/YWzuu8pIoJsEFuedBMPM/ENHi0OEbALzHe/wAgO8A+JR3/Ctc01Z7iKiHiBYw87GsxheFyZ4fFkwqwZimDk6UectlbkFcM5J/tm4HZaOQfGzmqZpru8T86+6/f8+TmC2Lno8hzCwyzaT2FMQTgR3EODP3eI8JwElm7iGiJwBsYebveq99G8CnmNm4PchyB6EzD8Qxq9hmFw+PVrD58QP1mkc6E49NNnVwhdlhsTvoIMBy4Q9AbV7yd0sAsHFozPj+7lIHblx1CXYdPK5VJnGyxm3JIxPaNjs8i/kKgoncdxBRMDMTUWztRES3ArgVABYtWuR8XEHmzumoC0LffGGzSvaxcRYOj1Yw8Oi+BvNU0lj9sFKz2h1wLfkt+PmlDkJHB+H0VGPz0a5SJ4iaI4gmq9PYtP1A0/kqJqpn685qHXFKbtiQV8CBbVHENFFHRS8BIrQ3rc6D+AkRLQAA7/er3vEKgIWB8y7xjjXBzPcz82pmXt3b29yz2AW+QAnG2b9RrQk/VUJXqYNqGcYBbEMnt+44pHUih4lSODZx8mHOouY78U0/PV0lgNAk7Hu6Srj7xhUYn1BHEI1PVhM5rVX4fShckVcPZdvcjqRRR64KOwqCjlbvILYD+BiALd7vbwSO/zERfR01J/VrefofTAIl2AXNRRST7erRRuGkWYlOM9d3CCqF9Ys3pgDEK4mRFAZw+8P7ALhZ4edZCjvoM9CZLW0WEqqdQqt7QAizj8wUBBE9hJpD+iIiegXAnagphoeJ6A8AvAzgJu/0p1CLYDqMWpjr72U1LhtMAsW0pU/yT2kjcP3eCFHXTyu8TUlw08y447H9yrDYLPA/D0inJPw+1ln2c7A18yR1rutMZLrvQBLlBFdIuW8FOueiyUGbJpw17INQ4Se8BZPcohrkZAER8Ktvm4/dz5/I7DOC9HSVMHbn1Ynea7ofrvIFWlFm2xQuq1J84vQWorB1UkstJgW6gnk6B20aW3Z/XxlbP3h5Q8Melam6epZxcqKqtTX7q9jJ6rSxjlEUPV0lY9E8ZjhXDp0d+vGOT1YT29RNfaxdCfBW+DdM4bJFb2QktDeiIBToCubpHLSV8Ull57Y4nzf6p1fjpS3X1pLILDZ1QSEUdFYCasFhAwHYdP3yeqvPJPj3zJZ53SXc86HLjUotOE9dlzwVpj7Wrlb3us+oeOZIF+hMYf7fZZrikIJgQmoxaVAlJJlCXIMre//9cYibvwCcU0yq8/2dhOo6KlOZ3z2tv6+MzY8fiDX2IH5mr40vpKvU2ZD5rMuh8H0/cUNVXfTnMGHybwBwFkq7dlmvMjR47bJeSZwTMkV2EDGw6VmQxLwQDleMk91sOl9ngth0/fKmlee9N6+st9Y8qdkp2bBtbwVrl/Va7mAYG4fG8PY7nsLGoTHoLE0X93QlMuW46M+hI6o5k834bNl18His44LgCtlBxCAcheKq+UyS/AUbdIUFTVFXaQXaZHUauw4ex4ZVZTz0zNEIAVrLtfDPUWV0+wL9NsPuQkeWJTlsvzMXEUV5hukKsxtREDEJbul10SVxTBjDoxWjOSZueY/g+3xhqBKIutDMKKEzr7sUucOojE+mKheuKmanM+9F3eusTDC2wtmFOcvGVCYZ1UIWiIkpBXFMGCoH6/BoBQOP7NNeX+WE/PObV2q7onUS1c/bsKomVFUOXVMGrkmg/fnNKzH6p1drP9+nQxHtFYezzHhxy7UNPaKzNBclwUbwuxpf1Nwlo1rICsmDSInNyk0XKw9w3cwSxhRLr7qeX+Cv7JWADiezBfskmIrk+eYcU7FAU35BuK5TEnRx/EVaJavugU2uSprP083d1LtE8iEEFbn3g2gFRVAQNthW9Qzy5zevNAoXX2BUxiebqr/qqsFGNQLyq88u1rT79F8fHq00dKHzK8KWe7pw6vSUslc0cM50ZOofYZNkVhRFUZRx6HqX2FYTFmYfha/mOpOIEhRJnIlRzYF827pK+eiUQNRSwDeblA02b9XKee6cc0Ld1Ev6npsub2oGVBmfrIfjli2EbJFawRYlxDTrcF5h9iIKIiU2AitujaR53aWmEhyV8UkMPNpcwM5VJEvQpq0qU+2/rgs33Tg0hpGXTxh7SQfHnVS4FrFAXd47CdP3JQhpEAWREhuBZdsXAKjZ8O+8bjk2P36gyZZfnWbc9vAYbhsaqwsiF9VVidBg1gmGh/orfH9Ops/66p4jWPP2+Thx6kyTsNp0/XKrsSTdjdkqStfCPIsdTdwxtkuHPaH9kCimlNgIrHDpDhNbP1gzw+hCSZkbs7btk9L0MDcLs/6+cj16JtgiM4o9L5xMXP7BJhpHZzZhACs3f8sYuZNFtI/rWkxJx9jfV8buwXVN0V+CkAZRECnRCazw8eA/sC5M1D++ZstOq8/2k9JsmtJEEQ6DXbNlJzYOjcUOV5326hwlEVY2wtaUzT4+WcXAI/u0wjSLwnquk9jyam4kCCpEQaQkSXy+7j1rl/U2FN2z4cfjkw0C+Z6bLo83AQ9/lRou/BeXNJVk4+zGdJ9TPctaYZpFRrLtAsEWyZoWioQoiJToKr9GrZrPL5279X47z10Hj8desV/YVWp43t9Xbigdbou/Sk1b9uOqt81L/F6T+SiY7NffV8ZZQ3i2Tpi6FuaA+wS+LMYoCEkRJ7UD4kTkqMJE/f7PSVaJ45NVfGZ4P+7qX1E/dud1yxM1DnKxSn3pZ9HXCOdRzOsu4c7rlmNg/VIMPLJPmR8Rdv6anPM6YZpFtI9rB7FEJAlFQhREizGFiSblwT1HsPrS+cooJFNRwTC+YDWZl+Z1l/DzySltnaUoJeOXFwkqgZMTVdz+yD585IqFMHnxg9Fhi9+iVhAdBK0wzSrax2U+hEQkCUVCMqlbQDBsMau7bSqrYJPJ7WcwA4hs0zny8gllf4KocUSNxc/INkEA7r15pbYcSJoWpYIwW5BM6gIQNqXEpaerhFNnpqxqG5lW7iqzRamTcMF5c/DapLpuUDjnoZMIG1adWyk/uOdIk4AudVKkKcQ0zijlAJzrDaE79bWE93omkncCn9D+iILICFNBOxsIwNidV1srGZMTM4nZYuLMVMPzaWZs21vB6kvnawX0BefNiRRAaRL7onpD+NcXilWSRGhfREFkRNpooA4iLBl8Ehf3dNWzkHWZzDZOzCg7+WeG91s0+JmuKxkV4dW7agU7sH6p0d+iKzwYrNOkuw8Evf8hDi5W3nmv3otYkkRoP3IJcyWil4hoPxGNEdGId2w+ET1NRD/yfiePl2whqj4PQPqIoGnmpj7XuwfX4aUt19Z7QrhqVP+Z4f346p4jVg1+fIGnooOoPn9dRjAA/PZVi7TXZ5zzU/utUF/acm29DtSSwScxcWYKpVB/0mBP7TS4yLYuQn8GyacQXJDnDmItM/808HwQwLeZeQsRDXrPP5XP0OwwbeOjTClRpbeDhFd+rquIPqhxOKvwV8Mq89k0c72goGkFu3twXd1UpbpH/o7Bd3aHI59OTlTRQTUfjc6HkhQXK+8irN6lwqvggiIlyt0A4AHv8QMA+nMcixUmQWAqCQGolYPp/LgrP93ORnVenMgqXxDffeMKdChCUqvTjI1DY1rl6M/Dz/7WRbUG57tp+4Gm3IiznI1D2sXKuwir96J14BPak7wUBAP4FhHtJaJbvWNvZeZj3uN/BvDWfIZmj0kQ9PeVsWFVObI4n4+fTa2r0xS3z7WtiSNOjZ9gye5aNrP1W+uE52GTOaxz0DPg3ITjIpO5CNnQSTP8BSFIXgri3zLzuwF8AMAniOjXgy9yLTlDKX6I6FYiGiGikePHj7dgqHqiBMGug8etV+cXzJ1Tr6Aatq+XOqLDR4PEKfhmu6qNU7LbdI3wPEwrXX8XZIOrgnYuVt5FWb1LhVchLbn4IJi54v1+lYj+FsAVAH5CRAuY+RgRLQDwqua99wO4H6glyrVqzCqiyiIkNkuEtx2h52l6JoTf29NdUpYWnzunA50ETHg9s9+YmsbIyycaPqenq2SV40GA1k+gC8EF9Al7OlyYcFxkMks2tDBTaHkmNRFdAKCDmX/hPX4awGcBvBfAzwJO6vnM/F9M1ypCJnWSZvIqfKdsVAN6VX5FuI+z7hrzukt4o3q2MWGugwBCQzJeV6kT7150IXY/f6LpGr991aJ63SdV2QzduOOSpI930s8ShNmGbSZ1HiamtwL4LhHtA/AsgCeZ+ZsAtgB4HxH9CMBveM8Lj2kbH+Wo9rHZdfjHNz9+IFHPhK5SJ5jR9N7qWUZ1muvls31b9Z4XTirH8dAzR+uP+/vK2Pqhy+t+k/DGx8askiRMeF53qckMJw5YQXBPy01MzPwCgKamBcz8M9R2ETMGk/lEt+swhScOj1a0nebCPRNUn2HKQJ5mrgvZ/r6yNpktnCsRDLmNmxyWJEw4uJMSE44gZIsU6ysYnxne31TnyDchmXpC25hXbMw2/nXefsdTysS5TiI8f/c1kfOwwWRO0/l3JBJHENJTZBOToGF4tIJteytNpSb8InlRBfmisDF5+Z/xkSsXKl/XHU9CVJiwhGkKQr5ILaYCoQpPZdTCZQG92SWYn2AiaHqKarbjO6L9+kydRPjIlQsbGhOlJSrb13XGuCAI8RAFUSCiHNQ6s0uc/ARf6OqioYI7kbv6VzhVCGFUHeTi5nwIgpAdoiAKhM2KGnATX1+YWP2InA9BEPJDnNQFwibHYSYRlfMhCEI2SEe5NqQwq/oWUYSidoIg6BEFUTBmg2PWz2HQ7V2lJLUgFANREEJLiWrFKhnRglAcREEILcXUirU8w01qgtBuiIIQWorOv0CAOKYFoWBIJrXQUorQTEcQBDtEQQgtpSjNdARBiEZMTEJLmW2hvILQzoiCEFrObAjlFYSZgJiYBEEQBCWiIARBEAQloiAEQRAEJaIgBEEQBCWiIARBEAQlbV3um4iOA3g54dsvAvBTh8MpCjN1XsDMndtMnRcgcysqlzJzb9RJba0g0kBEIzb10NuNmTovYObObabOC5C5tTtiYhIEQRCUiIIQBEEQlMxmBXF/3gPIiJk6L2Dmzm2mzguQubU1s9YHIQiCIJiZzTsIQRAEwcCMVRBENJ+IniaiH3m/52nO+yYRjRPRE6HjS4joGSI6TERDRHRea0YeTYy5fcw750dE9LHA8e8Q0SEiGvN+/mXrRq8c5/u98RwmokHF63O97+Cw950sDrx2h3f8EBGtb+W4bUg6NyJaTESTge/oS60eexQWc/t1Ivo+EU0R0QdDryn/NotAynlNB76z7a0bdUYw84z8AfB5AIPe40EA/0Nz3nsBXAfgidDxhwF82Hv8JQD/Ie85xZkbgPkAXvB+z/Mez/Ne+w6A1XnPwxtLJ4DnAbwNwHkA9gF4R+icjwP4kvf4wwCGvMfv8M6fC2CJd53OvOfkaG6LAfwg7zmknNtiAO8C8BUAH7T528z7J828vNdez3sOLn9m7A4CwA0AHvAePwCgX3USM38bwC+Cx4iIAKwD8GjU+3PCZm7rATzNzCeY+SSApwG8v0Xji8MVAA4z8wvMfAbA11GbX5DgfB8F8F7vO7oBwNeZ+TQzvwjgsHe9opBmbkUncm7M/BIzPwfgbOi9Rf7bTDOvGcdMVhBvZeZj3uN/BvDWGO99C4BxZp7ynr8CoEgNDGzmVgZwNPA8PIe/9rbB/y1ngRQ1zoZzvO/kNdS+I5v35kmauQHAEiIaJaL/Q0S/lvVgY5Lm3hf5e0s7tvOJaISI9hBRkRaViWjrhkFE9PcA/pXipU8HnzAzE1FbhWtlPLdbmLlCRG8GsA3A76C2XRaKwzEAi5j5Z0S0CsAwES1n5p/nPTDByKXe/9bbAOwkov3M/Hzeg0pKWysIZv4N3WtE9BMiWsDMx4hoAYBXY1z6ZwB6iGiOt6q7BEAl5XBj4WBuFQDvCTy/BDXfA5i54v3+BRF9DbVtdV4KogJgYeC56l7757xCRHMAXIjad2Tz3jxJPDeuGbRPAwAz7yWi5wH8MoCRzEdtR5p7r/3bLACp/qYC/1svENF3APSh5tNoS2ayiWk7AD864mMAvmH7Ru+fcxcAP0Ih1vtbgM3cdgC4mojmeVFOVwPYQURziOgiACCiEoDfBPCDFoxZx/cAXOZFjZ2HmqM2HP0RnO8HAez0vqPtAD7sRQItAXAZgGdbNG4bEs+NiHqJqBMAvNXoZag5c4uCzdx0KP82MxpnXBLPy5vPXO/xRQDWAPinzEbaCvL2kmf1g5od99sAfgTg7wHM946vBvC/A+f9XwDHAUyiZm9c7x1/G2rC5jCARwDMzXtOCeb2+974DwP4Pe/YBQD2AngOwAEAX0TOkT8ArgHw/1BbaX3aO/ZZANd7j8/3voPD3nfytsB7P+297xCAD+T93biaG4AN3vczBuD7AK7Ley4J5vYr3v/UKdR2fAdMf5tF+Uk6LwC/CmA/apFP+wH8Qd5zSfsjmdSCIAiCkplsYhIEQRBSIApCEARBUCIKQhAEQVAiCkIQBEFQIgpCEARBUCIKQhAcQUQLiehFIprvPZ/nPV+c78gEIRmiIATBEcx8FMB9ALZ4h7YAuJ+ZX8ptUIKQAsmDEASHeNnpewH8FYA/BLCSmav5jkoQktHWtZgEoWgwc5WIBgB8E8DVohyEdkZMTILgng+gVo31nXkPRBDSIApCEBxCRCsBvA/AVQBu86rtCkJbIgpCEBzhNV66D8BGZj4CYCuAP8t3VIKQHFEQguCOPwRwhJmf9p7/BYB/TUT/LscxCUJiJIpJEARBUCI7CEEQBEGJKAhBEARBiSgIQRAEQYkoCEEQBEGJKAhBEARBiSgIQRAEQYkoCEEQBEGJKAhBEARByf8HmtTKQFtOxCAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJztnX+UHFd15793Rm15xrAeCc+ycluyBHGkRQhrkGJ7o00WiWCBHdsTC2w4TiA/TrxZyG5kvLOMFzaWOGatRTEOe87GHGdJYg7GjG05g/wjCAeJzaIT2YyYkYWCtMi/JDcKFkhjsGYs9Yzu/tFVrerq9169qnrVVT1zP+fMme7q6ur3qmfufe/+JGaGIAiCIITpyHsAgiAIQjERBSEIgiAoEQUhCIIgKBEFIQiCICgRBSEIgiAoEQUhCIIgKBEFIQiCICgRBSEIgiAoEQUhCIIgKJmT9wDScNFFF/HixYvzHoYgCEJbsXfv3p8yc2/UeW2tIBYvXoyRkZG8hyEIgtBWENHLNueJiUkQBEFQIgpCEARBUJKZgiCi84noWSLaR0QHiGizd/xviOhFIhrzflZ6x4mI/icRHSai54jo3VmNTRAEQYgmSx/EaQDrmPl1IioB+C4R/Z332gAzPxo6/wMALvN+rgRwn/dbEARByIHMdhBc43Xvacn7MTWfuAHAV7z37QHQQ0QLshqfIAiCYCZTHwQRdRLRGIBXATzNzM94L33OMyPdS0RzvWNlAEcDb3/FOyYIgtCWDI9WsGbLTiwZfBJrtuzE8Ggl7yHFIlMFwczTzLwSwCUAriCidwK4A8AyAL8CYD6AT8W5JhHdSkQjRDRy/Phx52MWBEFwwfBoBXc8th+V8UkwgMr4JO54bH9bKYmWRDEx8ziAXQDez8zHPDPSaQB/DeAK77QKgIWBt13iHQtf635mXs3Mq3t7I/M8BEEQcmHrjkOYrE43HJusTmPrjkM5jSg+WUYx9RJRj/e4C8D7ABz0/QpERAD6AfzAe8t2AB/1opmuAvAaMx/LanyCIMwcimjK+fH4ZKzjRSTLKKYFAB4gok7UFNHDzPwEEe0kol4ABGAMwB955z8F4BoAhwFMAPi9DMcmCMIMwTfl+Kt135QDAP19+bkxL+7pQkWhDC7u6cphNMnITEEw83MA+hTH12nOZwCfyGo8giDMTEymnDwVxMD6pQ2KCwC6Sp0YWL80tzHFpa1rMQmCMDMYHq1g645D+PH4JC7u6cLA+qXWwr2ophx//EnnVQREQQiCkCtpTURFNuX095XbSiGEkVpMgiDkStpon4H1S9FV6mw41m6mnKIiOwhBmGWkMedkQVoT0Uww5RQVURCCMIsoYsSPCxNRu5tyioqYmARhFlHE5C0xERUX2UEIwiyiiBE/YiIqLqIgBGEWUdSIHzERFRMxMQnCLELMOUIcZAchCLMIMecIcRAFIQizjLzMOUULrxWiEQUhCELmFDG8VohGFIQgtJjZuJIuakE9wYwoCEFoIbN1JV3E8FohGoliEoQWUsREtVagC6PNO7xWMCMKQhBayGxdSUt4bXsiJiahbSmaLd9mPLaJau04NxMSXtueiIIQ2pKi2fJtx2PTZaxd5xaFZEu3H2JiEtqSotnybcfT31fG3TeuQLmnCwSg3NOFu29c0SA423VuRWB4tII1W3ZiyeCTWLNlJ4ZHK3kPqa2RHYTQlhTNlh9nPFEr6SLMLWhSYs05RfObFG3nNROQHYTQlhQtKsblePKemy9oKwbl0Mrx2NJOO512QRSE0Ja0KirG1mThcjwD65ei1EkNx0qd1LKIH5WgDVPECKQi7LxmGpkpCCI6n4ieJaJ9RHSAiDZ7x5cQ0TNEdJiIhojoPO/4XO/5Ye/1xVmNTWh/bGz5aQmvpH2ThUpJOB9PeOluWso7xiRQs7rXLsh75zUTIeZs/vKIiABcwMyvE1EJwHcB/AmATwJ4jJm/TkRfArCPme8joo8DeBcz/xERfRjAbzHzzabPWL16NY+MjGQyfkFYs2WnMiS13NOF3YPrZtznFuXzkxL2QQC1nU4RlVneENFeZl4ddV5mOwiu8br3tOT9MIB1AB71jj8AoN97fIP3HN7r7/WUjCAkJk1US14mi7xNJe2a1NaKXeVsI9MoJiLqBLAXwC8B+F8AngcwzsxT3imvAPC/vTKAowDAzFNE9BqAtwD4aZZjFGYuaaNadEltjNoqO6tEr7y7vrVzUpvkWrglUwXBzNMAVhJRD4C/BbAs7TWJ6FYAtwLAokWL0l5OmMGkrSCqSmrzyTKE0iaZzoY02c8iaAWgRVFMzDwOYBeAfwOgh4h8xXQJAH/PXwGwEAC81y8E8DPFte5n5tXMvLq3tzfzsQvtS1pTTdBkoSKLEEpfqE9Wp9HpWViTmEriONgFQUeWUUy93s4BRNQF4H0Afoiaovigd9rHAHzDe7zdew7v9Z2clQddyIUk/oA0PgQXUS39fWXsHlwHnTPMpV8gKNQBYJq5vnOIu5qXnADBBVnuIBYA2EVEzwH4HoCnmfkJAJ8C8EkiOoyaj+HL3vlfBvAW7/gnAQxmODahxSRZ0aZdBbt0trYihNKlUM/b0S3MDLKMYnqOmfuY+V3M/E5m/qx3/AVmvoKZf4mZP8TMp73jb3jPf8l7/YWsxia0niTCL63AdBnV0orIHpdCvae7pDwuOQFCHKQWk9ASkgg/FwLTlbO1FZE9rqKXhkcreP2NqabjrczGFmYGoiCElpBE+OUd7hkm68geV9FLW3ccQvVss/vugvPmSGSSEAtREEJLiBJ+qpBMVwIzLnk163G1S9HtsF6brKYeozC7yKzURiuQUhvFwUao6s4xlUgAsjPrqMYDoNDlGmzuc7uWyohL0brutRO2pTZEQQipSVsDJw+Bphvz3DkdGFestLMYS1wBZ3ufZ0NNotkwxyzJvRaTMHtIG22UR0imbswq5ZDFWJKE8LrsWpdkvEXq1CZ5Hq1BfBBCatIK+DTOaJ2ZKGplHlfgu3aMJykDYnOfw/fj3ptXpl5RF7FTm+R5tAZREEJq0kYbJXVGqwTXwKP7AEY9ikcnzHRjntddwhvVs5k7xuMIOF/o64zB/n3WCfKRl0/gyeeO4eREbXfU01XCpuuXWwt3W2XWSp9A0SLcZipiYhJSkzaJLKlJRCW4qtPcFOIZNj0Mj1YwcaY5T6Cr1Ik7r1vekpLRtpnZ4fIbqjEHd00qQf7VPUfqygEAxierGHhkn7WZyEaZfWZ4P24bGmtZ7ad2LUnebsgOQkiNi/DMJDkGccwJ/rkq5ybQvKp2rRDCq+u1y3qxbW8lMuxXpxiAmvIK3uc496N6lq2r2kat1odHK3hwz5GmHU6cyrlxaeeS5O2EKAjBCXmUh9YJLt25gL7f8gVz4yWRxTGnqEw/2/ZWsGFVGbsOHrcK+w1DQFNUVZz7AdgrlCgToMn8ZfKPpBXoUpI8e0RBCG2LSnCVOqnBBwGcE2bDoxWtAI2z+o7rtNWZfnYdPK4MndUpsSAXdjXXWlLdD4K+nbWtvT5qtW66d1H+keD1heIhCkJoW3SCS3fMF0gq4jg340YgxY24sVFWp85MYXi00vB5qvuxdlkvhr53FNXpRjVR6ohXl8m0WtftXAiI9I9kZYIS3CAKQmhrdIJLlV2sW5WXOglrl/Vi5eZv1fMg5nWXcOd16kifuII9bsSNjamoOq32Iajux+pL52Pz4wcSRzFFodu53HLVoshdhoSlFhtREMKswCSIps8yvrbnCM4Gjp2cqNZCZtGsbOIK/LhhvKZWp0HidMZzkQth2qn1dJcwd04HXpusKv0LEpbanoiCEApB1jH0plW5ovApAP0qPa7AjxtxEz4fUPsRVH6ILLDJNzk5UUVXqVObmJdX4UUhHaIghNxphQPTdlUeRrVKTxJiGXcVHzy/77Pfashj8CFdH1QHBBV2BxGmQzXbwj4NwOxTkLDU9kQUhJA7UQ7M4dEKNm0/YOUf0OGfe/vD+5qEnQmdCSSN2SbubmlcoRxUx13twsIKO879Mpm9dPfM9e5Rqry6QxSEkAvBf2JTDP3waAUDj+xrCFs1+QdM+OduHBqzOj+LDmxJdks29vukuzCVMLUJs9WRpPudy92jhNO6RUptCC0nXMlUx8U9XdruaL5/IC79fWX0aGz3QZPNvO4Stn7wcudCJUkVUpuyEkmuq6soa5NsV+oklDoabVxJu9+5rMoqVV7dIjsIoeXYrFB9YXObYbWfNERy0/XLc+slkCTc08Z+n+S6OmHaqfA5AEAnEc4yx6qaG4Xr8FcJp3WLKIg2IQu7atJrph2L6Z+VgIZrmuoRJQ2RzNNhmjTcM8rnobtuBxGWDD4ZS6lMM6Or1GmlQNPeM9fhrxJO65bMTExEtJCIdhHRPxHRASL6E+/4JiKqENGY93NN4D13ENFhIjpEROuzGlu7kaS5TFbXdDEW3T9ruacLL265FrsH19UFz8D6pU2mDCC9f6C/r4zdg+uaPi9rsqpCqrouUBP2uu/J9D20oqKtbtxp7odUeXVLZi1HiWgBgAXM/H0iejOAvQD6AdwE4HVm/rPQ+e8A8BCAKwBcDODvAfwyM2ttEbOl5WgWLTmTXtPFWOK2i9RFMQHtGTaZVZRNVGgq0Pg9FaVtp0QxtR7blqOZmZiY+RiAY97jXxDRDwGYvqUbAHydmU8DeJGIDqOmLP4xqzG2C1nYVZNe08VYwiaeC7tKIAJuGxrD1h2Hmv6hVeaVNNEqLgVIkmtlVYU0eN0lg08qzwl+T0XJTXB9P6TKqzta4oMgosUA+gA8A2ANgD8moo8CGAFwOzOfRE157Am87RUoFAoR3QrgVgBYtGhRpuMuClnYVZNe09VY/H/iOII+aoVsU/xN9Xkbh8awafuB2PWJVNe6bWgMG4fGmno1uCCOMrL9nkSYCiYyD3MlojcB2AZgIzP/HMB9AN4OYCVqO4x74lyPme9n5tXMvLq3t9f5eItIFnbVpNd0PRbbsMSw70OXvBW1k9FFUI1PVo2+lOHRCtZs2Yklg09izZaddWEdvpY/Ktcd1eL6fsQWL7gg0x0EEZVQUw4PMvNjAMDMPwm8/pcAnvCeVgAsDLz9Eu/YrCcLU0DSa7oei63JyjZ5S7eTsenQptuB6HY5UeNxWc5ap0g3bT9QqNIWYv9PThHvXWYKgogIwJcB/JCZvxA4vsDzTwDAbwH4gfd4O4CvEdEXUHNSXwbg2azG125kYQpIek2XJRNsTSE2Pg7dCtmmQ5vpc+LmC0RdLwk6xTY+WW3qC+HTavORZDEnp6j3LksT0xoAvwNgXSik9fNEtJ+IngOwFsBtAMDMBwA8DOCfAHwTwCdMEUxCsUga/mprCtHtDDqJIkMx45SOUH1OVL5A3OslodNQma8oWcKSxZycot67LKOYvota3lOYpwzv+RyAz2U1JiE7knYMszWF6MpF24Rk2q7idTsQ3S7Hd0T7pqtwe0+XNn/TTqUoWcIuo+2KaG7JkqJmgEsmteCENH/gNqaQNDZ1mw5tBGDDKvU4dMpp7bLe+njKXnvPXQePZyLUyoY5FCVL2FWEW1HNLVlS1AxwURCCE1rxB26jSILOaN9H0NNVQqmTlD0MfBjAroPHtZ8LNPd63ra30iDEtu2tZJpxPPDovtS9pbPEVVOg2di/uqgNlURBCE4YWL+0qSx3q4WXro/B+GQVpQ7CvO4Sxieq2gqylfFJbd2isHJS9bg2CbG0JhP/XFe9pbMw4biKnGqVuaVIZqyiJC2GEQUhuCPsccqw45kKkzO6epbRfd4cjP7p1dpyIQAaHOyA3qQRR4i5Mpm4ikrK0oTjYoyt2I0W0YxVxKRF6QchOGHrjkNN5o+4PRtUyWg2r/nYlgnRFbYLEhVBohNWquM2ESo283NFUSNmfFqR5Ff0e1AUZAchOCGtWcC0ogNgtdqLckb7wju8nTd1tNMRx2YcdW9avZotasSMTyvMLUW/B0VBFITghLRmgagVnY29XyW0fcLCO7id15mcTGOPI8Si7k2rnbJFjZgJkrW5pR3uQREQE5PghLRmAdOKzna1199XrvcxAM4ll/lJdACUZhzV2EudhFOnp4wmH9ueElH3ptWrWanTJPfAFtlBCE5IaxaIWtHZrvZMZUCizDj+2Hu6S3j9jal6/4m0Jp+oe9Pq1WxRI2ZaidwDOzJrGNQKZkvDoNmAqXkNgMRZ1D5xGh3pzg33ZE4rTII5G6os7FY37hFmD7k3DBJmJ2liy88vddSVgCrGP03/bJ3zWmXGMdVeAvQ7ijhzDytEBupKIk0vieAY/EZM4xNVWSELiRAFITgjaTSOavdweupswzlJnJY2VVxVZhyb0hxhJ3Lcuet6SaRpIxseg28isxmPIKgQBSE4IyoSSbe61r3v9of34bahscSr36gqrjqnpCkaKkhwpxE3EslFWHD4fkbNd6aXqxDcIwpCcIZOuIUb7IRXs0lNOknHA5jNOGEHpqq9KdC4+4gr8JM4pnU+C9sGRqbxCIIKCXMtAK3Mos1yPKaeDaadhU20TpIsV911fTNOVBlyP4T1npsujwyJjJNZDcQPswz22wDQlNznNzCKQuL8hTiIgsiZpI12ijietcvUPcKj+kfblL4Inm+L6rqE2pziKL5gfoWuOVFcgW9zzSA2TY+iGhhJnL8QFzEx5UzRShunGY+uXLauNaeu9IWNSUdH2Da/YVUZuw4e15plgp9vIspJniSuPo7j3UY5BhsYSRST4AJREDlTtJowJj/Cmi07jcIvqjWnqW5RUFjqciKiVr+qSCK/R4Mq1DWJIjaFsmZZHiIqssq/P0WsCCq0L2Jiypm4tmuXqHwNus/1TTMms5PJ5h8ugeELZ10JizjmFx/T7seFIs7THKgzlwH290cQ4iI7iJzJq5OULm5/w6pyQ6c0AE1ZvoB9sbzgyhawq8rqP3fZaMZFOYs8zYFSGkLIA1EQOZPXP75O2O06eLxukjEJVkBdLM+/dpx8B1cC1qQEXCjivM2BYj4SWk1mCoKIFgL4CoC3orYAvZ+Zv0hE8wEMAVgM4CUANzHzSSIiAF8EcA2ACQC/y8zfz2p8RSKPf3yTsFO110xbLA9QF9wLjyVNqQ6bHUzSaw+PVpw6z2X1L7QDWe4gpgDczszfJ6I3A9hLRE8D+F0A32bmLUQ0CGAQwKcAfADAZd7PlQDu834LMbERRrrVdgcRhkcrkaajYDlsG4E3PFpRmqr8sfjn2JqgTHNUHU8joP1xqZRDUud5u5e9EIU3O8hMQTDzMQDHvMe/IKIfAigDuAHAe7zTHgDwHdQUxA0AvsK18rJ7iKiHiBZ41xEssRVGunIS08xN54cFb/d5nTh1ZjpWOeytOw5pO7f5+RO2JqioOaqUSRoBbcpBCCbw6Qr3qXYe7Vz2YiYqPEFNS6KYiGgxgD4AzwB4a0Do/zNqJiigpjyOBt72indMiIFtr10/UkiVfas7f/fgOtx780pMnGkWllGZziY7/UPPHMXwaEVrggofj9tPWHf+5scPWGWMR/kYwtFM4WinqETBdkP6Oc8eMndSE9GbAGwDsJGZf04BgcTMTESxGlIQ0a0AbgWARYsWuRzqjCCOI7W/r4zbhsZiXce0EzAJPJOz29+1EAEqWdrpmb2S9pDWHT85UcXJieZdENBopurpLtXP0xHcEdhkPQPtW/Yib2e90Doy3UEQUQk15fAgMz/mHf4JES3wXl8A4FXveAXAwsDbL/GONcDM9zPzamZe3durLu0wm4mbVxH3eJQS0DGwfilMlYImq9NK5QCcUyAVg3Iwfb6tIJ6sTmPT9gNNuQ6vvzGFUmd0nSP/3tgIynYue5Fn7o7QWjJTEF5U0pcB/JCZvxB4aTuAj3mPPwbgG4HjH6UaVwF4TfwP8YlbEyju+aZEOpPA6+8r45arFhmVhA5Vsb8wceeoY3yy2vRZ1bOMC86bU0/c0xXF8+9NlKDsJNImthWtcKMK6ec8e8hyB7EGwO8AWEdEY97PNQC2AHgfEf0IwG94zwHgKQAvADgM4C8BfDzDsc1Y4mYhB88HorOcdRm9t1y1KNJBeVf/Ctxyld4s2NNVUgoenQ3fp5MIG1bpe1H7Jh9fsJd7utDTVTJeM8xrk1Xr6q5RCukss7FvdlEKN+pImukutB9ZRjF9F9AuGN+rOJ8BfCKr8cx00oQdxslyTpNPMDxawba9amHXVerEpuuXK69tahkK1ExQ2/ZWsPrS+cZoJ78mlC/IVTkT55c6lP6G4K4g6h74v29/eF+svImiFW40IUl7swPJpJ4BuAg7jCOckgoHnfM2bHJRXTuqIY5qrKY5+W09w0Je9Vkq84ltddc42dvi/BWKhlZBENFTAD7OzC+1bjhCEuLkD+hWvbblNNKgu5bJ5BIsXX1+qQPjE1XrKKYogWsS8i6SwOLutnTRUj3dNXOYJKcJrca0g/hrAN8iogcAfJ6ZzXF+Qm7YrDxNuwxAXZAPcBuZEqdgXni845NVdJU6ce/NK7Ump/B1khboi7NDihLaca6lc7UwS3KakA9aJzUzPwLg3QD+BYARIvrPRPRJ/6dlIxTq6CJcbMIOTbsMXW5DVGRSXHTRL2uX9TbNyzRenRP41OmpBodukmibOFFErp3Kr02q12CvTVYlOU3IhSgfxBkApwDMBfBmAGczH5GgRLWCHHh0HzZtP4DxyWrTDiAsCJPYtxluV6f9fWWMvHwCDz1zFNPM6CTCuxdd2FBe3BeyOn+DX0wQADY/fqDBJDM+WVWW3LA1y8RdpeuE9qbtBxKZgkw7niz9E2K6EnSYfBDvB/AF1PIT3s3MEy0bldCEShhVp7leD4lxzkxUVvyTR5lbVK/5oa+uBIgfxeRH9kwzY/fzJ5rO80NSo9qUbt1xqMlmH/a9xDHxxI0i0gnn8clqrDpVPqZqtLZmtbiI6UowYdpBfBrAh5j5QKsGI+ixWSn6ymH34Lq6qcQX6muX9WLoe0dRnT4ndEudFBm541KA2JagAOzalKZZVQeVXk93CcyoC3Xb60W1AfWxDVU17XhGXj6BB/ccMe4Sk9BOobVC69EqCGb+tVYORDBjK4x+PD6pFOpDzx5tXpF7T02Cac2Wnc4ESBxziL8LMu1ckjqhw/cnqs6S7nq6irgqbOeuq0a7bW+lQTkQoE0OjIOE1gomJA+iTbAVRhf3dKnNUWebzTXVs1wX9DpTjEsBYqvkfOd4lHlId08mzkw19bQIEmcnY1qlqxTrxJkppcK5sKtUb7zkm89UpkDb8TKAXQePW83BhItWrMLMRRREmxAWRj3dJbz+xlSD4PeFma5CqwqToE/bRS2MP7ao8r22znH/HN9R73Nyoqo1g5nKiocJCnCdHyasxMK7EwAodRBOnZmqj9G/nzpzXfizssxRyasnutAeiIJoI1TCSCW0okpTBNEJ+jRd1EzCVGVLD1OOoXz8+Yb9B6ZGQzb4vpzg+2z8MHF2Fapxqj4ryxyVNKVThJmPKIiCkCRSSGeCUbYI7SCA0OCkNgl6U1mMDatqQvm2obGmsUYJ07v6V2D1pfPrSiwqPNcGWzOYrWkpOIbh0YqyppLJDxP+XpYMPmk9fp05ycV90iF1lQQdoiAKgOtQQ92qUHVMV+LC1NxHlbfgf26cqBgC6hFEr01WE69ebe3oJpNMT1epaQymXVT4eiYFH+V7CY5TN0Y/Qk1W+UIrEQVRALIINdStCqOuF2WGUfVmCI41qm2oKoLIL6GRdK62dnSdoA6ak4JE7Th8wa5T8CMvn8Cug8eNZqLwOOOOURCyRBREAShSqKFJKIbzEoL4Y9UluPm9GEz9odOWK496f1yHrOn+B9+nm1PQ1xI0E6mimPwdiCuzmyC4QBREAShSqKFJKN594wqtA/xCrwGPzhzjH4/bHzqOkkiTiKZC972Ey5ObzELh56qdQHgHEnyfbSisIGRBpj2pBTtsisq1qhWlTimVe7rQ31fGwPqlNYd3iFNe7oEuAsk/Hqc/dBaF6Pr7yvXOcLsH10XmWai+l3tuurwpYc8WlTLR7dqC+SCCkAeiIApAf5+5hWMrW1HqWopWxiexZstOAMCbzm/eeFanWVtpNVi249TpKeux5J3NG/W9+OjumQqVMjHtQKRaq5AnYmLKAVOegIpW1ssJmmHC9vA4lVZtOrVFUYRs3qSmq7XLehuivQC9LyHrZDhBSIooiBaTJKQ1KjLINb5Q9EtDBDFVWu0gqpe4CM9FVdPJRLs5ZlVz9vM9ovwdpgzzIihJYfYiCqLFJNkNREUGZYUpF0IV0TTNrFV2cVbCHQSlKaddCO8Qo0J4s6zWKghpEB9Ei9EJysr4pNYBHRUZlAXDoxWtHd23xasUlM65HGclnLXiy5Kk/qK7+lfg3ptXRvo7BKGVZLaDIKK/AvCbAF5l5nd6xzYB+EMAfhnK/8rMT3mv3QHgDwBMA/hPzLwjq7HlicneHBQowLlVeNmQPBUX25IeujakQK1aqqnonq8Eg591YVcJpU5qKvUBMCarjY0Kg1Vms5pfVqTxF9n4O/KenzC7yHIH8TcA3q84fi8zr/R+fOXwDgAfBrDce89fEFFz0+EZgK6fcpDwKjxJb2UVcVa3JpPQyYmqsdheT3cJKzd/CxuHxuqfNT5ZBRiY111qWCG/UVV3sU3inB0erWDg0X0N8xt4dF8m0V66sOOsW4O2KppNEIAMFQQz/wOA5n6Sam4A8HVmPs3MLwI4DOCKrMaWJ+HQSR1BgWIbbhlFnMb3aZyjJyeqyu5s1bOM7vPmNOQg6D4nyedvfvxAww4FqIXfbn7cbVNEk6B2OZ8wcb4/QXBBHk7qPyaijwIYAXA7M58EUAawJ3DOK96xGUnQlKCKFAKaBYqLipsm/0ewPenA+qWxuqWlGYPLfgS6ktpRHePiYhLUA+uXYuCRfQ19Okod5MTZXKSSLMLsoNVO6vsAvB3ASgDHANwT9wJEdCsRjRDRyPHj6Ttq5Y0r85ENulWsnwgX9oGEdy09XjkNl2NwtTvKCpUpKVJQh7eGjnzuWe5OBEEFcYaRMES0GMATvpNa95rnoAYz3+29tgPAJmb+R9P1V69ezSMjI45H3XriOh6TOipV3c50VUaYfz+jAAAdJ0lEQVRtagbFpavU6Uz4q+5BuLNckN++ahHu6l8R+zNUu5u5czqUn+MHDdhWY03yvavGUySFKrQHRLSXmVdHntdKBUFEC5j5mPf4NgBXMvOHiWg5gK+h5ne4GMC3AVzGzEZJ1C4KwmXkSVohYdvOkgC8uOVa7fvjJunN6y7hzuuWW887PM61y3qx6+BxY7vVDavKGHr2qLL/NgB0lzrw3298l/UYdOa/ed0lvFE9q/wOTNFdBBgzy/05+PNU/a3E+VuSiCdBR+4KgogeAvAeABcB+AmAO73nK1FbtL4E4N8HFManAfw+gCkAG5n576I+ox0UhOtVn05oJe0XoLteJ1FTUTqb94Xp6Sph0/X2igFIvlPxK59uNPTkjnPvlww+qRT2BODem1cqha/NfekqdeL8UofSN6Iq9Z3kbyXr3YYon/YmdwXRCtpBQbgW6Cah5a/4464ydcLYJFB04/DHkkZo2CofFS9tuRaLI1p8dhLhLHPkGJN8d2nNcCqS/K24/rsLIqau9sdWQUipDcfYmnCSRp5E9Y6IW+vJPxa373KWnc+SKgdCbf660iQ+/mtR9yZJhFW42KELkvytZBnx1MrikUK+SKkNh6ji4+OUfbZh7bLepmvadDeLipW36bscJMvoq6SlNvzy2B+5cqH1e0z3JmmEld83w5QQ2dNVsi4RfmFXKXYvkCwjniTcdvYgOwiHqISzTR9iW4ZHK9i2t9JwTQKwYdW5HIm4/7xRPah1AiVud7YogjuvNEbPH49P1qOVHnzmCGwsqCbBljT/JKp166brl9fPM5UIL3UQTp2ZqkdN2Xbbc5lfEqZIHRCFbBEF4RCToPGdj2laSOoU0K6D5/JB4v7zRgmyKHOKi3BcW7t90Hdw6vSUMtTUn+dd/StwV/+KhjF0aExPWQi2qNat/n2IKhE+cWaqyZk9WZ3G7Q/vU77fx7UCD5Kl8hGKhSgIh0QV4ktrn7fZHcT957UVZFGowlKDq2Hdynd4tKL0f4QJO0F1OR1rl/U2vC+oxHTO1aySEnU+mqjS38HXl2gc7qbS6sFrAeeUhG9KS6skslQ+QrEQH4RDouzOaW20UXZlX0j7TX2AaLv5+SX1n0CUIAui8r08uOdIpC/Ef59JOehasOp2U9v2VrQ2+v6+MjasKtfvTSdRg3nOJbq/hVOnp2IV1zPtbqJ8S1LcT0iLKAiH+E5NnZM1rSkjqt+zLwyAc019TCu7W/7yH5tKbQO1P4o4q2pb3wvQqCRN5i2gphiChf0ANM0zjG9+UQlB34fjK6RpZqNCSYP/tzCvu7E8yfhkNZaQTrPoyKq4nyie2YMoCMf095Vxz02XZxLhY4qqiSsMhkcr2P28utiuugC3njg7o6CSjPLZhM1FQLRSAc6ZX8ICq9XVUPv7yug+r9mKG+cz0yw6soo2kqqyswfxQWRAljZanWM4rjDYtN1cAtsmUsZHZ29X1XnyTSx+qW+Tz2bb3gpWXzq/YQy2wk0Vl59HeKaLz/TnENd/klW0kYS5zh5kB5ER/X1l7B5c12QiyYo4ce/DoxVtUTufOCtCnenrlqsWGU0sUeYTlc+iI0aORFhg2dwjXSMg3fEoXOUjJMnJyCpXRarKzh5kBzFDiBO9ZCv4bTOBTTumXQePK8M0t+44VI/oMmUdB9uXRjm0w4QFVtQ9+szwfjy450h91+Pb1kdePmEVkaXCZUhokrDiu29c4XwnK2GuswdREDOEOGYtW1OAX7rCRqAkNX3574tqnKTzPXQS4SNXLmxKMFMJLNM9Gh6tNCgHn8nqNB565misMiS2n+kSXYmVu29ckbr0SRgJc509iIKYQdhm/Zps/0EYtTaeYUEA2AsHWzt41KpUp2jOMuOu/hVNCWZBwR8+rhKYW3cc0kZexS1DEsZFN8AoWl0fqRVzEvJHFIRjXJRBzrqUcpx2oicnqnUTUWV8EgOP7gMY9Z4Lrgre9feVMfLyifpq3c9RAGqVSXXC21c0KoEVp3ChSdjriv8VyeYujmMhC8RJ7RAX8eGuYsxNTlWVwzPsTNZRneamhjwuCt6pchSGnj2KgUf3aXc7UXbvOOGYpnasH7lyYcvawiZFHMdCFkg/CIe4qMHv4hpx6vUHO8Tp2o/aoOtAZ0vcHhA2Na1MPSvKPV1NZjNV6Y5bvFalRW+QIz0ahDhIP4gccLHNT3sNXW0jlT06LFQYjUUFdQXxVFzc05VKiMY1hZiUpT8OU0MjXxkFnbmmiJ+i29zFcSxkgSgIh7hITLJpCKQTAlGhoGEhrCuR4e9WVKvSUic1+CCAmsBd/JauWI2KbOetIphVHFUkMIxqlxQMuy26QDX16halILhGfBAOcZGYZFtvSeWfiCpDEVZUNiGo4eJ2N//KQtx8xcKG5jYMYPfzJ1KVX4hKmgsyzYzh0QpWbv4WNg6NRRYJ9Cn3dFnViCoqqu//q3uOSE0kITNEQTgkaQcy22tEOV1NQk6lqGyqw6qK2z353DFrX0WcUNDgvE1d5eZ1l3DHY/uV5i+TWWn34DqU29iZa1OHSmoiCS4RE5OBJDZ1F7bqpElnOjNNJ5FSUZlCUE2+DJvwWB8GsHjwyXpCm9/tTUVw3ro+CADAjFhjAM4pgHbOArZVtu2wGxLaA1EQGuLE0LeKKP+ESviVOghvOn8Obhsaw6btB0AEjE9UG0oxbNp+oL4aP7/UUS8tEaesRRTTzPjqniMAYFQSwTmp5trTVcJrEY7zsJ8hqABa7cx1Gf1k66dph92Q0B5kFuZKRH8F4DcBvMrM7/SOzQcwBGAxgJcA3MTMJ4mIAHwRwDUAJgD8LjN/P+ozsgxzNYWbDqxfmiq7OCk2oYxBgXRhVwmnzkyhOq3+jrtKndiwqtzk1I0Kd+3pKuH01NnYq3igtpt5/u5rIs8zzdVUu8mfUxEct65DT21as0poq2CDbZhrlgri1wG8DuArAQXxeQAnmHkLEQ0CmMfMnyKiawD8R9QUxJUAvsjMV0Z9RpYKwhRD31XqbFqlg9AgiNP+o+pWnnFWpDa5BbosYR0E4N6bVwI4pxB7ukt4/Y2ppgQ6HS8F8iWiorJ090AlKOd1l3DndcsLIxx19z/YWzuu8pIoJsEFuedBMPM/ENHi0OEbALzHe/wAgO8A+JR3/Ctc01Z7iKiHiBYw87GsxheFyZ4fFkwqwZimDk6UectlbkFcM5J/tm4HZaOQfGzmqZpru8T86+6/f8+TmC2Lno8hzCwyzaT2FMQTgR3EODP3eI8JwElm7iGiJwBsYebveq99G8CnmNm4PchyB6EzD8Qxq9hmFw+PVrD58QP1mkc6E49NNnVwhdlhsTvoIMBy4Q9AbV7yd0sAsHFozPj+7lIHblx1CXYdPK5VJnGyxm3JIxPaNjs8i/kKgoncdxBRMDMTUWztRES3ArgVABYtWuR8XEHmzumoC0LffGGzSvaxcRYOj1Yw8Oi+BvNU0lj9sFKz2h1wLfkt+PmlDkJHB+H0VGPz0a5SJ4iaI4gmq9PYtP1A0/kqJqpn685qHXFKbtiQV8CBbVHENFFHRS8BIrQ3rc6D+AkRLQAA7/er3vEKgIWB8y7xjjXBzPcz82pmXt3b29yz2AW+QAnG2b9RrQk/VUJXqYNqGcYBbEMnt+44pHUih4lSODZx8mHOouY78U0/PV0lgNAk7Hu6Srj7xhUYn1BHEI1PVhM5rVX4fShckVcPZdvcjqRRR64KOwqCjlbvILYD+BiALd7vbwSO/zERfR01J/VrefofTAIl2AXNRRST7erRRuGkWYlOM9d3CCqF9Ys3pgDEK4mRFAZw+8P7ALhZ4edZCjvoM9CZLW0WEqqdQqt7QAizj8wUBBE9hJpD+iIiegXAnagphoeJ6A8AvAzgJu/0p1CLYDqMWpjr72U1LhtMAsW0pU/yT2kjcP3eCFHXTyu8TUlw08y447H9yrDYLPA/D0inJPw+1ln2c7A18yR1rutMZLrvQBLlBFdIuW8FOueiyUGbJpw17INQ4Se8BZPcohrkZAER8Ktvm4/dz5/I7DOC9HSVMHbn1Ynea7ofrvIFWlFm2xQuq1J84vQWorB1UkstJgW6gnk6B20aW3Z/XxlbP3h5Q8Melam6epZxcqKqtTX7q9jJ6rSxjlEUPV0lY9E8ZjhXDp0d+vGOT1YT29RNfaxdCfBW+DdM4bJFb2QktDeiIBToCubpHLSV8Ull57Y4nzf6p1fjpS3X1pLILDZ1QSEUdFYCasFhAwHYdP3yeqvPJPj3zJZ53SXc86HLjUotOE9dlzwVpj7Wrlb3us+oeOZIF+hMYf7fZZrikIJgQmoxaVAlJJlCXIMre//9cYibvwCcU0yq8/2dhOo6KlOZ3z2tv6+MzY8fiDX2IH5mr40vpKvU2ZD5rMuh8H0/cUNVXfTnMGHybwBwFkq7dlmvMjR47bJeSZwTMkV2EDGw6VmQxLwQDleMk91sOl9ngth0/fKmlee9N6+st9Y8qdkp2bBtbwVrl/Va7mAYG4fG8PY7nsLGoTHoLE0X93QlMuW46M+hI6o5k834bNl18His44LgCtlBxCAcheKq+UyS/AUbdIUFTVFXaQXaZHUauw4ex4ZVZTz0zNEIAVrLtfDPUWV0+wL9NsPuQkeWJTlsvzMXEUV5hukKsxtREDEJbul10SVxTBjDoxWjOSZueY/g+3xhqBKIutDMKKEzr7sUucOojE+mKheuKmanM+9F3eusTDC2wtmFOcvGVCYZ1UIWiIkpBXFMGCoH6/BoBQOP7NNeX+WE/PObV2q7onUS1c/bsKomVFUOXVMGrkmg/fnNKzH6p1drP9+nQxHtFYezzHhxy7UNPaKzNBclwUbwuxpf1Nwlo1rICsmDSInNyk0XKw9w3cwSxhRLr7qeX+Cv7JWADiezBfskmIrk+eYcU7FAU35BuK5TEnRx/EVaJavugU2uSprP083d1LtE8iEEFbn3g2gFRVAQNthW9Qzy5zevNAoXX2BUxiebqr/qqsFGNQLyq88u1rT79F8fHq00dKHzK8KWe7pw6vSUslc0cM50ZOofYZNkVhRFUZRx6HqX2FYTFmYfha/mOpOIEhRJnIlRzYF827pK+eiUQNRSwDeblA02b9XKee6cc0Ld1Ev6npsub2oGVBmfrIfjli2EbJFawRYlxDTrcF5h9iIKIiU2AitujaR53aWmEhyV8UkMPNpcwM5VJEvQpq0qU+2/rgs33Tg0hpGXTxh7SQfHnVS4FrFAXd47CdP3JQhpEAWREhuBZdsXAKjZ8O+8bjk2P36gyZZfnWbc9vAYbhsaqwsiF9VVidBg1gmGh/orfH9Ops/66p4jWPP2+Thx6kyTsNp0/XKrsSTdjdkqStfCPIsdTdwxtkuHPaH9kCimlNgIrHDpDhNbP1gzw+hCSZkbs7btk9L0MDcLs/6+cj16JtgiM4o9L5xMXP7BJhpHZzZhACs3f8sYuZNFtI/rWkxJx9jfV8buwXVN0V+CkAZRECnRCazw8eA/sC5M1D++ZstOq8/2k9JsmtJEEQ6DXbNlJzYOjcUOV5326hwlEVY2wtaUzT4+WcXAI/u0wjSLwnquk9jyam4kCCpEQaQkSXy+7j1rl/U2FN2z4cfjkw0C+Z6bLo83AQ9/lRou/BeXNJVk4+zGdJ9TPctaYZpFRrLtAsEWyZoWioQoiJToKr9GrZrPL5279X47z10Hj8desV/YVWp43t9Xbigdbou/Sk1b9uOqt81L/F6T+SiY7NffV8ZZQ3i2Tpi6FuaA+wS+LMYoCEkRJ7UD4kTkqMJE/f7PSVaJ45NVfGZ4P+7qX1E/dud1yxM1DnKxSn3pZ9HXCOdRzOsu4c7rlmNg/VIMPLJPmR8Rdv6anPM6YZpFtI9rB7FEJAlFQhREizGFiSblwT1HsPrS+cooJFNRwTC+YDWZl+Z1l/DzySltnaUoJeOXFwkqgZMTVdz+yD585IqFMHnxg9Fhi9+iVhAdBK0wzSrax2U+hEQkCUVCMqlbQDBsMau7bSqrYJPJ7WcwA4hs0zny8gllf4KocUSNxc/INkEA7r15pbYcSJoWpYIwW5BM6gIQNqXEpaerhFNnpqxqG5lW7iqzRamTcMF5c/DapLpuUDjnoZMIG1adWyk/uOdIk4AudVKkKcQ0zijlAJzrDaE79bWE93omkncCn9D+iILICFNBOxsIwNidV1srGZMTM4nZYuLMVMPzaWZs21vB6kvnawX0BefNiRRAaRL7onpD+NcXilWSRGhfREFkRNpooA4iLBl8Ehf3dNWzkHWZzDZOzCg7+WeG91s0+JmuKxkV4dW7agU7sH6p0d+iKzwYrNOkuw8Evf8hDi5W3nmv3otYkkRoP3IJcyWil4hoPxGNEdGId2w+ET1NRD/yfiePl2whqj4PQPqIoGnmpj7XuwfX4aUt19Z7QrhqVP+Z4f346p4jVg1+fIGnooOoPn9dRjAA/PZVi7TXZ5zzU/utUF/acm29DtSSwScxcWYKpVB/0mBP7TS4yLYuQn8GyacQXJDnDmItM/808HwQwLeZeQsRDXrPP5XP0OwwbeOjTClRpbeDhFd+rquIPqhxOKvwV8Mq89k0c72goGkFu3twXd1UpbpH/o7Bd3aHI59OTlTRQTUfjc6HkhQXK+8irN6lwqvggiIlyt0A4AHv8QMA+nMcixUmQWAqCQGolYPp/LgrP93ORnVenMgqXxDffeMKdChCUqvTjI1DY1rl6M/Dz/7WRbUG57tp+4Gm3IiznI1D2sXKuwir96J14BPak7wUBAP4FhHtJaJbvWNvZeZj3uN/BvDWfIZmj0kQ9PeVsWFVObI4n4+fTa2r0xS3z7WtiSNOjZ9gye5aNrP1W+uE52GTOaxz0DPg3ITjIpO5CNnQSTP8BSFIXgri3zLzuwF8AMAniOjXgy9yLTlDKX6I6FYiGiGikePHj7dgqHqiBMGug8etV+cXzJ1Tr6Aatq+XOqLDR4PEKfhmu6qNU7LbdI3wPEwrXX8XZIOrgnYuVt5FWb1LhVchLbn4IJi54v1+lYj+FsAVAH5CRAuY+RgRLQDwqua99wO4H6glyrVqzCqiyiIkNkuEtx2h52l6JoTf29NdUpYWnzunA50ETHg9s9+YmsbIyycaPqenq2SV40GA1k+gC8EF9Al7OlyYcFxkMks2tDBTaHkmNRFdAKCDmX/hPX4awGcBvBfAzwJO6vnM/F9M1ypCJnWSZvIqfKdsVAN6VX5FuI+z7hrzukt4o3q2MWGugwBCQzJeV6kT7150IXY/f6LpGr991aJ63SdV2QzduOOSpI930s8ShNmGbSZ1HiamtwL4LhHtA/AsgCeZ+ZsAtgB4HxH9CMBveM8Lj2kbH+Wo9rHZdfjHNz9+IFHPhK5SJ5jR9N7qWUZ1muvls31b9Z4XTirH8dAzR+uP+/vK2Pqhy+t+k/DGx8askiRMeF53qckMJw5YQXBPy01MzPwCgKamBcz8M9R2ETMGk/lEt+swhScOj1a0nebCPRNUn2HKQJ5mrgvZ/r6yNpktnCsRDLmNmxyWJEw4uJMSE44gZIsU6ysYnxne31TnyDchmXpC25hXbMw2/nXefsdTysS5TiI8f/c1kfOwwWRO0/l3JBJHENJTZBOToGF4tIJteytNpSb8InlRBfmisDF5+Z/xkSsXKl/XHU9CVJiwhGkKQr5ILaYCoQpPZdTCZQG92SWYn2AiaHqKarbjO6L9+kydRPjIlQsbGhOlJSrb13XGuCAI8RAFUSCiHNQ6s0uc/ARf6OqioYI7kbv6VzhVCGFUHeTi5nwIgpAdoiAKhM2KGnATX1+YWP2InA9BEPJDnNQFwibHYSYRlfMhCEI2SEe5NqQwq/oWUYSidoIg6BEFUTBmg2PWz2HQ7V2lJLUgFANREEJLiWrFKhnRglAcREEILcXUirU8w01qgtBuiIIQWorOv0CAOKYFoWBIJrXQUorQTEcQBDtEQQgtpSjNdARBiEZMTEJLmW2hvILQzoiCEFrObAjlFYSZgJiYBEEQBCWiIARBEAQloiAEQRAEJaIgBEEQBCWiIARBEAQlbV3um4iOA3g54dsvAvBTh8MpCjN1XsDMndtMnRcgcysqlzJzb9RJba0g0kBEIzb10NuNmTovYObObabOC5C5tTtiYhIEQRCUiIIQBEEQlMxmBXF/3gPIiJk6L2Dmzm2mzguQubU1s9YHIQiCIJiZzTsIQRAEwcCMVRBENJ+IniaiH3m/52nO+yYRjRPRE6HjS4joGSI6TERDRHRea0YeTYy5fcw750dE9LHA8e8Q0SEiGvN+/mXrRq8c5/u98RwmokHF63O97+Cw950sDrx2h3f8EBGtb+W4bUg6NyJaTESTge/oS60eexQWc/t1Ivo+EU0R0QdDryn/NotAynlNB76z7a0bdUYw84z8AfB5AIPe40EA/0Nz3nsBXAfgidDxhwF82Hv8JQD/Ie85xZkbgPkAXvB+z/Mez/Ne+w6A1XnPwxtLJ4DnAbwNwHkA9gF4R+icjwP4kvf4wwCGvMfv8M6fC2CJd53OvOfkaG6LAfwg7zmknNtiAO8C8BUAH7T528z7J828vNdez3sOLn9m7A4CwA0AHvAePwCgX3USM38bwC+Cx4iIAKwD8GjU+3PCZm7rATzNzCeY+SSApwG8v0Xji8MVAA4z8wvMfAbA11GbX5DgfB8F8F7vO7oBwNeZ+TQzvwjgsHe9opBmbkUncm7M/BIzPwfgbOi9Rf7bTDOvGcdMVhBvZeZj3uN/BvDWGO99C4BxZp7ynr8CoEgNDGzmVgZwNPA8PIe/9rbB/y1ngRQ1zoZzvO/kNdS+I5v35kmauQHAEiIaJaL/Q0S/lvVgY5Lm3hf5e0s7tvOJaISI9hBRkRaViWjrhkFE9PcA/pXipU8HnzAzE1FbhWtlPLdbmLlCRG8GsA3A76C2XRaKwzEAi5j5Z0S0CsAwES1n5p/nPTDByKXe/9bbAOwkov3M/Hzeg0pKWysIZv4N3WtE9BMiWsDMx4hoAYBXY1z6ZwB6iGiOt6q7BEAl5XBj4WBuFQDvCTy/BDXfA5i54v3+BRF9DbVtdV4KogJgYeC56l7757xCRHMAXIjad2Tz3jxJPDeuGbRPAwAz7yWi5wH8MoCRzEdtR5p7r/3bLACp/qYC/1svENF3APSh5tNoS2ayiWk7AD864mMAvmH7Ru+fcxcAP0Ih1vtbgM3cdgC4mojmeVFOVwPYQURziOgiACCiEoDfBPCDFoxZx/cAXOZFjZ2HmqM2HP0RnO8HAez0vqPtAD7sRQItAXAZgGdbNG4bEs+NiHqJqBMAvNXoZag5c4uCzdx0KP82MxpnXBLPy5vPXO/xRQDWAPinzEbaCvL2kmf1g5od99sAfgTg7wHM946vBvC/A+f9XwDHAUyiZm9c7x1/G2rC5jCARwDMzXtOCeb2+974DwP4Pe/YBQD2AngOwAEAX0TOkT8ArgHw/1BbaX3aO/ZZANd7j8/3voPD3nfytsB7P+297xCAD+T93biaG4AN3vczBuD7AK7Ley4J5vYr3v/UKdR2fAdMf5tF+Uk6LwC/CmA/apFP+wH8Qd5zSfsjmdSCIAiCkplsYhIEQRBSIApCEARBUCIKQhAEQVAiCkIQBEFQIgpCEARBUCIKQhAcQUQLiehFIprvPZ/nPV+c78gEIRmiIATBEcx8FMB9ALZ4h7YAuJ+ZX8ptUIKQAsmDEASHeNnpewH8FYA/BLCSmav5jkoQktHWtZgEoWgwc5WIBgB8E8DVohyEdkZMTILgng+gVo31nXkPRBDSIApCEBxCRCsBvA/AVQBu86rtCkJbIgpCEBzhNV66D8BGZj4CYCuAP8t3VIKQHFEQguCOPwRwhJmf9p7/BYB/TUT/LscxCUJiJIpJEARBUCI7CEEQBEGJKAhBEARBiSgIQRAEQYkoCEEQBEGJKAhBEARBiSgIQRAEQYkoCEEQBEGJKAhBEARByf8HmtTKQFtOxCAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -106,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -118,7 +118,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl4VNX5xz8nYYAELQGhFMLqBsoikagoioILCgpRW5eigFqxrf1ZrFKCG4soWNzq2mJdUEFRkIiiUhXcUEQwLCJQQEEIiGxBIQEmyfn9ceeGWe4+d5Yk5/M8eTK5c5dz7mS+9z3vec/7CiklCoVCoai9ZKS6AQqFQqFILEroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOfVS3QCAZs2ayfbt26e6GQqFQlGjWLp06U4pZXO7/dJC6Nu3b8+SJUtS3QyFQqGoUQghNjnZT7luFAqFopajhF6hUChqObZCL4RoKIRYLIRYLoRYJYQYF9r+ghDieyHEstBP99B2IYR4TAixXgixQghxcqI7oVAoFApznPjoDwJ9pZT7hBAB4DMhxLuh90ZKKWdG7X8RcFzo5zTg6dBvVwSDQbZs2cKBAwfcHqrwkYYNG9K6dWsCgUCqm6JQKDxiK/RSS1i/L/RnIPRjlcR+EPBi6LhFQogcIURLKeU2Nw3bsmULRx55JO3bt0cI4eZQhU9IKdm1axdbtmyhQ4cOqW6OQqHwiCMfvRAiUwixDPgJeF9K+WXorftC7plHhBANQttygc1hh28JbXPFgQMHOOqoo5TIpxAhBEcddZQaVSnqPEXFJfSaNJ8OhXPpNWk+RcUlqW6SKxwJvZSyUkrZHWgNnCqE6AKMBjoBpwBNgVFuLiyEGC6EWCKEWLJjxw6zfdycUpEA1GegqOsUFZcw+o2VlJSWI4GS0nJGv7GyRom9q6gbKWUpsAC4UEq5TWocBJ4HTg3tVgK0CTusdWhb9LmmSCnzpZT5zZvbxvsrFApFSpg8by3lwcqIbeXBSibPW5uiFrnHSdRNcyFETuh1FnA+sEYI0TK0TQAFwDehQ+YAQ0LRNz2BvW7987WR9u3bs3Pnzrj3UShqM+noItlaWu5qezriJOqmJTBVCJGJ9mB4TUr5thBivhCiOSCAZcAfQ/u/A/QH1gNlwHX+N1uhUNQ2dBeJbj3rLhKAgjzX03y+0SonixIDUW+Vk5WC1njD1qKXUq6QUuZJKbtJKbtIKceHtveVUnYNbbtGSrkvtF1KKW+WUh4Ter/G5jbYuHEjnTp1YtiwYRx//PEMHjyYDz74gF69enHcccexePFidu/eTUFBAd26daNnz56sWLECgF27dnHBBRfQuXNn/vCHP6AFIWm8/PLLnHrqqXTv3p2bbrqJyspKsyYoFHWGdHWRjOzXkaxAZsS2rEAmI/t1TFGL3JMWuW5sGTECli3z95zdu8Ojj9rutn79el5//XWee+45TjnlFKZPn85nn33GnDlzuP/++2nTpg15eXkUFRUxf/58hgwZwrJlyxg3bhxnnnkm99xzD3PnzuXZZ58FYPXq1cyYMYOFCxcSCAT485//zLRp0xgyZIi//VMoUkBRcQmT561la2k5rXKyGNmvo2NrPF1dJHr7vfYrHagZQp9COnToQNeuXQHo3Lkz5557LkIIunbtysaNG9m0aROzZs0CoG/fvuzatYuff/6ZTz75hDfeeAOAAQMG0KRJEwA+/PBDli5dyimnnAJAeXk5v/71r1PQM4XCX+J1vaSzi6QgL7dGCXs0NUPoHVjeiaJBgwbVrzMyMqr/zsjIoKKiwvWKUSklQ4cOZeLEib62U6FINVauFyciObJfx4gHBdQ8F0m6opKaxclZZ53FtGnTAPjoo49o1qwZv/rVr+jduzfTp08H4N1332XPnj0AnHvuucycOZOffvoJgN27d7Npk6NMowpFBOkWoRKv66UgL5eJl3UlNycLAeTmZDHxsq412pJOF2qGRZ/GjB07luuvv55u3bqRnZ3N1KlTARgzZgxXX301nTt35owzzqBt27YAnHjiiUyYMIELLriAqqoqAoEATz75JO3atUtlNxQ1jHSMUPHD9VLTXSTpigiPBkkV+fn5MrrwyOrVqznhhBNS1CJFOOqzSD96TZpvKKq5OVksLOybghbFPnxAc70oqzxxCCGWSinz7fZTFr1CUQNJxwiV2hCdUltRQq9Q1EDSNUJFuV7SEzUZq1DUQGrDIh5F8lAWvUJRA1FuEoUblNArFDWUVLlJ4ln9qkgNSugVCoVj0jGsU2GP8tH7QP/+/SktLbXc55577uGDDz7wdP6PPvqIiy++2Ha/c845h+gw1WgeffRRysrKPLVDEUm6LVhKBumaeExhjbLo40BKiZSSd955x3bf8ePHJ6FF9jz66KNcc801ZGdnp7opNZq6atmmY1inwp5aY9Enwrp6+OGH6dKlC126dOHRUL6djRs30rFjR4YMGUKXLl3YvHlzRMGQe++9l44dO3LmmWdy9dVX8+CDDwIwbNgwZs6cCWgFRsaMGcPJJ59M165dWbNmDQCLFy/m9NNPJy8vjzPOOIO1a62tpPLycq666ipOOOEELr30UsrLD3/Z/vSnP5Gfn0/nzp0ZM2YMAI899hhbt26lT58+9OnTx3Q/hT111bI1C99MdVinwppaYdEnwrpaunQpzz//PF9++SVSSk477TTOPvtsmjRpwrp165g6dSo9e/aMOOarr75i1qxZLF++nGAwyMknn0yPHj0Mz9+sWTO+/vprnnrqKR588EH+85//0KlTJz799FPq1avHBx98wB133FGdGdOIp59+muzsbFavXs2KFSs4+eSTq9+77777aNq0KZWVlZx77rmsWLGCW265hYcffpgFCxbQrFkz0/26devm6Z7VJeqqZasSj7mgshIyM+33SwK1QujjzZpnxGeffcall15Ko0aNALjsssv49NNPGThwIO3atYsReYCFCxcyaNAgGjZsSMOGDbnkkktMz3/ZZZcB0KNHj+p0xnv37mXo0KGsW7cOIQTBYNCyjZ988gm33HILAN26dYsQ6Ndee40pU6ZQUVHBtm3b+Pbbbw0F3Ol+iSTdojictMfpgqWa2DcrVFinA9auhTvvhCOPhOefT3VrgFoi9Mm2rnTxjwc93XFmZiYVFRUA3H333fTp04fZs2ezceNGzjnnHE/n/v7773nwwQf56quvaNKkCcOGDePAgQOe90sk6ebrdtoeJ5ZtTe2bHWr1qwklJTBuHDz3HGRlwahRICUIkeqW1Q4ffSL8hmeddRZFRUWUlZWxf/9+Zs+ezVlnnWV5TK9evXjrrbc4cOAA+/bt4+2333Z1zb1795Kbq32BXnjhBdv9w1Mhf/PNN9VlDH/++WcaNWpE48aN2b59O++++271MUceeSS//PKL7X7JIt183U7b4ySlbk3tWzpQoyKa9uyBwkI47jh44QW4+WbYsAHuuistRB5qiUWfCL/hySefzLBhwzj11FMB+MMf/kBeXh4bN240PeaUU05h4MCBdOvWjRYtWtC1a1caN27s+Jp///vfGTp0KBMmTGDAgAG2+//pT3/iuuuu44QTTuCEE06ong846aSTyMvLo1OnTrRp04ZevXpVHzN8+HAuvPBCWrVqxYIFC0z3Sxbp5ut20x47yzYd+hbuqjHLU5tu8wrpNhIypbwcHn8cJk2C0lIYPBjGj4cOHVLdshhqTZridPGF7tu3jyOOOIKysjJ69+7NlClTIiZJayKJTFOcbul2/WxPqvtmlDbYiFSmNjYi1ffNlooKmDoVxozR3DX9+8P998NJJyW9KXUuTXG6+A2HDx/Ot99+y4EDBxg6dGiNF/lEk6woDqeGgJ/tGdmvIyNnLidYediYCmSKpEWoGLlqoknHiJl0GAkZIiUUFcEdd8CaNdCzJ0yfDr17p7ZdDrAVeiFEQ+AToEFo/5lSyjFCiA7Aq8BRwFLgWinlISFEA+BFoAewC7hSSrkxQe1PO3SfucIZyYjicOMK8L090QPmJA6grYRRQNpGzKRlCuaPP9b88IsWwQknwOzZMGhQ2vjg7XBi0R8E+kop9wkhAsBnQoh3gb8Bj0gpXxVC/Au4AXg69HuPlPJYIcRVwAPAlV4aJ6VE1JAbWVtJhmsv0aMxt+G3frVn8ry1BKsi71+wSsYV9usGM8FMGxeICWkVq798OYweDe++C7m58OyzMGQI1KtZzhDbqBupsS/0ZyD0I4G+wMzQ9qlAQej1oNDfhN4/V3hQ64YNG7Jr166kCI3CGCklu3btomHDhqluSlxRGKlyBaTaBVFTc9anRZHw77+Ha66BvDzNiv/HP2DdOrj++hon8uDQRy+EyERzzxwLPAlsAEqllBWhXbYA+qeQC2wGkFJWCCH2orl3drppWOvWrdmyZQs7duxwc5jCZxo2bEjr1q1T2oZ4ozDMLFuJNvGXKPdFql0QNXlxU8rm3H76CSZMgH/9SxP0UaO0n5yc5LfFRxwJvZSyEuguhMgBZgOd4r2wEGI4MBygbdu2Me8HAgE6pGGYkiL5xLvy2cgVoJPI0D2/XBDxRJSlS5BC2vPLL/DQQ9pPeTnccIMWVdOqVapb5guuFkxJKUuBBcDpQI4QQn9QtAb0sXQJ0AYg9H5jtEnZ6HNNkVLmSynzmzdv7rH5irpAvC6QcFeAEYlYNKSLc3mwksyQ59KLC0IfzZSE4uD1B1NaLyCqSRw8CI89Bscco61qvfBCWLUK/v3vWiPy4EDohRDNQ5Y8Qogs4HxgNZrg/za021DgzdDrOaG/Cb0/XypHe63Ci788Hh+7HyufC/JyWVjYF7PJIj/95uHiDFApZbUl79a6rkmrWWsUVVUwbRp06gR//St07QqLF8Prr0PH9J7D8IITi74lsEAIsQL4CnhfSvk2MAr4mxBiPZoP/tnQ/s8CR4W2/w0o9L/ZilThxcKM1yr1c1IxGWl2/RTnVE/o1jqk1CJoTj5Zm2xt0gTmzYMPPoBTTkl16xKGk6ibFVLKPCllNyllFynl+ND276SUp0opj5VS/k5KeTC0/UDo72ND73+X6E4okocXEYtX+PyMwkhGJIqf4pyTHTDcrvK/e2DRIujTR1vJum8fvPIKLFkCF1xQY+LhvVLz4oQUKcWLiPkhfH5NKiYjEsWvaJui4hL2HaiI2Z7M1bW1gjVrtNWss2fDr38NTzwBN94I9eunumVJQwm9whVeRCzVYYbRJDoSxa9oG6MFVwCN6tdTkTRO2LIFxo7VcsI3aqQlHLv1VjjiiFS3LOkooVe4wk7EjEIBU7XSMVWJ7vwaNZiNePaWWxekqfPs3q1llHz8cW3S9ZZbNIu+Dkf3pW32SkVqcCKOZvsYZUvMCmQy8bKuQOLcJUbtAUzbkg7WsJP7nPZZHH3CtwdyWZkWKvnAA7B3L1x7rRYy2b69721OF5xmr1RCr6jGSqidfPFSIUxmbW5QL4NSA8s3EW1xK1RO73O8n0dNwJc+VlRoVZ3GjYOtW+Hii7W0wV27JqjV6YNToa8VFaYU/hBvdEwqQgHN2mwk8oloi5fQUT+rWHlpbzpVborrf05KmDULOneGm26Cdu3gk0/grbfqhMi7QfnoFdXEK9TxTLqauV/sLGW3wu33BLCX9AxO7nP0/Xjkyu5xW/HpWLnJ8//cggVa2uDFi+HEE+HNN+GSS2p9mKRXlNArqok3OsbrpKuRAI2cuRwk1VEnZqJk1uYm2QEOBKsSPgHsRqh08TZzlur32UyQl2zazdwV29hTpo1WcrICjB3Y2bFIO30oJXMS2/X/XHGxljZ43jxo00aLqLn2WsjMNN5fASjXjSKMeBcTeXU1GAlQsFLGhBZGD+mLiksoOxQbZ54VyGTMJZ2TkurW6Urb6LQIRm0OH8UYCfLLi36oFnmA0vIgI19f7tj94uShdFfRSm6dsSxpuXUc/89t2AC//722ovWrr+DBB+F//4Nhw5TIO0BZ9Ipq/AgL9BKj7sb9ou9rVg812sr1W9ijrd0+nZoza2mJbbipmcCD9hAKv89u7oebQiZ21nNRcQnTFv0QM+JwkynULbb/c9u3w733aknGAgEtTPLvf4fGjX1vS21GCb0iglSktTUTILN9wbweaqMG7hYTuXFTGLlUZi0t4fIeuSxYs8NRuGk0AmKigNzcD3D+YLBzrVm5lazmD+J17Rj+z/38s2a1P/wwHDigrWS95x5o2dLzdeoySugVKcdIgAKZIsJHD4dFqai4xFQI3VjDbicnzVwqC9bsMAzZdFKcu3FWbC4bo/shMC8363QOxc56trp3dvMH4eePi4MH4emn4b77YOdOuOIKrRDIccfFf+46jBJ6RcoxEyCzbbqwGOEmqsZtxIzbCBEnD539hyooKi6JuJ7R/ejTqTkzvtpMsDJS7gMZ7vLeWI3YzEYSAmznD+J27VRWammD77kHNm2C886DiRMh3zZEXOEAJfSKtMBMgIxWi5pZyYFMQZ9Ozek+7r/VcfRNsgOMucQ4MsWtQLuNEHHigglWGvvYje5HfrumjHtrleeoGzvMRhKDe7a1tfo9r0+QEt55R4ukWblSm2x95hk4/3xv51MYooReUaOwEpTKKsn0RT9QFbZtT1lQC9Uk9qHhVrjdho9alTAMx02lLD9i6a1GTjnZARrUy2BvedDQ/+5rgrovvtDqsX76KRx7LMyYAb/9LWSoYEC/UUKv8JVEx2BbWckGiR4Bc6vZrXC7jUqK3h+M/exGfvpE4GS9wp6yIFmBTNMFWr4kqPv2Wy165s034Te/0XzyN9ygRdUoEoISeoVvJGPlpVMrORojq9lLOKlbqzp8/7zx/42Ig9dJ5GLO8AdvhhBURuW2ivb5g7XPPa4Q3M2btYLbU6dqqYInTIARI7QUwoqEooRe4Rt2E3VFxSWMnbPKkf/cDH3f215bHiNaVpi5FuJxh7gdvZQaiLzRdr9GRdEPXjf3y8qdZHbPTNu9a5c2sfrEE5pPfsQIzaI/6ijb9qcizXRtRAm9Ii7Cv4xWMdhFxSWMfH15RLiklf/cCn3fETOWOdo/ERWZvIxenPi3vY6KjETRSXinGV6qYUW3e/yrX3H8s49z4ktPa6X7hgzRMky2bevpfKnOy1OTUbMeCs9EZ240o1VOlmm1JN1/7paCvFxyTHzb4a6QJtkBJv/2JN/FwUvWRSfL/b2c1yyDppNFV4FMQSAj0nfktRqW3u56lRUMLn6H9568nhOffADOOQdWrNDy0jgQ+ejz6XgtsK5QFr0iDpxYjLpo3GphfXsNzRs7sHPK8rV7CTN04t/2cl4zUcw08MkDZApBlZSusoTasbW0HKRkwJrPuO3Tlzh6z1YWtz6RPxeMZubLI12dq/p8LrYrrFFCn2QS4Xf0es5422L1pRMQcU6rfC9eUwcno9C3GV7DDO3mBMzOmyEEHQrnuno4VEpJViDT0YMw3nt2yc7V3DB3Cif9uI61zdpyw+V38+Exp5LbJNvT+dKtznBNx9Z1I4RoI4RYIIT4VgixSgjx19D2sUKIEiHEstBP/7BjRgsh1gsh1goh+iWyAzUJL0UqEnVOP9pi9qXLzcni+0kDWFjYt1pARvbrGOMigPj95wV5uSws7BtzvUQTb6ZPN+cFTbTNPierzyHhGTy//houuIDHnh1J87K93Nb/Vi667nE+PPY0surX83w/EnV/6ypOfPQVwG1SyhOBnsDNQogTQ+89IqXsHvp5ByD03lVAZ+BC4CkhhMojSmL8jl7P6Udb3HwZC/Jymfy7kyL86rr/HEirqkdOSET1J6PzZhrEXkZ/TlafQ8IehOvXw1VXQY8emtg/8ghL/vsFi866GJmRGff9SNT9ravYum6klNuAbaHXvwghVgNWd3sQ8KqU8iDwvRBiPXAq8IUP7a3RJMLv6PWcfrQl2nXSOCuAEHDrjGVMnrc2xsVg5LaIJ7rCTzeYl3MlKtNn+Hk7FM413Cf8c0qqC+vHH2H8eC1NQf36cNddcPvt0LgxA4GBpx3t26VSkUm1tuLKRy+EaA/kAV8CvYC/CCGGAEvQrP49aA+BRWGHbcHgwSCEGA4MB2jrcCa+ppMIv6PXc/rVFv3L6Eaw7RbxOEmSZXS9ETOWMXbOKtf5X4zOdeuMZYyYsSwmV7wfuHmoOP2cEi6Ke/fC5MnwyCNw6BAMHw53362tbFWkPY7DK4UQRwCzgBFSyp+Bp4FjgO5oFv9Dbi4spZwipcyXUuY3b97czaE1lkT4Hb2e0++2OHUFRc8NmC3isRtZmEX8lJYHLecajIpjG51Lb5XfFZbczo2k3Fd94ICWE/6YY7TUwQMHwurV8OSTSuRrEI6EXggRQBP5aVLKNwCklNullJVSyirgGTT3DEAJ0Cbs8NahbXWeRPgdvZ7T77Y4dQU5XcRjNrLQhdoqRtxsrsFrvLmf8dtmD8Sxc1YZ7p8qX3XRkh+473d/p6RFW7jtNrYf1wWWLoVXXtESkClMMTImUo2t60YIIYBngdVSyofDtrcM+e8BLgW+Cb2eA0wXQjwMtAKOAxb72uoaTCKG2F7P6XopuwVOXQxO5gDMLFYnFZusruM23tzufF4we6iUlgdj8tLrJNVXLSWL/vkCne8fR8GOTSz/zXHc3n8Ey449mYmiBQXJaUWNJV1X9Dqx6HsB1wJ9o0Ip/yGEWCmEWAH0AW4FkFKuAl4DvgXeA26WUnpbh61IOl7DLp26GMws9UwhbC1WN0v6ja5jF2/u9nxeMIqi0Un5qs+FC+Gss+h56/VkVgT586BCBg15mC/anaRWpTokXVf0Oom6+Qxt/Us071gccx9wXxztUqQIrxWEnEZ+mKW5deKOcGpVm40IzEYd+oSrvqgrumyfnz5xq5FDylZ9fvONlmTsrbegZUvu6Hczr3U9n4rMSHnw0r66lpgsXVf0qpWxigji+Ud14mKIJxTQScUmAVzew7gdZg+ZPp2aV7cnN1S2z6jYtx/kWvQh6as+N23S0ga/+CL86ldahslbbuHjxxZR4UNEVrq6MRJJuq7oVUKviCAZ/6hOHgi6JVhSWl7tQ8/JChDIFIY51HUksGDNDtPrQmwt1llLSyLEaNbSkoRNeI7s15GRM5fHXfs1LnbuhPvv1yJnhIDbbtNK+TVtWt3GuIuLkMD6smmMX/fOb5TQKyIY2a9jTDrhpIoQ5nnUS8uDBDIETbIDlJYFTTNmlpSWm+aFiX7IGNWgtRKjeF0R+r5+1X511Z79+7U4+MmTtbTBw4bB2LHQpk3Ebn4twEqWGyOd3EOpzL9khRJ6RSzRMzIJrIBkhNWka7BKkl2/HsX3XGAZZhk+kQzmrgI3YuSXK8KvKBrH7QkGtZWs48fD9u1QUKDFxJ94otFpfWtjMkaH6egeSscVvSofvSKCyfPWxrgV3OaMt4ojdhJj7DR9g1kCsHDsIh7MRMdou5OIimTGUNu2p6oKXn0VTjgBbr4ZOnaEzz+H2bMtRd4vkrHYK12jXNINZdErIoh3uG1lYQGOrC+7SVddhKOHyVYVrsxw41O1uzfJti4t2/P++1BYqCUc69oV5s6Fiy5KbIHaKJLhxkjXKJd0Qwm9IoJ4h9t2FpYTf7hVAfBoEQ4fJpu5cqza7kaM7O5NsicfjdrTdds67ln4EjzwNbRrp0XU/P73kJmaBLKJdmOka5RLuqFcN4oI4h1uW1lYTq2v8GX/cHiRkb6YCozTGhu1PZAp2H+wwtKV4jSVr929SbZ1Gd6eDrtLeKJoEm+9eCvddm2ERx+FtWvh2mtTJvLJIOW5gGoIyqJXRBDvcNvOwnJqfVmlZ7Bzj+htz8kOsO9ABaXlQdN93WB3b5JtXRbk5dJwx48cuHssF3/1DocC9Vlz4wg6PThOi4uvA6RrlEu6IaRNjo9kkJ+fL5csWZLqZih8wCgfjb7yFfC8KlbHzD2Tm5PFwsK+jvaNrpkaryiEx/wbrapNSEx+aSn84x+a5V5RATfdpOWGb9HC3+so0hohxFIpZb7dfsqiVxgST2xyw0BGtZgbxYjHU9/WbJLWyD1ildsGzC18N32PfrBJqBb7eHLZh7dBL+hSWhakfaNMHt+9kC5Tn4Q9ezT/+733wtH+FfxQ1D6U0Cti8Bo9YmTNH6yoitjHy+Sck6yVRu4RJykToidL3fbdLJe90QjDKdFtKC0PkllVyW+/+ZBbP5tOq192sv2Mc2jx5CPQvbunayjqFkroFTHYRc6YWbtmx9322nJunbHMs6vELmul2eSbVfROOOGWv9vIGT/CUaPvZ0QbpOSCdYsY+cmLHLdrM8taHs/fLv4bm7udxkIl8gqHKKFXxGAmUrp1a2btenWVeG0PWLtHoifqjMoWQuRowK1we5mANfPpR9/fUzd/w6iPXqDH1jVsaNqamwruYN7xp4MQCBUnrnCBEnofSaecG/G0x0y8MoWwtHa9uEqcYJVe2M49Eu4qMpsoDh8NuBVut0msjHz64ZQHKzlhxyZu//gFzt3wFT8e0ZTCfn/h9W7nU5lxOIxQxYkr3KDi6H3Ca8GOdGxPn07GNXzt6rs6SUkQvr9TjM4r0PrkJs2Ak7J8buOy3Zb6s3JDtd67nYfefoi5z/2F/JLVTDp7GOcMn8Kr3S+MEHkVJ65wi7LofSLdUrLG0x6zNL9mJffMUhI4cZWYET0aubxHLgvW7DB1d4Rf3wq7yWAvcdluJpiNHnJNy/byl89nMHjZO0iRwfTeV9Bk/N289cV2DpaWkxMWdZMOI0VFzUMJvU+kW84NKz97r0nzLUXMruSelZvCravECKPIFz1HvFGIpZcHqpVbK5HL9sNdQ9mHyvnDV0XcuPgNsoMHea3refz7nGsYMawvA/JyGXB254S0QVH3UELvE6nMuWEkWmbt0V0e4D6pWHTJPd1nr0fjRIuj11WLVqMRPx6oqUxtO7JfR+55/WsKvprL/30+g+Zlpbx7/Bk82PtaDhxzvLLWFQlBCb1PpKqyjJloXd4jN6JyEhCzahOcJxXT+6Lv51QovVjHVmLuxwM1ZW62qioKVn/M+S/dQaMtm/iibVfuGDCBATcW8KESd0UCUZOxPuF2Us5/lczPAAAgAElEQVQvzERrwZodMe1xmsbXri+JzgFulSPejyRWSXezSQnvvQc9esDgwTQ6KgfefZfTNy7nmaduVha8IuHYWvRCiDbAi0ALNINwipTyn0KIpsAMoD2wEbhCSrlHCCGAfwL9gTJgmJTy68Q0P71IRWUZK9EyKpsXb1IxME5MFt2WeEJNnYwovJ67qLjE10li22svXgyjRsFHH0GHDjBtGlx1FWQoG0uRPJy4biqA26SUXwshjgSWCiHeB4YBH0opJwkhCoFCYBRwEXBc6Oc04OnQb4VLnIiKmSsjQwiKiktsXTLhaXydCFdRcYmhC0hvi76PU9eOVR+NtsfzANHbZSTyXieJTX37a9fCnXfCrFnQvDk89piWeKx+fUdtTRbptvZDkRhshV5KuQ3YFnr9ixBiNZALDALOCe02FfgITegHAS9KLS3mIiFEjhCiZeg8Coc4FRWzZf6VUsbsHy2g2fUz2X+o0lUa38nz1pq6gPT4e6c+cLs+Gj0U4plEtYphN5tUDhdCo5FATL9KSmDcOHjuOcjK0opv/+1vcOSRtu1LNulYb1WRGFyNH4UQ7YE84EugRZh4/4jm2gHtIbA57LAtoW0KFzj1g+v+9EyDEnFm+y8s7MsjV3an7FCs6Nn52q382K98uZmi4hJT1070dre+frP9x721ylGdVjsffPSisuhFZ5YLxvbs0Ur3HXssvPCCVqN1wwYYMyYtRR5UvdW6hOOoGyHEEcAsYISU8mcRJixSSimEcJXYXggxHBgO0LZtWzeH1gncTBgW5OVy64xlrs5jZZlbCaJVmgN9FCGENv8YTWbIneS1xqvZ9j1lQfaUxY5KINL9k5MdqN7PjHAL3S6ZGkCD4EFu+fY9OPoa2LsXBg+G8eM1f3yak25rPxSJw5FFL4QIoIn8NCnlG6HN24UQLUPvtwR+Cm0vAdqEHd46tC0CKeUUKWW+lDK/eXPjJfd1GavIEz+224m5GSP7dcSqvHR5sNJQ5OHwg6DEQuStru80hLI8WMnYOatiUkDsO1BBINO+OLZ+b6zuUWZVJVcun8fHzwzn5veegTPOgGXL4KWXaoTIQ/z3WVFzsBX6UBTNs8BqKeXDYW/NAYaGXg8F3gzbPkRo9AT2Kv+8e9yGEbrd3+zLLELnMqMgL5fBPdtair0ZRknRonHbRzNKy4Mx1wpWSRrVr1cdNmrk7oLD98bwHklJv7WfM+/Zm3ngvcep374dfPwxzJ0L3bpV71ZUXOLInZRKVL3VuoMTi74XcC3QVwixLPTTH5gEnC+EWAecF/ob4B3gO2A98AzwZ/+bXftxG5dvVFBbd0MYiYxZorDBPdvaTsRNKOjK4J7m7racrIChgJj5uHUyheDyHua1YnVXSnix8JysgOU5o9lbHqwuBP7QFSdZCl30Per5wwpmv3Q7/y66HykEwy+9k6bLl0Dv3jFtTacEd2akau2HIvk4ibr5DEwNuHMN9pfAzXG2q84ST7ibm1Wr8cSjFxWXMGupsWhlBTIZO7Cz4bmtSgGC5tqZtbSE/HZNLaNz9Jw7uiAbxdw3DGQY+uPDrXS7e6D/fubx2Yz86AXO+X4p2444ipEX3cIbXc7lN02PAINRQboluLMiFWs/FMlHpUBII/wId3MjMl6/5GaTlJlCRFiERue2q/hk1FarPun56KPF2uhaRm4Jy3vw3XcUPHQPg6ZPZ2+DRtx/znVMPfliDgYaWLo41CSnIt1QQp9GuIk/N7NC3RTP9orZuaqktHS76IWuGwYyKC0LOo66sRNOK7H2NDr66Set4Pa//w316iFGjWLhRdcy9/MfOVRablv02yy6JydbczOpRUqKZKOEPo1wYglaWf1gnLgM/I2kcJNYzKjQdVYgk0eu7G7qyok+j9dEZm5GLEXFJTw5p5gB709n+FezaVgZJOOGG7Q4+FatGAAM6H2io3OZTUVIqRYpKVKDSriRAswiMpyEu1lZ/Wax8XaRNG4xi9bo06l5TL+s2msWRbP/YEXExKWX6BA3US9zvvyOVYUTeOUf1zBi4Sss6NCDAcP/RdEf74FWrSzvhRF7y41j9feWB9UiJUVKENImEiIZ5OfnyyVLlqS6GUnBqBhHIFPQqH49SsuDMRZ5ViAzwu/doXCuqZiDsTUPsHHSAB9af5i7ilbyypebqZSSTCHoeXQTvv5hb4xP3MwfL4DvJw2gqLiEcW+tinF1RPfbjbvDrOBJTERJVRVMn87WW0bSas+PLGzXjQfOHsaKlscDWvRQowb1XLtYzJLH5eZkmS4U0+9HPCiXUN1DCLFUSplvt59y3SQZI4suWCmr881IDrtfjHzBdm4MM4EB/4RAj7rRwyUrpWThht0x++mhkHblByfPWxsj9NFzE27cMLZzHVLCu+/C6NGwYgW7WxzDqCvG82n7vIgomtLyoKs8QDpW2TeduqvcolxCCiuU0CcZJ5OiusgvLOxb7YLQxblPp+bM+GozwcrD4hnIFLaRJn4KgZPUADpOyg/GE6US/vDKyQ4gJdXibHi+RYu0tMGffALHHAOvvMIfv2vGlp8P2l7LaYikVdjmkk27mbboh5hRW7yutZoU0qlIPkrok4xVrphwtpaWG4rzjMWbYy3k0J9WAtNr0nzfhMBNBE94+UGzkYTXydbo+2OVx+aYnZu5Z9E0eOAz+PWv4Ykn4MYboX59bjdw9ZjhtO9m2TdnLS2JEHkBpovE3KBCOhVWKKFPMmZphaNplZNl7OapinWDBKtktWCbuTj8FAKnDyt9EtjO7WJ2T8oOVcTk1A/Hycii5c87+OvCV/jdyg+oys7WEo7deisccUT1PkYPyLJDFYYPjsZZgWofvO6Wsgu3tGqvBBas2WF5nBNSWbNYkf4ooU8y0aKSkx1g34GKCAHXh/JmGSmNsBLseKsqRaO3zW4aX+LMLaTvM3bOqgi3y56yoGXBEquHTePyX/jzotcZtvQtbaLz6us59tH7KdpyiMlPLI4ZXUQ/jAwnzTME+w9VVLdRv59mbrDoOZFErnFIVc1iRc1ACX0KMBIVI9eGXcqAcMwEO56qSmbtMvM1R5Pr4iGi9zfav25VsMSIhsEDXLf0Lf60aCZHHCxjXt55XPTGFI5t397VPIUbK9+onUbXSuQah3hLLCpqN0rofcZLZIuZa8Ow9F+GAEHEZKyVYFulK7i8hyaut85YFtNWO1GcUNCV/HZNqx9GRmGhbq1Jp+4loz5lVlVyxYr3+evC6fxm324+OOYUHjv3Oq7/40Bor5UgvO215fYVosKI/lw6FM513H4zN40f98kMlbdGYYYSeh/xO8TNzEoz2maWesCqSMispSWmbXUTxSGgOuJlb3nQszXp1M8cIfxSctHahdz+6Uscs7uEZW1O5P8GjWJrl/yIOrNmo5ro81k9qO3mJsLbafbQ0iOqlNWtSCZK6H0kESFuZlaa3fms3BtgnBs+vK125QCNIl701AZe++rUz6wL7umbljPq4xfovm0d/zuqLaOuvZcHpt7J61EZJe0mbe2Kmi/ZtJsFa3ZYul+i22n2UNDDZhWKZKKE3kfSKcTNStysVqzqbTVb6KTngreq3xpvmmW74ye0CxJ45h7O/O5rSo5szu39R/Bu9/O477fdDdMGW93/cIE261P4XES4+8Uo6kYfEfjlzlIo/EAJvY+kU4iblbhNvKyr6URv41AhDzM3h77dbf1WN2Jvuu+GDXDXXfR59VUONc7h8f438cQJ/WjWrDH3WTxQzD6X6LTKVu6W6L+NLPPoEUH4cU5DMBWKRKCSmvmIk+RbySoxZ/Zwyc3JoiAvl5H9OmoTu1HsD8Wum0XM6Nvd1G+NO2HXjz/CzTdDp07w5ptwxx3U37SR/5v7L9Y+eCkLC/vaxukbfS4PXXFSzMItpxg9FMxGUeHrCRSKVKCE3kfsSrMls8ScWanAktJyek2aD8ARDWMHdMFKaZpZMjydwv6DFY7b4tl19fPPcPfdcOyxWm74P/xBs+rvuw8aN3Z8GrvPRcfsnhlh9FCwGhGo7JSKVKJcN3FgFWduRDLzkYT7u6P9xfoDxspPbxXx4zRdgI5r19XBg/D005qg79wJV1wBEybAcce5O08YTkIPjfrcp1PziOgkMPe1J3pRlELhFSX0HvESSmkXyeI3urgZpc21yiyZIUR16oHovhjlzLHC1QRkZSVMmwb33AObNsF558HEiZBvm4XVN4z6rK8XsJtgtloxrFIRKFKJEnqPeLHO7SJZEoVVLL1RBE6llKYPLTeWaYbA0EUSg5Qwd66WNvibb6BHD/jPfzShTyHRIza70NFEZqdUKOJB+eg9YiZ4JaXlphOtdpEsiaCouMTUz6z7qo0eNGaTqG4sU0cPsM8/h9694ZJL4MABmDEDFi9OC5H3Mp8yoaArj1zZ3XY+QKFIJrYWvRDiOeBi4CcpZZfQtrHAjYCedu8OKeU7ofdGAzcAlcAtUsp5CWh3yrHyx4YLAxy2inMtFtG4xWmqBbPygqBlh7RKTqY/zKKLewcyRUwKBpCUB6sijg/PqhnDqlVwxx0wZw785jeaT/6GGyCQHgW045lPcTIfkOr+KeoWTiz6F4ALDbY/IqXsHvrRRf5E4Cqgc+iYp4QQsUVBawFm9U7DibaKvdQ+NcKNtWnlatlTFrRMSpaTHaD7uP8yYsay6muVlgdBQpPsQITFeiBK5E2v/8MPcN110K0bfPSRNsm6fj388Y8RIj9y5vKI/o2cuTwh0Ulm4a6JXPyWzOgrhQIcCL2U8hMgtk6cMYOAV6WUB6WU3wPrgVPjaF/aEh2yZ0a4MDgN87PDTYHpeCYB95QFDas1Bask2fXr8f2kAdUx7LaFzXftgttug+OPh+nTYcQI+O47uPNOaNQo4phxb62KGDGAFvY57q1VnvtihJXgOinU7hVVIFyRbOKZjP2LEGIIsAS4TUq5B8gFFoXtsyW0rVYSPkQ3KwgdLQx+ZBi0mh8ILzs4sl9Hx4VO4m2DWZ6awt5ttDDJf/wD9u2DIUNg3Dho29b03GapgK0qSHnBSnBH9uvIyNeXR9QJCGQIXyZV0ylVhqJu4HUy9mngGKA7sA14yO0JhBDDhRBLhBBLduyIv8JOqvHLLeMEM6tSXxAVPUcQPYrICaU58LMN0aOVtkcGeKVqGZdc3hvuugvOOQdWrIDnn7cU+URh5KKxFdzooZpPwVGJHC0oFEYI6SDiQwjRHnhbn4w1ey80EYuUcmLovXnAWCnlF1bnz8/Pl0uWLHHb9rTD7QSb1wk5o+pHZlkVneRkcUtWINPc5VRVBTNnauK+bh2ceSZMmgS9epn2JfoeRFeaCueanm2ZUNDVVXuN+psVyKRBvQzD6+iT406zT3r53I3ao6JzFG4RQiyVUtouNPEk9EKIllLKbaHXtwKnSSmvEkJ0Bqaj+eVbAR8Cx0kpLRWlpgi9n5ES8X7ZnZapE8D3kwaYHu92sVaT7ABjLuls3MYPPoDCQli6FLp0gYkTKWrVncn//V/EStMFa3ZYllG8vEcuMxZvNqyPC5AdyOD+y7o5vvdmbrUm2QEOBKsMPwOraCQBliuF9T7o/TT6X3Hzv6QidBRm+Cb0QohXgHOAZsB2YEzo7+5oRuRG4KYw4b8TuB6oAEZIKd+1a0RNEHq/rTAz8fGar9zsfJlCxCTvcnJcNDlZAcYONBH4pUs1gf/gA80tc++9MHgwRSt+9DRy0DM9jrComevm3nconGso2gJ45MruhiLq5L5kBTJpGMgwnDswSlHs5X8l0da/eojUbHy16BNNTRB6v4XZSnx0C9yt1WcmqlbCYNYOvS2W1123TnPRvPYaHHWU9vpPf4IGDQDnDxEjNk4aQHub0n2ZQlAlpe298fLZxeveMsLL/4rf/3fhKBdSzcep0KsUCCY4dY14jZSwy13vNpeOvs1tXVRPlZC2bYPx47U0BfXrawJ/++0xGSW9irxA679Zyggd/T27e+O0clU40Unh/MDL/0oiI3SSmWRPkVpUCgQDjOKr3aSrdUKfTs1jzumk2pFdrLWTuqjhuIoW2rtXi3s/9lhN5IcP19IG33uvYdpgrzl89LS+V5/WxvExVvfG6/oFPW+/1cK4nKyA49TGjbMCrmsRJDJCR4V51h2URW+Akcg6qRPqlKLiEmYtLYk4pwAu73E4xt7tl9CuRqyZMDgq33fgADz1lBYPv3s3XHWVJu7HHmvYDv1c8TgFt5aWV0fXTPvyB5x4GK0Eyuv6BbuSjGMHdq7ezyq1cSBDsP9QRXWUj9PqW15GI05Jp4poisSihN4AK8HQJ9niKQ1n9iBZsObwegK3X0I7QbJzUxj2o7ISXnqJstF3kv3jVj5pn8fzv7+PQddfQsGxsfs79WuH+9b3H6wwDHHU+zmhoCsTCrpGPEAyTFw6iRAou5KM+n2zS21cdqgiZtK2PFjJba8tNzxex2kdXS8k8iGiSC+U0Btgl7As3okwJ9a62y+hU0Gyo6i4hMnvreHEJR8zeuFLHL19I+tbHc/Eq+7ji3YnAbDIwBItKi4xnB+IJnqyz2xNQJ9OzSOOC38YmU0iJmpxmtkchl3K4vD3O5hMLFulhA4/FxwWe91FFa/YJ/IhokgvlI/eADu/bLw+TDu/q2696sVBwN6v3DBg/FHaCVI4RcUlvP7oKzz65C0888a9yGCQPw8qZOA1D1WLPMT6w3XhtRJ5s9KKZqObWUtLTH3YBXm5XN4jt/reZAoR4fbyE7P/hf0HK1wlIbMabdjNvagkaIp4URa9AVYRLBC/i8DKWo+2VvXiIFaW1uBnvohJEQzaU9yxlfvNNzT7/Y1MW7OI7Uc0ZXS/v/B61/OoyDT+Fwl/2Fm5jcDb6lwrt4Y+x6F/NpVSMmtpCfntmiasJOO4t1ZFuF5Ky4OOfOw6djmHrIyHREXHeKmSpqiZKIvehIK8XB664qSE5K+xigJxG21TVFzCwg3GyUWNEwdHsWkTDB0K3brR7fuVPHD2UM4ePoVXul9oKvIQ+bCzm9OIdsOA/cMBDrs1oi3XZGd/LMjLJbt+7L1wc039MzeLRLIyHhIVHaOyaNYdlEVvQSJ9mGYToG6/1GPnWKfuNbXQdu7UomieegqEgNtu44qsXqw5FJvwzCiPju660FMUW81pGFnbTkXKyHJNRVigH9fU++B2fiFR0TEqvLLuoCx6GwrycllY2Dci93oicRM3XVRcYpr8SyfGQtu3TwuNPPpoeOwxuOYabYXr5Mn88dJTDEcwg3u2pUl25ANAd10UFZfYzmkY+fQzXMTYRwuPk3tkVlDEbLsdfsWze4npT1RmVJVFs+6gLPo0w020jdMhdklpOQSD8Mwz2orW7duhoECz6E88sXo/qxHMgjU7DMMDJ89bW+1/t1pFGl6W0G7iNppo4bG7R3cVrYwo0K37npds2h0R3+7GJ+1nKKJdTL9R6ouJl3X1fWSpwivrDkro0ww37iInQ2whq7h49afsO/pmjtiySSvEPXs2nH666fW9uJT04+wKsJj55jOF4OrT2sQsNDISHqt7VFRcEiHyOuXBSl75crOr9BBOr+knZhOkEy/rGndum2hUeGXdQQl9GuJ0FaeVbxwpOWtjMaM+nkqX7Rv4X4sOTBl6P7NadKXVx+WMbKi5LJx+yZ36ie2sRLMHRpWUTCjoGrPQKFzAo7cbCZ9VMXS36SGi8aM6mB3Jzj+TjD4pUo8SehP8SN+a6BSwZiF73bb9j1Efv0CvTSvY3LgFIy6+jTdPPBsptCkZvdg2kuqc734lBivIy2XJpt3V1rMe4w5aJkYzEdYfGEbC4yYM0Eq0zZKkpZNPWk2QKhKBEnoD/Igv9itG2ephET30Pi24kxvee5bzv/2UXVm/Yuy5w5ne/SIO1YuNpIkuvg3WlqPTYb5RjPuMxZuZ8dVmw2uCvV/YjZVrNvIQ4Ng1lEpU/hlFIlD56A3wIwe4H+dwnC9861a+/7+/06boFQ5m1ueZUy/lmVMuZX+DbEfXCcesIpVT3Oagd5IzyCpnfm5OVsSDB2LDFwUwOFSCMN0Lbagc8Qo3qHz0ceDH8Dnec5jljomwZEtL4YEHqHj0UXIPVfBy9/48ccaV7GzUpDpVbq5F4jAjWuVkxSWGbl0MVg89vR1WhVH0h0r4pKVVhEq6+6TVBKkiESihN8CP4bOTwiJmX2a7EMRdO0ph8mSYOBH27GH+Sedyb8+r2Zzzm+p9wpOvGVmJgUwR4aMHTTjbH5UVl8vJcoI4ivBVotH3wyjVbzhGi7jCwz3TXRiN+mtVY1ahiAe1YMoAPxaoWJ3DLkmVaQhiVSW/W/FfPn72j/D3v8Npp0FxMTddeGuEyOuEhz5GJwG78pQ2XHlqm4giGRJYuGF3XMvi7RZPhVMpJUXFJXQf919GzFgWcT+mLfrBVORzc7JMrfyaMGlp9Pm/vOgHlbRMkTCU0BvgtSKR03PY5RiJESspueB/X/Dec39h8ruPEWiTCwsWwLvvQvfujrJhGiUBm7tim+PiIG5CEMP7bVVlqkl2gNFvrDR0K1m5axYW9iW3Bq/qdJLnR+WcUfhJnXDdePE5++HL9br4KNz9cermbxj10Qv02LqGDU1b8+XkKZx22x+0/DQh7LJhmvn63RS+lkD7wrnVC5v06k92/TbLww4gJa6Lb+tCXpNXdTp9aNaE0YmiZlDrhT4dU7Ha+e9H9uvI80/P4a8fPkff75aw7YijuOOiW/jvKReya2cVjce/jxBQWhaMWCI/ds6qauu4YSCjesm/m3QDdlRKycuLfgCwFHu7vuZkBdhrM0Ec7YcPF/JkT1r6Ga3jdB6jJoxOFDUD2/BKIcRzwMXAT1LKLqFtTYEZQHtgI3CFlHKPEEIA/wT6A2XAMCnl13aNSGR4pVWY48h+HWO+vJD8Ze4QFkKXcwjuuQc5bRq/NGjEUz1/y+xel7FbZlrGoV/eIzdm8tJowjKcnKwAByuqXFvVoLlkNkzsb7ufVV+tcuPofUqHCUq/Qx6dlFxUIZUKJzgNr3Qi9L2BfcCLYUL/D2C3lHKSEKIQaCKlHCWE6A/8H5rQnwb8U0p5ml0jEin0VjHYWYHMmALOiMjFRPF+4cwswejtd57ajP5vPgtPPw2ZmXDLLVBYCE2aOIpNN1v1aYYAHrmyO3D4wZaTHWDfgYqISBwrNobF29tFEZndAyPBa5IdYMwlndNG5Mzuf3jtW7cPIRV1o/AD3+LopZSfCCHaR20eBJwTej0V+AgYFdr+otSeHouEEDlCiJZSym3Om+4vZsPkTCFiBMZI4OLJM2LnNirIy4VffoGHH4ZBD0JZGVx/PYwZA61bV5/Hia/WrXtG39tsROPkwaLjpJ/xrLZNNWb3X7/nXtyB6R7Pr6hdOFoZGxL6t8Ms+lIpZU7otQD2SClzhBBvA5OklJ+F3vsQGCWltDTXE2nRmw273bgrnK4WLSouiSg5Z+Y6yc3JYuHfzoR//1vLDb9jB1x2mZY2uFOn6nPpApjhwFrPEODQEAeM3Tb66AVgxIxllsdnBzK4rEdrFqzZYfpQiLeIuhGpWNnqdLVvIvqrUFiRtJWxUkophHA92yeEGA4MB2jbtm28zbCkQb2MakHT3QJOrFYdJ5NiRcUljJy5PMLtY3RThKwi//N34Zkb4bvv4JxzYNIkLSY+7FzRdWNtkdoiqPDrBzIEGRmCgxWRRQWzApkIERvxUh6sZOycVTH7G1EWrKqelDXDTSoEJ6RqYt2u3qtOPFEy6Z6aQVGz8RpHv10I0RIg9Pun0PYSoE3Yfq1D22KQUk6RUuZLKfObN4+tKeoHujCEx2kfCBXRNlrYE8gQ2orRMJyG7E2et9Z0shQAKTn7u6W8/cII/vnWg3DkkVoc/Pz5ESKvn8vtBGkV2tyC7lLJyQqAIEa0c7ICTLysK6VlxhEvpeVBT5OzRgjwddFPqmqcOl0b4DVKxm4BnUIRL14t+jnAUGBS6PebYdv/IoR4FW0ydm8q/fNWwhBeFcmPqBsra6771rWM+vgFTv9hJZtzfsOS+x4nv/DPkGH8nI3HMqyUstpiN3rw/HKgAnCXqsArErjtteWAPxZ3KlP4hvvUzdyBTgwCI8s92TnoFXUPW6EXQryCNvHaTAixBRiDJvCvCSFuADYBV4R2fwct4mY9WnjldQlos2OshMFJ+l83GAnnMbs2c/snL3HR/z5nR3YOY8//I/LGGxn3u5Ndn8sNVouhKqVk9BsrDcMxE4F+PYhP7PU6s4nMJ+/UfeJ1EtnM9WT2GagFUwq/qNVpis0m0awmIuMJo9R99C1+2cmIz6ZzxcoPKA80YMqpl/Fs/iD2N8gmkCE4omG9iMVOdoU2EoEQcMbRTVm4YXfCrhFOTlaAZWMu8HSs1f3wK948GemBrcI0jR5ganJXYYfTydhanevGLLGY2URkPL7egrxcHr2gHWM+m8rHU4Zz+TfzefHkAZw9/Bke63V1dW74YJVkT1nQ1BerW5XlwUrLPDF25GQFLJOLSYnvIp+ZYd7e0vKgZ5+zVZ1Zv4Q4Gf5/qzDNeJPoKRRW1GqhN0ssZjYRWVJaTofCufSaNN+dKJWXwwMPMKDgTK77fCYNr7qC+uv/x/jzbmJXoxzrQ8PEJHxSDowFwAkCGDuwc3UJPy/o98wpTbIDPPS7kywfTuH97DVpvuN7bVVn1i9r2+waJSE3nx+YuZj0/8t4kugpFFbU+lw3RgtTrEIrwy1t/XhTKirg+edh7FjYuhX692f+kBHc/X0mW//9raP4dzj8gDHaX7fsjc5j5ILSqykV5OUy7q1Vttc2Q1+p6WSuICuQGbGS1SwGX58bcRsimejyelb+f8C3EM4+nZobhqT26dRcLaBSJJRabdGb4SRnuuWwXUp44w3o0gWGD4e2beHjjymaMIWbv6msDpNzs1rVan+zof3YgZ1jLMFHruxeXTJvj8nIxQmzlpbQp1NzhyMKyYgZyzhm9DuMmP7T7WoAABBPSURBVLEMMw9Oq5wsTy4SP+oDmGFX5MVJ+5yyYM0OV9sVCr+o9Ra9EdFRE66KWHz0kZaD5ssv4YQTYPZsGDQIhGDypPkJmUA1S8BmFSUUrzCVBytZsGYHl/fI5ZUvN9sIoRarr+9jtEJXF+ZbLax9MxKZKsHpmgU/ImBSGR6qqNvUSaGHSJeOWTREhGtg2TIYPRreew9yc+HZZ2HIEKin3cKi4hJLN4fbtAvhx+miZiRsZiGBduLRJDtga/GXlJbHlebYKOmXmdvMzg2TKNeGU5H1w03kxAWlVsgqEkGddN1EY+ka+O47GDwY8vLgyy/5ZsRd9LnpGTr8rwW9HvyEouISLbTy9eWm5zeabHv0yu6mVZIyhaje7/IemjgaTVxarai0EqZHr+xO8T0XmF5fJ8MgOskNVVLy/aQBETVcE+mG8YITAferfXZ9VytkFYmiVsfRuyHakrorvykXvfmslnisXj0YMYK5F17D7e//EBNrDbLafRGNVSy2Uey2nggt16RAdniedqtkYrqbxDSpmknRcJ3ovDleMIsDTyer1bBwuoO1DvFcz6zvVrUTVDy9wgjf8tEng3QQ+mp+/hkeekj7OXAAbrhBSxvcqpXjLIbhPHpld0uR0L/4JaXlMdkuzbJf2hUU0bNttjcp46e/X1RcElGVSs+AmZuTxf6DFYa1XOGwS8Yqf72TxUbpIvjp0g6z2glOs6cq6h5Jy15Zazh4kBV3TaLN04/QZP9e5nfpTdX4eznv0t7Vu3iZNDMqMhI9kVqQl2v4EDETc7tHs+6OyLXwCRtZsg3qHRZnq1qvD11xUkxRkZLS8uow0FwHYplOJR7TJbQx0WGkirqLEvrKSpg+nf2Fd9Jt62YWtuvGA5cPY0XL48n6uoyJ7UuqRcBtDpom2YGY9MUlpeWMnBmb6MuvyItwn69VAW2zMMcRM5axZNNuy1qv4e32KpLpmMgr1ZZ9TS54rkhv6q7QS6mlCR49GlasYEurY5lwxXg+bZ+nJYIhVnic5iUHzcc95pLOjHtrVYyvO1gpufW1Zdw6Y1m1oPiRTVIIItwl4WGJusWt98nqWi8v+oFexzRl9/5DMaIzdmBnR22xE814Qw39FuVEjDDctrGmVNxS1Dzqpo9+0SIYNQo++QSOOQYmTODo4kZUidggpGj/aPiX1+rO6b55Mz95OGbFvb2w0cCX6yVJWqYQPHTFSZ5Ex0mCMKv5jpysAGMHmteMTUQCMr8nQpORJE2hUEnNjFi9Gi69FE4/HdasgSeegG+/hauuomWTRoaHRPtHC/JyWVjYl+8nDTANT9S395o031Gz9MVJTopb2BEdftlr0nxGzFjm+gFSGcojo/c1PETSDierX61WJ5eWBxn5+nLTsMJEJCDzezFTqoqkKBRG1A2h37xZi57p0gU+/FCr07phA9x8M9SvD3iL7zY7pk+n5hHJyZywtbQ8QlgfuuIkFx08jB53HZ0gzS3xZM50Ipp6wjmz6wSrpKkoJmKFqdmEp9eJULUKVpFO1A2hv/9+ePll+OtftQVQd90FRxwRsYtZpks7K7Zh4PAt1Mv0LVizw7UF3TgrENOeJtkBk73N0a1GL+UIw+l5dBPPx5qJo4SIRV8FeblUWbgOzUTRb1EG/xdyJaKNCoVX6sZk7NixWn6adu0sd3MTQWLkg9Xrs3qx2krLg9xVtJIJBV2rt425pLOnAiR+WI0bd9mfIzoOXy+8PrJfR0a+vtwwvj56ktNqEtpMFBMRneL3RKiKoFGkE3VD6Fu08P2UVuGJXpm26Afy2zU1jJqxm/wNRxdIK7dNk+wAP5dXmOaxsXtY6GkfwsV8T1mQ215fztWntsEqmX14NFP7o4yFPkNgKoqJik7xM55eRdAo0om6GXXjEacRN/FgFeXhZGWuHtkB2JbfW7Jpt2F+dLt22LVFX2FrhQAeubK7aZqGeEoPKhR1BbUy1keiXRRuyckKsP9QhaPcMVaWtJE7IJApaFS/HnvLjfOyRMfMZwrB5T0OW67TFv0QI7SBTGHrYrBqp53Iw+Hc9Ga77vV4r2sjqV7Ipaj5KKG3Id5C3QJYNuYCxw8Lq8k6L+6AskMVEX9XSsmspSXkt2tqKrSN6tezFZJ4FnjZ5abXz69Ir1QRipqLEnob4o1eyRCCDoVzaZWTVb2q1GxlqpPJOjs/8l1FKx0UCqmsflgYEW1NG1mUI/t1tJyPMEvQFp4Hx+w+CMz9827wwxJOtTWdjqkiFDWPuMIrhRAbhRArhRDLhBBLQtuaCiHeF0KsC/32HqeXRMwKVscbwVIpZUwd2oWFfdk4aUB1Tnq/CkLfVbSSlxf94KhQiC5cRmQIUd1/sxzpANf0bGt6fsnh+Vi9xOHGSQOq8+x0KJxL2aEKAlF1B8Nr3saDH7nd0yE/vIrHV/iBHxZ9HynlzrC/C4EPpZSThBCFob9H+XCdhGE1PLZzUdilDA4n2hLzO2viNJOJVSN069TILVUpZXXiNSuLcmFh32oXkNE90i14fVI3OlJnT1mQDKHNYZjNMXjFD0s4HaxpldFS4QeJWDA1CJgaej0VKEjANXzF6gttV0jcSOSt9ndriZmNNIz2cxMJpAvqxMu6GhbzDlZqBb/NHnJ6P/TVvGbRlOH9HTtnVUxsfZVMzMSrH5ZwOljT6VaRS1EziVfoJfBfIcRSIcTw0LYWUsptodc/Av4HsfuM1Re6IC+Xy3vkWoWFR6CvjjXLg+PGEnPjOnCTQyU81bC2OtXxodVE98PJSlCziWgZ+vHTNeLHytR0WN3qdcW2QhFOvEJ/ppTyZOAi4GYhRO/wN6UWpG8oI0KI4UKIJUKIJTt27IizGfFh94VesGaHY2u5UQMtYmVkv44x/udAhn3YYjhuEmM5tTLdpBq2Okd0P6wsT31U4gS/En/5YQmnizXtNbmcQqETl49eSlkS+v2TEGI2cCqwXQjRUkq5TQjREvjJ5NgpwBTQFkzF0454sVuu7nm4Hz0MiPo7npzt0cfmZAfYUxZrMTeol0GmgLJQTdsDFZUs2bQ74jo5WQFHawQEmPrRzUI/wXzhlhl+uEb8WJmqVrcqagueV8YKIRoBGVLKX0Kv3wfGA+cCu8ImY5tKKf9uda50WBnrpWizEfrko11+83hytjfJDnAgWBVT0BpBxKKsrEAmJ7dtzMINu2POcU3PttV5dYzSGZi12y1e6uyqYtgKhTOSkY++BfCZEGI5sBiYK6V8D5gEnC+EWAecF/o77bEaHttNyOo4GQXo28e9tcpTzvasQCZSEnNssEoSrJTVaX91X+6i7/YYtuOVLzdXvy7Iy2Xy706qnleIHog4cVd4CU9tkh2IcW+piUaFwn88u26klN8BMUnTpZS70Kz6WoOVW8JsFGAVFldUXGLoZoHYnO1G17BaUVopZbVYFuTlmi5qio61Dw/1dLtIyEt4avjIRrlGFIrEopKaJYi7ilbG5JHRXTNWNVuduC2cuEP08xwz+h3DBVSZQrBhYn/bfjjByk1lNv+hIkcUivhRpQRTSFFxCbOWlsSkANCTidklLrPDiStJv8bVp7UxfN9suxfswlNVeKBCkVpUrpsEYBQWKdHCNMHcnREe325FuEvHrmiHPuGq57/JFIKrT2sTUeAkXuxWb/q9AlihULhDCX0CsJuINXNnuIlv18XTLHonfGQwoaCrr8IejVFFKbdrBhQKReJQQp8AnFi44E98dtrEetusGVAoFKlDTcYmACcx8rUJuzUDCoUiMagKUykkbazsJJEOyb8UCoU5SugTRF2YgNRj4M3GhCqVrkKRHiihV3jCrsSiWuGqUKQPSugVnrAqsZhby11VCkVNQwm9whNm/ncBagJWoUgz1MpYhSfSoSiHQqFwhhJ6hSfSpSiHQqGwR7luFJ6oayGkCkVNRgm9wjN1IYRUoagNKNeNQqFQ1HKU0CsUCkUtRwm9QqFQ1HKU0CsUCkUtRwm9QqFQ1HLSIk2xEGIHsMnj4c2AnT42J12orf2C2tu32tovUH1LV9pJKZvb7ZQWQh8PQoglTvIx1zRqa7+g9vattvYLVN9qOsp1o1AoFLUcJfQKhUJRy6kNQj8l1Q1IELW1X1B7+1Zb+wWqbzWaGu+jVygUCoU1tcGiVygUCoUFaS/0QoimQoj3hRDrQr+bmOz3nhCiVAjxdtT2DkKIL4UQ64UQM4QQ9ZPTcntc9G1oaJ91QoihYds/EkKsFUIsC/38OnmtN2znhaH2rBdCFBq83yD0GawPfSbtw94bHdq+VgjRL5ntdoLXvgkh2gshysM+o38lu+12OOhbbyHE10KICiHEb6PeM/zfTAfi7Fdl2Gc2J3mtThBSyrT+Af4BFIZeFwIPmOx3LnAJ8HbU9teAq0Kv/wX8KdV9ctM3oCnwXeh3k9DrJqH3PgLyU92PUFsygQ3A0UB9YDlwYtQ+fwb+FXp9FTAj9PrE0P4NgA6h82Smuk8+9a098E2q+xBn39oD3YAXgd86+d9M9U88/Qq9ty/VffDzJ+0temAQMDX0eipQYLSTlPJD4JfwbUIIAfQFZtodnyKc9K0f8L6UcreUcg/wPnBhktrnhlOB9VLK76SUh4BX0foXTnh/ZwLnhj6jQcCrUsqDUsrvgfWh86UL8fQt3bHtm5Ryo5RyBVAVdWw6/2/G069aR00Q+hZSym2h1z8CLVwcexRQKqWsCP29BUinBOpO+pYLbA77O7oPz4eGl3enWFjs2hmxT+gz2Yv2GTk5NpXE0zeADkKIYiHEx0KIsxLdWJfEc+/T+XOLt20NhRBLhBCLhBDpZBx6Ii0KjwghPgB+Y/DWneF/SCmlEKJGhQkluG+DpZQlQogjgVnAtWjDUEX6sA1oK6XcJYToARQJITpLKX9OdcMUlrQLfbeOBuYLIVZKKTekulFeSQuhl1KeZ/aeEGK7EKKllHKbEKIl8JOLU+8CcoQQ9UJWVmugJM7musKHvpUA54T93RrNN4+UsiT0+xchxHS04WqqhL4EaBP2t9G91vfZIoSoBzRG+4ycHJtKPPdNag7fgwBSyqVCiA3A8cCShLfaGfHce9P/zTQgrv+psO/Wd0KIj4A8NJ9/jaQmuG7mAPps/lDgTacHhr5kCwB9Rt3V8UnASd/mARcIIZqEonIuAOYJIeoJIZoBCCECwMXAN0losxlfAceFopzqo01IRkcrhPf3t8D80Gc0B7gqFLnSATgOWJykdjvBc9+EEM2FEJkAIevwOLRJy3TBSd/MMPzfTFA73eK5X6H+NAi9bgb0Ar5NWEuTQapng+1+0PycHwLrgA+ApqHt+cB/wvb7FNgBlKP54/qFth+NJhrrgdeBBqnuk4e+XR9q/3rgutC2RsBSYAWwCvgnKY5UAfoD/0OzfO4MbRsPDAy9bhj6DNaHPpOjw469M3TcWuCiVH82fvUNuDz0+SwDvgYuSXVfPPTtlNB3aj/aCGyV1f9muvx47RdwBrASLVJnJXBDqvsS749aGatQKBS1nJrgulEoFApFHCihVygUilqOEnqFQqGo5SihVygUilqOEnqFQqGo5SihVygUilqOEnqFQqGo5SihVygUilrO/wNIdr7cUZaZzQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJztnXl4VNX5xz8nYYAELQGhFMLqBsoikagoioILCgpRW5eigFqxrf1ZrFKCG4soWNzq2mJdUEFRkIiiUhXcUEQwLCJQQEEIiGxBIQEmyfn9ceeGWe4+d5Yk5/M8eTK5c5dz7mS+9z3vec/7CiklCoVCoai9ZKS6AQqFQqFILEroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOfVS3QCAZs2ayfbt26e6GQqFQlGjWLp06U4pZXO7/dJC6Nu3b8+SJUtS3QyFQqGoUQghNjnZT7luFAqFopajhF6hUChqObZCL4RoKIRYLIRYLoRYJYQYF9r+ghDieyHEstBP99B2IYR4TAixXgixQghxcqI7oVAoFApznPjoDwJ9pZT7hBAB4DMhxLuh90ZKKWdG7X8RcFzo5zTg6dBvVwSDQbZs2cKBAwfcHqrwkYYNG9K6dWsCgUCqm6JQKDxiK/RSS1i/L/RnIPRjlcR+EPBi6LhFQogcIURLKeU2Nw3bsmULRx55JO3bt0cI4eZQhU9IKdm1axdbtmyhQ4cOqW6OQqHwiCMfvRAiUwixDPgJeF9K+WXorftC7plHhBANQttygc1hh28JbXPFgQMHOOqoo5TIpxAhBEcddZQaVSnqPEXFJfSaNJ8OhXPpNWk+RcUlqW6SKxwJvZSyUkrZHWgNnCqE6AKMBjoBpwBNgVFuLiyEGC6EWCKEWLJjxw6zfdycUpEA1GegqOsUFZcw+o2VlJSWI4GS0nJGv7GyRom9q6gbKWUpsAC4UEq5TWocBJ4HTg3tVgK0CTusdWhb9LmmSCnzpZT5zZvbxvsrFApFSpg8by3lwcqIbeXBSibPW5uiFrnHSdRNcyFETuh1FnA+sEYI0TK0TQAFwDehQ+YAQ0LRNz2BvW7987WR9u3bs3Pnzrj3UShqM+noItlaWu5qezriJOqmJTBVCJGJ9mB4TUr5thBivhCiOSCAZcAfQ/u/A/QH1gNlwHX+N1uhUNQ2dBeJbj3rLhKAgjzX03y+0SonixIDUW+Vk5WC1njD1qKXUq6QUuZJKbtJKbtIKceHtveVUnYNbbtGSrkvtF1KKW+WUh4Ter/G5jbYuHEjnTp1YtiwYRx//PEMHjyYDz74gF69enHcccexePFidu/eTUFBAd26daNnz56sWLECgF27dnHBBRfQuXNn/vCHP6AFIWm8/PLLnHrqqXTv3p2bbrqJyspKsyYoFHWGdHWRjOzXkaxAZsS2rEAmI/t1TFGL3JMWuW5sGTECli3z95zdu8Ojj9rutn79el5//XWee+45TjnlFKZPn85nn33GnDlzuP/++2nTpg15eXkUFRUxf/58hgwZwrJlyxg3bhxnnnkm99xzD3PnzuXZZ58FYPXq1cyYMYOFCxcSCAT485//zLRp0xgyZIi//VMoUkBRcQmT561la2k5rXKyGNmvo2NrPF1dJHr7vfYrHagZQp9COnToQNeuXQHo3Lkz5557LkIIunbtysaNG9m0aROzZs0CoG/fvuzatYuff/6ZTz75hDfeeAOAAQMG0KRJEwA+/PBDli5dyimnnAJAeXk5v/71r1PQM4XCX+J1vaSzi6QgL7dGCXs0NUPoHVjeiaJBgwbVrzMyMqr/zsjIoKKiwvWKUSklQ4cOZeLEib62U6FINVauFyciObJfx4gHBdQ8F0m6opKaxclZZ53FtGnTAPjoo49o1qwZv/rVr+jduzfTp08H4N1332XPnj0AnHvuucycOZOffvoJgN27d7Npk6NMowpFBOkWoRKv66UgL5eJl3UlNycLAeTmZDHxsq412pJOF2qGRZ/GjB07luuvv55u3bqRnZ3N1KlTARgzZgxXX301nTt35owzzqBt27YAnHjiiUyYMIELLriAqqoqAoEATz75JO3atUtlNxQ1jHSMUPHD9VLTXSTpigiPBkkV+fn5MrrwyOrVqznhhBNS1CJFOOqzSD96TZpvKKq5OVksLOybghbFPnxAc70oqzxxCCGWSinz7fZTFr1CUQNJxwiV2hCdUltRQq9Q1EDSNUJFuV7SEzUZq1DUQGrDIh5F8lAWvUJRA1FuEoUblNArFDWUVLlJ4ln9qkgNSugVCoVj0jGsU2GP8tH7QP/+/SktLbXc55577uGDDz7wdP6PPvqIiy++2Ha/c845h+gw1WgeffRRysrKPLVDEUm6LVhKBumaeExhjbLo40BKiZSSd955x3bf8ePHJ6FF9jz66KNcc801ZGdnp7opNZq6atmmY1inwp5aY9Enwrp6+OGH6dKlC126dOHRUL6djRs30rFjR4YMGUKXLl3YvHlzRMGQe++9l44dO3LmmWdy9dVX8+CDDwIwbNgwZs6cCWgFRsaMGcPJJ59M165dWbNmDQCLFy/m9NNPJy8vjzPOOIO1a62tpPLycq666ipOOOEELr30UsrLD3/Z/vSnP5Gfn0/nzp0ZM2YMAI899hhbt26lT58+9OnTx3Q/hT111bI1C99MdVinwppaYdEnwrpaunQpzz//PF9++SVSSk477TTOPvtsmjRpwrp165g6dSo9e/aMOOarr75i1qxZLF++nGAwyMknn0yPHj0Mz9+sWTO+/vprnnrqKR588EH+85//0KlTJz799FPq1avHBx98wB133FGdGdOIp59+muzsbFavXs2KFSs4+eSTq9+77777aNq0KZWVlZx77rmsWLGCW265hYcffpgFCxbQrFkz0/26devm6Z7VJeqqZasSj7mgshIyM+33SwK1QujjzZpnxGeffcall15Ko0aNALjsssv49NNPGThwIO3atYsReYCFCxcyaNAgGjZsSMOGDbnkkktMz3/ZZZcB0KNHj+p0xnv37mXo0KGsW7cOIQTBYNCyjZ988gm33HILAN26dYsQ6Ndee40pU6ZQUVHBtm3b+Pbbbw0F3Ol+iSTdojictMfpgqWa2DcrVFinA9auhTvvhCOPhOefT3VrgFoi9Mm2rnTxjwc93XFmZiYVFRUA3H333fTp04fZs2ezceNGzjnnHE/n/v7773nwwQf56quvaNKkCcOGDePAgQOe90sk6ebrdtoeJ5ZtTe2bHWr1qwklJTBuHDz3HGRlwahRICUIkeqW1Q4ffSL8hmeddRZFRUWUlZWxf/9+Zs+ezVlnnWV5TK9evXjrrbc4cOAA+/bt4+2333Z1zb1795Kbq32BXnjhBdv9w1Mhf/PNN9VlDH/++WcaNWpE48aN2b59O++++271MUceeSS//PKL7X7JIt183U7b4ySlbk3tWzpQoyKa9uyBwkI47jh44QW4+WbYsAHuuistRB5qiUWfCL/hySefzLBhwzj11FMB+MMf/kBeXh4bN240PeaUU05h4MCBdOvWjRYtWtC1a1caN27s+Jp///vfGTp0KBMmTGDAgAG2+//pT3/iuuuu44QTTuCEE06ong846aSTyMvLo1OnTrRp04ZevXpVHzN8+HAuvPBCWrVqxYIFC0z3Sxbp5ut20x47yzYd+hbuqjHLU5tu8wrpNhIypbwcHn8cJk2C0lIYPBjGj4cOHVLdshhqTZridPGF7tu3jyOOOIKysjJ69+7NlClTIiZJayKJTFOcbul2/WxPqvtmlDbYiFSmNjYi1ffNlooKmDoVxozR3DX9+8P998NJJyW9KXUuTXG6+A2HDx/Ot99+y4EDBxg6dGiNF/lEk6woDqeGgJ/tGdmvIyNnLidYediYCmSKpEWoGLlqoknHiJl0GAkZIiUUFcEdd8CaNdCzJ0yfDr17p7ZdDrAVeiFEQ+AToEFo/5lSyjFCiA7Aq8BRwFLgWinlISFEA+BFoAewC7hSSrkxQe1PO3SfucIZyYjicOMK8L090QPmJA6grYRRQNpGzKRlCuaPP9b88IsWwQknwOzZMGhQ2vjg7XBi0R8E+kop9wkhAsBnQoh3gb8Bj0gpXxVC/Au4AXg69HuPlPJYIcRVwAPAlV4aJ6VE1JAbWVtJhmsv0aMxt+G3frVn8ry1BKsi71+wSsYV9usGM8FMGxeICWkVq798OYweDe++C7m58OyzMGQI1KtZzhDbqBupsS/0ZyD0I4G+wMzQ9qlAQej1oNDfhN4/V3hQ64YNG7Jr166kCI3CGCklu3btomHDhqluSlxRGKlyBaTaBVFTc9anRZHw77+Ha66BvDzNiv/HP2DdOrj++hon8uDQRy+EyERzzxwLPAlsAEqllBWhXbYA+qeQC2wGkFJWCCH2orl3drppWOvWrdmyZQs7duxwc5jCZxo2bEjr1q1T2oZ4ozDMLFuJNvGXKPdFql0QNXlxU8rm3H76CSZMgH/9SxP0UaO0n5yc5LfFRxwJvZSyEuguhMgBZgOd4r2wEGI4MBygbdu2Me8HAgE6pGGYkiL5xLvy2cgVoJPI0D2/XBDxRJSlS5BC2vPLL/DQQ9pPeTnccIMWVdOqVapb5guuFkxJKUuBBcDpQI4QQn9QtAb0sXQJ0AYg9H5jtEnZ6HNNkVLmSynzmzdv7rH5irpAvC6QcFeAEYlYNKSLc3mwksyQ59KLC0IfzZSE4uD1B1NaLyCqSRw8CI89Bscco61qvfBCWLUK/v3vWiPy4EDohRDNQ5Y8Qogs4HxgNZrg/za021DgzdDrOaG/Cb0/XypHe63Ci788Hh+7HyufC/JyWVjYF7PJIj/95uHiDFApZbUl79a6rkmrWWsUVVUwbRp06gR//St07QqLF8Prr0PH9J7D8IITi74lsEAIsQL4CnhfSvk2MAr4mxBiPZoP/tnQ/s8CR4W2/w0o9L/ZilThxcKM1yr1c1IxGWl2/RTnVE/o1jqk1CJoTj5Zm2xt0gTmzYMPPoBTTkl16xKGk6ibFVLKPCllNyllFynl+ND276SUp0opj5VS/k5KeTC0/UDo72ND73+X6E4okocXEYtX+PyMwkhGJIqf4pyTHTDcrvK/e2DRIujTR1vJum8fvPIKLFkCF1xQY+LhvVLz4oQUKcWLiPkhfH5NKiYjEsWvaJui4hL2HaiI2Z7M1bW1gjVrtNWss2fDr38NTzwBN94I9eunumVJQwm9whVeRCzVYYbRJDoSxa9oG6MFVwCN6tdTkTRO2LIFxo7VcsI3aqQlHLv1VjjiiFS3LOkooVe4wk7EjEIBU7XSMVWJ7vwaNZiNePaWWxekqfPs3q1llHz8cW3S9ZZbNIu+Dkf3pW32SkVqcCKOZvsYZUvMCmQy8bKuQOLcJUbtAUzbkg7WsJP7nPZZHH3CtwdyWZkWKvnAA7B3L1x7rRYy2b69721OF5xmr1RCr6jGSqidfPFSIUxmbW5QL4NSA8s3EW1xK1RO73O8n0dNwJc+VlRoVZ3GjYOtW+Hii7W0wV27JqjV6YNToa8VFaYU/hBvdEwqQgHN2mwk8oloi5fQUT+rWHlpbzpVborrf05KmDULOneGm26Cdu3gk0/grbfqhMi7QfnoFdXEK9TxTLqauV/sLGW3wu33BLCX9AxO7nP0/Xjkyu5xW/HpWLnJ8//cggVa2uDFi+HEE+HNN+GSS2p9mKRXlNArqok3OsbrpKuRAI2cuRwk1VEnZqJk1uYm2QEOBKsSPgHsRqh08TZzlur32UyQl2zazdwV29hTpo1WcrICjB3Y2bFIO30oJXMS2/X/XHGxljZ43jxo00aLqLn2WsjMNN5fASjXjSKMeBcTeXU1GAlQsFLGhBZGD+mLiksoOxQbZ54VyGTMJZ2TkurW6Urb6LQIRm0OH8UYCfLLi36oFnmA0vIgI19f7tj94uShdFfRSm6dsSxpuXUc/89t2AC//722ovWrr+DBB+F//4Nhw5TIO0BZ9Ipq/AgL9BKj7sb9ou9rVg812sr1W9ijrd0+nZoza2mJbbipmcCD9hAKv89u7oebQiZ21nNRcQnTFv0QM+JwkynULbb/c9u3w733aknGAgEtTPLvf4fGjX1vS21GCb0iglSktTUTILN9wbweaqMG7hYTuXFTGLlUZi0t4fIeuSxYs8NRuGk0AmKigNzcD3D+YLBzrVm5lazmD+J17Rj+z/38s2a1P/wwHDigrWS95x5o2dLzdeoySugVKcdIgAKZIsJHD4dFqai4xFQI3VjDbicnzVwqC9bsMAzZdFKcu3FWbC4bo/shMC8363QOxc56trp3dvMH4eePi4MH4emn4b77YOdOuOIKrRDIccfFf+46jBJ6RcoxEyCzbbqwGOEmqsZtxIzbCBEnD539hyooKi6JuJ7R/ejTqTkzvtpMsDJS7gMZ7vLeWI3YzEYSAmznD+J27VRWammD77kHNm2C886DiRMh3zZEXOEAJfSKtMBMgIxWi5pZyYFMQZ9Ozek+7r/VcfRNsgOMucQ4MsWtQLuNEHHigglWGvvYje5HfrumjHtrleeoGzvMRhKDe7a1tfo9r0+QEt55R4ukWblSm2x95hk4/3xv51MYooReUaOwEpTKKsn0RT9QFbZtT1lQC9Uk9qHhVrjdho9alTAMx02lLD9i6a1GTjnZARrUy2BvedDQ/+5rgrovvtDqsX76KRx7LMyYAb/9LWSoYEC/UUKv8JVEx2BbWckGiR4Bc6vZrXC7jUqK3h+M/exGfvpE4GS9wp6yIFmBTNMFWr4kqPv2Wy165s034Te/0XzyN9ygRdUoEoISeoVvJGPlpVMrORojq9lLOKlbqzp8/7zx/42Ig9dJ5GLO8AdvhhBURuW2ivb5g7XPPa4Q3M2btYLbU6dqqYInTIARI7QUwoqEooRe4Rt2E3VFxSWMnbPKkf/cDH3f215bHiNaVpi5FuJxh7gdvZQaiLzRdr9GRdEPXjf3y8qdZHbPTNu9a5c2sfrEE5pPfsQIzaI/6ijb9qcizXRtRAm9Ii7Cv4xWMdhFxSWMfH15RLiklf/cCn3fETOWOdo/ERWZvIxenPi3vY6KjETRSXinGV6qYUW3e/yrX3H8s49z4ktPa6X7hgzRMky2bevpfKnOy1OTUbMeCs9EZ240o1VOlmm1JN1/7paCvFxyTHzb4a6QJtkBJv/2JN/FwUvWRSfL/b2c1yyDppNFV4FMQSAj0nfktRqW3u56lRUMLn6H9568nhOffADOOQdWrNDy0jgQ+ejz6XgtsK5QFr0iDpxYjLpo3GphfXsNzRs7sHPK8rV7CTN04t/2cl4zUcw08MkDZApBlZSusoTasbW0HKRkwJrPuO3Tlzh6z1YWtz6RPxeMZubLI12dq/p8LrYrrFFCn2QS4Xf0es5422L1pRMQcU6rfC9eUwcno9C3GV7DDO3mBMzOmyEEHQrnuno4VEpJViDT0YMw3nt2yc7V3DB3Cif9uI61zdpyw+V38+Exp5LbJNvT+dKtznBNx9Z1I4RoI4RYIIT4VgixSgjx19D2sUKIEiHEstBP/7BjRgsh1gsh1goh+iWyAzUJL0UqEnVOP9pi9qXLzcni+0kDWFjYt1pARvbrGOMigPj95wV5uSws7BtzvUQTb6ZPN+cFTbTNPierzyHhGTy//houuIDHnh1J87K93Nb/Vi667nE+PPY0surX83w/EnV/6ypOfPQVwG1SyhOBnsDNQogTQ+89IqXsHvp5ByD03lVAZ+BC4CkhhMojSmL8jl7P6Udb3HwZC/Jymfy7kyL86rr/HEirqkdOSET1J6PzZhrEXkZ/TlafQ8IehOvXw1VXQY8emtg/8ghL/vsFi866GJmRGff9SNT9ravYum6klNuAbaHXvwghVgNWd3sQ8KqU8iDwvRBiPXAq8IUP7a3RJMLv6PWcfrQl2nXSOCuAEHDrjGVMnrc2xsVg5LaIJ7rCTzeYl3MlKtNn+Hk7FM413Cf8c0qqC+vHH2H8eC1NQf36cNddcPvt0LgxA4GBpx3t26VSkUm1tuLKRy+EaA/kAV8CvYC/CCGGAEvQrP49aA+BRWGHbcHgwSCEGA4MB2jrcCa+ppMIv6PXc/rVFv3L6Eaw7RbxOEmSZXS9ETOWMXbOKtf5X4zOdeuMZYyYsSwmV7wfuHmoOP2cEi6Ke/fC5MnwyCNw6BAMHw53362tbFWkPY7DK4UQRwCzgBFSyp+Bp4FjgO5oFv9Dbi4spZwipcyXUuY3b97czaE1lkT4Hb2e0++2OHUFRc8NmC3isRtZmEX8lJYHLecajIpjG51Lb5XfFZbczo2k3Fd94ICWE/6YY7TUwQMHwurV8OSTSuRrEI6EXggRQBP5aVLKNwCklNullJVSyirgGTT3DEAJ0Cbs8NahbXWeRPgdvZ7T77Y4dQU5XcRjNrLQhdoqRtxsrsFrvLmf8dtmD8Sxc1YZ7p8qX3XRkh+473d/p6RFW7jtNrYf1wWWLoVXXtESkClMMTImUo2t60YIIYBngdVSyofDtrcM+e8BLgW+Cb2eA0wXQjwMtAKOAxb72uoaTCKG2F7P6XopuwVOXQxO5gDMLFYnFZusruM23tzufF4we6iUlgdj8tLrJNVXLSWL/vkCne8fR8GOTSz/zXHc3n8Ey449mYmiBQXJaUWNJV1X9Dqx6HsB1wJ9o0Ip/yGEWCmEWAH0AW4FkFKuAl4DvgXeA26WUnpbh61IOl7DLp26GMws9UwhbC1WN0v6ja5jF2/u9nxeMIqi0Un5qs+FC+Gss+h56/VkVgT586BCBg15mC/anaRWpTokXVf0Oom6+Qxt/Us071gccx9wXxztUqQIrxWEnEZ+mKW5deKOcGpVm40IzEYd+oSrvqgrumyfnz5xq5FDylZ9fvONlmTsrbegZUvu6Hczr3U9n4rMSHnw0r66lpgsXVf0qpWxigji+Ud14mKIJxTQScUmAVzew7gdZg+ZPp2aV7cnN1S2z6jYtx/kWvQh6as+N23S0ga/+CL86ldahslbbuHjxxZR4UNEVrq6MRJJuq7oVUKviCAZ/6hOHgi6JVhSWl7tQ8/JChDIFIY51HUksGDNDtPrQmwt1llLSyLEaNbSkoRNeI7s15GRM5fHXfs1LnbuhPvv1yJnhIDbbtNK+TVtWt3GuIuLkMD6smmMX/fOb5TQKyIY2a9jTDrhpIoQ5nnUS8uDBDIETbIDlJYFTTNmlpSWm+aFiX7IGNWgtRKjeF0R+r5+1X511Z79+7U4+MmTtbTBw4bB2LHQpk3Ebn4twEqWGyOd3EOpzL9khRJ6RSzRMzIJrIBkhNWka7BKkl2/HsX3XGAZZhk+kQzmrgI3YuSXK8KvKBrH7QkGtZWs48fD9u1QUKDFxJ94otFpfWtjMkaH6egeSscVvSofvSKCyfPWxrgV3OaMt4ojdhJj7DR9g1kCsHDsIh7MRMdou5OIimTGUNu2p6oKXn0VTjgBbr4ZOnaEzz+H2bMtRd4vkrHYK12jXNINZdErIoh3uG1lYQGOrC+7SVddhKOHyVYVrsxw41O1uzfJti4t2/P++1BYqCUc69oV5s6Fiy5KbIHaKJLhxkjXKJd0Qwm9IoJ4h9t2FpYTf7hVAfBoEQ4fJpu5cqza7kaM7O5NsicfjdrTdds67ln4EjzwNbRrp0XU/P73kJmaBLKJdmOka5RLuqFcN4oI4h1uW1lYTq2v8GX/cHiRkb6YCozTGhu1PZAp2H+wwtKV4jSVr929SbZ1Gd6eDrtLeKJoEm+9eCvddm2ERx+FtWvh2mtTJvLJIOW5gGoIyqJXRBDvcNvOwnJqfVmlZ7Bzj+htz8kOsO9ABaXlQdN93WB3b5JtXRbk5dJwx48cuHssF3/1DocC9Vlz4wg6PThOi4uvA6RrlEu6IaRNjo9kkJ+fL5csWZLqZih8wCgfjb7yFfC8KlbHzD2Tm5PFwsK+jvaNrpkaryiEx/wbrapNSEx+aSn84x+a5V5RATfdpOWGb9HC3+so0hohxFIpZb7dfsqiVxgST2xyw0BGtZgbxYjHU9/WbJLWyD1ildsGzC18N32PfrBJqBb7eHLZh7dBL+hSWhakfaNMHt+9kC5Tn4Q9ezT/+733wtH+FfxQ1D6U0Cti8Bo9YmTNH6yoitjHy+Sck6yVRu4RJykToidL3fbdLJe90QjDKdFtKC0PkllVyW+/+ZBbP5tOq192sv2Mc2jx5CPQvbunayjqFkroFTHYRc6YWbtmx9322nJunbHMs6vELmul2eSbVfROOOGWv9vIGT/CUaPvZ0QbpOSCdYsY+cmLHLdrM8taHs/fLv4bm7udxkIl8gqHKKFXxGAmUrp1a2btenWVeG0PWLtHoifqjMoWQuRowK1we5mANfPpR9/fUzd/w6iPXqDH1jVsaNqamwruYN7xp4MQCBUnrnCBEnofSaecG/G0x0y8MoWwtHa9uEqcYJVe2M49Eu4qMpsoDh8NuBVut0msjHz64ZQHKzlhxyZu//gFzt3wFT8e0ZTCfn/h9W7nU5lxOIxQxYkr3KDi6H3Ca8GOdGxPn07GNXzt6rs6SUkQvr9TjM4r0PrkJs2Ak7J8buOy3Zb6s3JDtd67nYfefoi5z/2F/JLVTDp7GOcMn8Kr3S+MEHkVJ65wi7LofSLdUrLG0x6zNL9mJffMUhI4cZWYET0aubxHLgvW7DB1d4Rf3wq7yWAvcdluJpiNHnJNy/byl89nMHjZO0iRwfTeV9Bk/N289cV2DpaWkxMWdZMOI0VFzUMJvU+kW84NKz97r0nzLUXMruSelZvCravECKPIFz1HvFGIpZcHqpVbK5HL9sNdQ9mHyvnDV0XcuPgNsoMHea3refz7nGsYMawvA/JyGXB254S0QVH3UELvE6nMuWEkWmbt0V0e4D6pWHTJPd1nr0fjRIuj11WLVqMRPx6oqUxtO7JfR+55/WsKvprL/30+g+Zlpbx7/Bk82PtaDhxzvLLWFQlBCb1PpKqyjJloXd4jN6JyEhCzahOcJxXT+6Lv51QovVjHVmLuxwM1ZW62qioKVn/M+S/dQaMtm/iibVfuGDCBATcW8KESd0UCUZOxPuF2Us5/lczPAAAgAElEQVQvzERrwZodMe1xmsbXri+JzgFulSPejyRWSXezSQnvvQc9esDgwTQ6KgfefZfTNy7nmaduVha8IuHYWvRCiDbAi0ALNINwipTyn0KIpsAMoD2wEbhCSrlHCCGAfwL9gTJgmJTy68Q0P71IRWUZK9EyKpsXb1IxME5MFt2WeEJNnYwovJ67qLjE10li22svXgyjRsFHH0GHDjBtGlx1FWQoG0uRPJy4biqA26SUXwshjgSWCiHeB4YBH0opJwkhCoFCYBRwEXBc6Oc04OnQb4VLnIiKmSsjQwiKiktsXTLhaXydCFdRcYmhC0hvi76PU9eOVR+NtsfzANHbZSTyXieJTX37a9fCnXfCrFnQvDk89piWeKx+fUdtTRbptvZDkRhshV5KuQ3YFnr9ixBiNZALDALOCe02FfgITegHAS9KLS3mIiFEjhCiZeg8Coc4FRWzZf6VUsbsHy2g2fUz2X+o0lUa38nz1pq6gPT4e6c+cLs+Gj0U4plEtYphN5tUDhdCo5FATL9KSmDcOHjuOcjK0opv/+1vcOSRtu1LNulYb1WRGFyNH4UQ7YE84EugRZh4/4jm2gHtIbA57LAtoW0KFzj1g+v+9EyDEnFm+y8s7MsjV3an7FCs6Nn52q382K98uZmi4hJT1070dre+frP9x721ylGdVjsffPSisuhFZ5YLxvbs0Ur3HXssvPCCVqN1wwYYMyYtRR5UvdW6hOOoGyHEEcAsYISU8mcRJixSSimEcJXYXggxHBgO0LZtWzeH1gncTBgW5OVy64xlrs5jZZlbCaJVmgN9FCGENv8YTWbIneS1xqvZ9j1lQfaUxY5KINL9k5MdqN7PjHAL3S6ZGkCD4EFu+fY9OPoa2LsXBg+G8eM1f3yak25rPxSJw5FFL4QIoIn8NCnlG6HN24UQLUPvtwR+Cm0vAdqEHd46tC0CKeUUKWW+lDK/eXPjJfd1GavIEz+224m5GSP7dcSqvHR5sNJQ5OHwg6DEQuStru80hLI8WMnYOatiUkDsO1BBINO+OLZ+b6zuUWZVJVcun8fHzwzn5veegTPOgGXL4KWXaoTIQ/z3WVFzsBX6UBTNs8BqKeXDYW/NAYaGXg8F3gzbPkRo9AT2Kv+8e9yGEbrd3+zLLELnMqMgL5fBPdtair0ZRknRonHbRzNKy4Mx1wpWSRrVr1cdNmrk7oLD98bwHklJv7WfM+/Zm3ngvcep374dfPwxzJ0L3bpV71ZUXOLInZRKVL3VuoMTi74XcC3QVwixLPTTH5gEnC+EWAecF/ob4B3gO2A98AzwZ/+bXftxG5dvVFBbd0MYiYxZorDBPdvaTsRNKOjK4J7m7racrIChgJj5uHUyheDyHua1YnVXSnix8JysgOU5o9lbHqwuBP7QFSdZCl30Per5wwpmv3Q7/y66HykEwy+9k6bLl0Dv3jFtTacEd2akau2HIvk4ibr5DEwNuHMN9pfAzXG2q84ST7ibm1Wr8cSjFxWXMGupsWhlBTIZO7Cz4bmtSgGC5tqZtbSE/HZNLaNz9Jw7uiAbxdw3DGQY+uPDrXS7e6D/fubx2Yz86AXO+X4p2444ipEX3cIbXc7lN02PAINRQboluLMiFWs/FMlHpUBII/wId3MjMl6/5GaTlJlCRFiERue2q/hk1FarPun56KPF2uhaRm4Jy3vw3XcUPHQPg6ZPZ2+DRtx/znVMPfliDgYaWLo41CSnIt1QQp9GuIk/N7NC3RTP9orZuaqktHS76IWuGwYyKC0LOo66sRNOK7H2NDr66Set4Pa//w316iFGjWLhRdcy9/MfOVRablv02yy6JydbczOpRUqKZKOEPo1wYglaWf1gnLgM/I2kcJNYzKjQdVYgk0eu7G7qyok+j9dEZm5GLEXFJTw5p5gB709n+FezaVgZJOOGG7Q4+FatGAAM6H2io3OZTUVIqRYpKVKDSriRAswiMpyEu1lZ/Wax8XaRNG4xi9bo06l5TL+s2msWRbP/YEXExKWX6BA3US9zvvyOVYUTeOUf1zBi4Sss6NCDAcP/RdEf74FWrSzvhRF7y41j9feWB9UiJUVKENImEiIZ5OfnyyVLlqS6GUnBqBhHIFPQqH49SsuDMRZ5ViAzwu/doXCuqZiDsTUPsHHSAB9af5i7ilbyypebqZSSTCHoeXQTvv5hb4xP3MwfL4DvJw2gqLiEcW+tinF1RPfbjbvDrOBJTERJVRVMn87WW0bSas+PLGzXjQfOHsaKlscDWvRQowb1XLtYzJLH5eZkmS4U0+9HPCiXUN1DCLFUSplvt59y3SQZI4suWCmr881IDrtfjHzBdm4MM4EB/4RAj7rRwyUrpWThht0x++mhkHblByfPWxsj9NFzE27cMLZzHVLCu+/C6NGwYgW7WxzDqCvG82n7vIgomtLyoKs8QDpW2TeduqvcolxCCiuU0CcZJ5OiusgvLOxb7YLQxblPp+bM+GozwcrD4hnIFLaRJn4KgZPUADpOyg/GE6US/vDKyQ4gJdXibHi+RYu0tMGffALHHAOvvMIfv2vGlp8P2l7LaYikVdjmkk27mbboh5hRW7yutZoU0qlIPkrok4xVrphwtpaWG4rzjMWbYy3k0J9WAtNr0nzfhMBNBE94+UGzkYTXydbo+2OVx+aYnZu5Z9E0eOAz+PWv4Ykn4MYboX59bjdw9ZjhtO9m2TdnLS2JEHkBpovE3KBCOhVWKKFPMmZphaNplZNl7OapinWDBKtktWCbuTj8FAKnDyt9EtjO7WJ2T8oOVcTk1A/Hycii5c87+OvCV/jdyg+oys7WEo7deisccUT1PkYPyLJDFYYPjsZZgWofvO6Wsgu3tGqvBBas2WF5nBNSWbNYkf4ooU8y0aKSkx1g34GKCAHXh/JmGSmNsBLseKsqRaO3zW4aX+LMLaTvM3bOqgi3y56yoGXBEquHTePyX/jzotcZtvQtbaLz6us59tH7KdpyiMlPLI4ZXUQ/jAwnzTME+w9VVLdRv59mbrDoOZFErnFIVc1iRc1ACX0KMBIVI9eGXcqAcMwEO56qSmbtMvM1R5Pr4iGi9zfav25VsMSIhsEDXLf0Lf60aCZHHCxjXt55XPTGFI5t397VPIUbK9+onUbXSuQah3hLLCpqN0rofcZLZIuZa8Ow9F+GAEHEZKyVYFulK7i8hyaut85YFtNWO1GcUNCV/HZNqx9GRmGhbq1Jp+4loz5lVlVyxYr3+evC6fxm324+OOYUHjv3Oq7/40Bor5UgvO215fYVosKI/lw6FM513H4zN40f98kMlbdGYYYSeh/xO8TNzEoz2maWesCqSMispSWmbXUTxSGgOuJlb3nQszXp1M8cIfxSctHahdz+6Uscs7uEZW1O5P8GjWJrl/yIOrNmo5ro81k9qO3mJsLbafbQ0iOqlNWtSCZK6H0kESFuZlaa3fms3BtgnBs+vK125QCNIl701AZe++rUz6wL7umbljPq4xfovm0d/zuqLaOuvZcHpt7J61EZJe0mbe2Kmi/ZtJsFa3ZYul+i22n2UNDDZhWKZKKE3kfSKcTNStysVqzqbTVb6KTngreq3xpvmmW74ye0CxJ45h7O/O5rSo5szu39R/Bu9/O477fdDdMGW93/cIE261P4XES4+8Uo6kYfEfjlzlIo/EAJvY+kU4iblbhNvKyr6URv41AhDzM3h77dbf1WN2Jvuu+GDXDXXfR59VUONc7h8f438cQJ/WjWrDH3WTxQzD6X6LTKVu6W6L+NLPPoEUH4cU5DMBWKRKCSmvmIk+RbySoxZ/Zwyc3JoiAvl5H9OmoTu1HsD8Wum0XM6Nvd1G+NO2HXjz/CzTdDp07w5ptwxx3U37SR/5v7L9Y+eCkLC/vaxukbfS4PXXFSzMItpxg9FMxGUeHrCRSKVKCE3kfsSrMls8ScWanAktJyek2aD8ARDWMHdMFKaZpZMjydwv6DFY7b4tl19fPPcPfdcOyxWm74P/xBs+rvuw8aN3Z8GrvPRcfsnhlh9FCwGhGo7JSKVKJcN3FgFWduRDLzkYT7u6P9xfoDxspPbxXx4zRdgI5r19XBg/D005qg79wJV1wBEybAcce5O08YTkIPjfrcp1PziOgkMPe1J3pRlELhFSX0HvESSmkXyeI3urgZpc21yiyZIUR16oHovhjlzLHC1QRkZSVMmwb33AObNsF558HEiZBvm4XVN4z6rK8XsJtgtloxrFIRKFKJEnqPeLHO7SJZEoVVLL1RBE6llKYPLTeWaYbA0EUSg5Qwd66WNvibb6BHD/jPfzShTyHRIza70NFEZqdUKOJB+eg9YiZ4JaXlphOtdpEsiaCouMTUz6z7qo0eNGaTqG4sU0cPsM8/h9694ZJL4MABmDEDFi9OC5H3Mp8yoaArj1zZ3XY+QKFIJrYWvRDiOeBi4CcpZZfQtrHAjYCedu8OKeU7ofdGAzcAlcAtUsp5CWh3yrHyx4YLAxy2inMtFtG4xWmqBbPygqBlh7RKTqY/zKKLewcyRUwKBpCUB6sijg/PqhnDqlVwxx0wZw785jeaT/6GGyCQHgW045lPcTIfkOr+KeoWTiz6F4ALDbY/IqXsHvrRRf5E4Cqgc+iYp4QQsUVBawFm9U7DibaKvdQ+NcKNtWnlatlTFrRMSpaTHaD7uP8yYsay6muVlgdBQpPsQITFeiBK5E2v/8MPcN110K0bfPSRNsm6fj388Y8RIj9y5vKI/o2cuTwh0Ulm4a6JXPyWzOgrhQIcCL2U8hMgtk6cMYOAV6WUB6WU3wPrgVPjaF/aEh2yZ0a4MDgN87PDTYHpeCYB95QFDas1Bask2fXr8f2kAdUx7LaFzXftgttug+OPh+nTYcQI+O47uPNOaNQo4phxb62KGDGAFvY57q1VnvtihJXgOinU7hVVIFyRbOKZjP2LEGIIsAS4TUq5B8gFFoXtsyW0rVYSPkQ3KwgdLQx+ZBi0mh8ILzs4sl9Hx4VO4m2DWZ6awt5ttDDJf/wD9u2DIUNg3Dho29b03GapgK0qSHnBSnBH9uvIyNeXR9QJCGQIXyZV0ylVhqJu4HUy9mngGKA7sA14yO0JhBDDhRBLhBBLduyIv8JOqvHLLeMEM6tSXxAVPUcQPYrICaU58LMN0aOVtkcGeKVqGZdc3hvuugvOOQdWrIDnn7cU+URh5KKxFdzooZpPwVGJHC0oFEYI6SDiQwjRHnhbn4w1ey80EYuUcmLovXnAWCnlF1bnz8/Pl0uWLHHb9rTD7QSb1wk5o+pHZlkVneRkcUtWINPc5VRVBTNnauK+bh2ceSZMmgS9epn2JfoeRFeaCueanm2ZUNDVVXuN+psVyKRBvQzD6+iT406zT3r53I3ao6JzFG4RQiyVUtouNPEk9EKIllLKbaHXtwKnSSmvEkJ0Bqaj+eVbAR8Cx0kpLRWlpgi9n5ES8X7ZnZapE8D3kwaYHu92sVaT7ABjLuls3MYPPoDCQli6FLp0gYkTKWrVncn//V/EStMFa3ZYllG8vEcuMxZvNqyPC5AdyOD+y7o5vvdmbrUm2QEOBKsMPwOraCQBliuF9T7o/TT6X3Hzv6QidBRm+Cb0QohXgHOAZsB2YEzo7+5oRuRG4KYw4b8TuB6oAEZIKd+1a0RNEHq/rTAz8fGar9zsfJlCxCTvcnJcNDlZAcYONBH4pUs1gf/gA80tc++9MHgwRSt+9DRy0DM9jrComevm3nconGso2gJ45MruhiLq5L5kBTJpGMgwnDswSlHs5X8l0da/eojUbHy16BNNTRB6v4XZSnx0C9yt1WcmqlbCYNYOvS2W1123TnPRvPYaHHWU9vpPf4IGDQDnDxEjNk4aQHub0n2ZQlAlpe298fLZxeveMsLL/4rf/3fhKBdSzcep0KsUCCY4dY14jZSwy13vNpeOvs1tXVRPlZC2bYPx47U0BfXrawJ/++0xGSW9irxA679Zyggd/T27e+O0clU40Unh/MDL/0oiI3SSmWRPkVpUCgQDjOKr3aSrdUKfTs1jzumk2pFdrLWTuqjhuIoW2rtXi3s/9lhN5IcP19IG33uvYdpgrzl89LS+V5/WxvExVvfG6/oFPW+/1cK4nKyA49TGjbMCrmsRJDJCR4V51h2URW+Akcg6qRPqlKLiEmYtLYk4pwAu73E4xt7tl9CuRqyZMDgq33fgADz1lBYPv3s3XHWVJu7HHmvYDv1c8TgFt5aWV0fXTPvyB5x4GK0Eyuv6BbuSjGMHdq7ezyq1cSBDsP9QRXWUj9PqW15GI05Jp4poisSihN4AK8HQJ9niKQ1n9iBZsObwegK3X0I7QbJzUxj2o7ISXnqJstF3kv3jVj5pn8fzv7+PQddfQsGxsfs79WuH+9b3H6wwDHHU+zmhoCsTCrpGPEAyTFw6iRAou5KM+n2zS21cdqgiZtK2PFjJba8tNzxex2kdXS8k8iGiSC+U0Btgl7As3okwJ9a62y+hU0Gyo6i4hMnvreHEJR8zeuFLHL19I+tbHc/Eq+7ji3YnAbDIwBItKi4xnB+IJnqyz2xNQJ9OzSOOC38YmU0iJmpxmtkchl3K4vD3O5hMLFulhA4/FxwWe91FFa/YJ/IhokgvlI/eADu/bLw+TDu/q2696sVBwN6v3DBg/FHaCVI4RcUlvP7oKzz65C0888a9yGCQPw8qZOA1D1WLPMT6w3XhtRJ5s9KKZqObWUtLTH3YBXm5XN4jt/reZAoR4fbyE7P/hf0HK1wlIbMabdjNvagkaIp4URa9AVYRLBC/i8DKWo+2VvXiIFaW1uBnvohJEQzaU9yxlfvNNzT7/Y1MW7OI7Uc0ZXS/v/B61/OoyDT+Fwl/2Fm5jcDb6lwrt4Y+x6F/NpVSMmtpCfntmiasJOO4t1ZFuF5Ky4OOfOw6djmHrIyHREXHeKmSpqiZKIvehIK8XB664qSE5K+xigJxG21TVFzCwg3GyUWNEwdHsWkTDB0K3brR7fuVPHD2UM4ePoVXul9oKvIQ+bCzm9OIdsOA/cMBDrs1oi3XZGd/LMjLJbt+7L1wc039MzeLRLIyHhIVHaOyaNYdlEVvQSJ9mGYToG6/1GPnWKfuNbXQdu7UomieegqEgNtu44qsXqw5FJvwzCiPju660FMUW81pGFnbTkXKyHJNRVigH9fU++B2fiFR0TEqvLLuoCx6GwrycllY2Dci93oicRM3XVRcYpr8SyfGQtu3TwuNPPpoeOwxuOYabYXr5Mn88dJTDEcwg3u2pUl25ANAd10UFZfYzmkY+fQzXMTYRwuPk3tkVlDEbLsdfsWze4npT1RmVJVFs+6gLPo0w020jdMhdklpOQSD8Mwz2orW7duhoECz6E88sXo/qxHMgjU7DMMDJ89bW+1/t1pFGl6W0G7iNppo4bG7R3cVrYwo0K37npds2h0R3+7GJ+1nKKJdTL9R6ouJl3X1fWSpwivrDkro0ww37iInQ2whq7h49afsO/pmjtiySSvEPXs2nH666fW9uJT04+wKsJj55jOF4OrT2sQsNDISHqt7VFRcEiHyOuXBSl75crOr9BBOr+knZhOkEy/rGndum2hUeGXdQQl9GuJ0FaeVbxwpOWtjMaM+nkqX7Rv4X4sOTBl6P7NadKXVx+WMbKi5LJx+yZ36ie2sRLMHRpWUTCjoGrPQKFzAo7cbCZ9VMXS36SGi8aM6mB3Jzj+TjD4pUo8SehP8SN+a6BSwZiF73bb9j1Efv0CvTSvY3LgFIy6+jTdPPBsptCkZvdg2kuqc734lBivIy2XJpt3V1rMe4w5aJkYzEdYfGEbC4yYM0Eq0zZKkpZNPWk2QKhKBEnoD/Igv9itG2ephET30Pi24kxvee5bzv/2UXVm/Yuy5w5ne/SIO1YuNpIkuvg3WlqPTYb5RjPuMxZuZ8dVmw2uCvV/YjZVrNvIQ4Ng1lEpU/hlFIlD56A3wIwe4H+dwnC9861a+/7+/06boFQ5m1ueZUy/lmVMuZX+DbEfXCcesIpVT3Oagd5IzyCpnfm5OVsSDB2LDFwUwOFSCMN0Lbagc8Qo3qHz0ceDH8Dnec5jljomwZEtL4YEHqHj0UXIPVfBy9/48ccaV7GzUpDpVbq5F4jAjWuVkxSWGbl0MVg89vR1WhVH0h0r4pKVVhEq6+6TVBKkiESihN8CP4bOTwiJmX2a7EMRdO0ph8mSYOBH27GH+Sedyb8+r2Zzzm+p9wpOvGVmJgUwR4aMHTTjbH5UVl8vJcoI4ivBVotH3wyjVbzhGi7jCwz3TXRiN+mtVY1ahiAe1YMoAPxaoWJ3DLkmVaQhiVSW/W/FfPn72j/D3v8Npp0FxMTddeGuEyOuEhz5GJwG78pQ2XHlqm4giGRJYuGF3XMvi7RZPhVMpJUXFJXQf919GzFgWcT+mLfrBVORzc7JMrfyaMGlp9Pm/vOgHlbRMkTCU0BvgtSKR03PY5RiJESspueB/X/Dec39h8ruPEWiTCwsWwLvvQvfujrJhGiUBm7tim+PiIG5CEMP7bVVlqkl2gNFvrDR0K1m5axYW9iW3Bq/qdJLnR+WcUfhJnXDdePE5++HL9br4KNz9cermbxj10Qv02LqGDU1b8+XkKZx22x+0/DQh7LJhmvn63RS+lkD7wrnVC5v06k92/TbLww4gJa6Lb+tCXpNXdTp9aNaE0YmiZlDrhT4dU7Ha+e9H9uvI80/P4a8fPkff75aw7YijuOOiW/jvKReya2cVjce/jxBQWhaMWCI/ds6qauu4YSCjesm/m3QDdlRKycuLfgCwFHu7vuZkBdhrM0Ec7YcPF/JkT1r6Ga3jdB6jJoxOFDUD2/BKIcRzwMXAT1LKLqFtTYEZQHtgI3CFlHKPEEIA/wT6A2XAMCnl13aNSGR4pVWY48h+HWO+vJD8Ze4QFkKXcwjuuQc5bRq/NGjEUz1/y+xel7FbZlrGoV/eIzdm8tJowjKcnKwAByuqXFvVoLlkNkzsb7ufVV+tcuPofUqHCUq/Qx6dlFxUIZUKJzgNr3Qi9L2BfcCLYUL/D2C3lHKSEKIQaCKlHCWE6A/8H5rQnwb8U0p5ml0jEin0VjHYWYHMmALOiMjFRPF+4cwswejtd57ajP5vPgtPPw2ZmXDLLVBYCE2aOIpNN1v1aYYAHrmyO3D4wZaTHWDfgYqISBwrNobF29tFEZndAyPBa5IdYMwlndNG5Mzuf3jtW7cPIRV1o/AD3+LopZSfCCHaR20eBJwTej0V+AgYFdr+otSeHouEEDlCiJZSym3Om+4vZsPkTCFiBMZI4OLJM2LnNirIy4VffoGHH4ZBD0JZGVx/PYwZA61bV5/Hia/WrXtG39tsROPkwaLjpJ/xrLZNNWb3X7/nXtyB6R7Pr6hdOFoZGxL6t8Ms+lIpZU7otQD2SClzhBBvA5OklJ+F3vsQGCWltDTXE2nRmw273bgrnK4WLSouiSg5Z+Y6yc3JYuHfzoR//1vLDb9jB1x2mZY2uFOn6nPpApjhwFrPEODQEAeM3Tb66AVgxIxllsdnBzK4rEdrFqzZYfpQiLeIuhGpWNnqdLVvIvqrUFiRtJWxUkophHA92yeEGA4MB2jbtm28zbCkQb2MakHT3QJOrFYdJ5NiRcUljJy5PMLtY3RThKwi//N34Zkb4bvv4JxzYNIkLSY+7FzRdWNtkdoiqPDrBzIEGRmCgxWRRQWzApkIERvxUh6sZOycVTH7G1EWrKqelDXDTSoEJ6RqYt2u3qtOPFEy6Z6aQVGz8RpHv10I0RIg9Pun0PYSoE3Yfq1D22KQUk6RUuZLKfObN4+tKeoHujCEx2kfCBXRNlrYE8gQ2orRMJyG7E2et9Z0shQAKTn7u6W8/cII/vnWg3DkkVoc/Pz5ESKvn8vtBGkV2tyC7lLJyQqAIEa0c7ICTLysK6VlxhEvpeVBT5OzRgjwddFPqmqcOl0b4DVKxm4BnUIRL14t+jnAUGBS6PebYdv/IoR4FW0ydm8q/fNWwhBeFcmPqBsra6771rWM+vgFTv9hJZtzfsOS+x4nv/DPkGH8nI3HMqyUstpiN3rw/HKgAnCXqsArErjtteWAPxZ3KlP4hvvUzdyBTgwCI8s92TnoFXUPW6EXQryCNvHaTAixBRiDJvCvCSFuADYBV4R2fwct4mY9WnjldQlos2OshMFJ+l83GAnnMbs2c/snL3HR/z5nR3YOY8//I/LGGxn3u5Ndn8sNVouhKqVk9BsrDcMxE4F+PYhP7PU6s4nMJ+/UfeJ1EtnM9WT2GagFUwq/qNVpis0m0awmIuMJo9R99C1+2cmIz6ZzxcoPKA80YMqpl/Fs/iD2N8gmkCE4omG9iMVOdoU2EoEQcMbRTVm4YXfCrhFOTlaAZWMu8HSs1f3wK948GemBrcI0jR5ganJXYYfTydhanevGLLGY2URkPL7egrxcHr2gHWM+m8rHU4Zz+TfzefHkAZw9/Bke63V1dW74YJVkT1nQ1BerW5XlwUrLPDF25GQFLJOLSYnvIp+ZYd7e0vKgZ5+zVZ1Zv4Q4Gf5/qzDNeJPoKRRW1GqhN0ssZjYRWVJaTofCufSaNN+dKJWXwwMPMKDgTK77fCYNr7qC+uv/x/jzbmJXoxzrQ8PEJHxSDowFwAkCGDuwc3UJPy/o98wpTbIDPPS7kywfTuH97DVpvuN7bVVn1i9r2+waJSE3nx+YuZj0/8t4kugpFFbU+lw3RgtTrEIrwy1t/XhTKirg+edh7FjYuhX692f+kBHc/X0mW//9raP4dzj8gDHaX7fsjc5j5ILSqykV5OUy7q1Vttc2Q1+p6WSuICuQGbGS1SwGX58bcRsimejyelb+f8C3EM4+nZobhqT26dRcLaBSJJRabdGb4SRnuuWwXUp44w3o0gWGD4e2beHjjymaMIWbv6msDpNzs1rVan+zof3YgZ1jLMFHruxeXTJvj8nIxQmzlpbQp1NzhyMKyYgZyzhm9DuMmP7T7WoAABBPSURBVLEMMw9Oq5wsTy4SP+oDmGFX5MVJ+5yyYM0OV9sVCr+o9Ra9EdFRE66KWHz0kZaD5ssv4YQTYPZsGDQIhGDypPkJmUA1S8BmFSUUrzCVBytZsGYHl/fI5ZUvN9sIoRarr+9jtEJXF+ZbLax9MxKZKsHpmgU/ImBSGR6qqNvUSaGHSJeOWTREhGtg2TIYPRreew9yc+HZZ2HIEKin3cKi4hJLN4fbtAvhx+miZiRsZiGBduLRJDtga/GXlJbHlebYKOmXmdvMzg2TKNeGU5H1w03kxAWlVsgqEkGddN1EY+ka+O47GDwY8vLgyy/5ZsRd9LnpGTr8rwW9HvyEouISLbTy9eWm5zeabHv0yu6mVZIyhaje7/IemjgaTVxarai0EqZHr+xO8T0XmF5fJ8MgOskNVVLy/aQBETVcE+mG8YITAferfXZ9VytkFYmiVsfRuyHakrorvykXvfmslnisXj0YMYK5F17D7e//EBNrDbLafRGNVSy2Uey2nggt16RAdniedqtkYrqbxDSpmknRcJ3ovDleMIsDTyer1bBwuoO1DvFcz6zvVrUTVDy9wgjf8tEng3QQ+mp+/hkeekj7OXAAbrhBSxvcqpXjLIbhPHpld0uR0L/4JaXlMdkuzbJf2hUU0bNttjcp46e/X1RcElGVSs+AmZuTxf6DFYa1XOGwS8Yqf72TxUbpIvjp0g6z2glOs6cq6h5Jy15Zazh4kBV3TaLN04/QZP9e5nfpTdX4eznv0t7Vu3iZNDMqMhI9kVqQl2v4EDETc7tHs+6OyLXwCRtZsg3qHRZnq1qvD11xUkxRkZLS8uow0FwHYplOJR7TJbQx0WGkirqLEvrKSpg+nf2Fd9Jt62YWtuvGA5cPY0XL48n6uoyJ7UuqRcBtDpom2YGY9MUlpeWMnBmb6MuvyItwn69VAW2zMMcRM5axZNNuy1qv4e32KpLpmMgr1ZZ9TS54rkhv6q7QS6mlCR49GlasYEurY5lwxXg+bZ+nJYIhVnic5iUHzcc95pLOjHtrVYyvO1gpufW1Zdw6Y1m1oPiRTVIIItwl4WGJusWt98nqWi8v+oFexzRl9/5DMaIzdmBnR22xE814Qw39FuVEjDDctrGmVNxS1Dzqpo9+0SIYNQo++QSOOQYmTODo4kZUidggpGj/aPiX1+rO6b55Mz95OGbFvb2w0cCX6yVJWqYQPHTFSZ5Ex0mCMKv5jpysAGMHmteMTUQCMr8nQpORJE2hUEnNjFi9Gi69FE4/HdasgSeegG+/hauuomWTRoaHRPtHC/JyWVjYl+8nDTANT9S395o031Gz9MVJTopb2BEdftlr0nxGzFjm+gFSGcojo/c1PETSDierX61WJ5eWBxn5+nLTsMJEJCDzezFTqoqkKBRG1A2h37xZi57p0gU+/FCr07phA9x8M9SvD3iL7zY7pk+n5hHJyZywtbQ8QlgfuuIkFx08jB53HZ0gzS3xZM50Ipp6wjmz6wSrpKkoJmKFqdmEp9eJULUKVpFO1A2hv/9+ePll+OtftQVQd90FRxwRsYtZpks7K7Zh4PAt1Mv0LVizw7UF3TgrENOeJtkBk73N0a1GL+UIw+l5dBPPx5qJo4SIRV8FeblUWbgOzUTRb1EG/xdyJaKNCoVX6sZk7NixWn6adu0sd3MTQWLkg9Xrs3qx2krLg9xVtJIJBV2rt425pLOnAiR+WI0bd9mfIzoOXy+8PrJfR0a+vtwwvj56ktNqEtpMFBMRneL3RKiKoFGkE3VD6Fu08P2UVuGJXpm26Afy2zU1jJqxm/wNRxdIK7dNk+wAP5dXmOaxsXtY6GkfwsV8T1mQ215fztWntsEqmX14NFP7o4yFPkNgKoqJik7xM55eRdAo0om6GXXjEacRN/FgFeXhZGWuHtkB2JbfW7Jpt2F+dLt22LVFX2FrhQAeubK7aZqGeEoPKhR1BbUy1keiXRRuyckKsP9QhaPcMVaWtJE7IJApaFS/HnvLjfOyRMfMZwrB5T0OW67TFv0QI7SBTGHrYrBqp53Iw+Hc9Ga77vV4r2sjqV7Ipaj5KKG3Id5C3QJYNuYCxw8Lq8k6L+6AskMVEX9XSsmspSXkt2tqKrSN6tezFZJ4FnjZ5abXz69Ir1QRipqLEnob4o1eyRCCDoVzaZWTVb2q1GxlqpPJOjs/8l1FKx0UCqmsflgYEW1NG1mUI/t1tJyPMEvQFp4Hx+w+CMz9827wwxJOtTWdjqkiFDWPuMIrhRAbhRArhRDLhBBLQtuaCiHeF0KsC/32HqeXRMwKVscbwVIpZUwd2oWFfdk4aUB1Tnq/CkLfVbSSlxf94KhQiC5cRmQIUd1/sxzpANf0bGt6fsnh+Vi9xOHGSQOq8+x0KJxL2aEKAlF1B8Nr3saDH7nd0yE/vIrHV/iBHxZ9HynlzrC/C4EPpZSThBCFob9H+XCdhGE1PLZzUdilDA4n2hLzO2viNJOJVSN069TILVUpZXXiNSuLcmFh32oXkNE90i14fVI3OlJnT1mQDKHNYZjNMXjFD0s4HaxpldFS4QeJWDA1CJgaej0VKEjANXzF6gttV0jcSOSt9ndriZmNNIz2cxMJpAvqxMu6GhbzDlZqBb/NHnJ6P/TVvGbRlOH9HTtnVUxsfZVMzMSrH5ZwOljT6VaRS1EziVfoJfBfIcRSIcTw0LYWUsptodc/Av4HsfuM1Re6IC+Xy3vkWoWFR6CvjjXLg+PGEnPjOnCTQyU81bC2OtXxodVE98PJSlCziWgZ+vHTNeLHytR0WN3qdcW2QhFOvEJ/ppTyZOAi4GYhRO/wN6UWpG8oI0KI4UKIJUKIJTt27IizGfFh94VesGaHY2u5UQMtYmVkv44x/udAhn3YYjhuEmM5tTLdpBq2Okd0P6wsT31U4gS/En/5YQmnizXtNbmcQqETl49eSlkS+v2TEGI2cCqwXQjRUkq5TQjREvjJ5NgpwBTQFkzF0454sVuu7nm4Hz0MiPo7npzt0cfmZAfYUxZrMTeol0GmgLJQTdsDFZUs2bQ74jo5WQFHawQEmPrRzUI/wXzhlhl+uEb8WJmqVrcqagueV8YKIRoBGVLKX0Kv3wfGA+cCu8ImY5tKKf9uda50WBnrpWizEfrko11+83hytjfJDnAgWBVT0BpBxKKsrEAmJ7dtzMINu2POcU3PttV5dYzSGZi12y1e6uyqYtgKhTOSkY++BfCZEGI5sBiYK6V8D5gEnC+EWAecF/o77bEaHttNyOo4GQXo28e9tcpTzvasQCZSEnNssEoSrJTVaX91X+6i7/YYtuOVLzdXvy7Iy2Xy706qnleIHog4cVd4CU9tkh2IcW+piUaFwn88u26klN8BMUnTpZS70Kz6WoOVW8JsFGAVFldUXGLoZoHYnO1G17BaUVopZbVYFuTlmi5qio61Dw/1dLtIyEt4avjIRrlGFIrEopKaJYi7ilbG5JHRXTNWNVuduC2cuEP08xwz+h3DBVSZQrBhYn/bfjjByk1lNv+hIkcUivhRpQRTSFFxCbOWlsSkANCTidklLrPDiStJv8bVp7UxfN9suxfswlNVeKBCkVpUrpsEYBQWKdHCNMHcnREe325FuEvHrmiHPuGq57/JFIKrT2sTUeAkXuxWb/q9AlihULhDCX0CsJuINXNnuIlv18XTLHonfGQwoaCrr8IejVFFKbdrBhQKReJQQp8AnFi44E98dtrEetusGVAoFKlDTcYmACcx8rUJuzUDCoUiMagKUykkbazsJJEOyb8UCoU5SugTRF2YgNRj4M3GhCqVrkKRHiihV3jCrsSiWuGqUKQPSugVnrAqsZhby11VCkVNQwm9whNm/ncBagJWoUgz1MpYhSfSoSiHQqFwhhJ6hSfSpSiHQqGwR7luFJ6oayGkCkVNRgm9wjN1IYRUoagNKNeNQqFQ1HKU0CsUCkUtRwm9QqFQ1HKU0CsUCkUtRwm9QqFQ1HLSIk2xEGIHsMnj4c2AnT42J12orf2C2tu32tovUH1LV9pJKZvb7ZQWQh8PQoglTvIx1zRqa7+g9vattvYLVN9qOsp1o1AoFLUcJfQKhUJRy6kNQj8l1Q1IELW1X1B7+1Zb+wWqbzWaGu+jVygUCoU1tcGiVygUCoUFaS/0QoimQoj3hRDrQr+bmOz3nhCiVAjxdtT2DkKIL4UQ64UQM4QQ9ZPTcntc9G1oaJ91QoihYds/EkKsFUIsC/38OnmtN2znhaH2rBdCFBq83yD0GawPfSbtw94bHdq+VgjRL5ntdoLXvgkh2gshysM+o38lu+12OOhbbyHE10KICiHEb6PeM/zfTAfi7Fdl2Gc2J3mtThBSyrT+Af4BFIZeFwIPmOx3LnAJ8HbU9teAq0Kv/wX8KdV9ctM3oCnwXeh3k9DrJqH3PgLyU92PUFsygQ3A0UB9YDlwYtQ+fwb+FXp9FTAj9PrE0P4NgA6h82Smuk8+9a098E2q+xBn39oD3YAXgd86+d9M9U88/Qq9ty/VffDzJ+0temAQMDX0eipQYLSTlPJD4JfwbUIIAfQFZtodnyKc9K0f8L6UcreUcg/wPnBhktrnhlOB9VLK76SUh4BX0foXTnh/ZwLnhj6jQcCrUsqDUsrvgfWh86UL8fQt3bHtm5Ryo5RyBVAVdWw6/2/G069aR00Q+hZSym2h1z8CLVwcexRQKqWsCP29BUinBOpO+pYLbA77O7oPz4eGl3enWFjs2hmxT+gz2Yv2GTk5NpXE0zeADkKIYiHEx0KIsxLdWJfEc+/T+XOLt20NhRBLhBCLhBDpZBx6Ii0KjwghPgB+Y/DWneF/SCmlEKJGhQkluG+DpZQlQogjgVnAtWjDUEX6sA1oK6XcJYToARQJITpLKX9OdcMUlrQLfbeOBuYLIVZKKTekulFeSQuhl1KeZ/aeEGK7EKKllHKbEKIl8JOLU+8CcoQQ9UJWVmugJM7musKHvpUA54T93RrNN4+UsiT0+xchxHS04WqqhL4EaBP2t9G91vfZIoSoBzRG+4ycHJtKPPdNag7fgwBSyqVCiA3A8cCShLfaGfHce9P/zTQgrv+psO/Wd0KIj4A8NJ9/jaQmuG7mAPps/lDgTacHhr5kCwB9Rt3V8UnASd/mARcIIZqEonIuAOYJIeoJIZoBCCECwMXAN0losxlfAceFopzqo01IRkcrhPf3t8D80Gc0B7gqFLnSATgOWJykdjvBc9+EEM2FEJkAIevwOLRJy3TBSd/MMPzfTFA73eK5X6H+NAi9bgb0Ar5NWEuTQapng+1+0PycHwLrgA+ApqHt+cB/wvb7FNgBlKP54/qFth+NJhrrgdeBBqnuk4e+XR9q/3rgutC2RsBSYAWwCvgnKY5UAfoD/0OzfO4MbRsPDAy9bhj6DNaHPpOjw469M3TcWuCiVH82fvUNuDz0+SwDvgYuSXVfPPTtlNB3aj/aCGyV1f9muvx47RdwBrASLVJnJXBDqvsS749aGatQKBS1nJrgulEoFApFHCihVygUilqOEnqFQqGo5SihVygUilqOEnqFQqGo5SihVygUilqOEnqFQqGo5SihVygUilrO/wNIdr7cUZaZzQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -212,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -969,13 +969,7 @@ "epoch 747: loss = 1765080.409388, a = 736.413451, b = 152.655201\n", "epoch 748: loss = 1764899.846541, a = 736.837393, b = 152.654930\n", "epoch 749: loss = 1764720.003201, a = 737.260487, b = 152.654660\n", - "epoch 750: loss = 1764540.876496, a = 737.682735, b = 152.654390\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 750: loss = 1764540.876496, a = 737.682735, b = 152.654390\n", "epoch 751: loss = 1764362.463568, a = 738.104139, b = 152.654121\n", "epoch 752: loss = 1764184.761567, a = 738.524700, b = 152.653853\n", "epoch 753: loss = 1764007.767659, a = 738.944420, b = 152.653585\n", @@ -1176,7 +1170,13 @@ "epoch 948: loss = 1740073.049267, a = 806.639154, b = 152.610348\n", "epoch 949: loss = 1739992.084021, a = 806.922668, b = 152.610167\n", "epoch 950: loss = 1739911.440986, a = 807.205615, b = 152.609986\n", - "epoch 951: loss = 1739831.118877, a = 807.487996, b = 152.609806\n", + "epoch 951: loss = 1739831.118877, a = 807.487996, b = 152.609806\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 952: loss = 1739751.116414, a = 807.769812, b = 152.609626\n", "epoch 953: loss = 1739671.432323, a = 808.051065, b = 152.609446\n", "epoch 954: loss = 1739592.065335, a = 808.331755, b = 152.609267\n", @@ -1500,13 +1500,7 @@ "epoch 1272: loss = 1725310.896600, a = 874.295618, b = 152.567136\n", "epoch 1273: loss = 1725288.607410, a = 874.443841, b = 152.567042\n", "epoch 1274: loss = 1725266.406608, a = 874.591768, b = 152.566947\n", - "epoch 1275: loss = 1725244.293841, a = 874.739399, b = 152.566853\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 1275: loss = 1725244.293841, a = 874.739399, b = 152.566853\n", "epoch 1276: loss = 1725222.268760, a = 874.886735, b = 152.566759\n", "epoch 1277: loss = 1725200.331014, a = 875.033776, b = 152.566665\n", "epoch 1278: loss = 1725178.480257, a = 875.180523, b = 152.566571\n", @@ -1633,7 +1627,13 @@ "epoch 1399: loss = 1723083.256642, a = 890.934407, b = 152.556509\n", "epoch 1400: loss = 1723069.792927, a = 891.049358, b = 152.556436\n", "epoch 1401: loss = 1723056.382489, a = 891.164079, b = 152.556363\n", - "epoch 1402: loss = 1723043.025115, a = 891.278571, b = 152.556289\n", + "epoch 1402: loss = 1723043.025115, a = 891.278571, b = 152.556289\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 1403: loss = 1723029.720594, a = 891.392834, b = 152.556216\n", "epoch 1404: loss = 1723016.468716, a = 891.506868, b = 152.556144\n", "epoch 1405: loss = 1723003.269272, a = 891.620675, b = 152.556071\n", @@ -1931,7 +1931,13 @@ "epoch 1697: loss = 1720722.510311, a = 916.760321, b = 152.540014\n", "epoch 1698: loss = 1720718.362630, a = 916.823629, b = 152.539974\n", "epoch 1699: loss = 1720714.231237, a = 916.886810, b = 152.539934\n", - "epoch 1700: loss = 1720710.116066, a = 916.949865, b = 152.539893\n", + "epoch 1700: loss = 1720710.116066, a = 916.949865, b = 152.539893\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 1701: loss = 1720706.017053, a = 917.012794, b = 152.539853\n", "epoch 1702: loss = 1720701.934135, a = 917.075597, b = 152.539813\n", "epoch 1703: loss = 1720697.867247, a = 917.138274, b = 152.539773\n", @@ -2273,13 +2279,7 @@ "epoch 2039: loss = 1719939.679051, a = 932.453563, b = 152.529991\n", "epoch 2040: loss = 1719938.588590, a = 932.485490, b = 152.529971\n", "epoch 2041: loss = 1719937.502342, a = 932.517352, b = 152.529950\n", - "epoch 2042: loss = 1719936.420291, a = 932.549151, b = 152.529930\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 2042: loss = 1719936.420291, a = 932.549151, b = 152.529930\n", "epoch 2043: loss = 1719935.342420, a = 932.580887, b = 152.529910\n", "epoch 2044: loss = 1719934.268714, a = 932.612559, b = 152.529890\n", "epoch 2045: loss = 1719933.199154, a = 932.644167, b = 152.529869\n", @@ -2686,7 +2686,13 @@ "epoch 2446: loss = 1719714.693893, a = 941.350072, b = 152.524309\n", "epoch 2447: loss = 1719714.462381, a = 941.364208, b = 152.524300\n", "epoch 2448: loss = 1719714.231731, a = 941.378316, b = 152.524291\n", - "epoch 2449: loss = 1719714.001940, a = 941.392396, b = 152.524282\n", + "epoch 2449: loss = 1719714.001940, a = 941.392396, b = 152.524282\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 2450: loss = 1719713.773003, a = 941.406448, b = 152.524273\n", "epoch 2451: loss = 1719713.544917, a = 941.420472, b = 152.524264\n", "epoch 2452: loss = 1719713.317680, a = 941.434467, b = 152.524255\n", @@ -2694,13 +2700,7 @@ "epoch 2454: loss = 1719712.865738, a = 941.462375, b = 152.524237\n", "epoch 2455: loss = 1719712.641027, a = 941.476287, b = 152.524228\n", "epoch 2456: loss = 1719712.417151, a = 941.490171, b = 152.524219\n", - "epoch 2457: loss = 1719712.194107, a = 941.504027, b = 152.524211\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 2457: loss = 1719712.194107, a = 941.504027, b = 152.524211\n", "epoch 2458: loss = 1719711.971892, a = 941.517856, b = 152.524202\n", "epoch 2459: loss = 1719711.750502, a = 941.531657, b = 152.524193\n", "epoch 2460: loss = 1719711.529935, a = 941.545430, b = 152.524184\n", @@ -3192,7 +3192,13 @@ "epoch 2946: loss = 1719661.403852, a = 945.820957, b = 152.521453\n", "epoch 2947: loss = 1719661.365180, a = 945.826153, b = 152.521450\n", "epoch 2948: loss = 1719661.326639, a = 945.831339, b = 152.521447\n", - "epoch 2949: loss = 1719661.288228, a = 945.836514, b = 152.521443\n", + "epoch 2949: loss = 1719661.288228, a = 945.836514, b = 152.521443\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 2950: loss = 1719661.249948, a = 945.841679, b = 152.521440\n", "epoch 2951: loss = 1719661.211798, a = 945.846834, b = 152.521437\n", "epoch 2952: loss = 1719661.173777, a = 945.851978, b = 152.521434\n", @@ -3247,7 +3253,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuclmP+x9/XTE814zRFi6ZSORQpTYUUUXaFyIhF61AOm7V2ba2NUlQ2ilCsw/7CEjlEMRuxEVlEMaMpUq0QNUKqiZqp5nD9/rife3oO93Wfnvs5zMz1fr3mNTP3cx+u636e53t/r+/1ub5fIaVEo9FoNA2XrHQ3QKPRaDTJRRt6jUajaeBoQ6/RaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwNGGXqPRaBo42tBrNBpNA6dJuhsAcNBBB8n27dunuxkajUZTrygpKflJStnKab+MMPTt27enuLg43c3QaDSaeoUQ4hs3++nQjUaj0TRwtKHXaDSaBo6joRdCNBdCfCSEWCGEWCWEmBTe/qQQ4mshRGn4p3t4uxBCPCCEWCeEWCmE6JHsTmg0Go1GjZsY/W5ggJRyhxAiBLwvhHg9/NpoKeXcmP3PAo4M/5wIPBL+7Ymqqio2btzIrl27vB6qCZDmzZvTpk0bQqFQupui0Wh84mjopZGwfkf431D4xy6J/XnAU+Hjlgoh8oQQh0opN3lp2MaNG9lvv/1o3749Qggvh2oCQkrJli1b2LhxIx06dEh3czQajU9cxeiFENlCiFLgR+BNKeWy8Et3hMMz04UQzcLb8oENEYdvDG/zxK5duzjwwAO1kU8jQggOPPBAParSNHqKlpfRd+rbdBizgL5T36ZoeVm6m+QJV4ZeSlkjpewOtAFOEEIcC4wFOgPHAy2Bm71cWAgxQghRLIQo3rx5s2ofL6fUJAH9HmgaO0XLyxj70qeUlVcigbLySsa+9Gm9MvaeVDdSynJgMXCmlHKTNNgNPAGcEN6tDGgbcVib8LbYc82UUvaSUvZq1cpR76/RaDRpYdrCtVRW1URtq6yqYdrCtWlqkXfcqG5aCSHywn/nAL8B1gghDg1vE0Ah8Fn4kPnAFWH1TW9gu9f4fEOkffv2/PTTTwnvo9E0ZDIxRPJdeaWn7ZmIG9XNocAsIUQ2xoPhBSnlq0KIt4UQrQABlAJ/CO//GnA2sA6oAK4MvtkajaahYYZITO/ZDJEAFBZ4nuYLjNZ5OZRZGPXWeTlpaI0/HD16KeVKKWWBlLKblPJYKeXt4e0DpJRdw9suk1LuCG+XUsrrpZSHh1+vt7kN1q9fT+fOnRk+fDhHHXUUl156KYsWLaJv374ceeSRfPTRR2zdupXCwkK6detG7969WblyJQBbtmzhjDPOoEuXLlxzzTUYIiSD2bNnc8IJJ9C9e3euvfZaampqVE3QaBoNmRoiGT2wEzmh7KhtOaFsRg/slKYWeScjct04MnIklJYGe87u3WHGDMfd1q1bx4svvsi//vUvjj/+eJ599lnef/995s+fz5133knbtm0pKCigqKiIt99+myuuuILS0lImTZrEySefzG233caCBQt4/PHHAVi9ejVz5sxhyZIlhEIh/vjHP/LMM89wxRVXBNs/jSYNFC0vY9rCtXxXXknrvBxGD+zk2hvP1BCJ2X6//coE6oehTyMdOnSga9euAHTp0oXTTz8dIQRdu3Zl/fr1fPPNN8ybNw+AAQMGsGXLFn7++WfeffddXnrpJQAGDRpEixYtAHjrrbcoKSnh+OOPB6CyspJf/epXaeiZRhMsiYZeMjlEUliQX68Meyz1w9C78LyTRbNmzer+zsrKqvs/KyuL6upqzytGpZQMGzaMKVOmBNpOjSbd2IVe3BjJ0QM7RT0ooP6FSDIVndQsQU455RSeeeYZAN555x0OOugg9t9/f/r168ezzz4LwOuvv862bdsAOP3005k7dy4//vgjAFu3buWbb1xlGtVoosg0hUqioZfCgnymDOlKfl4OAsjPy2HKkK712pPOFOqHR5/BTJw4kauuuopu3bqRm5vLrFmzAJgwYQJDhw6lS5cu9OnTh3bt2gFwzDHHMHnyZM444wxqa2sJhUI89NBDHHbYYenshqaekYkKlSBCL/U9RJKpiEg1SLro1auXjC08snr1ao4++ug0tUgTiX4vMo++U9+2NKr5eTksGTMgDS2Kf/iAEXrRXnnyEEKUSCl7Oe2nPXqNph6SiQqVhqBOaahoQ6/R1EMyVaGiQy+ZiZ6M1WjqIQ1hEY8mdWiPXqOph+gwicYL2tBrNPWUdIVJEln9qkkP2tBrNBrXZKKsU+OMjtEHwNlnn015ebntPrfddhuLFi3ydf533nmHc845x3G/0047jViZaiwzZsygoqLCVzs00WTagqVUkKmJxzT2aI8+AaSUSCl57bXXHPe9/fbbU9AiZ2bMmMFll11Gbm5uuptSr2msnm0myjo1zjQYjz4Z3tV9993Hsccey7HHHsuMcL6d9evX06lTJ6644gqOPfZYNmzYEFUw5O9//zudOnXi5JNPZujQodxzzz0ADB8+nLlz5wJGgZEJEybQo0cPunbtypo1awD46KOPOOmkkygoKKBPnz6sXWvvJVVWVnLJJZdw9NFHc/7551NZuffLdt1119GrVy+6dOnChAkTAHjggQf47rvv6N+/P/3791fup3GmsXq2KvlmumWdGnsahEefDO+qpKSEJ554gmXLliGl5MQTT+TUU0+lRYsWfPHFF8yaNYvevXtHHfPxxx8zb948VqxYQVVVFT169KBnz56W5z/ooIP45JNPePjhh7nnnnt47LHH6Ny5M++99x5NmjRh0aJF3HLLLXWZMa145JFHyM3NZfXq1axcuZIePXrUvXbHHXfQsmVLampqOP3001m5ciU33HAD9913H4sXL+aggw5S7tetWzdf96wx0Vg9W514rH7SIAx9olnzrHj//fc5//zz2WeffQAYMmQI7733HoMHD+awww6LM/IAS5Ys4bzzzqN58+Y0b96cc889V3n+IUOGANCzZ8+6dMbbt29n2LBhfPHFFwghqKqqsm3ju+++yw033ABAt27dogz0Cy+8wMyZM6murmbTpk18/vnnlgbc7X7JJNNUHG7a43bBUn3smx1a1umCzZvhzjuhaVO46650twZoIIY+1d6VafwTwUx3nJ2dTXV1NQC33nor/fv35+WXX2b9+vWcdtppvs799ddfc8899/Dxxx/TokULhg8fzq5du3zvl0wyLdbttj1uPNv62jcn9OpXBb/8AtOnwz33wM6dcO21ICUIke6WNYwYfTLihqeccgpFRUVUVFSwc+dOXn75ZU455RTbY/r27csrr7zCrl272LFjB6+++qqna27fvp38fOML9OSTTzruH5kK+bPPPqsrY/jzzz+zzz77cMABB/DDDz/w+uuv1x2z33778csvvzjulyoyLdbttj1uUurW175lAvVK0bRnD/zjH3D44TBhAvz61/DZZ/Dwwxlh5KGBePTJiBv26NGD4cOHc8IJJwBwzTXXUFBQwPr165XHHH/88QwePJhu3bpx8MEH07VrVw444ADX17zpppsYNmwYkydPZtCgQY77X3fddVx55ZUcffTRHH300XXzAccddxwFBQV07tyZtm3b0rdv37pjRowYwZlnnknr1q1ZvHixcr9UkWmxbi/tcfJsM6FvkaEaVZ7aTJtXyLSRkJLaWnjuObj1Vvj6azjtNJg6FU48Md0ti6PBpCnOlFjojh072HfffamoqKBfv37MnDkzapK0PpLMNMWZlm43yPaku29WaYOtSGdqYyvSfd8ckRJefx3GjoWVK43601OnwhlnpNyDb3RpijMlbjhixAg+//xzdu3axbBhw+q9kU82qVJxuHUEgmzP6IGdGD13BVU1e52pULZImULFKlQTSyYqZjJhJKTkgw9gzBh47z0jVPPcc3DRRZCV2VFwR0MvhGgOvAs0C+8/V0o5QQjRAXgeOBAoAS6XUu4RQjQDngJ6AluAi6WU65PU/ozDjJlr3JEKFYeXUEDg7YkdMKdwAG1nGAVkrGImI1Mwr1oFt9wC8+fDwQfDQw/BNdcYypp6gBuPfjcwQEq5QwgRAt4XQrwO/BWYLqV8XgjxT+Bq4JHw721SyiOEEJcAdwEX+2mclBKRIZMZjZVUhPaSPRrzKr8Nqj3TFq6lqjb6/lXVyoRkv15QGcyMCYEoyCit/jffGBOsTz0F++0HkyfDyJEQgPIulTiON6TBjvC/ofCPBAYAc8PbZwGF4b/PC/9P+PXThQ9r3bx5c7Zs2ZISQ6OxRkrJli1baN68ebqbkpAKI12hgHSHIOprzvqMKBL+008wahQcdRQ8/zz89a/w1Vcwbly9M/LgMkYvhMjGCM8cATwEfAmUSymrw7tsBMx3IR/YACClrBZCbMcI7/zkpWFt2rRh48aNbN682cthmoBp3rw5bdq0SWsbElVhqDxbiTHxl6zwRbpDEPV5cVPa5tx27DC08NOmGVr44cMNj75du9S3JUBcGXopZQ3QXQiRB7wMdE70wkKIEcAIgHYWNzEUCtGhQ4dEL6NpACS68tkqFGCSTOleUCGIRBRlmSJSyHj27IGZM+Hvf4cff4TzzzfCNMcck+6WBYKnqWIpZTmwGDgJyBNCmA+KNoA5li4D2gKEXz8AY1I29lwzpZS9pJS9WrVq5bP5msZAoiGQyFCAFclYNGQa58qqGrLDkUs/IQhzNFMW1sGbD6aMXkBUn6ithWeegc6d4c9/hqOPhg8/hJdeajBGHlwYeiFEq7AnjxAiB/gNsBrD4F8Y3m0Y8O/w3/PD/xN+/W2pA+0NCj/x8kRi7EGsfC4syGfJmAGoJouCjJtHGmeAGinrPHmv3nV9Ws1ar5ASXnsNCgrgsstg//0NbfzixWCRx6q+48ajPxRYLIRYCXwMvCmlfBW4GfirEGIdRgz+8fD+jwMHhrf/FRgTfLM16cKPh5moVxrkpGIq0uwGaZzTPaHbIPnwQ2MV66BBRkz+2Wfhk0/gzDMzJmVB0LhR3ayUUhZIKbtJKY+VUt4e3v6VlPIEKeURUsrfSil3h7fvCv9/RPj1r5LdCU3q8GPEEjV8QaowUqFECdI45+WGLLfr/O8++PxzKCyEPn1g7VpDC796NQwdmvELnhKlwayM1aQGP0YsCMMX1KRiKpQoQaltipaXsWNXddz2VK6ubRB8++1eLfy++xoTriNHGn83ErSh13jCjxFLt8wwlmQrUYJS21gtuALYp2kTraRxw08/GXnhH3rICMmMHGnkpwkX3WlMaEOv8YSTEbOSAqZrpWO6Et0FNWpQjXi2V9oXpGn07NgBM2YYWvgdO2DYMJg4sd5r4RMhY7NXatKDG+Oo2scqW2JOKJspQ7oCyQuXWLUHULYlE7xhN/c547M4BkRgD+Q9e+DRR43QzA8/GPH4yZOhS5fgG50huM1eqQ29pg47Q+3mi5cOw6Rqc7MmWZRbeL7JaItXQ+X2Pif6ftQHAuljba2RpuDWW400Bf36GWmDTzopSa3OHNwa+oY91azxRKLqmHRIAVVttjLyyWiLH+lokFWs/LQ3kyo3JfSZM/PC9+gBl15qJB177TV4551GYeS9oGP0mjoSNdSJTLqqwi9OnrJXwx30BLCf9Axu7nPs/Zh+cfeEvfhMrNzk+zO3dKmRF/6//4WOHY3VrZdc0uBlkn7Rhl5TR6LqGL+TrlYGaPTcFSCpU52ojJKqzS1yQ+yqqk36BLAXQ2Uab1Ww1LzPKoNc/M1WFqzcxLYKY7SSlxNi4uAuro2024dSKiexPX/mPv/cyCBZVAS/+hU8+CD8/vf1Ji98utCPP00diS4m8htqsDJAVTUyTloYO6QvWl5GxZ54nXlOKJsJ53ZJSapbtyttY9MiWLU5chRjZZBnL/22zsgDlFdWMfrFFa7DL24eSuOLPmXUnNKU5dZx/Zn79lu46iro2hXeesuYcP3yS7j+em3kXaA9ek0dQcgC/WjUvYRfzH1V9VBjvdygDXust9u/cyvmlZQ5yk1VBh6Mh1DkffZyP7wUMnHynouWl/HM0m/jRhxeMoV6xfEzt2XLXi28lPCXvxiVnhqhFj4RtKHXRJGOtLYqA6TaF9T1UPdp5m0xkZcwhVVIZV5JGRf0zGfxms2u5KaxCIhTAXm5H+D+weAUWrMLK9nNHyQa2rH8zO3cuTcv/I4dcMUVMGlSo9bCJ4I29Jq0Y2WAQtkiKkYPe41S0fIypSH04g17nZxUhVQWr9lsKdl0U5z7gJz4XDZW90OgLjfrdg7FyXu2u3dO8weR50+IPXvgscfg9tsNLfx558EddzRoLXwq0IZek3ZUBki1zTQsVnhR1XhVzHhViLh56OzcU03R8rKo61ndj/6dWzHn4w1U1USb+1CWt7w3diM21UhCgOP8QcKhndpamDMHxo/fq4V/+WUtkwwIbeg1GYHKAFmtFlV5yaFsQf/Oreg+6Y06HX2L3BATzrVWpng10F4VIm5CMFU11jF2q/vR67CWTHpllW/VjROqkcSlvds5ev2+1ydICQsXGjloSkuhWzdYsADOOqvBpgxOB9rQa+oVdgalplby7NJvqY3Ytq2iypBqEv/Q8Gq4vcpH7UoYRuKlUlYQWnq7kVNebohmTbLYXlllGX8PNEFdpBa+QweYPbtRpAxOB9rQawIl2RpsOy/ZItEjoPaavRpur6qk2P3BOs5uFadPBm7WK2yrqCInlK1coBVIgrrVqw3ljKmF/8c/YMQILZNMItrQawIjFSsv3XrJsVh5zX7kpF696sj9C25/I0oHb5LMCEXkgzdLCGpiclvFxvzBPuaekAR3wwYji+STT8I++xgTrqNGNaq88OlCG3pNYDhN1BUtL2Pi/FWu4ucqzH1vfGFFnNGyQxVaSCQc4nX0Um5h5K22BzUqin3werlfduEk1T1TtnvLFpgyxVjFamrhx46FVq0c25+ONNMNEW3oNQkR+WW002AXLS9j9IsrouSSdvFzO8x9R84pdbV/Mioy+Rm9uIlv+x0VWRlFN/JOFX6qYcW2+/bnP+aoxx7gmNn/3KuFnzgRDjvM1/nSnZenPqNnPTS+ic3cqKJ1Xo6yWpIZP/dKYUE+eYrYdmQopEVuiGkXHhe4cfCTddHNcn8/51Vl0HSz6CqULQhlRceO/FbDMtvdpKaayz5ZwMKHruSYh+82CnGvXAlPPOHKyMeez8RvgXWN9ug1CeDGYzSNxigb79uvNG/i4C5py9fuR2boJr7t57wqo5htEZMHyBaCWik9ZQl14rvySoSs5dzV7/HX92bTvnwTy9p04Q+F45g3+2+ezmWez8t2jT3a0KeYZMQd/Z4z0bbYfekERJ3TLt+L39TBqSj0rcKvzNBpTkB13iwh6DBmgaeHQ42U5ISyXT0IE7pnUlL442dc/dqjHPvDl6xu1Z7hF07gnY69yG+R6+uUmVZnuL7jGLoRQrQVQiwWQnwuhFglhPhLePtEIUSZEKI0/HN2xDFjhRDrhBBrhRADk9mB+oSfIhXJOmcQbVF96fLzcvh66iCWjBlQZ0BGD+wUFyKAxOPnhQX5LBkzIO56ySbRTJ9ezguG0Va9T3bvQ9IzeC5bBgMGMP2JMeTt2sHIc27k7Csf4J3DjyenaRPf9yNZ97ex4iZGXw3cKKU8BugNXC+EOCb82nQpZffwz2sA4dcuAboAZwIPCyHiP7mNkGTEHf2eM4i2ePkyFhbkM+23x0XF1c34OZBRVY/ckIzqT1bnzbbQXsa+T3bvQ9IehKtXw5Ah0Ls3rFoFDzxAyRsf8nHfs0FkJXw/knV/GyuOoRsp5SZgU/jvX4QQqwG7u30e8LyUcjfwtRBiHXAC8GEA7a3XJCPu6PecQbQlNnRyQE4IIWDUnFKmLVwbF2KwClskoq4IMgzm51zJyvQZed4OYxZY7hP5PqU0hLVhg5FF8oknDC38pEmGFn6//TgPOO+EDoFdKh2ZVBsqnmL0Qoj2QAGwDOgL/EkIcQVQjOH1b8N4CCyNOGwjFg8GIcQIYARAu0aSejQZcUe/5wyqLeaX0YvBdlrE4yZJltX1Rs4pZeL8VZ7zv1ida9ScUkbOKY3LFR8EXh4qbt+npBvFLVuMgtv/+Iehhb/hBmN1q4MWXpMZuJZXCiH2BeYBI6WUPwOPAIcD3TE8/nu9XFhKOVNK2UtK2atVI/mwJCPu6PecQbfFbSgodm5AtYjHaWShUvyUV1bZzjVYFce2OpfZqqArLHmdG0l7rHrnTqPwR8eOcO+9Rl3WtWuNXPGN5HvbEHBl6IUQIQwj/4yU8iUAKeUPUsoaKWUt8ChGeAagDGgbcXib8LZGTzLijn7PGXRb3IaC3C7iUY0sTENtpxFXzTX41ZsHqd9WPRAnzl9luX+6YtX//mg90wpH8uPBbWHcODYV9Da08E8+Ce3bJ/Xa9R0rZyLdOIZuhBACeBxYLaW8L2L7oeH4PcD5wGfhv+cDzwoh7gNaA0cCHwXa6npMMobYfs/peSm7DW5DDG7mAFQeq5uKTXbX8ao3dzqfH1QPlfLKqri89CYpjVXX1vLx3f+k+92TOW/bJj5qcwzXFY7l8w5dmVLVgsLUtKLekqkret149H2By4EBMVLKu4UQnwohVgL9gVEAUspVwAvA58B/gOullP7WYWtSjl/ZpdsQg8pTzxbC0WP1sqTf6jpOenOv5/ODlYrGJK2rPs288L16cfzY66lo0owrL5zARb+7i5I2x+hVqS7J1BW9blQ372Osf4nlNZtj7gDuSKBdmjTht4KQW+WHKs2tm3CEW69aNSJQjTrMCVdzUVds2b4gY+J2I4e0rfpctsxIMrZ4MbRvz6hzbuTfR/ejNiv64eenfY0tMVmmrujVK2M1USTyQXUTYkhECuimYpMALuhp3Q7VQ6Z/51Z17ckPl+2zKvYdBPk2fUj5qs81a2DcOHjpJWNi9f774dpr+Wj6EmoDUGRlahgjmWTqil5t6DVRpOKD6uaBYHqCZeWVdTH0vJwQoWxhmUPdRAKL12xWXhfia7HOKymLMkbzSsqSNuE5emAnRs9dkXDt14TYuNHIIvnEE5Cba/z917/CfvvVtTHh4iIksb5sBhPUvQsabeg1UYwe2CkunXBKjRDqPOrllVWEsgQtckOUV1QpM2aWlVcq88LEPmSsatDaGaNEQxHmvkHVfvXUnq1b92rha2vhz382PPoYmWRQC7BSFcbIpPBQOvMv2aENvSae2BmZFNdotpt0raqV5DZtwvLbzrCVWUZOJIM6VODFGAUVighKReO6PTt3wgMPwF13wc8/w+WXGytabWSSQbQxFaPDTAwPZeKKXp2PXhPFtIVr48IKXnPG2+mI3WiM3aZvUCUAi8RJ8aAyOlbb3SgqUqmhdmxPVRX8859wxBHGKtZ+/Qwt/KxZKdHCp2KxV6aqXDIN7dFrokh0uG3nYQGuvC+nSVfTCMcOk+0qXKnwElN1ujep9i5V7dm0bSfMmQPjx8O6ddC3L7z4Ipx8cuBtsCMVYYxMVblkGtrQa6JIdLjt5GG5iYfbFQCPNcKRw2RVKMeu7V6MkdO9SfXkY1x7pOSU9csZ9/7TcPcXcOyx8MorMGhQciuQ25DsMEamqlwyDR260USR6HDbzsNy631FLvuHvYuMzMVUYJ3W2KrtoWzBzt3VtqEUt6l8ne5Nqr3LyPYc991ann1+HE+/cBvtZCU89RSUlsI556TNyKeCtOcCqidoj14TRaLDbScPy633ZZeewSk8YrY9LzfEjl3VlFdWKff1gtO9SbV3WViQz77rvyT7tvH0/+w9tu2Tx8rRk+j295uhWbOkXDPTyFSVS6YhpEOOj1TQq1cvWVxcnO5maALAKh+NufIV8L0q1kQVnsnPy2HJmAGu9o2tmZqoUYjU/Futqk2KJn/jxr154XNy4G9/i9LCaxoHQogSKWUvp/20R6+xJBFtcvNQVp0xt9KIJ1LfVjVJaxUescttA2oP30vfYx9sEuqMfSK57CPbYBZ0Ka+oolPTKv7xzUKOfOFJqKmB6683tPC/+pXna2gaD9rQa+Lwqx6x8uZ3V9dG7eNncs5N1kqr8IiblAmxk6Ve+67KZW81wnBLbBvKK6toXrWL64rn84dl89h3dwXfDhpCuwfv0SmDNa7Qhl4Th5NyRuXtqo678YUVjJpT6jtU4pS1UjX5ZqfeiSTS8/eqnAlCjhp7PyPb0KSmmotXvsENHzzPwTu2sujw45l26jB2HHk0S7SR17hEG3pNHCojZXq3Km/Xb6jEb3vAPjwSO1FnVbYQokcDXg23nwlYVUw/8v4KWcvZa5Zw43tP03Hbd3ycfwzXn3czxW26ACC0TlzjAW3oAySTcm4k0h6V8coWwtbb9RMqcYNdemGn8EhkqEg1URw5GvBquL0msbKK6UdSWVVDv/Wl/O2/T9Lt+3WsOegwrr7gVt46/IQomaTWiWu8oHX0AeG3YEcmtqd/Z+taoE71Xd2kJIjc3y1W5xUYffKSZsBNWT6vumyvpf7swlDdNv2P2c+P46k54zmw8mf+OmgUZ1/5AG8dcWKUkdc6cY1XtEcfEJmWkjWR9qjS/KpK7qlSErgJlaiIHY1c0DOfxWs2K8Mdkde3w2ky2I8u28sEs9VDruOWjdz43tMMWruELTn7M+OcP9Jx/I0sW7weWV5JXoTqJhNGipr6hzb0AZFpOTfs4ux9p75ta8ScSu7ZhSm8hkqssFK+mDnirSSWfh6odmGtZC7bjwwNHfzLT/xlyXNctPJNdoWaMaPvUGb3uYDxQ3szuCCfwSd2TEobNI0PbegDIp05N6yMlqo9ZsgDvCcViy25Z8bsTTVOrHH0u2rRbjQSxAM1naltRw/sxJRnPuDK9+cwvOQVsmprebrHIB486WKa5x/KeO2ta5KANvQBka7KMiqjdUHP/KjKSUDcqk1wn1TM7Iu5n1tD6cc7tjPmQTxQ0xZmq6igcOHTnD1zKk12/EzRMafx7NlXc9nQ0yjRxl2TRPRkbEB4nZQLCpXRWrxmc1x73KbxdepLsnOA2+WIDyKJVcrDbFVV8H//Z+SFHzuWpv1OJqu0lCGTD6dBAAAgAElEQVSfvc3cuy/VHrwm6Th69EKItsBTwMEYDuFMKeX9QoiWwBygPbAeuEhKuU0IIYD7gbOBCmC4lPKT5DQ/s0hHZRk7o2VVNi/RpGJgnZgsti2JSE3djCj8nrtoeVmgk8S2166thblzjbzwX3wBffoYeeJPOcVVWzWaoHATuqkGbpRSfiKE2A8oEUK8CQwH3pJSThVCjAHGADcDZwFHhn9OBB4J/9Z4xI1RUYUysoSgaHmZY0gmMo2vG6NZtLzMMgRktsXcx21ox66PVtsTeYCY7bIy8n4niZWx/UWLYMwYKCmBLl1g/vyMTBmcaWs/NMnB0dBLKTcBm8J//yKEWA3kA+cBp4V3mwW8g2HozwOekkZazKVCiDwhxKHh82hc4taoqJb510gZt3+sAc1tms3OPTWe0vhOW7hWGQIy9fduY+BOfbR6KCQyiWqnYVdNKkcaQquRQFy/iosNA//WW9CuHTz5JFx2GWQ7ry9INZlYb1WTHDzF6IUQ7YECYBlwcITx/h4jtAPGQ2BDxGEbw9s0HnAbBzfj6dkWnqJq/yVjBjD94u5U7Ik3ek6xdrs49nPLNlC0vEwZ2ond7jXWr9p/0iurXNVpdYrBxy4qi110Zrtg7H//g9/+Fo4/HlasgOnTjW3DhmWkkQddb7Ux4Vp1I4TYF5gHjJRS/iwiDIuUUgohPCW2F0KMAEYAtGvXzsuhjQIvE4aFBfmMmlPq6Tx2nrmdQbRLc2COIoQAK5uYHQ4n+a3xqtq+raKKbRXxoxKIDv/k5Ybq9lMR6aE7JVMDQws/tvhFuOc/0Lw53HYb3Hgj7L+/7XGZQKat/dAkD1eGXggRwjDyz0gpXwpv/sEMyQghDgV+DG8vA9pGHN4mvC0KKeVMYCYYhUd8tr/B4lVG6HV/J2OuYvTAToyaU6o00naG0XwQOBlPr320asPE+avYXV0bFZYIZQlC2YKqGvuPm3lv7O7R/rt2cN3SuVxZMp+mSPjjH41J13qUF17XW208OIZuwiqax4HVUsr7Il6aDwwL/z0M+HfE9iuEQW9gu47Pe8erjNDr/qovswifS0VhQT6X9m6HnylFq6RosXjto4ryyqq4a1XVSvZp2qRONmoV7oK998bqHjWv2sUfls7lvX9ezbXL5rH5jHPIWrsGHnggysgXLS9zFU5KJ7reauPBTYy+L3A5MEAIURr+ORuYCvxGCPEF8Ovw/wCvAV8B64BHgT8G3+yGj1ddvlVBbTMMYWVkVInCLu3dznEibnJhVy7trQ635eWELA2IKsZtki0EF/RU14o1QymRxcLzckK254xle2VVXSHwey86ztbQRd6jJjXVDC39D+/MHMGY/z5JSf7RnHPl/bRdMA86RqcqyLQEdyrStfZDk3rcqG7eB6UDd7rF/hK4PsF2NVoSkbt5WbWaiB69aHkZ80qsjVZOKJuJg7tYntuuFCAYoZ15JWX0OqylrTrHzLljGmQrzX3zUJZlPD7SS3e6B4UF+SAli/7+EKPefZrDt5ZR0rozNwy+iY/aHlv3UI0l0xLc2ZGOtR+a1KNTIGQQQcjdvBgZv19y1SRlthBRHqHVuZ1i9FZtteuTmY8+1lhbXcsqLGF7D956i8IxYygsLuaLVodxzZBbWXSEkRfeLsShJzk1mYY29BmEF/25ygv1UjzbL6pz1UppG3YxC103D2VRXlHlWnXjZDjtjLWv0VFJiaGFX7SoTgu/qkt/Vi9ah3BxLpW6Jy/XCDPpRUqaVKMNfQbhxhO08/rBOnEZBKuk8KLWsCp0nRPKZvrF3ZWhnNjz+FWHeBmxFC0v4/nZi7h8wWMMWvs+u/Na0Gz6dPjDH6B5cwqBwl7uZMCqqQgp9SIlTXrQSc3SgEqRYScrNLHz+lXaeCcljVdUao3+nVvF9cuuvSoVzc7d1VETl37UIV5UL/95o4TdV/+e2dOv4rSvirm/zyX0/f2jFJ36W0Mb75HtldZa/e2VVXqRkiYtCOmghEgFvXr1ksXFxeluRkqwKsYRyhbs07QJ5ZVVcR55Tig7Ku7dYcwCpTEHa28eYP3UQQG0fi/jiz7luWUbqJGSbCHo3bEFn3y7PS4mrorHC+DrqYMoWl7GpFdWxYU6YvvtJdyhKngSpyjZtg3uuotd980gq6aGZ7ufyYN9LuanfVoAhnpon2ZNPIdYVMnj8vNylAvFzPuRCDok1PgQQpRIKXs57adDNynGyqOrqpF1+WYke8Mv+RZfVqcwhsrAQHCGwFTdmHLJGilZ8uXWuP1MKaRT+cFpC9fGGfrYuQkvYRjHuY7KSvjHP2DKFNi+nf8cfSr3nnIZG/IOiTqmvLLKUx4gE7vsm27DVV7RISGNHdrQpxg3k6KmkV8yZkBdCMI0zv07t2LOxxuiVneGsoWj0iRIQ+AmNYCJm/KDiahUIh9eebkhpKTOOMfyw9Yd8OijMHEifPcdnH023Hkn017f4nrFrRuJpJ1ss/ibrTyz9Nu4UVuiobX6JOnUpB5t6FOM22X835VXWhrnOR9tiPeQw//aGZi+U98OzBB4UfBElh9UjST8TrbG3h9lHhspOWvtEsYumQ0/bYSTToLnnoN+/QAYXRsf6lHhtu+q7JvzSsqijLwA5SIxL2hJp8YObehTjCqtcCyt83Kswzy18WGQqlpZZ7BVIY4gDYHbh5U5CewUdlHdk4o91XE59SNxM7Los76Um/87i+O+/4KfOx4FjxXB4MFReeGtHpAVe6otHxwH5ITqYvBmWMoqxOa2vRJYvGaz7XFu0HlrNHZoQ59iYo1KXm6IHbuqowy4OZRXZaS0ws5gJ1pVKRanxGYmEndhIXOfifNXRYVdtlVU2RYssXvYHPv9Om767yz6rV/O9wf8ik8m3keP8TdQtPJ7pt21OG50Efswspw0zxLs3FNd10bzfqrCYLFzIslc45CumsWa+oE29GnAyqhYhTacUgZEojLYiVRVUrVLFWuORZUiwAqzv7HxdbuCJVZ02FrGje/N5pw177E1Z38eGHQdN8y9j0OaN/c0T+HFy7dqp9W1krnGIdESi5qGjTb0AeNH2aIKbViW/ssSIIiajLUz2HbpCi7oaRjXUXNK49rqZBQnF3al12Et6x5GVrJQr96k2/CSVZ9+9csW/vLBc1y84g12N2nK/X0uYXafCxn3u94QNvI3vrDCuUJUBLHvS4cxC1y3XxWmCeI+qdB5azQqtKEPkKAlbiovzWqbKvWAXZGQeSVlyrZ6UXEIqFO8bK+s8u1Nuo0zRxrU/Xft4A/L5nJl8Ss0qa1mbq9B3HviRTTNb824iDqzqlFN7PnsHtROcxOR7VQ9tExFlfa6NalEG/oASYbETeWlOZ3PLrwB1rnhI9vqVA7QSvFipjbw21e3cebWeTn8tLmc4Z+8wnVL55K3awdFx5zKM4Ou4cW7L+OSmPM6Tdo6FTUv/mYri9dstg2/xLZT9VAwZbMaTSrRhj5AMkniZmfc7Fasmm1VLXQyc8Hb1W9NNM2y7fHV1TxYUcKhj97FIb9sYXHHnkzrN4yv2xzJlCFdbftkRaSBVvUpci4iMvxipboxRwRBhbM0miDQhj5AMkniZmfcpgzpqpzoPSBcyEMV5jC3e63f6sXYW+4rJbz0EowbR8HatWzt2oPre4/jtZZH0Tovhyk2DxTV+xKbVtku3BL7v5VnHjsiiDzOrQRTo0kGOqlZgLhJvpWqEnOqh0t+Xg6FBfmMHtjJmNiNYWdYu65SzJjb3T68AknY9fbbcOKJcOGFkJUFL79MyxXFPDRzFF9PHcSSMQMcdfpW78u9Fx0Xt3DLLVYPBdUoKnI9gUaTDrShDxCn0mypLDGnKhVYVl5J36lvA7Bv8/gBXVWNVGaWjEynsHN3teu2+A5dffIJDBwIp58O338P//oXfPopFBZGLXhywul9MVHdMyusHgp2IwKdnVKTTnToJgHsdOZWpDIfSWS8OzZebD5g7OL0dooft+kCTDyHrr74Am69FebMgZYt4d574Y9/9JUy2MSN9NCqz/07t4pSJ4E61p7sRVEajV+0ofeJHymlk5IlaEzjZpU21y6zZJYQdakHYvtilTPHDk8TkJs2we23w2OPQdOmMH48/O1vcMABrq+XKFZ9NtcLOE0w260Y1qkINOlEG3qf+PHOnZQsycJOS2+lwKmRUvnQ8uKZZgksQyRxlJfD3XfDjBlQVQXXXmsY+UMOsT8uycSO2Jyko8nMTqnRJIKO0ftEZfDKyiuVE61OSpZkULS8TBlnNmPVVg8a1SSqF8/U8QFWWQnTpkHHjkZu+MJCWLMGHnwwI4y8n/mUyYVdmX5xd8f5AI0mlTh69EKIfwHnAD9KKY8Nb5sI/B4w0+7dIqV8LfzaWOBqoAa4QUq5MAntTjt28dhIwwB7veJ8m0U0XnGbakFVXhCM7JB2ycnMh1lsce9QtohLwQCSyqraqOMjs2pGUV0NTz5p5IUvK4MzzzQMfffunvuXLBKZT3EzH5Du/mkaF248+ieBMy22T5dSdg//mEb+GOASoEv4mIeFEPFFQRsAqnqnkcR6xX5qn1rhxdu0C7Vsq6iyTUqWlxui+6Q3GDmntO5a5ZVVIKFFbijKY90VY+Qtr29q4bt2hd//Htq0gcWL4fXX44z86Lkrovo3eu6KpKiTVHLXZC5+S6X6SqMBF4ZeSvkuEF8nzprzgOellLullF8D64ATEmhfxhIr2VMRaRjcyvyc8FJgOpFJwG0VVZbVmqpqJblNm0Rp2B0Lmy9eDL17wwUXGNLIl1+GDz+E006LO2bSK6uiRgxgyD4nvbLKd1+ssDO4bgq1+0UXCNekmkQmY/8khLgCKAZulFJuA/KBpRH7bAxva5BEDtFVBaFjDUMQGQbt5gciyw6OHtjJdaGTRNugylMzud0eQwv/xhuGB//443DFFdBE/dFTpQJWVpDyiZ3BHT2wE6NfXBFVJyCUJQKZVM2kVBmaxoHfydhHgMOB7sAm4F6vJxBCjBBCFAshijdvTrzCTroJKizjBpVXaS6Iip0jiB1F5IXTHATZhtjRygnVW3nzo0fof+lZUFwM99xj6OOvusrWyCcLqxCNo8GNHaoFJI5K5mhBo7FCSBeKDyFEe+BVczJW9Vp4IhYp5ZTwawuBiVLKD+3O36tXL1lcXOy17RmH1wk2vxNyVtWPVFkV3eRk8UpOKFsdcorVwo8aBaNHK7XwVvcgttJUJJf1bsfkQuvkZSqs+psTyqZZkyzL65iT426zT/p5363ao9U5Gq8IIUqklL0c9/Nj6IUQh0opN4X/HgWcKKW8RAjRBXgWIy7fGngLOFJKaWtR6ouhD1IpkeiX3W2ZOgF8PXWQ8nivi7Va5IaYcG6X+DaWlxtSyRkzYM8eGDECxo+n6PvauJWmi9dsti2jeEHPfOZ8tMGyPi5AbiiLO4d0c33vVWG1FrkhdlXVWr4HdmokAbYrhc0+mP20+qx4+SxphY5GRWCGXgjxHHAacBDwAzAh/H93DCdyPXBthOEfB1wFVAMjpZSvOzWiPhj6oL0wlfHxm69cdb5sIeKSd7k5Lpa8nBATB1sY+MpKeOghQx65dSsMHWp49Ecc4XvkYGZ6HGlTM9fLve8wZoGl0RbA9Iu7WxpRN/clJ5RN81CW5dyBVYpiP5+VZHv/+iFSvwnUo0829cHQB22Y7YyP6YF79fpURtXOMKjaYbZFed3qapg1y9DCb9xoaOHvvBMKCup2cfsQsWL91EG0dyjdly0EtVI63hs/712i4S0r/HxWgv7cRaJDSPUft4Zep0BQ4DY04lcp4ZS73msuHXOb17qonishSWlII8eNM1axnnACPP20pUzSr5EXGP1XpYwwMV9zujduK1dFEpsULgj8fFaSqdBJZZI9TXrRKRAssNJXe0lX64b+nVvFndNNtSMnrbWbuqiReFILRWrhwVj8tHSppZEH/zl8zLS+Q09s6/oYu3vjd/2CmbffbmFcXk7IdWrjA3JCnmsRJFOho2WejQft0VtgZWTd1Al1S9HyMuaVlEWdUwAX9Nyrsff6JXSqEasyDK7K9y1fDmPHwsKFjlr4yJFQIkHB78or69Q1zyz7FjcRRjsD5Xf9glNJxomDu9TtZ5faOJQl2Lmnuk7l47b6lp/RiFsyqSKaJrloQ2+BncEwJ9kSKQ2nepAsXrN3PYHXL6GTQXIKU1j2Y906Iy/888/zc85+PHjaVbw54EL+UtCNQoWRdxPXjoyt79xdbSlxNPs5ubArkwu7Rj1AshQhnWQYKKeSjOZ9c0ptXLGnOm7StrKqhhtfWGF5vImrB7FPkvkQ0WQW2tBb4JSwLNGJMDfeutcvoVuD5ETR8jIen/shF73+BENXLKQ2FOJffS/m4V7n83PzfWFnraUnWrS8zHJ+IJbYyT7VmoD+nVtFHRf5MFJNIiZrcZpqDsMpZXHk6x0UE8t2KaEjzwV7jb0ZokrU2CfzIaLJLHSM3gKnuGyiMUynuKvpvZrFQcA5rtw8ZP1WOhmkSF59dzXf//lvzJl2GZesWMhzxw3k5GtmMvXkyw0jHyY2Hm4aXjsjryqtqBrdzCspU8awCwvyuaBnft29yRYiKuwVJKrPws7d1Z6SkNmNNpzmXnQSNE2iaI/eAjsFCyQeIrDz1mO9VbM4iJ2ndemjH8alCAbjKe7Ky921Cx56iFNuncQBlb8w/+h+3HvKZXzTorXykMiHnV3YCPytzrULa5hzHOZ7UyMl80rK6HVYy6SVZJz0yqqo0Et5ZZWrGLuJU84hO+chWeoYP1XSNPUT7dErKCzI596LjktK/ho7FYhXtU3R8jKWfGmdXNQ6cXAE1dVGwe0jj4S//Y3SQ45k0LAZ3DD4JlsjD9EPO6c5jdgwDDg/HGBvWCPWc0119sfCgnxym8b7RF6uab7nKiWSnfOQLHWMzqLZeNAevQ3JjGGqJkC9fqknzrdP3WvpoUkJRUWGFn71akML/9RT3LJMWsajrfLomKELM0Wx3ZyGlbft1khZea7pkAUGcU2zD17nF5KljtHyysaD9ugdKCzIZ8mYAVG515OJF9100fIyZfIvkzgP7Z134KSTYMgQqK2FefMMLXz//kpN/aW929EiNzrjpRm6KFpe5jinYRXTz/KgsY81PG7ukaqgiGq7E0Hp2f1o+pOVGVVn0Ww8aEOfYXj5UrsdYpeVVxpa+LPOgv79jZQFjz0Gn31mGPyw0VUZocmFXW1DF5HHqYgsS+g0cRtLrOFxukfjiz5lVERVLDP2PL7oU9+TmkEaWyfnIfZhBPGppoNIU5DK1Nqa9KJDNxmGl3CRmyF2u22buPG92XDXf6FFCyPD5PXXQ456AZWfkJJ5nFMBFlVsPlsIhp7YNm6hkZXhsbtHRcvLeGbpt3GhpsqqGp5btsFTegi31wwS1QTplCFdE85tE4uWVzYetKHPQNyu4rSLjbfasY0/f/A8Q1f8h+qsJjx+ysW80P93/O+nbFrf/2FUqgU3X3K3cWIn/b/qgVErJZMLu8YtNIo04LHbrQyfXTF0r+khYgmiOpgTqc4/k4o+adKPNvQKgkjfmuwUsFZGdb/dOxmx7CWuLi6iaXUVzx83kPv7DmXzvi1ht7GPWWwbSV3O96ASgxUW5FP8zdY679nUuIORiVFlhM0HhpXh8SIDtDPaqiRpmRST1hOkmmSgDb0FQeiLg9Io2z0sIofeP/20nT+tXsjli58lr/IXXul8CveechnrW1pfK7b4Nth7jm6H+VYa9zkfbWDOxxssrwnOcWEvXq5q5CHAdWgonej8M5pkoPPRWxBEDvAgzuEqX3h1NTz9NBW3jCf3++94t30Bd586jM8OOcLVNWJRVaRyi9cc9G5yBtnlzM/Py4l68EC8fFEAl4ZLEGZ6oQ2dI17jBZ2PPgGCGD4neg5V7pg6T7Z7a/j3v+GWW2D1ar5o3Ympl9zBh4cdB0QnX1MlDrOidV5OQsbQa4jB7qFntsOuMIr5UImctJwypKvtKCiTDaaeINUkA23oLQhi+OymsIjqy+wkQWy78iPoM87Qv3fqxLhLJ/BMfq86mSREJ1+z8hJD2SIqRg+G4Wx/YE5CISe7CeJYIleJxt4Pq1S/kVgt4jIfgqlY75AoVv21qzGr0SSC1tFbEIS+2O4cTkmqVBLEY374iidfmMDzz42FDRvg0Ufhs894ts3xUUbeJFL6GJsE7OLj23LxCW2jimRIYMmXWxNaFu+0eCqSGikpWl5G90lvMDJG9/7M0m+VRj4/L0fp5deHSUur93/20m910jJN0tCG3gK/FYncnsMpx0issWq3bRP3z5/Ga0/eQPdNa/nsL+Pgiy/gmmugSRNX2TCtkoAtWLnJdXEQLxLEyH7bVZlqkRti7EufWoaV7MI1S8YMUC7Oqg+Tlm7y/OicM5ogaRShGz8x5yBiuX4XH5nhj4N2Glr435UaWviHT7qIw6ZOYFC/Y6KOc8qGqYr1eyl8LYH2YxbULWwyqz9ZEdlvVR52MFLueC2+bRry+lw0w+1Dsz6MTjT1gwZv6DMxFatT/H5sn0PZMO7vXLHsZZpV7+H54wbyyMlDqWh1MOWvfc24xRsRAsorquoeXFOGdGXi/FV13nHzUBbF32yN8uSDoEZKZi/9FsDW2Dv1NS8nxHaHCeLYOHykIU/1pGWQah238xj1YXSiqR84yiuFEP8CzgF+lFIeG97WEpgDtAfWAxdJKbcJIQRwP3A2UAEMl1J+4tSIZMor7WSOowd2ivvyQuqXuYNhxO4adCSDP/g33HknbNnCom6ncceJQ9mW356de6ptdegX9MyPm7y0mrCMJC8nxO7qWs9eNRghmS+nnO24n51ccNrCtUqDZ/YpEyYog5Y8uim5qCWVGje4lVe6MfT9gB3AUxGG/m5gq5RyqhBiDNBCSnmzEOJs4M8Yhv5E4H4p5YlOjUimobfTYOeEsuMKOCOiFxMl+oVTeYKR29vs35T793xKj3/NMCZZf/MbmDIFevYE3GnTVas+VQhg+sXdgb0PtrzcEDt2VUcpcexYH6G3d1IRqe6BlcFrkRtiwrldMsbIqe5/ZO1brw8hrbrRBEFgOnop5btCiPYxm88DTgv/PQt4B7g5vP0paTw9lgoh8oQQh0opN7lverCohsnZQsQZGCsDl0ieEaewUZ0WftxN8PnncPzx8MQTcPrpUedxE6v1Gp4x91aNaNw8WEwc+6mYq6gvmnHV/TfvuZ9wYKbr+TUNC1crY8OG/tUIj75cSpkX/lsA26SUeUKIV4GpUsr3w6+9BdwspbR115Pp0auG3V7CFW5XixYtL4sqOacKneTn5bCkTxMYMwY+/BCOOgruuAMuuKBOJhnp8WW58NazBLh0xAHrsI05egEYOafU9vjcUBZDerZh8ZrNyodCokXUrUjHyla3q32T0V+Nxo6UrYyVUkohhOfZPiHECGAEQLt27RJthi3NmmTVGTQzLODGazVxMylWtLyM0XNXRIV9rG7K0T9+xU0vzoKxJdC6NcycCVdeCU2aRJ0rtm6sI9JYBBV5/VCWICtLsLs6uqhgTigbIeIVL5VVNUycvypufysqqmrrJmVVeEmF4IZ0Taw71Xs1SUQlk+mpGTT1G786+h+EEIcChH//GN5eBrSN2K9NeFscUsqZUspeUsperVrF1xQNAtMwROq0d4WLaFst7AllCWPFaARuJXvTFq5VTpYCtC3/numv3MOCJ/5Cz+/Wwl13wbp18PvfRxl581xeJ0hrMeYWzJBKXk4IBHFGOy8nxJQhXSmvsFa8lFdW+ZqctUJAoIt+0lXj1O3aAL8qGacFdBpNovj16OcDw4Cp4d//jtj+JyHE8xiTsdvTGZ+3MwzmEDso1Y3Kmzto5zb+9MEcflf6H2qysnmsz2/Jv/M2Bp3axfO53FAjZZ3HbvXg+WVXNeAtVYFfJHDjCyuAYDzudKbwjYypq8KBbhwCK8891TnoNY0PR0MvhHgOY+L1ICHERmAChoF/QQhxNfANcFF499cwFDfrMOSVVyahza6xMwxu0v96IdZw7ru7gt9/9BLXfFxEs+o9zDnuDB7s+ztO/3V3RtgYeatzecVuMVSNlIx96VNLOWYyMK8HiRl7s85sMvPJuw2f+J1EVoWeVO+BXjClCYoGnaZYNYlmNxGZiIxy9NwVZO3ezWXLX+P6D1+gZeXPvBrOC/91OC98KEuwb/MmUYudnAptJAMhoE/Hliz5cmvSrhFJXk6I0gln+DrW7n4EpTdPRXpgO5mm1QNMT+5qnHA7Gdugc92oEoupJiITifUWdjuEOU3X8s5jf+DWtx/js4MPZ/Cw6fzpvJvrjDwYEs5tFVXKWKzpVVZW1djmiXEiLydkm1xMSgI38tlZ6vaWV1b5jjnb1ZkNyhCnIv5vJ9PURbo1yaRBG3pVYjHVRGRZeSUdxiyg79S33RslKQ0tfLdu9Jj4Vw49sh0sWkS/rz/h00OOdDw80phETsqBtQFwgwAmDu5SV8LPD+Y9c0uL3BD3/vY424dTZD/7Tn3b9b22qzMblLetukZZOMwXBKoQk/m5TCSJnkZjR4PPdWO1MMVOWhnpaZvHK3n33Wgt/IsvUtSxN9Pe+B/fvbnAlf4d9j5grPY3PXur81iFoMxqSoUF+Ux6ZZXjtVWYKzXdzBXkhLKjVrKqNPjm3IhXiWSyy+vZxf+BwCSc/Tu3spSk9u/cSi+g0iSVBu3Rq3CTM9122L5yJQwaBKeeCt98Y2jhV62i6PCTGPvyZ3UyOS+rVe32Vw3tJw7uEucJTr+4e13JvG2KkYsb5pWU0b9zK5cjCsnIOaUcPvY1Rs4pRRXBaZ2X4ytEEkR9ABVORV7ctM8ti9ds9rRdowmKBu/RWxGrmnBdxOKrr+C22+DZZ+GAA2DqVPjznyE3t+58yZhAVSVgs1MJJWqYKqtqWLxmMxf0zOe5ZRscDKGh1Tf3sVqhaxrmUTbevopkpkpw+54FoZcO0gEAAA/KSURBVIBJpzxU07hplIYeokM6KjVEXWjghx9g8mT4v/+D7Gy46Sa4+WZo0aJu36LlZbZhDq9pFyKPM42alWFTSQKdjEeL3JCjx19WXplQmmOrpF+qsJlTGCZZoQ23RjaIMJGbEJReIatJBo0ydBOLKjQwtm9rmDABDj8cHnkErryS/xS9R9+8M+hw1wd1E4lFy8sY/eIK5fmtJttmXNxdWSUpW4i6/S7oaRhHq4lLuxWVdoZpxsXdWX7bGcrrm2RZqJO8UCslX08dFFXDNZlhGD+4MeBBtc+p73qFrCZZNGgdvRciPanD9s3mH+XL6DrrQfjpJ/jtb2HyZIp27mOptQZZF76IxU6LbaXdNhOh5SsKZEfmabdLJmaGSZRJ1RRFw01i8+b4QaUDzySv1bJwuou1DolcT9V3u9oJWk+vsSKwfPSpIBMMPQA1NTB7thGH//ZbI13w1KnQy7iPbrMYRjLj4u62RsL84peVV8Zlu1Rlv3QqKGJm22yvKONnvl60vCyqKpWZATM/L4edu6sta7nC3pCMXf56N4uNMsXgZ0o7VLUT3GZP1TQ+Upa9skEgJbzyCj//9Sb2/3ItKw85gsevvpv+1/8u6gvvZ9IstsiI1URqYUG+5UNEZcydHs1mOCLfJiZs5ck2a7LXONvVer33ouPiioqUlVfWyUDzXRjLTCrxmCnSxmTLSDWNF23o33vP0MJ/8AFbW+Yz5rwxvN6pD1Jk8UaM4fGag6ZFbigufXFZeSWj58Yn+gpKeREZ87UroK2SOY6cU0rxN1tta71GttuvkczERF7p9uzrc8FzTWbTeA39ypVwyy2wYAEceih3nT+KRw8/lersvbck1vC4zUsORox7wrldmPTKqrhYd1WNZNQLpYyaU1pnUILIJikEUeGSSFmi6XGbfbK71uyl39L38JZs3bknzuhMHGyfkM3EyWgmKjUM2ignY4ThtY31peKWpv7R+FQ3X38Nl18O3bvDkiVGDH7dOv551OlRRt4k0vDEplSwY9qFRnhDJWGUMnoVrvvFSWqkjDdKhQX5dWqPyNJ3Tiz9apvvZflu1COqcIQEuk96w1Zpkgx1StC5bvy2sbAgnyVjBsSplTSaRGg8hv7HH+GGG6BTJ5g719DCf/WVoYfPzVUantjtkV9ElTzR3N536tuummYuTnJT3MKJWPll36lvM3JOqWeZZE04j4wfo+PGaNqtTi6vrGL0iyuURjEZCciCXsyUriIpGo0VjcPQP/ggdOwIDz8Mw4cblZ2mTo1a8ORH3606pn/nVlHJydzwXXlllGG996LjXB8biek1xiZI80oimTPdGE1zdKS6TlWtVBrFZKwwdfugd4teBavJJBqHod9/fzjrLFi1yshLk29dTMJPqKJ5aO8tNMv0LV6z2bMHfUBOKK49LXJDir3VmF5joukYends4byTAruwTOSir8KCfGpt5L0qoxi0UYbgF3Ilo40ajV8ax2TsFVcYPw54UZBYyRPN+qx+vLbyyirGF33K5MKuddsmnNvFVwGSILzG9VuczxGrwzcLr48e2InRL66w1NfHTnLaTUKrjGIy1ClBT4RqBY0mk2gchj4J2MkT/fLM0m/pdVhLS9WMXfK1WEwDaRe2aZEb4ufKamUeG6eHhZn2IdKYb6uo4sYXVzD0hLbYzVZHqpnaH2ht6LMESqOYLHVKkHp6raDRZBJ6ZawHIuVyybprdsvd3azMNVekAo7l94q/2WqZH92pHU5tMVfY2iGA6Rd3V6ZpSKT0oEbTWNArYwMkNkThlbycEDv3VLvKHWPnSVuFA0LZgn2aNmF7pXVelljNfLYQXNBzr+f6zNJv4wxtKFs4hhjs2ulk5GFvbnrVrtt93uuGSLoXcmnqP9rQO5BooW4BlE44w/XDwm6yzk84oGJPddT/NVIyr6SMXoe1VBrafZo2cTQkiSzwcspNb55fk1mpIjT1F23oHUhUvZIlBB3GLKB1Xk7dqlLVylQ3k3VOceTxRZ+6KBRSU/ewsCLWm7byKEcP7GQ7H6FK0BaZB0d1HwTq+LwXgvCE0+1NZ2KqCE39IyF5pRBivRDiUyFEqRCiOLytpRDiTSHEF+Hf/nV6KURVsDpRBUuNlHF1aJeMGcD6qYPqctIHVRB6fNGnzF76ratCIabhsiJLiLr+q1Z4AlzWu53y/JK987FmicP1UwfV5dnpMGYBFXuqCcXUHYyseZsIQayezYT88FqPrwmCIDz6/lLKnyL+HwO8JaWcKoQYE/7/5gCukzTshsdOIQqnlMGRxHpiQWdNfEYxsWqF6Z1ahaVqpKxLvGbnUS4ZM6AuBGR1j0wP3pzUjVXqbKuoIksYcxiqOQa/BOEJZ4I3rTNaaoIgGQumzgNmhf+eBRQm4RqBYveFdiokbmXk7fb36ompRhpW+3lRApkGdcqQrpbFvKtqjILfqoec2Q9zNa9KTRnZ34nzV8Vp62tlciZeg/CEM8GbzrSKXJr6SaKGXgJvCCFKhBAjwtsOllJuCv/9PXBwgtdIOnZf6MKCfC7ome+YxMzEXB2ryoPjxRPzEjrwkkMlMtWwsTrV9aF1xPbDzUpQ1US0hMBDI0GsTM2E1a1+V2xrNJEkauhPllL2AM4CrhdC9It8URoifUszIoQYIYQoFkIUb968OcFmJIbTF3rxms2uveV9mjWpyxgZG38OZTnLFiPxkhjLrZfpJdWw3Tli+2HneZqjEjcElfgrCE84U7xpndFSkygJxeillGXh3z8KIV4GTgB+EEIcKqXcJIQ4FPhRcexMYCYYC6YSaUeiOC1X9z3cjx0GxPyfSM722GPzckOWKZGbNckiW0BFuKbtruoair/ZGnWdvJyQqzUCApRxdJX0E9QLt1QEERoJYmWqXt2qaSj4XhkrhNgHyJJS/hL++03gduB0YEvEZGxLKeVNdufKhJWxfoo2W2FOPjoVerbS58fWWVWdo0VuiF1VtXEFrRFELcrKCWXTo90BLPlya9w5Luvdri6vjlU6A1W7veKnzq4uhq3RuMPtythEQjcHA+8LIVYAHwELpJT/AaYCvxFCfAH8Ovx/xmM3PHaakDVxMwowt096ZZWvnO05oWykJO7YqlpJVY2sS/trxnKXfrXNsh3PLdtQ93dhQT7Tfntc3bxC7EDETbjCjzy1RW4oLrylJxo1muDxHbqRUn4FxCVNl1JuwfDqGwx2YQnVKMBOFle0vExZeSo2Z7vVNexWlNZIWWcsCwvylYuaYrX2kVJPr4uE/MhTI0c2OjSi0SQXndQsSYwv+jQuj4wZmrGr2eombOEmHGKe5/Cxr1kuoMoWgi+nnO3YDzfYhalU8x9aOaLRJE4qQjcaBUXLy5hXUhaXAsBMJuaUuMwJN6Ek8xpDT2xr+bpqux+c5KlaHqjRpBed6yYJWMkiJYZME9ThjEh9ux2RIR2noh3mhKuZ/yZbCIae2DaqwEmiOK3eDHoFsEaj8YY29EnAaSJWFc7wom83jadKvRM5Mphc2DVQwx6LVUUpr2sGNBpN8tCGPgm48XAhGH12xmi9HdYMaDSa9KEnY5OAG418Q8JpzYBGo0kOusJUGskYLztFZELyL41Go0Yb+iTRGCYgTQ28akyoU+lqNJmBNvQaXziVWNQrXDWazEEbeo0v7Eos5jfwUJVGU9/Qhl7jC1X8XYCegNVoMgy9Mlbji0woyqHRaNyhDb3GF5lSlEOj0TijQzcaXzQ2CalGU5/Rhl7jm8YgIdVoGgI6dKPRaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwMmINMVCiM3ANz4PPwj4KcDmZAoNtV/QcPvWUPsFum+ZymFSylZOO2WEoU8EIUSxm3zM9Y2G2i9ouH1rqP0C3bf6jg7daDQaTQNHG3qNRqNp4DQEQz8z3Q1IEg21X9Bw+9ZQ+wW6b/Waeh+j12g0Go09DcGj12g0Go0NGW/ohRAthRBvCiG+CP9uodjvP0KIciHEqzHbOwghlgkh1gkh5gghmqam5c546Nuw8D5fCCGGRWx/RwixVghRGv75Vepab9nOM8PtWSeEGGPxerPwe7Au/J60j3htbHj7WiHEwFS22w1++yaEaC+EqIx4j/6Z6rY74aJv/YQQnwghqoUQF8a8ZvnZzAQS7FdNxHs2P3WtThJSyoz+Ae4GxoT/HgPcpdjvdOBc4NWY7S8Al4T//idwXbr75KVvQEvgq/DvFuG/W4Rfewfole5+hNuSDXwJdASaAiuAY2L2+SPwz/DflwBzwn8fE96/GdAhfJ7sdPcpoL61Bz5Ldx8S7Ft7oBvwFHChm89mun8S6Vf4tR3p7kOQPxnv0QPnAbPCf88CCq12klK+BfwSuU0IIYABwFyn49OEm74NBN6UUm6VUm4D3gTOTFH7vHACsE5K+ZWUcg/wPEb/Ions71zg9PB7dB7wvJRyt5Tya2Bd+HyZQiJ9y3Qc+yalXC+lXAnUxhybyZ/NRPrV4KgPhv5gKeWm8N/fAwd7OPZAoFxKWR3+fyOQSQnU3fQtH9gQ8X9sH54IDy9vTbNhcWpn1D7h92Q7xnvk5th0kkjfADoIIZYLIf4rhDgl2Y31SCL3PpPft0Tb1lwIUSyEWCqEyCTn0BcZUXhECLEIOMTipXGR/0gppRCiXsmEkty3S6WUZUKI/YB5wOUYw1BN5rAJaCel3CKE6AkUCSG6SCl/TnfDNLYcFv5udQTeFkJ8KqX8Mt2N8ktGGHop5a9VrwkhfhBCHCql3CSEOBT40cOptwB5QogmYS+rDVCWYHM9EUDfyoDTIv5vgxGbR0pZFv79ixDiWYzharoMfRnQNuJ/q3tt7rNRCNEEOADjPXJzbDrx3TdpBHx3A0gpS4QQXwJHAcVJb7U7Ern3ys9mBpDQZyriu/WVEOIdoAAj5l8vqQ+hm/mAOZs/DPi32wPDX7LFgDmj7un4FOCmbwuBM4QQLcKqnDOAhUKIJkKIgwCEECHgHOCzFLRZxcfAkWGVU1OMCclYtUJkfy8E3g6/R/OBS8LKlQ7AkcBHKWq3G3z3TQjRSgiRDRD2Do/EmLTMFNz0TYXlZzNJ7fSK736F+9Ms/PdBQF/g86S1NBWkezbY6QcjzvkW8AWwCGgZ3t4LeCxiv/eAzUAlRjxuYHh7RwyjsQ54EWiW7j756NtV4favA64Mb9sHKAFWAquA+0mzUgU4G/gfhuczLrztdmBw+O/m4fdgXfg96Rhx7LjwcWuBs9L93gTVN+CC8PtTCnwCnJvuvvjo2/Hh79ROjBHYKrvPZqb8+O0X0Af4FEOp8ylwdbr7kuiPXhmr0Wg0DZz6ELrRaDQaTQJoQ6/RaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwNGGXqPRaBo42tBrNBpNA+f/ATews6G10pN3AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJztnXuclmP+x9/XTE814zRFi6ZSORQpTYUUUXaFyIhF61AOm7V2ba2NUlQ2ilCsw/7CEjlEMRuxEVlEMaMpUq0QNUKqiZqp5nD9/rife3oO93Wfnvs5zMz1fr3mNTP3cx+u636e53t/r+/1ub5fIaVEo9FoNA2XrHQ3QKPRaDTJRRt6jUajaeBoQ6/RaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwNGGXqPRaBo42tBrNBpNA6dJuhsAcNBBB8n27dunuxkajUZTrygpKflJStnKab+MMPTt27enuLg43c3QaDSaeoUQ4hs3++nQjUaj0TRwtKHXaDSaBo6joRdCNBdCfCSEWCGEWCWEmBTe/qQQ4mshRGn4p3t4uxBCPCCEWCeEWCmE6JHsTmg0Go1GjZsY/W5ggJRyhxAiBLwvhHg9/NpoKeXcmP3PAo4M/5wIPBL+7Ymqqio2btzIrl27vB6qCZDmzZvTpk0bQqFQupui0Wh84mjopZGwfkf431D4xy6J/XnAU+Hjlgoh8oQQh0opN3lp2MaNG9lvv/1o3749Qggvh2oCQkrJli1b2LhxIx06dEh3czQajU9cxeiFENlCiFLgR+BNKeWy8Et3hMMz04UQzcLb8oENEYdvDG/zxK5duzjwwAO1kU8jQggOPPBAParSNHqKlpfRd+rbdBizgL5T36ZoeVm6m+QJV4ZeSlkjpewOtAFOEEIcC4wFOgPHAy2Bm71cWAgxQghRLIQo3rx5s2ofL6fUJAH9HmgaO0XLyxj70qeUlVcigbLySsa+9Gm9MvaeVDdSynJgMXCmlHKTNNgNPAGcEN6tDGgbcVib8LbYc82UUvaSUvZq1cpR76/RaDRpYdrCtVRW1URtq6yqYdrCtWlqkXfcqG5aCSHywn/nAL8B1gghDg1vE0Ah8Fn4kPnAFWH1TW9gu9f4fEOkffv2/PTTTwnvo9E0ZDIxRPJdeaWn7ZmIG9XNocAsIUQ2xoPhBSnlq0KIt4UQrQABlAJ/CO//GnA2sA6oAK4MvtkajaahYYZITO/ZDJEAFBZ4nuYLjNZ5OZRZGPXWeTlpaI0/HD16KeVKKWWBlLKblPJYKeXt4e0DpJRdw9suk1LuCG+XUsrrpZSHh1+vt7kN1q9fT+fOnRk+fDhHHXUUl156KYsWLaJv374ceeSRfPTRR2zdupXCwkK6detG7969WblyJQBbtmzhjDPOoEuXLlxzzTUYIiSD2bNnc8IJJ9C9e3euvfZaampqVE3QaBoNmRoiGT2wEzmh7KhtOaFsRg/slKYWeScjct04MnIklJYGe87u3WHGDMfd1q1bx4svvsi//vUvjj/+eJ599lnef/995s+fz5133knbtm0pKCigqKiIt99+myuuuILS0lImTZrEySefzG233caCBQt4/PHHAVi9ejVz5sxhyZIlhEIh/vjHP/LMM89wxRVXBNs/jSYNFC0vY9rCtXxXXknrvBxGD+zk2hvP1BCJ2X6//coE6oehTyMdOnSga9euAHTp0oXTTz8dIQRdu3Zl/fr1fPPNN8ybNw+AAQMGsGXLFn7++WfeffddXnrpJQAGDRpEixYtAHjrrbcoKSnh+OOPB6CyspJf/epXaeiZRhMsiYZeMjlEUliQX68Meyz1w9C78LyTRbNmzer+zsrKqvs/KyuL6upqzytGpZQMGzaMKVOmBNpOjSbd2IVe3BjJ0QM7RT0ooP6FSDIVndQsQU455RSeeeYZAN555x0OOugg9t9/f/r168ezzz4LwOuvv862bdsAOP3005k7dy4//vgjAFu3buWbb1xlGtVoosg0hUqioZfCgnymDOlKfl4OAsjPy2HKkK712pPOFOqHR5/BTJw4kauuuopu3bqRm5vLrFmzAJgwYQJDhw6lS5cu9OnTh3bt2gFwzDHHMHnyZM444wxqa2sJhUI89NBDHHbYYenshqaekYkKlSBCL/U9RJKpiEg1SLro1auXjC08snr1ao4++ug0tUgTiX4vMo++U9+2NKr5eTksGTMgDS2Kf/iAEXrRXnnyEEKUSCl7Oe2nPXqNph6SiQqVhqBOaahoQ6/R1EMyVaGiQy+ZiZ6M1WjqIQ1hEY8mdWiPXqOph+gwicYL2tBrNPWUdIVJEln9qkkP2tBrNBrXZKKsU+OMjtEHwNlnn015ebntPrfddhuLFi3ydf533nmHc845x3G/0047jViZaiwzZsygoqLCVzs00WTagqVUkKmJxzT2aI8+AaSUSCl57bXXHPe9/fbbU9AiZ2bMmMFll11Gbm5uuptSr2msnm0myjo1zjQYjz4Z3tV9993Hsccey7HHHsuMcL6d9evX06lTJ6644gqOPfZYNmzYEFUw5O9//zudOnXi5JNPZujQodxzzz0ADB8+nLlz5wJGgZEJEybQo0cPunbtypo1awD46KOPOOmkkygoKKBPnz6sXWvvJVVWVnLJJZdw9NFHc/7551NZuffLdt1119GrVy+6dOnChAkTAHjggQf47rvv6N+/P/3791fup3GmsXq2KvlmumWdGnsahEefDO+qpKSEJ554gmXLliGl5MQTT+TUU0+lRYsWfPHFF8yaNYvevXtHHfPxxx8zb948VqxYQVVVFT169KBnz56W5z/ooIP45JNPePjhh7nnnnt47LHH6Ny5M++99x5NmjRh0aJF3HLLLXWZMa145JFHyM3NZfXq1axcuZIePXrUvXbHHXfQsmVLampqOP3001m5ciU33HAD9913H4sXL+aggw5S7tetWzdf96wx0Vg9W514rH7SIAx9olnzrHj//fc5//zz2WeffQAYMmQI7733HoMHD+awww6LM/IAS5Ys4bzzzqN58+Y0b96cc889V3n+IUOGANCzZ8+6dMbbt29n2LBhfPHFFwghqKqqsm3ju+++yw033ABAt27dogz0Cy+8wMyZM6murmbTpk18/vnnlgbc7X7JJNNUHG7a43bBUn3smx1a1umCzZvhzjuhaVO46650twZoIIY+1d6VafwTwUx3nJ2dTXV1NQC33nor/fv35+WXX2b9+vWcdtppvs799ddfc8899/Dxxx/TokULhg8fzq5du3zvl0wyLdbttj1uPNv62jcn9OpXBb/8AtOnwz33wM6dcO21ICUIke6WNYwYfTLihqeccgpFRUVUVFSwc+dOXn75ZU455RTbY/r27csrr7zCrl272LFjB6+++qqna27fvp38fOML9OSTTzruH5kK+bPPPqsrY/jzzz+zzz77cMABB/DDDz/w+uuv1x2z33778csvvzjulyoyLdbttj1uUurW175lAvVK0bRnD/zjH3D44TBhAvz61/DZZ/Dwwxlh5KGBePTJiBv26NGD4cOHc8IJJwBwzTXXUFBQwPr165XHHH/88QwePJhu3bpx8MEH07VrVw444ADX17zpppsYNmwYkydPZtCgQY77X3fddVx55ZUcffTRHH300XXzAccddxwFBQV07tyZtm3b0rdv37pjRowYwZlnnknr1q1ZvHixcr9UkWmxbi/tcfJsM6FvkaEaVZ7aTJtXyLSRkJLaWnjuObj1Vvj6azjtNJg6FU48Md0ti6PBpCnOlFjojh072HfffamoqKBfv37MnDkzapK0PpLMNMWZlm43yPaku29WaYOtSGdqYyvSfd8ckRJefx3GjoWVK43601OnwhlnpNyDb3RpijMlbjhixAg+//xzdu3axbBhw+q9kU82qVJxuHUEgmzP6IGdGD13BVU1e52pULZImULFKlQTSyYqZjJhJKTkgw9gzBh47z0jVPPcc3DRRZCV2VFwR0MvhGgOvAs0C+8/V0o5QQjRAXgeOBAoAS6XUu4RQjQDngJ6AluAi6WU65PU/ozDjJlr3JEKFYeXUEDg7YkdMKdwAG1nGAVkrGImI1Mwr1oFt9wC8+fDwQfDQw/BNdcYypp6gBuPfjcwQEq5QwgRAt4XQrwO/BWYLqV8XgjxT+Bq4JHw721SyiOEEJcAdwEX+2mclBKRIZMZjZVUhPaSPRrzKr8Nqj3TFq6lqjb6/lXVyoRkv15QGcyMCYEoyCit/jffGBOsTz0F++0HkyfDyJEQgPIulTiON6TBjvC/ofCPBAYAc8PbZwGF4b/PC/9P+PXThQ9r3bx5c7Zs2ZISQ6OxRkrJli1baN68ebqbkpAKI12hgHSHIOprzvqMKBL+008wahQcdRQ8/zz89a/w1Vcwbly9M/LgMkYvhMjGCM8cATwEfAmUSymrw7tsBMx3IR/YACClrBZCbMcI7/zkpWFt2rRh48aNbN682cthmoBp3rw5bdq0SWsbElVhqDxbiTHxl6zwRbpDEPV5cVPa5tx27DC08NOmGVr44cMNj75du9S3JUBcGXopZQ3QXQiRB7wMdE70wkKIEcAIgHYWNzEUCtGhQ4dEL6NpACS68tkqFGCSTOleUCGIRBRlmSJSyHj27IGZM+Hvf4cff4TzzzfCNMcck+6WBYKnqWIpZTmwGDgJyBNCmA+KNoA5li4D2gKEXz8AY1I29lwzpZS9pJS9WrVq5bP5msZAoiGQyFCAFclYNGQa58qqGrLDkUs/IQhzNFMW1sGbD6aMXkBUn6ithWeegc6d4c9/hqOPhg8/hJdeajBGHlwYeiFEq7AnjxAiB/gNsBrD4F8Y3m0Y8O/w3/PD/xN+/W2pA+0NCj/x8kRi7EGsfC4syGfJmAGoJouCjJtHGmeAGinrPHmv3nV9Ws1ar5ASXnsNCgrgsstg//0NbfzixWCRx6q+48ajPxRYLIRYCXwMvCmlfBW4GfirEGIdRgz+8fD+jwMHhrf/FRgTfLM16cKPh5moVxrkpGIq0uwGaZzTPaHbIPnwQ2MV66BBRkz+2Wfhk0/gzDMzJmVB0LhR3ayUUhZIKbtJKY+VUt4e3v6VlPIEKeURUsrfSil3h7fvCv9/RPj1r5LdCU3q8GPEEjV8QaowUqFECdI45+WGLLfr/O8++PxzKCyEPn1g7VpDC796NQwdmvELnhKlwayM1aQGP0YsCMMX1KRiKpQoQaltipaXsWNXddz2VK6ubRB8++1eLfy++xoTriNHGn83ErSh13jCjxFLt8wwlmQrUYJS21gtuALYp2kTraRxw08/GXnhH3rICMmMHGnkpwkX3WlMaEOv8YSTEbOSAqZrpWO6Et0FNWpQjXi2V9oXpGn07NgBM2YYWvgdO2DYMJg4sd5r4RMhY7NXatKDG+Oo2scqW2JOKJspQ7oCyQuXWLUHULYlE7xhN/c547M4BkRgD+Q9e+DRR43QzA8/GPH4yZOhS5fgG50huM1eqQ29pg47Q+3mi5cOw6Rqc7MmWZRbeL7JaItXQ+X2Pif6ftQHAuljba2RpuDWW400Bf36GWmDTzopSa3OHNwa+oY91azxRKLqmHRIAVVttjLyyWiLH+lokFWs/LQ3kyo3JfSZM/PC9+gBl15qJB177TV4551GYeS9oGP0mjoSNdSJTLqqwi9OnrJXwx30BLCf9Axu7nPs/Zh+cfeEvfhMrNzk+zO3dKmRF/6//4WOHY3VrZdc0uBlkn7Rhl5TR6LqGL+TrlYGaPTcFSCpU52ojJKqzS1yQ+yqqk36BLAXQ2Uab1Ww1LzPKoNc/M1WFqzcxLYKY7SSlxNi4uAuro2024dSKiexPX/mPv/cyCBZVAS/+hU8+CD8/vf1Ji98utCPP00diS4m8htqsDJAVTUyTloYO6QvWl5GxZ54nXlOKJsJ53ZJSapbtyttY9MiWLU5chRjZZBnL/22zsgDlFdWMfrFFa7DL24eSuOLPmXUnNKU5dZx/Zn79lu46iro2hXeesuYcP3yS7j+em3kXaA9ek0dQcgC/WjUvYRfzH1V9VBjvdygDXust9u/cyvmlZQ5yk1VBh6Mh1DkffZyP7wUMnHynouWl/HM0m/jRhxeMoV6xfEzt2XLXi28lPCXvxiVnhqhFj4RtKHXRJGOtLYqA6TaF9T1UPdp5m0xkZcwhVVIZV5JGRf0zGfxms2u5KaxCIhTAXm5H+D+weAUWrMLK9nNHyQa2rH8zO3cuTcv/I4dcMUVMGlSo9bCJ4I29Jq0Y2WAQtkiKkYPe41S0fIypSH04g17nZxUhVQWr9lsKdl0U5z7gJz4XDZW90OgLjfrdg7FyXu2u3dO8weR50+IPXvgscfg9tsNLfx558EddzRoLXwq0IZek3ZUBki1zTQsVnhR1XhVzHhViLh56OzcU03R8rKo61ndj/6dWzHn4w1U1USb+1CWt7w3diM21UhCgOP8QcKhndpamDMHxo/fq4V/+WUtkwwIbeg1GYHKAFmtFlV5yaFsQf/Oreg+6Y06HX2L3BATzrVWpng10F4VIm5CMFU11jF2q/vR67CWTHpllW/VjROqkcSlvds5ev2+1ydICQsXGjloSkuhWzdYsADOOqvBpgxOB9rQa+oVdgalplby7NJvqY3Ytq2iypBqEv/Q8Gq4vcpH7UoYRuKlUlYQWnq7kVNebohmTbLYXlllGX8PNEFdpBa+QweYPbtRpAxOB9rQawIl2RpsOy/ZItEjoPaavRpur6qk2P3BOs5uFadPBm7WK2yrqCInlK1coBVIgrrVqw3ljKmF/8c/YMQILZNMItrQawIjFSsv3XrJsVh5zX7kpF696sj9C25/I0oHb5LMCEXkgzdLCGpiclvFxvzBPuaekAR3wwYji+STT8I++xgTrqNGNaq88OlCG3pNYDhN1BUtL2Pi/FWu4ucqzH1vfGFFnNGyQxVaSCQc4nX0Um5h5K22BzUqin3werlfduEk1T1TtnvLFpgyxVjFamrhx46FVq0c25+ONNMNEW3oNQkR+WW002AXLS9j9IsrouSSdvFzO8x9R84pdbV/Mioy+Rm9uIlv+x0VWRlFN/JOFX6qYcW2+/bnP+aoxx7gmNn/3KuFnzgRDjvM1/nSnZenPqNnPTS+ic3cqKJ1Xo6yWpIZP/dKYUE+eYrYdmQopEVuiGkXHhe4cfCTddHNcn8/51Vl0HSz6CqULQhlRceO/FbDMtvdpKaayz5ZwMKHruSYh+82CnGvXAlPPOHKyMeez8RvgXWN9ug1CeDGYzSNxigb79uvNG/i4C5py9fuR2boJr7t57wqo5htEZMHyBaCWik9ZQl14rvySoSs5dzV7/HX92bTvnwTy9p04Q+F45g3+2+ezmWez8t2jT3a0KeYZMQd/Z4z0bbYfekERJ3TLt+L39TBqSj0rcKvzNBpTkB13iwh6DBmgaeHQ42U5ISyXT0IE7pnUlL442dc/dqjHPvDl6xu1Z7hF07gnY69yG+R6+uUmVZnuL7jGLoRQrQVQiwWQnwuhFglhPhLePtEIUSZEKI0/HN2xDFjhRDrhBBrhRADk9mB+oSfIhXJOmcQbVF96fLzcvh66iCWjBlQZ0BGD+wUFyKAxOPnhQX5LBkzIO56ySbRTJ9ezguG0Va9T3bvQ9IzeC5bBgMGMP2JMeTt2sHIc27k7Csf4J3DjyenaRPf9yNZ97ex4iZGXw3cKKU8BugNXC+EOCb82nQpZffwz2sA4dcuAboAZwIPCyHiP7mNkGTEHf2eM4i2ePkyFhbkM+23x0XF1c34OZBRVY/ckIzqT1bnzbbQXsa+T3bvQ9IehKtXw5Ah0Ls3rFoFDzxAyRsf8nHfs0FkJXw/knV/GyuOoRsp5SZgU/jvX4QQqwG7u30e8LyUcjfwtRBiHXAC8GEA7a3XJCPu6PecQbQlNnRyQE4IIWDUnFKmLVwbF2KwClskoq4IMgzm51zJyvQZed4OYxZY7hP5PqU0hLVhg5FF8oknDC38pEmGFn6//TgPOO+EDoFdKh2ZVBsqnmL0Qoj2QAGwDOgL/EkIcQVQjOH1b8N4CCyNOGwjFg8GIcQIYARAu0aSejQZcUe/5wyqLeaX0YvBdlrE4yZJltX1Rs4pZeL8VZ7zv1ida9ScUkbOKY3LFR8EXh4qbt+npBvFLVuMgtv/+Iehhb/hBmN1q4MWXpMZuJZXCiH2BeYBI6WUPwOPAIcD3TE8/nu9XFhKOVNK2UtK2atVI/mwJCPu6PecQbfFbSgodm5AtYjHaWShUvyUV1bZzjVYFce2OpfZqqArLHmdG0l7rHrnTqPwR8eOcO+9Rl3WtWuNXPGN5HvbEHBl6IUQIQwj/4yU8iUAKeUPUsoaKWUt8ChGeAagDGgbcXib8LZGTzLijn7PGXRb3IaC3C7iUY0sTENtpxFXzTX41ZsHqd9WPRAnzl9luX+6YtX//mg90wpH8uPBbWHcODYV9Da08E8+Ce3bJ/Xa9R0rZyLdOIZuhBACeBxYLaW8L2L7oeH4PcD5wGfhv+cDzwoh7gNaA0cCHwXa6npMMobYfs/peSm7DW5DDG7mAFQeq5uKTXbX8ao3dzqfH1QPlfLKqri89CYpjVXX1vLx3f+k+92TOW/bJj5qcwzXFY7l8w5dmVLVgsLUtKLekqkret149H2By4EBMVLKu4UQnwohVgL9gVEAUspVwAvA58B/gOullP7WYWtSjl/ZpdsQg8pTzxbC0WP1sqTf6jpOenOv5/ODlYrGJK2rPs288L16cfzY66lo0owrL5zARb+7i5I2x+hVqS7J1BW9blQ372Osf4nlNZtj7gDuSKBdmjTht4KQW+WHKs2tm3CEW69aNSJQjTrMCVdzUVds2b4gY+J2I4e0rfpctsxIMrZ4MbRvz6hzbuTfR/ejNiv64eenfY0tMVmmrujVK2M1USTyQXUTYkhECuimYpMALuhp3Q7VQ6Z/51Z17ckPl+2zKvYdBPk2fUj5qs81a2DcOHjpJWNi9f774dpr+Wj6EmoDUGRlahgjmWTqil5t6DVRpOKD6uaBYHqCZeWVdTH0vJwQoWxhmUPdRAKL12xWXhfia7HOKymLMkbzSsqSNuE5emAnRs9dkXDt14TYuNHIIvnEE5Cba/z917/CfvvVtTHh4iIksb5sBhPUvQsabeg1UYwe2CkunXBKjRDqPOrllVWEsgQtckOUV1QpM2aWlVcq88LEPmSsatDaGaNEQxHmvkHVfvXUnq1b92rha2vhz382PPoYmWRQC7BSFcbIpPBQOvMv2aENvSae2BmZFNdotpt0raqV5DZtwvLbzrCVWUZOJIM6VODFGAUVighKReO6PTt3wgMPwF13wc8/w+WXGytabWSSQbQxFaPDTAwPZeKKXp2PXhPFtIVr48IKXnPG2+mI3WiM3aZvUCUAi8RJ8aAyOlbb3SgqUqmhdmxPVRX8859wxBHGKtZ+/Qwt/KxZKdHCp2KxV6aqXDIN7dFrokh0uG3nYQGuvC+nSVfTCMcOk+0qXKnwElN1ujep9i5V7dm0bSfMmQPjx8O6ddC3L7z4Ipx8cuBtsCMVYYxMVblkGtrQa6JIdLjt5GG5iYfbFQCPNcKRw2RVKMeu7V6MkdO9SfXkY1x7pOSU9csZ9/7TcPcXcOyx8MorMGhQciuQ25DsMEamqlwyDR260USR6HDbzsNy631FLvuHvYuMzMVUYJ3W2KrtoWzBzt3VtqEUt6l8ne5Nqr3LyPYc991ann1+HE+/cBvtZCU89RSUlsI556TNyKeCtOcCqidoj14TRaLDbScPy633ZZeewSk8YrY9LzfEjl3VlFdWKff1gtO9SbV3WViQz77rvyT7tvH0/+w9tu2Tx8rRk+j295uhWbOkXDPTyFSVS6YhpEOOj1TQq1cvWVxcnO5maALAKh+NufIV8L0q1kQVnsnPy2HJmAGu9o2tmZqoUYjU/Futqk2KJn/jxr154XNy4G9/i9LCaxoHQogSKWUvp/20R6+xJBFtcvNQVp0xt9KIJ1LfVjVJaxUescttA2oP30vfYx9sEuqMfSK57CPbYBZ0Ka+oolPTKv7xzUKOfOFJqKmB6683tPC/+pXna2gaD9rQa+Lwqx6x8uZ3V9dG7eNncs5N1kqr8IiblAmxk6Ve+67KZW81wnBLbBvKK6toXrWL64rn84dl89h3dwXfDhpCuwfv0SmDNa7Qhl4Th5NyRuXtqo678YUVjJpT6jtU4pS1UjX5ZqfeiSTS8/eqnAlCjhp7PyPb0KSmmotXvsENHzzPwTu2sujw45l26jB2HHk0S7SR17hEG3pNHCojZXq3Km/Xb6jEb3vAPjwSO1FnVbYQokcDXg23nwlYVUw/8v4KWcvZa5Zw43tP03Hbd3ycfwzXn3czxW26ACC0TlzjAW3oAySTcm4k0h6V8coWwtbb9RMqcYNdemGn8EhkqEg1URw5GvBquL0msbKK6UdSWVVDv/Wl/O2/T9Lt+3WsOegwrr7gVt46/IQomaTWiWu8oHX0AeG3YEcmtqd/Z+taoE71Xd2kJIjc3y1W5xUYffKSZsBNWT6vumyvpf7swlDdNv2P2c+P46k54zmw8mf+OmgUZ1/5AG8dcWKUkdc6cY1XtEcfEJmWkjWR9qjS/KpK7qlSErgJlaiIHY1c0DOfxWs2K8Mdkde3w2ky2I8u28sEs9VDruOWjdz43tMMWruELTn7M+OcP9Jx/I0sW7weWV5JXoTqJhNGipr6hzb0AZFpOTfs4ux9p75ta8ScSu7ZhSm8hkqssFK+mDnirSSWfh6odmGtZC7bjwwNHfzLT/xlyXNctPJNdoWaMaPvUGb3uYDxQ3szuCCfwSd2TEobNI0PbegDIp05N6yMlqo9ZsgDvCcViy25Z8bsTTVOrHH0u2rRbjQSxAM1naltRw/sxJRnPuDK9+cwvOQVsmprebrHIB486WKa5x/KeO2ta5KANvQBka7KMiqjdUHP/KjKSUDcqk1wn1TM7Iu5n1tD6cc7tjPmQTxQ0xZmq6igcOHTnD1zKk12/EzRMafx7NlXc9nQ0yjRxl2TRPRkbEB4nZQLCpXRWrxmc1x73KbxdepLsnOA2+WIDyKJVcrDbFVV8H//Z+SFHzuWpv1OJqu0lCGTD6dBAAAgAElEQVSfvc3cuy/VHrwm6Th69EKItsBTwMEYDuFMKeX9QoiWwBygPbAeuEhKuU0IIYD7gbOBCmC4lPKT5DQ/s0hHZRk7o2VVNi/RpGJgnZgsti2JSE3djCj8nrtoeVmgk8S2166thblzjbzwX3wBffoYeeJPOcVVWzWaoHATuqkGbpRSfiKE2A8oEUK8CQwH3pJSThVCjAHGADcDZwFHhn9OBB4J/9Z4xI1RUYUysoSgaHmZY0gmMo2vG6NZtLzMMgRktsXcx21ox66PVtsTeYCY7bIy8n4niZWx/UWLYMwYKCmBLl1g/vyMTBmcaWs/NMnB0dBLKTcBm8J//yKEWA3kA+cBp4V3mwW8g2HozwOekkZazKVCiDwhxKHh82hc4taoqJb510gZt3+sAc1tms3OPTWe0vhOW7hWGQIy9fduY+BOfbR6KCQyiWqnYVdNKkcaQquRQFy/iosNA//WW9CuHTz5JFx2GWQ7ry9INZlYb1WTHDzF6IUQ7YECYBlwcITx/h4jtAPGQ2BDxGEbw9s0HnAbBzfj6dkWnqJq/yVjBjD94u5U7Ik3ek6xdrs49nPLNlC0vEwZ2ond7jXWr9p/0iurXNVpdYrBxy4qi110Zrtg7H//g9/+Fo4/HlasgOnTjW3DhmWkkQddb7Ux4Vp1I4TYF5gHjJRS/iwiDIuUUgohPCW2F0KMAEYAtGvXzsuhjQIvE4aFBfmMmlPq6Tx2nrmdQbRLc2COIoQAK5uYHQ4n+a3xqtq+raKKbRXxoxKIDv/k5Ybq9lMR6aE7JVMDQws/tvhFuOc/0Lw53HYb3Hgj7L+/7XGZQKat/dAkD1eGXggRwjDyz0gpXwpv/sEMyQghDgV+DG8vA9pGHN4mvC0KKeVMYCYYhUd8tr/B4lVG6HV/J2OuYvTAToyaU6o00naG0XwQOBlPr320asPE+avYXV0bFZYIZQlC2YKqGvuPm3lv7O7R/rt2cN3SuVxZMp+mSPjjH41J13qUF17XW208OIZuwiqax4HVUsr7Il6aDwwL/z0M+HfE9iuEQW9gu47Pe8erjNDr/qovswifS0VhQT6X9m6HnylFq6RosXjto4ryyqq4a1XVSvZp2qRONmoV7oK998bqHjWv2sUfls7lvX9ezbXL5rH5jHPIWrsGHnggysgXLS9zFU5KJ7reauPBTYy+L3A5MEAIURr+ORuYCvxGCPEF8Ovw/wCvAV8B64BHgT8G3+yGj1ddvlVBbTMMYWVkVInCLu3dznEibnJhVy7trQ635eWELA2IKsZtki0EF/RU14o1QymRxcLzckK254xle2VVXSHwey86ztbQRd6jJjXVDC39D+/MHMGY/z5JSf7RnHPl/bRdMA86RqcqyLQEdyrStfZDk3rcqG7eB6UDd7rF/hK4PsF2NVoSkbt5WbWaiB69aHkZ80qsjVZOKJuJg7tYntuuFCAYoZ15JWX0OqylrTrHzLljGmQrzX3zUJZlPD7SS3e6B4UF+SAli/7+EKPefZrDt5ZR0rozNwy+iY/aHlv3UI0l0xLc2ZGOtR+a1KNTIGQQQcjdvBgZv19y1SRlthBRHqHVuZ1i9FZtteuTmY8+1lhbXcsqLGF7D956i8IxYygsLuaLVodxzZBbWXSEkRfeLsShJzk1mYY29BmEF/25ygv1UjzbL6pz1UppG3YxC103D2VRXlHlWnXjZDjtjLWv0VFJiaGFX7SoTgu/qkt/Vi9ah3BxLpW6Jy/XCDPpRUqaVKMNfQbhxhO08/rBOnEZBKuk8KLWsCp0nRPKZvrF3ZWhnNjz+FWHeBmxFC0v4/nZi7h8wWMMWvs+u/Na0Gz6dPjDH6B5cwqBwl7uZMCqqQgp9SIlTXrQSc3SgEqRYScrNLHz+lXaeCcljVdUao3+nVvF9cuuvSoVzc7d1VETl37UIV5UL/95o4TdV/+e2dOv4rSvirm/zyX0/f2jFJ36W0Mb75HtldZa/e2VVXqRkiYtCOmghEgFvXr1ksXFxeluRkqwKsYRyhbs07QJ5ZVVcR55Tig7Ku7dYcwCpTEHa28eYP3UQQG0fi/jiz7luWUbqJGSbCHo3bEFn3y7PS4mrorHC+DrqYMoWl7GpFdWxYU6YvvtJdyhKngSpyjZtg3uuotd980gq6aGZ7ufyYN9LuanfVoAhnpon2ZNPIdYVMnj8vNylAvFzPuRCDok1PgQQpRIKXs57adDNynGyqOrqpF1+WYke8Mv+RZfVqcwhsrAQHCGwFTdmHLJGilZ8uXWuP1MKaRT+cFpC9fGGfrYuQkvYRjHuY7KSvjHP2DKFNi+nf8cfSr3nnIZG/IOiTqmvLLKUx4gE7vsm27DVV7RISGNHdrQpxg3k6KmkV8yZkBdCMI0zv07t2LOxxuiVneGsoWj0iRIQ+AmNYCJm/KDiahUIh9eebkhpKTOOMfyw9Yd8OijMHEifPcdnH023Hkn017f4nrFrRuJpJ1ss/ibrTyz9Nu4UVuiobX6JOnUpB5t6FOM22X835VXWhrnOR9tiPeQw//aGZi+U98OzBB4UfBElh9UjST8TrbG3h9lHhspOWvtEsYumQ0/bYSTToLnnoN+/QAYXRsf6lHhtu+q7JvzSsqijLwA5SIxL2hJp8YObehTjCqtcCyt83Kswzy18WGQqlpZZ7BVIY4gDYHbh5U5CewUdlHdk4o91XE59SNxM7Los76Um/87i+O+/4KfOx4FjxXB4MFReeGtHpAVe6otHxwH5ITqYvBmWMoqxOa2vRJYvGaz7XFu0HlrNHZoQ59iYo1KXm6IHbuqowy4OZRXZaS0ws5gJ1pVKRanxGYmEndhIXOfifNXRYVdtlVU2RYssXvYHPv9Om767yz6rV/O9wf8ik8m3keP8TdQtPJ7pt21OG50Efswspw0zxLs3FNd10bzfqrCYLFzIslc45CumsWa+oE29GnAyqhYhTacUgZEojLYiVRVUrVLFWuORZUiwAqzv7HxdbuCJVZ02FrGje/N5pw177E1Z38eGHQdN8y9j0OaN/c0T+HFy7dqp9W1krnGIdESi5qGjTb0AeNH2aIKbViW/ssSIIiajLUz2HbpCi7oaRjXUXNK49rqZBQnF3al12Et6x5GVrJQr96k2/CSVZ9+9csW/vLBc1y84g12N2nK/X0uYXafCxn3u94QNvI3vrDCuUJUBLHvS4cxC1y3XxWmCeI+qdB5azQqtKEPkKAlbiovzWqbKvWAXZGQeSVlyrZ6UXEIqFO8bK+s8u1Nuo0zRxrU/Xft4A/L5nJl8Ss0qa1mbq9B3HviRTTNb824iDqzqlFN7PnsHtROcxOR7VQ9tExFlfa6NalEG/oASYbETeWlOZ3PLrwB1rnhI9vqVA7QSvFipjbw21e3cebWeTn8tLmc4Z+8wnVL55K3awdFx5zKM4Ou4cW7L+OSmPM6Tdo6FTUv/mYri9dstg2/xLZT9VAwZbMaTSrRhj5AMkniZmfc7Fasmm1VLXQyc8Hb1W9NNM2y7fHV1TxYUcKhj97FIb9sYXHHnkzrN4yv2xzJlCFdbftkRaSBVvUpci4iMvxipboxRwRBhbM0miDQhj5AMkniZmfcpgzpqpzoPSBcyEMV5jC3e63f6sXYW+4rJbz0EowbR8HatWzt2oPre4/jtZZH0Tovhyk2DxTV+xKbVtku3BL7v5VnHjsiiDzOrQRTo0kGOqlZgLhJvpWqEnOqh0t+Xg6FBfmMHtjJmNiNYWdYu65SzJjb3T68AknY9fbbcOKJcOGFkJUFL79MyxXFPDRzFF9PHcSSMQMcdfpW78u9Fx0Xt3DLLVYPBdUoKnI9gUaTDrShDxCn0mypLDGnKhVYVl5J36lvA7Bv8/gBXVWNVGaWjEynsHN3teu2+A5dffIJDBwIp58O338P//oXfPopFBZGLXhywul9MVHdMyusHgp2IwKdnVKTTnToJgHsdOZWpDIfSWS8OzZebD5g7OL0dooft+kCTDyHrr74Am69FebMgZYt4d574Y9/9JUy2MSN9NCqz/07t4pSJ4E61p7sRVEajV+0ofeJHymlk5IlaEzjZpU21y6zZJYQdakHYvtilTPHDk8TkJs2we23w2OPQdOmMH48/O1vcMABrq+XKFZ9NtcLOE0w260Y1qkINOlEG3qf+PHOnZQsycJOS2+lwKmRUvnQ8uKZZgksQyRxlJfD3XfDjBlQVQXXXmsY+UMOsT8uycSO2Jyko8nMTqnRJIKO0ftEZfDKyiuVE61OSpZkULS8TBlnNmPVVg8a1SSqF8/U8QFWWQnTpkHHjkZu+MJCWLMGHnwwI4y8n/mUyYVdmX5xd8f5AI0mlTh69EKIfwHnAD9KKY8Nb5sI/B4w0+7dIqV8LfzaWOBqoAa4QUq5MAntTjt28dhIwwB7veJ8m0U0XnGbakFVXhCM7JB2ycnMh1lsce9QtohLwQCSyqraqOMjs2pGUV0NTz5p5IUvK4MzzzQMfffunvuXLBKZT3EzH5Du/mkaF248+ieBMy22T5dSdg//mEb+GOASoEv4mIeFEPFFQRsAqnqnkcR6xX5qn1rhxdu0C7Vsq6iyTUqWlxui+6Q3GDmntO5a5ZVVIKFFbijKY90VY+Qtr29q4bt2hd//Htq0gcWL4fXX44z86Lkrovo3eu6KpKiTVHLXZC5+S6X6SqMBF4ZeSvkuEF8nzprzgOellLullF8D64ATEmhfxhIr2VMRaRjcyvyc8FJgOpFJwG0VVZbVmqpqJblNm0Rp2B0Lmy9eDL17wwUXGNLIl1+GDz+E006LO2bSK6uiRgxgyD4nvbLKd1+ssDO4bgq1+0UXCNekmkQmY/8khLgCKAZulFJuA/KBpRH7bAxva5BEDtFVBaFjDUMQGQbt5gciyw6OHtjJdaGTRNugylMzud0eQwv/xhuGB//443DFFdBE/dFTpQJWVpDyiZ3BHT2wE6NfXBFVJyCUJQKZVM2kVBmaxoHfydhHgMOB7sAm4F6vJxBCjBBCFAshijdvTrzCTroJKizjBpVXaS6Iip0jiB1F5IXTHATZhtjRygnVW3nzo0fof+lZUFwM99xj6OOvusrWyCcLqxCNo8GNHaoFJI5K5mhBo7FCSBeKDyFEe+BVczJW9Vp4IhYp5ZTwawuBiVLKD+3O36tXL1lcXOy17RmH1wk2vxNyVtWPVFkV3eRk8UpOKFsdcorVwo8aBaNHK7XwVvcgttJUJJf1bsfkQuvkZSqs+psTyqZZkyzL65iT426zT/p5363ao9U5Gq8IIUqklL0c9/Nj6IUQh0opN4X/HgWcKKW8RAjRBXgWIy7fGngLOFJKaWtR6ouhD1IpkeiX3W2ZOgF8PXWQ8nivi7Va5IaYcG6X+DaWlxtSyRkzYM8eGDECxo+n6PvauJWmi9dsti2jeEHPfOZ8tMGyPi5AbiiLO4d0c33vVWG1FrkhdlXVWr4HdmokAbYrhc0+mP20+qx4+SxphY5GRWCGXgjxHHAacBDwAzAh/H93DCdyPXBthOEfB1wFVAMjpZSvOzWiPhj6oL0wlfHxm69cdb5sIeKSd7k5Lpa8nBATB1sY+MpKeOghQx65dSsMHWp49Ecc4XvkYGZ6HGlTM9fLve8wZoGl0RbA9Iu7WxpRN/clJ5RN81CW5dyBVYpiP5+VZHv/+iFSvwnUo0829cHQB22Y7YyP6YF79fpURtXOMKjaYbZFed3qapg1y9DCb9xoaOHvvBMKCup2cfsQsWL91EG0dyjdly0EtVI63hs/712i4S0r/HxWgv7cRaJDSPUft4Zep0BQ4DY04lcp4ZS73msuHXOb17qonishSWlII8eNM1axnnACPP20pUzSr5EXGP1XpYwwMV9zujduK1dFEpsULgj8fFaSqdBJZZI9TXrRKRAssNJXe0lX64b+nVvFndNNtSMnrbWbuqiReFILRWrhwVj8tHSppZEH/zl8zLS+Q09s6/oYu3vjd/2CmbffbmFcXk7IdWrjA3JCnmsRJFOho2WejQft0VtgZWTd1Al1S9HyMuaVlEWdUwAX9Nyrsff6JXSqEasyDK7K9y1fDmPHwsKFjlr4yJFQIkHB78or69Q1zyz7FjcRRjsD5Xf9glNJxomDu9TtZ5faOJQl2Lmnuk7l47b6lp/RiFsyqSKaJrloQ2+BncEwJ9kSKQ2nepAsXrN3PYHXL6GTQXIKU1j2Y906Iy/888/zc85+PHjaVbw54EL+UtCNQoWRdxPXjoyt79xdbSlxNPs5ubArkwu7Rj1AshQhnWQYKKeSjOZ9c0ptXLGnOm7StrKqhhtfWGF5vImrB7FPkvkQ0WQW2tBb4JSwLNGJMDfeutcvoVuD5ETR8jIen/shF73+BENXLKQ2FOJffS/m4V7n83PzfWFnraUnWrS8zHJ+IJbYyT7VmoD+nVtFHRf5MFJNIiZrcZpqDsMpZXHk6x0UE8t2KaEjzwV7jb0ZokrU2CfzIaLJLHSM3gKnuGyiMUynuKvpvZrFQcA5rtw8ZP1WOhmkSF59dzXf//lvzJl2GZesWMhzxw3k5GtmMvXkyw0jHyY2Hm4aXjsjryqtqBrdzCspU8awCwvyuaBnft29yRYiKuwVJKrPws7d1Z6SkNmNNpzmXnQSNE2iaI/eAjsFCyQeIrDz1mO9VbM4iJ2ndemjH8alCAbjKe7Ky921Cx56iFNuncQBlb8w/+h+3HvKZXzTorXykMiHnV3YCPytzrULa5hzHOZ7UyMl80rK6HVYy6SVZJz0yqqo0Et5ZZWrGLuJU84hO+chWeoYP1XSNPUT7dErKCzI596LjktK/ho7FYhXtU3R8jKWfGmdXNQ6cXAE1dVGwe0jj4S//Y3SQ45k0LAZ3DD4JlsjD9EPO6c5jdgwDDg/HGBvWCPWc0119sfCgnxym8b7RF6uab7nKiWSnfOQLHWMzqLZeNAevQ3JjGGqJkC9fqknzrdP3WvpoUkJRUWGFn71akML/9RT3LJMWsajrfLomKELM0Wx3ZyGlbft1khZea7pkAUGcU2zD17nF5KljtHyysaD9ugdKCzIZ8mYAVG515OJF9100fIyZfIvkzgP7Z134KSTYMgQqK2FefMMLXz//kpN/aW929EiNzrjpRm6KFpe5jinYRXTz/KgsY81PG7ukaqgiGq7E0Hp2f1o+pOVGVVn0Ww8aEOfYXj5UrsdYpeVVxpa+LPOgv79jZQFjz0Gn31mGPyw0VUZocmFXW1DF5HHqYgsS+g0cRtLrOFxukfjiz5lVERVLDP2PL7oU9+TmkEaWyfnIfZhBPGppoNIU5DK1Nqa9KJDNxmGl3CRmyF2u22buPG92XDXf6FFCyPD5PXXQ456AZWfkJJ5nFMBFlVsPlsIhp7YNm6hkZXhsbtHRcvLeGbpt3GhpsqqGp5btsFTegi31wwS1QTplCFdE85tE4uWVzYetKHPQNyu4rSLjbfasY0/f/A8Q1f8h+qsJjx+ysW80P93/O+nbFrf/2FUqgU3X3K3cWIn/b/qgVErJZMLu8YtNIo04LHbrQyfXTF0r+khYgmiOpgTqc4/k4o+adKPNvQKgkjfmuwUsFZGdb/dOxmx7CWuLi6iaXUVzx83kPv7DmXzvi1ht7GPWWwbSV3O96ASgxUW5FP8zdY679nUuIORiVFlhM0HhpXh8SIDtDPaqiRpmRST1hOkmmSgDb0FQeiLg9Io2z0sIofeP/20nT+tXsjli58lr/IXXul8CveechnrW1pfK7b4Nth7jm6H+VYa9zkfbWDOxxssrwnOcWEvXq5q5CHAdWgonej8M5pkoPPRWxBEDvAgzuEqX3h1NTz9NBW3jCf3++94t30Bd586jM8OOcLVNWJRVaRyi9cc9G5yBtnlzM/Py4l68EC8fFEAl4ZLEGZ6oQ2dI17jBZ2PPgGCGD4neg5V7pg6T7Z7a/j3v+GWW2D1ar5o3Ympl9zBh4cdB0QnX1MlDrOidV5OQsbQa4jB7qFntsOuMIr5UImctJwypKvtKCiTDaaeINUkA23oLQhi+OymsIjqy+wkQWy78iPoM87Qv3fqxLhLJ/BMfq86mSREJ1+z8hJD2SIqRg+G4Wx/YE5CISe7CeJYIleJxt4Pq1S/kVgt4jIfgqlY75AoVv21qzGr0SSC1tFbEIS+2O4cTkmqVBLEY374iidfmMDzz42FDRvg0Ufhs894ts3xUUbeJFL6GJsE7OLj23LxCW2jimRIYMmXWxNaFu+0eCqSGikpWl5G90lvMDJG9/7M0m+VRj4/L0fp5deHSUur93/20m910jJN0tCG3gK/FYncnsMpx0issWq3bRP3z5/Ga0/eQPdNa/nsL+Pgiy/gmmugSRNX2TCtkoAtWLnJdXEQLxLEyH7bVZlqkRti7EufWoaV7MI1S8YMUC7Oqg+Tlm7y/OicM5ogaRShGz8x5yBiuX4XH5nhj4N2Glr435UaWviHT7qIw6ZOYFC/Y6KOc8qGqYr1eyl8LYH2YxbULWwyqz9ZEdlvVR52MFLueC2+bRry+lw0w+1Dsz6MTjT1gwZv6DMxFatT/H5sn0PZMO7vXLHsZZpV7+H54wbyyMlDqWh1MOWvfc24xRsRAsorquoeXFOGdGXi/FV13nHzUBbF32yN8uSDoEZKZi/9FsDW2Dv1NS8nxHaHCeLYOHykIU/1pGWQah238xj1YXSiqR84yiuFEP8CzgF+lFIeG97WEpgDtAfWAxdJKbcJIQRwP3A2UAEMl1J+4tSIZMor7WSOowd2ivvyQuqXuYNhxO4adCSDP/g33HknbNnCom6ncceJQ9mW356de6ptdegX9MyPm7y0mrCMJC8nxO7qWs9eNRghmS+nnO24n51ccNrCtUqDZ/YpEyYog5Y8uim5qCWVGje4lVe6MfT9gB3AUxGG/m5gq5RyqhBiDNBCSnmzEOJs4M8Yhv5E4H4p5YlOjUimobfTYOeEsuMKOCOiFxMl+oVTeYKR29vs35T793xKj3/NMCZZf/MbmDIFevYE3GnTVas+VQhg+sXdgb0PtrzcEDt2VUcpcexYH6G3d1IRqe6BlcFrkRtiwrldMsbIqe5/ZO1brw8hrbrRBEFgOnop5btCiPYxm88DTgv/PQt4B7g5vP0paTw9lgoh8oQQh0opN7lverCohsnZQsQZGCsDl0ieEaewUZ0WftxN8PnncPzx8MQTcPrpUedxE6v1Gp4x91aNaNw8WEwc+6mYq6gvmnHV/TfvuZ9wYKbr+TUNC1crY8OG/tUIj75cSpkX/lsA26SUeUKIV4GpUsr3w6+9BdwspbR115Pp0auG3V7CFW5XixYtL4sqOacKneTn5bCkTxMYMwY+/BCOOgruuAMuuKBOJhnp8WW58NazBLh0xAHrsI05egEYOafU9vjcUBZDerZh8ZrNyodCokXUrUjHyla3q32T0V+Nxo6UrYyVUkohhOfZPiHECGAEQLt27RJthi3NmmTVGTQzLODGazVxMylWtLyM0XNXRIV9rG7K0T9+xU0vzoKxJdC6NcycCVdeCU2aRJ0rtm6sI9JYBBV5/VCWICtLsLs6uqhgTigbIeIVL5VVNUycvypufysqqmrrJmVVeEmF4IZ0Taw71Xs1SUQlk+mpGTT1G786+h+EEIcChH//GN5eBrSN2K9NeFscUsqZUspeUsperVrF1xQNAtMwROq0d4WLaFst7AllCWPFaARuJXvTFq5VTpYCtC3/numv3MOCJ/5Cz+/Wwl13wbp18PvfRxl581xeJ0hrMeYWzJBKXk4IBHFGOy8nxJQhXSmvsFa8lFdW+ZqctUJAoIt+0lXj1O3aAL8qGacFdBpNovj16OcDw4Cp4d//jtj+JyHE8xiTsdvTGZ+3MwzmEDso1Y3Kmzto5zb+9MEcflf6H2qysnmsz2/Jv/M2Bp3axfO53FAjZZ3HbvXg+WVXNeAtVYFfJHDjCyuAYDzudKbwjYypq8KBbhwCK8891TnoNY0PR0MvhHgOY+L1ICHERmAChoF/QQhxNfANcFF499cwFDfrMOSVVyahza6xMwxu0v96IdZw7ru7gt9/9BLXfFxEs+o9zDnuDB7s+ztO/3V3RtgYeatzecVuMVSNlIx96VNLOWYyMK8HiRl7s85sMvPJuw2f+J1EVoWeVO+BXjClCYoGnaZYNYlmNxGZiIxy9NwVZO3ezWXLX+P6D1+gZeXPvBrOC/91OC98KEuwb/MmUYudnAptJAMhoE/Hliz5cmvSrhFJXk6I0gln+DrW7n4EpTdPRXpgO5mm1QNMT+5qnHA7Gdugc92oEoupJiITifUWdjuEOU3X8s5jf+DWtx/js4MPZ/Cw6fzpvJvrjDwYEs5tFVXKWKzpVVZW1djmiXEiLydkm1xMSgI38tlZ6vaWV1b5jjnb1ZkNyhCnIv5vJ9PURbo1yaRBG3pVYjHVRGRZeSUdxiyg79S33RslKQ0tfLdu9Jj4Vw49sh0sWkS/rz/h00OOdDw80phETsqBtQFwgwAmDu5SV8LPD+Y9c0uL3BD3/vY424dTZD/7Tn3b9b22qzMblLetukZZOMwXBKoQk/m5TCSJnkZjR4PPdWO1MMVOWhnpaZvHK3n33Wgt/IsvUtSxN9Pe+B/fvbnAlf4d9j5grPY3PXur81iFoMxqSoUF+Ux6ZZXjtVWYKzXdzBXkhLKjVrKqNPjm3IhXiWSyy+vZxf+BwCSc/Tu3spSk9u/cSi+g0iSVBu3Rq3CTM9122L5yJQwaBKeeCt98Y2jhV62i6PCTGPvyZ3UyOS+rVe32Vw3tJw7uEucJTr+4e13JvG2KkYsb5pWU0b9zK5cjCsnIOaUcPvY1Rs4pRRXBaZ2X4ytEEkR9ABVORV7ctM8ti9ds9rRdowmKBu/RWxGrmnBdxOKrr+C22+DZZ+GAA2DqVPjznyE3t+58yZhAVSVgs1MJJWqYKqtqWLxmMxf0zOe5ZRscDKGh1Tf3sVqhaxrmUTbevopkpkpw+54FoZcO0gEAAA/KSURBVIBJpzxU07hplIYeokM6KjVEXWjghx9g8mT4v/+D7Gy46Sa4+WZo0aJu36LlZbZhDq9pFyKPM42alWFTSQKdjEeL3JCjx19WXplQmmOrpF+qsJlTGCZZoQ23RjaIMJGbEJReIatJBo0ydBOLKjQwtm9rmDABDj8cHnkErryS/xS9R9+8M+hw1wd1E4lFy8sY/eIK5fmtJttmXNxdWSUpW4i6/S7oaRhHq4lLuxWVdoZpxsXdWX7bGcrrm2RZqJO8UCslX08dFFXDNZlhGD+4MeBBtc+p73qFrCZZNGgdvRciPanD9s3mH+XL6DrrQfjpJ/jtb2HyZIp27mOptQZZF76IxU6LbaXdNhOh5SsKZEfmabdLJmaGSZRJ1RRFw01i8+b4QaUDzySv1bJwuou1DolcT9V3u9oJWk+vsSKwfPSpIBMMPQA1NTB7thGH//ZbI13w1KnQy7iPbrMYRjLj4u62RsL84peVV8Zlu1Rlv3QqKGJm22yvKONnvl60vCyqKpWZATM/L4edu6sta7nC3pCMXf56N4uNMsXgZ0o7VLUT3GZP1TQ+Upa9skEgJbzyCj//9Sb2/3ItKw85gsevvpv+1/8u6gvvZ9IstsiI1URqYUG+5UNEZcydHs1mOCLfJiZs5ck2a7LXONvVer33ouPiioqUlVfWyUDzXRjLTCrxmCnSxmTLSDWNF23o33vP0MJ/8AFbW+Yz5rwxvN6pD1Jk8UaM4fGag6ZFbigufXFZeSWj58Yn+gpKeREZ87UroK2SOY6cU0rxN1tta71GttuvkczERF7p9uzrc8FzTWbTeA39ypVwyy2wYAEceih3nT+KRw8/lersvbck1vC4zUsORox7wrldmPTKqrhYd1WNZNQLpYyaU1pnUILIJikEUeGSSFmi6XGbfbK71uyl39L38JZs3bknzuhMHGyfkM3EyWgmKjUM2ignY4ThtY31peKWpv7R+FQ3X38Nl18O3bvDkiVGDH7dOv551OlRRt4k0vDEplSwY9qFRnhDJWGUMnoVrvvFSWqkjDdKhQX5dWqPyNJ3Tiz9apvvZflu1COqcIQEuk96w1Zpkgx1StC5bvy2sbAgnyVjBsSplTSaRGg8hv7HH+GGG6BTJ5g719DCf/WVoYfPzVUantjtkV9ElTzR3N536tuummYuTnJT3MKJWPll36lvM3JOqWeZZE04j4wfo+PGaNqtTi6vrGL0iyuURjEZCciCXsyUriIpGo0VjcPQP/ggdOwIDz8Mw4cblZ2mTo1a8ORH3606pn/nVlHJydzwXXlllGG996LjXB8biek1xiZI80oimTPdGE1zdKS6TlWtVBrFZKwwdfugd4teBavJJBqHod9/fzjrLFi1yshLk29dTMJPqKJ5aO8tNMv0LV6z2bMHfUBOKK49LXJDir3VmF5joukYends4byTAruwTOSir8KCfGpt5L0qoxi0UYbgF3Ilo40ajV8ax2TsFVcYPw54UZBYyRPN+qx+vLbyyirGF33K5MKuddsmnNvFVwGSILzG9VuczxGrwzcLr48e2InRL66w1NfHTnLaTUKrjGIy1ClBT4RqBY0mk2gchj4J2MkT/fLM0m/pdVhLS9WMXfK1WEwDaRe2aZEb4ufKamUeG6eHhZn2IdKYb6uo4sYXVzD0hLbYzVZHqpnaH2ht6LMESqOYLHVKkHp6raDRZBJ6ZawHIuVyybprdsvd3azMNVekAo7l94q/2WqZH92pHU5tMVfY2iGA6Rd3V6ZpSKT0oEbTWNArYwMkNkThlbycEDv3VLvKHWPnSVuFA0LZgn2aNmF7pXVelljNfLYQXNBzr+f6zNJv4wxtKFs4hhjs2ulk5GFvbnrVrtt93uuGSLoXcmnqP9rQO5BooW4BlE44w/XDwm6yzk84oGJPddT/NVIyr6SMXoe1VBrafZo2cTQkiSzwcspNb55fk1mpIjT1F23oHUhUvZIlBB3GLKB1Xk7dqlLVylQ3k3VOceTxRZ+6KBRSU/ewsCLWm7byKEcP7GQ7H6FK0BaZB0d1HwTq+LwXgvCE0+1NZ2KqCE39IyF5pRBivRDiUyFEqRCiOLytpRDiTSHEF+Hf/nV6KURVsDpRBUuNlHF1aJeMGcD6qYPqctIHVRB6fNGnzF76ratCIabhsiJLiLr+q1Z4AlzWu53y/JK987FmicP1UwfV5dnpMGYBFXuqCcXUHYyseZsIQayezYT88FqPrwmCIDz6/lLKnyL+HwO8JaWcKoQYE/7/5gCukzTshsdOIQqnlMGRxHpiQWdNfEYxsWqF6Z1ahaVqpKxLvGbnUS4ZM6AuBGR1j0wP3pzUjVXqbKuoIksYcxiqOQa/BOEJZ4I3rTNaaoIgGQumzgNmhf+eBRQm4RqBYveFdiokbmXk7fb36ompRhpW+3lRApkGdcqQrpbFvKtqjILfqoec2Q9zNa9KTRnZ34nzV8Vp62tlciZeg/CEM8GbzrSKXJr6SaKGXgJvCCFKhBAjwtsOllJuCv/9PXBwgtdIOnZf6MKCfC7ome+YxMzEXB2ryoPjxRPzEjrwkkMlMtWwsTrV9aF1xPbDzUpQ1US0hMBDI0GsTM2E1a1+V2xrNJEkauhPllL2AM4CrhdC9It8URoifUszIoQYIYQoFkIUb968OcFmJIbTF3rxms2uveV9mjWpyxgZG38OZTnLFiPxkhjLrZfpJdWw3Tli+2HneZqjEjcElfgrCE84U7xpndFSkygJxeillGXh3z8KIV4GTgB+EEIcKqXcJIQ4FPhRcexMYCYYC6YSaUeiOC1X9z3cjx0GxPyfSM722GPzckOWKZGbNckiW0BFuKbtruoair/ZGnWdvJyQqzUCApRxdJX0E9QLt1QEERoJYmWqXt2qaSj4XhkrhNgHyJJS/hL++03gduB0YEvEZGxLKeVNdufKhJWxfoo2W2FOPjoVerbS58fWWVWdo0VuiF1VtXEFrRFELcrKCWXTo90BLPlya9w5Luvdri6vjlU6A1W7veKnzq4uhq3RuMPtythEQjcHA+8LIVYAHwELpJT/AaYCvxFCfAH8Ovx/xmM3PHaakDVxMwowt096ZZWvnO05oWykJO7YqlpJVY2sS/trxnKXfrXNsh3PLdtQ93dhQT7Tfntc3bxC7EDETbjCjzy1RW4oLrylJxo1muDxHbqRUn4FxCVNl1JuwfDqGwx2YQnVKMBOFle0vExZeSo2Z7vVNexWlNZIWWcsCwvylYuaYrX2kVJPr4uE/MhTI0c2OjSi0SQXndQsSYwv+jQuj4wZmrGr2eombOEmHGKe5/Cxr1kuoMoWgi+nnO3YDzfYhalU8x9aOaLRJE4qQjcaBUXLy5hXUhaXAsBMJuaUuMwJN6Ek8xpDT2xr+bpqux+c5KlaHqjRpBed6yYJWMkiJYZME9ThjEh9ux2RIR2noh3mhKuZ/yZbCIae2DaqwEmiOK3eDHoFsEaj8YY29EnAaSJWFc7wom83jadKvRM5Mphc2DVQwx6LVUUpr2sGNBpN8tCGPgm48XAhGH12xmi9HdYMaDSa9KEnY5OAG418Q8JpzYBGo0kOusJUGskYLztFZELyL41Go0Yb+iTRGCYgTQ28akyoU+lqNJmBNvQaXziVWNQrXDWazEEbeo0v7Eos5jfwUJVGU9/Qhl7jC1X8XYCegNVoMgy9Mlbji0woyqHRaNyhDb3GF5lSlEOj0TijQzcaXzQ2CalGU5/Rhl7jm8YgIdVoGgI6dKPRaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwMmINMVCiM3ANz4PPwj4KcDmZAoNtV/QcPvWUPsFum+ZymFSylZOO2WEoU8EIUSxm3zM9Y2G2i9ouH1rqP0C3bf6jg7daDQaTQNHG3qNRqNp4DQEQz8z3Q1IEg21X9Bw+9ZQ+wW6b/Waeh+j12g0Go09DcGj12g0Go0NGW/ohRAthRBvCiG+CP9uodjvP0KIciHEqzHbOwghlgkh1gkh5gghmqam5c546Nuw8D5fCCGGRWx/RwixVghRGv75Vepab9nOM8PtWSeEGGPxerPwe7Au/J60j3htbHj7WiHEwFS22w1++yaEaC+EqIx4j/6Z6rY74aJv/YQQnwghqoUQF8a8ZvnZzAQS7FdNxHs2P3WtThJSyoz+Ae4GxoT/HgPcpdjvdOBc4NWY7S8Al4T//idwXbr75KVvQEvgq/DvFuG/W4Rfewfole5+hNuSDXwJdASaAiuAY2L2+SPwz/DflwBzwn8fE96/GdAhfJ7sdPcpoL61Bz5Ldx8S7Ft7oBvwFHChm89mun8S6Vf4tR3p7kOQPxnv0QPnAbPCf88CCq12klK+BfwSuU0IIYABwFyn49OEm74NBN6UUm6VUm4D3gTOTFH7vHACsE5K+ZWUcg/wPEb/Ions71zg9PB7dB7wvJRyt5Tya2Bd+HyZQiJ9y3Qc+yalXC+lXAnUxhybyZ/NRPrV4KgPhv5gKeWm8N/fAwd7OPZAoFxKWR3+fyOQSQnU3fQtH9gQ8X9sH54IDy9vTbNhcWpn1D7h92Q7xnvk5th0kkjfADoIIZYLIf4rhDgl2Y31SCL3PpPft0Tb1lwIUSyEWCqEyCTn0BcZUXhECLEIOMTipXGR/0gppRCiXsmEkty3S6WUZUKI/YB5wOUYw1BN5rAJaCel3CKE6AkUCSG6SCl/TnfDNLYcFv5udQTeFkJ8KqX8Mt2N8ktGGHop5a9VrwkhfhBCHCql3CSEOBT40cOptwB5QogmYS+rDVCWYHM9EUDfyoDTIv5vgxGbR0pZFv79ixDiWYzharoMfRnQNuJ/q3tt7rNRCNEEOADjPXJzbDrx3TdpBHx3A0gpS4QQXwJHAcVJb7U7Ern3ys9mBpDQZyriu/WVEOIdoAAj5l8vqQ+hm/mAOZs/DPi32wPDX7LFgDmj7un4FOCmbwuBM4QQLcKqnDOAhUKIJkKIgwCEECHgHOCzFLRZxcfAkWGVU1OMCclYtUJkfy8E3g6/R/OBS8LKlQ7AkcBHKWq3G3z3TQjRSgiRDRD2Do/EmLTMFNz0TYXlZzNJ7fSK736F+9Ms/PdBQF/g86S1NBWkezbY6QcjzvkW8AWwCGgZ3t4LeCxiv/eAzUAlRjxuYHh7RwyjsQ54EWiW7j756NtV4favA64Mb9sHKAFWAquA+0mzUgU4G/gfhuczLrztdmBw+O/m4fdgXfg96Rhx7LjwcWuBs9L93gTVN+CC8PtTCnwCnJvuvvjo2/Hh79ROjBHYKrvPZqb8+O0X0Af4FEOp8ylwdbr7kuiPXhmr0Wg0DZz6ELrRaDQaTQJoQ6/RaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwNGGXqPRaBo42tBrNBpNA+f/ATews6G10pN3AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -3293,7 +3299,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -3853,7 +3859,7 @@ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", @@ -4079,7 +4085,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -4149,7 +4155,10 @@ "y = at^2 + bt + c\n", "$$\n", "The we need at least three data to compute the parameters $a, b, c$.\n", - "\n" + "\n", + "$$\n", + "L = \\sum_{i=1}^N (y_i - at^2 - bt - c)^2\n", + "$$\n" ] }, { @@ -4189,6 +4198,23 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "### How to get the update items?\n", + "\n", + "$$\n", + "L = \\sum_{i=1}^N (y_i - at^2 - bt - c)^2\n", + "$$\n", + "\n", + "\\begin{eqnarray}\n", + "\\frac{\\partial L}{\\partial a} & = & - 2\\sum_{i=1}^N (y_i - at^2 - bt -c) t^2 \\\\\n", + "\\frac{\\partial L}{\\partial b} & = & - 2\\sum_{i=1}^N (y_i - at^2 - bt -c) t \\\\\n", + "\\frac{\\partial L}{\\partial c} & = & - 2\\sum_{i=1}^N (y_i - at^2 - bt -c)\n", + "\\end{eqnarray}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## How to use sklearn to solve linear problem?\n", "\n" ] diff --git a/1_logistic_regression/Least_squares.py b/1_logistic_regression/Least_squares.py index 8e0e7e3..313f820 100644 --- a/1_logistic_regression/Least_squares.py +++ b/1_logistic_regression/Least_squares.py @@ -239,6 +239,9 @@ plt.show() # $$ # The we need at least three data to compute the parameters $a, b, c$. # +# $$ +# L = \sum_{i=1}^N (y_i - at^2 - bt - c)^2 +# $$ # # + @@ -256,6 +259,18 @@ plt.scatter(t, y) plt.show() # - +# ### How to get the update items? +# +# $$ +# L = \sum_{i=1}^N (y_i - at^2 - bt - c)^2 +# $$ +# +# \begin{eqnarray} +# \frac{\partial L}{\partial a} & = & - 2\sum_{i=1}^N (y_i - at^2 - bt -c) t^2 \\ +# \frac{\partial L}{\partial b} & = & - 2\sum_{i=1}^N (y_i - at^2 - bt -c) t \\ +# \frac{\partial L}{\partial c} & = & - 2\sum_{i=1}^N (y_i - at^2 - bt -c) +# \end{eqnarray} + # ## How to use sklearn to solve linear problem? # # diff --git a/1_logistic_regression/Logistic_regression.ipynb b/1_logistic_regression/Logistic_regression.ipynb index 5dbcea2..1b0d7d0 100644 --- a/1_logistic_regression/Logistic_regression.ipynb +++ b/1_logistic_regression/Logistic_regression.ipynb @@ -20,6 +20,7 @@ "\n", "逻辑回归就是一种减小预测范围,将预测值限定为$[0,1]$间的一种回归模型,其回归方程与回归曲线如图2所示。逻辑曲线在$z=0$时,十分敏感,在$z>>0$或$z<<0$处,都不敏感,将预测值限定为$(0,1)$。\n", "\n", + "FIXME: this figure is wrong\n", "![LogisticFunction](images/fig2.gif)\n", "\n" ] @@ -158,7 +159,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -174,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -197,16 +198,16 @@ { "data": { "text/plain": [ - "Text(0.5,1,'Original Data')" + "Text(0.5, 1.0, 'Original Data')" ] }, - "execution_count": 6, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXWYlFUXwH93ensXlu5u6VYklJI2AAVBRFEQBQVRVBoMpEsQRAUJERBQQlK6O6S7WRY2pmfu98cs++0ws7AxGyzv73l4nt03zj3vsHPee889IaSUKCgoKCg8XagyWgEFBQUFhfRHMf4KCgoKTyGK8VdQUFB4ClGMv4KCgsJTiGL8FRQUFJ5CFOOvoKCg8BSiGH+FLIcQYqAQYqavr02CLCmEKO4LWQoKaY1Q4vwVMjNCiK7AJ0AxIApYCnwupbyXkXp5QwghgRJSyjNezm0CagE2QAKngUXAOCmlJbXyFRSSizLzV8i0CCE+Ab4F+gMhuIxnIWCtEEKXyD2a9NMw2XwgpQwC8uB6oXUAVgohRMaqpfA0ohh/hUyJECIYGAr0llKullLapJQXgNeAwkCnuOuGCCH+EELMFUJEAV3jjs1NIOtNIcRFIUSEEOIrIcQFIcQLCe6fG/dz4TjXTRchxCUhxB0hxBcJ5NQQQuwQQtwTQlwXQkxO7CX0KKSUsVLKTUAroDbw0uPkCyE2x91+SAgRI4RoL4QIE0L8JYS4LYSIjPs5f3L1UXg6UYy/QmalDmAAliQ8KKWMAVYCLyY43Br4AwgFfkt4vRCiLDAVeAPXjDsEyPeYsZ8FSgGNgEFCiDJxxx1AXyAcl9FuBPRM5nMlfJZLwF7gucfJl1LWi7umopQyUEq5ENf3dzau1VBBwARMTqk+Ck8XivFXyKyEA3eklHYv567HnX/ADinln1JKp5TS9NC1rwArpJRbpZRWYBAun/ujGCqlNEkpDwGHgIoAUsp9UsqdUkp73CpkOvB88h/NjWtAtpTIl1JGSCkXSymNUspoYKQP9FF4SsjM/lGFp5s7QLgQQuPlBZAn7vwDLj9CTt6E56WURiFExGPGvpHgZyMQCCCEKAmMBaoB/ri+P/seI+tx5AO2p0S+EMIfGAc0BcLiDgcJIdRSSkcq9VLI4igzf4XMyg7AArRLeFAIEQg0A9YnOPyomfx1IN4PLoTwA7KnUKdpwH+4Im6CgYFAijdrhRAFgKrAlhTK/wSXe6pm3PUPXEPKBrLCY1GMv0KmREp5H9eG7yQhRFMhhFYIURj4HbgCzEmiqD+AlkKIOnGbp0NIuXEMwhVuGiOEKA28nxIhQgh/IcTzwDJgN649jKTIvwkUfUgfE3BPCJENGJwSfRSeThTjr5BpkVJ+h2v2+z0uo7gLlwunUVJj46WUx4DewAJcq4AY4BauVUVy6Qe8DkQDPwILk3n/ZCFENC4jPh5YDDSVUjqTKH8I8EtcNNBrcTL8cLnAdgKrk/tACk8vSpKXwlNFnNvoHi7XyvmM1kdBIaNQZv4KWR4hRMs4V0sArlXEEeBCxmqloJCxKMZf4WmgNa6QymtACaCDVJa8Ck85ittHQUFB4SlEmfkrKCgoPIVk2iSv8PBwWbhw4YxWQ0FBQeGJYt++fXeklDked12mNf6FCxdm7969Ga2GgoKCwhOFEOJiUq5T3D4KCgoKTyGK8VdQUFB4ClGMv4KCgsJTiGL8FRQUFJ5CFOOvoKCg8BSSaaN9FLIODruDk3vPIoSgZLWiqNXqjFZJQeGpRzH+CmnKoX+PMeyVMditrn4sWoOWIYv7Uf7ZMo+5U0FBIS1R3D4KaUZURDRftvyGqIhojNEmjNEm7t+OYmDzUcTci81o9RQUnmoU46+QZmxauB3pcHocl1KyedGODNBIQUHhAYrxV0gzoiKisZptHsetZhv370RngEYKCgoP8InxF0L8JIS4JYQ4msj5+kKI+0KIg3H/BvliXIXMTaUG5dD76zyO6wxaKjUsnwEaKSgoPMBXM/+fgaaPuWaLlLJS3L9hPhpXIRNTrm5pKjeqgCFAH3/MEKCnetPKlK5RPAM1gxO7TvNJg8G0ydaFd575mC1LdmWoPgoK6Y1Pon2klJvjmmsrKMQjhGDw4n5smLeVNbM3goCmbzWkQce6CJHSHuqp58Su0/RvNBSL0dXGN/aekW/fnEj03bdo3v2FDNNLQSE98Vkzlzjj/5eU0mM9L4Soj6tZ9RVc3ZT6xTXWfvi6d4F3AQoWLFj14sUkFadTUEgW/RoN4dBGjz8/grMH8vuNmUoegsITjRBin5Sy2uOuS68N3/1AISllRWAS8Ke3i6SUM6SU1aSU1XLkeGw5aoUMxm6zc2rfWS6fvJpm8vetPcT2ZXt8Ghp69uAFr8fNsRai78b4bBwFhcxMuiR5SSmjEvy8UggxVQgRLqW8kx7jK/ie7cv3MPqtKTjtThwOB7kL52TYsgHkLZbbJ/JP7jnDwOYjsdscANitDt4f35UW776Yatm5CoYTE+n5MhEqFQEh/qmWr6DwJJAuM38hRG4R5+QVQtSIGzciPcZW8D2X/rvKqNfHExMZizHahMVo5dJ/V+nfaChOp2dcf3KxWmx83nQEURExGKNMGKNMWM1Wfuj7M2cPXUi1/DeHtPeIQtL762n9QVO0Om2q5SsoPAn4KtRzPrADKCWEuCKEeFsI8Z4Q4r24S14BjgohDgETgQ5S6Rz/xPL3jLXx5RoeIJ2S6MgYjmw+kWr5+9cexmH3fInYrHZWz9qQavl1Wlfng0lvExIejFavwRCgp23vZnQb2THVshUUnhR8Fe3zyG+NlHIyMNkXY2VWTDEmDm48hlqjplKDcugMnvHtWYXblyO8GmeAyJv3Ui3fGG3C29zA6XASHekbn3zTtxrSuEt9YiJj8Q/2Q6NVylwpPF0of/E+4N/ftzO621TUmv8vpIYs6U/lhhUyUKu0o0azyuxZfQBzrMXtuMPmoGydUqmWX6lBOex2h8dxQ6CBZ9vVTLX8B6hUKoKzB/lMnoLCk4RS3iGV3Lx4m9FvTcFitMT7p41RJga1/pbYKGNGq5cmNOhYl1yFc6Iz/N8/bgjQ89K7L5KzQHiq5WfLHUbnQa+i99fH5wMYAvSUqVWC2q0eG8GmoKCQBJSZfypZ99tmHF6KlyFg29LdNO5SP911Smv0fnom7RjJssmr+XfRdvwC/Wjdqyn1Xq3tszE6ftaWCs+VYdXM9RijjdR7pQ71XqmlxOArKPgIxfinkth7Rhw2u8dxp92JMcqUARqlD36BfnT4rC0dPmubZmOUr1ua8nVLp5l8BYWnGcXtk0pqvlQFvb/e84QQVGtaKf0VUlBQUEgCivFPJc/UK0vNl6pgCDDEHzME6Gn5fmPyl8iTgZq5I6Xk5J4zbFq4jSunrmW0OgpJwGqxEXE9EoeXzW8FhdSiuH1SiRCCgfP6sHPFPtb/thmNTkuTrvWp3CjzRPpERUQzoPFwrpy6hkqlwm53ULN5ZQbO66OEOGZCHA4HPw2cx7Ipa5BSotNr6Tq8Pa17Ncto1RSyED4r7OZrqlWrJvfu3ZvRamQJBrX5lj2rDsSXSgDQ++l448uX6fh5uwzULPNx5fR11vy0gfsR0dRqUZWaL1VJ903mn76Yx5IJK+OrjoIrA/mTme/ToEPddNVF4ckjqYXdFOOfxTEbLbQN64rdy6Z0jgLZmXfxhwzQKnOyceE2xnSbit3uwGFzYAg0UKZGcUat+iLdVkgOu4M22bpijjF7nCtQOh8/HR+fLnooPLlktqqeChmEzWIDvL/gLUZr+iqTiTEbLYztPg2LyYojboVkjjFzYtdpNi7Ylm56GKNNHqUzHnDn6t1000Mh66MY/yxOUFgg+bxsPKs1Kmq+VCUDNMqcHNv2Hyq159fBHGth4/yt6aZHYGgAQWGBXs8Vr1Q43fRQyPooxv8p4JNZPfELNKDVuVwXen8dwdmDlEJmCdAZdIktkLyH8qYRQgh6jHnTs+qon47u37yRbnooZH2UUI+ngDI1SzDz2Dj++uEfLp24Srm6pWj2diMCQwMyWrVMQ9k6JdEZtBij3RPzDAF6mr/z/9aOV05dY9mU1Vw/f4tKDcrR7O1GBAT7tgdAo9efIzA0gF+H/M7NC7coVqkwb43oSOkaJXw6jsLTjbLhq5Du3L4SwZ+TVnF6/zmKVy5C2w+bkyN/9oxWi5N7zvBZkxE4HU6cTicOh5O2vZvR/ZtOCCHY+88hhrT7DrvVgcPuiF9BTd37LaE5QjJafQUFQIn2UciknD96iT7PfonVbMNutaPRadDptYzfOpwiFQpltHpYzVZ2rzpATGQslRtVIFchVztRp9PJ6wXfI+JapNv1Gp2GVj2b8P7YrhmgrYKCJ0q0j0KmZNIHMzFG/T+ixW61Y4w2MemDWRmsmQudQUfNl6pw9cwN3qvSn2aGjnz64jD2rz3stY+w3Wpn25+7M0BTBYXUofj8FdKM21ciWDpxJaf2nqXoM4Vo1+cljm076fXaY9u9H08uTqeTHcv3sun37Rj8dDTp1jDZxeG+7jSR3X/vx2JyhcIe3HCE/3afTrTMgn+wX6r1VlBIbxTjr5AmXDh2mY/qfoHVbMVudXBs23+s/mkDWr3Ga36B3i/1nc+cTidD2o3mwPojmGMtCCHYuHA7HQa0ptNXryZJxo0Lt9j11z6sZlv8MSnBZrETmjOUyBuRbl3M9P562nzQPNW6KyikN4rbRyFNmNpnNqZoE3ara7ZstzkwxZjxD/b3aHGpM2hp+nbDVI+5d82heMMPrmJ2FqOF+V8v5faViCTJuHTiKlq9ZxN3u9VOzoLZKVA6H4ZAA/7Bfmj1Whp1eo6m3RqkWncFhfRGmfkrpAlHNp/AWyzBvZv3qdG8Mgc2HEWr02Cz2qncsDzdv059DPv2Zbs9WksCqNRq9q09TNO3Hm+k85XIHZcV7Y5Gq6Z09RK8N7YLJ/ec4c7Vu5SsWpScBXOkWm8FhYxAMf4KaYIhUE9MpGeZAp1By/Dln3Ht7A0u/3eNAqXzkq+4b0pfBwT7o9aoPJrLq1QC/yBDIne5k694Hio1LM/BDUfdXD9avZa2HzVHCKHE2ytkCRS3j0Ka0KJHY3QP+fG1ei1NuzVECEG+4nmo1aKqzww/QOOu9VF7KcAmgRrNk17K4rM5vanfvg46g9Zl7GuW4PuNQ8hdOKfPdFVQyGgU46+QKBaThbs3InE6vfQofgxvDnmVmi9VQavTIFSuJux2m53DW49z+eRVX6sKQKGyBfhgYjd0Bh3+QX74B/sREOLPyL8+x5CEEg0Ou4NpfWfTMf97bPp9Bzo/Hb2ndmfSjlGUrFrM4/qUfC7GaBNHtpxIs89AQSGpKEleGYyUkkObjnH24AXyFMtFzeZVUGsytkm51WJjyoc/sW7OvwD4BfnRc3xXGnZ8LllyTDEmOhZ4j9j7xvhjQgiCsgfy24VpSTLIKSHmXiwHNhxFZ9BSuVEFdF42cL0xre9s/v5xnVs0kt5fz2dzevNs25rxx/5dtIMfP53DzYu3CckRTKcvX6b1B80QQjxS/h9jV/DzVwvQ6NTYbQ4KlS3A8OUDyJY7LGUPqqDgBSXDN53ZvnwPi75fzr3bUdRoVpkOA9oQliv0kfeYYs30bzSUi8ev4LDa0eg1BIUFMn7riAwtdzD6rSls+n07VpO7ERy2bABVktGhbPXsjUz5cJbHJqxfoIEPp77DC53q+Uzn1GK12GibravbMz+gWKXC/LB/NAA7VuxlZMdxbi8IIQR1Wlfnq98/TvTF7SoNMdqtQYtao6JElaJM2vm1j59G4WlGyfBNR+Z/s5RRr0/g6Nb/uHLyGsunrKZHpX7cu33/kff9Mngh5w5dxBxjxma1Y4o2c+fqXUa/NcXjWrvNzrxRi+mQvwdtwrowosM4bl687fNnibkXy8YF2zyMoMVoYd7IxcmSdfvSHa/RNxaTlduXkxZ6mV7ERMbgNTwJuH35TvzPs7+c75GnIKVk25+7GfLy6ETlLx63ws3wAzjsTs4ducS1szdSobmCQspQjH8qiY0yMnfYH25fbLvNQcw9I0snrHzkvevnbvEIK3Q6nBz+9zjmhwzFN50nMm/kEiKu3SX2vpEtf+ygZ/UB3L8TlSrdZ34+l05FetKlZG8Wfvcnt6/cQaP1Pnu9fv5msuSXrF4Mv0DPKBu9n45S1T196BlJSI5gDAHe3VAJ/f3Xz99KVMb+dUc4ufes13ORN71PBDRaNVER0cnQVEHBN/jE+AshfhJC3BJCHE3kvBBCTBRCnBFCHBZCZJkuIucPX0Sr9zSWNouNvf8ceuS9TkfiG4YywWbitbM32LF8b3y5AQCnU2KOtfD3j+tSoDXYrDY+qvMFS8av5ObF21w7c4M5Qxfxw8e/ei1rr1IJytYqmawxqjWpSP5SedEZ/u9z1xm0FC5fgEoNy6dI75RybPtJBrf9jh6V+jG1z2zuXHVfeajVarp/28mzjr6/nrcS9D3I76UxzgOcDicndpzyeq5Wi6po9Z6RSE6npEiFgsTej2XpxL8Z9fp4fhv5B5E37yXn8RQUko2vZv4/A00fcb4ZUCLu37vANB+Nm+GE5Q6Nz2JNiBCQs2D4I+997uVaaHTuBkEIQclqxfAL/H+9mHOHL3pcB2A1WTmeSK2cx7Ft6W5uXbrjtvKwmKwc33GSpt0aujUwEQJ0/no6DUpaiYQHqNVqxmwayqv9WpGrUA5yFc5B+wFtGL1+MCpV+i06Ny3cxoDGw9i+bA/nDl9kxbQ1vFuxn4fbrFm3Rgyc14fiVYoQEh5EtSaVGLd5mNvM/+2v30CdyMpIq9eSLY/3fZ52H71ESI5gtAlehHp/He+NeZPouzG8VfojZg2cz8YF25g3cgldS33I2UMXUv/wCgqJ4JMkLynlZiFE4Udc0hr4Vbp2l3cKIUKFEHmklNd9MX5Gkq94HopXLsLJPWew2/7/EtD56Xjl45aPvLfbyI4c2HCEyBv3MMWYMQTo0Rm09J/d0+26PEVzeSQugauccMGy+VOk99GtJzB5aRLudDjJXyIP/Wa9z7xRS7h7PZIytUvRbWRHCpVJ/lh+AQa6DutA12EdUqRnanE4HEz6YJabn95ucxB738icYYvoN8v9s67Tqjp1WlVPVF61xhX59OdefNNpEgmDJYQAvUFLrZbe99mCswcx/eD3/DlpFbtXHiA8Xxjt+rTgmXplGfXGeO7fiY5fCVrNNqxmG0NeHs13/wwiT9FcqfkIFBS8kl4ZvvmAywl+vxJ3zM34CyHexbUyoGDBgumkWuoZ+uenDH9tLCd2nkKtVaNSqeg1sRvl6pR65H3B2YOYeXQsW5fs5vT+c+QrnpsGHZ/FP8i9SmSxioUp+kwhzuw/hy1Bc2+NVk3rXo9acCVO7qK50Pvp3FxJAGqthhwFslOnVXXqt6+bItmZiZsXbnuN4HE6nOxfezhFMht2fI7chXMysuN4ou5EI6Ukd9FcDFr0ySPDSoOzBfHm4Nd4c/Brbsd3/X3AqwvwxrlbvF2+L/VerkX/n3uhVmdsCLBC1iJTlXeQUs4AZoAr1DOD1UkyIeHBfL9hCHeuRhB9N4b8pfKi1Xk3AuePXOTK6RsUqVCQ/CXyoNVpadChLg06PNrQfr1qION6TGfbn3uQTkmB0nn5+Mf345uNJJcXOz/PnCGL3I49KINQo1nlFMnMjASGBeBweC/FHJor5d23ytYuxdzzU7l6+jpqrZo8RVI+O9cZtBgT2be3mW1sXbqLElWL8nKfFikeQ0HhYdLL+F8FCiT4PX/csSxFeL7shOfzHp9vjDbxxUujOL3/HGqNGrvVTvVmlflifp9EXxQJCQgJ4MsFH2O12LBZbEnuG+uwOzi9/xwanYZiFQvHJyJZjBa6DG/PkvEribwRiZSSohUL88X8Pmi8lEh4UgnOFkSNZlXYveqA2/6GwV/Pa/1aeb3HYrKwfu4Wdv69j2y5w2j5fmOKVSzscZ0Qgvwl86Zax2bdG7J47F9utYTc9DFaWT5ltWL8FXxKen3LlwMfCCEWADWB+1nB358cJn0wk5N7zmCz/N9ts2f1QX4bsThZ/nCdXpvkjNW9/xxi1OvjcdgcSCkJDAtg8OJ+LBn/N1uX7EKr12Kz2ilZrRif/vJBqmav3nA6nem6sZsY/X/uxYj2Yzn873E0Og0Om4P2A1rz/Gt1PK41xZr5sPZAbpy7hdloQaVWsW7uv/Sd8R6NXk9ehnNS6fTVq5zed47Dm49jNXl/ARi97M8oKKQGn2T4CiHmA/WBcOAmMBjQAkgpfxCu6eZkXBFBRuAtKeUj03eftAzfR+GwO2gR2Cm+dWFCQnMGs+iG71sYXj93g7fL9XV72QDxxcoS+vq1ei31O9Th09kfpHpcp9PJvFFL+GPsCmLvGSlQOh8fTOxGlReeSbXs1HJi1ykuHrtCtaaVCM+bzes1i8Ys55dBCz32QvyCDPxxc5ZHLwJfcvbQBT5rMpx7t9x9QGqNmsZd6/PxjPfSbGwA6YwBnAhVcJqOo5C2KOUdMhFWs5WWQZ29buoZAvSsiJ7r0/EunrhCrxoDsMR6bnQiwFsgv1avYUX03FTXFfrhk1/4a/pat6Q3vb+O79YNTnaeQEKObT/J9H6/cO7wRbLlDuX1L16mSdcGj62nAxB7P5Zhr43l6JYT8TP/N756hY6ftfW49sM6Azmx87THcUOAnpfefZEytUpSu2XVNHsJHNlygoHNR2K3OrDb7Oj9dASEBjBt37dpVgNIOm4g7/UH2z7XAU1pRMi3CK1SuvpJRCnvkInQGXQUfaaQx3GhEj6fEUspGdJ2tHfDD14NP7hKDdi8rEySgynGxIpp/3iUMbAYrcwdtiiRux7PyT1nGNB4GCd2nsZitHL93C0m9/6JRWNWJOn+bzpP4si/x7GabRijTFhMVuaNXMyWJbs8rg0IDfAqwxxrYdnU1YzpPpUO+XukWQx+hefKMOPwGNp82IxaLary5tD2zDo2Dr2/nj/GruCzpiMY12M6549c9Ml4UtqREe3Bthewu/7ZjyHvdkQ6lczjrIxi/NOJvjN64BdoiE/W0hm0BIYG8N6YLj4d5+rp69y+cifR80IlvM6WC5XNn+oqmxHXIlFrvP9JXTx+JcVyZ3+1wKOejsVo4bfhf2CzeveRP+D+nSj2rT3k8WIzx1r4ffQyj+vb9GqaaJkHu8VVfyn6bgyD2nxHWq2a8xTJRY/RbzJ8+We81q8VTqeTHhX78fNXC9j3zyFW/7SB3rUHsnWp58sr2Vg2g4wCEkZESZA2pMnz81HIOijGP50oWbUYM4+N4+U+L1GjeWU6ft6Wn06M93kCj81qT3ST9UH1yYAQ//g+tWqtGkOAnj7TexAVEc2BDUdSXGs+PH92r64tIaCIl5XPA0yx5kTDMQHOHrzg9bjD4STyxqPLIETfjUnUleWthELNl6rSrm8LtAYt/sF+qNTeP8uoO1GcP3LpkWP7it9HL+Pujcj4fQinw4nFaGXcuz/gsCf+uSUJxxWQ3l6gJnCkz/MpZAxZJ6bvCSBngXC6f9MpTccoVDY/foEGj+xdoRLUb1+Hz+d+ROTNe/w5aRXHd5yiSIWCtOndjJUz17N0wkp0Bi12q53ilYswbPkAgrMFJXlsg7+edn1eYsmElW6uH52fjjcHe5aG2Lf2EBN7zeTmhVtodBqavd2Id0d39gh9zVciN/dueS+MFpLj0ZuTeYrmcq22Hqouqtaoqda4otd73hrWgTa9mnJs+0lmfzmfSyc8X4ZCJbDbUucme5iI65Gs/XUTd65GUqVRBWq2qIJarWb7sr0eG/cANoudS/9dpUj5VCREasuC0IB8yE0o/BHajN+kV0g7lJn/E4h03sMZ+yvOqBFI01/IBF9clUrFwHl9MATo42f3hkADxSsX4ZOZ7yOEIFvuMLqNfJ3vNwyh14RunNh5muVTVmOz2Ii9b8RisnJyzxm+6TQp2bq9NaIjXYe1J1vuUNQaNSWqFuXrVV96dMI6te8sg9t+x7UzN3DYXTPZVTPXM7b7Dx4y3xzS3mvBtda9mqD3e7SrSq1R88Gkt93u12gl/kFOOvYvk+h9YblCebZtTVq+38RjbHCF3BarVPiRYyeHAxuO0KVEb+YMXcSyyav4pvNEPq43CKvZSmCo95wOh91BQEjS8j0SRVsVNKWBhJ+jFlQ5wNA4dbKfcKS04IyZhfNOC5x32uCMnYeUvn3hZyRKtM8ThrT9h7z7RtxS3Qz4gzoXIvsitxC9O9fusvaXTdy+EkHlhhWo07p6ou6P96r09+pa0eo1zL88nZBw34f+DXl5NNv/3OPhN9fqtcy7NI3QHO7Zt1sW72Taxz8TcS0Svb+Odh+9ROfBr6JWq5FScmz7Sc4fuUT+knmoWL+ch+vryL/b+P3rUdy6oqJi3Wheff822XOrIeQbVH7NE9XTarHx6QtDORvXd0Fn0CJUqmQ3tnkUDoeDDvne9Qjx1Pvp6DbqdcJyhTL2nWluvRFUahWlqhdj4vZRqR5fSjMyZiqYloC0g6EZIugjhOrRzYiyMlI6kHdfB9sJXN8zAD/Q10YV5jlByUwkNdpHcfs8Ycj7/UEmjMIwguMqMmYyInhg/NHwvNno+Hm7JMmMvhvj9bhaoyb2vjFNjP/l/6553TDV6jXcunTHw/g/93Itnm1XE4vJis6gjTfuphgTAxoP5/yRS0inRKVWkbNgOGM2DXXTu1ylfxj683lcES0PsEHUEKShMUJ4/yro9FrGbBrK7pUH2L/+CNnzhPJC5+cTzRNIKk6nkxXT1rBkwkqiIqIxRZk8rrGYrKybu5kpu7/h1L6zLJu8Gq1eg9PhJFfhHAz6o1+qdHiAEAZE0McQ9LFP5GUJLJvBdpL/G34AE1h3IK2HEDrvLsMnCcX4pyO3Lt1m7ojFHNp4lOz5stH+0zbUbJ701gbSeRfs59yPSdixxsCKX3Zgsgzk+dfq8NK7LyYrcqd608qs/mmDx+ahIcBA7iI5kywnOZSqXowrp655bBDbrXbyFc/t9R4hhMdzzRo4jzMHLriVbrh6+joT3p/BoEUJjKNlCwkN//G9/iz9MZyIGwZqtPyFVh90IDCRME+1Wk22K7lDAAAgAElEQVTtltWonUjFzpQwqddM1s7Z7BEW+zAarQYhBD1Gv8mrn7Tk5J6zZMsTRsmqRZOU46CQMqR1L6581IdP2MG2HxTjr5BUbl26TY/K/TFFm3DYnVw7e5NTe8/xzrdv0LpXsyRK8dyimTUyDyt+zo7ZqAZOc+7QRf75ZROTdn7ttQzEzYu3uXTiCvlK5CFvMZeR7TToFbYt3UVslAmbxYZQCXQGLX2n90iz8gyvD2zHliW7MCfYmNb762n5fmMCQrwbYW9464ZmtznYvnwvDofj/5UwVaHgdIWbrlkQxpQv8mM1C6QUnD6ynr9n7eWH/aMJCgtM/cM9hojrkaz5eZOH3g9jCNDToseL8b9nyx3m0xeQQuIIdS4kBtxn/oCI2w/JAigbvunEvFFLMEaZ3OryW4wWZn0+D6s5kYSshxCqUNBW4MF/2+1rWv6cFR5n+ONkmqxcO3ODTQu2ud1rs9oY3n4s3cp8xMiO43mnwsd82fJrLCYL4Xmz8ePRsbzWvxXl6pSiYcdnGb9lBHVaJ17XPrXkL5mX8VuGU7lRBfT+enIUyM7bX7/Ou991TpacxCJupEMinQnq7Qe8DcIPq1kw7at8WEwqpHTNnK1mG5E37rNkwt8pf6BkcO7wRbfuZglRqVXoDDr0fjrqtK7OC50zT5P7pwq/FiC87ZFpwfBCuquTFigz/3TAYXewbu4W720bheDq6esUqZB4HLzb5aFjkBEdQUZzbI8BjVZie8hzYI61sGvlfhp3qR9/bM6wRez8a198oxCAA+uPMKP/HHpP7k5ojhBXgblhKX3K5FOsYmG+WzsoVTJqtajK5j92un22QgjKPVsKjVbDnasRXD93i/wl6xLi341z++fizVtis9jYsXwvXYa0T5U+SSFXoRxe6zyp1Coq1i9H3TY1eKZemST/TYArs3vd3M0sn7oGU4yJ+q/VoV2fFh69IRSShlBlg7CfkPc+Annf5V9V50KETkYIz77UTyKK8U8HNszfmujs3m61E5rTtbkZcy+WuzfukatQeKIhjEKdD3KsB8tmQvMfRIj9gLtsoRLs+msfzf1ep2ztkrw3tgt//bDWo6mJ1WxjzeyNfDDp7SfWf9xjTBeObDlB7H0j5lgLen8dOoOO3pO7M+y1Mez6ax9avRar2cYLnevxat+5OBxDcN/4dRH6mJwBX1GwdD5KVivGf7tOu2Uea/Vaek3slqKOaePfn8GG37bERwT9NnIJG+Zt5YcDo9O0GN2TgnTcRMZMAssmEIHg/ybCvwNCJO78ELrKkONfcJwFNKAu9MR+T7yhGP90YN2czW4uiISUqFKEwLAARnebwsb529Do1EinpNNXr9D+0zZe7xFCC4ZGVGxaH7/gnphi7pIwcEY6ZXw26KFNx/i43qBE/ctWsw2n0/nEdokKz5uN2ScnsnHeVk7tO0uhcgV4sfPz/DxoAbv+dl/pbJi3hdxFclKoXCHOHDjvtlowBOhpl4718ocvH8CY7tPYuWIfCMieJxt9f3wvRYb/+rmbrPv1X7d+AHarncsnrzG1z8/0+eFdX6r+xCGd95ARbcF5D9dL/xZEf4u0n0CEDH/kvUII0BRPFz3TGyXOPx0Y2Hwke1Yf9DiuUqsYteoLti7ZxdpfNrmVEdb76+k7vQeN3nh0Dfkrp67xRYuvuXs9EqESmKI9676rNSpCc4Zw93okD/93l6pRnMk7v07Zg2VSnE4nrYI6e5RlBgjLFcLUfd/xxUujuHr6BhqtGpvFRufBr9JhgGeVz7TGFGPCHGshNGdIimeV63/bwoT3Z3jtyaxSC2b/NzF+cx9cCWWLx/1FxPVIVzmLj5onK5P7ScMZMxVipgEPR1bpEDnWIdTeo8ueVJQ4/0xEs7cbcWTLCbckHYCgbIGUrV2CQa2+8ejiZDFamP/1ksca//wl8/LzyYmcP3KJEztPMePTORgfihl32J34B/lhijFjNduwW+1otGo0ei0fTunum4fMRDjsDqyJrHRi75sIz5uN6Qe+5/zRS9y7dZ8SVYomGuaZ1vgF+uEXmDq/fFju0ERr/EinZO2vm+gy1NUwaNmUVfw44Lf4ENOLxy6zZvYGph/8Puu+AKy78TT8gNC5kriymPFPKkq0TzrwbLuaPP9aHfR+OrR6DX6BBvyD/Rj256dYjNZEq0PefUzRsgcIISj6TCFqt6rmtSyzSq2iZPXizDw6jja9m/HM82Vp+X4TZhz63qPsQlZAq9NSqKx390m5uqXify5SviCVG1bIMMPvKyrWL4vez7tfX0qIjowFXAX0Ehp+cNUHun87iiUTVqaLrhmCuhDgxa0pHaDOk+7qZBaUmX86IISg36yevNznJQ5sOEpQtkCebVsDv0A/nE4ngWGBHtUphYAytZLXTCNb7jCebVuT7X/u9ujU1f7T1uTIn50eo9/0yTOlBad2rcF0+wdCs99FbahJ3gr9UGlSlmT20dR3+KzpSGwWG06HE7VGjc5Py/tjfVtCOzOgVqsZsqQ/nzQc4tGvwRBooFYLlwfg3KGLXktu2yx2dv+9n65D0z7SKSMQAW8iTX8CCVfEGtCUQGhLZ5RaGY4y809HilQoRLuPXuLFzs/HL/VVKhW9xr/lVjxMpRLoAwx0//qNZI/Rf3ZPXurxInp/PUIICpcvwNervkhd5cd0YNUPw8mf8yPKVDxGgSLXCQ9bhuliI5z2yymSV/7ZMkzZ/TUvdKpHyapFaf5OI6Yf+D5Z4ZO+4saFW3zV6huaGTrSMqgTY9/9gdgoL9mjqeCZ58vx6iet0CVYARgC9FR8vixVXnDVIArJEYzD5t09lC1P1q3jIzTFEGFTQZUHVwE7HejqIrL9mNGqZSjKhm8m4eDGo/w2cjHXz92kdI0SdB78aooiPx4gpcRhd6DRZv7F3bWz1xF3XyRXAfcNWocDomPrka3kzAzSLPXE3o+la8kPiYqIxhkX8aXVayhasTCTdozyeejg/nWHWTlrPVaTlUavP8ezL9d0i+T6oOZnnDlwwW2PQO+vZ8SKz6jUoLxPdclsSCnBedNVrvqhPsVSOsC6AxyXQVMGtBWf2LBOZcP3CaNSg/I+/fIJIdLN8D+YQKT0y3Jk0zaef8Fzg1atBr0m808AYqOMLPhmKZsWbker09D8nRdo07sZGq2GtXM2Y4q1xBt+cLlZLh67wvEdpyhXp9QjJCefKi8888jWoMOXf8ZXrb7hwtHLqLVqHHYn73z7RpY3/BD39+llc1c6brsqeDrvuPYBhABNecg2K8skdHlDMf4pRErJX9P/4beRS4i8cY8CpfLSY0wXqjeplNGqpRvSGYuMHgWm5YANqauOCB6C0CRvE1ljCCax14bNlrm/fDarjY/qfMG1szfjcyl+HrSAgxuPMmLF55zefy6R4m2Si8ev+Nz4P46wXKFM3vUNV05fJ+pOFEWeKYRfQOb+jNMaef9zcFwlPvFPArbDyJgpiKBPMlK1NEXx+aeQRWNWML3fHCKu3sXpcHLx+BWGthvNwY1HM1q1dENGdgfTMlxhdE6w7kZGtHdVH00GtVrUZdf6UKxm91eA2ahCGjL3Bu2Wxbu4eemOWxKdxWjl4MajnN5/juKVCnttBoMQFCyTLx01dSd/iTyUrV1KMfzSDNbteGZ8W8C0OCNUSjcU458CHHYHv434w2NGZzFZmf3l/AzSKn2RtmNgP457aQkJ0oI0LkyWrICQAIILT+DkwUAsJhWxUWqsFsGdiOcILdjD6z2mGBM/fTGPTkV60rlYL+YOX5TkAnm+5OjWE26VSeOR8N/uM7z4Zn30fnqE6v8vNq1OQ/6SedJ91q/gBenAI0Qq/tyjq64+6WQ5t4/T6WT3ygNsWbwTvyADTbo2oESVoj4dI+pujNd4eoBL/6Ws+fkTh/0c3ucOFrAdT7a4Sg1rYTFt59iWNWhUtyhW7UUKFvIemeOwO+hbbxCX/7sanxw3/5s/2b/uCGM2DU3XjbpchXOgM2g9kvRUGhU58mcnMDSASTtHMbHXTA6sP4Jao6Z+hzr0Gv9Wpt5QvHL6Oksn/M2FY5cpW7skbXo3J3uesIxWy+cIVQBSUxbsR3F/CWjA8GJit2UJspTxdzqdDGk3mgMbjmKOMaNSq1j90wa6jexIu498V7clKCwArVaDzew5M8hX4ilJGtEUA+mlSikG0KZs81Dvp6dK41aPvW7X3/u5duaGm8G1mqycPnCeI1tO8Ey9sska12Ky8POghayZvRGbxUb1ZpV5b0wXchYIR0orMnoimOaDNIK2EiL4K4TWNUbjLg34bfhi4P+6qFSCgGB/qjd17f/kLZabb1Z/iZQyUxv8BxzbfpLPmgzHZrHjsDs4sfMUf/2wlsm7vyZf8az39y1CvkHe7RjXxD6uNaoqFBHkm05pmZUs5fbZvfIAB9YfiV+GOx2uxuCzPp9H5K37qZYfez+WZVNXM+3jn6ny4jPoH+oqpffT8dbwDqke50lAaMuC9hkgoT9bBUKP8H81Tcc+sfu01zo2NouNk7vPJFvely2/YfmU1UTfjcEca2Hb0t30qv4Zsfdjkfc/BeOvca0zHWDbh7z7OjIu/yAsZwjfrh1EnmK50Pnp0Oq1FK9SlLGbh3n0TH4SDD/AuB7TMcda4sNBbRY7sVFGfvx0bgZrljYIbQlEjnWuNpZ+HV0v9xyrXWWd45CWrTjvtMV5swrOO+2Qlq0ZqLFvyFIz/y2Ld3rUzwFXL9oD6w7T8PVH18l5FFdOXePDOl9gM9swGy3oA/RodWr0fkFERUSTt3hu3hvThSIVCjJr4G8c3fofBcvko12fFqmK18/MiGwzkFHfgflPkBbQ1UYED3L70qQFuQrmQO+vw2J09/HrDFpyFMieLFlnDpznxM7TbqsIp8OJKcbMmtkraNNhPR51YaQVGfszIuQrAMrULMEvpyZx+/IdNDoN2XI/ue4RU4yJKyc9XZfSKdm/7nAGaOQbpJRgXoU0/goyBvRNEAFdESpXPSOhCkUEdPV+r3kD8l4f4rt62Y8iI3tC6ASEoUH6PEAa4JOZvxCiqRDipBDijBDiMy/nuwohbgshDsb9S5NqYn5BBlQqz9mVUAmPWXpyGfP2NGIiYzHHbfJaYi2YYizUbF6FNfaF/HJqEoXLF6B7+Y9ZPO4vjm79jzWzN9Kr+mcZHgEkpWTVrPV0KtKT5n4d6VltAIc2HUu1XCH8UIUMRpXrAKrcx1Flm4XQpH0GbYMOddDq3DthCSHiu18lh/NHLrltxj7AYrTw366jruJfHtjjfMTu4+csmCPdDP/Ov/bxXpX+tM3Wlb71vuLotv98Ilej06BKpLy3f/CT2xhGRn/jCum07Qf7KYidgYx4Gel8fKa1jP4aj3aOmJHR36SJrulFqo2/EEINTAGaAWWBjkIIb07XhVLKSnH/0iRls0nXBmi99K0FqNYk5Q2XrWYrx3ee8ijA5rA72LZsd3yf21mfzyP2Xiw2iz3uvBOL0cK4d6cnWrwtIdGRMZw/eglTrJfokSRy8fhl+r8wlKa69rQOeZNpH//Mwu/+ZOpHs7l58TY2i53T+8/xRYtRPjMY6U1ASABj/x1K4XIF0Oq1aPUailcpwrgtI5LduCRv8dx41LkGdH46ilQoEecHfhgNaJK3r+BLNszfwogOYzl78AIx92I5uvU/Brw4jMObk7/R/jBanZbn29fx+B7p/XW06tU01fIzAum4AcbfcK/tYwHHzbiaP4/BcSmR4xd9oV6G4Qu3Tw3gjJTyHIAQYgHQGkj9X2IyKVGlKN1GdWTW5/NQa9TxM7rhyz9LtDNWUhAq4ZLlpSxKQr/u/nWH3TI5H3Dr8h2i78YQnN17yVyb1caE939kw7ytaHUaHHYHr/ZvxZuDX0uWn/jOtbt8VPdLjFFGpARjtIkV0/7B6XC49Q4GVyz67C/mM2bT0CTLT28cDgen9p7DYXdQukZxt4zlIhUK8eORsURcj0SlEoTlSlltmrK1S5KvRB4uHr8S31pRCFc4ZrN32oBmL1j+xW3mJ3SIgLdS82gpRkrJ9H5zPFxeVrONUa+PZ8GVGake48PJbxNx9S7Htp9Eq9Ngs9h47uVatO/fOtWyMwTbIdcKzuNFbgLrZgh4/dH3q8LBedvL8eS5GDMbvjD++YCE1beuADW9XPeyEKIecAroK6X0qNglhHgXeBegYMGUFSJr91ELGnR8jgPrDqP311OtScVUGX5wzYaqN63MntUH3ApjafVaXnzz+fjfA4L9ib4b43G/EHhP9IljRv85bFqwDZvFFp8stOj7FeTIn53m3ZPeLHr5lNVYzVa3iWxiHbwALhxLWdG09ODErtMMbvMtZqMFIQQqlYqB8/t4ZFCnNvxQCMHo9YOZ2PNHti7ZhdPhpFSNEnz843uE5ghByjHI6LFgWhgX7fMMIngwQpMxhfJMMWbu3/YevBBxLZL96w4/srxDUvAL9OO7tYO4cuoa18/dpFC5AuQsEJ4qmRmKKhzwFpmmBlXex98f8D5Ej8Z95eAHAb18o18GkerCbkKIV4CmUsrucb93BmpKKT9IcE12IEZKaRFC9ADaSykbPkpuZivsFnnzHn3rDeLujUgcdicqlaBw+YJ8t25QfJbkkgl/89MX892Sv7R6DXXb1uSLeX28yrXb7LQJ7eK161Seorn49czkJOv4ebMR7F1zKMnXl6lZgok7RiX5+vTCFGOiQ/4eHk1p9P56fjk9Kc3izR12B06n02M/4QG+DtW8fyeKs4cukj1vWJKDApxOJ62CO3vM/B/w/Ku1+XLhxz7TMSsgpUTeeREcV3B/CRgQ4UsQj2nTKKVEGn+CmKkgzSAMENgL4Z85czXSs7DbVaBAgt/zxx2LR0oZkeDXmcB3Phg3XQnLFcqs4+PYv+4I187coOgzhSj/bGm3//w2vZtx6cQV1v76L1q9FrvVTpnaJek73XuWKrg2Fu2JdGG6dzsqWToWr1yEQxuPeSSgqTUq1FqNWwN3vb+OLsO812+3mq2c3HMWvb+OElWKpvsf+LY/93jteex0OFn/22Ze65c27ge1Ro3aW9OPOHz1OUgpmTVwHkvG/41W73LzFalQiJF/fZ6oa/ABKpWKZ9vVZP3cLV7Pm7xEuz3tCCEg2y+uCB37eRBqQIMIGfVYw//gfhHwNtK/qyvkVwTh2up8svGF8d8DlBBCFMFl9DsAbk40IUQeKeX1uF9bASd8MG66o1arXW6HJt7Pq1Qq+vzQg86DX+PC0UvkKpyT/I9J+vIP9id7njBuXbrjca5MzeQ1c2ndqynLp65xM/46g5YK9cpQ8flyLBy9DON9E7kKhdNjTBeqvui5Cb75jx18//ZUhBBIpyQoWyAj/vo8XfsBREVEY7d5ZlDbLDbu3UreCzEzsnHBNpZNXuXm5juz/xwjOozju7WDHnt/78lvs2nBdo/WjYYAPQ07PpsmOj/pCHU+RPgypP2SK9RTUxIhkmf+hFCDyDp9D1Id7SOltAMfAGtwGfXfpZTHhBDDhBAP0jU/FEIcE0IcAj4EuqZ23MxM9jxhVH2x4mMNP7hmFR9MetutDZ9KJTAEGHjnu07JGjc8X3bGbx1BhefKIFQCQ4CeZt0bMXTpp3T8vB1LI37mb9NvzDk3lfLPlubGhVtuUUiXT17luy6TMUWbMUaZMMWYuXXpDp++MNSrMU4rKjcsHx9BlRBDoIFqjVMetZVZ+GPsCo98FLvNwdGt/yUpGTEgOIB+s3uiM2hRqV2fkyHQQJnaJanfvk6a6JxVEJqCCG3ZZBv+rIhPPgEp5Upg5UPHBiX4+XPgc1+MlRWp3bIa364dxG8jF3P11DVKVitGp69eoVDZAo+/+SGKlC/I2H+HefVPCyGIvhvDqNcncHzHKVQqQXB4EP1n96JywwqsmrUeu5dOT1azjf3rjlCjWeUUP2OynqFCId74LD9Fim4kKMzCzn9CWLMgL8Uql6JyowpJliPtl5DG+a4GHbraCL82CFXG9+uNjvAMCgCXey72XixhOUMeK+OFN+pRqloxVv+0kai70dRuWY2aL1Vxa9yioPAolE5eWYA7VyOY3u9Xdq88gFavoclbDeky9DWPmHcpJd0rfMzVU9fcQj/1/npmHPqeOUMXsW7uZg/5hkADH019hxc61UvzZwFwxv4M0eN4EF1hs6iwOcLwy78KtS5py25p2Y6MfB9XqV4b4Afq7IjsSxCqjF26T+o9i79nrPVoqRgSHsTC6z8qBlwhVSidvDIIY7SJNbM3sG/dEfIUyUmrnk0oUCrt6rbHRhnpWf0z7t+OwulwQjT8OWklp/ef8/Afn9h1mtuX7njE/DtsdpZPW0ON5lXYunSXh0vCaXfwTL0yXsd3OBzsXX2Q80cukb9UXmq1qJqqDmLSGQPRY0kYV6/VO9ESA9aFoEt88zxehpTI+wNwD80zuZJ6Yn5ABHskoSdK7P1Ydv61H6vZSvWmlQjPl/rY7je+aMeWP3YQe9+I1WxDpRJo9Vo++qEHSFdEjze3l6+Jiojm7xlrOb7jFIXK5adVz6ZPdkinQrJQjL8PiYqIpme1Ady7fR+L0Ypao2LVrA0M/uMTqjdNG5fJP79swhhldBn+OKxmG8d3nOLMgfMUr1wk/vidKxFeSxnYbQ6un71J96/fYMn4vzh/9FJ8KKEhQE+L9xqTs2AOj/ui7kbT97mvuH0lAqvJis5PR3C2ICZsH5nycEz7cRAaLyXWLWDZAIGPN/44LoPTm+/cBuZ/IInGf/eqAwx7dQwqlUBKidPhpOvwDrz6yeMrjz6KbLnD+PHIWJZPXcP+dYfJXSQndVvXYPGEvxjx2lhUahXPvVyT3lO6ExQWmKqxEuPmxdv0rD4Ac4wZq9nG3n8OsXzKGkZvGEKpasnrxJaeSCnBtsfVeUtTHqFNXlBEysd1IkSWqoOZ9Yy/3WZn98oD3L4SQemaJdL1D3nBt0u5ez0yPtrGYXfisFsY3W0qC65MT5PZ3MndZ7zGfAsBZw9dcDP+JaoWjc9iTYjeX0elBuXQaDWM2TSU1T9tZOOCrfgFGWj5XhNqtajqdewZ/edw7ezNeJmmaDNWk5UJ781g2LIBKXsgERrXYMMLKs8XkHcZfnhP6gGS6POPjTIy7NUxHg17fhm0kCovPEOxioWTpksihIQH03nQq3Qe9CpREdF0Kdmb2HuxyLiZ/5Ylu7h88hpT936bJqG2Mz6dQ8zdmPiMdLvVjt1qZ+w705h+4Hufj+cLXL12O4PzRtwBJ1JfFxE6ESG852akajzpRMZOg9jZIKOQ6mKI4C8R+ro+HysjyFLG/9rZG/StNwhzjBm7zY5QqXimXlmG/tk/0cQdX7Jt6R6vTV5M0SaunblB/pJJyCZMJoXLFfDaTAQhPHoL5CmSi/od6vLv7zvijZpGpyEkPJgmb7ly7nQGHa16NqFVz0TiWROwedEOj5eJw+5k96r9OByOlPmuNSVAUxDsZ3Cvp2FABCStpaNQ50Bqy4PtIO4vAT/wS1oE1a6/96NSexpdm8XG2jn/ptr4J2T1Txuwmm1umdl2q50rp6+nusm7lJK/f1zHou+XExURTYXnyvDOt53Yu+ag11IkF49dxhRjwi/QN0XcpLS6VmyOK6ApB7paKX6ZyfufxtXZSfA3Z9mGjP0J8YgVobSfBfsF0BRDaAonfbzo78A4n3j3oeOsax8p268I3ZPfqztLGf8RHcYRefOeW4LQ4X+PsXTiKl7rl7qlelLwD/beD9Vhd+IXlDYVEZt0a8iCb/90M/4arZq8xXJ5NRqfzHyf0jVKsGzyKozRZp5tV4M3vngZ/yTot3/dYWYNnMeVU9fIUzSXR5z5A1ITQyCEgLAfkZHvgv2iKyFHOiBoAEKXtIqdUjpcLxHbgQRH1eDXPMm9BmwWm9difFJKt2Q5X3D+yCXvMqXk8slrqTL+swbO489Jq+Jf9jtX7OPQpmNo9d6/+kKlQqPzjVmQ9svIux1cZTGkxVVfR1MSsv2CEMn7PkhnDFh349lr1wzGBV7dgVKaXIld1n1xrkRbgpXCowsASmdsXDG4h5PmzMiYyYhsaVKbMl3JMk6siOuRXDh62SMz1GKysmrmunTRoU3v5hgeKh2tUqsoUbVompUkCMsZwrgtwylVozgqtQqNVk2tltUYvW6w1xmWSqWi5XuNmXl0HPMuTqPnuLcICQ9+7Dh7Vh9gUOtvObX3LMYoE2cPXsBus8fHmcfLV6uo+mLFVEWsCHVuVOHLEeGLEWEzEDl3oHpc8a0EyOgxcY3l3dvyCX39JPttazSrjNPu6TrS++up90rtJOuSFEpWL5ZoyfEiFVKeXBdzL5alE/52c11JKbEYreQsmMMttwRcxeyebVsjSatkaTuJtGxGOrwUPHtwzf3+4IwAGQvYXS8B2wlkzNQUPM2jXrjeq+DKqK/Butd1Xsbg2jfahoye8PjhnLfiMoG9YD/9+PufALKM8XfYHSS2mvQWu54WNO5SnxfefB6dQYt/sB9+gQbyl8zDV7+nba2VIuULMnnn1yyP+pUVMXMZ/Ee/x5YJSC7T+//qUX/I6ZAIAX6BrhWPX6CB0Jwh9J3eHmmcj4yZgUxBP98HCE1xhK4aQuWf5HuktMbN2B42CBZkzKQkywnLFUr3bzuh89OhUqsQwrX5/dzLtahYv1yS5SSFxm8+j1+gey8KnUFLiapFU7RnZbPaMMWYuHzymtcS5w67w9Wusmnl+L9Vvb+e4lWK0ueHdx8pWzrv4rzzMjLiNeS9vsjbDXBGjfRYJUlnFNiO4Ln3YoGklFF+CKHKBmpveS8a0Hv22pVSgmkpnjN3i6tI3+NQ5UqkTakATcpXYpmJLOP2yZE/OzkKZOfq6Rtux7V6LQ06pM8GjRCCj6a+Q8fP23Jyz1nC82WjdI3i6VYbJynVSx0OB1dOXsM/2J8c+ZMetnjl5HWvxx12J31/fI+Lxy5ToFQ+6rVyoDa2Q3e/JlIAACAASURBVEZJwA4xk5CGJoiQ0enzOcgYvNbeBnB4f4bEaNu7OZUalGf93M2YjVaee7kmz9Qr6/PnCAgJYMrur5nW9xf2rDmAVueqFtttVNJXO+AqiDex10z+Xbgdp9NJnmK5sZg8a/0IIchfMi9f/f4x187e5Pzhi+QplovilYp4keqOvPcJ2E/gmsnHHTT+Dtoy4Ncu4ZWPkJLIZvxjECHfIiO7gLTjWgn4xfXa9VY00UmiqwVp8n484Vgqf6T/m2Ccg3vIsB4R1DvZumdGslSS18m9Z/m00VDsdgdWkxW/QAO5CudgwraRSfJpZ3W2L9/DmO7TsJptOOwOSlQpyqBFnyTJJfV6ofe5fdmz/lBIeDB/3JoFuGbd8latOAP8EJrKiGyzEKq0CV18gJRO5K06IO96ntTVQpXt1zQdPyP59MWhHN160q2Mt0qtQq1WuQUiqNQCIVQ4nU6eeb4sfX7okaRSJNJ5F3mrHl6NqqY0qvDlboecd9qB/RjuLwIt+L+BKnhgMp8uTgfHTaTxd3BcAG01hF+rRLO2nRGvxW36J0SAri6qbD89fiwpkcbZEDsTnJGgKYUI/iLJe08ZRVKTvLKU8QdXmdy1c/7l5oXblK9bmrpta6Qq6SircP7oJXrX+twtLFSlVlGwdD5mHB7z2Nnsqp/WM+XD2W7+Y72/nm4jO9Luo5cAkJZtyHu9vRt/BGhroMo+x+OMlFaXH1UVilCnPiHOaVwCUUNwd/0YENnnIrSpq3WfUdhtdk7tO4dGq6Z45SIeYcOXT17l/Sqferjm1Fo1+Yrn5vq5WzidcTNuKeMT/YQQBIYF8MvpSY/NKZD2S8g7LfDqY1flQZXz34euP4OM6AjSBhhBBIAqDyL7wvjeuWmJtB1H3n0jromLDdCB0COy/47QZN5chtTy1Gb4hoQH80rflhmtRqbDVUXSPVLC6XBy48ItTu0791jfctO3GmKOtfDrkN8xx1rQ++noOLAdbT9snuCqR00kJNgOIu0X3fr8Oo2LIXoEIFzRGNpyiNApCHXKM2lV/u2QqlCXj99xDbRlEEGfILRJrwuU6FPY40IN1UXSzZ23Z/UBRr0xAafDiXRKAkL8Gb78M7ccjmtnb6L5X3vnHR5HdfXh98z2lWTJcqEZiAkdAoReA4QaTO89hFCSUANfKIEQWkLHIQk19BJ6x/RiCJAAhgCmB2MMprjIstr2nfP9cceypN2VVtKudmXd93n8eMvszNFodebOuef+fkF/TvLPprM0Lj2aa9++lLeff58/H3wVifbFyVtVSSVSPHvbVPY5edfeA/FNAKcW3J7J3w+hXHsO8a8M416CxJNo9msksDaEflqWnvx8SGBNGPskGrsT0h9D4EdI9BDEN35Ijl/tLHHJ35KfObPmdVsFvAjH52PBd819fl5E2OuEXdjjuJ3paIkRHRXJ7egJbkSvFwAJoql30I5/QPpDY4OXeoNuk3Lp99HmY5CxD5pJu+TTaMet4C6E8HZIzVFm8q+veMM/RcK9+gX1C818gTYf7xmCCDj10DAZCeZfAFcq5n49n/P2vbzbHVu8PcFp25/HPd/c0KnfNPFHK5DK49oWCPlZc7NVCYaDLJzTktcnIRlLMfP9vv1oRRwY9Sd04cmY35kLhMCpQ2p/k/8zTi1E96dSlifiWwap+12Fjl7dLDHdPpbeWX/7dXJa+8D0s6/aj44Sx3GoG12bt5VTJIQ0/IWCYwpNQNu5EH/Q1IJTr5DbjZGBzP9Msm2fjLacYfr1szOh4zZ0/p6mk2QIUU2Z8kF2BqbkEQf3e7T5l2g2dx6klDx3+8t5L9qZTJZ/P/525/Pxy4/lJ/ts2s0uVBwhFAmxx/HGeH3FtZbP2xEXioZYZYOViopHwtsiY+6HyD4Q2ARqf42MfRLxFbn6ukpQTaGJZ9DYP9H0ktG62V9G7Mg/GU+STmaobai8xO9QsMvR2/PI356iec7CzvJPuCbEpGO2L+kaBAltjY55GJr2xyRKb6QpEZBR4M4pYid+NDMTOm6m++RiGtxmNHZ3rys6S07yJXPh6nlXo1k0/ghSe1RJDzfro6+599JHmTn9K9KpTE65DsDNuLTO734R/N0tx7HCmhN47OpniLXFWX/7H3HMpYfRuLT5/a6xySpMXGdFPn9nZueksOMIkdow2x+2dc4xCiGBVZH6Pw3iJ6wsmv7MyESQ6pQSMR1pl3RbB6LZOZB4ynQHhbY2ZaQliBGX/Nua27nyqOv4z5S3UVWWW3lpTr3pN6y56aqVDq2s1IyKcu3bl3Lf5Y/y2sNvUtNQw94n7sK2ZXB+cgKroeOeRNv+Asl/Gc/TwI8gWeRiO00DWZCQN1nXlSQkXy1O4K1UZOd57YU9Sfa7fbQvPnjtE87Y6ULSyTRu1u3W+9+TdXqsN/D5fRx85t4cfKZpuZw5fRZffvA14gjLTFwKEeGSZ87mxjPu4vk7XyGTyrDRz37MbyYfQc2o4tdSDGdUFV34a9Aepc7ks5DYAiJ7AuDGn4aWReWiDLRfi0b2RkblXzw5HFniun16Q1U5fpMz+eL9Wd00acK1YW6cfiVLrTi8bl3LyVtP/5frTr2d2Z99y+il6jnk7H3Y9dgd+/XFV00bLZT0W15CL8YNLGLMsUM/QZsOoHuPNYADkT1w6i/px08zODT9Edp0IDldLhI1o8Vw3zpIxXLMev+Xt/4ujnTW68M1IbY5YAtOvfHXeffR0dLBWZMu4vN3Z+L3+0inMmyx58acfvsJ+Pwj2yvAjPr3y9/rH1gfZ8w9qNtu2oVzft8RpOE6JFTaFd6lZsR2+/TG5/+dyVcfz84RI8uk0jx2zTMcfUn/bBOXRNqa25ly/XPcft79naWBpm+buf7/7iDRkeyXnLHG7vUSf2+LakJG70UTxmwl+gskvK2Z7PX/wFtK3/X3FUSixQm8lQoJrImGtjJ3HJ0XoxD4JkJou5IdJ5vJ8uX0r/LHIMJaW6xGIORn0jE78JP9NkNV+fD1T3n1oTcIhPz89OCtmLj2Ckw+9gY+e3sG6WSmc0bl9Uff4r7LHuWgM/fOu/+RQ5qCU52L7jJTr+WXFdc4mni06pN/sYyo5P/9zLk5WjQAmVSWrz6ZXYGIqov7Ln+M2865h0wqk6P4mIwluevCB9n7pEnFjx7jD/SS+GuANIS392qt3SejjcDbjejCEyH9gfljxA+jzq9I7VUarjKLi+L3mLuYyO5IzREl9YJ1fA7BSDBHRhpg1JhaJv/rgs7nqspVv/kHL9z5CslYCnGEh656ksPP3Z/XHnkzZ4CTjKd47JpnbPL3rw4EgY4eb4Qh0tfARrx/vaOaBaTq9f9HVPJfad0V8+rZByNB1tp89QpEVD28+9IH3H7ufbnS0F1IJdK0NbfTMK5vj1lDoWX8Yag/Fwlu1mvPtfjGIWPuRrPfg9sK/pUqZrwt4uerr37C+y+PpWHcKDaZtD7BPpQhu6KaheTzaOJpkDokum/OgjMRYdIx2zPl+ue69euHokH2PGGXbtt++PqnvHDHKyS8C4Vmjdrobefcm7c7CCDekV8AbSQh4oOGyV7dPwukQKLgXxWJHmQ2Cm5RYI4njIT3KLhvzcxCW8+G1FuAg4a2R+rPQ5zyiDoOlhGV/JdbeRk23W1D3pjydmfftONziNaG2eXo0t2+D0ce+ftTeUecXQkE/f1zlors5Xnx9kg6zmgkvHvR8wfiWxp8Sxd/3BKjqlxx1LW8dM9riIDP58MX8HH5i+ey0jorFvH5LNp8NKTfMcqWOGj8EbT2OEAh8TRILVJzGL+86BAWfNfMa4+8ZXwakmm2O3grDjxjz277/NeD/8lZ0AXGBL6usTZn7YbjCBvuOPw16EuBhDaHsc+g8YchO8eYs4S27RxYiFOL1l8BLadgRvoZwA/R/SC4Sd59qtuGNu0H2oKpF7mQfAFdMAPGPFGVk8QjKvkD/P6uk7jvskd5/LpnSbQn2HjSBvzyzwczqrH8y82rmdb5bb2+H64JcdDv9+rXhKFED0ETzxlrRo0BYRCfp6defX8MhZh67+u8fN/rOZr7f9j9Yu6ceU3fP0vy+S6JH8wdUQLarwQCLGpn1Zbp+CMHcdbdZ9D0XTPfzfie5VZdltHjc++0AqGAmQTOdi/PiQg/++VPeXDyFDKpNJl0lmA4QLgmPKRzWpr5yqud15pVvUU6qA0V4lsaqc0/YQ7gRHZAgy91afXcBgkU7gjU+MPGs6DbREHarDBPvQGhTUsXfIkYUd0+lsI8dNUUbv79P/OOJuvHjeKQs/ZhzxN+1u+krepC6nU0Nc2UeMKTEKfYslF1cOq2f+T9l3OlqcO1YSa/cn6fapjuwlMg8USRRwsh454zdzu9MPODrzhhkzNzfl+hSJB7vrmBtuZ2Hv37U8z6aDZrbb4au/16p6J8Gwqh2e+9SfkV+qxlu62XQex2QDo18WX0DVUviDYY3JY/FJCKDiOjzlxcUhoCbLdPGYm1xXn5vteZP3sBq228MhvutG5Z/HmHkp8dtR1P/uN5vv9yrplAFCEYCXDs5Yez268G3soo4kBoSyRU+vUEQ0W+RVYAjkjeOaQcpBbTYVKElLEEjBKlb+deN5u49gocceFB3HLWPxHHwXEEN+vy+3+eTG1DDbUNNfzqiiP6Pl4faPYbtPkEr+vKAWcU1F+GFBjJavLfELuTzpXb3thSm38F4//dp4PWsMW/FhAFYt1fF8d0s1UhNvn3k5nTZ3HK1n8kk86Q6EgSqQ2z4poTuOzFc3NcvIYTkZowf3/zYp655UVef/QtGsY3sMfxO7Pahj/kP0+8zbeff8/EdVZg3W1WhditnlGGQmRPpOYXiOS3sBxKNPstpD8C33JIYI2B7UPjkHwdyEJwc8SpZbtDt+KL97/spq8DZlHVKuv3LYsg0f3Q+CMUcpzqEYHRPCqCfX+7K9vsvxlvPvUugaCfTXfboH9zMn1Foi664FBvIZt34XLjaPOxMO7JvAqsGn+A3LUZAOqVP7YqWXzVhER2Qzv+5oneLbrIB8G3MgTWL3o/6rYbHSvfUmUXwLNln35y1Nq/ZdZH3dtCg+EAB56xF4edU5w/7HCh6btmTt7ybFrmt5JJZfAHfFz20AxWXrsd6ewgDxvVzMa7K9bapppFW8+C+BPGJ9bz8JXGGxGnofj9JF9GF55EZx+4ZqD+EjLO9py2/XnMeG8WifYEgZAfx+fwxwd/x0Y7FTeJ6nbcBm2XmZE94o2IU3SXr3CM5PG4F6qiTVCTr6MLj/NsGLsSgJqjcOp+m/MZt/lESD6duzOpReov71VsTzUF7nxwxiAy/AZSmv0ebf0zJKea1uTwHkjd/xU136GaRFv+6JUHfeZ7Uvc7nOgB/Y7Dln3KwPxvmvjui1xtmlQizXN3vLzEJf/Jx1zHvK/nd2q/r7nBQiZMbEa6lS8SkPkUUq9DhUo7GrsT4k9htFq8ZJr5GG05Axl9XXH7cJtNeaPn6LzlNALjnuWKqefxxhPvMO259xizdAM7/Hwbxi8/tugYnZqfo5HdzOhXohDcDE28BK2/B9RcsHwTkNHXVkXiB4yPbV6V1rSnbpqLRCahyZfJGf1rBoIb5/2Mqhql145rO60TNXqokeGulnORB1XX3OnE7jQXyPBOSP35/RpwdO6r5RxIPEnnYEDj0Ppn1BmPhLctbeAeJUn+IrIzcBXgA25U1Yt7vB8Cbgc2AJqAA1T1y1Ice0gRKShYPJDulUw6w32XP2b6umMpNt1tA47800GdQlyVJJ1KM+2Z9zoTP8Dq63cQDOWpW2vM1KkrVdfPsdoDSEPyX6jbXpx7WOIZEMmT6xQSU/DVHMXme2zE5nsMfNJSnEYI/2zx88hOaPinxhZRahF/ccqaQ0Zg3U7hs+5EkGCBVa6hHcz3oHM1tLc4r/5PBX8PGr8f2q+m2+8wdifqhJHa6rVM1NazIT6Fzrg7bjfrOMY83q/uJnXbITGFXIe0ONpxXdmS/6AvqyLiA64GfgasCRwkIj2XYP4SaFbVlYHJwNAJs5SQscs2MmGVZXJkcYORIDsdsU2/93fhgZP554UPMver+bTMb+X5O17hNxueTkdrrO8Plxl1NceUu+n7AMlEvq9MxBheV4qcssQixFPjLGYf8QILe9Lmj7NMiASQwDoDTvyqLpp6C40/gWa+Lm1s/okQ3hnoaoEaNGsuIvmNX0QcqP8L1BxlVtMGNoLG23EivRgstV9D7sU7Dh235HwHqwXNfA3xx+kedwqyTd78Tj9wF2DGzXkosXBgV0pxT7Ux8LmqfqGqKeAeoOcyuD2A27zHDwDbyXBq9O7CWff8lrrGWiK1YRyfQ6Q2zKobrMS+p/TPPWzWx7N56+l3u7XqZTNZ2hd28OxtU0scdf8JhoOstcVqSBdVyX9NqSebEdyeg38JdBvRDjmhrcn7x+NbqqjJU9U0mpiK0X3pSRgJlWfk1Ref/3cmZ+9+MQdOOJZTt/0j7039sNv7mv0Onb8T2nw02vIHdP4uuC1nmfbaEiH1l0Dd700i960INUciYx4oOMGvmoAFB0HsJsh8YtY3NB+Bpt4qfBC3Kf/rGiP/76QKSE/3JEd6EofUv/u3L98yBfbl9GuyuL+UIvkvB3Qdcsz2Xsu7japmgBYg569SRI4RkWkiMm3evHklCK30rLjGBO6adR0nXnM0v7jgQM575DSufPn8TkelYvn8nZn4/LmnPxlL8eGrn5Qq3EFx6o2/pq6xlnCNmXxzfDVcdPzGqDMRCJl/vpWQxjvKbszeG1J7MjgNXkxgSg0RpP6iospx2nGDMYzJwQeRnaECvr8fv/E/Tt7qD7w55W2avl3A+y9/xFm7/pnXHnmzcxttPgGyX3tJsgNImknv+EMli0PEwak5AGfsYzjjnsOpO6VX/13tuAMyn3VZ0JYEjaHNJ+JmCywkLNQK6SxTva2hvvHknw8JGLvLfiASgNpT6X6H5YCEkbrylb2qasJXVW8AbgDT7VPhcAoSjobY/tCfDGofS08cn9dSLxAKMGH1wZuYl4LlVl6GO2ZczdR7XuOrT79hlR+vxFb7bkogFDBtlWhJDNcHi/iWhrFPobG7ja6KfyISPbybV3CvxO6hYBtm3bndLiCqLiSnoolnjMRvdJ9BewO3zG/lwclP8OaT/2X0Mg3sd8pu3HH+/TlyG8lYimt+e4uZd3DnmIn2nLUDcTR2JxLdd1AxDZjEo+Q9l9oE8zbDjR6K1J3WbSJXRp2BLvhlj8+FzR1HtRLYAJzx5uJL13kRPxI9uN+7c2oORn1Lox3XmlJPYH2k7qSyGs2XIvl/Ayzf5fkE77V828wWI6BRj5n4HbGsudmqLLPSUnz9yTdk0ou/PP6Aj12P2b6CkXUnWhdhl6Nz4xHfsiXZv2a/NR696engX92sGfCv0O/9iNPgLdcvvGS/cBCF5gUEIc2iEZmqiy483nQ2dWr0PITWnYRT88v+HxeT+I9d7/9obWozi8neg+mvfEw2nX/xWNM3C0jEkoRD5vj5f55Kzhn11puegtjdqNOA1P6q81UJbgSNd6DtfzGlIt8PkNoTi5ZONhfkZ9HYwyCCRPaG0A5llRAREWi83fgZpz8AfMbLuP6SAX1/ofS+031RirLPW8AqIjJRzD3agcBjPbZ5DFgkwr4v8KJW60zOECEiXPr8OWyw47r4Az78QT8rrjmBS58/h7HLFbfIZ7ij6f+h8yeZVrn02xC/F23aHU2/X7pjZL7GbT4Rd876uHO3xG2/Fu05sRvahrxzBv6JiNNFEiH5cpfED50aPW2TB+zl+9BfptDa1N5tFXEyliSTyddlY+ZiguEA+H4AeTtKglBCc5lFqCpN3zXTuqB3DSgiB9K9fNGTOHTclPOqBNfFabwFZ/y/ccbcXXTid90EuuAgdOGpkHoJki+iLacZ7+cyI76lccbcg4x7ERn7GDLuFSMSN0wY9MhfVTMicjzwDOYv6GZV/VBEzgemqepjwE3AHSLyObAAc4EY8TSMq+fCx88k3h4nncqMOHE5bbuwR6dOBjSDtpyLjB183VqzTWjTPqCtgAvabuz4Mp8hDZM7t5O6U9HUa+C2Y0oPQRA/Un9R9/0lny0wqvYbEbNIYbnfQrz51H87TXO6EgwFzKLYLu+FokH2OG5nfD7vQlV/Gdr8G4zqpHeH4huH1Bzd7zh646P/fMalP/87c7+aj6qy5marcuZdJzF22cacbSW6L5p61VwoC5XStAVVHfTIXNOfwYIDze+12xsxSDyFpg9HAmvl/3AJ6U2WvJopSc1fVZ8Enuzx2jldHieAJWsFVAmJ1EZ6HSstsaTezv965kNUM4PW7tfYPz0zmR6L0hLPo5nZiN9MzJk5g6fR2AOmO8X/QyR6UK64mtSQV6NHxBjUD4Axy47m8//OzH1DhN1+vQNT/vGC+VmyLrsctT1HXLB43CShLWDs42auIzsbglsgkd0Rp3R+vPO/XcAZO15AvH1xIv/g1U84dZs/cssnV+VoWon4kNF/M9aXzceauYme+FcdfOJXNSW4nom/kzQkX4NBJH/NzEDbbzBlncAqSM2vkMCS4/tRVRO+lhGG1JBr0A6ma6cEXrPp/9IpMNbtuEHTkeJf3JUhziik9kjgyIK7k8g+xs0rZ0QrEBpYA8C+p+zGuy992G1y1xfw8cN1V+BXVxzBkX86mPnfLGD00g1EanLbK8W/AjLq9AEdOx+u6/LF+7MQESb+aAWeuvEFMj3mH9ysS/Ochbz/8kest+3ana9rdi7adhEkXwR8ENgEUi2Y38GiKm8YqTtr8IFmv4Ls971sEDQidEXgxqdA+2Qjv+xbDmpPRfwT0AWHeDLNLmRnmBXZjf9ACqxUHm7Y5G+pHNGDoONmuifTEET2Lc1knX9lI6fQs1dc0+BbPu9HekMCa6B1v4O2S7v0ZQsy+voBC9utt+3aHHPZYfzjtDtwfEomleSHa7dx7g1TcJvbCdT/iWV/ODRGNh/9+1PO2+fyzlF+dFSEieuskFfVVF1l7leL5zlUE2jTvuDOo7P7JfWKaXv0rWBUQf0rI7UnIMF1SxBthl4tFQVvgVrvuLHHoPVsOr+D2VnQchrqLEN3C1IXiKOt5yFjpww87CrCCrtZKoZqGm05HRLPeYJsKQhtgTRcVRJhL818jTbt1qNOH4TAOjhj/jnw/boLjPKnRIxcdQliTbTN4ItXD6a+sYNlVlx0NxSAwNo4Y/LpxJeWtuZ2DvnBr4m3db+rCYaNaUxPRdNgJMjVb17MD9YyF1GNP4S2np87JyJRpOG6ghLQA0VV0Xlbg5tv9B80/gGhzfvcjzt3G3C/7ceRBVnqw4rZiRaDFXazVD0iAaThSjT7HWS+MEYh/sIjcs02oe1/Nc5YEoXowaafX/KXiMS/PIy+1Sh+Zr4AHAjviIw6v19xauIptO1vJtH4VzV96gXkDQZKUO9m9R+3YUa0i0hD+hM0/SkSWK2kx+vJ1Htfx83mDgQdn0MwHCSbcTu9C0LRIBvsuG5n4gfQ9Ee5iR+MZEbms5I7WYkINFyFNh/p6Q8lMIsOJ8CY+3pdiNYZmmo/Ez/e3E4JSpJVgE3+loojvmXMEvdeULcdbdrLSP4uSpBtk9H0dKThysL7Dq6HjJ1i9Hkk2O8Vo27sXmj9M50aLul30AVHQOOtSLCES+8zX9A98XuID7LfQI/kb8TAnjHSCMGNILDeoEplC+e25NhUglGs3efkXelojfGvh94gFA4w6dgd2fuk7oby4l8ZJUKORo8EwN+709lAkeCPYdwLaPwx48Ub3BhCPyk4GMj5vAjqLJV/UpooZp6i688ThshBw8qCtDds8rdUDapp070h9TlSvhp/CNwWuifIBCSeQzNfIv4f9LrvgchPqGah7QpyRccSaNsVyJi7+r3PggTXN6uTe05Qayo38affNxcgdTFKkAEIbQ4Nfy868fVkna3XJBQNkujofvxgOMCGO6/H2lusznFXFZ4MJ7wrtP1l8QQpAH6zCjZYvt53cRqRmiMGvoOak6DtLHKlGpIQnuSpvQbM7yH8M6TulEFEW11Ur1i2ZcSgmsFtvQSdsyE6d0t03pZmIq4rqTfJ6xAlfm+FZTkCaym8Wjbzad6XZ308m6n3vsZnb89As/PQ1Huo29rnoSR6sClldfuTDJuE00VCQ9VFm4/zWhxjmIuh5z42CE2fdX6yJj/aag1CXdzowtEQ6267Nmtt3nfJSZxaZMx9ENzE+xn8xrh9TOVMfopBAiuRfwwsxlRm/L+QxluR8a/gNFxSdnetocSO/C0VR9sugdi9dHZcuPOh9WzU1wDBTdHY/ZB6F9PC0XOEplAiqYkcpM6UXfL1RPQ4ZjqV5vx9r+C/L0zH53dws0lWXK2DP989l9pRCTR6CFJ3esGSgTiNMPZhtO1KSL5i2mCjh+aOajOfguZbZRtH4/cj0YEtpxERzn/0dJ655SWevuUlRISdj/wpOx2xTdFlDvGvgDTe5q2glgHfhfSGato4ZWW+hMCqENxycMdx53jNBj0X2mUg+7UxZhmAOctwwCZ/S0VRTXjCaj378RNmklVuMLo/eX1h/SYJB35clthEAmj0COi4lZ61X6k9sdu2d17wAO+8ML1b3XzGh2H+dkY9Z17TYjRtfBOQmkMLH8+3LNJweR9R9dadNzgpZ3/Az6RjdmDSMTsMaj/l6oTR7Fx0wQHG41aTJmn7loPGu7vLcPQH/48K+DhEINh3t9BwpnrvxywjA7eZgv3a2ZmQ+YCCiT+4CTL69vIKeNWeBDW/8Fb3Bow/wKhzkXB3sbsnb3g+Z8I0k3J4dUo9mTRAHGI3Dz4g/+peLD0DjUC4QkqeQ4S2/sEs7NIOjBRIDDJfom2XDXif4p/gyXJ0XaEdAF8jEtlrsCFXNXbkb6kszlhvQi2PDoyMAjefV2wAak/EqT227OGJOEjdyWjt8SbZSG3eGnYynAgI7wAAHDVJREFUT6cMgOsK2YzgD6gZsZYgHhr+ijYftbjFUaKm2ye6T7dt1W1GO26G5EvgNCLRX5TNErDcqGZMOYyegndpY4FYf8GA9y2jzkcD6yz24g3tiNQe2y8rxuGITf6WiiISQGtPytNVE4bQdhDPUxKS4JD7CIj4zcWoABvuvB6vPfQGbjePBuWHa8UJRRQQCPS57qYbqimjTxR/EFQhshdScxgS3ADGvQSJKWi2yUgiBzft7jvgtqDz9/AsAs2FSdPvoZnjcGqP6Vcc1c/gyl0iDhLdH6L7lyie4YEt+1gqjlNzOFL/Z/D9EKTWJLIxdyG1x0DeThEfhLcb8jh749jLDqeusZZgxKwjCIRcIrUuJ182G/CZla6jTit6f6qKNh8DbVeaSd7sZ9B+FbrgCFRd418QPQSnzuje9yx9aewOr6TW5Y5E49D+N9TtQ5a5ChHxQ3BTclOWH4Jbo+kPyuq1vCRiR/6WqkAik5DIpNw3Gq43hhmLxMGkARl9DTJAFc1ysdSK47j5k6t46sYX+Og/nzFxzQiTDv6EMePTpiRTc3T/TD7S0yD9Lt11jxKQ+ch4xPalG598hYKidumPILRJ8bFUCVJ/Idq0nym/acyUu1Qh+Tya+hdoGo0egdSdssQsxConNvlbqhoJbQrjX4PMx4Af/KuV7Q9bM1968sjfIqGtILJ7vwTbRjXWccBpexZ5rNlAwngg57u7Sb3jLZjq+cEYmnq7b9MQZ2nytsZqEnXG9CaJVrWIbzkY9wIknkYzM037b/odIL24VTN2u9dVdUBFYx0O2ORvqXpEfBBYu+8NB4Emp6LNJ2IWTWXQ5CtGcXTMAyU1p9fMV0aHPvOlKWlJDdRflitC5huHkbbuucgsXJR5iNQcgSankis/nYbW89DGm4bUHF01jsYeguRz3uTzIWbuotfPpI0aqNR23jWJRCCyF2gKnbM+3cpagOmq+gfY5N8ntuZvGRaoptB8I+GS7DuLLjwdkygX9XzHIfsN2nFLaY+z4FAjdEbClC7ceWjzr9FsD9vr0E5dZKO7kkR9E/K83h0Jrg+j/kjun7hC+l2044beY83MRmN3o/GHi1qh3Ou+NG7KNW2XGhvMxBR0wZG4HXcU/Iwbfwqduym64BB0/q648/c0AoCdO41RcM2D2zyoeEcKNvlbqhrNfo+74Eh0zrronPVwmw5FM1+V9iCZz8kdQQIkIfFU6Y6Tet1bnduzOyVjVjF3QZwaGH0zeZP3wuOL8gyW8HZ5Pg+QhNiDBT/ntl+Nzv8Z2noR2nIeOncrcyc0QDT2IGS+YnE3lyeY1nYxbvJ1esrKa/oTaDndnCvtwMx1fOJNdnvbSr1pE85BoI87CovBJn9L1aKaRpsOMBOcZM2/9DR0wQGoW0BzZyBIxOuZz0MJSz7G6CTfaDVtXKR6huXOzW8PqXF0/s64zceh6Y8LH0+zFP4Tz/UNBtDUe9B+PWayOIEpO8XRhSeibkfez/RJ4lny+/mmoflYtGkSmp23OIbYneRejF0jxZB+HzByFDLqXCDM4kWCXldVXfFdVSMZm/wt1UvyJYz5etfE7IIbh8TTJTuM+FfwZId7/jlEkGhhOYZ+E/hx/ouMRJHQZrmvu3MLSA+oOS/J59GmA03CzoP4xhSQUw4YFc58e44/TP67IIHUv/J+pk+c0RR23UpCZqbX0eWR/Y78vfuOJ+ntRRTeFmm8w6wH8a1s1kGMeRTxrzywOEcYNvlbqpfsV/k7Xoih2Tym54NAGq42OkFSA9Rg7CT3gvBupTuGfyKEd6G7lACmAyf9aW6femA9erUq9Mon2nZR4WPWX2YE6ljUtRQF3/JI7XEFPpEmb+JV8oifFYfRM+qtayoL6ffQbJN5Gto6//aagkB3C0gJrosz+hpk7CNIcAu04zbcjltRW/fvE9vtY6le/Kt5ios9R79RxL9GSQ8l/gkw9nmjqe/Og+CPy7KKWOovQgMbQduFLO7kyULsTjT1Kox5pFMYTQJroqEtIfkq+csmHl4pJO/xAqvDuBc9w5OvkMB6EN6hYKePhHdBE1PySFlnILRl0T9nt30GN0Lrfuut4k6Rv/TleMccg0T2QWO3ewbt3l2IRCByGOLLrfMbo5/9vdJZDAgbx7fGO5DAWgOKeSRgk7+leglu4Zl/z2BxjdoPvrHQQ1gtH5p6G40/AJpAwj+D0Pa9asuLOGVf/CTiQGAFNKcFPwXZ2ZB8EcI7Lt6+4a9o7B6jfJr9rMBes6hmC9tZOvVIzWHFBRjc3HQaJZ/29JZ85t+osxFndHH7yINTcwQa2cd4NidfIkejx6k3Fox4k91jHkI7boPksyB1SM3PIbRj7o4B7bjWGK93fkcSpjK28FRkXOnKg0sa1sDdUtWo22407hOPAy6Ed0bq/q/PROS2X91l4lKBKIQ2Qxqurri5iHbchLZdQV7bxujROKN+l/dz7vdr5v8MDjL+zYHLGveMT9VMrCeMV7JEdjclq1Ls212Azt/LE7mLAwHAj4y+tijD9dxYE+icTciv/BpCxj2P+JYaXNDDDGvgblkiEKcWqT8H6s8p+jOa/R7ar6O7vEHMdA2lXoXQT0oSm2ZmmpE6fgjvhPiWLu6DvmVBQnnKWZFeDezxrQbZD/O8UWs0kUqEiEBwIyMYV2KMac0UNP4gpP5j5h+ihyD+FQe0P205k/yJH8zchU1xhbBnxrLkkXw9vwOXxtDEc0gJkr/b/nfvzsIFHGi7HB11Hk50774/HNrOay+Ns3hyVYy0dTiPvtEi6k6ChceS84M5dfQ+MVx+NDPLlKfc75DglhDZtaA0hji1poxT8/PBHdNtgcRzhTcIrGk6nix5sd0+liUPJ0r+ZOjzEuXg0PQn0H4D5s4i7f2fhNY/Frf4SoJI4z0Q+BGm7BEE/6pI4z+RXuITXWi2zQmoGdJvD+hnGSyqitt+Ezp/F4jdCokn0bYL0Pl7lV9l020qsAoawEHqryzv8Yc5gxr5i0gjcC/wA+BLYH9VzemxEpEsMN17+pWq7j6Y41osvRLausAbASRSxMi8DzQxhfy98A4kX4Bo37oy4l8BGXM/6i4A1aJGqJqaTl6lTs1C+hMI9s8vYLCoG0MXHAGZd3u8EYfsbDR2O1L7m8UvaxoyX4AzCvEtM/gAfBPIf5EXCE3qvYRmGfTI/wzgBVVdBXjBe56PuKqu5/2zid9SVkQiyOgbPAP2Wq93P2Q6VkqyAKi3Jon+NVCI01h8acI/kZw1AmBGvxVIdNo+2bPZzEcSEk92PnPjT6JzN0MXHIjO2xG36cBuq3oHgkgQan9L93NixPKk7sRCH7N4DLbmvwewjff4NmAqcPog92mxDBoJbgTj/+3p6SQhuFnJumEkvAvacTu5vfeuqeeXCYnsjrZf5bVgLrrI+MBphODAevAHRfxh8ncfLSKEJl5C3XnQeiHdzlf6fbT5KGTso4MKwak5HPUth3ZcB9k5ENwQqT1xwBPII4lBtXqKyEJVbfAeC9C86HmP7TLAu5hvysWq+kiB/R0DHAOwwgorbDBr1qwBx2axlBO37S9G8pk05gbagVFn4xRR8hkMmplhOlzS3og7uBlSf1FRMs997lvV+CZoBwR+1KeXgTtnvTyLwRbhjSsl7F2s8l0kwsiY+5HAaoMJ29KDkrV6isjzQL4etrO6PlFVFZFCV5IVVfUbEVkJeFFEpqvqjJ4bqeoNwA1g+vz7is1iqRRO3cloZFfTbSJBCO1kVgl3Qd0FEH8Czc5BQhtBcKuCC7GKRfw/RMbcZ4TtxOmX2UxvaGYm2ny0p53jAC5adx5OdI/CHwpt55V28oniqXlde5v0TXtidzb5V4I+k7+qFlxKKSJzRGQZVf1ORJYB5hbYxzfe/1+IyFTgx0BO8rdYhhPiXxlq888haOodtPlIUBdIoPG7wL86NN6GSGjwx3aig97HIozPwM+NambXOYvWP6CB1YxERL4Y6k5HU2+C24aRVQgCPiOpnHqtiCNnUf+qw9JVrCfqtkPyeXMuQpsj/h9WOqQ+GeyE72PAombdnwM5BTwRGS3et11ExgJbAB8N8rgWS9Wi6qILT/JKIl6dW2OQ/gjtuKuiseUlNc3zGeh5s502tpYFEN94ZOwzUHcmRA6Aut8h418xd0JFTXwLUsLFaZVCU9PQeVuhLeeibZei8/fCbb0gx6eg2hjshO/FwH0i8ktgFrA/gIhsCPxKVY8C1gCuFxFvNQwXq+oSmfwz6Qz/fmwan771OcustBTbHLgFNaNKN0KzDBOyX3hS1D1JQOIRqD1yyEPqFV1Y4I2sV5YpjDhRzy+3y1xHeCc0+W8Kr7z18K1V0juYSqCaRpt/7ZnOdCH2AIS2gtA2FYmrGAaV/FW1Cchpb1DVacBR3uPXgR8N5jjDgY6WDk7c/Czmfd1EvD1BuCbETWfexeRXL2TFNfq23bMsSTi9DHz7V/PXzGxzIfGvXD7P3cAG+eWaJYIMpHspPAli/zR2lRpnsZG8HzPxGwYJIA0XDyrsqiA1jfxzHnE09gCypCZ/y2JuO/c+vp0xh0zKdDUkOpIkY0kuOfxvXPPWJRWOzjKk+CYaA/ZsT7vJCET273ymmS8h+yX4V8mRj9bsXHThcWbxlvgBB607p/cJ2AEivrFozdEQu9lL1gBh8K0IkfymL73uT4LQeJeZ7E48bRQ7I3saK8fMe+BbGYnubXR+hj29tboOzP9gqLDJv0RMvff1zsS/CFWY+f4s2prbqRs9/GubluIQEWj4O7rgMCBjTEjED8HNkeh+xtC8+TjjHSBB0BQa3g6pvwyRAIDpvMl8humY8Vb1tp6DBiYigXVKHrNTdxIaXM/MSWgbhH+GRPcb8OS0SBCieyNdtY5CWwAHlSbgaiG4EXnNbySKhEt/oS4lNvmXCMcp3LPQ23uWJRMJrA7j/wWJ540dY3DDzqTttpxrEj/JxYk98SLquwapOwlNfwaZL8ktJyTQjtuQhivKE3Noa6SgNIYlHyJhdNRl0HIq5veVBqIQ3AzCO1U4ut6xyb9E7HD41jz4lymkE4tv9RxHWH2TVaipr6lgZEOLatosQBI/+NequHZ+JREJ55RNVF2IP0KuNlACYncb5U53Xn5VUtTzt7VUE05kBzT4NBp/FNxWoxob3NTcAVYxNvmXiEPO3pf3pn7IzA++JpNMEwgHiNZFOP32Eyod2pChyZfRhadiboNdo60z+noksGalQ6siMhSsEy/qGAmsXcAvN2Q6SCxVh/iWRWp/Xekw+oVN/iUiHA1x1Wt/4r2pH/L5f2ey1Irj2HS3DQgEA5UObUjQ7Hdo8wl002/RmFk8NP7VkixsWhIQCaL+1SHTs9tZIGgsJMWpR2uPhfZ/sLhdMgjOaCR6yFCGa1mCscm/hIgI6227Nuttu3alQxlyNP4Q+VveMsazNbzzUIdUtUj9+eiCw73RfRoIgISRUWd2buPUHo/610A7bgG3GcLbITW/KJk43WAwDmYvG92e8I5LSNfOyMMmf0tpyDaRt7VNsyZ5WTqRwDow5nE0dhukP4Xgukj0sByvWQlvh4TLpxI6ENy2K6HjFsyEhA9a/wwNk6suTkvf2ORvKQkS2tIb/fdUeVQIblyJkKoa8S+PjDq70mH0C029Ax230dNQRheeAuNfQxzbzjycGLmtGJbSEtoaAmsZb9pOIhDZfViIXFn6RuOPkuthAIgDyVeGPB7L4LAjf0tJEPFB4y1o7CFIPAYSRKIHQMjW+pccshTWrciz0MlS1djkbykZIkGk5kCoObDSoVjKgIR3RROPd5GA8NCMbUEdhtiyj8ViKY7gJhDeHeOZ6wABjDfyhYhTX7bDanYu7sLf4c5ZH3fOprhtl6Kap/xk6Rd25G+xlBl1WyE7G3wTqqJVc6CICFJ/ARrdD028aFQ/w5NyHMxKibodaNM+4DbRuTiu4w409T4y5s6yHXckYJO/xVImVLNo258gdj9IwAi4RfZDRp09aDvHwcWlkHwJjd1pnKfCOyPRg4rW1pfAOmURl8uHxh8Ht5Xuq6KTkJ6Opt/PiUPdDqOm6lsacUYPSYzDFZv8LZYyoR3XGVOPrgJu8QdR31ik9rjKxdV2JcRup3P1cPunaOJhGPNg9a3EzrxHQVOY9KfgJX9VRdsnQ8etRldK02h4F6T+gvL5IAxzbM3fYikXHbeS2xqZ8F6vDJqdC7Fb6J5QE5D5GuKPVSqswvhWBvKY1IuAb/nOpxq7x1uDkPBM45OQeApts14ahbDJ32IpF9pW4PXWyvm7pt/xPHZ7EkeTU4c6mj6R6N6mZNbN5t0PzjKdWkgAxLrqIC0iAbH7Ue3NcGXkYpO/xVIu/GsUeH31ysn9ymjy9+o74Iwf6mj6RJzRSOM9XnnHB/ghtA0y5q7u57CghEgGbGdQXmzN32IpEzLqbHTBLzDa/S5m9BpGRv2hckEFNwIZBRqj+0UgiESr02VLAqsgY+5HNQ748tfwA+tC6vXc152lQEaOn0Z/sCN/i6VMSHADZMy9ENoRfD+A0I7ImLuR4IaVi0kcpPE2488rEZBakxzrL0ICq1Ysrr7QzEy09Ty0aR/chacat7MuSN3pIFEWp7RFF9pzqt5UpVJIxWqPfbDhhhvqtGnTKh2GxVJSVF1Iv2smJQM/Rpy6CsWhkPmfF8faVd0Ro+kP0QWHeOUbF3BAQsjoG5HgRou3y8xA26+B9HTwTURqf4ME161Y3JVCRN5W1T5HGLbsY7EMEZqZgS44ErQFcEw7Yt3pODWHDnksIgJVPNLvirb+yStTLcIFjaOt5yFjn+h8Vfw/LJu/8ZKILftYLEOAqmvq/+73JpEtakdsuxRN/bfS4VU36ffyv575n+3kGQQ2+VssQ0H6Ha/1s2eZNYnG/lm2w2p6Om7Tgbjfr4U7ZzPc9utQzee4VsVIAUkMCWM6gCwDwSZ/i2UocNvo3qu+CC2b05kpMx1qLjykQZug/Vq09YKyHK9s1Pyc3IVeYYgcZCdzB4FN/hbLUBBc3/Ps7UkECe9YlkNq+/WLZSU6iUP8AdRdWJZjlgOpORoiewIhkDogaLyD606pdGjDmkElfxHZT0Q+FBFXRArOLovIziLyqYh8LiJnDOaYFstwRJx6qDsVI4e8aLQaAf9KENmjPAdNf0hekxUJGvGzYYKID6f+fGT8K8jom5BxU3EaLq/qDqXhwGC7fT4A9gauL7SBGPnCq4EdgNnAWyLymKp+NMhjWyzDCqfmCDSwtqnxuwshtBMS3bN8YmqBVSA7g5wLgKbAVz4Z5nIhzmgIWqXOUjGo5K+qHwN91d02Bj5X1S+8be8B9gBs8reMOCS44ZAt8pKaX6GJl+iueROG8C6I0zgkMViql6Go+S8HfN3l+WzvtRxE5BgRmSYi0+bNmzcEoVksSy4SWB1pvBH8qwJiVsBGD0Pqh9mEr6Us9DnyF5HngaXzvHWWqj5aymBU9QbgBjArfEu5b4tlJCLBjZCxT3jtnY7tjrF00mfyV9XtB3mMb4Dluzyf4L1msViGiEo6h1mqk6Eo+7wFrCIiE8VMzx8IVKFrhMVisYwcBtvquZeIzAY2A6aIyDPe68uKyJMAatZfHw88A3wM3KeqHw4ubIvFYrEMhsF2+zwMPJzn9W+BXbo8fxJ4cjDHslgsFkvpsCt8LRaLZQRik7/FYrGMQKyev8ViKSuqCum30MSzIBEksgfiX7nSYY14bPK3WCxlQ1XRljMg+bTnxOWgHbehdadVxMTGshhb9rFYLOUj9W8v8ccxXgZZIAFtl6DZpgoHN7Kxyd9isZQNTTzjJf6e+CD1ypDHY1mMTf4Wi6V8SJC8aUYEsJLMlcQmf4vFUjYksif5k7wLoa2HOhxLF2zyt1gsZUMCa0HtCUAIY2QTBSJIw18Rp7aywY1wbLePxWIpK07t0WhkN0i+YkzXQz+1ib8KsMnfYrGUHfEtDdH9Kx2GpQu27GOxWCwjEJv8LRaLZQRik7/FYrGMQGzyt1gslhGITf4Wi8UyArHJ32KxWEYgoqqVjiEvIjIPmFXCXY4F5pdwf6XCxtU/bFz9w8bVP5aEuFZU1XF9bVS1yb/UiMg0Vd2w0nH0xMbVP2xc/cPG1T9GUly27GOxWCwjEJv8LRaLZQQykpL/DZUOoAA2rv5h4+ofNq7+MWLiGjE1f4vFYrEsZiSN/C0Wi8XiYZO/xWKxjECW2OQvIvuJyIci4opIwRYpEflSRKaLyLsiMq2K4tpZRD4Vkc9F5IwhiKtRRJ4Tkf95/48usF3WO1fvishjZYyn159fREIicq/3/hsi8oNyxdLPuI4QkXldztFRQxDTzSIyV0Q+KPC+iMhfvZjfF5H1yx1TkXFtIyItXc7VOUMU1/Ii8pKIfOT9LZ6UZ5shP2dFxlW6c6aqS+Q/YA1gNWAqsGEv230JjK2muAAfMANYCeOB9x6wZpnjuhQ4w3t8BnBJge3ah+Ac9fnzA78BrvMeHwjcWyVxHQH8fai+T94xfwKsD3xQ4P1dgKcAATYF3qiSuLYBnhjKc+Uddxlgfe9xHfBZnt/jkJ+zIuMq2TlbYkf+qvqxqn5a6Th6UmRcGwOfq+oXqpoC7gH2KHNoewC3eY9vA/Ys8/F6o5ifv2u8DwDbiYhUQVxDjqq+AizoZZM9gNvV8B+gQUSWqYK4KoKqfqeq73iP24CPgeV6bDbk56zIuErGEpv8+4ECz4rI2yJyTKWD8VgO+LrL89mU8UvgsZSqfuc9/h5YqsB2YRGZJiL/EZFyXSCK+fk7t1HVDNACjClTPP2JC2Afr1TwgIgsX+aYiqES36di2UxE3hORp0RkraE+uFcu/DHwRo+3KnrOeokLSnTOhrWNo4g8Dyyd562zVPXRInezpap+IyLjgedE5BNvxFLpuEpOb3F1faKqKiKFeoBX9M7XSsCLIjJdVWeUOtZhzOPA3aqaFJFjMXcnP61wTNXKO5jvU7uI7AI8AqwyVAcXkVrgQeBkVW0dquP2RR9xleycDevkr6rbl2Af33j/zxWRhzG39oNK/iWI6xug64hxgvfaoOgtLhGZIyLLqOp33u3t3AL7WHS+vhCRqZjRSamTfzE//6JtZouIH6gHmkocR7/jUtWuMdyImUupNGX5Pg2WrolNVZ8UkWtEZKyqll1YTUQCmAR7l6o+lGeTipyzvuIq5Tkb0WUfEakRkbpFj4EdgbydCUPMW8AqIjJRRIKYCc2yddZ4PAb83Hv8cyDnDkVERotIyHs8FtgC+KgMsRTz83eNd1/gRfVmxMpIn3H1qAvvjqnbVprHgMO9DpZNgZYuJb6KISJLL5qnEZGNMfmo3BdwvGPeBHysqlcW2GzIz1kxcZX0nJV7BrtS/4C9MHW6JDAHeMZ7fVngSe/xSpiOjfeADzFlmYrH5T3fBTPbP2OI4hoDvAD8D3geaPRe3xC40Xu8OTDdO1/TgV+WMZ6cnx84H9jdexwG7gc+B94EVhqi71VfcV3kfZfeA14CVh+CmO4GvgPS3nfrl8CvgF957wtwtRfzdHrpfhviuI7vcq7+A2w+RHFtiZnrex941/u3S6XPWZFxleycWXkHi8ViGYGM6LKPxWKxjFRs8rdYLJYRiE3+FovFMgKxyd9isVhGIDb5WywWywjEJn+LxWIZgdjkb7FYLCOQ/wdHtiEjFPvmVAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXWYlFUXwH93ensXlu5u6VYklJI2AAVBRFEQBQVRVBoMpEsQRAUJERBQQlK6O6S7WRY2pmfu98cs++0ws7AxGyzv73l4nt03zj3vsHPee889IaSUKCgoKCg8XagyWgEFBQUFhfRHMf4KCgoKTyGK8VdQUFB4ClGMv4KCgsJTiGL8FRQUFJ5CFOOvoKCg8BSiGH+FLIcQYqAQYqavr02CLCmEKO4LWQoKaY1Q4vwVMjNCiK7AJ0AxIApYCnwupbyXkXp5QwghgRJSyjNezm0CagE2QAKngUXAOCmlJbXyFRSSizLzV8i0CCE+Ab4F+gMhuIxnIWCtEEKXyD2a9NMw2XwgpQwC8uB6oXUAVgohRMaqpfA0ohh/hUyJECIYGAr0llKullLapJQXgNeAwkCnuOuGCCH+EELMFUJEAV3jjs1NIOtNIcRFIUSEEOIrIcQFIcQLCe6fG/dz4TjXTRchxCUhxB0hxBcJ5NQQQuwQQtwTQlwXQkxO7CX0KKSUsVLKTUAroDbw0uPkCyE2x91+SAgRI4RoL4QIE0L8JYS4LYSIjPs5f3L1UXg6UYy/QmalDmAAliQ8KKWMAVYCLyY43Br4AwgFfkt4vRCiLDAVeAPXjDsEyPeYsZ8FSgGNgEFCiDJxxx1AXyAcl9FuBPRM5nMlfJZLwF7gucfJl1LWi7umopQyUEq5ENf3dzau1VBBwARMTqk+Ck8XivFXyKyEA3eklHYv567HnX/ADinln1JKp5TS9NC1rwArpJRbpZRWYBAun/ujGCqlNEkpDwGHgIoAUsp9UsqdUkp73CpkOvB88h/NjWtAtpTIl1JGSCkXSymNUspoYKQP9FF4SsjM/lGFp5s7QLgQQuPlBZAn7vwDLj9CTt6E56WURiFExGPGvpHgZyMQCCCEKAmMBaoB/ri+P/seI+tx5AO2p0S+EMIfGAc0BcLiDgcJIdRSSkcq9VLI4igzf4XMyg7AArRLeFAIEQg0A9YnOPyomfx1IN4PLoTwA7KnUKdpwH+4Im6CgYFAijdrhRAFgKrAlhTK/wSXe6pm3PUPXEPKBrLCY1GMv0KmREp5H9eG7yQhRFMhhFYIURj4HbgCzEmiqD+AlkKIOnGbp0NIuXEMwhVuGiOEKA28nxIhQgh/IcTzwDJgN649jKTIvwkUfUgfE3BPCJENGJwSfRSeThTjr5BpkVJ+h2v2+z0uo7gLlwunUVJj46WUx4DewAJcq4AY4BauVUVy6Qe8DkQDPwILk3n/ZCFENC4jPh5YDDSVUjqTKH8I8EtcNNBrcTL8cLnAdgKrk/tACk8vSpKXwlNFnNvoHi7XyvmM1kdBIaNQZv4KWR4hRMs4V0sArlXEEeBCxmqloJCxKMZf4WmgNa6QymtACaCDVJa8Ck85ittHQUFB4SlEmfkrKCgoPIVk2iSv8PBwWbhw4YxWQ0FBQeGJYt++fXeklDked12mNf6FCxdm7969Ga2GgoKCwhOFEOJiUq5T3D4KCgoKTyGK8VdQUFB4ClGMv4KCgsJTiGL8FRQUFJ5CFOOvoKCg8BSSaaN9FLIODruDk3vPIoSgZLWiqNXqjFZJQeGpRzH+CmnKoX+PMeyVMditrn4sWoOWIYv7Uf7ZMo+5U0FBIS1R3D4KaUZURDRftvyGqIhojNEmjNEm7t+OYmDzUcTci81o9RQUnmoU46+QZmxauB3pcHocl1KyedGODNBIQUHhAYrxV0gzoiKisZptHsetZhv370RngEYKCgoP8InxF0L8JIS4JYQ4msj5+kKI+0KIg3H/BvliXIXMTaUG5dD76zyO6wxaKjUsnwEaKSgoPMBXM/+fgaaPuWaLlLJS3L9hPhpXIRNTrm5pKjeqgCFAH3/MEKCnetPKlK5RPAM1gxO7TvNJg8G0ydaFd575mC1LdmWoPgoK6Y1Pon2klJvjmmsrKMQjhGDw4n5smLeVNbM3goCmbzWkQce6CJHSHuqp58Su0/RvNBSL0dXGN/aekW/fnEj03bdo3v2FDNNLQSE98Vkzlzjj/5eU0mM9L4Soj6tZ9RVc3ZT6xTXWfvi6d4F3AQoWLFj14sUkFadTUEgW/RoN4dBGjz8/grMH8vuNmUoegsITjRBin5Sy2uOuS68N3/1AISllRWAS8Ke3i6SUM6SU1aSU1XLkeGw5aoUMxm6zc2rfWS6fvJpm8vetPcT2ZXt8Ghp69uAFr8fNsRai78b4bBwFhcxMuiR5SSmjEvy8UggxVQgRLqW8kx7jK/ie7cv3MPqtKTjtThwOB7kL52TYsgHkLZbbJ/JP7jnDwOYjsdscANitDt4f35UW776Yatm5CoYTE+n5MhEqFQEh/qmWr6DwJJAuM38hRG4R5+QVQtSIGzciPcZW8D2X/rvKqNfHExMZizHahMVo5dJ/V+nfaChOp2dcf3KxWmx83nQEURExGKNMGKNMWM1Wfuj7M2cPXUi1/DeHtPeIQtL762n9QVO0Om2q5SsoPAn4KtRzPrADKCWEuCKEeFsI8Z4Q4r24S14BjgohDgETgQ5S6Rz/xPL3jLXx5RoeIJ2S6MgYjmw+kWr5+9cexmH3fInYrHZWz9qQavl1Wlfng0lvExIejFavwRCgp23vZnQb2THVshUUnhR8Fe3zyG+NlHIyMNkXY2VWTDEmDm48hlqjplKDcugMnvHtWYXblyO8GmeAyJv3Ui3fGG3C29zA6XASHekbn3zTtxrSuEt9YiJj8Q/2Q6NVylwpPF0of/E+4N/ftzO621TUmv8vpIYs6U/lhhUyUKu0o0azyuxZfQBzrMXtuMPmoGydUqmWX6lBOex2h8dxQ6CBZ9vVTLX8B6hUKoKzB/lMnoLCk4RS3iGV3Lx4m9FvTcFitMT7p41RJga1/pbYKGNGq5cmNOhYl1yFc6Iz/N8/bgjQ89K7L5KzQHiq5WfLHUbnQa+i99fH5wMYAvSUqVWC2q0eG8GmoKCQBJSZfypZ99tmHF6KlyFg29LdNO5SP911Smv0fnom7RjJssmr+XfRdvwC/Wjdqyn1Xq3tszE6ftaWCs+VYdXM9RijjdR7pQ71XqmlxOArKPgIxfinkth7Rhw2u8dxp92JMcqUARqlD36BfnT4rC0dPmubZmOUr1ua8nVLp5l8BYWnGcXtk0pqvlQFvb/e84QQVGtaKf0VUlBQUEgCivFPJc/UK0vNl6pgCDDEHzME6Gn5fmPyl8iTgZq5I6Xk5J4zbFq4jSunrmW0OgpJwGqxEXE9EoeXzW8FhdSiuH1SiRCCgfP6sHPFPtb/thmNTkuTrvWp3CjzRPpERUQzoPFwrpy6hkqlwm53ULN5ZQbO66OEOGZCHA4HPw2cx7Ipa5BSotNr6Tq8Pa17Ncto1RSyED4r7OZrqlWrJvfu3ZvRamQJBrX5lj2rDsSXSgDQ++l448uX6fh5uwzULPNx5fR11vy0gfsR0dRqUZWaL1VJ903mn76Yx5IJK+OrjoIrA/mTme/ToEPddNVF4ckjqYXdFOOfxTEbLbQN64rdy6Z0jgLZmXfxhwzQKnOyceE2xnSbit3uwGFzYAg0UKZGcUat+iLdVkgOu4M22bpijjF7nCtQOh8/HR+fLnooPLlktqqeChmEzWIDvL/gLUZr+iqTiTEbLYztPg2LyYojboVkjjFzYtdpNi7Ylm56GKNNHqUzHnDn6t1000Mh66MY/yxOUFgg+bxsPKs1Kmq+VCUDNMqcHNv2Hyq159fBHGth4/yt6aZHYGgAQWGBXs8Vr1Q43fRQyPooxv8p4JNZPfELNKDVuVwXen8dwdmDlEJmCdAZdIktkLyH8qYRQgh6jHnTs+qon47u37yRbnooZH2UUI+ngDI1SzDz2Dj++uEfLp24Srm6pWj2diMCQwMyWrVMQ9k6JdEZtBij3RPzDAF6mr/z/9aOV05dY9mU1Vw/f4tKDcrR7O1GBAT7tgdAo9efIzA0gF+H/M7NC7coVqkwb43oSOkaJXw6jsLTjbLhq5Du3L4SwZ+TVnF6/zmKVy5C2w+bkyN/9oxWi5N7zvBZkxE4HU6cTicOh5O2vZvR/ZtOCCHY+88hhrT7DrvVgcPuiF9BTd37LaE5QjJafQUFQIn2UciknD96iT7PfonVbMNutaPRadDptYzfOpwiFQpltHpYzVZ2rzpATGQslRtVIFchVztRp9PJ6wXfI+JapNv1Gp2GVj2b8P7YrhmgrYKCJ0q0j0KmZNIHMzFG/T+ixW61Y4w2MemDWRmsmQudQUfNl6pw9cwN3qvSn2aGjnz64jD2rz3stY+w3Wpn25+7M0BTBYXUofj8FdKM21ciWDpxJaf2nqXoM4Vo1+cljm076fXaY9u9H08uTqeTHcv3sun37Rj8dDTp1jDZxeG+7jSR3X/vx2JyhcIe3HCE/3afTrTMgn+wX6r1VlBIbxTjr5AmXDh2mY/qfoHVbMVudXBs23+s/mkDWr3Ga36B3i/1nc+cTidD2o3mwPojmGMtCCHYuHA7HQa0ptNXryZJxo0Lt9j11z6sZlv8MSnBZrETmjOUyBuRbl3M9P562nzQPNW6KyikN4rbRyFNmNpnNqZoE3ara7ZstzkwxZjxD/b3aHGpM2hp+nbDVI+5d82heMMPrmJ2FqOF+V8v5faViCTJuHTiKlq9ZxN3u9VOzoLZKVA6H4ZAA/7Bfmj1Whp1eo6m3RqkWncFhfRGmfkrpAlHNp/AWyzBvZv3qdG8Mgc2HEWr02Cz2qncsDzdv059DPv2Zbs9WksCqNRq9q09TNO3Hm+k85XIHZcV7Y5Gq6Z09RK8N7YLJ/ec4c7Vu5SsWpScBXOkWm8FhYxAMf4KaYIhUE9MpGeZAp1By/Dln3Ht7A0u/3eNAqXzkq+4b0pfBwT7o9aoPJrLq1QC/yBDIne5k694Hio1LM/BDUfdXD9avZa2HzVHCKHE2ytkCRS3j0Ka0KJHY3QP+fG1ei1NuzVECEG+4nmo1aKqzww/QOOu9VF7KcAmgRrNk17K4rM5vanfvg46g9Zl7GuW4PuNQ8hdOKfPdFVQyGgU46+QKBaThbs3InE6vfQofgxvDnmVmi9VQavTIFSuJux2m53DW49z+eRVX6sKQKGyBfhgYjd0Bh3+QX74B/sREOLPyL8+x5CEEg0Ou4NpfWfTMf97bPp9Bzo/Hb2ndmfSjlGUrFrM4/qUfC7GaBNHtpxIs89AQSGpKEleGYyUkkObjnH24AXyFMtFzeZVUGsytkm51WJjyoc/sW7OvwD4BfnRc3xXGnZ8LllyTDEmOhZ4j9j7xvhjQgiCsgfy24VpSTLIKSHmXiwHNhxFZ9BSuVEFdF42cL0xre9s/v5xnVs0kt5fz2dzevNs25rxx/5dtIMfP53DzYu3CckRTKcvX6b1B80QQjxS/h9jV/DzVwvQ6NTYbQ4KlS3A8OUDyJY7LGUPqqDgBSXDN53ZvnwPi75fzr3bUdRoVpkOA9oQliv0kfeYYs30bzSUi8ev4LDa0eg1BIUFMn7riAwtdzD6rSls+n07VpO7ERy2bABVktGhbPXsjUz5cJbHJqxfoIEPp77DC53q+Uzn1GK12GibravbMz+gWKXC/LB/NAA7VuxlZMdxbi8IIQR1Wlfnq98/TvTF7SoNMdqtQYtao6JElaJM2vm1j59G4WlGyfBNR+Z/s5RRr0/g6Nb/uHLyGsunrKZHpX7cu33/kff9Mngh5w5dxBxjxma1Y4o2c+fqXUa/NcXjWrvNzrxRi+mQvwdtwrowosM4bl687fNnibkXy8YF2zyMoMVoYd7IxcmSdfvSHa/RNxaTlduXkxZ6mV7ERMbgNTwJuH35TvzPs7+c75GnIKVk25+7GfLy6ETlLx63ws3wAzjsTs4ducS1szdSobmCQspQjH8qiY0yMnfYH25fbLvNQcw9I0snrHzkvevnbvEIK3Q6nBz+9zjmhwzFN50nMm/kEiKu3SX2vpEtf+ygZ/UB3L8TlSrdZ34+l05FetKlZG8Wfvcnt6/cQaP1Pnu9fv5msuSXrF4Mv0DPKBu9n45S1T196BlJSI5gDAHe3VAJ/f3Xz99KVMb+dUc4ufes13ORN71PBDRaNVER0cnQVEHBN/jE+AshfhJC3BJCHE3kvBBCTBRCnBFCHBZCZJkuIucPX0Sr9zSWNouNvf8ceuS9TkfiG4YywWbitbM32LF8b3y5AQCnU2KOtfD3j+tSoDXYrDY+qvMFS8av5ObF21w7c4M5Qxfxw8e/ei1rr1IJytYqmawxqjWpSP5SedEZ/u9z1xm0FC5fgEoNy6dI75RybPtJBrf9jh6V+jG1z2zuXHVfeajVarp/28mzjr6/nrcS9D3I76UxzgOcDicndpzyeq5Wi6po9Z6RSE6npEiFgsTej2XpxL8Z9fp4fhv5B5E37yXn8RQUko2vZv4/A00fcb4ZUCLu37vANB+Nm+GE5Q6Nz2JNiBCQs2D4I+997uVaaHTuBkEIQclqxfAL/H+9mHOHL3pcB2A1WTmeSK2cx7Ft6W5uXbrjtvKwmKwc33GSpt0aujUwEQJ0/no6DUpaiYQHqNVqxmwayqv9WpGrUA5yFc5B+wFtGL1+MCpV+i06Ny3cxoDGw9i+bA/nDl9kxbQ1vFuxn4fbrFm3Rgyc14fiVYoQEh5EtSaVGLd5mNvM/+2v30CdyMpIq9eSLY/3fZ52H71ESI5gtAlehHp/He+NeZPouzG8VfojZg2cz8YF25g3cgldS33I2UMXUv/wCgqJ4JMkLynlZiFE4Udc0hr4Vbp2l3cKIUKFEHmklNd9MX5Gkq94HopXLsLJPWew2/7/EtD56Xjl45aPvLfbyI4c2HCEyBv3MMWYMQTo0Rm09J/d0+26PEVzeSQugauccMGy+VOk99GtJzB5aRLudDjJXyIP/Wa9z7xRS7h7PZIytUvRbWRHCpVJ/lh+AQa6DutA12EdUqRnanE4HEz6YJabn95ucxB738icYYvoN8v9s67Tqjp1WlVPVF61xhX59OdefNNpEgmDJYQAvUFLrZbe99mCswcx/eD3/DlpFbtXHiA8Xxjt+rTgmXplGfXGeO7fiY5fCVrNNqxmG0NeHs13/wwiT9FcqfkIFBS8kl4ZvvmAywl+vxJ3zM34CyHexbUyoGDBgumkWuoZ+uenDH9tLCd2nkKtVaNSqeg1sRvl6pR65H3B2YOYeXQsW5fs5vT+c+QrnpsGHZ/FP8i9SmSxioUp+kwhzuw/hy1Bc2+NVk3rXo9acCVO7qK50Pvp3FxJAGqthhwFslOnVXXqt6+bItmZiZsXbnuN4HE6nOxfezhFMht2fI7chXMysuN4ou5EI6Ukd9FcDFr0ySPDSoOzBfHm4Nd4c/Brbsd3/X3AqwvwxrlbvF2+L/VerkX/n3uhVmdsCLBC1iJTlXeQUs4AZoAr1DOD1UkyIeHBfL9hCHeuRhB9N4b8pfKi1Xk3AuePXOTK6RsUqVCQ/CXyoNVpadChLg06PNrQfr1qION6TGfbn3uQTkmB0nn5+Mf345uNJJcXOz/PnCGL3I49KINQo1nlFMnMjASGBeBweC/FHJor5d23ytYuxdzzU7l6+jpqrZo8RVI+O9cZtBgT2be3mW1sXbqLElWL8nKfFikeQ0HhYdLL+F8FCiT4PX/csSxFeL7shOfzHp9vjDbxxUujOL3/HGqNGrvVTvVmlflifp9EXxQJCQgJ4MsFH2O12LBZbEnuG+uwOzi9/xwanYZiFQvHJyJZjBa6DG/PkvEribwRiZSSohUL88X8Pmi8lEh4UgnOFkSNZlXYveqA2/6GwV/Pa/1aeb3HYrKwfu4Wdv69j2y5w2j5fmOKVSzscZ0Qgvwl86Zax2bdG7J47F9utYTc9DFaWT5ltWL8FXxKen3LlwMfCCEWADWB+1nB358cJn0wk5N7zmCz/N9ts2f1QX4bsThZ/nCdXpvkjNW9/xxi1OvjcdgcSCkJDAtg8OJ+LBn/N1uX7EKr12Kz2ilZrRif/vJBqmav3nA6nem6sZsY/X/uxYj2Yzn873E0Og0Om4P2A1rz/Gt1PK41xZr5sPZAbpy7hdloQaVWsW7uv/Sd8R6NXk9ehnNS6fTVq5zed47Dm49jNXl/ARi97M8oKKQGn2T4CiHmA/WBcOAmMBjQAkgpfxCu6eZkXBFBRuAtKeUj03eftAzfR+GwO2gR2Cm+dWFCQnMGs+iG71sYXj93g7fL9XV72QDxxcoS+vq1ei31O9Th09kfpHpcp9PJvFFL+GPsCmLvGSlQOh8fTOxGlReeSbXs1HJi1ykuHrtCtaaVCM+bzes1i8Ys55dBCz32QvyCDPxxc5ZHLwJfcvbQBT5rMpx7t9x9QGqNmsZd6/PxjPfSbGwA6YwBnAhVcJqOo5C2KOUdMhFWs5WWQZ29buoZAvSsiJ7r0/EunrhCrxoDsMR6bnQiwFsgv1avYUX03FTXFfrhk1/4a/pat6Q3vb+O79YNTnaeQEKObT/J9H6/cO7wRbLlDuX1L16mSdcGj62nAxB7P5Zhr43l6JYT8TP/N756hY6ftfW49sM6Azmx87THcUOAnpfefZEytUpSu2XVNHsJHNlygoHNR2K3OrDb7Oj9dASEBjBt37dpVgNIOm4g7/UH2z7XAU1pRMi3CK1SuvpJRCnvkInQGXQUfaaQx3GhEj6fEUspGdJ2tHfDD14NP7hKDdi8rEySgynGxIpp/3iUMbAYrcwdtiiRux7PyT1nGNB4GCd2nsZitHL93C0m9/6JRWNWJOn+bzpP4si/x7GabRijTFhMVuaNXMyWJbs8rg0IDfAqwxxrYdnU1YzpPpUO+XukWQx+hefKMOPwGNp82IxaLary5tD2zDo2Dr2/nj/GruCzpiMY12M6549c9Ml4UtqREe3Bthewu/7ZjyHvdkQ6lczjrIxi/NOJvjN64BdoiE/W0hm0BIYG8N6YLj4d5+rp69y+cifR80IlvM6WC5XNn+oqmxHXIlFrvP9JXTx+JcVyZ3+1wKOejsVo4bfhf2CzeveRP+D+nSj2rT3k8WIzx1r4ffQyj+vb9GqaaJkHu8VVfyn6bgyD2nxHWq2a8xTJRY/RbzJ8+We81q8VTqeTHhX78fNXC9j3zyFW/7SB3rUHsnWp58sr2Vg2g4wCEkZESZA2pMnz81HIOijGP50oWbUYM4+N4+U+L1GjeWU6ft6Wn06M93kCj81qT3ST9UH1yYAQ//g+tWqtGkOAnj7TexAVEc2BDUdSXGs+PH92r64tIaCIl5XPA0yx5kTDMQHOHrzg9bjD4STyxqPLIETfjUnUleWthELNl6rSrm8LtAYt/sF+qNTeP8uoO1GcP3LpkWP7it9HL+Pujcj4fQinw4nFaGXcuz/gsCf+uSUJxxWQ3l6gJnCkz/MpZAxZJ6bvCSBngXC6f9MpTccoVDY/foEGj+xdoRLUb1+Hz+d+ROTNe/w5aRXHd5yiSIWCtOndjJUz17N0wkp0Bi12q53ilYswbPkAgrMFJXlsg7+edn1eYsmElW6uH52fjjcHe5aG2Lf2EBN7zeTmhVtodBqavd2Id0d39gh9zVciN/dueS+MFpLj0ZuTeYrmcq22Hqouqtaoqda4otd73hrWgTa9mnJs+0lmfzmfSyc8X4ZCJbDbUucme5iI65Gs/XUTd65GUqVRBWq2qIJarWb7sr0eG/cANoudS/9dpUj5VCREasuC0IB8yE0o/BHajN+kV0g7lJn/E4h03sMZ+yvOqBFI01/IBF9clUrFwHl9MATo42f3hkADxSsX4ZOZ7yOEIFvuMLqNfJ3vNwyh14RunNh5muVTVmOz2Ii9b8RisnJyzxm+6TQp2bq9NaIjXYe1J1vuUNQaNSWqFuXrVV96dMI6te8sg9t+x7UzN3DYXTPZVTPXM7b7Dx4y3xzS3mvBtda9mqD3e7SrSq1R88Gkt93u12gl/kFOOvYvk+h9YblCebZtTVq+38RjbHCF3BarVPiRYyeHAxuO0KVEb+YMXcSyyav4pvNEPq43CKvZSmCo95wOh91BQEjS8j0SRVsVNKWBhJ+jFlQ5wNA4dbKfcKS04IyZhfNOC5x32uCMnYeUvn3hZyRKtM8ThrT9h7z7RtxS3Qz4gzoXIvsitxC9O9fusvaXTdy+EkHlhhWo07p6ou6P96r09+pa0eo1zL88nZBw34f+DXl5NNv/3OPhN9fqtcy7NI3QHO7Zt1sW72Taxz8TcS0Svb+Odh+9ROfBr6JWq5FScmz7Sc4fuUT+knmoWL+ch+vryL/b+P3rUdy6oqJi3Wheff822XOrIeQbVH7NE9XTarHx6QtDORvXd0Fn0CJUqmQ3tnkUDoeDDvne9Qjx1Pvp6DbqdcJyhTL2nWluvRFUahWlqhdj4vZRqR5fSjMyZiqYloC0g6EZIugjhOrRzYiyMlI6kHdfB9sJXN8zAD/Q10YV5jlByUwkNdpHcfs8Ycj7/UEmjMIwguMqMmYyInhg/NHwvNno+Hm7JMmMvhvj9bhaoyb2vjFNjP/l/6553TDV6jXcunTHw/g/93Itnm1XE4vJis6gjTfuphgTAxoP5/yRS0inRKVWkbNgOGM2DXXTu1ylfxj683lcES0PsEHUEKShMUJ4/yro9FrGbBrK7pUH2L/+CNnzhPJC5+cTzRNIKk6nkxXT1rBkwkqiIqIxRZk8rrGYrKybu5kpu7/h1L6zLJu8Gq1eg9PhJFfhHAz6o1+qdHiAEAZE0McQ9LFP5GUJLJvBdpL/G34AE1h3IK2HEDrvLsMnCcX4pyO3Lt1m7ojFHNp4lOz5stH+0zbUbJ701gbSeRfs59yPSdixxsCKX3Zgsgzk+dfq8NK7LyYrcqd608qs/mmDx+ahIcBA7iI5kywnOZSqXowrp655bBDbrXbyFc/t9R4hhMdzzRo4jzMHLriVbrh6+joT3p/BoEUJjKNlCwkN//G9/iz9MZyIGwZqtPyFVh90IDCRME+1Wk22K7lDAAAgAElEQVTtltWonUjFzpQwqddM1s7Z7BEW+zAarQYhBD1Gv8mrn7Tk5J6zZMsTRsmqRZOU46CQMqR1L6581IdP2MG2HxTjr5BUbl26TY/K/TFFm3DYnVw7e5NTe8/xzrdv0LpXsyRK8dyimTUyDyt+zo7ZqAZOc+7QRf75ZROTdn7ttQzEzYu3uXTiCvlK5CFvMZeR7TToFbYt3UVslAmbxYZQCXQGLX2n90iz8gyvD2zHliW7MCfYmNb762n5fmMCQrwbYW9464ZmtznYvnwvDofj/5UwVaHgdIWbrlkQxpQv8mM1C6QUnD6ynr9n7eWH/aMJCgtM/cM9hojrkaz5eZOH3g9jCNDToseL8b9nyx3m0xeQQuIIdS4kBtxn/oCI2w/JAigbvunEvFFLMEaZ3OryW4wWZn0+D6s5kYSshxCqUNBW4MF/2+1rWv6cFR5n+ONkmqxcO3ODTQu2ud1rs9oY3n4s3cp8xMiO43mnwsd82fJrLCYL4Xmz8ePRsbzWvxXl6pSiYcdnGb9lBHVaJ17XPrXkL5mX8VuGU7lRBfT+enIUyM7bX7/Ou991TpacxCJupEMinQnq7Qe8DcIPq1kw7at8WEwqpHTNnK1mG5E37rNkwt8pf6BkcO7wRbfuZglRqVXoDDr0fjrqtK7OC50zT5P7pwq/FiC87ZFpwfBCuquTFigz/3TAYXewbu4W720bheDq6esUqZB4HLzb5aFjkBEdQUZzbI8BjVZie8hzYI61sGvlfhp3qR9/bM6wRez8a198oxCAA+uPMKP/HHpP7k5ojhBXgblhKX3K5FOsYmG+WzsoVTJqtajK5j92un22QgjKPVsKjVbDnasRXD93i/wl6xLi341z++fizVtis9jYsXwvXYa0T5U+SSFXoRxe6zyp1Coq1i9H3TY1eKZemST/TYArs3vd3M0sn7oGU4yJ+q/VoV2fFh69IRSShlBlg7CfkPc+Annf5V9V50KETkYIz77UTyKK8U8HNszfmujs3m61E5rTtbkZcy+WuzfukatQeKIhjEKdD3KsB8tmQvMfRIj9gLtsoRLs+msfzf1ep2ztkrw3tgt//bDWo6mJ1WxjzeyNfDDp7SfWf9xjTBeObDlB7H0j5lgLen8dOoOO3pO7M+y1Mez6ax9avRar2cYLnevxat+5OBxDcN/4dRH6mJwBX1GwdD5KVivGf7tOu2Uea/Vaek3slqKOaePfn8GG37bERwT9NnIJG+Zt5YcDo9O0GN2TgnTcRMZMAssmEIHg/ybCvwNCJO78ELrKkONfcJwFNKAu9MR+T7yhGP90YN2czW4uiISUqFKEwLAARnebwsb529Do1EinpNNXr9D+0zZe7xFCC4ZGVGxaH7/gnphi7pIwcEY6ZXw26KFNx/i43qBE/ctWsw2n0/nEdokKz5uN2ScnsnHeVk7tO0uhcgV4sfPz/DxoAbv+dl/pbJi3hdxFclKoXCHOHDjvtlowBOhpl4718ocvH8CY7tPYuWIfCMieJxt9f3wvRYb/+rmbrPv1X7d+AHarncsnrzG1z8/0+eFdX6r+xCGd95ARbcF5D9dL/xZEf4u0n0CEDH/kvUII0BRPFz3TGyXOPx0Y2Hwke1Yf9DiuUqsYteoLti7ZxdpfNrmVEdb76+k7vQeN3nh0Dfkrp67xRYuvuXs9EqESmKI9676rNSpCc4Zw93okD/93l6pRnMk7v07Zg2VSnE4nrYI6e5RlBgjLFcLUfd/xxUujuHr6BhqtGpvFRufBr9JhgGeVz7TGFGPCHGshNGdIimeV63/bwoT3Z3jtyaxSC2b/NzF+cx9cCWWLx/1FxPVIVzmLj5onK5P7ScMZMxVipgEPR1bpEDnWIdTeo8ueVJQ4/0xEs7cbcWTLCbckHYCgbIGUrV2CQa2+8ejiZDFamP/1ksca//wl8/LzyYmcP3KJEztPMePTORgfihl32J34B/lhijFjNduwW+1otGo0ei0fTunum4fMRDjsDqyJrHRi75sIz5uN6Qe+5/zRS9y7dZ8SVYomGuaZ1vgF+uEXmDq/fFju0ERr/EinZO2vm+gy1NUwaNmUVfw44Lf4ENOLxy6zZvYGph/8Puu+AKy78TT8gNC5kriymPFPKkq0TzrwbLuaPP9aHfR+OrR6DX6BBvyD/Rj256dYjNZEq0PefUzRsgcIISj6TCFqt6rmtSyzSq2iZPXizDw6jja9m/HM82Vp+X4TZhz63qPsQlZAq9NSqKx390m5uqXify5SviCVG1bIMMPvKyrWL4vez7tfX0qIjowFXAX0Ehp+cNUHun87iiUTVqaLrhmCuhDgxa0pHaDOk+7qZBaUmX86IISg36yevNznJQ5sOEpQtkCebVsDv0A/nE4ngWGBHtUphYAytZLXTCNb7jCebVuT7X/u9ujU1f7T1uTIn50eo9/0yTOlBad2rcF0+wdCs99FbahJ3gr9UGlSlmT20dR3+KzpSGwWG06HE7VGjc5Py/tjfVtCOzOgVqsZsqQ/nzQc4tGvwRBooFYLlwfg3KGLXktu2yx2dv+9n65D0z7SKSMQAW8iTX8CCVfEGtCUQGhLZ5RaGY4y809HilQoRLuPXuLFzs/HL/VVKhW9xr/lVjxMpRLoAwx0//qNZI/Rf3ZPXurxInp/PUIICpcvwNervkhd5cd0YNUPw8mf8yPKVDxGgSLXCQ9bhuliI5z2yymSV/7ZMkzZ/TUvdKpHyapFaf5OI6Yf+D5Z4ZO+4saFW3zV6huaGTrSMqgTY9/9gdgoL9mjqeCZ58vx6iet0CVYARgC9FR8vixVXnDVIArJEYzD5t09lC1P1q3jIzTFEGFTQZUHVwE7HejqIrL9mNGqZSjKhm8m4eDGo/w2cjHXz92kdI0SdB78aooiPx4gpcRhd6DRZv7F3bWz1xF3XyRXAfcNWocDomPrka3kzAzSLPXE3o+la8kPiYqIxhkX8aXVayhasTCTdozyeejg/nWHWTlrPVaTlUavP8ezL9d0i+T6oOZnnDlwwW2PQO+vZ8SKz6jUoLxPdclsSCnBedNVrvqhPsVSOsC6AxyXQVMGtBWf2LBOZcP3CaNSg/I+/fIJIdLN8D+YQKT0y3Jk0zaef8Fzg1atBr0m808AYqOMLPhmKZsWbker09D8nRdo07sZGq2GtXM2Y4q1xBt+cLlZLh67wvEdpyhXp9QjJCefKi8888jWoMOXf8ZXrb7hwtHLqLVqHHYn73z7RpY3/BD39+llc1c6brsqeDrvuPYBhABNecg2K8skdHlDMf4pRErJX9P/4beRS4i8cY8CpfLSY0wXqjeplNGqpRvSGYuMHgWm5YANqauOCB6C0CRvE1ljCCax14bNlrm/fDarjY/qfMG1szfjcyl+HrSAgxuPMmLF55zefy6R4m2Si8ev+Nz4P46wXKFM3vUNV05fJ+pOFEWeKYRfQOb+jNMaef9zcFwlPvFPArbDyJgpiKBPMlK1NEXx+aeQRWNWML3fHCKu3sXpcHLx+BWGthvNwY1HM1q1dENGdgfTMlxhdE6w7kZGtHdVH00GtVrUZdf6UKxm91eA2ahCGjL3Bu2Wxbu4eemOWxKdxWjl4MajnN5/juKVCnttBoMQFCyTLx01dSd/iTyUrV1KMfzSDNbteGZ8W8C0OCNUSjcU458CHHYHv434w2NGZzFZmf3l/AzSKn2RtmNgP457aQkJ0oI0LkyWrICQAIILT+DkwUAsJhWxUWqsFsGdiOcILdjD6z2mGBM/fTGPTkV60rlYL+YOX5TkAnm+5OjWE26VSeOR8N/uM7z4Zn30fnqE6v8vNq1OQ/6SedJ91q/gBenAI0Qq/tyjq64+6WQ5t4/T6WT3ygNsWbwTvyADTbo2oESVoj4dI+pujNd4eoBL/6Ws+fkTh/0c3ucOFrAdT7a4Sg1rYTFt59iWNWhUtyhW7UUKFvIemeOwO+hbbxCX/7sanxw3/5s/2b/uCGM2DU3XjbpchXOgM2g9kvRUGhU58mcnMDSASTtHMbHXTA6sP4Jao6Z+hzr0Gv9Wpt5QvHL6Oksn/M2FY5cpW7skbXo3J3uesIxWy+cIVQBSUxbsR3F/CWjA8GJit2UJspTxdzqdDGk3mgMbjmKOMaNSq1j90wa6jexIu498V7clKCwArVaDzew5M8hX4ilJGtEUA+mlSikG0KZs81Dvp6dK41aPvW7X3/u5duaGm8G1mqycPnCeI1tO8Ey9sska12Ky8POghayZvRGbxUb1ZpV5b0wXchYIR0orMnoimOaDNIK2EiL4K4TWNUbjLg34bfhi4P+6qFSCgGB/qjd17f/kLZabb1Z/iZQyUxv8BxzbfpLPmgzHZrHjsDs4sfMUf/2wlsm7vyZf8az39y1CvkHe7RjXxD6uNaoqFBHkm05pmZUs5fbZvfIAB9YfiV+GOx2uxuCzPp9H5K37qZYfez+WZVNXM+3jn6ny4jPoH+oqpffT8dbwDqke50lAaMuC9hkgoT9bBUKP8H81Tcc+sfu01zo2NouNk7vPJFvely2/YfmU1UTfjcEca2Hb0t30qv4Zsfdjkfc/BeOvca0zHWDbh7z7OjIu/yAsZwjfrh1EnmK50Pnp0Oq1FK9SlLGbh3n0TH4SDD/AuB7TMcda4sNBbRY7sVFGfvx0bgZrljYIbQlEjnWuNpZ+HV0v9xyrXWWd45CWrTjvtMV5swrOO+2Qlq0ZqLFvyFIz/y2Ld3rUzwFXL9oD6w7T8PVH18l5FFdOXePDOl9gM9swGy3oA/RodWr0fkFERUSTt3hu3hvThSIVCjJr4G8c3fofBcvko12fFqmK18/MiGwzkFHfgflPkBbQ1UYED3L70qQFuQrmQO+vw2J09/HrDFpyFMieLFlnDpznxM7TbqsIp8OJKcbMmtkraNNhPR51YaQVGfszIuQrAMrULMEvpyZx+/IdNDoN2XI/ue4RU4yJKyc9XZfSKdm/7nAGaOQbpJRgXoU0/goyBvRNEAFdESpXPSOhCkUEdPV+r3kD8l4f4rt62Y8iI3tC6ASEoUH6PEAa4JOZvxCiqRDipBDijBDiMy/nuwohbgshDsb9S5NqYn5BBlQqz9mVUAmPWXpyGfP2NGIiYzHHbfJaYi2YYizUbF6FNfaF/HJqEoXLF6B7+Y9ZPO4vjm79jzWzN9Kr+mcZHgEkpWTVrPV0KtKT5n4d6VltAIc2HUu1XCH8UIUMRpXrAKrcx1Flm4XQpH0GbYMOddDq3DthCSHiu18lh/NHLrltxj7AYrTw366jruJfHtjjfMTu4+csmCPdDP/Ov/bxXpX+tM3Wlb71vuLotv98Ilej06BKpLy3f/CT2xhGRn/jCum07Qf7KYidgYx4Gel8fKa1jP4aj3aOmJHR36SJrulFqo2/EEINTAGaAWWBjkIIb07XhVLKSnH/0iRls0nXBmi99K0FqNYk5Q2XrWYrx3ee8ijA5rA72LZsd3yf21mfzyP2Xiw2iz3uvBOL0cK4d6cnWrwtIdGRMZw/eglTrJfokSRy8fhl+r8wlKa69rQOeZNpH//Mwu/+ZOpHs7l58TY2i53T+8/xRYtRPjMY6U1ASABj/x1K4XIF0Oq1aPUailcpwrgtI5LduCRv8dx41LkGdH46ilQoEecHfhgNaJK3r+BLNszfwogOYzl78AIx92I5uvU/Brw4jMObk7/R/jBanZbn29fx+B7p/XW06tU01fIzAum4AcbfcK/tYwHHzbiaP4/BcSmR4xd9oV6G4Qu3Tw3gjJTyHIAQYgHQGkj9X2IyKVGlKN1GdWTW5/NQa9TxM7rhyz9LtDNWUhAq4ZLlpSxKQr/u/nWH3TI5H3Dr8h2i78YQnN17yVyb1caE939kw7ytaHUaHHYHr/ZvxZuDX0uWn/jOtbt8VPdLjFFGpARjtIkV0/7B6XC49Q4GVyz67C/mM2bT0CTLT28cDgen9p7DYXdQukZxt4zlIhUK8eORsURcj0SlEoTlSlltmrK1S5KvRB4uHr8S31pRCFc4ZrN32oBmL1j+xW3mJ3SIgLdS82gpRkrJ9H5zPFxeVrONUa+PZ8GVGake48PJbxNx9S7Htp9Eq9Ngs9h47uVatO/fOtWyMwTbIdcKzuNFbgLrZgh4/dH3q8LBedvL8eS5GDMbvjD++YCE1beuADW9XPeyEKIecAroK6X0qNglhHgXeBegYMGUFSJr91ELGnR8jgPrDqP311OtScVUGX5wzYaqN63MntUH3ApjafVaXnzz+fjfA4L9ib4b43G/EHhP9IljRv85bFqwDZvFFp8stOj7FeTIn53m3ZPeLHr5lNVYzVa3iWxiHbwALhxLWdG09ODErtMMbvMtZqMFIQQqlYqB8/t4ZFCnNvxQCMHo9YOZ2PNHti7ZhdPhpFSNEnz843uE5ghByjHI6LFgWhgX7fMMIngwQpMxhfJMMWbu3/YevBBxLZL96w4/srxDUvAL9OO7tYO4cuoa18/dpFC5AuQsEJ4qmRmKKhzwFpmmBlXex98f8D5Ej8Z95eAHAb18o18GkerCbkKIV4CmUsrucb93BmpKKT9IcE12IEZKaRFC9ADaSykbPkpuZivsFnnzHn3rDeLujUgcdicqlaBw+YJ8t25QfJbkkgl/89MX892Sv7R6DXXb1uSLeX28yrXb7LQJ7eK161Seorn49czkJOv4ebMR7F1zKMnXl6lZgok7RiX5+vTCFGOiQ/4eHk1p9P56fjk9Kc3izR12B06n02M/4QG+DtW8fyeKs4cukj1vWJKDApxOJ62CO3vM/B/w/Ku1+XLhxz7TMSsgpUTeeREcV3B/CRgQ4UsQj2nTKKVEGn+CmKkgzSAMENgL4Z85czXSs7DbVaBAgt/zxx2LR0oZkeDXmcB3Phg3XQnLFcqs4+PYv+4I187coOgzhSj/bGm3//w2vZtx6cQV1v76L1q9FrvVTpnaJek73XuWKrg2Fu2JdGG6dzsqWToWr1yEQxuPeSSgqTUq1FqNWwN3vb+OLsO812+3mq2c3HMWvb+OElWKpvsf+LY/93jteex0OFn/22Ze65c27ge1Ro3aW9OPOHz1OUgpmTVwHkvG/41W73LzFalQiJF/fZ6oa/ABKpWKZ9vVZP3cLV7Pm7xEuz3tCCEg2y+uCB37eRBqQIMIGfVYw//gfhHwNtK/qyvkVwTh2up8svGF8d8DlBBCFMFl9DsAbk40IUQeKeX1uF9bASd8MG66o1arXW6HJt7Pq1Qq+vzQg86DX+PC0UvkKpyT/I9J+vIP9id7njBuXbrjca5MzeQ1c2ndqynLp65xM/46g5YK9cpQ8flyLBy9DON9E7kKhdNjTBeqvui5Cb75jx18//ZUhBBIpyQoWyAj/vo8XfsBREVEY7d5ZlDbLDbu3UreCzEzsnHBNpZNXuXm5juz/xwjOozju7WDHnt/78lvs2nBdo/WjYYAPQ07PpsmOj/pCHU+RPgypP2SK9RTUxIhkmf+hFCDyDp9D1Id7SOltAMfAGtwGfXfpZTHhBDDhBAP0jU/FEIcE0IcAj4EuqZ23MxM9jxhVH2x4mMNP7hmFR9MetutDZ9KJTAEGHjnu07JGjc8X3bGbx1BhefKIFQCQ4CeZt0bMXTpp3T8vB1LI37mb9NvzDk3lfLPlubGhVtuUUiXT17luy6TMUWbMUaZMMWYuXXpDp++MNSrMU4rKjcsHx9BlRBDoIFqjVMetZVZ+GPsCo98FLvNwdGt/yUpGTEgOIB+s3uiM2hRqV2fkyHQQJnaJanfvk6a6JxVEJqCCG3ZZBv+rIhPPgEp5Upg5UPHBiX4+XPgc1+MlRWp3bIa364dxG8jF3P11DVKVitGp69eoVDZAo+/+SGKlC/I2H+HefVPCyGIvhvDqNcncHzHKVQqQXB4EP1n96JywwqsmrUeu5dOT1azjf3rjlCjWeUUP2OynqFCId74LD9Fim4kKMzCzn9CWLMgL8Uql6JyowpJliPtl5DG+a4GHbraCL82CFXG9+uNjvAMCgCXey72XixhOUMeK+OFN+pRqloxVv+0kai70dRuWY2aL1Vxa9yioPAolE5eWYA7VyOY3u9Xdq88gFavoclbDeky9DWPmHcpJd0rfMzVU9fcQj/1/npmHPqeOUMXsW7uZg/5hkADH019hxc61UvzZwFwxv4M0eN4EF1hs6iwOcLwy78KtS5py25p2Y6MfB9XqV4b4Afq7IjsSxCqjF26T+o9i79nrPVoqRgSHsTC6z8qBlwhVSidvDIIY7SJNbM3sG/dEfIUyUmrnk0oUCrt6rbHRhnpWf0z7t+OwulwQjT8OWklp/ef8/Afn9h1mtuX7njE/DtsdpZPW0ON5lXYunSXh0vCaXfwTL0yXsd3OBzsXX2Q80cukb9UXmq1qJqqDmLSGQPRY0kYV6/VO9ESA9aFoEt88zxehpTI+wNwD80zuZJ6Yn5ABHskoSdK7P1Ydv61H6vZSvWmlQjPl/rY7je+aMeWP3YQe9+I1WxDpRJo9Vo++qEHSFdEjze3l6+Jiojm7xlrOb7jFIXK5adVz6ZPdkinQrJQjL8PiYqIpme1Ady7fR+L0Ypao2LVrA0M/uMTqjdNG5fJP79swhhldBn+OKxmG8d3nOLMgfMUr1wk/vidKxFeSxnYbQ6un71J96/fYMn4vzh/9FJ8KKEhQE+L9xqTs2AOj/ui7kbT97mvuH0lAqvJis5PR3C2ICZsH5nycEz7cRAaLyXWLWDZAIGPN/44LoPTm+/cBuZ/IInGf/eqAwx7dQwqlUBKidPhpOvwDrz6yeMrjz6KbLnD+PHIWJZPXcP+dYfJXSQndVvXYPGEvxjx2lhUahXPvVyT3lO6ExQWmKqxEuPmxdv0rD4Ac4wZq9nG3n8OsXzKGkZvGEKpasnrxJaeSCnBtsfVeUtTHqFNXlBEysd1IkSWqoOZ9Yy/3WZn98oD3L4SQemaJdL1D3nBt0u5ez0yPtrGYXfisFsY3W0qC65MT5PZ3MndZ7zGfAsBZw9dcDP+JaoWjc9iTYjeX0elBuXQaDWM2TSU1T9tZOOCrfgFGWj5XhNqtajqdewZ/edw7ezNeJmmaDNWk5UJ781g2LIBKXsgERrXYMMLKs8XkHcZfnhP6gGS6POPjTIy7NUxHg17fhm0kCovPEOxioWTpksihIQH03nQq3Qe9CpREdF0Kdmb2HuxyLiZ/5Ylu7h88hpT936bJqG2Mz6dQ8zdmPiMdLvVjt1qZ+w705h+4Hufj+cLXL12O4PzRtwBJ1JfFxE6ESG852akajzpRMZOg9jZIKOQ6mKI4C8R+ro+HysjyFLG/9rZG/StNwhzjBm7zY5QqXimXlmG/tk/0cQdX7Jt6R6vTV5M0SaunblB/pJJyCZMJoXLFfDaTAQhPHoL5CmSi/od6vLv7zvijZpGpyEkPJgmb7ly7nQGHa16NqFVz0TiWROwedEOj5eJw+5k96r9OByOlPmuNSVAUxDsZ3Cvp2FABCStpaNQ50Bqy4PtIO4vAT/wS1oE1a6/96NSexpdm8XG2jn/ptr4J2T1Txuwmm1umdl2q50rp6+nusm7lJK/f1zHou+XExURTYXnyvDOt53Yu+ag11IkF49dxhRjwi/QN0XcpLS6VmyOK6ApB7paKX6ZyfufxtXZSfA3Z9mGjP0J8YgVobSfBfsF0BRDaAonfbzo78A4n3j3oeOsax8p268I3ZPfqztLGf8RHcYRefOeW4LQ4X+PsXTiKl7rl7qlelLwD/beD9Vhd+IXlDYVEZt0a8iCb/90M/4arZq8xXJ5NRqfzHyf0jVKsGzyKozRZp5tV4M3vngZ/yTot3/dYWYNnMeVU9fIUzSXR5z5A1ITQyCEgLAfkZHvgv2iKyFHOiBoAEKXtIqdUjpcLxHbgQRH1eDXPMm9BmwWm9difFJKt2Q5X3D+yCXvMqXk8slrqTL+swbO489Jq+Jf9jtX7OPQpmNo9d6/+kKlQqPzjVmQ9svIux1cZTGkxVVfR1MSsv2CEMn7PkhnDFh349lr1wzGBV7dgVKaXIld1n1xrkRbgpXCowsASmdsXDG4h5PmzMiYyYhsaVKbMl3JMk6siOuRXDh62SMz1GKysmrmunTRoU3v5hgeKh2tUqsoUbVompUkCMsZwrgtwylVozgqtQqNVk2tltUYvW6w1xmWSqWi5XuNmXl0HPMuTqPnuLcICQ9+7Dh7Vh9gUOtvObX3LMYoE2cPXsBus8fHmcfLV6uo+mLFVEWsCHVuVOHLEeGLEWEzEDl3oHpc8a0EyOgxcY3l3dvyCX39JPttazSrjNPu6TrS++up90rtJOuSFEpWL5ZoyfEiFVKeXBdzL5alE/52c11JKbEYreQsmMMttwRcxeyebVsjSatkaTuJtGxGOrwUPHtwzf3+4IwAGQvYXS8B2wlkzNQUPM2jXrjeq+DKqK/Butd1Xsbg2jfahoye8PjhnLfiMoG9YD/9+PufALKM8XfYHSS2mvQWu54WNO5SnxfefB6dQYt/sB9+gQbyl8zDV7+nba2VIuULMnnn1yyP+pUVMXMZ/Ee/x5YJSC7T+//qUX/I6ZAIAX6BrhWPX6CB0Jwh9J3eHmmcj4yZgUxBP98HCE1xhK4aQuWf5HuktMbN2B42CBZkzKQkywnLFUr3bzuh89OhUqsQwrX5/dzLtahYv1yS5SSFxm8+j1+gey8KnUFLiapFU7RnZbPaMMWYuHzymtcS5w67w9Wusmnl+L9Vvb+e4lWK0ueHdx8pWzrv4rzzMjLiNeS9vsjbDXBGjfRYJUlnFNiO4Ln3YoGklFF+CKHKBmpveS8a0Hv22pVSgmkpnjN3i6tI3+NQ5UqkTakATcpXYpmJLOP2yZE/OzkKZOfq6Rtux7V6LQ06pM8GjRCCj6a+Q8fP23Jyz1nC82WjdI3i6VYbJynVSx0OB1dOXsM/2J8c+ZMetnjl5HWvxx12J31/fI+Lxy5ToFQ+6rVyoDa2Q3e/JlIAACAASURBVEZJwA4xk5CGJoiQ0enzOcgYvNbeBnB4f4bEaNu7OZUalGf93M2YjVaee7kmz9Qr6/PnCAgJYMrur5nW9xf2rDmAVueqFtttVNJXO+AqiDex10z+Xbgdp9NJnmK5sZg8a/0IIchfMi9f/f4x187e5Pzhi+QplovilYp4keqOvPcJ2E/gmsnHHTT+Dtoy4Ncu4ZWPkJLIZvxjECHfIiO7gLTjWgn4xfXa9VY00UmiqwVp8n484Vgqf6T/m2Ccg3vIsB4R1DvZumdGslSS18m9Z/m00VDsdgdWkxW/QAO5CudgwraRSfJpZ3W2L9/DmO7TsJptOOwOSlQpyqBFnyTJJfV6ofe5fdmz/lBIeDB/3JoFuGbd8latOAP8EJrKiGyzEKq0CV18gJRO5K06IO96ntTVQpXt1zQdPyP59MWhHN160q2Mt0qtQq1WuQUiqNQCIVQ4nU6eeb4sfX7okaRSJNJ5F3mrHl6NqqY0qvDlboecd9qB/RjuLwIt+L+BKnhgMp8uTgfHTaTxd3BcAG01hF+rRLO2nRGvxW36J0SAri6qbD89fiwpkcbZEDsTnJGgKYUI/iLJe08ZRVKTvLKU8QdXmdy1c/7l5oXblK9bmrpta6Qq6SircP7oJXrX+twtLFSlVlGwdD5mHB7z2Nnsqp/WM+XD2W7+Y72/nm4jO9Luo5cAkJZtyHu9vRt/BGhroMo+x+OMlFaXH1UVilCnPiHOaVwCUUNwd/0YENnnIrSpq3WfUdhtdk7tO4dGq6Z45SIeYcOXT17l/Sqferjm1Fo1+Yrn5vq5WzidcTNuKeMT/YQQBIYF8MvpSY/NKZD2S8g7LfDqY1flQZXz34euP4OM6AjSBhhBBIAqDyL7wvjeuWmJtB1H3n0jromLDdCB0COy/47QZN5chtTy1Gb4hoQH80rflhmtRqbDVUXSPVLC6XBy48ItTu0791jfctO3GmKOtfDrkN8xx1rQ++noOLAdbT9snuCqR00kJNgOIu0X3fr8Oo2LIXoEIFzRGNpyiNApCHXKM2lV/u2QqlCXj99xDbRlEEGfILRJrwuU6FPY40IN1UXSzZ23Z/UBRr0xAafDiXRKAkL8Gb78M7ccjmtnb6L5X3vnHR5HdfXh98z2lWTJcqEZiAkdAoReA4QaTO89hFCSUANfKIEQWkLHIQk19BJ6x/RiCJAAhgCmB2MMprjIstr2nfP9cceypN2VVtKudmXd93n8eMvszNFodebOuef+fkF/TvLPprM0Lj2aa9++lLeff58/H3wVifbFyVtVSSVSPHvbVPY5edfeA/FNAKcW3J7J3w+hXHsO8a8M416CxJNo9msksDaEflqWnvx8SGBNGPskGrsT0h9D4EdI9BDEN35Ijl/tLHHJ35KfObPmdVsFvAjH52PBd819fl5E2OuEXdjjuJ3paIkRHRXJ7egJbkSvFwAJoql30I5/QPpDY4OXeoNuk3Lp99HmY5CxD5pJu+TTaMet4C6E8HZIzVFm8q+veMM/RcK9+gX1C818gTYf7xmCCDj10DAZCeZfAFcq5n49n/P2vbzbHVu8PcFp25/HPd/c0KnfNPFHK5DK49oWCPlZc7NVCYaDLJzTktcnIRlLMfP9vv1oRRwY9Sd04cmY35kLhMCpQ2p/k/8zTi1E96dSlifiWwap+12Fjl7dLDHdPpbeWX/7dXJa+8D0s6/aj44Sx3GoG12bt5VTJIQ0/IWCYwpNQNu5EH/Q1IJTr5DbjZGBzP9Msm2fjLacYfr1szOh4zZ0/p6mk2QIUU2Z8kF2BqbkEQf3e7T5l2g2dx6klDx3+8t5L9qZTJZ/P/525/Pxy4/lJ/ts2s0uVBwhFAmxx/HGeH3FtZbP2xEXioZYZYOViopHwtsiY+6HyD4Q2ARqf42MfRLxFbn6ukpQTaGJZ9DYP9H0ktG62V9G7Mg/GU+STmaobai8xO9QsMvR2/PI356iec7CzvJPuCbEpGO2L+kaBAltjY55GJr2xyRKb6QpEZBR4M4pYid+NDMTOm6m++RiGtxmNHZ3rys6S07yJXPh6nlXo1k0/ghSe1RJDzfro6+599JHmTn9K9KpTE65DsDNuLTO734R/N0tx7HCmhN47OpniLXFWX/7H3HMpYfRuLT5/a6xySpMXGdFPn9nZueksOMIkdow2x+2dc4xCiGBVZH6Pw3iJ6wsmv7MyESQ6pQSMR1pl3RbB6LZOZB4ynQHhbY2ZaQliBGX/Nua27nyqOv4z5S3UVWWW3lpTr3pN6y56aqVDq2s1IyKcu3bl3Lf5Y/y2sNvUtNQw94n7sK2ZXB+cgKroeOeRNv+Asl/Gc/TwI8gWeRiO00DWZCQN1nXlSQkXy1O4K1UZOd57YU9Sfa7fbQvPnjtE87Y6ULSyTRu1u3W+9+TdXqsN/D5fRx85t4cfKZpuZw5fRZffvA14gjLTFwKEeGSZ87mxjPu4vk7XyGTyrDRz37MbyYfQc2o4tdSDGdUFV34a9Aepc7ks5DYAiJ7AuDGn4aWReWiDLRfi0b2RkblXzw5HFniun16Q1U5fpMz+eL9Wd00acK1YW6cfiVLrTi8bl3LyVtP/5frTr2d2Z99y+il6jnk7H3Y9dgd+/XFV00bLZT0W15CL8YNLGLMsUM/QZsOoHuPNYADkT1w6i/px08zODT9Edp0IDldLhI1o8Vw3zpIxXLMev+Xt/4ujnTW68M1IbY5YAtOvfHXeffR0dLBWZMu4vN3Z+L3+0inMmyx58acfvsJ+Pwj2yvAjPr3y9/rH1gfZ8w9qNtu2oVzft8RpOE6JFTaFd6lZsR2+/TG5/+dyVcfz84RI8uk0jx2zTMcfUn/bBOXRNqa25ly/XPcft79naWBpm+buf7/7iDRkeyXnLHG7vUSf2+LakJG70UTxmwl+gskvK2Z7PX/wFtK3/X3FUSixQm8lQoJrImGtjJ3HJ0XoxD4JkJou5IdJ5vJ8uX0r/LHIMJaW6xGIORn0jE78JP9NkNV+fD1T3n1oTcIhPz89OCtmLj2Ckw+9gY+e3sG6WSmc0bl9Uff4r7LHuWgM/fOu/+RQ5qCU52L7jJTr+WXFdc4mni06pN/sYyo5P/9zLk5WjQAmVSWrz6ZXYGIqov7Ln+M2865h0wqk6P4mIwluevCB9n7pEnFjx7jD/SS+GuANIS392qt3SejjcDbjejCEyH9gfljxA+jzq9I7VUarjKLi+L3mLuYyO5IzREl9YJ1fA7BSDBHRhpg1JhaJv/rgs7nqspVv/kHL9z5CslYCnGEh656ksPP3Z/XHnkzZ4CTjKd47JpnbPL3rw4EgY4eb4Qh0tfARrx/vaOaBaTq9f9HVPJfad0V8+rZByNB1tp89QpEVD28+9IH3H7ufbnS0F1IJdK0NbfTMK5vj1lDoWX8Yag/Fwlu1mvPtfjGIWPuRrPfg9sK/pUqZrwt4uerr37C+y+PpWHcKDaZtD7BPpQhu6KaheTzaOJpkDokum/OgjMRYdIx2zPl+ue69euHokH2PGGXbtt++PqnvHDHKyS8C4Vmjdrobefcm7c7CCDekV8AbSQh4oOGyV7dPwukQKLgXxWJHmQ2Cm5RYI4njIT3KLhvzcxCW8+G1FuAg4a2R+rPQ5zyiDoOlhGV/JdbeRk23W1D3pjydmfftONziNaG2eXo0t2+D0ce+ftTeUecXQkE/f1zlors5Xnx9kg6zmgkvHvR8wfiWxp8Sxd/3BKjqlxx1LW8dM9riIDP58MX8HH5i+ey0jorFvH5LNp8NKTfMcqWOGj8EbT2OEAh8TRILVJzGL+86BAWfNfMa4+8ZXwakmm2O3grDjxjz277/NeD/8lZ0AXGBL6usTZn7YbjCBvuOPw16EuBhDaHsc+g8YchO8eYs4S27RxYiFOL1l8BLadgRvoZwA/R/SC4Sd59qtuGNu0H2oKpF7mQfAFdMAPGPFGVk8QjKvkD/P6uk7jvskd5/LpnSbQn2HjSBvzyzwczqrH8y82rmdb5bb2+H64JcdDv9+rXhKFED0ETzxlrRo0BYRCfp6defX8MhZh67+u8fN/rOZr7f9j9Yu6ceU3fP0vy+S6JH8wdUQLarwQCLGpn1Zbp+CMHcdbdZ9D0XTPfzfie5VZdltHjc++0AqGAmQTOdi/PiQg/++VPeXDyFDKpNJl0lmA4QLgmPKRzWpr5yqud15pVvUU6qA0V4lsaqc0/YQ7gRHZAgy91afXcBgkU7gjU+MPGs6DbREHarDBPvQGhTUsXfIkYUd0+lsI8dNUUbv79P/OOJuvHjeKQs/ZhzxN+1u+krepC6nU0Nc2UeMKTEKfYslF1cOq2f+T9l3OlqcO1YSa/cn6fapjuwlMg8USRRwsh454zdzu9MPODrzhhkzNzfl+hSJB7vrmBtuZ2Hv37U8z6aDZrbb4au/16p6J8Gwqh2e+9SfkV+qxlu62XQex2QDo18WX0DVUviDYY3JY/FJCKDiOjzlxcUhoCbLdPGYm1xXn5vteZP3sBq228MhvutG5Z/HmHkp8dtR1P/uN5vv9yrplAFCEYCXDs5Yez268G3soo4kBoSyRU+vUEQ0W+RVYAjkjeOaQcpBbTYVKElLEEjBKlb+deN5u49gocceFB3HLWPxHHwXEEN+vy+3+eTG1DDbUNNfzqiiP6Pl4faPYbtPkEr+vKAWcU1F+GFBjJavLfELuTzpXb3thSm38F4//dp4PWsMW/FhAFYt1fF8d0s1UhNvn3k5nTZ3HK1n8kk86Q6EgSqQ2z4poTuOzFc3NcvIYTkZowf3/zYp655UVef/QtGsY3sMfxO7Pahj/kP0+8zbeff8/EdVZg3W1WhditnlGGQmRPpOYXiOS3sBxKNPstpD8C33JIYI2B7UPjkHwdyEJwc8SpZbtDt+KL97/spq8DZlHVKuv3LYsg0f3Q+CMUcpzqEYHRPCqCfX+7K9vsvxlvPvUugaCfTXfboH9zMn1Foi664FBvIZt34XLjaPOxMO7JvAqsGn+A3LUZAOqVP7YqWXzVhER2Qzv+5oneLbrIB8G3MgTWL3o/6rYbHSvfUmUXwLNln35y1Nq/ZdZH3dtCg+EAB56xF4edU5w/7HCh6btmTt7ybFrmt5JJZfAHfFz20AxWXrsd6ewgDxvVzMa7K9bapppFW8+C+BPGJ9bz8JXGGxGnofj9JF9GF55EZx+4ZqD+EjLO9py2/XnMeG8WifYEgZAfx+fwxwd/x0Y7FTeJ6nbcBm2XmZE94o2IU3SXr3CM5PG4F6qiTVCTr6MLj/NsGLsSgJqjcOp+m/MZt/lESD6duzOpReov71VsTzUF7nxwxiAy/AZSmv0ebf0zJKea1uTwHkjd/xU136GaRFv+6JUHfeZ7Uvc7nOgB/Y7Dln3KwPxvmvjui1xtmlQizXN3vLzEJf/Jx1zHvK/nd2q/r7nBQiZMbEa6lS8SkPkUUq9DhUo7GrsT4k9htFq8ZJr5GG05Axl9XXH7cJtNeaPn6LzlNALjnuWKqefxxhPvMO259xizdAM7/Hwbxi8/tugYnZqfo5HdzOhXohDcDE28BK2/B9RcsHwTkNHXVkXiB4yPbV6V1rSnbpqLRCahyZfJGf1rBoIb5/2Mqhql145rO60TNXqokeGulnORB1XX3OnE7jQXyPBOSP35/RpwdO6r5RxIPEnnYEDj0Ppn1BmPhLctbeAeJUn+IrIzcBXgA25U1Yt7vB8Cbgc2AJqAA1T1y1Ice0gRKShYPJDulUw6w32XP2b6umMpNt1tA47800GdQlyVJJ1KM+2Z9zoTP8Dq63cQDOWpW2vM1KkrVdfPsdoDSEPyX6jbXpx7WOIZEMmT6xQSU/DVHMXme2zE5nsMfNJSnEYI/2zx88hOaPinxhZRahF/ccqaQ0Zg3U7hs+5EkGCBVa6hHcz3oHM1tLc4r/5PBX8PGr8f2q+m2+8wdifqhJHa6rVM1NazIT6Fzrg7bjfrOMY83q/uJnXbITGFXIe0ONpxXdmS/6AvqyLiA64GfgasCRwkIj2XYP4SaFbVlYHJwNAJs5SQscs2MmGVZXJkcYORIDsdsU2/93fhgZP554UPMver+bTMb+X5O17hNxueTkdrrO8Plxl1NceUu+n7AMlEvq9MxBheV4qcssQixFPjLGYf8QILe9Lmj7NMiASQwDoDTvyqLpp6C40/gWa+Lm1s/okQ3hnoaoEaNGsuIvmNX0QcqP8L1BxlVtMGNoLG23EivRgstV9D7sU7Dh235HwHqwXNfA3xx+kedwqyTd78Tj9wF2DGzXkosXBgV0pxT7Ux8LmqfqGqKeAeoOcyuD2A27zHDwDbyXBq9O7CWff8lrrGWiK1YRyfQ6Q2zKobrMS+p/TPPWzWx7N56+l3u7XqZTNZ2hd28OxtU0scdf8JhoOstcVqSBdVyX9NqSebEdyeg38JdBvRDjmhrcn7x+NbqqjJU9U0mpiK0X3pSRgJlWfk1Ref/3cmZ+9+MQdOOJZTt/0j7039sNv7mv0Onb8T2nw02vIHdP4uuC1nmfbaEiH1l0Dd700i960INUciYx4oOMGvmoAFB0HsJsh8YtY3NB+Bpt4qfBC3Kf/rGiP/76QKSE/3JEd6EofUv/u3L98yBfbl9GuyuL+UIvkvB3Qdcsz2Xsu7japmgBYg569SRI4RkWkiMm3evHklCK30rLjGBO6adR0nXnM0v7jgQM575DSufPn8TkelYvn8nZn4/LmnPxlL8eGrn5Qq3EFx6o2/pq6xlnCNmXxzfDVcdPzGqDMRCJl/vpWQxjvKbszeG1J7MjgNXkxgSg0RpP6iospx2nGDMYzJwQeRnaECvr8fv/E/Tt7qD7w55W2avl3A+y9/xFm7/pnXHnmzcxttPgGyX3tJsgNImknv+EMli0PEwak5AGfsYzjjnsOpO6VX/13tuAMyn3VZ0JYEjaHNJ+JmCywkLNQK6SxTva2hvvHknw8JGLvLfiASgNpT6X6H5YCEkbrylb2qasJXVW8AbgDT7VPhcAoSjobY/tCfDGofS08cn9dSLxAKMGH1wZuYl4LlVl6GO2ZczdR7XuOrT79hlR+vxFb7bkogFDBtlWhJDNcHi/iWhrFPobG7ja6KfyISPbybV3CvxO6hYBtm3bndLiCqLiSnoolnjMRvdJ9BewO3zG/lwclP8OaT/2X0Mg3sd8pu3HH+/TlyG8lYimt+e4uZd3DnmIn2nLUDcTR2JxLdd1AxDZjEo+Q9l9oE8zbDjR6K1J3WbSJXRp2BLvhlj8+FzR1HtRLYAJzx5uJL13kRPxI9uN+7c2oORn1Lox3XmlJPYH2k7qSyGs2XIvl/Ayzf5fkE77V828wWI6BRj5n4HbGsudmqLLPSUnz9yTdk0ou/PP6Aj12P2b6CkXUnWhdhl6Nz4xHfsiXZv2a/NR696engX92sGfCv0O/9iNPgLdcvvGS/cBCF5gUEIc2iEZmqiy483nQ2dWr0PITWnYRT88v+HxeT+I9d7/9obWozi8neg+mvfEw2nX/xWNM3C0jEkoRD5vj5f55Kzhn11puegtjdqNOA1P6q81UJbgSNd6DtfzGlIt8PkNoTi5ZONhfkZ9HYwyCCRPaG0A5llRAREWi83fgZpz8AfMbLuP6SAX1/ofS+031RirLPW8AqIjJRzD3agcBjPbZ5DFgkwr4v8KJW60zOECEiXPr8OWyw47r4Az78QT8rrjmBS58/h7HLFbfIZ7ij6f+h8yeZVrn02xC/F23aHU2/X7pjZL7GbT4Rd876uHO3xG2/Fu05sRvahrxzBv6JiNNFEiH5cpfED50aPW2TB+zl+9BfptDa1N5tFXEyliSTyddlY+ZiguEA+H4AeTtKglBCc5lFqCpN3zXTuqB3DSgiB9K9fNGTOHTclPOqBNfFabwFZ/y/ccbcXXTid90EuuAgdOGpkHoJki+iLacZ7+cyI76lccbcg4x7ERn7GDLuFSMSN0wY9MhfVTMicjzwDOYv6GZV/VBEzgemqepjwE3AHSLyObAAc4EY8TSMq+fCx88k3h4nncqMOHE5bbuwR6dOBjSDtpyLjB183VqzTWjTPqCtgAvabuz4Mp8hDZM7t5O6U9HUa+C2Y0oPQRA/Un9R9/0lny0wqvYbEbNIYbnfQrz51H87TXO6EgwFzKLYLu+FokH2OG5nfD7vQlV/Gdr8G4zqpHeH4huH1Bzd7zh646P/fMalP/87c7+aj6qy5marcuZdJzF22cacbSW6L5p61VwoC5XStAVVHfTIXNOfwYIDze+12xsxSDyFpg9HAmvl/3AJ6U2WvJopSc1fVZ8Enuzx2jldHieAJWsFVAmJ1EZ6HSstsaTezv965kNUM4PW7tfYPz0zmR6L0hLPo5nZiN9MzJk5g6fR2AOmO8X/QyR6UK64mtSQV6NHxBjUD4Axy47m8//OzH1DhN1+vQNT/vGC+VmyLrsctT1HXLB43CShLWDs42auIzsbglsgkd0Rp3R+vPO/XcAZO15AvH1xIv/g1U84dZs/cssnV+VoWon4kNF/M9aXzceauYme+FcdfOJXNSW4nom/kzQkX4NBJH/NzEDbbzBlncAqSM2vkMCS4/tRVRO+lhGG1JBr0A6ma6cEXrPp/9IpMNbtuEHTkeJf3JUhziik9kjgyIK7k8g+xs0rZ0QrEBpYA8C+p+zGuy992G1y1xfw8cN1V+BXVxzBkX86mPnfLGD00g1EanLbK8W/AjLq9AEdOx+u6/LF+7MQESb+aAWeuvEFMj3mH9ysS/Ochbz/8kest+3ana9rdi7adhEkXwR8ENgEUi2Y38GiKm8YqTtr8IFmv4Ls971sEDQidEXgxqdA+2Qjv+xbDmpPRfwT0AWHeDLNLmRnmBXZjf9ACqxUHm7Y5G+pHNGDoONmuifTEET2Lc1knX9lI6fQs1dc0+BbPu9HekMCa6B1v4O2S7v0ZQsy+voBC9utt+3aHHPZYfzjtDtwfEomleSHa7dx7g1TcJvbCdT/iWV/ODRGNh/9+1PO2+fyzlF+dFSEieuskFfVVF1l7leL5zlUE2jTvuDOo7P7JfWKaXv0rWBUQf0rI7UnIMF1SxBthl4tFQVvgVrvuLHHoPVsOr+D2VnQchrqLEN3C1IXiKOt5yFjpww87CrCCrtZKoZqGm05HRLPeYJsKQhtgTRcVRJhL818jTbt1qNOH4TAOjhj/jnw/boLjPKnRIxcdQliTbTN4ItXD6a+sYNlVlx0NxSAwNo4Y/LpxJeWtuZ2DvnBr4m3db+rCYaNaUxPRdNgJMjVb17MD9YyF1GNP4S2np87JyJRpOG6ghLQA0VV0Xlbg5tv9B80/gGhzfvcjzt3G3C/7ceRBVnqw4rZiRaDFXazVD0iAaThSjT7HWS+MEYh/sIjcs02oe1/Nc5YEoXowaafX/KXiMS/PIy+1Sh+Zr4AHAjviIw6v19xauIptO1vJtH4VzV96gXkDQZKUO9m9R+3YUa0i0hD+hM0/SkSWK2kx+vJ1Htfx83mDgQdn0MwHCSbcTu9C0LRIBvsuG5n4gfQ9Ee5iR+MZEbms5I7WYkINFyFNh/p6Q8lMIsOJ8CY+3pdiNYZmmo/Ez/e3E4JSpJVgE3+loojvmXMEvdeULcdbdrLSP4uSpBtk9H0dKThysL7Dq6HjJ1i9Hkk2O8Vo27sXmj9M50aLul30AVHQOOtSLCES+8zX9A98XuID7LfQI/kb8TAnjHSCMGNILDeoEplC+e25NhUglGs3efkXelojfGvh94gFA4w6dgd2fuk7oby4l8ZJUKORo8EwN+709lAkeCPYdwLaPwx48Ub3BhCPyk4GMj5vAjqLJV/UpooZp6i688ThshBw8qCtDds8rdUDapp070h9TlSvhp/CNwWuifIBCSeQzNfIv4f9LrvgchPqGah7QpyRccSaNsVyJi7+r3PggTXN6uTe05Qayo38affNxcgdTFKkAEIbQ4Nfy868fVkna3XJBQNkujofvxgOMCGO6/H2lusznFXFZ4MJ7wrtP1l8QQpAH6zCjZYvt53cRqRmiMGvoOak6DtLHKlGpIQnuSpvQbM7yH8M6TulEFEW11Ur1i2ZcSgmsFtvQSdsyE6d0t03pZmIq4rqTfJ6xAlfm+FZTkCaym8Wjbzad6XZ308m6n3vsZnb89As/PQ1Huo29rnoSR6sClldfuTDJuE00VCQ9VFm4/zWhxjmIuh5z42CE2fdX6yJj/aag1CXdzowtEQ6267Nmtt3nfJSZxaZMx9ENzE+xn8xrh9TOVMfopBAiuRfwwsxlRm/L+QxluR8a/gNFxSdnetocSO/C0VR9sugdi9dHZcuPOh9WzU1wDBTdHY/ZB6F9PC0XOEplAiqYkcpM6UXfL1RPQ4ZjqV5vx9r+C/L0zH53dws0lWXK2DP989l9pRCTR6CFJ3esGSgTiNMPZhtO1KSL5i2mCjh+aOajOfguZbZRtH4/cj0YEtpxERzn/0dJ655SWevuUlRISdj/wpOx2xTdFlDvGvgDTe5q2glgHfhfSGato4ZWW+hMCqENxycMdx53jNBj0X2mUg+7UxZhmAOctwwCZ/S0VRTXjCaj378RNmklVuMLo/eX1h/SYJB35clthEAmj0COi4lZ61X6k9sdu2d17wAO+8ML1b3XzGh2H+dkY9Z17TYjRtfBOQmkMLH8+3LNJweR9R9dadNzgpZ3/Az6RjdmDSMTsMaj/l6oTR7Fx0wQHG41aTJmn7loPGu7vLcPQH/48K+DhEINh3t9BwpnrvxywjA7eZgv3a2ZmQ+YCCiT+4CTL69vIKeNWeBDW/8Fb3Bow/wKhzkXB3sbsnb3g+Z8I0k3J4dUo9mTRAHGI3Dz4g/+peLD0DjUC4QkqeQ4S2/sEs7NIOjBRIDDJfom2XDXif4p/gyXJ0XaEdAF8jEtlrsCFXNXbkb6kszlhvQi2PDoyMAjefV2wAak/EqT227OGJOEjdyWjt8SbZSG3eGnYynAgI7wAAHDVJREFUT6cMgOsK2YzgD6gZsZYgHhr+ijYftbjFUaKm2ye6T7dt1W1GO26G5EvgNCLRX5TNErDcqGZMOYyegndpY4FYf8GA9y2jzkcD6yz24g3tiNQe2y8rxuGITf6WiiISQGtPytNVE4bQdhDPUxKS4JD7CIj4zcWoABvuvB6vPfQGbjePBuWHa8UJRRQQCPS57qYbqimjTxR/EFQhshdScxgS3ADGvQSJKWi2yUgiBzft7jvgtqDz9/AsAs2FSdPvoZnjcGqP6Vcc1c/gyl0iDhLdH6L7lyie4YEt+1gqjlNzOFL/Z/D9EKTWJLIxdyG1x0DeThEfhLcb8jh749jLDqeusZZgxKwjCIRcIrUuJ182G/CZla6jTit6f6qKNh8DbVeaSd7sZ9B+FbrgCFRd418QPQSnzuje9yx9aewOr6TW5Y5E49D+N9TtQ5a5ChHxQ3BTclOWH4Jbo+kPyuq1vCRiR/6WqkAik5DIpNw3Gq43hhmLxMGkARl9DTJAFc1ysdSK47j5k6t46sYX+Og/nzFxzQiTDv6EMePTpiRTc3T/TD7S0yD9Lt11jxKQ+ch4xPalG598hYKidumPILRJ8bFUCVJ/Idq0nym/acyUu1Qh+Tya+hdoGo0egdSdssQsxConNvlbqhoJbQrjX4PMx4Af/KuV7Q9bM1968sjfIqGtILJ7vwTbRjXWccBpexZ5rNlAwngg57u7Sb3jLZjq+cEYmnq7b9MQZ2nytsZqEnXG9CaJVrWIbzkY9wIknkYzM037b/odIL24VTN2u9dVdUBFYx0O2ORvqXpEfBBYu+8NB4Emp6LNJ2IWTWXQ5CtGcXTMAyU1p9fMV0aHPvOlKWlJDdRflitC5huHkbbuucgsXJR5iNQcgSankis/nYbW89DGm4bUHF01jsYeguRz3uTzIWbuotfPpI0aqNR23jWJRCCyF2gKnbM+3cpagOmq+gfY5N8ntuZvGRaoptB8I+GS7DuLLjwdkygX9XzHIfsN2nFLaY+z4FAjdEbClC7ceWjzr9FsD9vr0E5dZKO7kkR9E/K83h0Jrg+j/kjun7hC+l2044beY83MRmN3o/GHi1qh3Ou+NG7KNW2XGhvMxBR0wZG4HXcU/Iwbfwqduym64BB0/q648/c0AoCdO41RcM2D2zyoeEcKNvlbqhrNfo+74Eh0zrronPVwmw5FM1+V9iCZz8kdQQIkIfFU6Y6Tet1bnduzOyVjVjF3QZwaGH0zeZP3wuOL8gyW8HZ5Pg+QhNiDBT/ntl+Nzv8Z2noR2nIeOncrcyc0QDT2IGS+YnE3lyeY1nYxbvJ1esrKa/oTaDndnCvtwMx1fOJNdnvbSr1pE85BoI87CovBJn9L1aKaRpsOMBOcZM2/9DR0wQGoW0BzZyBIxOuZz0MJSz7G6CTfaDVtXKR6huXOzW8PqXF0/s64zceh6Y8LH0+zFP4Tz/UNBtDUe9B+PWayOIEpO8XRhSeibkfez/RJ4lny+/mmoflYtGkSmp23OIbYneRejF0jxZB+HzByFDLqXCDM4kWCXldVXfFdVSMZm/wt1UvyJYz5etfE7IIbh8TTJTuM+FfwZId7/jlEkGhhOYZ+E/hx/ouMRJHQZrmvu3MLSA+oOS/J59GmA03CzoP4xhSQUw4YFc58e44/TP67IIHUv/J+pk+c0RR23UpCZqbX0eWR/Y78vfuOJ+ntRRTeFmm8w6wH8a1s1kGMeRTxrzywOEcYNvlbqpfsV/k7Xoih2Tym54NAGq42OkFSA9Rg7CT3gvBupTuGfyKEd6G7lACmAyf9aW6femA9erUq9Mon2nZR4WPWX2YE6ljUtRQF3/JI7XEFPpEmb+JV8oifFYfRM+qtayoL6ffQbJN5Gto6//aagkB3C0gJrosz+hpk7CNIcAu04zbcjltRW/fvE9vtY6le/Kt5ios9R79RxL9GSQ8l/gkw9nmjqe/Og+CPy7KKWOovQgMbQduFLO7kyULsTjT1Kox5pFMYTQJroqEtIfkq+csmHl4pJO/xAqvDuBc9w5OvkMB6EN6hYKePhHdBE1PySFlnILRl0T9nt30GN0Lrfuut4k6Rv/TleMccg0T2QWO3ewbt3l2IRCByGOLLrfMbo5/9vdJZDAgbx7fGO5DAWgOKeSRgk7+leglu4Zl/z2BxjdoPvrHQQ1gtH5p6G40/AJpAwj+D0Pa9asuLOGVf/CTiQGAFNKcFPwXZ2ZB8EcI7Lt6+4a9o7B6jfJr9rMBes6hmC9tZOvVIzWHFBRjc3HQaJZ/29JZ85t+osxFndHH7yINTcwQa2cd4NidfIkejx6k3Fox4k91jHkI7boPksyB1SM3PIbRj7o4B7bjWGK93fkcSpjK28FRkXOnKg0sa1sDdUtWo22407hOPAy6Ed0bq/q/PROS2X91l4lKBKIQ2Qxqurri5iHbchLZdQV7bxujROKN+l/dz7vdr5v8MDjL+zYHLGveMT9VMrCeMV7JEdjclq1Ls212Azt/LE7mLAwHAj4y+tijD9dxYE+icTciv/BpCxj2P+JYaXNDDDGvgblkiEKcWqT8H6s8p+jOa/R7ar6O7vEHMdA2lXoXQT0oSm2ZmmpE6fgjvhPiWLu6DvmVBQnnKWZFeDezxrQbZD/O8UWs0kUqEiEBwIyMYV2KMac0UNP4gpP5j5h+ihyD+FQe0P205k/yJH8zchU1xhbBnxrLkkXw9vwOXxtDEc0gJkr/b/nfvzsIFHGi7HB11Hk50774/HNrOay+Ns3hyVYy0dTiPvtEi6k6ChceS84M5dfQ+MVx+NDPLlKfc75DglhDZtaA0hji1poxT8/PBHdNtgcRzhTcIrGk6nix5sd0+liUPJ0r+ZOjzEuXg0PQn0H4D5s4i7f2fhNY/Frf4SoJI4z0Q+BGm7BEE/6pI4z+RXuITXWi2zQmoGdJvD+hnGSyqitt+Ezp/F4jdCokn0bYL0Pl7lV9l020qsAoawEHqryzv8Yc5gxr5i0gjcC/wA+BLYH9VzemxEpEsMN17+pWq7j6Y41osvRLausAbASRSxMi8DzQxhfy98A4kX4Bo37oy4l8BGXM/6i4A1aJGqJqaTl6lTs1C+hMI9s8vYLCoG0MXHAGZd3u8EYfsbDR2O1L7m8UvaxoyX4AzCvEtM/gAfBPIf5EXCE3qvYRmGfTI/wzgBVVdBXjBe56PuKqu5/2zid9SVkQiyOgbPAP2Wq93P2Q6VkqyAKi3Jon+NVCI01h8acI/kZw1AmBGvxVIdNo+2bPZzEcSEk92PnPjT6JzN0MXHIjO2xG36cBuq3oHgkgQan9L93NixPKk7sRCH7N4DLbmvwewjff4NmAqcPog92mxDBoJbgTj/+3p6SQhuFnJumEkvAvacTu5vfeuqeeXCYnsjrZf5bVgLrrI+MBphODAevAHRfxh8ncfLSKEJl5C3XnQeiHdzlf6fbT5KGTso4MKwak5HPUth3ZcB9k5ENwQqT1xwBPII4lBtXqKyEJVbfAeC9C86HmP7TLAu5hvysWq+kiB/R0DHAOwwgorbDBr1qwBx2axlBO37S9G8pk05gbagVFn4xRR8hkMmplhOlzS3og7uBlSf1FRMs997lvV+CZoBwR+1KeXgTtnvTyLwRbhjSsl7F2s8l0kwsiY+5HAaoMJ29KDkrV6isjzQL4etrO6PlFVFZFCV5IVVfUbEVkJeFFEpqvqjJ4bqeoNwA1g+vz7is1iqRRO3cloZFfTbSJBCO1kVgl3Qd0FEH8Czc5BQhtBcKuCC7GKRfw/RMbcZ4TtxOmX2UxvaGYm2ny0p53jAC5adx5OdI/CHwpt55V28oniqXlde5v0TXtidzb5V4I+k7+qFlxKKSJzRGQZVf1ORJYB5hbYxzfe/1+IyFTgx0BO8rdYhhPiXxlq888haOodtPlIUBdIoPG7wL86NN6GSGjwx3aig97HIozPwM+NambXOYvWP6CB1YxERL4Y6k5HU2+C24aRVQgCPiOpnHqtiCNnUf+qw9JVrCfqtkPyeXMuQpsj/h9WOqQ+GeyE72PAombdnwM5BTwRGS3et11ExgJbAB8N8rgWS9Wi6qILT/JKIl6dW2OQ/gjtuKuiseUlNc3zGeh5s502tpYFEN94ZOwzUHcmRA6Aut8h418xd0JFTXwLUsLFaZVCU9PQeVuhLeeibZei8/fCbb0gx6eg2hjshO/FwH0i8ktgFrA/gIhsCPxKVY8C1gCuFxFvNQwXq+oSmfwz6Qz/fmwan771OcustBTbHLgFNaNKN0KzDBOyX3hS1D1JQOIRqD1yyEPqFV1Y4I2sV5YpjDhRzy+3y1xHeCc0+W8Kr7z18K1V0juYSqCaRpt/7ZnOdCH2AIS2gtA2FYmrGAaV/FW1Cchpb1DVacBR3uPXgR8N5jjDgY6WDk7c/Czmfd1EvD1BuCbETWfexeRXL2TFNfq23bMsSTi9DHz7V/PXzGxzIfGvXD7P3cAG+eWaJYIMpHspPAli/zR2lRpnsZG8HzPxGwYJIA0XDyrsqiA1jfxzHnE09gCypCZ/y2JuO/c+vp0xh0zKdDUkOpIkY0kuOfxvXPPWJRWOzjKk+CYaA/ZsT7vJCET273ymmS8h+yX4V8mRj9bsXHThcWbxlvgBB607p/cJ2AEivrFozdEQu9lL1gBh8K0IkfymL73uT4LQeJeZ7E48bRQ7I3saK8fMe+BbGYnubXR+hj29tboOzP9gqLDJv0RMvff1zsS/CFWY+f4s2prbqRs9/GubluIQEWj4O7rgMCBjTEjED8HNkeh+xtC8+TjjHSBB0BQa3g6pvwyRAIDpvMl8humY8Vb1tp6DBiYigXVKHrNTdxIaXM/MSWgbhH+GRPcb8OS0SBCieyNdtY5CWwAHlSbgaiG4EXnNbySKhEt/oS4lNvmXCMcp3LPQ23uWJRMJrA7j/wWJ540dY3DDzqTttpxrEj/JxYk98SLquwapOwlNfwaZL8ktJyTQjtuQhivKE3Noa6SgNIYlHyJhdNRl0HIq5veVBqIQ3AzCO1U4ut6xyb9E7HD41jz4lymkE4tv9RxHWH2TVaipr6lgZEOLatosQBI/+NequHZ+JREJ55RNVF2IP0KuNlACYncb5U53Xn5VUtTzt7VUE05kBzT4NBp/FNxWoxob3NTcAVYxNvmXiEPO3pf3pn7IzA++JpNMEwgHiNZFOP32Eyod2pChyZfRhadiboNdo60z+noksGalQ6siMhSsEy/qGAmsXcAvN2Q6SCxVh/iWRWp/Xekw+oVN/iUiHA1x1Wt/4r2pH/L5f2ey1Irj2HS3DQgEA5UObUjQ7Hdo8wl002/RmFk8NP7VkixsWhIQCaL+1SHTs9tZIGgsJMWpR2uPhfZ/sLhdMgjOaCR6yFCGa1mCscm/hIgI6227Nuttu3alQxlyNP4Q+VveMsazNbzzUIdUtUj9+eiCw73RfRoIgISRUWd2buPUHo/610A7bgG3GcLbITW/KJk43WAwDmYvG92e8I5LSNfOyMMmf0tpyDaRt7VNsyZ5WTqRwDow5nE0dhukP4Xgukj0sByvWQlvh4TLpxI6ENy2K6HjFsyEhA9a/wwNk6suTkvf2ORvKQkS2tIb/fdUeVQIblyJkKoa8S+PjDq70mH0C029Ax230dNQRheeAuNfQxzbzjycGLmtGJbSEtoaAmsZb9pOIhDZfViIXFn6RuOPkuthAIgDyVeGPB7L4LAjf0tJEPFB4y1o7CFIPAYSRKIHQMjW+pccshTWrciz0MlS1djkbykZIkGk5kCoObDSoVjKgIR3RROPd5GA8NCMbUEdhtiyj8ViKY7gJhDeHeOZ6wABjDfyhYhTX7bDanYu7sLf4c5ZH3fOprhtl6Kap/xk6Rd25G+xlBl1WyE7G3wTqqJVc6CICFJ/ARrdD028aFQ/w5NyHMxKibodaNM+4DbRuTiu4w409T4y5s6yHXckYJO/xVImVLNo258gdj9IwAi4RfZDRp09aDvHwcWlkHwJjd1pnKfCOyPRg4rW1pfAOmURl8uHxh8Ht5Xuq6KTkJ6Opt/PiUPdDqOm6lsacUYPSYzDFZv8LZYyoR3XGVOPrgJu8QdR31ik9rjKxdV2JcRup3P1cPunaOJhGPNg9a3EzrxHQVOY9KfgJX9VRdsnQ8etRldK02h4F6T+gvL5IAxzbM3fYikXHbeS2xqZ8F6vDJqdC7Fb6J5QE5D5GuKPVSqswvhWBvKY1IuAb/nOpxq7x1uDkPBM45OQeApts14ahbDJ32IpF9pW4PXWyvm7pt/xPHZ7EkeTU4c6mj6R6N6mZNbN5t0PzjKdWkgAxLrqIC0iAbH7Ue3NcGXkYpO/xVIu/GsUeH31ysn9ymjy9+o74Iwf6mj6RJzRSOM9XnnHB/ghtA0y5q7u57CghEgGbGdQXmzN32IpEzLqbHTBLzDa/S5m9BpGRv2hckEFNwIZBRqj+0UgiESr02VLAqsgY+5HNQ748tfwA+tC6vXc152lQEaOn0Z/sCN/i6VMSHADZMy9ENoRfD+A0I7ImLuR4IaVi0kcpPE2488rEZBakxzrL0ICq1Ysrr7QzEy09Ty0aR/chacat7MuSN3pIFEWp7RFF9pzqt5UpVJIxWqPfbDhhhvqtGnTKh2GxVJSVF1Iv2smJQM/Rpy6CsWhkPmfF8faVd0Ro+kP0QWHeOUbF3BAQsjoG5HgRou3y8xA26+B9HTwTURqf4ME161Y3JVCRN5W1T5HGLbsY7EMEZqZgS44ErQFcEw7Yt3pODWHDnksIgJVPNLvirb+yStTLcIFjaOt5yFjn+h8Vfw/LJu/8ZKILftYLEOAqmvq/+73JpEtakdsuxRN/bfS4VU36ffyv575n+3kGQQ2+VssQ0H6Ha/1s2eZNYnG/lm2w2p6Om7Tgbjfr4U7ZzPc9utQzee4VsVIAUkMCWM6gCwDwSZ/i2UocNvo3qu+CC2b05kpMx1qLjykQZug/Vq09YKyHK9s1Pyc3IVeYYgcZCdzB4FN/hbLUBBc3/Ps7UkECe9YlkNq+/WLZSU6iUP8AdRdWJZjlgOpORoiewIhkDogaLyD606pdGjDmkElfxHZT0Q+FBFXRArOLovIziLyqYh8LiJnDOaYFstwRJx6qDsVI4e8aLQaAf9KENmjPAdNf0hekxUJGvGzYYKID6f+fGT8K8jom5BxU3EaLq/qDqXhwGC7fT4A9gauL7SBGPnCq4EdgNnAWyLymKp+NMhjWyzDCqfmCDSwtqnxuwshtBMS3bN8YmqBVSA7g5wLgKbAVz4Z5nIhzmgIWqXOUjGo5K+qHwN91d02Bj5X1S+8be8B9gBs8reMOCS44ZAt8pKaX6GJl+iueROG8C6I0zgkMViql6Go+S8HfN3l+WzvtRxE5BgRmSYi0+bNmzcEoVksSy4SWB1pvBH8qwJiVsBGD0Pqh9mEr6Us9DnyF5HngaXzvHWWqj5aymBU9QbgBjArfEu5b4tlJCLBjZCxT3jtnY7tjrF00mfyV9XtB3mMb4Dluzyf4L1msViGiEo6h1mqk6Eo+7wFrCIiE8VMzx8IVKFrhMVisYwcBtvquZeIzAY2A6aIyDPe68uKyJMAatZfHw88A3wM3KeqHw4ubIvFYrEMhsF2+zwMPJzn9W+BXbo8fxJ4cjDHslgsFkvpsCt8LRaLZQRik7/FYrGMQKyev8ViKSuqCum30MSzIBEksgfiX7nSYY14bPK3WCxlQ1XRljMg+bTnxOWgHbehdadVxMTGshhb9rFYLOUj9W8v8ccxXgZZIAFtl6DZpgoHN7Kxyd9isZQNTTzjJf6e+CD1ypDHY1mMTf4Wi6V8SJC8aUYEsJLMlcQmf4vFUjYksif5k7wLoa2HOhxLF2zyt1gsZUMCa0HtCUAIY2QTBSJIw18Rp7aywY1wbLePxWIpK07t0WhkN0i+YkzXQz+1ib8KsMnfYrGUHfEtDdH9Kx2GpQu27GOxWCwjEJv8LRaLZQRik7/FYrGMQGzyt1gslhGITf4Wi8UyArHJ32KxWEYgoqqVjiEvIjIPmFXCXY4F5pdwf6XCxtU/bFz9w8bVP5aEuFZU1XF9bVS1yb/UiMg0Vd2w0nH0xMbVP2xc/cPG1T9GUly27GOxWCwjEJv8LRaLZQQykpL/DZUOoAA2rv5h4+ofNq7+MWLiGjE1f4vFYrEsZiSN/C0Wi8XiYZO/xWKxjECW2OQvIvuJyIci4opIwRYpEflSRKaLyLsiMq2K4tpZRD4Vkc9F5IwhiKtRRJ4Tkf95/48usF3WO1fvishjZYyn159fREIicq/3/hsi8oNyxdLPuI4QkXldztFRQxDTzSIyV0Q+KPC+iMhfvZjfF5H1yx1TkXFtIyItXc7VOUMU1/Ii8pKIfOT9LZ6UZ5shP2dFxlW6c6aqS+Q/YA1gNWAqsGEv230JjK2muAAfMANYCeOB9x6wZpnjuhQ4w3t8BnBJge3ah+Ac9fnzA78BrvMeHwjcWyVxHQH8fai+T94xfwKsD3xQ4P1dgKcAATYF3qiSuLYBnhjKc+Uddxlgfe9xHfBZnt/jkJ+zIuMq2TlbYkf+qvqxqn5a6Th6UmRcGwOfq+oXqpoC7gH2KHNoewC3eY9vA/Ys8/F6o5ifv2u8DwDbiYhUQVxDjqq+AizoZZM9gNvV8B+gQUSWqYK4KoKqfqeq73iP24CPgeV6bDbk56zIuErGEpv8+4ECz4rI2yJyTKWD8VgO+LrL89mU8UvgsZSqfuc9/h5YqsB2YRGZJiL/EZFyXSCK+fk7t1HVDNACjClTPP2JC2Afr1TwgIgsX+aYiqES36di2UxE3hORp0RkraE+uFcu/DHwRo+3KnrOeokLSnTOhrWNo4g8Dyyd562zVPXRInezpap+IyLjgedE5BNvxFLpuEpOb3F1faKqKiKFeoBX9M7XSsCLIjJdVWeUOtZhzOPA3aqaFJFjMXcnP61wTNXKO5jvU7uI7AI8AqwyVAcXkVrgQeBkVW0dquP2RR9xleycDevkr6rbl2Af33j/zxWRhzG39oNK/iWI6xug64hxgvfaoOgtLhGZIyLLqOp33u3t3AL7WHS+vhCRqZjRSamTfzE//6JtZouIH6gHmkocR7/jUtWuMdyImUupNGX5Pg2WrolNVZ8UkWtEZKyqll1YTUQCmAR7l6o+lGeTipyzvuIq5Tkb0WUfEakRkbpFj4EdgbydCUPMW8AqIjJRRIKYCc2yddZ4PAb83Hv8cyDnDkVERotIyHs8FtgC+KgMsRTz83eNd1/gRfVmxMpIn3H1qAvvjqnbVprHgMO9DpZNgZYuJb6KISJLL5qnEZGNMfmo3BdwvGPeBHysqlcW2GzIz1kxcZX0nJV7BrtS/4C9MHW6JDAHeMZ7fVngSe/xSpiOjfeADzFlmYrH5T3fBTPbP2OI4hoDvAD8D3geaPRe3xC40Xu8OTDdO1/TgV+WMZ6cnx84H9jdexwG7gc+B94EVhqi71VfcV3kfZfeA14CVh+CmO4GvgPS3nfrl8CvgF957wtwtRfzdHrpfhviuI7vcq7+A2w+RHFtiZnrex941/u3S6XPWZFxleycWXkHi8ViGYGM6LKPxWKxjFRs8rdYLJYRiE3+FovFMgKxyd9isVhGIDb5WywWywjEJn+LxWIZgdjkb7FYLCOQ/wdHtiEjFPvmVAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -230,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -258,7 +259,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -302,17 +303,19 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmQa9d93/k5d8GOBtD78vrtpChSpBZLoijJMmVJsSjFoqI4sa3J4mSmNLHsSjxx1YzHVZOk8leScU2VU87EVjkqR1MpW3aUUWRb3rXZI1MkRS2USHF7a/frfcGOu50zfxw0GmhcoNHr6359P1Wsx0Zf3HuBBn6/c37L9yeUUkREREREnD2Mu30DERERERF3h8gBRERERJxRIgcQERERcUaJHEBERETEGSVyABERERFnlMgBRERERJxRIgcQERERcUaJHEBERETEGeXADkAIMSuE+LIQ4gUhxPeFEP8s5BghhPj3QohXhRDfFUK85aDXjYiIiIg4GNYhnMMHflEp9ZwQIgt8UwjxZ0qpF9qOeQK4r/nfo8B/bP7bl7wVU5N26hBuMSIiIuJs8FKjuKqUGhvk2AM7AKXUArDQ/P+yEOJFYAZodwBPAp9RWnfiKSFEXggx1XxuTybtFJ+++u6D3mJERETEmeFd3/vDm4Mee6g5ACHEReDNwDd2/GoGuN3281zzsYiIiIiIu8ShOQAhRAb4HPALSqnSAc7zCSHEs0KIZzcD97BuLyIiIiJiB4fiAIQQNtr4/xel1H8LOWQemG37+VzzsS6UUp9SSr1VKfXWvBk7jNuLiIiIiAjhMKqABPCfgBeVUv9Xj8O+APyDZjXQO4DibvH/iIiIiIij5TCqgN4F/H3geSHEt5uP/TJwHkAp9evAF4EPAa8CNeAfHcJ1IyIiIiIOwGFUAf0VIHY5RgE/d9BrRUREREQcHlEncERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZ5TBGQkZE7AulFE5DIaUikTQwjL6D5SIiIg6ZyAFE3BWchmTulkMQ6HmiCpicthnKRR/JiIjjIgoBRRw7Silu33DwPVASpNT/Ls57OI6827cXEXFmiBxAxLFTq0ik6n5cKShu+Md/QxERZ5RDcQBCiE8LIZaFEN/r8fvHhRBFIcS3m//9i8O4bsTpJAiUjvmE4HvHey8REWeZwwq4/hbwa8Bn+hzzl0qpv3lI14s4xSTT4esOISCTPd5NaXHTZ33Fx/d1InpswiaRjDbGEWeDQ/mkK6W+Bqwfxrki7n1s26AwbCLain6EgHhckB0yj+0+1lc9lu54uK5CSqhVJbeuOzTqUR4i4mxwnEudx4QQ3xFC/JEQ4qFeBwkhPiGEeFYI8exm4B7j7UUcJ6MTNtOzMdIZg2TKYGzCYvZSHDFAKahSPeJHe0BJxdqKz85TKQWry1EcKuJscFw1d88BF5RSFSHEh4DPA/eFHaiU+hTwKYAHkvmDf9Mjjh2lFOurPpvrPlJCOmMyNmFhx7bXG0IIMlmTTHbwFX+lHLC86OG5CtOE4VGLwoiFEHvvH/B91WX8t2g0oh1AxNngWHYASqmSUqrS/P8vArYQYvQ4rh1x/CzMeayt+Pi+LvEslwJuXnPw/f3781o14M5tF8/V5wgCWF32WVvZX9WQafV2GrYdNaRFnA2OxQEIISZFc5kmhHh787prx3HtiOPFdSWVctC1upbyYCWeq8vh4Zr1NR8VVlO6C4YhyBU68xCgcxGj4/a+7zMi4jRxKCEgIcRvA48Do0KIOeBfAjaAUurXgZ8AflYI4QN14KfUYQRy7wHqNcn6mg5rpNIGwyM21ilegToNhRCEGut6bf+hFbdXg5gCPwB7H0uZ8UkbIWBzPUABpgnjEzbpzPEloiMi7iaH4gCUUj+9y+9/DV0mGtFGqeizOO+1jKXTCChuBly8Esfej0U7Adgx0TO2Hovv37HF4ka4AxFg7dNeCyEYn4wxNqGQARgm+8onREScVk6nlbkHUEqxvOB1h0oCWFs+vd2wiYRBPNFtRIWA/PD+1xuj41ZouGZ41BqocqgfQghMS0TGP+LMETmAu4Tn6drzMKrV012Fcu5CnMyQ0TLYsZhg9mKMWGz/H7dU2mTmfKy1izAtGJuwGBmNxOMiIvZL9O25S5h9Vq3mKQ9Bm6ZgZjaOlLrU0jQPZ2WdzphcunrK35yIiBNE5ADuEqYlSKUNvdpvCwNthTXuBlv1+8WNAKkU2SGT0TG7b8lkPyJ9/73h+4qNNZ9GXRJPCArDnb0TERGHTeQA7iJT52Lcue1Sr8lW5czwqHWscgjtzN9yqVVlKy+xuR5QLUsuXo2fKWMupaJSDgh8SKaMY9EGch3JzWsOSunPQa0KmxsBsxfjJCNtoogjInIAdxHTFMxejOO6Et9XxOPGoYVL9kqjITuM/xa+rygXA3KFs/FRcRqSWze2DbEAUhmDmdnYkSaJlxe9rpyQkrB0x+XilcSRXTfibBMtLU4AsZhBKmXeNeMP9BRAUwpqB6jfP00opZi/7SIDbXzZWo1XJJvrR1uZVeuR+N8amRkRcRREDiACaMofhPgfIXQVz1nA8xS+121s9aCa4EivbfT4JgpBV/lrRMRhETmACABSaQMrbAciODPhn15Datp/pZSiWgnYWPOpVoJDUSYF3SMR1ueQHTKj/oSII+OMfLMjdkMIweylOAtzLvW6RKB3BZPnYlj7rALaK/WapLihFUSzOZNM1jhW42fHBKbVPZVMCBjKmQSB4tZ1B89rTjQT+j06fyl+4PDdyJiF40iq5e2CgETSYGIq0iWKODoiBxDRYsuYBYGu3z8uww+wtuJ16PNXygGptMHM+aNNvrYjhGD6XIzbN91W/F8becgPmywveLhO24pfgesolhY8ps/FDnztmVldEOA2FHZcEI9HG/SIoyVyABFdHEcyWimF01AYJhhCdA1n0aWQkmpF7mlmQNh1PFdhmGIgh5ZMmVy+L8H6isfmZqDF5ny49oqD7JEGqJQOLz8QixnEDuZLIiIGJnIAEcdOqeizdMfTcXWlZR3CIulK6VkC+3UAlVLA4h23VV6ZTBlMDRDSMgwoFgNdCUS3smnYfSqlolh9xKkj2mNGHCtOQ7I4r2veldTG0/fomYDdryxGoyG5M+cSBLQ1V0nmbjq7PrdakX0TwjtJZ443VxERcVhEDiDiWNlY7x7s0gshIJff3yZ1Yy38Oq6jcHYZ+Rj0GRdJW1mmENpBRYnaiNNKFAKKOFbC6uyh06iCXrGPTVrEE/tbo2yNjgy7ju8r4n2em0yHX1MYMDltI6XeycQTBkM580zJZETcW0QOIOJYSWeMUMkJpeDi1Rieq0NDqbSxbxE6gHTaoFEPv85uTsU0BHZMdFT8CAHxuIjq8iPuKSIHcApRStFoKAJfkUgax1quuYXjSNaWPeo1hWXDyJg9ULI2l7fYWA9CV+hLd3xmLx5O2Wd+2GJjwydoU3DQQ2nMvu+X05Dcuu6wU32hMGIyMmYjhMB1JeurPvWaJBYXjIzafQXjpFSsLHmUNvWs5HTGYHzKPrVT3yLuHSIHcJfpMCYxwfCoTTLV2zB4nmTuhovnbc/eLYxYjE10x6GVUiipQxeHuWp1tpQrm6F034c7t13Gpyzyhf7xcMMUzMzGuPFadzK2UZdUyvJQ1FBNS3DxSoK1FY9qWWKY+n0ayvU/91Jb1VDHvTUUhiFwHMmta07rGNdRVEoOw6NWc2pZ5/uslGLupkOjrtp6HCT1msOl+xJ3Vf8p4t4j8eWPwdgfDnx85ADuIlsSwO3GpFpxmDpnkx0K/9PM33Jxm6vnLYOyseaTSBodhrNU9FlZ9PB9vfItDJuMTtj7cgRbtfSgu2VXl72W8d8+BlYWfXL5biO4E6ex3e268xzlUnBoctiWJZiYisHUYMcrpajXw3MHW2JtKyGqnQDrqz5KKcYnO4v4Gw3VYfy3kBJKmz6FkSiBHHEwHvv0I7z3c+/WP/zK3p57KA5ACPFp4G8Cy0qpN4T8XgC/CnwIqAE/o5R67jCufZpZWQqRAFawtOCRyXbHml1Hdnaitj1nY81vGc5qJegYNq8UbKwHKOgyULtRr0vu3HYJfH0yyxI91Sl1SafC3kU8zjCbwnMhpzmOaWieJ3EaCtsWXfmAMMcEsJXnDR1M32RjLWB4VHWEmNweFUdKQaPpbDxXIiXE4tFc4ojB6DD6n9v/eQ5rB/BbwK8Bn+nx+yeA+5r/PQr8x+a/Z5peMssygMAHa8fiUMreBkoG2w+uLncPm1dKD3gZHVcDV60EgWLuhtPhpLweVTxbDBLSSKf1vOCdZxIC8kcoPKeUYvGOR7kYtN7HeEJw7oLW8hFCMJQzKRWDjvdPl6Nqz2RaAtmnwqhR7+xc7uUMhdB/3xuvNVpO3TBgciZ2oM7niHuTNz3h84P/9e/yz39lUj9wAKPfzqF825RSXxNCXOxzyJPAZ5SWTnxKCJEXQkwppRYO4/qnFcsUuEG4MTFCbEA83tuYZNrCJv2MdOArjAHlncs7DGHnRekaZZnNmXp1vwvCEMxeiDN30+nYpYxP7b/scxA21vzWa9q6bqOuWJx3mTmvC0PHp2xcV9Gob4epUmmD0WaOpTBisrzQezbAzgRzMmUQiwucRucbKQSUNgP8tlMFgQ7xTZ+zyUTVRmeedz7/izz+S/XtB/YY3hmE48oBzAC3236eaz52ph1AYdRiecHrWm1mh8Jry4UhmJiyWbyz/Ry9khQURrb/lPGEQa3SvbsQYm8Cb36fhqh0WlCvbf8+O2TuqSEqkTS48roE9ZoOf6RSxkDO4yBsroc7tEpFIqXeGRmGFsRzGhLXVcR2iLLlCxaNmqRU7H5/7Zggnuh8DULoqW9LdzzKTc2gZMoglzdZWvS6zgFwZ84jHvc5dzF+Vyq8Iu4eiS9/bHuV3278j4gTlwQWQnwC+ATAhJ28y3dztOTyJr6nB7FvrTbTGYOJ6W1DKgPF5oZPtSIxLW3oz1+Ks7nu43mKdMYgX7A6jOfYuM2tqtPlWIbHLMQempaSKSM05KQH19skkwaerzBNsa9qFiEEqfTxhTuCPpO1pOwcyhJPGMTiOvkdBKr1+oQQTJ2Lk0x7LC/4W6rQxBNazTNs1W6agunZWGt2gBCCUrH/hDHHUSzMucxe7NeyFnEv8Nnf+DgA3/lC/khW+f04LgcwD8y2/Xyu+VgXSqlPAZ8CeCCZv6dn4QkhGB23KYxYeK5OHlr2tgEJAsXNaw6+11ZCWAqYmLKZnOmdzE0kDWYvxllZdGk4+rwjo1bPwS4yUKyv+ZSKAYaAXMEkmzOplLtVLoXQjkE7B3GqpoWlMyblYvdrsi3RlXze3PBYWdyWk8hkTSZn7NbOLF+wyeUtHEdhGmDHdg9dtTuHZNLYVW+oXpMdzifi3uCdz/8iwHZ45wt3716OywF8Afh5IcTvoJO/xbMe/2/HNAVmsvtLvrnudxh/aFYJLXo63t5nNZ9MGZy/vPswcSUVN645HY1Zy4s+K0vdWjqGAaPjVnN61d6NkgwUa6s+5VLT0Qyb5Av7O9d+GJuwqFUCgjYfIARMznSWx1YrgV7dt73+SjlgYU61cgX6uYJEYn/3bscMhvJmqzmsF1IefmWUL0xAYe2s5Y04Et70hN7tfcj4p/qBYwjtDMphlYH+NvA4MCqEmAP+JWADKKV+HfgiugT0VXQZ6D86jOve65RL4cZBoIeFJ1MHM5wy6Db+W4RdVydE95eclFJx87q+1ta5VxZ96jW1r2EqjYZkZdGjXpOYps6nFHZxTJYlGMqbbKxte4B0xtCr8TZ2ziYA/dorZcnSgkN2yGrtgA7CxJRu+ltZ9Dqc0hamJbAOcYlWtNJ8dfztLCZGAZiuL/P48tNkgpNjkO4lfvnDn7zbt7Arh1UF9NO7/F4BP3cY1zpL6K1/uHE+jFXh0qLXUzStF42mCNpeKZeCDuMPTaNaCnAcuafpV66j5RraO5FXl/RuqV+fQ2kzYHO909JWK5LlRY+J6e3n+X7v92RzXVLccElnDKZnDyZbIYQgl7dIZ0xuvtZoSVdvkR0yuP6q05L8GJvoLznRD0+YfH7m/ThmDCX0Oe4kxvn8uffz0zf/AHMv+tcRPUl8+WP855cTOp5/CjhxSeCIbQojFvWa27UajcUEsQOOC1RKhcbD+7LHKqJ2wgTgtmjU9uYA1lb80E7kzfWAkbHeMfO11fCVfXEzYHxStRLkyZSB5/Z+b5TSjqNcChjKHfwrZFmCi1cTFDd8alUtCaLorFqqVbXTu3A5vi8HfC0zi2+YLeMPoAwDF5ub6WkuV0NTchG78NinH+Fbl65uV+4ccxL3oEQO4ASTyZoMj1rbVULohOXMhcOZGTioLv8WhoCFeRcZ6K7V8Ul74Coe2+7R/dssY92+J6VX6hvaWA/lTPLDVke+o9Gju1YILQMdlk8BWt3MO1E0Y+1N2zgyZlEpBaGSD9v3qXcUh+EAPFdSq0licYPCiIVS8OoPGqHOam3FY3p275VBRSuLb3SX6frCoGRn9nvrZ5LD6sI9CUQO4IQzOm5TGLZo1HUZaDyxN7mAAINrmVmW48PkvDL3VW4Sl55OYCZFS46gHWHA5JTN6rLfCoeYVnNyVxOnoZi76XLuYoxUagAV0IKp9XJ2PG4autFqi4U5j0p5e+W76uik8flL2yWWsR1SzVso1elMdpJI9eiPsMyOxrtYzODClThryz7VHUnjw0QprRK6uR7oQTNoJzYxbfeUyuilVbQbo+4GtvTwdjgBS0lGnM19nfO00DBiPJ+7j1upaVJBnYeLL3Ouvjzw89/0hM///tF/sB3WOeVGv53IAZwCTEuQ3oc8QMOI8d/OvZ+6mcA3bCzp8+zwwzw5/xcUvBITUzFu75B6EAIuXo4Tixtkc6YWk0Nx/dVu9U6ldOz9/KXd7822Dc5diLHQHNMIehfRHkdvNGSH8d+6huOoDpXQkTGbaqW7zyE7ZGKauoO5XAowTcgNWySaIZOxCZtbNYdAbo/CC0yTlx9+J35sgwfLr7XOF4vp+cFKKV79QaNrNyAEPctqB8Fz9WttJaTVtr1fWvB6lojut+z2QnWelN+gbBnIprczZMCQV+FcfWlf5zwNNIwY/3X2x2gYMQJD/73uJCd4+9p3eLj0as/nPfbpR/gF7w3bRv8ulmoeJZEDOAVIqahVZasGf1Atn6eHH6ZqplpfeN+wCHyPb9hX+JHiN0kkdex5c93DaehEY37YasX5hRDYtl759woXOc7gpYSptMnl+xN4rkIYdOnh16s9hNMk1KrbKqGJpMHM+RhLCzqJLZq9C2PjFrdvuB2DYHR83yI/bJNIGNQfeYDSUp1scY16OsvN+x4hsGJ8L0hxlevE6LwHIQQz52PM3XK1kVbbsheZ7N5j8Z6nmL/l4Dq9u6ylhFRG71Z2OrmRsf19ZU0UH53/c54efpjXMucRKK6Wb/L29ee5l7sMns/dR92It74DoL8HT4+8kQfK17HV9vbuTU/426Wa99Aqvx+RAzjhlIo+i/Me7VGf6dkY6czuq+7rmdmOD/7Iwi1e/62/BOC29DAMOHc+zthEd05BStWsNupukmpnrytSIQSxHppGlhWeJwiTsEhnTC7fZyKldgBCCIqbftcUMKV0X0M2Z2GagutjV1g6PwZAprjGG77xF1ieCwKuK8m5c1bXe5tKm1y5P0GlFBAEilTGbO0q9oJSWlzP3aXySqDlu21bUNzQOyLLYk85lzAS0uU9q9/kPavf3Pc5Thu3UtMd34EthJKsxfJ89d//2Kmp2DkKIgdwgvFc2ZJ1bjdq87dcrrxu92Eioq1UJlEt8+BzX8Vsxl8UEEi4fdPhyv2J1q7C9xQL825L/z6eEEzOxCiMWF2D1oXQOYrDIp0NVwmF3sPh23dDvcTrhNBdtZmsSTJwQCkMGfDGr/8Jtud2HDt/y+XSfQmdtG7DNMWBQj6ghed2U1MF/fqTKZN0xmJ8UrVkKiJxuL2TCurb27Y2HCvG//2en8D/wtlWXo1m0p1gVkJknbeolHbPTL6ufANT6uMmb7+CCNHC0eWTPkGgUEpx64bTMv6gk723rzvkh02Gx6yWXo5lCyZn7IF2IoNiGILzF+PYttCrekP3O5y7EOub3G09v49DVEpR3PC5OP8DLBUwsjTX4SBbx6EHtRwFga922qEuhNCD57ccmxCiJVXdjudJFuZcXn2pzvVXGmyuey2tobOCY9jUzXjfDoZHii8Ti3UeoQAvbuLHzrbxh2gHcGKRUlEOUZwEbbSDQFGvBVTKgdaxz5vEdujRvGXj+ywmRlmN54k3ahhhBk/C6rLP6rJPMmWENkEppVfXo2M2I6O6THHQPMReiScMLt0Xx202jcX3MCQlXzCp9OievnNbh9HEwhwX/OdoJDOhDhHVvxHsICSSRk+HHo8LUk1hv916PHxfcfM1p5VMD1AsLfjUapLpc/e+eFzNjPOl8XewkNShvKxX5b3LTzPhrHUct9WJm9moU1iutYZpeHGT5XNDx37fJ5HIAZxQtpK+vQxGvSZZXd4Oyayv+kxM2R1hClsFfOTOl1hKjLKWFLqQv8cuYOuaYShFq+xSCLHrKvagCCF6zj7oRyqtdynrK36rrBJoVfBsvc7Z114gsCzMEIcoBIe6q2nHsgX5YbOjwWsrv3H+UnxgOeyNtXDpiHJRUh7yO8aJuo7UchmWIJ05uHzF3UYBvz/9Xop2ttXUVowN8YfTP0Ly5+IYWdEV068UklRzCWzHR5pGtPJvI3IAJ5U+i1DT0p2oXSJxzVGSZlvCVACTjVUmTMXtBDTqe28AEwZ9B9WfJEbHbPIFi1o1wDAEnic7VD23MH2feFzgunQY40TSIJ05ute6JeewseYj5Xaz315mIdSrvf+AS3e81kSxpTsepWa3t06Uw+yl+J66rk8ai4lRqlaqo6MZdDho5XfjFMdSoc9ThsBNRvOXdxI5gBNKe3NUB0JX3tRr4Spx1Wp4d6oQegpXsRhQ2gz6zrbdufMwTV32eFqwLNF6DzbWexvLVEYwnLRaK/KhvEF+gKH2B0GPnbQO1EFsxwX1HvptQXOcaK0WdIy23Pp3/pbLpavhcwtOA5M/+wDO79sYO5VqAbuPfEdEOJEDOKEYpmBqxmZhXrffturPh0yEAfVaiFY/IPpUdQtDkC9Y5AsWt647oU7AsmAob1Ha9JFKX2903D6ymH8/Aql4zrjAi5MP4cYSjFTXeHfxO4z5xYHPkckYrIQ8rmv59VCbw5Bz6Eev6WL7ZXjEorQZbuy2kue9pp/5nsJ1VNfkspNMu8Ca9bzPFN1/fymgkYzM2V6J3rETTDZnkUiZlIs6XJDOmiSTBvVaEKojvzVRbBDGJ22tqLmjrHNyRvcYjE3c3e2yUoqvGK/j2oU3IC19L8u5Sf57ZpSPzf8Zw355oPPYMYORMatD4nmrcWynDPRhI6Vi/pZLvbadz0mmDWZmYwdyqPGEQa5gUNzoduCptIFpCmSP6Wf98konhcc+/QjibR/YHpjSJrDmxy3qaZtk1WvtAhQgTYNqvm3+hVTb2hoRPYkcwAnHtgXDo53GOJkyW3X57UzPxgaOJSeSBhcux1lb8Wk0tALlyJh9YmL9pbrg2usfRrYL4gtBYJg8PfQgH1z/xsDnGhmzSWfNVnnnlp7/YRH4iuKmr1fWSS3xbBiC5ea8gvY+jnpVsrrkMT51MEG/iakYMnApl2TLxsXigqnmpLihnMmq0537QHAiV/9dXbif6z2jYHUmS3a9TnbTQUhFPRtjczSFMgR2w2dksUKsoXdI1aEY6xNplHkyPtcnjcgB3AWU1HOANzcDlFJksiZj43ZH8nY3xiZscgWTalliGHQlfwchntCa9keBAl7KXuLb+QeomwkmGys8uvZdhr3SQM9fU6nQOn0Mg9XEyJ7vJ5EwSPSZFbBfHEdy65rTMvKiCOsrPhcuJ3ru0oqbAeNTB7uuEILp2TieK2k0FLYtOmYF5IctSsWgQ3JCCJiaOdgMg8Pks7/x8f114QpBeSRFeaQz4Wt6kslbRYTcrgBLlVxsN2Dx4tnt9u1H5ADuAvO33Q59/OJGQLUiuXQ1vqfQQCxmEBs5mSubZwsP8d38A/hNAa5bqSkWkuP87bk/JedVdn3+kGqEtvCjFFknPPwjpcL39AzkvVTVHITFebdDKE4pPaBmabF7jsP2fR7e9e2YgR3i1wxDcOFynHJJf7YsS5AvmAPNLj5KEl/+2LZ2/iELrGU2G9Bm/KGZHHYCYg0fNxGZu51E70gflNKt+1oP53AMSqMuQ4ejBL4e0HJQuYGTgCcsvpN/oKW+CIAw8BU8l3+Q9648ves5hlMBk3deY2nqUisHAGAEAW8tvdBxrFKKtRWf9VW/pSWUK5iMT9pHutqVUoXKaQPUKpJkyghNtPes8DpktiuOeh+jlMJpKAyDAw8ZCuOxTz8CsK2ff4QDU2KO31PawHKDyAGEEL0jPdhc9zoGo2eHTCamD14N02uYiVK6uStXONDpTwQlO4OhFDvrVJRhsDRg+MYwBB8of4uvSJ+5c/ejhCDu1HnnynPMeJ0dn5sb2vgrRat/orih+wD2kszeiuVrZVTBUF4LyAUYvJY5z83UFOmgzutLr1Hw+iehhdAzf29dd3TvndquxR+fOhn16OVSwOK81kJSSpcXz5yPHcouoTUP9xhVNZ2kRaItOdyOGz89ZczHSeQAQqiUA5Z3NA+Vm9o7U/sYYA56pVWrytDyTdCGwd6n1vtJI+XXkCLEiChFbhfD2U4yDk/4z+O+8jyeYZEy/dAi1/XV8Fj7xrrP6Phgdf2uI7nZnDOsFJRLevTkzJUUf3jp/RTtDL5hI5TkxaErPL78Da5U50hnDKo7h8wIGMqbWtbiaoKNdR+nOUu5MGwNpGt01DgNrSXU/r45juL2DZdL9+29T+Czv/FxgLuqrFnJJxjJz4YAAAAgAElEQVRab6ACtd0FLqCRsvHjFihFZrNBuqSdXiUXp5qLn+lKoUNxAEKIDwK/CpjAbyql/s2O3/8M8H8CW4NHf00p9ZuHce2jYG2lW4RNG4WA8aD3zNleyECLrLmu6ppl247rSq6/2sCyBCNj1oGkfw+C52lhOC3KtvcvR1K6XKre5nr6XEcYyFIBb954cc/ni9kQo7dAW89RjzJUCDKUxTsess03a70luL5qsXl/tvU6lDDwhcFXx97GxeodJmdi3L7u4PnbE10SSdFSSbXsve1C+qGUwvd1Y95Bd6Kb6yEVQoAfKOp1OdCUt6OM5+9GvOaRW61huxI3YbI5msJLWCxcyFFYrpKseihDUMnF2RxNgVKMzZVJ1LZ3CLGGT6risjKTPbNO4MAOQAhhAv8B+AAwBzwjhPiCUuqFHYd+Vin18we93nHQPvpwJ4G/dwewuuL1HgAidKmn7ytKm9o7uI6iXnMZn7LIF44uXCClolaRSKlIpU2kUty57bZ0f0xLMH3OJjmAMdjJ48vPYI/6vJy9hBKQDBzevfJNJncIdh0G8UT4aEvbFgMZSqVUz85osVnpzGW0sRIvMMkaF6/GqVUlnquIJwwSyf05zn5sbngdkhZDeZOJSbs1yH6veD2cpkB3EofRNRrxLg1AT5YcRhcqLUNuViSJapGl8zncpMVqiNBbvOZ1GH8AQ0Gi6hGv+zipkxGWO24OYwfwduBVpdQ1ACHE7wBPAjsdwKkhmTJaIZ92RNNY75VSD516gEtX4qyv+RQ3Oq+nFKws+uRyVuiXXEnVknUwDMgXrKae/mD3V69J5m46etGqQCkPYdCxQ/E9xe2bLpevJvYctjCRvGf1m7xr9Vt4hkVcukc2eWp8Uo+23NnUdhix9p2aM9uPC2zlN68ljkxADpohyYXOFXtxQw+nmdnHgHiAdLp74hjoz117OWnHKh/u/mhEpRhernUYcgEIBYXlKksXwjPeiZqHCFNPUUQO4IDMALfbfp4DHg057m8LId4DvAz8L0qp2yHHnAhGxy0qlaDDGAoBoxPhxnhX+gq7id4qnIDrdrftK6UNc/v0q1rVJVcwmRigwUgpxdwtp6scMTQ8paC46TMytr8viInElO7uBw5ApRywsujhugrLFoyOWeQKuqnr/KU4q8t6tGUsvrcQmhCC7JDZ5fSFAHskjSU9/PZh6kqS8hsMu4NLUhyEsJAkQKUkadQDEsm9O59cwWJjPcD3OvsEXv9Tk9i/+r5to3+XVvm9EApMP/z7Emv0CROaBkrQ5QSUAHlMJcMnkeNKAv8+8NtKKUcI8T8D/xn40bADhRCfAD4BMGEnj+n2OonFDS5ejrO67FOvBVi2YGTUJjO0v1VeNmeyuRF0OYJEUpeXWpbACxsTqAht7qqUZejow+JGQGFEds0F2ElYGWovlGKgKVZHTaUccOf2dtLS9xRLC3oISn5YK2yeu7B/LfyJaRvX1Zo9W3+neEJwbsRhtfga38/dh4EEBbbyeGLxL/e9o/FcSb2ua/OTqd13baGfjSZrqz4zs3v/XG71CWyu+QRDNj9whnnxLW/mt87dD79ycg2iEoQacoDA6v25rw3FKCxXu38hoJo9mmbI08BhOIB5YLbt53NsJ3sBUEq1B35/E/h3vU6mlPoU8CmAB5L5u2Z5YvHD65IdHbd1jNjTSWAh9Ii/rbb94VGrw7gBILRuzM5ZuADVcu+QUq26uwOQMnT0bihCdNetB4GiVAzwXUkipYejH3V36cpSeGJ+ddknVzi4gqdpaoNYr+lYfiy+Hct/bP07PFx8mcXkKInAZbq+jDHQu7fzfrXTKm0GrW4l0xScv9i/9DIWD+8nAHDq++8q+z8+8nP7fu5dQwjKhQTZjUZHGEgKKI70XjBK02B5doix+XJrEJA0BSsz2TMtE3EYDuAZ4D4hxCW04f8p4OPtBwghppRSC80fPwLsvRTkFGOagotX4s2Ve0AsZpDNma0EZSZrMjpusbrsb4uGpQyme5Scmj3+akIwUII6le49mWrn+eyYIJvdXmE2GpLb19ukD9YDYnE9yvEou297rYKDYPBKn90QQuiwUbr7d5mgztXKwaKWpWKbiN/WTkYq5m+7XLyS6Pm8kXGLuRvhYbS9NG+1q2qeZjbHUgipyBSd1mPFkaQu6eyDk7KZu1og5gStsZBntfpniwM7AKWUL4T4eeBP0GWgn1ZKfV8I8a+BZ5VSXwD+qRDiI4APrAM/c9Drnja24szZHmGk4VGb/LCF6yhMS/RNNucKFhtrIbsAMZgaqGkKxietjl4HYUAiIchkTYqbgd4lCKUVLW+7jI7rMMvCXLf0geso1lb9I1UQtW3BeiLP+tg0lu8xducmtudgDvgdrhtxbqcmMZCcry4QU0cz97cfvUovXUfhur13bum0SSptdOWKhICRsd5f4Xc+/4sAoaqapxoh2JjMsDmWxgwkvmXoaXcDPjfqCN5GnORB0g8k8+rTV999t2/jRFIu+ize2a5XNQyYOR/vqOAIw2lIVlc8GnWFZYFtCYQhyAxth3LqNRlaVTM5Y7M4H56QtGzBlft7r2IPggL+IvcWrucvoQyBkBIQPPzsl3idsUxhpL/jeSF7ma+PvgWBRChdwfO+pb/mYu3OkdxvL66/2miV2LYjDLhwKU480ftvJ6UOH5WbE74MEyYmbbI7Zhl0qGpGnEm++m8//E2l1FsHOTZyhScE31esr3pUKxLTFAyPWq3RfmFkcxbprEmjLhFCDFR73qjLjhkAvgeOUEydszt2JsshQmZb8fZehF1ZBlpaoVaV2DFBftjaNT8Rxq3UFDeHLyK3mrGaInHff+vj/NDNz9Mvm7FpZ/j66JsJDBO9QdX8+cRj/L2bv09ilwolpRSVsqRaCbBMQe4AgmqZrMmG270LEIDn6b97r3Jbw9BSzxNTCilp7nz0sY99+hF+wXtDz9BOvF7nwaefZfa112gkU7zwth9i7uqVfb2GiHuLyAGcAAJfceO1RlsDjm7IGhmz+pZfGobYU7dwr0Tq8qJPJmu2DEovgTOdHAXX6Xx8a8BK12u65hD422WGm+sB5y7E9tzh/HL2YmcZZtt1F5MTzNYXez731cwFZIhjFChupGd4oHy953OlVNy+4eA0tl/D+prP9Gysr3PuxfCoRbnUWXoJenbJwpyHUh7ZnMnkdG8RO8MQGIYO77RCO330dmKNBj/+W58hXqtjBQGwxujiIs8/+naef+c79vwajgK74TO0Xsd2AxpJm/JwksA+3MSs4UtSFRcU1DM2gR1pA0HkAEJRUrG64rG5HiAVpFIG41P2kQ3TXl/zO2QIQBvmtRWfwvDeBob3o96jYsT3tleVoP8NQiSLDAOmz8W4fcNFKloVTYmkQWGk86O0tuLh7ygfVQoW5lwu35/YU9WO6lNwqXY5jS9MVIhGpEIQiP5GoLjhdxh/2H4NVx/Y22uA7WKAUjGgWg5wXYnXHEq/NcCrXNRJ9ZEdQ4C6unB/KXxgSrJc4fILLxKv17lz6QJjc/Ntxl9jex6PPPUUP3jLm/ASBwzbKYXtBgSmgexThtmLZMVldL6MUHonFGsEZIoOixdz+LEefx+pPxFqwLj/VufwFoVl2BxJUh4NHyB/logcQAh35lyqlfYmKz3049I+OmIHoVYJL+sUQlfdHJYmkGUKvJBRgVtlqVsMj+qKpJ05gPywRTxhcvn+BJWyXskmkkarlr1aCdhY8wkCFRrrBu1YfE/tSfju/vINbqcmu3cBQjBdD5v4u8356h2+m7sfFWLsz++SA+jXwd2oK5KpvX8WjOZc5lze5JUXG6E7ss01n5FRu3OVD7t24c5cu87jn/8CKIUZBDzwrW8TGEaH8d9CmiYjS8ssXji/59ewRXqzwfByDVAIpUXXVqYzg5dVKsXwYrWrq9eQitxqjbXpbMfhhi8ZWaiQrOrcl5O0WJvM4PdR+jQC2SEbsUV+rU4jE8M74wnhs1sA2wPXlR3GfwupYGO9j0jQAejlVJQitA9gvwyPml0VM9qwmx2r2cKI1XxMOwbRVLccHddfFsPQOvPDozaptH7u+qrH/C3tOBt11XfoyV67qS/U7nCxOo8lfVASU/qY0ud9S3+NpcLVVbf4bv51nWVCzfrVRzZeIuvX+j631wpfcfDqwS2hujBqRoxf/vAnO43/Lhi+z3u+8AdYvo8VBAj0Sj/muoT9KUQgaaR7r4ANX5LebJAuOhhB9xkSVY/hpSqGVBiyKalQ9Rib333YzxZmoELPLaBl5FsoxeTNIsmqp6Uf0BIOkzeLiJBzbJGshH9nhYJ0yQn93VnibLu/EFxHhQ/OVr1j4welMGJRrXQnXuMJcahDOnIFC9+nY3DKUK57ALwQgvHJGCNjzQlbdv+BOEGgunYMYXh2jMXXPcTzM7MkfYeHiy8xW1/a9b4F8KPL32A5/gpzqUls6XO1cotU0Oj7vPVYjrnUZKeejxCY0ictdzeu+WGzq+MadCjnoHN1DVMQiwndedyGBBbPz4Y/KYTc6hoTc3PEa7VQj2Io1eUApBCUhofZHB0NPWdmo05hudM5rk5lqA9t19kPrde7VtUGEK97mF4wUIxdGqJncG+nPEOi6mH6suN4rQGkSBcdKsM9msD6fCjDuonPGpED2EEsJnp+Zo5qmHYqbTI+ZbOyqFcrWpBLz3w9TITQMsXDoxZec3RimGF3GpKNNR/XVaQzBvldppTpSqTe3zUhwIvF+OZ7PoIbT+pRj3GYS01wtXyLH1l5GnOXzloBTDjrTDjrg75cVmMFDLoH0wSGxWJilIdKr/V9fnbIpFaRlJqll6K59Jw5f/C5ur/84U8yfnuO9//e5zCDQA/QMU0Cy+Kbj79n9xMoxbu++MdcfOll/SNg+eFVWk4ige26SNPEUJL18XG+/NEnQ4+13IDCDrE1gNGFCvMpuxXnN70eOy+hV/bBAC0hyhDUMjGSFberq7dU6DTodo/rGQpsr/cOoJ6JwVK3BIQSUDvDEhBbRA5gB7G40Rrl1xEDN6AwfHRvV75gMZQzdSOYyZHObjUMQTwebsB2au406pKNdZ+Ll3vnP0yrt9NMZQS5vMUL0w/hxRMdc36VMHgle4GSnebH73y5ywk4zZh/XO4v9Jb1w8MRpgzIu7sPphFCMDkTY3hUUqvpMs1MxtiXIGDYwJTl2XP8wT/8+zz4zLPk19ZYmZ7mxbe+hVpWx76FlCQrFdxEEj/WaVEvv/AiF15+ucPoh/0JFJBsNPAtCwR86aNPsnDpUs/7TBednivjVMWlktdJ40bKxnad7hW8Aq9X8jaEtckMY/Nl4nUPJQRCKcr5BJV85+LHjYd/96Sgb2OXtAw2xlMUlmut16UEVHPxM6sA2k7kAEKYOR9jedFrte0nkoKJqcMZldcPw9D1/HcLpRSL852hKKW0PvzqisfkdPiKKR4X2DHRlfgVAkaaeYKF/Ey4rr4QrMYLXMvMcl/lFgBFK8OXJh5lNT4MwFhjnR9dfoohP0TMqw+TjVXSfo2ine0IAxlIHihfG/g8sbjRCsWVrDQVK8WwW9y1h6AjidsjgVsaGeapD/6NrsevfPd53vaVr2L6Wuvi2oOv5xsfeB/S0u/h/d/+DrbXueLf0nfyLQvT91uxctC7AwW85Wt/xR/2cQCiXxyv7VelkRTpkoshO6dvbY6lBq7OAVCmYPn8EKYbYPkSL24iQ5LITtLCi5vYTtDaLSi0xs9uYm6VQpJGKka65CCUopaN4SYj4w+RAwjFMAST07rpBnonA+81PK938rZr7GEbQgjOXYgxf9PFdbdzKGOT25LMKb/RU7QnMCy+lXuAZ4YfpmHECISpa/ebRns5McznZ97Hx2/9AYuJMZ4aeSObdpa0X+etG99rOY6u+wI+cufLfHnsUeZT4wDk3AqPrzxNepf8wU5cYfGnk+9iMTGKqSSBMHmo+ArvWP9OywC+6Qmf1L/737aN/h6SuO3MXLvOO/78Sx2r+8sv/gCB4utPfBAAs0e4x7dtnn/723j46Wewvc6dkwAKK6vYjoMXDw8v1rIxshuN0F1APbNtNAPbYOFSjqG1OsmqR2AZlEaSOuSyD4KYSdBv5yAES+dz5FZqZEqOrufPxtgYSw0kA+HHTYpjUdnnTiIH0IezYvi36Dc9a7fKPts2uHg1gdOQBIEuD20/3yPFl7idmgqvvVeKzXhue5W+w1EoYeAbFs8VHuS7ude1dhKlWJavjb0NT1g82GNFnwwcPrT4NVxhIYWx66q9F18ZfzuLiTECw2zlFF7IXeWH/t4Q/+q1h7cP3KfRB920NbK4xJu/9pdd8XzL97n0wg945kffixePc+3B15NfW+86LrAsvvfYozzw7e90OYAtVJ/PtZu0qeTiZNpCQUrouvmdid3ANtmYzLCxj9e6H5Qh2JxIsznRptbXTAJn1+sYUlHLxCiNJLt6ErYUQPeyOzkLRA5gHyilKG0GFDe1KcgXTLI589Q7jC19+jDRscLoYB+VXno2U41VHlt9jr8ae2voLmBnpc5OPGHyUuZSVxjJNyyeGXmY15ev9dXnjyl/MP3rEFxhcTM9jdzhvHzD4jf+bBYu7++87Tzy//01Dz/1DaRpYrvhTkoZBolaHS8e56U3v4lLP3iJ/OoatufhN1Xx/uqJH0MZBq++4SEefPabHT0AUgiWZs/hx/qv0jcmM9SG4qTKro6XD8VPbL18YblKZtNphYWGNhqkyw53LuVRpoHpBYzcqZCoa0fpJC3WpjK9m8zOGCfzr3qCUUoxf8vtGKrSqEsqZXlo8wPuJlPnYszfdHDaymFzBZOhXLfUw9qqR7kkmyMpTfLD/XX5HypfY9Td5IuT78EzDJQY/ONnqwDHDH9/XSOGa9j7Thbvxv3vF8hbJmFz6c0+NeiDMvvKK7zh6ae1sW4abEW3vpISguqQThBLy+KP/oefZvbV17j/W99mfP4OQine+99/n2sPPsAzjz/O+PwdRpaWEEohDQMnmeSvPvTEQPfkpOwTnyQ1fUl2szNpLQAjUGQ2G5QLSSZvFDGD7TzFVu/A/JVCtBsgcgB7pl6TXRO1lNLVM4263FWN86RjWYILV3Qox/cU8WTnUBopFaWiz8qi35EvWFnyqddVzxkGW0w46zx55y/43Lkf6xuKaA8DmTJgyCsTYLAZ7xY8s6SPLQ9f3vmXP/zJ1r3MsIm1o6JeAfX0wY3kg88+1zOhu/UOeZbFcz/8Ls6//AqXX3gRaRi88sjDOIkEE/N3OkJBl174AaYf8Cc//XcZu7PA8PIylVyOOxcvoIzT/flsJ9bwQ6eDGUo3kgW22ZGkhmbvgFSkyu6u8wPOApED2CPVHrINSkGtGpx6B7BFPGEQ3yET47paEiNMJ0gpqJQCXEfu2rz2UvZyf+OPFmuLBS6GktxXvslbN77PXHKCL028A78tDGRJnzdtvrivCV076TkwRQjWJtN6mlRTs0bSjEkPmFgUUmEEisASXSGueC08byCFwEvEqQzleP4db+fK919g6uatVmx/+sZNnHi8KyFsBQHnX36FeKPBysw0KzPTA93jaSOwjNCwngL8mInlyZ6D4C23Rx+DVKQqLmYgcZL2PT874N5+dUeAZRkI0e0EBp3GdZpZmHNDjX8LocNhuzmAqpXsjPlvoRQCRcav8cMrz3Z1CV+qzfOelWd4auSN1M0EtvR588YLvLH40j5ejZZRFm/7wEADU7y4YGTpFQzfwkllEdLl+oMXd+94lYrhpWpLdkAZgvXxFG7CJlH3CEyDuSuXyW5udmn2BDGb3/vkP0GaJpM3b3UYf9BSD5bnhUtxmybJSgUneXfmah8HbtzEj+nS0Pb3QAkoFxKYnuw5CD7MsFtOwOStoi6F3Qrvpm1WZrL37OSwyAHskWzOZGWpO9YsBPseGn8aCHxFo7H7KnsQsbzztUVupqe7xN1MJfno3J8x4hV7JnTvq9ziauUWgTAwleyb+A2jY2DK54DPDVC1oxTv/73PMbqw2DLSUghe/+0U/+//9I/7JlVHFqukyttJSgLF6ILuZ1ACEIL10as4yRehrlU7JTrG/9QH3o9sSrTOXL+OFVLVo4RAqW69U0NKyvmjG/1oOz6Wq+v271pCVQiWmnN+4w3d56AMwdpUBi9u4cWU3gm4270DEvBts6OkdYux+RJG0BkySlQ9MhuN3lITp5zIAewRy9I173dua0nk5neYmfOxe3oHMEiAZauKaDeuVG7x3fz9bNrZVlWPJT0eKF1j1Cvu+nwBWGpvydfP/sbH9z0Ld3RxkZGl5Y4VuqEUdsPh8vdf5OU3vzH8PgNJutzdWbv1KREKUAppxXn6vU8ytHGDc9dvUB3K8sJbf4i1qcnWc5xEAmmamDt3CaapV6xB0HICnm3z3Xc8SmDvIT+hFLFGgBFInKTVU9FTSMXYXIl4fTv+Xk/brN6lVbK0DJYu5DB8iSEVvm1s34cQLJ4fIr9ab+3AqtmYDtvtuFfLDXTIaMf5DQXZflpDp5zIAeyDVNrkyusSLXG4QaZxbVGrBqyv+vi+1tkpjNiHqvh5VFiWlo9weuwCtrSLhBA4hk3JypD1q6F19yaSJ+f/gheGrvJaZhZb+jxUepVL1blDu993Pv+L/LOvL2wb/V2klPtRWF4JFTqyfZ/RxUVeJtwBmIEKrebZiQCkYfPSW97K93oMabn24Ot549ef6v6FIfijn/xJHnnqG4zPzdNIp3j+HY9y/cHX73LVbSw3YPx2CdOXLTmGzbEU5RCjN7xYJV739Yq6+ZYkqx651fpdbbSSlhGqeqpMg42JNBvtvQN75R4WjYscwD4RQuxZD35z3esYxO44upfg4pXEqXACUzMxbt1wtqWMhR4eY5nguor52w433/gor4xexVASKUyuVm7ywyvPdun82CrgjcWX9h2/30l7F67hS4b+8SrJCkxYRUqFJPVBhb+UIl1ytxuLsjFK+UJo0tqzLDZHRnqeyt/LgJSQWHU7taEhvvbjH+aH/+CLrXtRhuBLf+ujrE9N8pW/FS7utitKMX67tL36bX448ys13ITVWQqqVOiOxlCQ3Wyc6k5b3zaQpoHhd7oRKaA6tMtnRymSVY9Uc5dRySVwDqE67Dg4FAcghPgg8Kvooau/qZT6Nzt+Hwc+A/wQsAb8pFLqxmFc+7QgpWJ5aYdkst65s77qMT558nsI4gmDK/clKJUCPFcPZt9Y83GaRSivTD/IjeErSMNqdcu+mjlPPHB4bP27h34/XQPQf6mOEUimbmxi+M24uAuxepniSJLSABOghpeqWgO/+XfKrjcIrAylfIHC2ipms/ZVohOtrz38UO+TGYLN0RT51VqHfg2E1PgjcBP9Y+m377vKZ3/+Zxmfn0cJg6VzMyjzYPH3mBN0ySyDdkbZ9Xp3L0AvxdeQQUOgVUNzq3USNS0XURxJ0tinXMRREat7pEsujaSlx0ainZoUWtgubCfUQilGFiqkylrRVAGpsks5n+jsWD6hHNgBCCFM4D8AHwDmgGeEEF9QSr3Qdtj/CGwopa4KIX4K+LfATx702qcJ11Gt2u4OVH+dnZ0EgWJ91adcCloNWLlC/wasw8QwRUse+vornROt5q48hLQ6DUZgWLyQu8o71r+754RtGF1TsnaQ2WhgBJ1JUUNBbq1OuZDoO63K9IIO4w/NiUmB5OtPfIQ3PvUVZl+9BkqxOjXJ15/4sV2rbMojer5tbq2O6UuchInlq1ZiUqGTwavTmYFi6IFts3Dx4q7HDYoRSMI+mAIdwup8UODGTeJOZx5CoatldmJ6AVPXi61afNuTxObLbIynqBRORkw9v1Qlu7mtfaRoCs8lLBopS2sb9fm7xOt+y/jD1owCvSOqFBInvuP4MHYAbwdeVUpdAxBC/A7wJNDuAJ4E/lXz//8r8GtCCKHUbiNE7h1Ms7de/qDhHykVN685HUPFlxd96jXF1C4NWEfBzmEmnh3eWOMLC4mBGRql7c+bnvBJ/p238N7PvVs/sIvWTrLidWnZAyD0vFkn3dsBxOvhzWSGAssXfOWjTyKCQHfWWoN/dWpDcWptw1RQuhEp0RRRq+TjHeWkhu+TLpeppzNdMtCGL8kUG5i+GshA7YaTsENX9bKHXv76VIaJm8VWP8RW5c3GePdqN7da72rEMhQUVmpUcomBRNyOErvhk91sdI2kjDd81geUi0hW3J6hu2TF7b97OAEchgOYAW63/TwHPNrrGKWUL4QoAiPA6iFc/1RgxwwSSUG91i2ZPDygzk65GHQYf9BOpVwKGBmgAeuwMS0tFb3F0OYKxZHJruPyXmnPxr/VhQu6XHNAAttANUISrwrdhNULpUhvhqtgaollbQyUudvomgEQotspNO/h4ae+wcNPPa0PU4qX3/gwz773cZRhEK95jN8uAdqQZjbBi5ssnc/tW9ZAmaJDL1+gjb9vmy3t/3ZMN+hwGDoXrEKvn6iF9yig9IAXr4fG/3GR6mW81eDGW/Z53/v97qRw4pLAQohPAJ8AmLBPtvfcK9OzceZvOTiNbZ2d0XGLdGawbWK12j2eEAAB9QEasA6bkVGLlba8xtXvPcO33vVBlGFqyQElsZTk3avP7XqusIEp+6E0nOhalSm0ofT7GJxEzSNR80MN1lZj0RZCKhI1XZPfSNn7Nr4iCDh37RrZzSLr4+NkNjZ4+KlvdMhC3Ped5/Etm2+9592M3il3hqcU2E5AdqNOaWT/CdhKIYkXt/Rq2JfUMjGq+UT361KKkaVqZ3gNPd948vom65Ppjh1JYBmh07oEEAw6OP4I6dmN3j5IYRdqQ3Fya/VQR3IaJo4dhgOYB9qHmJ5rPhZ2zJwQwgJy6GRwF0qpTwGfAnggmb+nQkSWJbhwOYHrSgJfEU8YfSWYd9KvrPtuVBHlhy2k1DOGlYJceY33f++PuHblEVbjBQpuibdsvMCouxn6/J4DU5QiWWXlqCsAACAASURBVHFJVjwCU1DNDx5LdZM26xNphpdrgA6yuwlLd3P2IVVyw40/UM4n8OP6+smyy+idMgihSzyVYmUmu+fEZqpU4on/8jvEHAczCJCGgSFlV52/7fu8/rlv8b1HH8PYGZNHO4F00T2QA4DBxN8sT4YmewVgBYrROxVKw8lWNVBxJElsvtw17rGRtrvkmndi+JLMZgPLlzRStjamh5znqmZj5FZrPYz3YDpBfsxkbTLNyGJzWJHQgbGVmWzffNNJ4TAcwDPAfUKIS2hD/1PAx3cc8wXgHwJ/DfwE8KWzFP/fSSxmwD4WB/mCxcZatwyFaUKqT2z7qBBCMDKmZwwHgb4PIepcWv5G6PFvekKvbFuVO2HxfKWYuFUi1vBbSdKhjQZrU5nukEkPqvkE1Vwc2wmQptDxdaUYWq0xtNFASIWTtNgYT7dkjlUP26IAN6mPMX25vQpv+yOMzZeZv1LY1ai18+4v/jGpSgWjeR4zCHqGlkzfxwh6i931uve9Yrke4/PzBJbF8sx0l3BcvyHuoJ3R0LpOtkvLoJGJ6fDSSg2a4aVG2mZ1uo8zVorsRoPCcg2F3mGkiw65VZPFCznUITZbBjFTLxZ2zAxem0xrnaEBqeUS1DMxvSsU4kC7wuPmwA6gGdP/eeBP0GWgn1ZKfV8I8a+BZ5VSXwD+E/D/CCFeBdbRTiJij9gxg5nzMRbmXWRzoRiLC2ZmDz6k/CAIIeiXE+2I5+9Cuui0jD9sV1WMLFSoZ2KDf7GE6NCw31nemahpWeCFS3n8mEl1xxCU7fPQmnK1VecdRqrsUil0x8zDsFyPibn5lvFvu1QotWwWJxkjsOsIt7NkUwq65ufuh0svvMhjf/ynLaMfWBZ//hMfY31yYvtalkEjafeO7TdfRLzht96zSiFJJZfA9gIC0+jvJJVibL5MsuJ1RGEMBZYXMLS+/2Yzw5d65GTM7PgMVfPaeCeb5Z/1bCx0JOVuKNOgPuCu4SRxKDkApdQXgS/ueOxftP1/A/g7h3Gts046Y3Ll/gSeqxCGnsR10uipqjkA6ZLTs4onXvdDyw13Q1fOdOvG06x135jM4CZtSiNJhtY6dyUrM9mWwTCk6qkuafSogw+lz+Z3q8F266/qWxZPv++9YBgsz2SZvFXqECurp2Ohydq9MLS2xjv/+E87p4u5Ln/jd3+P3/3kP9mueFKKciGO7fitEtHQZPtOA2qIgRK+yYqujApzLobSn43dHIDd8Ek1m9VqQ3G8mMnInTLJqtcqWyqOJCmNJFshJWkZVA/4Hp5WTlwSOGJ3hBDE4idri9kRz++jqrkbPRNzCuQ+fZ3tBkghMENW3O2ln8XRFJWhOMmqhzKglol1xHHr6RhDIQk/JfY2F8CPx1ibGGdkYbEjoSqFwdylq/i2wcT8HKXhAt9552MsnZ9tPs9i7kqBZNXF9FWrXn2vjCws8rYvfYWRpSWcZIJioYARMmNYSMXM9Rvcvu+qXp3PlfXqX/UYWIPuqN2toa0X6ZIb7vy3zr/LLndotdaRkM1uNPBtA8uTHdIVubU6fswcOKR4LxM5gIh9k/jyx/jnv9Is+zzALNx2yoUEiVp3Lb80RG9t9i3D3sNA+Lbx/7d37j+yZdV9/67zqvej3/f9GsYDEwwzBmGPbQwxKGZIwssC2YqcRMEZJQpSIllysPgHRomUn2IpHiko+QEZkOwJ2IM9hhhEIASDPRgYZoYZZube6Xu7bz+q612nzmvlh32quh6nurse3VXVtT7SqLset87uM9177b32Wt9vX7oFOKwO6sS3dFQHHDi7MR31tIVk9XCiCgio5Ya3TPzWBx/H45/7YxieB8Pz4OkGnHgSt3/uHXAScXz7H+ej0yUajZVqyO/u4jc+/4V2pZFRqSJRrfWpiQLqgNtqqrRXqtzs+v/SutOqD0B941o6dq+MLgrHFB1YANV5XTki1WU4PnL7je6afgZMJ1rgLbffkAAACQDCEPQJrI2x0h+EnTJRyceRKdrqibDaZudqtm9isRoelu9XYdm+8q7NxXCwnuo7J/BNHfW02dckxgSVCjgGs+lhZUtdBwCacV2lOXRCNRsbKS1VXlnGn/7rT+IXvvkcktUSKvlV7F28BtZ0kM/IFhooRjRXjcvbv/0d6F53pZHG0aJ1FATYCncfvR3SLZiAwnoKzaQ5dtdrNRdHstJfm88AGinjyDOWVg7/pPRq/iwqEgCEgXQKrAEIV/mnpzEPACBCcSPV3gkEuqbSKz2TuuH42LhTOlyRspqkDDdQwaKHvYsZLO0qA3EKV6uFC6ljc9OaH2DjdrmrozVm+/Asxr0r+bFKEzXWce/mQ33nBxqUDn0n8ZqD/G4DhuPDtXQU15IjCY4t39+J3g0RwdN1mJ4XpnJMvPCOR1HPhvfyiJr5SXkCNFMmKktxZA7szo/H/kbq2Bz9cemhrvdC9W8IEgCEHqIE1qaBb+lwAkZuv4H8Xh12wkB5OQE/nGgyB/1duxoDsboLw/H7JySNcLCRVpIFjBPLEKSKTRD3+8rqboB4vedQmhmZYgmeYaCRToGCMD0yYHJSlobRqSnPOkzKtHoPWsFOtz2sb5ZH6j8orSwjU+o33Ak0Dd/79ffi2suvwLMs/PTtb8PWjevt16u5GGIRqTmmI1JzI1BcT6GajyNecxFohEbmZJVfjYzVV87ZHmP4tVO6Yp6VSyeJBAABwHiGKadBvOp0efCaTR/psoOt6zloASNZbkaXIhJFB4CO14dRpTM73KR6MVwfgAoAG3fewLuf+QvEGg0QM6qZJTz/zveinsngYD2Jeq5/BetZOpoJA7G615WDZwLKHTIESzu1vjFoDCzt1LE1ZAD44S//Ei7eeaOr4sc1DLz6Dx7Gy4+8HS8/Eu1tUM9YiNdibWMVAAABO2Pk/NuEcsqGo+Qh7OTR6Z4ofENDQIDec59ak76dNJQYX9JEqWMhsehIAFhQfvlHv4e/23vt8BB3DMOUicPKR7dXpAsBY/VeBabjD9bOZ4Y7wT9uJ2EgGFCa6oQHyKlyGe/7k6e7/HozpX08+u2/xHff/5tY2a6BNS3Sk2D3cgar96pI1N326rSwkYKTMNs/T5ScAqCC07DsXbqEr3/kQ/jFr/010qUSfMPAi48+gud+7VeP/odEKFxMd6Xm6idcnR+F5gW4cLsE3QvaJ8CuFeobDdn0xToBXvQvxt6lzFCNeouCBIAFIVpVs1+4bRbQAoYxQEPG6jEA7yQIm7YmubqrZWNKLsA7TAMFpOQlWqmPB//+h9CC7vFqzDAdG/m9LRTXLiG3V48MAKxr2L2aheYH0PweS0MAIIKvU780M9DfrRowYraHQCNV3TRgZX7v1k08/cQnoXme8hweYgXvxkcrPR3Eyla124qRVWDL79ZwcCE91GfVMrE+dc9WpZdM/tFIADjnjKqqOU2CVppmmN4qqLRJaXWyAoKsEbZu5LG0U0OiqpqJqrkYSquHvrLpUqlPw6dFzK4DwMBVfItA1xCEcUt3fCSrDphUDry0kkB+t45eTZ3SymGaJFFuYrWlR8MMX9ewezVz5CH3MJLWp0KY+okq00yVHRwMuT4prSZUKsn124YuTKS8FoRIJACcMx553MOLv/+Jw9TOPKKp8sreruAgDApRDUiNlHlqB3uBoWH/CP2a7WvXcO3ln3WlgABVR19eWgNwmC46jkx46N1iaaeGwnoSpZUEcoVGmCYhFFcS7Q5gw/GxulXtTpl5ATbulLH5pqWpmLWfiCMCPDFDd/0un4RjP07XsHUzh2TFgWV78Ewdtaw1F6Js00ICwDngsc++7TC1A5xKff5Zc7CRguYHYQu/0s6u5GOqTtzrrsphAirL02vlf+0tb8Zbv/s3SJcr7Z2Ar+vYu3ANjXQOAQHFEwQno+l32Ue2WN6p4+4DSyivJKD5jECnrkk9HeFjoDSUGPGaO3MWjG00UofgjW4ZbqWyClx6tQjP0rF7OXPyMtNBXgtCJBIA5pSuLtw5Se0MA2uEvStZ6G4A3VNVPYGuobrkY/2Nsjo0JAIxK5/Z1GQmuVjdRX63DtPx4Zo6SmvJYxu9fNPEM7/zz/DW734PN156CYGmY+v6Q9i6+iDcuIGD9SSaSRPkB0iVHeiej2bCVJ/bMZGnyhFidCEtsbkgQvY7ytMXABC0KpXOAGboPqu0yxAr7v2LaVy4XQIF3FZ/bf0sFPodXLhdmu2dzBwjAWBOOIsu3FnENzX4HYJ3nqXj3q08LFsJkjUTxkjqjVHEaw7WNjvq7X0P1mYZe5czbXXLQbjxOJ57z7vx3HveHfm6ZXvYuFMGWAnKMdlwYjp2uty8Bsz+x5yFNNJWly9tCwKQ26ujnokNPgRljtxVDEOs7mJlq9oORHbSxN7FdOQ1DUepepq2ByduoLySwN0HlpAqN5EsNft2AwSlSZSoOnOptjnrSACYYboE1s6iC3dOiNddZPdt6J4PO2WpBrEJqKIu3e9Pv2gMLN2vHRsAjoQZq3crXR2/xKqiKVNooLyq0kP1TAzZfbtfkgFKjmIQ9YyFbEGHZft9k6fmI1pWghlLO2FnNJTWUmFAv8JRGI7akXXet3jNxcadUqjff/j/xWq42LhTbvd2xGwf6XIT29dzqObjMJs+EgN8mQ2RbjgVJADMECcyTFlw0gcNLO0cTtSmYyNVbmLrRn7sIDCort5wA9WxO+IK2XADlbLqoSVx3AoAblyZvCerTt9Enimq1XFlOYFatscdiwj76yklFd17DSjv294A0OuPoPuMle2a0vwfIp2WjujIJigRtisvH6C0mmj/fCvbUb0dKvDuXMuq3VwRkT0XzYRIN5wGEgBmgGEMUxaagLsmf6C1ymVk9xs4uDCeeJqvE4yIevtx0iPAMRmcXmkFPdp1iwDEmj7M7SpijRgKPTXygakNLJ3t1eengCPF3TQGcnuNoQKA6UT3ZbQMXdrSyxkLZrM/wCpJblU9Vc9YyO3rMDq6r1sWkpOUmxAOkbs6BeJf/xgAzHep5hQwHb9dEdQJAUjUHBxgvABQWk30BRhVbz9eb4Fv6fBMrU+amKFW3lbDbXf++joNlEQG1CSdLjZRXk50Vcb4pg4n3l9RExBQ7qmQitqNtBj20NhOGpHy3Z3jze43VNcwIfKQu30GQoTt6zlkCw2kijY0n6FBeTbk79dQWkvOjdXivCAB4IzoKtVckAPcSRPo0eJpgNL8PwrD8RFrePB16qu+aVHNx0E+I9+qt4eSi64MqUsTxd7lDDZe71AvDf/TA8bGG2XlKaxrqObikUJ3vcRrDqpWd2DavZzB+mZZrbTD3UB5JdF3eOoN2C0wMPRKu5qPI1uwQT4PDFq6ryq2qqHtZm+ALXcofbJGKC8nkA47egkqSGaKNmK2h/vX+mXBhdGRAHCKdB3insNSzbPGNzU0E6ZSpex4PugRT+si1BVKlQ5FzAKNcP9aDl5vcxYRKqtJVFYS0H2GP2bqpxM3ZuAgNCDvWy0zkCyrMk8vpmP/Qgor27V2EIgaQVQ6JTA0bN/Iw2h60D2GG9ejK6SIUFxJdvUcMFQ/RXF1uGY61jVs38wjt1tDuuT0jbVTevlgPQXDC5TUdRiA6hkL5Z7u7exeHXpPr4fGqpLKsr1DnSRhbCQATJBHHvfwBx/554elmnKIO3F2L6exdreq8sbhJHKwlhzY7JSsOH35bvIZ65tl3Ls1QM+fCH5EvX0XzEhWHCSqjlq552PHegvo/mBP4U6TlnoujkYmhpV7FSSrbv8/QIQOUAdezIB3TMVkZUVVTuX2GtC9AE7YrzCKzo9vaChczMBO2u3A1SW93AoqGmH3Sha668N0lEF778G94fjIFforoVpYTV8CwASRADAmXat8YLZUNc8hrGvYuaYmEd1Xyp9H5YUzB3ZkfbzuBarZ6wRm5f2DYGzcKcOyvXbzUrpoo3CMcUkzYUTmwZn6q1xYI5RXEgMDgDuERMIgTtwxy4x00Ua2YCtJ5YSBg/VUX7Co5+LwTR3Z/QYM1x8oveyb+kCJh+z+0YumSfzcwiFjBQAiWgbwBQA3ALwO4BPMfBDxPh/Aj8KHd5j5Q+Ncd5r0ae3IKn8qqEnk+PdRMCCZTgCNWFqeKjXbk3/4USBWpZX1bGxgQGomDNhJs+vQtKUsGtVt7B5xrpGqNNHInX5jlNH0sbZZhtmh2Bmve7hwu4TtG7m+ANpMmtgdw23Lsr3I1T9DVTM1k7JmnSTj3s1PA/jfzPwkEX06fPwfI97XYOZHxrzWVOkyTJFD3LmhlrVg7jX6dgEMghMfbTXZK1LXhlRJ48AySiLsXskgfWAjE55JVLMxdcgckYoyPI7cMbRksU8b3fVx8fViO6XTeX2EJaN7lzMwHB9LOzXEay5YI1TycaXKOsL5iRs3Bkp+716dgPmM0MW4AeDDAN4bfv8/AXwD0QFg7phpwxThxFSXEkiVnbazV+uwc/9SeuTJJNAGl2oe601LhOpyAtVBh9YdDKpsYpxcXXQcWtVIA/sS6q5SL92vg4LwfaGhvdn0sHel35v5OErLCeX21lkpBKCetUZL1wlHMu4d3WDmrfD7bQAbA94XJ6LvA/AAPMnM/2vQBxLREwCeAIANc7La7kcxT4YpwslhjbB9I4dU2UG85sA3NFTz8bFMzKtLcaVj37MyD0ipW04K1jXUcrG+Q2wmtLtrR8FquEiWHbCmzgEGTay9PQVdY4M61M7v1tslrS00BpK1Ad7Mx+DFdNy/lsXydg1W01dKr/k4iuvi4XsaHPvbSkRfQ/RM+JnOB8zMRAOrl68z810iugXgr4noR8z8s6g3MvNTAJ4CgDcn8kNYgozGPBqmCENChFouhtqEcuYt/aFsITz/CY1Hdq5m241q+d060sUmNGbYCROFjVR/2ekJKGyk4Osasgc2KFCH3oWN1MidsUv3q0r/J/zLyhZsFMPS117cmH5kEOid+LtgpV80SqB1Eia2b+YPez7OKu3DDApY7eIWpOHs2N8iZn7/oNeI6D4RXWTmLSK6CGBnwGfcDb++SkTfAPAogMgAcBZ0SSkLwgiU1pKo5uOI1V0EPc1la3criNcOD3rjdRcXb5dw71b+yPLNSIhQWksqs5sx9IgAwGp4YVDq+HgG8nt11LNWX2VOeTmBVKk7HdP69iSjCLQxBfrOMN/fUjQ1XJXLqmUsFC6kz33n8bj71S8D+BcAngy/fqn3DUS0BKDOzE0iWgXwKwD+05jXHYrHPvs2PHfzTYeT/qwd4jJj/e5dXHztNtx4HK+95SE00mJjN+v4poZ6z67CcPyuyR8Ia+IDRrrQQKlXlXMYxpwQk5XBfgOJqovqUncA8CwdO1dVOqYllFdLm0hGpL+icM/gnGISGM0eRVNW/SO6V8HOteHPMeaJcQPAkwC+SESfBHAbwCcAgIjeCeDfMPPvAngLgD8iogBKnPBJZv7JmNc9li7phVlO7TDjPV/+c1x+9TUYrgtf1/Ho//kWvvHhf4q7D9ya9uiEITHDvHWvzIIGIGYPlnRu0dK+170AdtKcqAE7HxU/BrzWTJrYupUPUyPqufjPitCO0BNiAK6lzY0Re/ag0RfQNFYVXaOcY8wTY/12MfM+gPdFPP99AL8bfv9/Afz8ONc5CX1duLM86Xdw/acv4/Krr7X9ZI3QUvDX/uwZfOFT/3b6xt3CULiWHi14BlXvr7s+MgWla+PEDZSX4u1GKcv2sH6nDAK3A0g9Y2H/4ugVS53UsjGl2xMxvvoxfgedqZDdy2llbgO0K6va7wvfu3d5sIfyrGEOKDtlIhiuBICZpc8Ldw5LNW/9+Pk+M/EWG5ub2Lpx42wHJIyFF9OVXlHD7dbZ0ZQmzqXXiu2SyVjDQ7poY/t6Dm5Mx9pmBXpP41qy4sBOORM5wPZiBg7WkljarXc9vz/AvWsQTsLE3QeWkC7Z0F3VGcwawbJ9eKaGeiYG1ucnd95MGLAaHnrvADHDteZ6ijyWufrp+gxT5mSVfxRH1Y0zzccW+qSQr+QXfEMbKAVwHti9ksHSTq19gOrEDexfSGHpfu2wXh4dHcTbNRQupKD50aYx6aI9sQqm6nICjYyFRM0FA2hkrJEsNQNDQ3mluzSzMT+L/i4qywmki01wcChAF5DaMU3CaW6WmYsA0NWFe8742c+/FZdu3+nbBTARdq5cntKoJgwzcvsNpfMSlkk2EyZ2L6eHMhCfF1gjFC6kUdgID3zDIB8fUFIZsz0lWTHA0OU4T+Bh8U0d1fz5DcDD4hsatm/kkN+pIVH3EGiE8lIcleXxZcBnnZkOAHfza6pOfw5TOyfljTc9gNfe/BBuvfAiiLldOveNj3wIgX4+/kiTFQfZ/VCOIaztjjVU2d0o3aJzQ8/uLtCoL8UDqMNZJ66Hu8Hu1wMCarkx/IiFE+FZ+vn+XRzATAeAhYAI33n8N/DiO34BF1+/DScew+2fexBu/PysPtqTfwetblHND0ZKQcwj1XysT500IPU8NA17lzJY2zw8XG0JxVWPUBg9DeJVB0s7dZiuD8/QUFxNDG0WL8wHEgBmhIP1NRysr017GKeCHuGzC6i1ruYzgvOx0TmW4loShuOr/DsRiBl2ysTBmkoV2Sl1uJoq2dA99dog97LTIl51sHa30g5Sphu0Nf6PkroW5hMJAMKpY6dMdSDa8zxrdKyV47mCCHtXstAdH2ZYX95bYhgYGior09O96fVEBtRuJL9bVwfRosZ5rligvz5hWhRXE20FTUCt/ANSOjeLOKH4lg47bc1kfbk5wBRe93nih9HC9JEdgHDq+KaOrZs5ZAs24nUXrqmhvJIQa78ZxDM0mG5/OWqg08kEgIaA/ADJqgPNV+kukXs+e+SOC2eCb+o42BhDB2de4XDlPCeiYsW1JFa2qn0H1cWV0QxeBhGru1h/Qx14t8wVarnYwu4Kp4UEAEE4DQLG0k4N6bAZzLV0FC6k0BzDLnEUdC9A+sCGZXtwYzoqS/Ejm/Dq2RgoUHLWus8IdEJxJYHq0gQPgJmxtlnpPmtgZbXZSFtodMhSUMAwmx58XevzFhbGRwKAIJwCq1sVJKqHchCWoxQno3x0Twuj6ePi7RIQMDQAXHORKdrYvpY7UmSulo+rA9+W7dmEV+TxugeKOFDQGEgV7XYASB80sLRTbzfIOXEDu5czcyMyNw/InRSECaO7AZJVt6+ahlj1RJwVy/droHDyB8K5PFDSE8fSMkU5lXTM4NPkllBdvOa2K5K0oKXO6WHtbuUUxrO4SAAQhAljuD6CiImToJQnz4p4w+07tyWEstQ8vZKeZsKMjAFBeA4AAJlCf/MgQSmmGs7Z3cPzjgQAQZgwrqVDi5hgGZioZ/BxRAUh4BhfgDOANcLepQwCUobvrbLgRspCPaPSP8YgvwFCpGieMBoSAARhwgSGhmouhqBjom1JQleW+713T4tqvnsMQMcqe8qVNo2Mhe1rWThxHYFG8EwdtazVHlcjZSJymmdIuegEkQAgCKdAYSOF0moCnk4ICLATOiq5GPK7dWT262eyii2uJmGnTAQE+Jqa/JsJAwfj2FJOCM0LsLFZQcz2oQcMy/GxulVFZl95FZSXEwh06goCAQEH68lz79N7lkgoFYTTgAjllSTKK0r/58LrJcRsZcieqAK5fRvbN3Kn2w2sEXavZGE4PsymD9fS4M3I6jlbaIB87jqj0BjI7zVQzScQGBq2buaRLTSQqLnwDQ3l5TjslCijTpLZ+G0QhHPM8nYNWofZiMYAM2N5uzZR03HyA2QO7K4J00mYkZpD0yZec6PTD0QwHQ9OwkRgaCiup1A868EtEBIABOGUidejq3HidVdV40wgH6/5AS6+VoLmB22f3kTVQWEjNZMqnr6pgaO8eJkXRh58FhjrThPRx4noeSIKiOidR7zvA0T0EhG9QkSfHueagjBvDKq64Qk2WWUKdnvyB1SA0RhY3qkBESY006a8nOi7LwzV7DVru5XzzLih9scAPgbgm4PeQEQ6gD8E8DiAhwH8NhE9POZ1BWFuqOUGVONkJ+PzC0CJqg2Y560z7D04Kc2kicJGCoGmDsmZADtpYvfKnBoLzyljpYCY+QUAoKNXMe8C8Aozvxq+9/MAPgzgJ+NcWxDmhYP1FMymD8v22s85sclW4/j6oG1GqOQ5g7QkJ0zHR6Br8EXi4cw5izOAywDe6Hi8CeAXz+C6gjATsEa4fz0Hq+HBdHy4lg4nrk+0Fr+ynECs0S2wxgDc2OwdAHdBJHX9U+TYO09EXwNwIeKlzzDzlyY9ICJ6AsATABDLnk+LRGExcRIGnFPqBG6kLZRWEsjtN9riaa6lY3cBjc6Fk3PsbyMzv3/Ma9wFcLXj8ZXwuUHXewrAUwCQufjg7J1eCcKMUl5NorIUR8z24RuyshaO5yySbt8D8CAR3SQiC8BvAfjyGVxXEBYO1jVx1xJOzLhloB8lok0AjwF4hoieDZ+/RERfAQBm9gB8CsCzAF4A8EVmfn68YQuCIAjjMm4V0NMAno54/h6AD3Y8/gqAr4xzLUEQBGGySN2VIAjjwzxVjwFhNCRRKAjCyGhegKX7NaSqDsBAI60avI7yHRZmB9kBCIIwGszYuFNCquKAWFWfJqouLrxeAs2g/ITQjwQAQRBGIl5zYbhBl6AbAdACRrLSnNawhCGQACAIwkiYjt82ce9E47P1PhZGRwKAIAgj4Vo6OGIGCUhsG+cFCQCCIIyEnTLhGTo6NwEMJT7XMncXZhsJAIIgjAYR7l/Popa1lKQzgHraxPb1nPj2zgmyTxMEYWQCXcP+pQz2pz0QYSRkByAIgrCgSAAQBEFYUCQACIIgLCgSAARBEBYUCQCCIAgLigQAQRCEBUUCgCAIwoIiAUAQBGFBkQAgCIKwoEgAEARBWFAkAAiCICwoYwUAIvo4ET1PRAERvfOI971ORD8ioh8Q0ffHuaYgCIIwGcYVg/sxgI8Bez7jGgAAA7tJREFU+KMTvPcfMvPemNcTBEEQJsRYAYCZXwAAIpF+FQRBmDfO6gyAAfwVEf0tET1xRtcUBEEQjuDYHQARfQ3AhYiXPsPMXzrhdX6Vme8S0TqArxLRi8z8zQHXewLAEwAQy66d8OMFQRCEYTk2ADDz+8e9CDPfDb/uENHTAN4FIDIAMPNTAJ4CgMzFByMspwVBEIRJcOopICJKEVGm9T2AfwR1eCwIgiBMkXHLQD9KRJsAHgPwDBE9Gz5/iYi+Er5tA8C3iOjvAfwNgGeY+S/Hua4gCIIwPuNWAT0N4OmI5+8B+GD4/asA3j7OdQRBEITJI53AgiAIC4oEAEEQhAVFAoAgCMKCIgFAEARhQZEAIAiCsKAQ8+z2WhHRLoDb4cNVACImp5B7cYjci0PkXhyyyPfiOjOfSEZhpgNAJ0T0fWYeKDm9SMi9OETuxSFyLw6Re3EyJAUkCIKwoEgAEARBWFDmKQA8Ne0BzBByLw6Re3GI3ItD5F6cgLk5AxAEQRAmyzztAARBEIQJMjcBgIj+MxG9SEQ/JKKniSg/7TFNEyL6OBE9T0QBES1ktQMRfYCIXiKiV4jo09Mez7Qgos8S0Q4RLbzMOhFdJaKvE9FPwr+Pfz/tMc0ycxMAAHwVwFuZ+W0AfgrgD6Y8nmnzYwAfwwBjnfMOEekA/hDA4wAeBvDbRPTwdEc1Nf4HgA9MexAzggfg95j5YQC/BODfLfDvxbHMTQBg5r9iZi98+P8AXJnmeKYNM7/AzC9NexxT5F0AXmHmV5nZAfB5AB+e8pimQmivWpj2OGYBZt5i5r8Lv68AeAHA5emOanaZmwDQw78C8BfTHoQwVS4DeKPj8SbkD13ogIhuAHgUwHenO5LZZSxDmElzEgN6IvoM1Dbvc2c5tmlwkvshCEI/RJQG8CcA/gMzl6c9nlllpgLAcQb0RPQvAfwTAO/jBahfPe5+LDh3AVzteHwlfE5YcIjIhJr8P8fMfzrt8cwyc5MCIqIPAPh9AB9i5vq0xyNMne8BeJCIbhKRBeC3AHx5ymMSpgwREYD/DuAFZv4v0x7PrDM3AQDAfwWQAfBVIvoBEf23aQ9omhDRR4loE8BjAJ4homenPaazJCwI+BSAZ6EO+r7IzM9Pd1TTgYj+GMB3ADxERJtE9Mlpj2mK/AqA3wHw6+E88QMi+uC0BzWrSCewIAjCgjJPOwBBEARhgkgAEARBWFAkAAiCICwoEgAEQRAWFAkAgiAIC4oEAEEQhAVFAoAgCMKCIgFAEARhQfn/q1g87tnNp1oAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsvXmQa9d93/k5d8GOBtD78vrtpChSpBZLoijJMmVJsSjFoqI4sa3J4mSmNLHsSjxx1YzHVZOk8leScU2VU87EVjkqR1MpW3aUUWRb3rXZI1MkRS2USHF7a/frfcGOu50zfxw0GmhcoNHr6359P1Wsx0Zf3HuBBn6/c37L9yeUUkREREREnD2Mu30DERERERF3h8gBRERERJxRIgcQERERcUaJHEBERETEGSVyABERERFnlMgBRERERJxRIgcQERERcUaJHEBERETEGeXADkAIMSuE+LIQ4gUhxPeFEP8s5BghhPj3QohXhRDfFUK85aDXjYiIiIg4GNYhnMMHflEp9ZwQIgt8UwjxZ0qpF9qOeQK4r/nfo8B/bP7bl7wVU5N26hBuMSIiIuJs8FKjuKqUGhvk2AM7AKXUArDQ/P+yEOJFYAZodwBPAp9RWnfiKSFEXggx1XxuTybtFJ+++u6D3mJERETEmeFd3/vDm4Mee6g5ACHEReDNwDd2/GoGuN3281zzsYiIiIiIu8ShOQAhRAb4HPALSqnSAc7zCSHEs0KIZzcD97BuLyIiIiJiB4fiAIQQNtr4/xel1H8LOWQemG37+VzzsS6UUp9SSr1VKfXWvBk7jNuLiIiIiAjhMKqABPCfgBeVUv9Xj8O+APyDZjXQO4DibvH/iIiIiIij5TCqgN4F/H3geSHEt5uP/TJwHkAp9evAF4EPAa8CNeAfHcJ1IyIiIiIOwGFUAf0VIHY5RgE/d9BrRUREREQcHlEncERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZ5TBGQkZE7AulFE5DIaUikTQwjL6D5SIiIg6ZyAFE3BWchmTulkMQ6HmiCpicthnKRR/JiIjjIgoBRRw7Silu33DwPVASpNT/Ls57OI6827cXEXFmiBxAxLFTq0ik6n5cKShu+Md/QxERZ5RDcQBCiE8LIZaFEN/r8fvHhRBFIcS3m//9i8O4bsTpJAiUjvmE4HvHey8REWeZwwq4/hbwa8Bn+hzzl0qpv3lI14s4xSTT4esOISCTPd5NaXHTZ33Fx/d1InpswiaRjDbGEWeDQ/mkK6W+Bqwfxrki7n1s26AwbCLain6EgHhckB0yj+0+1lc9lu54uK5CSqhVJbeuOzTqUR4i4mxwnEudx4QQ3xFC/JEQ4qFeBwkhPiGEeFYI8exm4B7j7UUcJ6MTNtOzMdIZg2TKYGzCYvZSHDFAKahSPeJHe0BJxdqKz85TKQWry1EcKuJscFw1d88BF5RSFSHEh4DPA/eFHaiU+hTwKYAHkvmDf9Mjjh2lFOurPpvrPlJCOmMyNmFhx7bXG0IIMlmTTHbwFX+lHLC86OG5CtOE4VGLwoiFEHvvH/B91WX8t2g0oh1AxNngWHYASqmSUqrS/P8vArYQYvQ4rh1x/CzMeayt+Pi+LvEslwJuXnPw/f3781o14M5tF8/V5wgCWF32WVvZX9WQafV2GrYdNaRFnA2OxQEIISZFc5kmhHh787prx3HtiOPFdSWVctC1upbyYCWeq8vh4Zr1NR8VVlO6C4YhyBU68xCgcxGj4/a+7zMi4jRxKCEgIcRvA48Do0KIOeBfAjaAUurXgZ8AflYI4QN14KfUYQRy7wHqNcn6mg5rpNIGwyM21ilegToNhRCEGut6bf+hFbdXg5gCPwB7H0uZ8UkbIWBzPUABpgnjEzbpzPEloiMi7iaH4gCUUj+9y+9/DV0mGtFGqeizOO+1jKXTCChuBly8Esfej0U7Adgx0TO2Hovv37HF4ka4AxFg7dNeCyEYn4wxNqGQARgm+8onREScVk6nlbkHUEqxvOB1h0oCWFs+vd2wiYRBPNFtRIWA/PD+1xuj41ZouGZ41BqocqgfQghMS0TGP+LMETmAu4Tn6drzMKrV012Fcu5CnMyQ0TLYsZhg9mKMWGz/H7dU2mTmfKy1izAtGJuwGBmNxOMiIvZL9O25S5h9Vq3mKQ9Bm6ZgZjaOlLrU0jQPZ2WdzphcunrK35yIiBNE5ADuEqYlSKUNvdpvCwNthTXuBlv1+8WNAKkU2SGT0TG7b8lkPyJ9/73h+4qNNZ9GXRJPCArDnb0TERGHTeQA7iJT52Lcue1Sr8lW5czwqHWscgjtzN9yqVVlKy+xuR5QLUsuXo2fKWMupaJSDgh8SKaMY9EGch3JzWsOSunPQa0KmxsBsxfjJCNtoogjInIAdxHTFMxejOO6Et9XxOPGoYVL9kqjITuM/xa+rygXA3KFs/FRcRqSWze2DbEAUhmDmdnYkSaJlxe9rpyQkrB0x+XilcSRXTfibBMtLU4AsZhBKmXeNeMP9BRAUwpqB6jfP00opZi/7SIDbXzZWo1XJJvrR1uZVeuR+N8amRkRcRREDiACaMofhPgfIXQVz1nA8xS+121s9aCa4EivbfT4JgpBV/lrRMRhETmACABSaQMrbAciODPhn15Datp/pZSiWgnYWPOpVoJDUSYF3SMR1ueQHTKj/oSII+OMfLMjdkMIweylOAtzLvW6RKB3BZPnYlj7rALaK/WapLihFUSzOZNM1jhW42fHBKbVPZVMCBjKmQSB4tZ1B89rTjQT+j06fyl+4PDdyJiF40iq5e2CgETSYGIq0iWKODoiBxDRYsuYBYGu3z8uww+wtuJ16PNXygGptMHM+aNNvrYjhGD6XIzbN91W/F8becgPmywveLhO24pfgesolhY8ps/FDnztmVldEOA2FHZcEI9HG/SIoyVyABFdHEcyWimF01AYJhhCdA1n0aWQkmpF7mlmQNh1PFdhmGIgh5ZMmVy+L8H6isfmZqDF5ny49oqD7JEGqJQOLz8QixnEDuZLIiIGJnIAEcdOqeizdMfTcXWlZR3CIulK6VkC+3UAlVLA4h23VV6ZTBlMDRDSMgwoFgNdCUS3smnYfSqlolh9xKkj2mNGHCtOQ7I4r2veldTG0/fomYDdryxGoyG5M+cSBLQ1V0nmbjq7PrdakX0TwjtJZ443VxERcVhEDiDiWNlY7x7s0gshIJff3yZ1Yy38Oq6jcHYZ+Rj0GRdJW1mmENpBRYnaiNNKFAKKOFbC6uyh06iCXrGPTVrEE/tbo2yNjgy7ju8r4n2em0yHX1MYMDltI6XeycQTBkM580zJZETcW0QOIOJYSWeMUMkJpeDi1Rieq0NDqbSxbxE6gHTaoFEPv85uTsU0BHZMdFT8CAHxuIjq8iPuKSIHcApRStFoKAJfkUgax1quuYXjSNaWPeo1hWXDyJg9ULI2l7fYWA9CV+hLd3xmLx5O2Wd+2GJjwydoU3DQQ2nMvu+X05Dcuu6wU32hMGIyMmYjhMB1JeurPvWaJBYXjIzafQXjpFSsLHmUNvWs5HTGYHzKPrVT3yLuHSIHcJfpMCYxwfCoTTLV2zB4nmTuhovnbc/eLYxYjE10x6GVUiipQxeHuWp1tpQrm6F034c7t13Gpyzyhf7xcMMUzMzGuPFadzK2UZdUyvJQ1FBNS3DxSoK1FY9qWWKY+n0ayvU/91Jb1VDHvTUUhiFwHMmta07rGNdRVEoOw6NWc2pZ5/uslGLupkOjrtp6HCT1msOl+xJ3Vf8p4t4j8eWPwdgfDnx85ADuIlsSwO3GpFpxmDpnkx0K/9PM33Jxm6vnLYOyseaTSBodhrNU9FlZ9PB9vfItDJuMTtj7cgRbtfSgu2VXl72W8d8+BlYWfXL5biO4E6ex3e268xzlUnBoctiWJZiYisHUYMcrpajXw3MHW2JtKyGqnQDrqz5KKcYnO4v4Gw3VYfy3kBJKmz6FkSiBHHEwHvv0I7z3c+/WP/zK3p57KA5ACPFp4G8Cy0qpN4T8XgC/CnwIqAE/o5R67jCufZpZWQqRAFawtOCRyXbHml1Hdnaitj1nY81vGc5qJegYNq8UbKwHKOgyULtRr0vu3HYJfH0yyxI91Sl1SafC3kU8zjCbwnMhpzmOaWieJ3EaCtsWXfmAMMcEsJXnDR1M32RjLWB4VHWEmNweFUdKQaPpbDxXIiXE4tFc4ojB6DD6n9v/eQ5rB/BbwK8Bn+nx+yeA+5r/PQr8x+a/Z5peMssygMAHa8fiUMreBkoG2w+uLncPm1dKD3gZHVcDV60EgWLuhtPhpLweVTxbDBLSSKf1vOCdZxIC8kcoPKeUYvGOR7kYtN7HeEJw7oLW8hFCMJQzKRWDjvdPl6Nqz2RaAtmnwqhR7+xc7uUMhdB/3xuvNVpO3TBgciZ2oM7niHuTNz3h84P/9e/yz39lUj9wAKPfzqF825RSXxNCXOxzyJPAZ5SWTnxKCJEXQkwppRYO4/qnFcsUuEG4MTFCbEA83tuYZNrCJv2MdOArjAHlncs7DGHnRekaZZnNmXp1vwvCEMxeiDN30+nYpYxP7b/scxA21vzWa9q6bqOuWJx3mTmvC0PHp2xcV9Gob4epUmmD0WaOpTBisrzQezbAzgRzMmUQiwucRucbKQSUNgP8tlMFgQ7xTZ+zyUTVRmeedz7/izz+S/XtB/YY3hmE48oBzAC3236eaz52ph1AYdRiecHrWm1mh8Jry4UhmJiyWbyz/Ry9khQURrb/lPGEQa3SvbsQYm8Cb36fhqh0WlCvbf8+O2TuqSEqkTS48roE9ZoOf6RSxkDO4yBsroc7tEpFIqXeGRmGFsRzGhLXVcR2iLLlCxaNmqRU7H5/7Zggnuh8DULoqW9LdzzKTc2gZMoglzdZWvS6zgFwZ84jHvc5dzF+Vyq8Iu4eiS9/bHuV3278j4gTlwQWQnwC+ATAhJ28y3dztOTyJr6nB7FvrTbTGYOJ6W1DKgPF5oZPtSIxLW3oz1+Ks7nu43mKdMYgX7A6jOfYuM2tqtPlWIbHLMQempaSKSM05KQH19skkwaerzBNsa9qFiEEqfTxhTuCPpO1pOwcyhJPGMTiOvkdBKr1+oQQTJ2Lk0x7LC/4W6rQxBNazTNs1W6agunZWGt2gBCCUrH/hDHHUSzMucxe7NeyFnEv8Nnf+DgA3/lC/khW+f04LgcwD8y2/Xyu+VgXSqlPAZ8CeCCZv6dn4QkhGB23KYxYeK5OHlr2tgEJAsXNaw6+11ZCWAqYmLKZnOmdzE0kDWYvxllZdGk4+rwjo1bPwS4yUKyv+ZSKAYaAXMEkmzOplLtVLoXQjkE7B3GqpoWlMyblYvdrsi3RlXze3PBYWdyWk8hkTSZn7NbOLF+wyeUtHEdhGmDHdg9dtTuHZNLYVW+oXpMdzifi3uCdz/8iwHZ45wt3716OywF8Afh5IcTvoJO/xbMe/2/HNAVmsvtLvrnudxh/aFYJLXo63t5nNZ9MGZy/vPswcSUVN645HY1Zy4s+K0vdWjqGAaPjVnN61d6NkgwUa6s+5VLT0Qyb5Av7O9d+GJuwqFUCgjYfIARMznSWx1YrgV7dt73+SjlgYU61cgX6uYJEYn/3bscMhvJmqzmsF1IefmWUL0xAYe2s5Y04Et70hN7tfcj4p/qBYwjtDMphlYH+NvA4MCqEmAP+JWADKKV+HfgiugT0VXQZ6D86jOve65RL4cZBoIeFJ1MHM5wy6Db+W4RdVydE95eclFJx87q+1ta5VxZ96jW1r2EqjYZkZdGjXpOYps6nFHZxTJYlGMqbbKxte4B0xtCr8TZ2ziYA/dorZcnSgkN2yGrtgA7CxJRu+ltZ9Dqc0hamJbAOcYlWtNJ8dfztLCZGAZiuL/P48tNkgpNjkO4lfvnDn7zbt7Arh1UF9NO7/F4BP3cY1zpL6K1/uHE+jFXh0qLXUzStF42mCNpeKZeCDuMPTaNaCnAcuafpV66j5RraO5FXl/RuqV+fQ2kzYHO909JWK5LlRY+J6e3n+X7v92RzXVLccElnDKZnDyZbIYQgl7dIZ0xuvtZoSVdvkR0yuP6q05L8GJvoLznRD0+YfH7m/ThmDCX0Oe4kxvn8uffz0zf/AHMv+tcRPUl8+WP855cTOp5/CjhxSeCIbQojFvWa27UajcUEsQOOC1RKhcbD+7LHKqJ2wgTgtmjU9uYA1lb80E7kzfWAkbHeMfO11fCVfXEzYHxStRLkyZSB5/Z+b5TSjqNcChjKHfwrZFmCi1cTFDd8alUtCaLorFqqVbXTu3A5vi8HfC0zi2+YLeMPoAwDF5ub6WkuV0NTchG78NinH+Fbl65uV+4ccxL3oEQO4ASTyZoMj1rbVULohOXMhcOZGTioLv8WhoCFeRcZ6K7V8Ul74Coe2+7R/dssY92+J6VX6hvaWA/lTPLDVke+o9Gju1YILQMdlk8BWt3MO1E0Y+1N2zgyZlEpBaGSD9v3qXcUh+EAPFdSq0licYPCiIVS8OoPGqHOam3FY3p275VBRSuLb3SX6frCoGRn9nvrZ5LD6sI9CUQO4IQzOm5TGLZo1HUZaDyxN7mAAINrmVmW48PkvDL3VW4Sl55OYCZFS46gHWHA5JTN6rLfCoeYVnNyVxOnoZi76XLuYoxUagAV0IKp9XJ2PG4autFqi4U5j0p5e+W76uik8flL2yWWsR1SzVso1elMdpJI9eiPsMyOxrtYzODClThryz7VHUnjw0QprRK6uR7oQTNoJzYxbfeUyuilVbQbo+4GtvTwdjgBS0lGnM19nfO00DBiPJ+7j1upaVJBnYeLL3Ouvjzw89/0hM///tF/sB3WOeVGv53IAZwCTEuQ3oc8QMOI8d/OvZ+6mcA3bCzp8+zwwzw5/xcUvBITUzFu75B6EAIuXo4Tixtkc6YWk0Nx/dVu9U6ldOz9/KXd7822Dc5diLHQHNMIehfRHkdvNGSH8d+6huOoDpXQkTGbaqW7zyE7ZGKauoO5XAowTcgNWySaIZOxCZtbNYdAbo/CC0yTlx9+J35sgwfLr7XOF4vp+cFKKV79QaNrNyAEPctqB8Fz9WttJaTVtr1fWvB6lojut+z2QnWelN+gbBnIprczZMCQV+FcfWlf5zwNNIwY/3X2x2gYMQJD/73uJCd4+9p3eLj0as/nPfbpR/gF7w3bRv8ulmoeJZEDOAVIqahVZasGf1Atn6eHH6ZqplpfeN+wCHyPb9hX+JHiN0kkdex5c93DaehEY37YasX5hRDYtl759woXOc7gpYSptMnl+xN4rkIYdOnh16s9hNMk1KrbKqGJpMHM+RhLCzqJLZq9C2PjFrdvuB2DYHR83yI/bJNIGNQfeYDSUp1scY16OsvN+x4hsGJ8L0hxlevE6LwHIQQz52PM3XK1kVbbsheZ7N5j8Z6nmL/l4Dq9u6ylhFRG71Z2OrmRsf19ZU0UH53/c54efpjXMucRKK6Wb/L29ee5l7sMns/dR92It74DoL8HT4+8kQfK17HV9vbuTU/426Wa99Aqvx+RAzjhlIo+i/Me7VGf6dkY6czuq+7rmdmOD/7Iwi1e/62/BOC29DAMOHc+zthEd05BStWsNupukmpnrytSIQSxHppGlhWeJwiTsEhnTC7fZyKldgBCCIqbftcUMKV0X0M2Z2GagutjV1g6PwZAprjGG77xF1ieCwKuK8m5c1bXe5tKm1y5P0GlFBAEilTGbO0q9oJSWlzP3aXySqDlu21bUNzQOyLLYk85lzAS0uU9q9/kPavf3Pc5Thu3UtMd34EthJKsxfJ89d//2Kmp2DkKIgdwgvFc2ZJ1bjdq87dcrrxu92Eioq1UJlEt8+BzX8Vsxl8UEEi4fdPhyv2J1q7C9xQL825L/z6eEEzOxCiMWF2D1oXQOYrDIp0NVwmF3sPh23dDvcTrhNBdtZmsSTJwQCkMGfDGr/8Jtud2HDt/y+XSfQmdtG7DNMWBQj6ghed2U1MF/fqTKZN0xmJ8UrVkKiJxuL2TCurb27Y2HCvG//2en8D/wtlWXo1m0p1gVkJknbeolHbPTL6ufANT6uMmb7+CCNHC0eWTPkGgUEpx64bTMv6gk723rzvkh02Gx6yWXo5lCyZn7IF2IoNiGILzF+PYttCrekP3O5y7EOub3G09v49DVEpR3PC5OP8DLBUwsjTX4SBbx6EHtRwFga922qEuhNCD57ccmxCiJVXdjudJFuZcXn2pzvVXGmyuey2tobOCY9jUzXjfDoZHii8Ti3UeoQAvbuLHzrbxh2gHcGKRUlEOUZwEbbSDQFGvBVTKgdaxz5vEdujRvGXj+ywmRlmN54k3ahhhBk/C6rLP6rJPMmWENkEppVfXo2M2I6O6THHQPMReiScMLt0Xx202jcX3MCQlXzCp9OievnNbh9HEwhwX/OdoJDOhDhHVvxHsICSSRk+HHo8LUk1hv916PHxfcfM1p5VMD1AsLfjUapLpc/e+eFzNjPOl8XewkNShvKxX5b3LTzPhrHUct9WJm9moU1iutYZpeHGT5XNDx37fJ5HIAZxQtpK+vQxGvSZZXd4Oyayv+kxM2R1hClsFfOTOl1hKjLKWFLqQv8cuYOuaYShFq+xSCLHrKvagCCF6zj7oRyqtdynrK36rrBJoVfBsvc7Z114gsCzMEIcoBIe6q2nHsgX5YbOjwWsrv3H+UnxgOeyNtXDpiHJRUh7yO8aJuo7UchmWIJ05uHzF3UYBvz/9Xop2ttXUVowN8YfTP0Ly5+IYWdEV068UklRzCWzHR5pGtPJvI3IAJ5U+i1DT0p2oXSJxzVGSZlvCVACTjVUmTMXtBDTqe28AEwZ9B9WfJEbHbPIFi1o1wDAEnic7VD23MH2feFzgunQY40TSIJ05ute6JeewseYj5Xaz315mIdSrvf+AS3e81kSxpTsepWa3t06Uw+yl+J66rk8ai4lRqlaqo6MZdDho5XfjFMdSoc9ThsBNRvOXdxI5gBNKe3NUB0JX3tRr4Spx1Wp4d6oQegpXsRhQ2gz6zrbdufMwTV32eFqwLNF6DzbWexvLVEYwnLRaK/KhvEF+gKH2B0GPnbQO1EFsxwX1HvptQXOcaK0WdIy23Pp3/pbLpavhcwtOA5M/+wDO79sYO5VqAbuPfEdEOJEDOKEYpmBqxmZhXrffturPh0yEAfVaiFY/IPpUdQtDkC9Y5AsWt647oU7AsmAob1Ha9JFKX2903D6ymH8/Aql4zrjAi5MP4cYSjFTXeHfxO4z5xYHPkckYrIQ8rmv59VCbw5Bz6Eev6WL7ZXjEorQZbuy2kue9pp/5nsJ1VNfkspNMu8Ca9bzPFN1/fymgkYzM2V6J3rETTDZnkUiZlIs6XJDOmiSTBvVaEKojvzVRbBDGJ22tqLmjrHNyRvcYjE3c3e2yUoqvGK/j2oU3IC19L8u5Sf57ZpSPzf8Zw355oPPYMYORMatD4nmrcWynDPRhI6Vi/pZLvbadz0mmDWZmYwdyqPGEQa5gUNzoduCptIFpCmSP6Wf98konhcc+/QjibR/YHpjSJrDmxy3qaZtk1WvtAhQgTYNqvm3+hVTb2hoRPYkcwAnHtgXDo53GOJkyW3X57UzPxgaOJSeSBhcux1lb8Wk0tALlyJh9YmL9pbrg2usfRrYL4gtBYJg8PfQgH1z/xsDnGhmzSWfNVnnnlp7/YRH4iuKmr1fWSS3xbBiC5ea8gvY+jnpVsrrkMT51MEG/iakYMnApl2TLxsXigqnmpLihnMmq0537QHAiV/9dXbif6z2jYHUmS3a9TnbTQUhFPRtjczSFMgR2w2dksUKsoXdI1aEY6xNplHkyPtcnjcgB3AWU1HOANzcDlFJksiZj43ZH8nY3xiZscgWTalliGHQlfwchntCa9keBAl7KXuLb+QeomwkmGys8uvZdhr3SQM9fU6nQOn0Mg9XEyJ7vJ5EwSPSZFbBfHEdy65rTMvKiCOsrPhcuJ3ru0oqbAeNTB7uuEILp2TieK2k0FLYtOmYF5IctSsWgQ3JCCJiaOdgMg8Pks7/x8f114QpBeSRFeaQz4Wt6kslbRYTcrgBLlVxsN2Dx4tnt9u1H5ADuAvO33Q59/OJGQLUiuXQ1vqfQQCxmEBs5mSubZwsP8d38A/hNAa5bqSkWkuP87bk/JedVdn3+kGqEtvCjFFknPPwjpcL39AzkvVTVHITFebdDKE4pPaBmabF7jsP2fR7e9e2YgR3i1wxDcOFynHJJf7YsS5AvmAPNLj5KEl/+2LZ2/iELrGU2G9Bm/KGZHHYCYg0fNxGZu51E70gflNKt+1oP53AMSqMuQ4ejBL4e0HJQuYGTgCcsvpN/oKW+CIAw8BU8l3+Q9648ves5hlMBk3deY2nqUisHAGAEAW8tvdBxrFKKtRWf9VW/pSWUK5iMT9pHutqVUoXKaQPUKpJkyghNtPes8DpktiuOeh+jlMJpKAyDAw8ZCuOxTz8CsK2ff4QDU2KO31PawHKDyAGEEL0jPdhc9zoGo2eHTCamD14N02uYiVK6uStXONDpTwQlO4OhFDvrVJRhsDRg+MYwBB8of4uvSJ+5c/ejhCDu1HnnynPMeJ0dn5sb2vgrRat/orih+wD2kszeiuVrZVTBUF4LyAUYvJY5z83UFOmgzutLr1Hw+iehhdAzf29dd3TvndquxR+fOhn16OVSwOK81kJSSpcXz5yPHcouoTUP9xhVNZ2kRaItOdyOGz89ZczHSeQAQqiUA5Z3NA+Vm9o7U/sYYA56pVWrytDyTdCGwd6n1vtJI+XXkCLEiChFbhfD2U4yDk/4z+O+8jyeYZEy/dAi1/XV8Fj7xrrP6Phgdf2uI7nZnDOsFJRLevTkzJUUf3jp/RTtDL5hI5TkxaErPL78Da5U50hnDKo7h8wIGMqbWtbiaoKNdR+nOUu5MGwNpGt01DgNrSXU/r45juL2DZdL9+29T+Czv/FxgLuqrFnJJxjJz4YAAAAgAElEQVRab6ACtd0FLqCRsvHjFihFZrNBuqSdXiUXp5qLn+lKoUNxAEKIDwK/CpjAbyql/s2O3/8M8H8CW4NHf00p9ZuHce2jYG2lW4RNG4WA8aD3zNleyECLrLmu6ppl247rSq6/2sCyBCNj1oGkfw+C52lhOC3KtvcvR1K6XKre5nr6XEcYyFIBb954cc/ni9kQo7dAW89RjzJUCDKUxTsess03a70luL5qsXl/tvU6lDDwhcFXx97GxeodJmdi3L7u4PnbE10SSdFSSbXsve1C+qGUwvd1Y95Bd6Kb6yEVQoAfKOp1OdCUt6OM5+9GvOaRW61huxI3YbI5msJLWCxcyFFYrpKseihDUMnF2RxNgVKMzZVJ1LZ3CLGGT6risjKTPbNO4MAOQAhhAv8B+AAwBzwjhPiCUuqFHYd+Vin18we93nHQPvpwJ4G/dwewuuL1HgAidKmn7ytKm9o7uI6iXnMZn7LIF44uXCClolaRSKlIpU2kUty57bZ0f0xLMH3OJjmAMdjJ48vPYI/6vJy9hBKQDBzevfJNJncIdh0G8UT4aEvbFgMZSqVUz85osVnpzGW0sRIvMMkaF6/GqVUlnquIJwwSyf05zn5sbngdkhZDeZOJSbs1yH6veD2cpkB3EofRNRrxLg1AT5YcRhcqLUNuViSJapGl8zncpMVqiNBbvOZ1GH8AQ0Gi6hGv+zipkxGWO24OYwfwduBVpdQ1ACHE7wBPAjsdwKkhmTJaIZ92RNNY75VSD516gEtX4qyv+RQ3Oq+nFKws+uRyVuiXXEnVknUwDMgXrKae/mD3V69J5m46etGqQCkPYdCxQ/E9xe2bLpevJvYctjCRvGf1m7xr9Vt4hkVcukc2eWp8Uo+23NnUdhix9p2aM9uPC2zlN68ljkxADpohyYXOFXtxQw+nmdnHgHiAdLp74hjoz117OWnHKh/u/mhEpRhernUYcgEIBYXlKksXwjPeiZqHCFNPUUQO4IDMALfbfp4DHg057m8LId4DvAz8L0qp2yHHnAhGxy0qlaDDGAoBoxPhxnhX+gq7id4qnIDrdrftK6UNc/v0q1rVJVcwmRigwUgpxdwtp6scMTQ8paC46TMytr8viInElO7uBw5ApRywsujhugrLFoyOWeQKuqnr/KU4q8t6tGUsvrcQmhCC7JDZ5fSFAHskjSU9/PZh6kqS8hsMu4NLUhyEsJAkQKUkadQDEsm9O59cwWJjPcD3OvsEXv9Tk9i/+r5to3+XVvm9EApMP/z7Emv0CROaBkrQ5QSUAHlMJcMnkeNKAv8+8NtKKUcI8T8D/xn40bADhRCfAD4BMGEnj+n2OonFDS5ejrO67FOvBVi2YGTUJjO0v1VeNmeyuRF0OYJEUpeXWpbACxsTqAht7qqUZejow+JGQGFEds0F2ElYGWovlGKgKVZHTaUccOf2dtLS9xRLC3oISn5YK2yeu7B/LfyJaRvX1Zo9W3+neEJwbsRhtfga38/dh4EEBbbyeGLxL/e9o/FcSb2ua/OTqd13baGfjSZrqz4zs3v/XG71CWyu+QRDNj9whnnxLW/mt87dD79ycg2iEoQacoDA6v25rw3FKCxXu38hoJo9mmbI08BhOIB5YLbt53NsJ3sBUEq1B35/E/h3vU6mlPoU8CmAB5L5u2Z5YvHD65IdHbd1jNjTSWAh9Ii/rbb94VGrw7gBILRuzM5ZuADVcu+QUq26uwOQMnT0bihCdNetB4GiVAzwXUkipYejH3V36cpSeGJ+ddknVzi4gqdpaoNYr+lYfiy+Hct/bP07PFx8mcXkKInAZbq+jDHQu7fzfrXTKm0GrW4l0xScv9i/9DIWD+8nAHDq++8q+z8+8nP7fu5dQwjKhQTZjUZHGEgKKI70XjBK02B5doix+XJrEJA0BSsz2TMtE3EYDuAZ4D4hxCW04f8p4OPtBwghppRSC80fPwLsvRTkFGOagotX4s2Ve0AsZpDNma0EZSZrMjpusbrsb4uGpQyme5Scmj3+akIwUII6le49mWrn+eyYIJvdXmE2GpLb19ukD9YDYnE9yvEou297rYKDYPBKn90QQuiwUbr7d5mgztXKwaKWpWKbiN/WTkYq5m+7XLyS6Pm8kXGLuRvhYbS9NG+1q2qeZjbHUgipyBSd1mPFkaQu6eyDk7KZu1og5gStsZBntfpniwM7AKWUL4T4eeBP0GWgn1ZKfV8I8a+BZ5VSXwD+qRDiI4APrAM/c9Drnja24szZHmGk4VGb/LCF6yhMS/RNNucKFhtrIbsAMZgaqGkKxietjl4HYUAiIchkTYqbgd4lCKUVLW+7jI7rMMvCXLf0geso1lb9I1UQtW3BeiLP+tg0lu8xducmtudgDvgdrhtxbqcmMZCcry4QU0cz97cfvUovXUfhur13bum0SSptdOWKhICRsd5f4Xc+/4sAoaqapxoh2JjMsDmWxgwkvmXoaXcDPjfqCN5GnORB0g8k8+rTV999t2/jRFIu+ize2a5XNQyYOR/vqOAIw2lIVlc8GnWFZYFtCYQhyAxth3LqNRlaVTM5Y7M4H56QtGzBlft7r2IPggL+IvcWrucvoQyBkBIQPPzsl3idsUxhpL/jeSF7ma+PvgWBRChdwfO+pb/mYu3OkdxvL66/2miV2LYjDLhwKU480ftvJ6UOH5WbE74MEyYmbbI7Zhl0qGpGnEm++m8//E2l1FsHOTZyhScE31esr3pUKxLTFAyPWq3RfmFkcxbprEmjLhFCDFR73qjLjhkAvgeOUEydszt2JsshQmZb8fZehF1ZBlpaoVaV2DFBftjaNT8Rxq3UFDeHLyK3mrGaInHff+vj/NDNz9Mvm7FpZ/j66JsJDBO9QdX8+cRj/L2bv09ilwolpRSVsqRaCbBMQe4AgmqZrMmG270LEIDn6b97r3Jbw9BSzxNTCilp7nz0sY99+hF+wXtDz9BOvF7nwaefZfa112gkU7zwth9i7uqVfb2GiHuLyAGcAAJfceO1RlsDjm7IGhmz+pZfGobYU7dwr0Tq8qJPJmu2DEovgTOdHAXX6Xx8a8BK12u65hD422WGm+sB5y7E9tzh/HL2YmcZZtt1F5MTzNYXez731cwFZIhjFChupGd4oHy953OlVNy+4eA0tl/D+prP9Gysr3PuxfCoRbnUWXoJenbJwpyHUh7ZnMnkdG8RO8MQGIYO77RCO330dmKNBj/+W58hXqtjBQGwxujiIs8/+naef+c79vwajgK74TO0Xsd2AxpJm/JwksA+3MSs4UtSFRcU1DM2gR1pA0HkAEJRUrG64rG5HiAVpFIG41P2kQ3TXl/zO2QIQBvmtRWfwvDeBob3o96jYsT3tleVoP8NQiSLDAOmz8W4fcNFKloVTYmkQWGk86O0tuLh7ygfVQoW5lwu35/YU9WO6lNwqXY5jS9MVIhGpEIQiP5GoLjhdxh/2H4NVx/Y22uA7WKAUjGgWg5wXYnXHEq/NcCrXNRJ9ZEdQ4C6unB/KXxgSrJc4fILLxKv17lz6QJjc/Ntxl9jex6PPPUUP3jLm/ASBwzbKYXtBgSmgexThtmLZMVldL6MUHonFGsEZIoOixdz+LEefx+pPxFqwLj/VufwFoVl2BxJUh4NHyB/logcQAh35lyqlfYmKz3049I+OmIHoVYJL+sUQlfdHJYmkGUKvJBRgVtlqVsMj+qKpJ05gPywRTxhcvn+BJWyXskmkkarlr1aCdhY8wkCFRrrBu1YfE/tSfju/vINbqcmu3cBQjBdD5v4u8356h2+m7sfFWLsz++SA+jXwd2oK5KpvX8WjOZc5lze5JUXG6E7ss01n5FRu3OVD7t24c5cu87jn/8CKIUZBDzwrW8TGEaH8d9CmiYjS8ssXji/59ewRXqzwfByDVAIpUXXVqYzg5dVKsXwYrWrq9eQitxqjbXpbMfhhi8ZWaiQrOrcl5O0WJvM4PdR+jQC2SEbsUV+rU4jE8M74wnhs1sA2wPXlR3GfwupYGO9j0jQAejlVJQitA9gvwyPml0VM9qwmx2r2cKI1XxMOwbRVLccHddfFsPQOvPDozaptH7u+qrH/C3tOBt11XfoyV67qS/U7nCxOo8lfVASU/qY0ud9S3+NpcLVVbf4bv51nWVCzfrVRzZeIuvX+j631wpfcfDqwS2hujBqRoxf/vAnO43/Lhi+z3u+8AdYvo8VBAj0Sj/muoT9KUQgaaR7r4ANX5LebJAuOhhB9xkSVY/hpSqGVBiyKalQ9Rib333YzxZmoELPLaBl5FsoxeTNIsmqp6Uf0BIOkzeLiJBzbJGshH9nhYJ0yQn93VnibLu/EFxHhQ/OVr1j4welMGJRrXQnXuMJcahDOnIFC9+nY3DKUK57ALwQgvHJGCNjzQlbdv+BOEGgunYMYXh2jMXXPcTzM7MkfYeHiy8xW1/a9b4F8KPL32A5/gpzqUls6XO1cotU0Oj7vPVYjrnUZKeejxCY0ictdzeu+WGzq+MadCjnoHN1DVMQiwndedyGBBbPz4Y/KYTc6hoTc3PEa7VQj2Io1eUApBCUhofZHB0NPWdmo05hudM5rk5lqA9t19kPrde7VtUGEK97mF4wUIxdGqJncG+nPEOi6mH6suN4rQGkSBcdKsM9msD6fCjDuonPGpED2EEsJnp+Zo5qmHYqbTI+ZbOyqFcrWpBLz3w9TITQMsXDoxZec3RimGF3GpKNNR/XVaQzBvldppTpSqTe3zUhwIvF+OZ7PoIbT+pRj3GYS01wtXyLH1l5GnOXzloBTDjrTDjrg75cVmMFDLoH0wSGxWJilIdKr/V9fnbIpFaRlJqll6K59Jw5f/C5ur/84U8yfnuO9//e5zCDQA/QMU0Cy+Kbj79n9xMoxbu++MdcfOll/SNg+eFVWk4ige26SNPEUJL18XG+/NEnQ4+13IDCDrE1gNGFCvMpuxXnN70eOy+hV/bBAC0hyhDUMjGSFberq7dU6DTodo/rGQpsr/cOoJ6JwVK3BIQSUDvDEhBbRA5gB7G40Rrl1xEDN6AwfHRvV75gMZQzdSOYyZHObjUMQTwebsB2au406pKNdZ+Ll3vnP0yrt9NMZQS5vMUL0w/hxRMdc36VMHgle4GSnebH73y5ywk4zZh/XO4v9Jb1w8MRpgzIu7sPphFCMDkTY3hUUqvpMs1MxtiXIGDYwJTl2XP8wT/8+zz4zLPk19ZYmZ7mxbe+hVpWx76FlCQrFdxEEj/WaVEvv/AiF15+ucPoh/0JFJBsNPAtCwR86aNPsnDpUs/7TBednivjVMWlktdJ40bKxnad7hW8Aq9X8jaEtckMY/Nl4nUPJQRCKcr5BJV85+LHjYd/96Sgb2OXtAw2xlMUlmut16UEVHPxM6sA2k7kAEKYOR9jedFrte0nkoKJqcMZldcPw9D1/HcLpRSL852hKKW0PvzqisfkdPiKKR4X2DHRlfgVAkaaeYKF/Ey4rr4QrMYLXMvMcl/lFgBFK8OXJh5lNT4MwFhjnR9dfoohP0TMqw+TjVXSfo2ine0IAxlIHihfG/g8sbjRCsWVrDQVK8WwW9y1h6AjidsjgVsaGeapD/6NrsevfPd53vaVr2L6Wuvi2oOv5xsfeB/S0u/h/d/+DrbXueLf0nfyLQvT91uxctC7AwW85Wt/xR/2cQCiXxyv7VelkRTpkoshO6dvbY6lBq7OAVCmYPn8EKYbYPkSL24iQ5LITtLCi5vYTtDaLSi0xs9uYm6VQpJGKka65CCUopaN4SYj4w+RAwjFMAST07rpBnonA+81PK938rZr7GEbQgjOXYgxf9PFdbdzKGOT25LMKb/RU7QnMCy+lXuAZ4YfpmHECISpa/ebRns5McznZ97Hx2/9AYuJMZ4aeSObdpa0X+etG99rOY6u+wI+cufLfHnsUeZT4wDk3AqPrzxNepf8wU5cYfGnk+9iMTGKqSSBMHmo+ArvWP9OywC+6Qmf1L/737aN/h6SuO3MXLvOO/78Sx2r+8sv/gCB4utPfBAAs0e4x7dtnn/723j46Wewvc6dkwAKK6vYjoMXDw8v1rIxshuN0F1APbNtNAPbYOFSjqG1OsmqR2AZlEaSOuSyD4KYSdBv5yAES+dz5FZqZEqOrufPxtgYSw0kA+HHTYpjUdnnTiIH0IezYvi36Dc9a7fKPts2uHg1gdOQBIEuD20/3yPFl7idmgqvvVeKzXhue5W+w1EoYeAbFs8VHuS7ude1dhKlWJavjb0NT1g82GNFnwwcPrT4NVxhIYWx66q9F18ZfzuLiTECw2zlFF7IXeWH/t4Q/+q1h7cP3KfRB920NbK4xJu/9pdd8XzL97n0wg945kffixePc+3B15NfW+86LrAsvvfYozzw7e90OYAtVJ/PtZu0qeTiZNpCQUrouvmdid3ANtmYzLCxj9e6H5Qh2JxIsznRptbXTAJn1+sYUlHLxCiNJLt6ErYUQPeyOzkLRA5gHyilKG0GFDe1KcgXTLI589Q7jC19+jDRscLoYB+VXno2U41VHlt9jr8ae2voLmBnpc5OPGHyUuZSVxjJNyyeGXmY15ev9dXnjyl/MP3rEFxhcTM9jdzhvHzD4jf+bBYu7++87Tzy//01Dz/1DaRpYrvhTkoZBolaHS8e56U3v4lLP3iJ/OoatufhN1Xx/uqJH0MZBq++4SEefPabHT0AUgiWZs/hx/qv0jcmM9SG4qTKro6XD8VPbL18YblKZtNphYWGNhqkyw53LuVRpoHpBYzcqZCoa0fpJC3WpjK9m8zOGCfzr3qCUUoxf8vtGKrSqEsqZXlo8wPuJlPnYszfdHDaymFzBZOhXLfUw9qqR7kkmyMpTfLD/XX5HypfY9Td5IuT78EzDJQY/ONnqwDHDH9/XSOGa9j7Thbvxv3vF8hbJmFz6c0+NeiDMvvKK7zh6ae1sW4abEW3vpISguqQThBLy+KP/oefZvbV17j/W99mfP4OQine+99/n2sPPsAzjz/O+PwdRpaWEEohDQMnmeSvPvTEQPfkpOwTnyQ1fUl2szNpLQAjUGQ2G5QLSSZvFDGD7TzFVu/A/JVCtBsgcgB7pl6TXRO1lNLVM4263FWN86RjWYILV3Qox/cU8WTnUBopFaWiz8qi35EvWFnyqddVzxkGW0w46zx55y/43Lkf6xuKaA8DmTJgyCsTYLAZ7xY8s6SPLQ9f3vmXP/zJ1r3MsIm1o6JeAfX0wY3kg88+1zOhu/UOeZbFcz/8Ls6//AqXX3gRaRi88sjDOIkEE/N3OkJBl174AaYf8Cc//XcZu7PA8PIylVyOOxcvoIzT/flsJ9bwQ6eDGUo3kgW22ZGkhmbvgFSkyu6u8wPOApED2CPVHrINSkGtGpx6B7BFPGEQ3yET47paEiNMJ0gpqJQCXEfu2rz2UvZyf+OPFmuLBS6GktxXvslbN77PXHKCL028A78tDGRJnzdtvrivCV076TkwRQjWJtN6mlRTs0bSjEkPmFgUUmEEisASXSGueC08byCFwEvEqQzleP4db+fK919g6uatVmx/+sZNnHi8KyFsBQHnX36FeKPBysw0KzPTA93jaSOwjNCwngL8mInlyZ6D4C23Rx+DVKQqLmYgcZL2PT874N5+dUeAZRkI0e0EBp3GdZpZmHNDjX8LocNhuzmAqpXsjPlvoRQCRcav8cMrz3Z1CV+qzfOelWd4auSN1M0EtvR588YLvLH40j5ejZZRFm/7wEADU7y4YGTpFQzfwkllEdLl+oMXd+94lYrhpWpLdkAZgvXxFG7CJlH3CEyDuSuXyW5udmn2BDGb3/vkP0GaJpM3b3UYf9BSD5bnhUtxmybJSgUneXfmah8HbtzEj+nS0Pb3QAkoFxKYnuw5CD7MsFtOwOStoi6F3Qrvpm1WZrL37OSwyAHskWzOZGWpO9YsBPseGn8aCHxFo7H7KnsQsbzztUVupqe7xN1MJfno3J8x4hV7JnTvq9ziauUWgTAwleyb+A2jY2DK54DPDVC1oxTv/73PMbqw2DLSUghe/+0U/+//9I/7JlVHFqukyttJSgLF6ILuZ1ACEIL10as4yRehrlU7JTrG/9QH3o9sSrTOXL+OFVLVo4RAqW69U0NKyvmjG/1oOz6Wq+v271pCVQiWmnN+4w3d56AMwdpUBi9u4cWU3gm4270DEvBts6OkdYux+RJG0BkySlQ9MhuN3lITp5zIAewRy9I173dua0nk5neYmfOxe3oHMEiAZauKaDeuVG7x3fz9bNrZVlWPJT0eKF1j1Cvu+nwBWGpvydfP/sbH9z0Ld3RxkZGl5Y4VuqEUdsPh8vdf5OU3vzH8PgNJutzdWbv1KREKUAppxXn6vU8ytHGDc9dvUB3K8sJbf4i1qcnWc5xEAmmamDt3CaapV6xB0HICnm3z3Xc8SmDvIT+hFLFGgBFInKTVU9FTSMXYXIl4fTv+Xk/brN6lVbK0DJYu5DB8iSEVvm1s34cQLJ4fIr9ab+3AqtmYDtvtuFfLDXTIaMf5DQXZflpDp5zIAeyDVNrkyusSLXG4QaZxbVGrBqyv+vi+1tkpjNiHqvh5VFiWlo9weuwCtrSLhBA4hk3JypD1q6F19yaSJ+f/gheGrvJaZhZb+jxUepVL1blDu993Pv+L/LOvL2wb/V2klPtRWF4JFTqyfZ/RxUVeJtwBmIEKrebZiQCkYfPSW97K93oMabn24Ot549ef6v6FIfijn/xJHnnqG4zPzdNIp3j+HY9y/cHX73LVbSw3YPx2CdOXLTmGzbEU5RCjN7xYJV739Yq6+ZYkqx651fpdbbSSlhGqeqpMg42JNBvtvQN75R4WjYscwD4RQuxZD35z3esYxO44upfg4pXEqXACUzMxbt1wtqWMhR4eY5nguor52w433/gor4xexVASKUyuVm7ywyvPdun82CrgjcWX9h2/30l7F67hS4b+8SrJCkxYRUqFJPVBhb+UIl1ytxuLsjFK+UJo0tqzLDZHRnqeyt/LgJSQWHU7taEhvvbjH+aH/+CLrXtRhuBLf+ujrE9N8pW/FS7utitKMX67tL36bX448ys13ITVWQqqVOiOxlCQ3Wyc6k5b3zaQpoHhd7oRKaA6tMtnRymSVY9Uc5dRySVwDqE67Dg4FAcghPgg8Kvooau/qZT6Nzt+Hwc+A/wQsAb8pFLqxmFc+7QgpWJ5aYdkst65s77qMT558nsI4gmDK/clKJUCPFcPZt9Y83GaRSivTD/IjeErSMNqdcu+mjlPPHB4bP27h34/XQPQf6mOEUimbmxi+M24uAuxepniSJLSABOghpeqWgO/+XfKrjcIrAylfIHC2ipms/ZVohOtrz38UO+TGYLN0RT51VqHfg2E1PgjcBP9Y+m377vKZ3/+Zxmfn0cJg6VzMyjzYPH3mBN0ySyDdkbZ9Xp3L0AvxdeQQUOgVUNzq3USNS0XURxJ0tinXMRREat7pEsujaSlx0ainZoUWtgubCfUQilGFiqkylrRVAGpsks5n+jsWD6hHNgBCCFM4D8AHwDmgGeEEF9QSr3Qdtj/CGwopa4KIX4K+LfATx702qcJ11Gt2u4OVH+dnZ0EgWJ91adcCloNWLlC/wasw8QwRUse+vornROt5q48hLQ6DUZgWLyQu8o71r+754RtGF1TsnaQ2WhgBJ1JUUNBbq1OuZDoO63K9IIO4w/NiUmB5OtPfIQ3PvUVZl+9BkqxOjXJ15/4sV2rbMojer5tbq2O6UuchInlq1ZiUqGTwavTmYFi6IFts3Dx4q7HDYoRSMI+mAIdwup8UODGTeJOZx5CoatldmJ6AVPXi61afNuTxObLbIynqBRORkw9v1Qlu7mtfaRoCs8lLBopS2sb9fm7xOt+y/jD1owCvSOqFBInvuP4MHYAbwdeVUpdAxBC/A7wJNDuAJ4E/lXz//8r8GtCCKHUbiNE7h1Ms7de/qDhHykVN685HUPFlxd96jXF1C4NWEfBzmEmnh3eWOMLC4mBGRql7c+bnvBJ/p238N7PvVs/sIvWTrLidWnZAyD0vFkn3dsBxOvhzWSGAssXfOWjTyKCQHfWWoN/dWpDcWptw1RQuhEp0RRRq+TjHeWkhu+TLpeppzNdMtCGL8kUG5i+GshA7YaTsENX9bKHXv76VIaJm8VWP8RW5c3GePdqN7da72rEMhQUVmpUcomBRNyOErvhk91sdI2kjDd81geUi0hW3J6hu2TF7b97OAEchgOYAW63/TwHPNrrGKWUL4QoAiPA6iFc/1RgxwwSSUG91i2ZPDygzk65GHQYf9BOpVwKGBmgAeuwMS0tFb3F0OYKxZHJruPyXmnPxr/VhQu6XHNAAttANUISrwrdhNULpUhvhqtgaollbQyUudvomgEQotspNO/h4ae+wcNPPa0PU4qX3/gwz773cZRhEK95jN8uAdqQZjbBi5ssnc/tW9ZAmaJDL1+gjb9vmy3t/3ZMN+hwGDoXrEKvn6iF9yig9IAXr4fG/3GR6mW81eDGW/Z53/v97qRw4pLAQohPAJ8AmLBPtvfcK9OzceZvOTiNbZ2d0XGLdGawbWK12j2eEAAB9QEasA6bkVGLlba8xtXvPcO33vVBlGFqyQElsZTk3avP7XqusIEp+6E0nOhalSm0ofT7GJxEzSNR80MN1lZj0RZCKhI1XZPfSNn7Nr4iCDh37RrZzSLr4+NkNjZ4+KlvdMhC3Ped5/Etm2+9592M3il3hqcU2E5AdqNOaWT/CdhKIYkXt/Rq2JfUMjGq+UT361KKkaVqZ3gNPd948vom65Ppjh1JYBmh07oEEAw6OP4I6dmN3j5IYRdqQ3Fya/VQR3IaJo4dhgOYB9qHmJ5rPhZ2zJwQwgJy6GRwF0qpTwGfAnggmb+nQkSWJbhwOYHrSgJfEU8YfSWYd9KvrPtuVBHlhy2k1DOGlYJceY33f++PuHblEVbjBQpuibdsvMCouxn6/J4DU5QiWWXlqCsAACAASURBVHFJVjwCU1DNDx5LdZM26xNphpdrgA6yuwlLd3P2IVVyw40/UM4n8OP6+smyy+idMgihSzyVYmUmu+fEZqpU4on/8jvEHAczCJCGgSFlV52/7fu8/rlv8b1HH8PYGZNHO4F00T2QA4DBxN8sT4YmewVgBYrROxVKw8lWNVBxJElsvtw17rGRtrvkmndi+JLMZgPLlzRStjamh5znqmZj5FZrPYz3YDpBfsxkbTLNyGJzWJHQgbGVmWzffNNJ4TAcwDPAfUKIS2hD/1PAx3cc8wXgHwJ/DfwE8KWzFP/fSSxmwD4WB/mCxcZatwyFaUKqT2z7qBBCMDKmZwwHgb4PIepcWv5G6PFvekKvbFuVO2HxfKWYuFUi1vBbSdKhjQZrU5nukEkPqvkE1Vwc2wmQptDxdaUYWq0xtNFASIWTtNgYT7dkjlUP26IAN6mPMX25vQpv+yOMzZeZv1LY1ai18+4v/jGpSgWjeR4zCHqGlkzfxwh6i931uve9Yrke4/PzBJbF8sx0l3BcvyHuoJ3R0LpOtkvLoJGJ6fDSSg2a4aVG2mZ1uo8zVorsRoPCcg2F3mGkiw65VZPFCznUITZbBjFTLxZ2zAxem0xrnaEBqeUS1DMxvSsU4kC7wuPmwA6gGdP/eeBP0GWgn1ZKfV8I8a+BZ5VSXwD+E/D/CCFeBdbRTiJij9gxg5nzMRbmXWRzoRiLC2ZmDz6k/CAIIeiXE+2I5+9Cuui0jD9sV1WMLFSoZ2KDf7GE6NCw31nemahpWeCFS3n8mEl1xxCU7fPQmnK1VecdRqrsUil0x8zDsFyPibn5lvFvu1QotWwWJxkjsOsIt7NkUwq65ufuh0svvMhjf/ynLaMfWBZ//hMfY31yYvtalkEjafeO7TdfRLzht96zSiFJJZfA9gIC0+jvJJVibL5MsuJ1RGEMBZYXMLS+/2Yzw5d65GTM7PgMVfPaeCeb5Z/1bCx0JOVuKNOgPuCu4SRxKDkApdQXgS/ueOxftP1/A/g7h3Gts046Y3Ll/gSeqxCGnsR10uipqjkA6ZLTs4onXvdDyw13Q1fOdOvG06x135jM4CZtSiNJhtY6dyUrM9mWwTCk6qkuafSogw+lz+Z3q8F266/qWxZPv++9YBgsz2SZvFXqECurp2Ohydq9MLS2xjv/+E87p4u5Ln/jd3+P3/3kP9mueFKKciGO7fitEtHQZPtOA2qIgRK+yYqujApzLobSn43dHIDd8Ek1m9VqQ3G8mMnInTLJqtcqWyqOJCmNJFshJWkZVA/4Hp5WTlwSOGJ3hBDE4idri9kRz++jqrkbPRNzCuQ+fZ3tBkghMENW3O2ln8XRFJWhOMmqhzKglol1xHHr6RhDIQk/JfY2F8CPx1ibGGdkYbEjoSqFwdylq/i2wcT8HKXhAt9552MsnZ9tPs9i7kqBZNXF9FWrXn2vjCws8rYvfYWRpSWcZIJioYARMmNYSMXM9Rvcvu+qXp3PlfXqX/UYWIPuqN2toa0X6ZIb7vy3zr/LLndotdaRkM1uNPBtA8uTHdIVubU6fswcOKR4LxM5gIh9k/jyx/jnv9Is+zzALNx2yoUEiVp3Lb80RG9t9i3D3sNA+Lbx/7d37j+yZdV9/67zqvej3/f9GsYDEwwzBmGPbQwxKGZIwssC2YqcRMEZJQpSIllysPgHRomUn2IpHiko+QEZkOwJ2IM9hhhEIASDPRgYZoYZZube6Xu7bz+q612nzmvlh32quh6nurse3VXVtT7SqLset87uM9177b32Wt9vX7oFOKwO6sS3dFQHHDi7MR31tIVk9XCiCgio5Ya3TPzWBx/H45/7YxieB8Pz4OkGnHgSt3/uHXAScXz7H+ej0yUajZVqyO/u4jc+/4V2pZFRqSJRrfWpiQLqgNtqqrRXqtzs+v/SutOqD0B941o6dq+MLgrHFB1YANV5XTki1WU4PnL7je6afgZMJ1rgLbffkAAACQDCEPQJrI2x0h+EnTJRyceRKdrqibDaZudqtm9isRoelu9XYdm+8q7NxXCwnuo7J/BNHfW02dckxgSVCjgGs+lhZUtdBwCacV2lOXRCNRsbKS1VXlnGn/7rT+IXvvkcktUSKvlV7F28BtZ0kM/IFhooRjRXjcvbv/0d6F53pZHG0aJ1FATYCncfvR3SLZiAwnoKzaQ5dtdrNRdHstJfm88AGinjyDOWVg7/pPRq/iwqEgCEgXQKrAEIV/mnpzEPACBCcSPV3gkEuqbSKz2TuuH42LhTOlyRspqkDDdQwaKHvYsZLO0qA3EKV6uFC6ljc9OaH2DjdrmrozVm+/Asxr0r+bFKEzXWce/mQ33nBxqUDn0n8ZqD/G4DhuPDtXQU15IjCY4t39+J3g0RwdN1mJ4XpnJMvPCOR1HPhvfyiJr5SXkCNFMmKktxZA7szo/H/kbq2Bz9cemhrvdC9W8IEgCEHqIE1qaBb+lwAkZuv4H8Xh12wkB5OQE/nGgyB/1duxoDsboLw/H7JySNcLCRVpIFjBPLEKSKTRD3+8rqboB4vedQmhmZYgmeYaCRToGCMD0yYHJSlobRqSnPOkzKtHoPWsFOtz2sb5ZH6j8orSwjU+o33Ak0Dd/79ffi2suvwLMs/PTtb8PWjevt16u5GGIRqTmmI1JzI1BcT6GajyNecxFohEbmZJVfjYzVV87ZHmP4tVO6Yp6VSyeJBAABwHiGKadBvOp0efCaTR/psoOt6zloASNZbkaXIhJFB4CO14dRpTM73KR6MVwfgAoAG3fewLuf+QvEGg0QM6qZJTz/zveinsngYD2Jeq5/BetZOpoJA7G615WDZwLKHTIESzu1vjFoDCzt1LE1ZAD44S//Ei7eeaOr4sc1DLz6Dx7Gy4+8HS8/Eu1tUM9YiNdibWMVAAABO2Pk/NuEcsqGo+Qh7OTR6Z4ofENDQIDec59ak76dNJQYX9JEqWMhsehIAFhQfvlHv4e/23vt8BB3DMOUicPKR7dXpAsBY/VeBabjD9bOZ4Y7wT9uJ2EgGFCa6oQHyKlyGe/7k6e7/HozpX08+u2/xHff/5tY2a6BNS3Sk2D3cgar96pI1N326rSwkYKTMNs/T5ScAqCC07DsXbqEr3/kQ/jFr/010qUSfMPAi48+gud+7VeP/odEKFxMd6Xm6idcnR+F5gW4cLsE3QvaJ8CuFeobDdn0xToBXvQvxt6lzFCNeouCBIAFIVpVs1+4bRbQAoYxQEPG6jEA7yQIm7YmubqrZWNKLsA7TAMFpOQlWqmPB//+h9CC7vFqzDAdG/m9LRTXLiG3V48MAKxr2L2aheYH0PweS0MAIIKvU780M9DfrRowYraHQCNV3TRgZX7v1k08/cQnoXme8hweYgXvxkcrPR3Eyla124qRVWDL79ZwcCE91GfVMrE+dc9WpZdM/tFIADjnjKqqOU2CVppmmN4qqLRJaXWyAoKsEbZu5LG0U0OiqpqJqrkYSquHvrLpUqlPw6dFzK4DwMBVfItA1xCEcUt3fCSrDphUDry0kkB+t45eTZ3SymGaJFFuYrWlR8MMX9ewezVz5CH3MJLWp0KY+okq00yVHRwMuT4prSZUKsn124YuTKS8FoRIJACcMx553MOLv/+Jw9TOPKKp8sreruAgDApRDUiNlHlqB3uBoWH/CP2a7WvXcO3ln3WlgABVR19eWgNwmC46jkx46N1iaaeGwnoSpZUEcoVGmCYhFFcS7Q5gw/GxulXtTpl5ATbulLH5pqWpmLWfiCMCPDFDd/0un4RjP07XsHUzh2TFgWV78Ewdtaw1F6Js00ICwDngsc++7TC1A5xKff5Zc7CRguYHYQu/0s6u5GOqTtzrrsphAirL02vlf+0tb8Zbv/s3SJcr7Z2Ar+vYu3ANjXQOAQHFEwQno+l32Ue2WN6p4+4DSyivJKD5jECnrkk9HeFjoDSUGPGaO3MWjG00UofgjW4ZbqWyClx6tQjP0rF7OXPyMtNBXgtCJBIA5pSuLtw5Se0MA2uEvStZ6G4A3VNVPYGuobrkY/2Nsjo0JAIxK5/Z1GQmuVjdRX63DtPx4Zo6SmvJYxu9fNPEM7/zz/DW734PN156CYGmY+v6Q9i6+iDcuIGD9SSaSRPkB0iVHeiej2bCVJ/bMZGnyhFidCEtsbkgQvY7ytMXABC0KpXOAGboPqu0yxAr7v2LaVy4XQIF3FZ/bf0sFPodXLhdmu2dzBwjAWBOOIsu3FnENzX4HYJ3nqXj3q08LFsJkjUTxkjqjVHEaw7WNjvq7X0P1mYZe5czbXXLQbjxOJ57z7vx3HveHfm6ZXvYuFMGWAnKMdlwYjp2uty8Bsz+x5yFNNJWly9tCwKQ26ujnokNPgRljtxVDEOs7mJlq9oORHbSxN7FdOQ1DUepepq2ByduoLySwN0HlpAqN5EsNft2AwSlSZSoOnOptjnrSACYYboE1s6iC3dOiNddZPdt6J4PO2WpBrEJqKIu3e9Pv2gMLN2vHRsAjoQZq3crXR2/xKqiKVNooLyq0kP1TAzZfbtfkgFKjmIQ9YyFbEGHZft9k6fmI1pWghlLO2FnNJTWUmFAv8JRGI7akXXet3jNxcadUqjff/j/xWq42LhTbvd2xGwf6XIT29dzqObjMJs+EgN8mQ2RbjgVJADMECcyTFlw0gcNLO0cTtSmYyNVbmLrRn7sIDCort5wA9WxO+IK2XADlbLqoSVx3AoAblyZvCerTt9Enimq1XFlOYFatscdiwj76yklFd17DSjv294A0OuPoPuMle2a0vwfIp2WjujIJigRtisvH6C0mmj/fCvbUb0dKvDuXMuq3VwRkT0XzYRIN5wGEgBmgGEMUxaagLsmf6C1ymVk9xs4uDCeeJqvE4yIevtx0iPAMRmcXmkFPdp1iwDEmj7M7SpijRgKPTXygakNLJ3t1eengCPF3TQGcnuNoQKA6UT3ZbQMXdrSyxkLZrM/wCpJblU9Vc9YyO3rMDq6r1sWkpOUmxAOkbs6BeJf/xgAzHep5hQwHb9dEdQJAUjUHBxgvABQWk30BRhVbz9eb4Fv6fBMrU+amKFW3lbDbXf++joNlEQG1CSdLjZRXk50Vcb4pg4n3l9RExBQ7qmQitqNtBj20NhOGpHy3Z3jze43VNcwIfKQu30GQoTt6zlkCw2kijY0n6FBeTbk79dQWkvOjdXivCAB4IzoKtVckAPcSRPo0eJpgNL8PwrD8RFrePB16qu+aVHNx0E+I9+qt4eSi64MqUsTxd7lDDZe71AvDf/TA8bGG2XlKaxrqObikUJ3vcRrDqpWd2DavZzB+mZZrbTD3UB5JdF3eOoN2C0wMPRKu5qPI1uwQT4PDFq6ryq2qqHtZm+ALXcofbJGKC8nkA47egkqSGaKNmK2h/vX+mXBhdGRAHCKdB3insNSzbPGNzU0E6ZSpex4PugRT+si1BVKlQ5FzAKNcP9aDl5vcxYRKqtJVFYS0H2GP2bqpxM3ZuAgNCDvWy0zkCyrMk8vpmP/Qgor27V2EIgaQVQ6JTA0bN/Iw2h60D2GG9ejK6SIUFxJdvUcMFQ/RXF1uGY61jVs38wjt1tDuuT0jbVTevlgPQXDC5TUdRiA6hkL5Z7u7exeHXpPr4fGqpLKsr1DnSRhbCQATJBHHvfwBx/554elmnKIO3F2L6exdreq8sbhJHKwlhzY7JSsOH35bvIZ65tl3Ls1QM+fCH5EvX0XzEhWHCSqjlq552PHegvo/mBP4U6TlnoujkYmhpV7FSSrbv8/QIQOUAdezIB3TMVkZUVVTuX2GtC9AE7YrzCKzo9vaChczMBO2u3A1SW93AoqGmH3Sha668N0lEF778G94fjIFforoVpYTV8CwASRADAmXat8YLZUNc8hrGvYuaYmEd1Xyp9H5YUzB3ZkfbzuBarZ6wRm5f2DYGzcKcOyvXbzUrpoo3CMcUkzYUTmwZn6q1xYI5RXEgMDgDuERMIgTtwxy4x00Ua2YCtJ5YSBg/VUX7Co5+LwTR3Z/QYM1x8oveyb+kCJh+z+0YumSfzcwiFjBQAiWgbwBQA3ALwO4BPMfBDxPh/Aj8KHd5j5Q+Ncd5r0ae3IKn8qqEnk+PdRMCCZTgCNWFqeKjXbk3/4USBWpZX1bGxgQGomDNhJs+vQtKUsGtVt7B5xrpGqNNHInX5jlNH0sbZZhtmh2Bmve7hwu4TtG7m+ANpMmtgdw23Lsr3I1T9DVTM1k7JmnSTj3s1PA/jfzPwkEX06fPwfI97XYOZHxrzWVOkyTJFD3LmhlrVg7jX6dgEMghMfbTXZK1LXhlRJ48AySiLsXskgfWAjE55JVLMxdcgckYoyPI7cMbRksU8b3fVx8fViO6XTeX2EJaN7lzMwHB9LOzXEay5YI1TycaXKOsL5iRs3Bkp+716dgPmM0MW4AeDDAN4bfv8/AXwD0QFg7phpwxThxFSXEkiVnbazV+uwc/9SeuTJJNAGl2oe601LhOpyAtVBh9YdDKpsYpxcXXQcWtVIA/sS6q5SL92vg4LwfaGhvdn0sHel35v5OErLCeX21lkpBKCetUZL1wlHMu4d3WDmrfD7bQAbA94XJ6LvA/AAPMnM/2vQBxLREwCeAIANc7La7kcxT4YpwslhjbB9I4dU2UG85sA3NFTz8bFMzKtLcaVj37MyD0ipW04K1jXUcrG+Q2wmtLtrR8FquEiWHbCmzgEGTay9PQVdY4M61M7v1tslrS00BpK1Ad7Mx+DFdNy/lsXydg1W01dKr/k4iuvi4XsaHPvbSkRfQ/RM+JnOB8zMRAOrl68z810iugXgr4noR8z8s6g3MvNTAJ4CgDcn8kNYgozGPBqmCENChFouhtqEcuYt/aFsITz/CY1Hdq5m241q+d060sUmNGbYCROFjVR/2ekJKGyk4Osasgc2KFCH3oWN1MidsUv3q0r/J/zLyhZsFMPS117cmH5kEOid+LtgpV80SqB1Eia2b+YPez7OKu3DDApY7eIWpOHs2N8iZn7/oNeI6D4RXWTmLSK6CGBnwGfcDb++SkTfAPAogMgAcBZ0SSkLwgiU1pKo5uOI1V0EPc1la3criNcOD3rjdRcXb5dw71b+yPLNSIhQWksqs5sx9IgAwGp4YVDq+HgG8nt11LNWX2VOeTmBVKk7HdP69iSjCLQxBfrOMN/fUjQ1XJXLqmUsFC6kz33n8bj71S8D+BcAngy/fqn3DUS0BKDOzE0iWgXwKwD+05jXHYrHPvs2PHfzTYeT/qwd4jJj/e5dXHztNtx4HK+95SE00mJjN+v4poZ6z67CcPyuyR8Ia+IDRrrQQKlXlXMYxpwQk5XBfgOJqovqUncA8CwdO1dVOqYllFdLm0hGpL+icM/gnGISGM0eRVNW/SO6V8HOteHPMeaJcQPAkwC+SESfBHAbwCcAgIjeCeDfMPPvAngLgD8iogBKnPBJZv7JmNc9li7phVlO7TDjPV/+c1x+9TUYrgtf1/Ho//kWvvHhf4q7D9ya9uiEITHDvHWvzIIGIGYPlnRu0dK+170AdtKcqAE7HxU/BrzWTJrYupUPUyPqufjPitCO0BNiAK6lzY0Re/ag0RfQNFYVXaOcY8wTY/12MfM+gPdFPP99AL8bfv9/Afz8ONc5CX1duLM86Xdw/acv4/Krr7X9ZI3QUvDX/uwZfOFT/3b6xt3CULiWHi14BlXvr7s+MgWla+PEDZSX4u1GKcv2sH6nDAK3A0g9Y2H/4ugVS53UsjGl2xMxvvoxfgedqZDdy2llbgO0K6va7wvfu3d5sIfyrGEOKDtlIhiuBICZpc8Ldw5LNW/9+Pk+M/EWG5ub2Lpx42wHJIyFF9OVXlHD7dbZ0ZQmzqXXiu2SyVjDQ7poY/t6Dm5Mx9pmBXpP41qy4sBOORM5wPZiBg7WkljarXc9vz/AvWsQTsLE3QeWkC7Z0F3VGcwawbJ9eKaGeiYG1ucnd95MGLAaHnrvADHDteZ6ijyWufrp+gxT5mSVfxRH1Y0zzccW+qSQr+QXfEMbKAVwHti9ksHSTq19gOrEDexfSGHpfu2wXh4dHcTbNRQupKD50aYx6aI9sQqm6nICjYyFRM0FA2hkrJEsNQNDQ3mluzSzMT+L/i4qywmki01wcChAF5DaMU3CaW6WmYsA0NWFe8742c+/FZdu3+nbBTARdq5cntKoJgwzcvsNpfMSlkk2EyZ2L6eHMhCfF1gjFC6kUdgID3zDIB8fUFIZsz0lWTHA0OU4T+Bh8U0d1fz5DcDD4hsatm/kkN+pIVH3EGiE8lIcleXxZcBnnZkOAHfza6pOfw5TOyfljTc9gNfe/BBuvfAiiLldOveNj3wIgX4+/kiTFQfZ/VCOIaztjjVU2d0o3aJzQ8/uLtCoL8UDqMNZJ66Hu8Hu1wMCarkx/IiFE+FZ+vn+XRzATAeAhYAI33n8N/DiO34BF1+/DScew+2fexBu/PysPtqTfwetblHND0ZKQcwj1XysT500IPU8NA17lzJY2zw8XG0JxVWPUBg9DeJVB0s7dZiuD8/QUFxNDG0WL8wHEgBmhIP1NRysr017GKeCHuGzC6i1ruYzgvOx0TmW4loShuOr/DsRiBl2ysTBmkoV2Sl1uJoq2dA99dog97LTIl51sHa30g5Sphu0Nf6PkroW5hMJAMKpY6dMdSDa8zxrdKyV47mCCHtXstAdH2ZYX95bYhgYGior09O96fVEBtRuJL9bVwfRosZ5rligvz5hWhRXE20FTUCt/ANSOjeLOKH4lg47bc1kfbk5wBRe93nih9HC9JEdgHDq+KaOrZs5ZAs24nUXrqmhvJIQa78ZxDM0mG5/OWqg08kEgIaA/ADJqgPNV+kukXs+e+SOC2eCb+o42BhDB2de4XDlPCeiYsW1JFa2qn0H1cWV0QxeBhGru1h/Qx14t8wVarnYwu4Kp4UEAEE4DQLG0k4N6bAZzLV0FC6k0BzDLnEUdC9A+sCGZXtwYzoqS/Ejm/Dq2RgoUHLWus8IdEJxJYHq0gQPgJmxtlnpPmtgZbXZSFtodMhSUMAwmx58XevzFhbGRwKAIJwCq1sVJKqHchCWoxQno3x0Twuj6ePi7RIQMDQAXHORKdrYvpY7UmSulo+rA9+W7dmEV+TxugeKOFDQGEgV7XYASB80sLRTbzfIOXEDu5czcyMyNw/InRSECaO7AZJVt6+ahlj1RJwVy/droHDyB8K5PFDSE8fSMkU5lXTM4NPkllBdvOa2K5K0oKXO6WHtbuUUxrO4SAAQhAljuD6CiImToJQnz4p4w+07tyWEstQ8vZKeZsKMjAFBeA4AAJlCf/MgQSmmGs7Z3cPzjgQAQZgwrqVDi5hgGZioZ/BxRAUh4BhfgDOANcLepQwCUobvrbLgRspCPaPSP8YgvwFCpGieMBoSAARhwgSGhmouhqBjom1JQleW+713T4tqvnsMQMcqe8qVNo2Mhe1rWThxHYFG8EwdtazVHlcjZSJymmdIuegEkQAgCKdAYSOF0moCnk4ICLATOiq5GPK7dWT262eyii2uJmGnTAQE+Jqa/JsJAwfj2FJOCM0LsLFZQcz2oQcMy/GxulVFZl95FZSXEwh06goCAQEH68lz79N7lkgoFYTTgAjllSTKK0r/58LrJcRsZcieqAK5fRvbN3Kn2w2sEXavZGE4PsymD9fS4M3I6jlbaIB87jqj0BjI7zVQzScQGBq2buaRLTSQqLnwDQ3l5TjslCijTpLZ+G0QhHPM8nYNWofZiMYAM2N5uzZR03HyA2QO7K4J00mYkZpD0yZec6PTD0QwHQ9OwkRgaCiup1A868EtEBIABOGUidejq3HidVdV40wgH6/5AS6+VoLmB22f3kTVQWEjNZMqnr6pgaO8eJkXRh58FhjrThPRx4noeSIKiOidR7zvA0T0EhG9QkSfHueagjBvDKq64Qk2WWUKdnvyB1SA0RhY3qkBESY006a8nOi7LwzV7DVru5XzzLih9scAPgbgm4PeQEQ6gD8E8DiAhwH8NhE9POZ1BWFuqOUGVONkJ+PzC0CJqg2Y560z7D04Kc2kicJGCoGmDsmZADtpYvfKnBoLzyljpYCY+QUAoKNXMe8C8Aozvxq+9/MAPgzgJ+NcWxDmhYP1FMymD8v22s85sclW4/j6oG1GqOQ5g7QkJ0zHR6Br8EXi4cw5izOAywDe6Hi8CeAXz+C6gjATsEa4fz0Hq+HBdHy4lg4nrk+0Fr+ynECs0S2wxgDc2OwdAHdBJHX9U+TYO09EXwNwIeKlzzDzlyY9ICJ6AsATABDLnk+LRGExcRIGnFPqBG6kLZRWEsjtN9riaa6lY3cBjc6Fk3PsbyMzv3/Ma9wFcLXj8ZXwuUHXewrAUwCQufjg7J1eCcKMUl5NorIUR8z24RuyshaO5yySbt8D8CAR3SQiC8BvAfjyGVxXEBYO1jVx1xJOzLhloB8lok0AjwF4hoieDZ+/RERfAQBm9gB8CsCzAF4A8EVmfn68YQuCIAjjMm4V0NMAno54/h6AD3Y8/gqAr4xzLUEQBGGySN2VIAjjwzxVjwFhNCRRKAjCyGhegKX7NaSqDsBAI60avI7yHRZmB9kBCIIwGszYuFNCquKAWFWfJqouLrxeAs2g/ITQjwQAQRBGIl5zYbhBl6AbAdACRrLSnNawhCGQACAIwkiYjt82ce9E47P1PhZGRwKAIAgj4Vo6OGIGCUhsG+cFCQCCIIyEnTLhGTo6NwEMJT7XMncXZhsJAIIgjAYR7l/Popa1lKQzgHraxPb1nPj2zgmyTxMEYWQCXcP+pQz2pz0QYSRkByAIgrCgSAAQBEFYUCQACIIgLCgSAARBEBYUCQCCIAgLigQAQRCEBUUCgCAIwoIiAUAQBGFBkQAgCIKwoEgAEARBWFAkAAiCICwoYwUAIvo4ET1PRAERvfOI971ORD8ioh8Q0ffHuaYgCIIwGcYVg/sxgI8Bez7jGgAAA7tJREFU+KMTvPcfMvPemNcTBEEQJsRYAYCZXwAAIpF+FQRBmDfO6gyAAfwVEf0tET1xRtcUBEEQjuDYHQARfQ3AhYiXPsPMXzrhdX6Vme8S0TqArxLRi8z8zQHXewLAEwAQy66d8OMFQRCEYTk2ADDz+8e9CDPfDb/uENHTAN4FIDIAMPNTAJ4CgMzFByMspwVBEIRJcOopICJKEVGm9T2AfwR1eCwIgiBMkXHLQD9KRJsAHgPwDBE9Gz5/iYi+Er5tA8C3iOjvAfwNgGeY+S/Hua4gCIIwPuNWAT0N4OmI5+8B+GD4/asA3j7OdQRBEITJI53AgiAIC4oEAEEQhAVFAoAgCMKCIgFAEARhQZEAIAiCsKAQ8+z2WhHRLoDb4cNVACImp5B7cYjci0PkXhyyyPfiOjOfSEZhpgNAJ0T0fWYeKDm9SMi9OETuxSFyLw6Re3EyJAUkCIKwoEgAEARBWFDmKQA8Ne0BzBByLw6Re3GI3ItD5F6cgLk5AxAEQRAmyzztAARBEIQJMjcBgIj+MxG9SEQ/JKKniSg/7TFNEyL6OBE9T0QBES1ktQMRfYCIXiKiV4jo09Mez7Qgos8S0Q4RLbzMOhFdJaKvE9FPwr+Pfz/tMc0ycxMAAHwVwFuZ+W0AfgrgD6Y8nmnzYwAfwwBjnfMOEekA/hDA4wAeBvDbRPTwdEc1Nf4HgA9MexAzggfg95j5YQC/BODfLfDvxbHMTQBg5r9iZi98+P8AXJnmeKYNM7/AzC9NexxT5F0AXmHmV5nZAfB5AB+e8pimQmivWpj2OGYBZt5i5r8Lv68AeAHA5emOanaZmwDQw78C8BfTHoQwVS4DeKPj8SbkD13ogIhuAHgUwHenO5LZZSxDmElzEgN6IvoM1Dbvc2c5tmlwkvshCEI/RJQG8CcA/gMzl6c9nlllpgLAcQb0RPQvAfwTAO/jBahfPe5+LDh3AVzteHwlfE5YcIjIhJr8P8fMfzrt8cwyc5MCIqIPAPh9AB9i5vq0xyNMne8BeJCIbhKRBeC3AHx5ymMSpgwREYD/DuAFZv4v0x7PrDM3AQDAfwWQAfBVIvoBEf23aQ9omhDRR4loE8BjAJ4homenPaazJCwI+BSAZ6EO+r7IzM9Pd1TTgYj+GMB3ADxERJtE9Mlpj2mK/AqA3wHw6+E88QMi+uC0BzWrSCewIAjCgjJPOwBBEARhgkgAEARBWFAkAAiCICwoEgAEQRAWFAkAgiAIC4oEAEEQhAVFAoAgCMKCIgFAEARhQfn/q1g87tnNp1oAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], diff --git a/1_logistic_regression/Logistic_regression.py b/1_logistic_regression/Logistic_regression.py index 50ab97f..9c60c39 100644 --- a/1_logistic_regression/Logistic_regression.py +++ b/1_logistic_regression/Logistic_regression.py @@ -34,6 +34,7 @@ # # 逻辑回归就是一种减小预测范围,将预测值限定为$[0,1]$间的一种回归模型,其回归方程与回归曲线如图2所示。逻辑曲线在$z=0$时,十分敏感,在$z>>0$或$z<<0$处,都不敏感,将预测值限定为$(0,1)$。 # +# FIXME: this figure is wrong # ![LogisticFunction](images/fig2.gif) # # diff --git a/1_nn/mlp_bp.ipynb b/1_nn/mlp_bp.ipynb index d5776a4..3c70b7e 100644 --- a/1_nn/mlp_bp.ipynb +++ b/1_nn/mlp_bp.ipynb @@ -4750,7 +4750,7 @@ "1. 我们希望得到的每个类别的概率\n", "2. 如何做多分类问题?\n", "3. 如何能让神经网络更快的训练好?\n", - "4. 如何抽象,让神经网络的类支持更多的类型的层" + "4. 如何更好的构建网络的类定义,从而让神经网络的类支持更多的类型的处理层?" ] }, { diff --git a/1_nn/mlp_bp.py b/1_nn/mlp_bp.py index 957fdc9..6dede82 100644 --- a/1_nn/mlp_bp.py +++ b/1_nn/mlp_bp.py @@ -546,7 +546,7 @@ print(y_res[1:10, :]) # 1. 我们希望得到的每个类别的概率 # 2. 如何做多分类问题? # 3. 如何能让神经网络更快的训练好? -# 4. 如何抽象,让神经网络的类支持更多的类型的层 +# 4. 如何更好的构建网络的类定义,从而让神经网络的类支持更多的类型的处理层? # ## References # * 反向传播算法 diff --git a/1_nn/softmax_ce.ipynb b/1_nn/softmax_ce.ipynb index cdbd162..fc635f1 100644 --- a/1_nn/softmax_ce.ipynb +++ b/1_nn/softmax_ce.ipynb @@ -135,7 +135,7 @@ "metadata": {}, "source": [ "## 问题\n", - "如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的方法中?" + "如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的BP方法中?" ] }, { @@ -168,8 +168,7 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" - }, - "main_language": "python" + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/1_nn/softmax_ce.py b/1_nn/softmax_ce.py index 4baf0d2..5a49d45 100644 --- a/1_nn/softmax_ce.py +++ b/1_nn/softmax_ce.py @@ -136,7 +136,7 @@ # \end{eqnarray} # ## 问题 -# 如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的方法中? +# 如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的BP方法中? # ## References # diff --git a/2_pytorch/1_NN/logistic-regression/data.txt b/2_pytorch/1_NN/data.txt similarity index 100% rename from 2_pytorch/1_NN/logistic-regression/data.txt rename to 2_pytorch/1_NN/data.txt diff --git a/2_pytorch/1_NN/logistic-regression/logistic-regression.ipynb b/2_pytorch/1_NN/logistic-regression.ipynb similarity index 100% rename from 2_pytorch/1_NN/logistic-regression/logistic-regression.ipynb rename to 2_pytorch/1_NN/logistic-regression.ipynb diff --git a/2_pytorch/1_NN/logistic-regression/logistic-regression.py b/2_pytorch/1_NN/logistic-regression.py similarity index 100% rename from 2_pytorch/1_NN/logistic-regression/logistic-regression.py rename to 2_pytorch/1_NN/logistic-regression.py diff --git a/2_pytorch/1_NN/nn_intro.ipynb b/2_pytorch/1_NN/nn_summary.ipynb similarity index 100% rename from 2_pytorch/1_NN/nn_intro.ipynb rename to 2_pytorch/1_NN/nn_summary.ipynb diff --git a/2_pytorch/2_CNN/googlenet.ipynb b/2_pytorch/2_CNN/googlenet.ipynb index a203563..54f3b0f 100644 --- a/2_pytorch/2_CNN/googlenet.ipynb +++ b/2_pytorch/2_CNN/googlenet.ipynb @@ -377,7 +377,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.5.2" } }, "nbformat": 4, diff --git a/2_pytorch/2_CNN/googlenet.py b/2_pytorch/2_CNN/googlenet.py new file mode 100644 index 0000000..5885233 --- /dev/null +++ b/2_pytorch/2_CNN/googlenet.py @@ -0,0 +1,206 @@ +# -*- coding: utf-8 -*- +# --- +# jupyter: +# jupytext_format_version: '1.2' +# kernelspec: +# display_name: Python 3 +# language: python +# name: python3 +# language_info: +# codemirror_mode: +# name: ipython +# version: 3 +# file_extension: .py +# mimetype: text/x-python +# name: python +# nbconvert_exporter: python +# pygments_lexer: ipython3 +# version: 3.5.2 +# --- + +# # GoogLeNet +# 前面我们讲的 VGG 是 2014 年 ImageNet 比赛的亚军,那么冠军是谁呢?就是我们马上要讲的 GoogLeNet,这是 Google 的研究人员提出的网络结构,在当时取得了非常大的影响,因为网络的结构变得前所未有,它颠覆了大家对卷积网络的串联的印象和固定做法,采用了一种非常有效的 inception 模块,得到了比 VGG 更深的网络结构,但是却比 VGG 的参数更少,因为其去掉了后面的全连接层,所以参数大大减少,同时有了很高的计算效率。 +# +# ![](https://ws2.sinaimg.cn/large/006tNc79ly1fmprhdocouj30qb08vac3.jpg) +# +# 这是 googlenet 的网络示意图,下面我们介绍一下其作为创新的 inception 模块。 + +# ## Inception 模块 +# 在上面的网络中,我们看到了多个四个并行卷积的层,这些四个卷积并行的层就是 inception 模块,可视化如下 +# +# ![](https://ws4.sinaimg.cn/large/006tNc79gy1fmprivb2hxj30dn09dwef.jpg) +# + +# 一个 inception 模块的四个并行线路如下: +# 1.一个 1 x 1 的卷积,一个小的感受野进行卷积提取特征 +# 2.一个 1 x 1 的卷积加上一个 3 x 3 的卷积,1 x 1 的卷积降低输入的特征通道,减少参数计算量,然后接一个 3 x 3 的卷积做一个较大感受野的卷积 +# 3.一个 1 x 1 的卷积加上一个 5 x 5 的卷积,作用和第二个一样 +# 4.一个 3 x 3 的最大池化加上 1 x 1 的卷积,最大池化改变输入的特征排列,1 x 1 的卷积进行特征提取 +# +# 最后将四个并行线路得到的特征在通道这个维度上拼接在一起,下面我们可以实现一下 + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:05.427292Z", "start_time": "2017-12-22T12:51:04.924747Z"}} +import sys +sys.path.append('..') + +import numpy as np +import torch +from torch import nn +from torch.autograd import Variable +from torchvision.datasets import CIFAR10 + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:08.890890Z", "start_time": "2017-12-22T12:51:08.876313Z"}} +# 定义一个卷积加一个 relu 激活函数和一个 batchnorm 作为一个基本的层结构 +def conv_relu(in_channel, out_channel, kernel, stride=1, padding=0): + layer = nn.Sequential( + nn.Conv2d(in_channel, out_channel, kernel, stride, padding), + nn.BatchNorm2d(out_channel, eps=1e-3), + nn.ReLU(True) + ) + return layer + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:09.671474Z", "start_time": "2017-12-22T12:51:09.587337Z"}} +class inception(nn.Module): + def __init__(self, in_channel, out1_1, out2_1, out2_3, out3_1, out3_5, out4_1): + super(inception, self).__init__() + # 第一条线路 + self.branch1x1 = conv_relu(in_channel, out1_1, 1) + + # 第二条线路 + self.branch3x3 = nn.Sequential( + conv_relu(in_channel, out2_1, 1), + conv_relu(out2_1, out2_3, 3, padding=1) + ) + + # 第三条线路 + self.branch5x5 = nn.Sequential( + conv_relu(in_channel, out3_1, 1), + conv_relu(out3_1, out3_5, 5, padding=2) + ) + + # 第四条线路 + self.branch_pool = nn.Sequential( + nn.MaxPool2d(3, stride=1, padding=1), + conv_relu(in_channel, out4_1, 1) + ) + + def forward(self, x): + f1 = self.branch1x1(x) + f2 = self.branch3x3(x) + f3 = self.branch5x5(x) + f4 = self.branch_pool(x) + output = torch.cat((f1, f2, f3, f4), dim=1) + return output + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:10.948630Z", "start_time": "2017-12-22T12:51:10.757903Z"}} +test_net = inception(3, 64, 48, 64, 64, 96, 32) +test_x = Variable(torch.zeros(1, 3, 96, 96)) +print('input shape: {} x {} x {}'.format(test_x.shape[1], test_x.shape[2], test_x.shape[3])) +test_y = test_net(test_x) +print('output shape: {} x {} x {}'.format(test_y.shape[1], test_y.shape[2], test_y.shape[3])) +# - + +# 可以看到输入经过了 inception 模块之后,大小没有变化,通道的维度变多了 + +# 下面我们定义 GoogLeNet,GoogLeNet 可以看作是很多个 inception 模块的串联,注意,原论文中使用了多个输出来解决梯度消失的问题,这里我们只定义一个简单版本的 GoogLeNet,简化为一个输出 + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:13.149380Z", "start_time": "2017-12-22T12:51:12.934110Z"}} +class googlenet(nn.Module): + def __init__(self, in_channel, num_classes, verbose=False): + super(googlenet, self).__init__() + self.verbose = verbose + + self.block1 = nn.Sequential( + conv_relu(in_channel, out_channel=64, kernel=7, stride=2, padding=3), + nn.MaxPool2d(3, 2) + ) + + self.block2 = nn.Sequential( + conv_relu(64, 64, kernel=1), + conv_relu(64, 192, kernel=3, padding=1), + nn.MaxPool2d(3, 2) + ) + + self.block3 = nn.Sequential( + inception(192, 64, 96, 128, 16, 32, 32), + inception(256, 128, 128, 192, 32, 96, 64), + nn.MaxPool2d(3, 2) + ) + + self.block4 = nn.Sequential( + inception(480, 192, 96, 208, 16, 48, 64), + inception(512, 160, 112, 224, 24, 64, 64), + inception(512, 128, 128, 256, 24, 64, 64), + inception(512, 112, 144, 288, 32, 64, 64), + inception(528, 256, 160, 320, 32, 128, 128), + nn.MaxPool2d(3, 2) + ) + + self.block5 = nn.Sequential( + inception(832, 256, 160, 320, 32, 128, 128), + inception(832, 384, 182, 384, 48, 128, 128), + nn.AvgPool2d(2) + ) + + self.classifier = nn.Linear(1024, num_classes) + + def forward(self, x): + x = self.block1(x) + if self.verbose: + print('block 1 output: {}'.format(x.shape)) + x = self.block2(x) + if self.verbose: + print('block 2 output: {}'.format(x.shape)) + x = self.block3(x) + if self.verbose: + print('block 3 output: {}'.format(x.shape)) + x = self.block4(x) + if self.verbose: + print('block 4 output: {}'.format(x.shape)) + x = self.block5(x) + if self.verbose: + print('block 5 output: {}'.format(x.shape)) + x = x.view(x.shape[0], -1) + x = self.classifier(x) + return x + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:13.614936Z", "start_time": "2017-12-22T12:51:13.428383Z"}} +test_net = googlenet(3, 10, True) +test_x = Variable(torch.zeros(1, 3, 96, 96)) +test_y = test_net(test_x) +print('output: {}'.format(test_y.shape)) +# - + +# 可以看到输入的尺寸不断减小,通道的维度不断增加 + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:16.387778Z", "start_time": "2017-12-22T12:51:15.121350Z"}} +from utils import train + +def data_tf(x): + x = x.resize((96, 96), 2) # 将图片放大到 96 x 96 + x = np.array(x, dtype='float32') / 255 + x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到 + x = x.transpose((2, 0, 1)) # 将 channel 放到第一维,只是 pytorch 要求的输入方式 + x = torch.from_numpy(x) + return x + +train_set = CIFAR10('./data', train=True, transform=data_tf) +train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True) +test_set = CIFAR10('./data', train=False, transform=data_tf) +test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False) + +net = googlenet(3, 10) +optimizer = torch.optim.SGD(net.parameters(), lr=0.01) +criterion = nn.CrossEntropyLoss() + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:17:25.310685Z", "start_time": "2017-12-22T12:51:16.389607Z"}} +train(net, train_data, test_data, 20, optimizer, criterion) +# - + +# GoogLeNet 加入了更加结构化的 Inception 块使得我们能够使用更大的通道,更多的层,同时也控制了计算量。 +# +# **小练习:GoogLeNet 有很多后续的版本,尝试看看论文,看看有什么不同,实现一下: +# v1:最早的版本 +# v2:加入 batch normalization 加快训练 +# v3:对 inception 模块做了调整 +# v4:基于 ResNet 加入了 残差连接 ** diff --git a/2_pytorch/2_CNN/resnet.ipynb b/2_pytorch/2_CNN/resnet.ipynb index a954f56..60bf725 100644 --- a/2_pytorch/2_CNN/resnet.ipynb +++ b/2_pytorch/2_CNN/resnet.ipynb @@ -377,7 +377,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.5.2" } }, "nbformat": 4, diff --git a/2_pytorch/2_CNN/resnet.py b/2_pytorch/2_CNN/resnet.py new file mode 100644 index 0000000..ac24ae4 --- /dev/null +++ b/2_pytorch/2_CNN/resnet.py @@ -0,0 +1,191 @@ +# -*- coding: utf-8 -*- +# --- +# jupyter: +# jupytext_format_version: '1.2' +# kernelspec: +# display_name: Python 3 +# language: python +# name: python3 +# language_info: +# codemirror_mode: +# name: ipython +# version: 3 +# file_extension: .py +# mimetype: text/x-python +# name: python +# nbconvert_exporter: python +# pygments_lexer: ipython3 +# version: 3.5.2 +# --- + +# # ResNet +# 当大家还在惊叹 GoogLeNet 的 inception 结构的时候,微软亚洲研究院的研究员已经在设计更深但结构更加简单的网络 ResNet,并且凭借这个网络子在 2015 年 ImageNet 比赛上大获全胜。 +# +# ResNet 有效地解决了深度神经网络难以训练的问题,可以训练高达 1000 层的卷积网络。网络之所以难以训练,是因为存在着梯度消失的问题,离 loss 函数越远的层,在反向传播的时候,梯度越小,就越难以更新,随着层数的增加,这个现象越严重。之前有两种常见的方案来解决这个问题: +# +# 1.按层训练,先训练比较浅的层,然后在不断增加层数,但是这种方法效果不是特别好,而且比较麻烦 +# +# 2.使用更宽的层,或者增加输出通道,而不加深网络的层数,这种结构往往得到的效果又不好 +# +# ResNet 通过引入了跨层链接解决了梯度回传消失的问题。 +# +# ![](https://ws1.sinaimg.cn/large/006tNc79ly1fmptq2snv9j30j808t74a.jpg) + +# 这就普通的网络连接跟跨层残差连接的对比图,使用普通的连接,上层的梯度必须要一层一层传回来,而是用残差连接,相当于中间有了一条更短的路,梯度能够从这条更短的路传回来,避免了梯度过小的情况。 +# +# 假设某层的输入是 x,期望输出是 H(x), 如果我们直接把输入 x 传到输出作为初始结果,这就是一个更浅层的网络,更容易训练,而这个网络没有学会的部分,我们可以使用更深的网络 F(x) 去训练它,使得训练更加容易,最后希望拟合的结果就是 F(x) = H(x) - x,这就是一个残差的结构 +# +# 残差网络的结构就是上面这种残差块的堆叠,下面让我们来实现一个 residual block + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:56:06.772059Z", "start_time": "2017-12-22T12:56:06.766027Z"}} +import sys +sys.path.append('..') + +import numpy as np +import torch +from torch import nn +import torch.nn.functional as F +from torch.autograd import Variable +from torchvision.datasets import CIFAR10 + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:47:49.222432Z", "start_time": "2017-12-22T12:47:49.217940Z"}} +def conv3x3(in_channel, out_channel, stride=1): + return nn.Conv2d(in_channel, out_channel, 3, stride=stride, padding=1, bias=False) + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:14:02.429145Z", "start_time": "2017-12-22T13:14:02.383322Z"}} +class residual_block(nn.Module): + def __init__(self, in_channel, out_channel, same_shape=True): + super(residual_block, self).__init__() + self.same_shape = same_shape + stride=1 if self.same_shape else 2 + + self.conv1 = conv3x3(in_channel, out_channel, stride=stride) + self.bn1 = nn.BatchNorm2d(out_channel) + + self.conv2 = conv3x3(out_channel, out_channel) + self.bn2 = nn.BatchNorm2d(out_channel) + if not self.same_shape: + self.conv3 = nn.Conv2d(in_channel, out_channel, 1, stride=stride) + + def forward(self, x): + out = self.conv1(x) + out = F.relu(self.bn1(out), True) + out = self.conv2(out) + out = F.relu(self.bn2(out), True) + + if not self.same_shape: + x = self.conv3(x) + return F.relu(x+out, True) +# - + +# 我们测试一下一个 residual block 的输入和输出 + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:14:05.793185Z", "start_time": "2017-12-22T13:14:05.763382Z"}} +# 输入输出形状相同 +test_net = residual_block(32, 32) +test_x = Variable(torch.zeros(1, 32, 96, 96)) +print('input: {}'.format(test_x.shape)) +test_y = test_net(test_x) +print('output: {}'.format(test_y.shape)) + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:14:11.929120Z", "start_time": "2017-12-22T13:14:11.914604Z"}} +# 输入输出形状不同 +test_net = residual_block(3, 32, False) +test_x = Variable(torch.zeros(1, 3, 96, 96)) +print('input: {}'.format(test_x.shape)) +test_y = test_net(test_x) +print('output: {}'.format(test_y.shape)) +# - + +# 下面我们尝试实现一个 ResNet,它就是 residual block 模块的堆叠 + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:27:46.099404Z", "start_time": "2017-12-22T13:27:45.986235Z"}} +class resnet(nn.Module): + def __init__(self, in_channel, num_classes, verbose=False): + super(resnet, self).__init__() + self.verbose = verbose + + self.block1 = nn.Conv2d(in_channel, 64, 7, 2) + + self.block2 = nn.Sequential( + nn.MaxPool2d(3, 2), + residual_block(64, 64), + residual_block(64, 64) + ) + + self.block3 = nn.Sequential( + residual_block(64, 128, False), + residual_block(128, 128) + ) + + self.block4 = nn.Sequential( + residual_block(128, 256, False), + residual_block(256, 256) + ) + + self.block5 = nn.Sequential( + residual_block(256, 512, False), + residual_block(512, 512), + nn.AvgPool2d(3) + ) + + self.classifier = nn.Linear(512, num_classes) + + def forward(self, x): + x = self.block1(x) + if self.verbose: + print('block 1 output: {}'.format(x.shape)) + x = self.block2(x) + if self.verbose: + print('block 2 output: {}'.format(x.shape)) + x = self.block3(x) + if self.verbose: + print('block 3 output: {}'.format(x.shape)) + x = self.block4(x) + if self.verbose: + print('block 4 output: {}'.format(x.shape)) + x = self.block5(x) + if self.verbose: + print('block 5 output: {}'.format(x.shape)) + x = x.view(x.shape[0], -1) + x = self.classifier(x) + return x +# - + +# 输出一下每个 block 之后的大小 + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:28:00.597030Z", "start_time": "2017-12-22T13:28:00.417746Z"}} +test_net = resnet(3, 10, True) +test_x = Variable(torch.zeros(1, 3, 96, 96)) +test_y = test_net(test_x) +print('output: {}'.format(test_y.shape)) + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:29:01.484172Z", "start_time": "2017-12-22T13:29:00.095952Z"}} +from utils import train + +def data_tf(x): + x = x.resize((96, 96), 2) # 将图片放大到 96 x 96 + x = np.array(x, dtype='float32') / 255 + x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到 + x = x.transpose((2, 0, 1)) # 将 channel 放到第一维,只是 pytorch 要求的输入方式 + x = torch.from_numpy(x) + return x + +train_set = CIFAR10('./data', train=True, transform=data_tf) +train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True) +test_set = CIFAR10('./data', train=False, transform=data_tf) +test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False) + +net = resnet(3, 10) +optimizer = torch.optim.SGD(net.parameters(), lr=0.01) +criterion = nn.CrossEntropyLoss() + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:45:00.783186Z", "start_time": "2017-12-22T13:29:09.214453Z"}} +train(net, train_data, test_data, 20, optimizer, criterion) +# - + +# ResNet 使用跨层通道使得训练非常深的卷积神经网络成为可能。同样它使用很简单的卷积层配置,使得其拓展更加简单。 +# +# **小练习: +# 1.尝试一下论文中提出的 bottleneck 的结构 +# 2.尝试改变 conv -> bn -> relu 的顺序为 bn -> relu -> conv,看看精度会不会提高** diff --git a/2_pytorch/imgs/Ipython-auto.png b/2_pytorch/imgs/Ipython-auto.png new file mode 100644 index 0000000000000000000000000000000000000000..c6740d1ea688e58415048596243370687df46798 GIT binary patch literal 1669 zcmV;027394P)!{(9ER~fB*&S|B=_(=tSi(PX=|%Dke#*%NvG2vR*hJ~m1zQA){bwG#c>{1FlFYXId~O1l5dsfXcd56j36gM1K7F zBijK&fxVI|5fS+!U!2>R!OubOkCRAPv%NS9J(lCpr2qE&HxUu}{>S%G4y?moBeheV zPG)NNP;C%v{_Hso+NAgC6ZSr}G&MVF7YzLQ-MNSodA@#@v)eNfCGvXn+WVlo2|s2n z?;02I)w0dD2`={X|@+f zf8h4-b_jf-u$Pu6=B5%ehR*UCSQNP?Y{ebMHlLqhq(IXLx1&^>txMWbloXEJ@(VTpN=lP zQA)}C&+q?#PefjBUgYfVtq0Kj760RQ4StFEN9XMeaD3Z$5eu!&H&Wkrls+^t7+c4^ zoqN1Rkgefd?u=;DL$|c%UK# z9;gU`2P#6~fr@aO>H?^*fm=WS#+`VOjv5}Q2+xNHDl*CQ;a#_>Hg8cqhldpS?%CHg z&B;3Ed%&EH{(N{H_Akai^ZlW;z3HY7anm%1AKyATadS`%sklD;l#iOCCP(Q;e?GkZ zbeW-4$ngeA}>3!PkHHu>;#Q4K+4qW3mfxN(j3t zS6CU8!;~foe4ntF{D4PSlO7n;=%e(muwVW9Hs!ZnEc;}jf2Yrnu~h$j_!7d! zX zs?=t)alXIb?@!h--y5quV;r+a)bI=83$Tw4)PBD|{P@<%$yLtHW^+`I{eFM4Ufa(H zHv*3XYSrbVNnbd#=Ihf0*R^ch5ArEKSV-+V8$+*c0Y_N8|{_*$+2 zDPPOA4XobAvhVuuCn+(Luk9u@y&he<*{<6e!ft-Onfbe+3@w>ee6GQ zUk%!|9GlH1xxXGNi}{}Yy0lt3Cz|vSk$fTOJGd6AO>+vBGjtLweejULBO70ny6tvD zi(Q=+Rbk`zQ#?oqh2JH%vdM$lywA!_#1%)1V!JFF>EkGh<#Yw**~B;zQ;Xc>3@QN6_0@ z!guW<1Rk&~Dd08+?SP69c%UK#9;gU?_)5)bK78z|H{?SNzYrzQhd0Y%zeZjJ9tTr} zY^j&A&Jj)e!Yy?^yl^UD^#wR}9{mzf!$U;oGao+ZKJ6ecDY#t`cx2OcK735yJLzak zYMOUNlYW6}nGfG}y&>n(&mGfa3sA#+_|WlUqx9ynV(Y}pF+>+&PSaxvd;ypbU$!{~ zo<97-5pRE>P)mca1~y=h|A~nAH2?tUZZUQN z0000182|tk2*>~cC_q3406+l(G5`Py5Rd@?P=J680DuAnWB>pZARq$(pa20G000FD z$N&H+uss>}NRpZ6jnvisMr*9^;G{HgY@KD{qIoeBV; z+2pPvn-6AoEoT4#g4d8YA2%XKR zUDrCH^jz!GT@3*62?pfHcaO69&qmfC*YfoKNsKYF{9`HKfB)V&<9Zi$lVIF*kXIS- zng&06`Oy0&%Z8=_0M1uZm-XS@A$!I{UO#Rl7A))Yi=qf#qbBeI0AfbJhO9X#8)K@! zCdvTqTbI@`0KnGk?~q-(UNbHSboKrFWLLLy6R|F9008PnZy}E%$4{W_!D3Bf*oRLB)J9t!@kwTfZ&WsOTmm zrOUuu|37tIdmcd<08m#2WMhmh7K>-sKI_*&eXoOwPvF*>O@9iND^CJ40HChdfD8Zt z(wyZrWB>rPAs_<)pa20G000FD$N&H+u=@M-X`CIea!o-Y`lT05Btq zm)os~h`hYNm*2j9ldo4-gJk@fQQ80iR8G3Af7|Wkugl9Z%91R1>-e)Vd_e#Jj4J6~ z)?e0ZF(UHjc={~ldLXj{rE6Y&TKU?Z_ogUL=K0oXvz~7m0072fw%cv-f48^t+x>lY zW00>`SMvJdL5wl-*JdNH4~HMGS1WmaJXSXbv9IOU--qV8-q)v#h&P?kG~armasdFK zL2#6H8H`J>k4O2kT#AT0u!RC$lOR}Mw(WWV08B}5k6)~J4VUl7LN_%4K)YU_hn&(y zJ%m`^1Zx1m*iO2vzg}I*tNmU?L|#2U%9r)Jn)hY7l-EB8cG)dp5%++t6hn+~E=N)` zni>G0k@;Vd!oD$x{j?{0ly&`SPfbTzyXLz_VEbCDv60)ZFA6Dx!T=0RY;ZML-4sKs%oH1OR{n1Y`gJ6bJ_7&1RD&6S}vjiTwru!|CV;Mg@q_kXA?q4{=ReahJlF5=&Y*tXm2`sOvM zPXOq`h)8jFcUS!m`NfMDvfuB;7$X-K7a}5Z`1w5K)oLZj+VhZI*EU1%PcnDRcLl0Y z;B~!jQvipU$jjyO*}$$?VCbV;G9|s(GOljlCgpSu(25PVN-axMP0AAEDodZ& z-usYRpP?R!T=fY6O_=R=Tio8>Rugu+om^dA$-~2gTwGkp;cz$^WnB+ov2MT6Kp}fQ zdz$Ng%Bb1csN$3nwJAdDwJl3(KC!_@^=WoFT<=5Mk#j_JjxP%-BgJFe9!j%5FI1lZ zkkcSfd&+seu&)y#Eum9df-wM`gF)`pm2>b;9|MsH7H&D~g!%=5u-@-wolBo5bb~cC_q3406+l(G5`Py5Rd@?P=J680DuAnWB>pZ zARq$(pa20G000FD$N&H+KtKinKmh_W000UQkO2TtfPf4DfC2<$000yqAOirP00G&< z7$e4*v5SEouwSPo*JqK>G_^`ML6Nz3;jWZOiFP+fJ{|F&JAf=V#hZFXfnTvX6XeH9Zbf${#9clk-Hb zayH#}vHH&$k7DKY34Q*Y0l99yUd!Qd5Mzuim&+=TrQI{&$SV4x2?oPa{po^H}w%sSeu8xea~RM~(p8HoqqGh7v17w1uom?4%j$3K+61 zb69U^q5U`Xwhw(Qg>>BpU#mE`sT^k^IgXd6t@$DMQOF$j-&BO^+8K~9FE8cc;i0zz zwbi86le3$lOVcDt3En;YlKkB^VlfG!bvb`3c-^RCN;=GW)tI*6vyf}P5GeWahG zEcUUJaze6O&TUV`xsLgmHeZTTb=iheuKJ7_;+QY5QMUQwm$KcOTCll}&!P1lk8&{E z?Y1z+JPXSE{r=ejW{eEERBUOFh+I-VWzBFC)q7~t|kY7(L^u9@cZMPw` zUTi4&f$I4M($5l_h^is;%WxZU-d`!wd2z?<*-G(mZjGZHz zrsqqykI%HPepBl+l!mJ;sh``XV#h>%nb2|XD`!rwv{UwN?s$}|{LjwUWk5E@$YQa0 z7HsR^_pZARq$(pa20G000FD$N&H+KtKinKmh_W000UQkO2TtfPf4D zfC2<$000yqAOirP009{Q00juh001aJKn4In0Rl1r016P00RT{dfD8bD0t93L02Ck~ z0|20a5s|_*@2q1t%!)+-`~r(Z{K9M+l^c# z0x;ISY?DbPy#CAZXB@Fn@cmrMEn{rj^Z zDpZARq$(pa20G000FD$N&H+KtKinKmh_W z000UQkO2TtfPf4DfC2<$000yqAOirP009{Q00juh001aJKn4In0Rl1r016P00RT{d zfSj2zMvO7p)6|qs+q}oj|D3t%z1$z{ljlP95~?fe5jm`e&d?YmMNwp(r%6#1DnFcK z*I(Ou@vT$emU5ZCw=YzFt;c3)zqc*(P{)#8-#PM(rCGjr?d$Rwc9kPE4@fn53psRR zZaXi9#vrMI_IfE#a79s6f4*gM3LS@bna;^j$4eR9>VIAH?jubgr%}4B#|p~lYHr`$ z$J&BZI! zEw8;^>~)*0*R+f&^%Bd=PPc2FwcQW74H=C4$jeo)=l%r)x{MZ(MTQB=^^>A6IJlN6 z^YG2L(+j;%DQlPXV((q1QZM!Onrc(VHf8fIU+*GqTW4+eLmMgA>vL+7U(Vn;)E5|_ zsZj&6$Z#!X7khnIny%Nbd}HrpQUj>3oL%y^X{r}j9w|cGFxH7UHD6zSrtXKn%a==& zFJn2&mg@@)klW}1IrO1uJ8!DmUVo~0TbA$VDt9X>C-z@{eSXe!e5nU=8Z{sjjDK-; zTQs+ZKV zbUAL?ZbOsqb(gN&khK|HDJrqW(7vHU{Iq-oZR z7StxI@AW{n->S6$E4e z02Ck~0|1}^0eOO41M2KScykllzPWBQfb%lS^N?L!Kk4ZE8d2y(uJ!s!#1yWk2Na zG;^hSE?*)5pl-B)+@>{ScPqPI+wXnLG|9`JRtC*BGj=IaZvv3u)k4@|kgFu3mP3;^e1^e*eZM*fbOX6Ru7bJ1t(ol(;O&e7-r zIfvM&?Y6oE1Yei+9Q1KR|2fqU0JNcElywTb)!F4F-sMSEU6$**4SoF_tVx=&CkM4j zGY5h?fT0UfSp~$~+~_9Aekf z0pJ{{di-L_GO52E4&4MK_w*)twOQU?&KIrMsrtmbUw9Ybb*j++q}%pM{9X%ey;yd4De= zBERi+@@l^ywNU3Q6mZ5o0S^%f2{3Nd3veD5FSlFgj8_j2y=MH`82Nn0CmKdKH#hg~ z190AgzeE0Ovk?)I*N20Mh-TvwlOD*uB@A)Jteyn{@z;Cpf6D}E(7dm zW8_UyJPXYAY4*JO`cn?lDYwaVz4uKEDf6*kr{?1;Yn%K++ZW5PKHUy#ZMH9zSKDpx zBTZK@cHM5ZO}(Vlwd-EvP3r_e|2mJdo^nv_!VW~5Pi#ZCfv_61wL~ot>`f!jh>$SXjdXg{8<+E0D$T?ph2Aa_PWe&h_db^i(tmW*w z?hKqGTB!g;61%Kl9}e61$M%ubY9NRb9DF643jP+e}jg6=c zBzE;sWT+i%d+t0Z^ z0pyX?LKYG4YXAVy9Z!1#06+l(G5`Py5Rd@?P=J680DuAnWB>pZARq$(pa20G000FD z$N&H+KtKinKmh_W000UQkO2TtfPf4DfC2<$000yqAOirP009{Q00juh001bk8oK~} zGoOujUh$?Fup|Hg_|ZZJ06>9WTgc|auhwbtdwOfM?Ro$JOjQ+-um8LjF(P6__W#~z z%ODm|-^yDN5&0yaPS&XhW&i-@tm?A9|L47ki0uBg8!YoO7y|%s?nb+Y+%_1S4~CXA z0AO~40eSOrBkPZA5fNGav6AH<%RveS0KmBk2IR+gk0K(n{_fK+sf6Nk;UDu6M z6~7k@^a23PPEwck;oYI{asU8u)~bMP%rMtwyR?o00GO+VF(w*}`v}%=fBvh#Pr;xr z0Kgm#e(OxTWlW110DxMT^*{dnhlq$={r6QhbMtW{B0ol0i%2z~Yw;n^ucg|wkQvkk z0GK0lcXwBm-PWN$5jlAsO9Teq00RKfualoW)!!3{0RR}rLgch{OdtjTU|0)ZAm(?+000c<{{fT5 VYi;9N_+0=1002ovPDHLkV1ntCV;KMd literal 0 KcmV+b0RR6000031 diff --git a/2_pytorch/imgs/Jupyter主页面.png b/2_pytorch/imgs/Jupyter主页面.png new file mode 100644 index 0000000000000000000000000000000000000000..0f76215740de255905d7e8865eef2c46bc08413d GIT binary patch literal 29929 zcmVn00FrO1^@s6@(`b;00004b3#c}2nYxW zdi}omzdwk(PM{o=q49b?9z2xmy07bc z-!}&ykMlm)kO+bxfQX2Qh=_=Yi2n7YRUH5k5fKp)5fKqp4tZ4vKtx1DL_|bHRNn62 zzmMePnDO#kOe^SZdh z$lo>t`mB-@Kt=RV9wL9=QWTtwfccyA(X?sn7Yz5+arp3IY}&L5!NI{8G-yy&heJd} zL_|bHL}XkdsQ>G)BcxL&C=?24Pi{uuPoDyMy;v`?Qb20&2AEkv0zk;mhCcm1gq(B$ zfROnRc|W`h(|(`9B(QIV+{nx3)~#DeN=mBgFo=kVh=_=Yh(tyuf{OO_(Oo@&{GUDr zq;kj`gh1ZlHORf21J)(%9RxtgdJNsIQ_x=81KpJa$lpE_(i%>X`L-$7n|M)ry&h6& zrR|$tB0&%!kw~gE1|lLNA|fIp`gb$_`1srmbBSwhjF)=aNx^*i$b?StWkPvL!whhtI(Rlp$G0e=&5EvMUx88aS zE-o%&oA1B>9=C7bM*H^d(YbTyV)30jcMdyt?0{0K#QX2RFOHp@oD2XsaNqzgU%m_g z=+L19x^(Fxw$*C2_~n;haNxiJ+`oSxW@cunQ>PBX!^2UpUOj_xVq#(t85xP!UV9CV z8a2Y|)vIyl%oz+HJ{+&T_L@=8l8A_ih=_=YsyCw(L7Fq$U_SV3NWGdp*FcgQ&M@oy zU+8b1fcDG|n6w>gRJ#ioEqoAO`pu8x#qSb1PwaLiHz@eZK^y$;lym@nj*e_nZh=vUtA~G@(H*ekqP&k{3h=_=Yh=_>D7)B?8g2d7Lh5LCPMW=T~M@Pfb(h`dnErPGFF90AbD+}}I&&Q=pm#}2X5`6X5SCB{~ zXy3j)e)!=BBqk=}#*G_LsZ?Tr1qB5-bLI>r5(zqW>I492(V_)fv}l1Je)s`9ckV=3 zSXhahMXz7K9#^hh!JBWsiNS*hi{)`~ahN`RI+iV4hSjTA!_?H&Aoc?X4j?-_8t~(5FwIa$N~z^u{>lkp!xUzRE%- zlK}wo^Ybxb!UQo11OPTRHkdSN66A6@5)u*+8ygD%u&}T|+qP{10EZ48GU)HjnKQ`C z%R{|-^$eDil_n!21AF)Gg{!NpIFqPIojP^Uym@n^r>Eo0nKNQ}(f&cn$;lWsY82YF zYX?h9OYuZEA|fIpA|fK9(p2pZ$yLP8&JInQG$~fDR4T>gSbtwy78)7~pzug|olYl~ zA3uH^01y%qQl|0GojV7uR*RM`TS6w2K@bFkuc8Fi_3PKgHbsdbOG`_%Zr!>};}H=N z5fKp)(ewM`k3aC{n{T2+hYon}z4yd@fq}yJ?gIx7L~w90zWw%Fv})A~4<9}R0I1b! zeER99=-jz8!otF^dGltm-EY7BhH>M@iQh*=L}2>#>Ei#x!oqOj!UZf^v& zQn}nqwVY1k=;-*=6S~~p-2nipsi|UFojP^k>FJ3(ckbZq*|TWgyg3RA3UK=LX_%Rr zp-r2zor0E_m$0=6i=K$ z-W)M8G04lyL#Ixi#5Tst&(8+{G-=WVK0ZEAy{>NEy2Z+h_6i~*A|fIpBBF|S`t)hI zxw#=YI2Zshbm&lohK3?HHx~~dK16bIGQz{dA(zWBc<^AXU%y^#d+5+1j2$}`*4Ear zwzfv+&Yf}S(4kTjK^5thOaw_J63ApS=yW>d=H^17P#DzzJ^NOYXVn)?-*RwpFevZP zp##>fTZdDpPC>0!fs_Ar0^@kgYjq`=+X9gP|_D%P%O)96i`HX$b`2O%LLPu*+C#>NIf$w{gD z_3NWnty)M(NHEwaiin7ah=_=Ys*XmZL4JO|_@&e7(7btb+`oSxM~)nUR;$JO_3P2J zX;WBPS;5Q83ob4$*t&HqbUGb2ZQ5keU;Fm$5fKrAoSYmaBqSg@IvVZTwF3ZnczEE( zjT=y_)hH+^z`=tDi^ZcyOrJg-0RaI>N=m}<A|@sV6DLkY+qP|CW@d)dr%xj` zHWp@PW|%Nxf;gk+?;12{fSNUH;=zLlkV>V`JT0t#{rUian3x!R@x>Q#baX_UHf`YJ z;{&Nwib<0uVb-i!*t~f&&YnGsmMvSt#>NKO+1a>#`!?iqIVMh=_(IQ!h=_=Yh=_=c zH)6yHgYTzInS$`}aLk`SA76d-6+Zs>W7Mlx51)MU34p?_Yd-({bA0^q$5^#$6$T6# z0231vF{dzM#0V^0xDdU2_lB978Qy;TZ8U4v3;^Kg=ZBDx5DXkR5MEwh2nYx;m^}ml z0|ySo?Afys6%~a#b?V^jufKlbdo(%`BxF8B!B3yUwA)93Y1uYM7Ukz4|JQj&CxMEN zQwNG~lI-vAkN4ht4{O)1#nr1VPV+6e?Qb}b&35tI5=SH)T#LD ztFN$e<3_RE*Vh-LMvW4WZ!by9mMsw(8Hr}in!(Z0@u}CUI<*QQOIr=A$@ z=jSJ`_ED?VSi5#D?CtFV0G5`Pm@{Y2Q~RAZZQ3(qs#~`%wr<^8O5|l@bRtOJq&L*3 zw<7n8t}yNJF64pz08>lj8s}$2b9y@p4zGdC*%$Ig-HmFNm6atXf-EhIkJY717qn~F z4!3UIf>bJnr>CcQg4ecf+n%~?3n=_SEnBt>ckkXsW@aXwoSfk7?EK7l1VO<0^XCBo zefsn%HU78WdJEmUb;HAl4`FR>4G#|wgZf&vYT=VlK0$VNHXb~90IgOFTU%Q=J3ALU zBEDI(X4tlETZuE3h=_=Yh=_=&YMeiR9`5e$P%4$!v111U0|Se_r+=9kADKh~vjJa1 zz5Gq&{q#TJw}p`VwuQ{Q1*Fctkl5FR#LNbO0OaRDpPmSPQXF)*PeU7j9MI-Ns&I$d zfJH_RdGqE?0Dy~&3rtN-OT5P1+`QPv&VX^ptV<*kczSvo9na4{|BTzWZzCWeKwSD& z8b?RRXU-e~3OAzm^YeS=HBzaRNgyI3A|fIpqL<9ATemP}$`k;Ax3@QD&z@by5j|U( zQdCk~XIQ+u9(n6VLZ5O6+AI5^y|Ul9woX1Ue|r@q)=HzUfAZvsIJN3&)2}Mio;`c; z!w)~e#KZ*eyz@>~heJd}L_|bHL@$AU{raI_zkXF6hSADAS4pb$g2j7VQLt+fG^e)% zg8rG;OQcfBn}@@++lP>t+mzbBPN%~+-+Y79r%xk0I~z4?)+0P zaQ^&xNF)+WoH()A5-%bmA|fIpBBED;@u!CAbcnwm4@e3(RW|GQ8BE%|4b7>|(8V2r zkb3v8|;iYuBzprBc1rn>`T`5fKp)5z${_ zVqy>&7+BR|RGFvUztNeEgoFg~|99`+g-)k~OeXv50&^Qkjad3+3~TG>Pa;)>x^?ST zbqGX6L_|bHL_{yl=wqn5fKp)Q8mG(VMIhkL_|bHMAZZnK}1AEL_|bH zMAZZnK}1AEL_|bHMAZZnK}1AEL_|bHMAZZnK}1AEL_|bHMAZZnK}1AEL_|bHMAZZn zK}1AEL_|bHMAZZnK}1AEL_|bHMAZZnK}1AEL_|bHMAZZnK}1AEL_|bHMAZZnK}1AE zL_|bHMAZZnK}1AEL_|bHMAZZnK}1AEL_|bHMAZZnK}1AEL_|bHMAZZnK}1AEL_|bH zMAZZnK}1AEL_|bHMAZZnK}1AEL_|bHMAZZnK}1AEL_|bHMAd}cn2U09a*&pm28~8j z(eb=8OiWCmP$*z!WmVOo5D^g(5fKp)8O5kXP+D3VTwPrumm76?wUC#WhsTc}GZ92Y zL_|bHL`1I)qn3tgG#Vy>{=wYboHL||h=_=Yh=}Nw!aahBh=_=Yh=_=)2_}Mwh=_=Y zh=_=)2_}Mwh=_=Yh=_=)2_}Mwh=_=Yh=_=)2_}Mwh=_=Yh=_=)2_}Mwh=_=Yh=_=) z2_}Mwh=_=Yh=_=)iI*-BG;P{69655tpzP+&n;1KGEJlnNfhkj_R8eHrLvDc%&1UY# z!zX!F9ZIFUa{md!79B$8x%)Bjn`2cS4iOO%5fKqlxszAcK$|yj#*Q63ik1KH!w;~s zvJ$`V)vFi0yu1vq@$vD&^5x5M5PA^4hFaN!ow$d_;gz=KG_zFl_OeI+W2yr1mUebD{Z{WcIe7Oe6lqb)BDs% zhkDLP&ndvk8!1&C77-B<5fKqlrKr?IkVGOWmiQ^MapOjuJb4nSsi_z}dNhKAgUi(S zrAwFalZoBxVE?6u zc$Ark;CfD&+S4BZaPmefW^cWK@K&BUc=;jHa|$q~i!Z{OxQYFbTyqi+pXA|wx*ETJ z)WKjT((--rxSo^=TT2sMy`KraAmFn%15meS4FEuLMjqyDkHwY5C-8B$K}~xLn48Ej zyI+IKcx*;nec%RqH***7+uB@?S`HpYwJmyvd#862%bLyHjm;CP((1xxsl^1Rmwffzb z$Su$z_|ttQ_I>77DmG7O3wMPjmhHWcZ}-IE+hNTC0JFDVfSbY+Uk`1D_~a~%{_Z4R zYgF?EovJuM$tx8r*)AE!O|v*j8e~ZpDZe z#g>N6jl6`^?0jr|uQkj}WcYY%EWX-x4Kw@HH@GhH^gVp>pQdO$z#cjII^^bS0RRhs zxq{|C4)}gl5DIj9oV%S?A@@l{L_|bHM6a$&-7GpjJ|4q|4;Q~yty)zs{YFPeqjBTL z2nq^Mq+>(}ADGFdXy9&()_#sU~9>^v>@#3tc`?)6}AWeQ7E8HRW8#=h93V%N5-=Op%PWhR4T4Ko0M zR3gE{Cu%%=k_R)n6hXeq^1C@AA|fIpBKlXT)EPmwYuCo)$&)AqhzW_p|C=MP zK!=x!!rBxvsRU1Q3o4|43sV`s{7)b@9ZSH<=y*8Un&Z7tKeVssRBGF#3^f2?+NN`m zND6;8dO?6pDnV|64wj~WEe|V7#{JVLuQ$Y+12^#Y$`b&9{w+Q5PDh^?y)7alA|fIp z`WLCxM37uAhl7K|3$@qlizhCWN+p7Vf-rLA$fvgL+O;dXcI}G1ygaO2xe^;TY{1m1 zQ=dDQiehCZhtkFjT^hRJ>is8J_{$ZndZ%!+XfqQTw7S3UKRfT`Sl*_zDNF#RWaW!V zij>SeSew6GCy&Xb68O2=Am&yYI{G_5^*R%o6na4@R&Hh@g;w`hd3Ij$Bwdio0YNGU z==1_MpSXihw#MS%?9TWzw}U_b!9RO{;k^IusNX z;M}=$NJ=VPR+EsBfVj9g=yW>B<#NbmGFV!^{6}}c73_`6iBE9+dg1+gIa=Yuopb;| zR-P7zuRf~E@I(&QrfA}2kM9rNghnUe+Jj6SyZ&;X#5F3!7m=s$;kWY-ke#o^{d6_9 zpSovoO>HM@B&OyfIm2+-TrCGHt=mzbKGirKSg0{}8IGO&LAdTidj836$S7&U5?c%6rb z2g1U_FlEXVXti2QoH!AIfr0Sw@W6*3eu#*O2rON?6jG@aDwPVuhYtq;bKG_xvS33)g?(AFDp%4)f5fKp)(Vt$arD62)y7nMb zTr!oImW!j;9-~d2m+#~-A|fIpA|j&d?4?*5Mz6ldnfX}o^JS^L_|bHL{!PRG>nLdh=_=Y zh^U%iB8Z5Hh=_=Yh^U%iB8Z5Hh=_=Yh^U%iB8Z5Hh=_=Yh^U%iB8Z5Hh=_=Yh^U%i zB8Z5Hh=_=Yh^U%iB8Z5Hh=_=Yh^U%iB8Z5Hh=_=Yh^U%iB8Z5Hh=_=Yh^U%iB8Z5H zh=_=Yh^U&7S9JhHL_|bHL_}2R{{8z%PEM}sFe;UciwoS`+@5*OtNvW7>K;oPmx&-E zA|fIpBBGZ>a&j^P0|To%j7k*~6H{uEd11~QxI669_apT67G30Y;)~p#eZroVaVN^S7*RF-Dt1Im6>@a`+ z{HhM8(nLi?L8Vevbr>%VtyT+(M1pJAu2pp?L_|bHL`45uMkj)9-@c8$efz?}!2!0m zwrJhDH4Yy>Y*gE3&6*)0ApuL4EP3ugOH=eF^2UuD&)vsIAAN)tEn1XV*S2k2eD~dV z&)s)Lnl)<{h71`})nPmrolb}M-+v$5w{J&AMh2!$n^x5!m7CIDGYuLvz??aADledy zM09jC+}+))It(HrA|fIJFk!+3^ytw8&6+i<&~aL|YK4anA6DoX|8_c^4lyw?h>VQH zzJ2?UmX`Kh{TRJjbkCkW5gZ(hxVSjT<#HT9ejI`zJlCKvt2f_#v#LX=b{;=|jGUYt zG-}kSsza%CUS3}C^75+cFo=kVh=}MFw{z!CY}>X?T;Y(TA z%Ml(Pjz*0dVcWKCSg~S-QGFRTBPcaB6_+nx#)JtIpj0YhXJ?1*-MgbhhYsR3w{PD@ zuU@_2=;#PfPfsjZu%Jwdq5}sGpk>RJu(Pv6g9Z(-Yu7G=`s>%PqgSt9aCUZvgM$OY z!^6e87A;z!Zr!>7fRK<7s8lNS?c3Mrv8PU*3YAI)b93`zOT)&G9}ksEg_xKa%$P9) zDwPT7Y`n(5h7{06;)M08}a!mM&dtbnJ^4FGkm{UGee9 zA48>5!NtV|^XJbu>baL@!h{L%^74X>jScG8uaC8B*BaF8^?H2$_1EzC_lJ#*4gCH6 zv3KuY0HwcX?%%%;l}d%0HEWi*G)$+{;p2}#hKGj-lu9M~^yz~K4<3m1ZQHiR06x3{-2dGcf-FE39>NJtP=DwXi#k3Sk*w_(EuAs`^2 zSpSzVUlz>G&4sO7w+dRVRycI%kYHnDBiy=mOArJ>$jr9z3{M z`NfMD1yfT~Vc))ef<~hezWw%FL7`9x85tQy_50z69|~q>X5usb=9_PXMvWQ?dc9r{ z1VI=$aG=nsQzzlkqentkR+iAWZ(m{L$dLwp^ytw;aBy%Ce*gVp2^JO>!WUnBAqavX=yW>a`t|EZJ@?WqSg=62apQ)d*XxBp{`f;M zH#ZmWK@bFC@#4jTmzS3i6B8robUNY6l`F!50|yNHc-m{G$S=SABKY|D6f0l8e7WG| z2nZ0CFJCSkIB-DxTQF&$rwf6BfkJX}vLFb8(6wt|Y=cu)`oK^Q%Hw6JySRzVO7-)Agc zx>V@iy}J+^8Y-+!FJA|oIrxxpP!-fsQ|Ni&CQsXJB7rDntlO_qxnl%$n zoH$`n9vvMm1O^5Qfq{X-8*jW}be~4e2$D!7IDGgp{QUedcI;RFJ44qedYjBEqO-)S5MG(6wt<^zYvvGMNnR+qXw>a4>%Q=_dfd z&p-bRnM{VcbLYa!$_iFiRv0#HnDN=J3RGI`0O0562VY-bczb)p)YKF{K0ZiFN&)~# zrBbA)r{ntd>ySt!2nq^5P4xKx9hFmVk*s)__YHEu8`}Z5&NBj2e z#aS!EhYv?=Y%H!{zm6wQo?z3aP5AQ5FX8Cu2y1I=%$PBw#GiT3o;}gFZCe0vAejq;DZl708scWeSLk!x@SH2(tPyMNAU6SfkYxf%a$$CvSmx0Idev=U%7H6 zX3d&~rcIkdDwU#My?W@_v7=FamuAbBEf_Ik1iZbyVPRo`S+izg|Ni|3>p#Q8!(nA* z1({5Swr$(u%9Sf(om48ty?gg?@7_I_o0}svG}P#^jd||D!NKtH@c{sI=+MDn?DFuz z2Oq%B&JFoI-$boA=g z3;Xx)hgz+MMx&{yTLS>}?b{cTk&(s9*REZQvuDp@7)I|Ai{ERtS^$L!hy46}3>-KRiHV8m z-McqdtXKhSYwH(|Eh#CY?e@{wTT3W)w!UD<3$;i*o2T-`Ll0+f_ zQ25I(m&=izoox_*SzeH3js01#v1dK^(yU&+8f(_9K}t#r1VO-~M~~30TQ{-(?%li3 zbzjE#=e@hSx{Borg#rLzYildko0ynDtyYWQ|M0^P`0s!JD=xbmGiD5C&6@RGW0&;Y zpEY)QaCCGO|8H(?F7{uR-!+*`CVp@1&zy*eh=}OltmyrWtE(&g{rz$L_;K{=)$5sU z4j(>@E?v67!@~nW;Rn*|*RRJr@4N#5c>C?Q#cO-_?k$!lBqZSRE-wP*i$@-_K{ai}p>gsB+Cs0um#@L^m zN~Oa8{onrq0FE6yhEAP2p?ml41__gAjs2ppnbJJ(b1Cib#M4yN-vlBeA|j%fMbZ1= zfBO6T=NdI?82sOu6Q|PB(hNR`b#QPH_o5L50pEZBJ$CQj4YgVgolYly2%DCc20J@D z@%@@oseEdT2v$K(z znTfQtG}NwL`9gulPPSg+M;v2*86czJml zee#>pQ*7RQ?>(G9e;#VJ8h7s8!SdzH#iQ0kLqnm_XfSWyJgC)bXti3z#KahES_}aG z{{Fam^Cs@zy=zcDeE4ugL`2}X-+qHutA$#v#;#qv5FZ~8pm1rCR;$IVS+kInlLNI{ zZ7>}TDE#E##l^+wjcd!w&CRXEzDtX}G`n~2Mtpoc1VMm>g#{!MiNTBuV`IB=qx(K~>=^d$-3yIIgU>(z91R*YK%F{u zU}tBC@bGYqA3q)sA3lU22)KRwHnwcpQl{9SraWSQUTJA*u(h>Cy?XTk04GnL#L1H< z4XznAY7{>E>@%D@cMgIeAU-}GhYlSwxaMiEnbP#{-ydt&uEniex1d(5@!4mep<~C6 z;%uPOY}&L5j~_n<0C8s4-~Z@8OJzKFH#avte*DV z#flY(ii*P0rAx&RVI3SCke!_^w#&}Wu9OdGd-v{*sHiCMSx6)jI5|0C;lhR3zI{8k zZ{LoefBqRumMj5Km{hrN;Q|1lNs}gsjEsc8zrRtdkw%Rgg?Hb5SNy&rl0X1(?b{y)-v&+(6f^ zU14i$i$;wap-Y!87&>&QQEiJ17%%`%PEM#*s}|hd-NpS}8a8Z*_3PJT{P^)uC=^(? zZXJI9`DfVK*%{q;uU@^dc=2M`+uP&#@#EOCWs7)kYu2oRySqDDwrq(SHEN)1*RDuN zNGMb6Pg5STKd)ZBdLcA46pb4ssgpG|2diLyD zED`s#*UaR}li}s%g%Kl0;Le>p;_I(yFPu@MMq$vPL1^E;J>1>hk(rq(&hRnDzJ2@9 zuwg^k+S;Oj|NdCEY*~q?la-`0o_n1-buf19STt+a4DRmk`0TUKjE?O^e%Fd5Cnw|P z&702?IuQ{O5z$Mje*OALOiaY7Q>T!VlY_{}NVvPZ8*JIJWy==i=H?C+%S|34(%xuxZmKG;G+==<$k@K^2t*`X^^+XYsw6PN&1Kzy68^3l_lD)fHX3 zbTPUgiNJLe^c0gPPew{g%5$$fBqAarA|j%)iHV6pU|?XG+ZD~uNl8h8udgqrO`9ez z>+0668^XfE5E&T>Gcz-cA3q*lyLL5bzkmOJELgArxw*NRH*cPp@L9KR9ky)Qf`Wnq z1P2G>qmMpdOEsv>4FU#HbA9Pp<~C6m_L8Mc-T>Sdft0HbLI@jjT?vH;9wj$ zZ~#EzzO4lX1yHNiu(Pwn>eZ{Cx_@p-eKHY5PsKzK5fKp)5mDuO-bB!|bnDg)UwrX} z!QL`2lNU(@y(*sf9<#Hvar^ddG;G)qr%s*1jvYI2>((upo13Fqvt}4HXb_Z2WtsYX zuFax}h=_=Yh=_=&Vp&^Ti_6tov}hsj)%+ru2%@K2ym)a{hd@L`L_|bHMCFKyAR;0n zA|fK9f3aP=c2#u<^b#@p)G#6vgMx}CbaWU$eSNXYA)jgIpE{~5VA|fIpA|fKHCb%?=h=_=Yh=_=&nqVS` zh=_=Yh=_=&nqVS`h=_=Yh=_=&nqVS`h=_=Yh=_=&nqVS`h=_=Yh=_=&nqVS`h=_=Y zh=_=&nqVS`h=_=Yh=_=&nvffFkyfikQc@B$8cjvVLqtSGL_|bHL@z)tm!oFQnvlzj zr+p-XAPA*(aQE(A*x1-qNN_|%L_|bHL_}1+va_>Mt5&UI*MZ9zjGzL_|bHL`2mD6G22oL_|bHL`2mD6G22oL_|bHL`2nuQKyELCMhWi zYPGsNy82hMw6uhai%V69K}1AEL`3w;Nl#BldU|?Qhfyi)?d@T2Z~t6vtJ8C;?w;N~#8mh_#Kgo@X#Ye+L_|bH|5oYg>973zPGiNy#Jo@h5`8CtMmvL_|bHL_|bXO_a-wAgWk-8a?i$=0c|zAeBhq;a~wvQ(0AqMMOkIL_|bH zuNWqRUUKRJ9mZ_9g!}1vVwuv~1S^L&g001?{p0)Wmv|hGOT&t{8bak{S=HeX5fKp) z5fT0CRaqvXpr8Qf&YeSQYASR(U5VGoWHKle3N&rn6sD%8l^o&A;pXF9gCr0Dq-1Nb z>5uzRIa?W&*RYVInU@`;lJXgQ$&w{-adE-Gfdk8@!z%F6)@wL-=Lt5v+ZZmkX64rJ zg?pJ;cQg^#ALgJytH;#tKIrVPEVurNh=_=Yh{!nO#*IVw?%mP7dv~$y(4j-vuwet% zu3cMVn>lml;PBzYkV>W4zkk0$-N1nZF>&HVv~1b(x#C&3ZXNF3yNB7cXFpf_idJQN z1f4y5761?w6ofWy+LZVe6chxBL{hCcS=Q==63e&8BxAvEHx0gKZjZytgLleh+_<p2mpo+8wM{guX2f_EH-S|fbQM9 z`CpwC#RH_Pp2>&MM?>;G)e)jL*kAQ#xI6FJPP(N25 zWaGOdcX9Jk4ou}T1bW$GT6Z6VYkt3;hUwd`K_UUhg?J&@PXPdkj7dh+g-3XpnGcBs zP&rv)LT4}3cC^GFH#0ChG7fE2_IRS!;@0CFG^$ktQ@Z(}hPfQ84&A}FGs)r@|5)XxE4Q_63CDtV+CBe$Sb@=w%Zvhl0Hoy4d3$$w0szS!9vKc{YwHo>P`9^&eWeBNs`e*0W zjB@AB9bCVD9U&nhFVxTd^gK-2auspOIS8qzM3?$X#3yGLyY9rzbablcfb<*P_L#n#&+^Vc#E32bUzDU?!9f$_T;S$wDVISxQ+w0ki>7~R36aQRlf!sS~BuBPJ4J-14Hw3I$_+naY#-s{LuJ+|N9?C zjvR?DUAkc9%9RKY568fP1Cf)H0{}=(O~uryQxOspf(Q%MF9Zh%WANa?ICJKVSXWR`fLXII!Uc<_jE5(T|I-L$*e)%OrLPGGy z8*d;nG0~{|FY@;!5K#EMKm72+3Y!#DWr-k-Mq_j$NTbnIRhZRMbaXW8)Tx77wQ9Xk zKf5nIMuAq3ciPp$gf6u)vb_gZz1^tTbt8joVN6F)cqq(~lC433Ru2I9uxo8h?&^)u z29D?#=z>}b3tUgm#@{EAweYq>zd#p^5AlMzi4-SqWdHztovqN>UkQbE;oeehd==>I zuY{jV;l4`0oPP)am>62v|Cm2#3GKP`xLADi`qxF@Ko|52bV1L?FE&Gph=_=Yh$@Dk zpC4p087^PGT&%86ojQn!h``>xd*SWvjX87Xh;;!00hl*$9@ej4kMF+w4oam`+{$Fe zj2W=Ex5utsyRc}{BFvpTS4<*3OG!zfA}?z)s78$%Sh{p64jnp#5hF(6gAYCsCuRKh z+iyrpO2V(d{)#<&_82U=+PQNl7A#l*cXxM0MMWVhDhkb;H#cfbl}d%g#6%oEd>AcS zv@ocfJ$p9%{rwRg9gR_=Mq$d7DdN(k7CP~E%@S#FL3D4A*1deD4ql=Qjy7^DoX^tidL;!g=Wo~mH4%4 z)vBrvuUsT0CE?=5i|Ep&%M17QC^H`b;Op|&rq=QjcCxm!DooaxnaBVDTD<_h0Bk<_ z0O2dnqT83J(0l0_+)GnKF8~^yUTo`NRXCN;R4#>$xf~g}#w86O{u$fIb+PFC%^AG^ zW8pg4q>Oxn>&)a*IMt}08jL;I8I+Nc@uIg}Zu<7^3okD(NTpJA>eLCQrl#V|7O7N)k>UAQzR`d4Hqw7#L%HbA(zY1v13Ol6bhU>cMbsX`|rPF;J|?}Gc!Yn4jtg> z=~-^^Jk8HP|BO+iM#0|R9(Hzic>VR)#e~n%qel@I76u0g2Y7gR7`@kSL_~y`1oH6k zfR$C@duLBiPgq!3h{>Sy=g*hxy}a7zk5{r$qecM$)~s1$Q2y?_?}~M=y8Zk2!^_JH zDwXPm`*O4?OrYF&n1cpxHUI#fUVzMqW6e(8%0R@aB)Hp~V_b+A>?}?2c~m@7vNibo z>bHA;o~V|cuS0sS2KJVQYdmFt4)xC!bB;Eqc$`&$|Mjf{bCbXFp_ZmHgX<(*14cwd zL`3w;C|a`9v13QEOb`To|NZyay?Zy*YBh8^9kg1lSTB>wAeBlXl@`7)kV>V{>2!Gb zuy7T@kRe0FYt?FXsqd9^I-NK}r9+1f7(IG41`HSg0O;AXC%Sd(h9yguASo#c4<0;# zot<6z-24kVc<>)~s2W zFku4JYBerhx`f7!8<*StFcDNn|4ar|bP~wSq->M6%uQsaU-T4dX=yln_H40rl+P=) zfg`rZB;&gy_wXPiALb@f{BbiKt4mlO_B0AB6Zkq?;c8MgQnHKB_PKB`6N`7>!u|9- zXmtWw)HeJhs{At$+J z$DZZzwN#wDn~7VG3pa}1bLlZIC1#$#TP!

rz)kUregN&*;ut|73$Zo4*=-cv7@*Lj){p0Mvoqi(W6Hr zAt3?7hYv?cNQgMwNg|PydJxpps8lK}Tei%gOrcOftJUJklP6*_C?zEY3WWkvsTB71 z_Q=Z060gt9%zUn~jU|yt;N;|lg$ozL&(E(|y+WaQu6Sn6nuYrH>!WASo(72|0BF*r z30ALOjdSPDAv`?%#ctpqxHRlJj2blx@4owPrOX8KbGAYoUj>YqL<4Ix83wd`{@v#f z95?`HXJ_#j|3!HyEU@5>dQdr8V$Y?=h`R6ywf@|^xil^R-23NFsv4u$U&PVtX>hSM zD|TI{dP*c^pVOTrEeT`lZbb*hPCH7u^jK#Ze;o!AY0KjVv95E@hHq;tD z)*nm6=93TbII93Yj+REncR48=zs5eo)ucaPOXv1iX706=_vJmTZy z%VpeW>DjX(RZQhBMe89`6`g(yjR-*kDXtfgQwsRVO+`&RfknVFe5dGaI%4jfpn z{Wfy9!B>MyPAtvp>5ExC|N4IUe;OFnkLlGC)AXrzV>^0^$IufI5fKs5%cE}Hy72Mw5tnv#?b;Q`jvd3GL4#mtXIG~E zZRX9JhsBE*BP=WoTCEoT{{EOTV@5@VUMc>$0%XdRDF_b_$Dl!j@YY*z!P(gv_3G7w zv-4jE<)o(m|Mu=ZuF5L!`}lVsI4KBhIc*h0z&zqZN_oiggr;VtM$YJMTDO_nXirTt z>Ybf+w5)l2dgYXwnc6)z%v4TIxAka=jishyWb2uW001BWNklWiupM6$EMMVk<3erOlJ*3#!SXX)ugc2G(;Ga6R%shPLeLWzcM>JTavtTc=4s|*s-JD&u}Gk z#Kpxm=p0w-`|rQkci(-dl#~?L-q>HVEeB5O$@jn0h;C5?G5`PofB{^|-<`h%<>lp? zI(4c_N=o$f(@%S}9qelUcKo&eoFL7gKVMt7Zq@klmxeN9eU2LJ#703-4D_tzV5ywTWY z;8$Sg%$e6@o<<9TY&M&clat*}Yp;vNVo_jV;5DiWzZN~>L$q#s_r@**00000fM1nH z3xa%oedX)x+gQ^B0000002t0M|1cN;000000C)vK5C8xG004kNcx7u?KtOz>%00006;qe(kCr+Gb z$T|Q300000(7-$ng5u)h8nO-m000000C-7GPEMWI*%}4_00000U=RdB00000000I- z5Ci}K0001B5ClO00000000u!21ONa4003YR1VI1*0000020;)6000000ALUVK>z>% z00006K@bE0000003}^cE>3ZC>l?D+2%k0002EHVhL4{pBxz(bG>qtrjg>NRkd8KCI`SdyXIo0000002qd0wuY6L zm%BnBNov`$r9wkPHGcf~pM6c5G)WsbZfwMA0RR910QmJeapHtVjvT4*@Nn5|HudPy zLx&F^cC{Zocu;rUb(g}!!_~TVYrXKo3vxQ0uJ+>MVojYoRk5+L3Jwm|ZMWT~AAb13 z)&94?{Y@P^c2sb1u)25euFab_yV_>Yo~=9Yyi?=Hk5}i;oz<~pNA29X({1kl{rjs~ zvu3*W)?0P#*fF=-Gcz;Qt5+}CY&M05hwI*Z@Ade(i;9YL*IjohA|gVep`q&4tCw4C z<>lp?IB}wEHk;z(#J?sw#nb$Us7!tl9H05kt0XyZ-4un zjvP6nl#~?3#KdUy=+Tm-`|i6>XV0G1=FOWG9v-fZ8#n6g*|Ud?AWpT=%bI+ zw{Kr9Uc6Yth7D6rPL6_ugC$9yefF9D{qKJ(K0aPgJn@8P&YY=FKKVqF^dJB6AL`Jd zgVwHHt8Lr1DJ3OEW5n{O&K zG*qv>_L>F{9<2QQd^K&_RP*M|)3$Bfw0G}bNz#A;1KjRkvSf)?ty-mwj11ZBc1@f( zQRBvq)B5%6ukbfQ1j-^ zB}t!r@`;Lzi#31#eEIqLsdektnlx#W{`%LyN~&Fy@!^LbYSE%avfJ&lTCEx|V1R4o z%)9Ttt6OiqRVgVcvRbWr_~D1;>+7peKmF7-|82M3rug`HNmAdweYI!L9!b)XBS*A( z^JdMOHA{Yee(K%3w}uQE^0V4=b90rOn=5~Re+?Qm$m8d>+wGbLC>0bGxUQXB86-(QK0Ycd zE0a_k1WC0EKhBAcj&>V=`SRs*I-Tm-v!`0NY^gbO=6L+v6%`dqOG{J7jvW;n8>{&E zc-7R@sG_2x&e|{hTvxl@Zg*YxHi94k00000;1xkZL3;7U7qw^49)0`mx7xmayOu0j zB1vl9y0v0rVzh7HKG)a5g9lwJdRn(`EvM6|g9i`RIkw$ycRM%7>2&JIkt43q~=BQu4ezMtY9?f4L1VI1*0002ME3&h*HF)q~1qTPK zOP4MhIB=lGj~_2d3J3_$x^?UH)mL9BHa1qxn>W{#DN|HhTI#z0?YG}nTwI*GckeEn z&88=wctTcd?R%~g6BD&!#R^TEHcd90O>e#RmOl941BHZycvRclZ@;b2KKo2J-E@;4 zc;ErucH3=k?d#U9Q(|JGf`fyVnwqLbix#=P+3Qkf%$T90M~|vow{E)q_S+>%O`A4# zwa=P0OUcQ}YS*rvdiLz8Aw!19Y(5{!Oqw)FW5$e8pFVxms#PnUI(14bSFZGE?)ox0 zFMLniMdak*=L{C;>C+E+xNjGTNNALRI^8P z{#o0RljWMcY^(0?6R+XPt*)qU000000C0U-zI?gfdh0E1+_+j~+c* z&pr2?M{fi3_xIPBF=IR$_wb2Q1^UxMaVqtSs%=u|qw3_Pj=w0RR91003Nn8Z`)VI2`KPv!|R+=Oz0kBqV6_=FMK4 z_pP_y(&wLlUgs(#lgXrE!-gp}HPvhL0RR910D$w7laux6qmOFr*s+aWis3Zs89`-b zWvZyC@aU_otjsHO=H}*JGz5|)r_-tY{Cuy>1poj50Kl)w+i$YZZ6SaT;e%)}x4VN8n;o5yFDXY?xBRhMgK5v+v{*Au= z{)CR5s?ZCglhn6kq+9#&mpAHcRgI3Gs?dffQxxQ1|9=LhXRCGFv+MNHANndX*xy^F zU)KGvZPxIcqBT6Z)is+F00000j3PHTSF>i#QuprNb^Q2ojTtjWk38~-R;*az)prnBx&xXukN45?$yayYlCQ8`u(Qba_ALPJBXM#mC1hEiFw6 z2??(D>gsAe_0&^}iHT8ISeS+nAKqZQl?)XGWo2dQ@ZrO1(xi#rc;gMNSh2$O_10T& zsYQzxij9rcsZ*!aym@nv#!PA*s^mCZ16TgbW3`y{o1U!|;A?5@QUCw|000f-tFOM& zO*h@-asM-C&S>k_tqKnh*PcCll%1WezyJO3I(qb|B`=IS6_Xlef#!Fl0N;3oNceOwC&_nw6+i$gF#}4J> za}~l-t&@sv4(y zJo$+p9nwyp?k?2PQ{}p?Lxg7B+0oT!U;Zh*@WCD(I(AwXvq|0B*!04f8zo6Eez-?p z?mwoZrz-Tl<2${z@qi@hokx1h-^ZeV|8P?OckMnMIC@&XR+p%PpKT5M*S=$#yJoj~w+q*S!qY0Ntk#s2w(8R%Le(`+4O@_*v|%09 zztj2cY9s#ixhC|B*RUH~YQo|zN{k87{(=(apD0y}&?cHcI>~M2QO?oRO8r0olH+uR zy2m%y6C*maG6?_x006w~FMs)qzWCw`ZQZ)n<9lLbW98@Pr-XzA#m2@eC@4sgk&!AW zC{RR1#AWXf2nf*V(W50vef#!RNlA(F^70fPAAiNqAxXu>#ag|3wZ8uPYlVl0OOpQU zzy3=pDJfdKc(EkOY&I)5H&?m2xr&L2(V#(tJRaX}w`=Ousjly*OqrrbAAM9=Sy@U- zN>X}yx*mW0aYaVf{w+Lt@?2&I|&px|szZ-A7Q9F0;)QvaZc*%bKJ4I^E<9#l9R?QENQZ1j{L;pSX7OmZx zuYdn=($)6jhkJBWd~3z|5M@facwy|mX(@GVszMgCNyBbzsefi3cJr%%@>pM0X|=;+Je@FR<* z_U~4!)hesi>bh1{RprtB&6+iHefIIG{U83`czM+K-+wQu_H3f|?c1w;`}P_$W{j*> zt4^OjElFCwe7T%Xr+W76sg^BUYR;TF9* zYD1!sCO(Rb3{=k1)2=qN$)v*KG8Gn=%g<_7kG5eRkDDB4Q{N5|3h=ea-^Z-s$~ zwclIJCMC5Fb^EzV(y$v_s+BE3P5mqy+q;cE+g*5#o(up0006Fk|MUiBCO0Re7**VpwnGn2_w=X^0SF_NT=j12ADw@>@_?bH7K`{i&r6c`vN zNlHja(8`r7b@=dMrKhLs`RAWkW@e^GwauSDUz;{?4F^0Px8P)%p7`rG8vgR<8nz%qv(vxP+3Fgv z)a(sG0X{OD&VL`=#79M^Yg5oxwkAr94$;To6sW4&sdfJ@(4E~{y4@e>e}0>n)na!0 zxk*x3ke}P<(-l=ZTlLF%egFUf0Qj|f@4fdlY0@OES+hp%+O<=8dAY}D^fa`Dgann8 zlxXkXy^>Vto6Ia0i=v{Uv~%Z9x9cGxA^Od4exqsArm3*7P)?^)2M-=pdV0F6&+65y zb?n$NNpgil7p_pcl;g*bt4*6WuI+D&7A;bB_4&VLM~xb#S6_Wq4u?YyheJ!2EOEO( zH8oYsmMv3GPL9gT$~0%r9QEth&+FU5q(%;c&LxZ6wr$haty}B-+P;0eB&kc6E>|_z z;lqb7*&Y}er~v~8cr^&Rl<4M7^xVB&^zqDonm;;8Z*0iczWh^eeM}}(ovGpuBfa&{w7z=&-Y#|avs%omzDVfmW2ybsSJzy9D*IC>OV6s}f?(!oak*@P=fj)3 zyS36sI}dBqcSqH%iI0+6ht_L+M@fa-=OBNpe65DrxVPT=Vckix% zfB*#q1SmK-*ehe_<>e_hHde8*vD&q3mmYiUF~!El>Y;}o^637^$VkndJ6D4T57xke z16^Ckermyj1xiaxQ_Geub;lidxUMfT)NwNm%)-PNpFGYuX*SceWBa<#8pw@!(P zi3$!5R%&Xh7A;!j_GYh3nK5IAjvhU#Zr!@+_SP12Y#W7MZlAGK=LN~cbpa(iQ%H#O>E(Kee+$;ru=-79FZSX^n` zm1@$YiDu89eaU524u?a9g@uZZjlHV5Jn`{21?ryAT%k>U)x@{<*U;3@{nrr@?62>B z5)MgHaapC>Mg_^=$E>Pqr~bb6hdSqoiwM;AoFet_7%7v-TJX<3di~RE z-PyI}B}S^-M>`Me&Tg#~+SFJ7{ly^-O!WRzIRF3v05GC0Tee*By~BqO*YM%PB}uQp z{<`b>g*$;R3|@XJB_%~ijvR5j_R~cVX=!OnOG|ToKV{04pN%ti>{yK*JN9SSgMxyz zaN$C?Lz*x2=9_O`w6@D>(V~UcuV3$W?XkxmbA9&r_t(;;OSN?AQc1Pv5nY&1Sglsg zojX@^=gz(28a&mgL6EPnuY7%dugP5h`Jex(mtJ~F4u|8SeF6dkbpQSLdo-MoogpK-Ug(KGMv z((Us;li6(2`@g?U{yrAXxU-{P{BVyx$~>$9UyG9Co4d~7xzNJ{Z_pEe{aUv^`~TE7 zs+pEg?%`@PnWWhxI_t#`_vo2-cWG3Q7(Ft$ovXdFx<+}&%T!Y4ey-B`-A8H)GvHGGweOf-`0!i(Gp+9>`@ON@fOZ@_uGjwarfX9e000000F5L!H&;W4 z4pm-Wo&o~{HDbgFEm*KXetv$JzxfJXEX!%s6+tkj;<8G;`_&J6d}xQpE(HJp004jn z7abj~UAuNQb{Ucgf^d!f-;cl3nr*pCNwjM~=bxWV1ONa4000^eTf+bV00000t}_?Q za(L%9000000DwUd1OWg50000O1VIo000000fI$!h0RR91000;SK@b1{0001hK@bE1 z0000002l;85C8xG004kNSUv5SlatesbpQYW0001>fq5JR#l^)nWE}ti00000@RExy z=wWLZ000000DwUd1OWg50000O1VIo000000fI$!h0RR91000;SK@b1{0001hK@bE1 z0000002qYFua9pCXV0G1&Ye3|R8*wu>gqcCSS%LVY&Lc6+Eu>3zE?cg%$YM)P*8Bu z_O@-?YVzdC3JVLn;yC~S00000e#sg&2+GXNl*wdLj~+cP*)JpPA|UrVq=$tpJ>#r zVU?AYs;H>&xNk$T+wB@Zetf;}Texf13=Ly}r}y`DMm@79PveXisu zKGqu>4tRZh0000002;z;uf3)|eflUOB0_@)4_2Q(eY9!Qrh1L>(n~KXEG$fsk&#-t za;00_-~RSDb?n$t!NI}m-o3jvZ{F-`n>~BBe*4?sy1viI$oSbAz{7?O)2vyu^qb%O zMs3=(k=<_Bh7B7e)t+PAt5+}CY&M05hwI*Z@AbImqM{<*b=O^rh=@>VXsCMi>g85j zd3m`ePMj#4&8GPHc%`MKDIp=j)m~j)t*4%PN-;4p3JVL<@ZrOipP%pX{PjT)bQO|X zhblSF=Jj!Jus74}5uKF~8R+$~0RR910Js*;o;|B?zWGKs-E@=3_c$C5m6w+*H#b*v z=g!sCsZ(7$iFWVat+8Xr>XlbsQBhHm#*G`NVZ(;0xVX4pbuC@GRMVzS)4_uWwSWJ9 zwQJW-k~D4FH1+S_UqwYl%FWHy#EBE@^{j&i4bq-Hd*pC9G-k{g4IVsLXU?3FB+Z*Q zPusR_)84&%_2rjeYVF#!Zuc))vP7#^tx`rthH`Ur6&M((apT6->$yDDs9VE+tv>s< zP_KNvPbW(&HK0?J+t#p`KH97O`KRpdhbW|pk2ZW;s3`;6Dz$rzBx!rjalQEA z9u=G{Q~yqp$~sb_vAx@9=#Q(5M)j!eXSLKnr(3vopS~+7k*~$96KBrK*J{@6k)0JA z)>M)-Veu9v#)N2pL5cEDl&VE&6U`r;q-Fs=9@Pc_0001hC#FrCrnYU{>cIye^!Of& z#iE%rXUb}|YV6ptnmBQy^78T&A0MxG-+foN-g>K2Qc@&I4?p~{=FFL+Pe1)sBS((( zc#b>oyi>h<_m(6D1qCT6C`giIHk*~3o2%U1T*bu1XwaZR9*=3a+ckCSRM+=YrcBYJ zk3OobtSluZB`G~UU5`KhxFRDXB}tPfPu9YP3tj!w)6+F!!UV;|#Yw7N-PEB&2OU3t zTsE6`7oe~r=nC}j6sa|j_tEg=R&}=9g8cN}?{CwVEQdNrhiKmDB)zlwdr4ABd6lNW zovG2iT5H3TDeBy+Hk9$EuMZv9^kE&e^5LEum>8v*tG|}hdA@zyfg-&;wyWNK>^4ii%P}K|#H0i;s`5^ZN4T%jI-B)w5?$wQSi^bLPzPc+8553Z)zI=K~R1EF<2~?2CT%pS~qX1CcYMh1^FsAys4s_ zH<6>H_LskT|1mZ3vuMOk(XyINO6?w_kS0D}oxfWfo1&XHktE%n+)CL;O7wlv8CUzj zE_Ma@T4XVsl+-#@IY&=lv)TXv0002jw;3~LXv2mLTDNYUf`fy-Hm==ncRM%7>2&JI zkt43qBp@Kb?L|`;+cI{sEFvKxK`U3T)ZxR2m7boi=bwLGnVFd$)i!_rd~MpaNf{X# zI&|oe_V3>>v)L@?kE=55ga&}Y000zxNklaK~yftD>^{n$-pX0002Eeodb~UF+7Z(}y2^D1U!{m6w-$ z?JeLVM~>9L{`D`dU%y^eRaN@)pZ~0iiVF4b-(Ql{zI}UTW@f6atV}gEHCnZ5RlUYv zy?V8d9XlpT3Jk10v$t8ZW**&p{P=OTY12j#5fPH4MT-`xy1LrcK5En`z542_ayT4v zI2>BCWQp7Tsi~=2wrrVla&lBwR;D>~=BQu4ehrd^H0l{aiHV8YwQHBQZQG`rnwmQM zSS%KWgoLO|moC@1I`2BSH7hL0PmYpux9g4zLK<%Wo3$ph|r=%i`?Gq zbtyAu%+R=TeHu>N=r+1%PqJ3?2T#O(x^d@&1O?_a=TH-zhtYrfS# zcI4^KuC26Yd#+BFx~HR+)lSv?m>gBtI8{+qBdggY%a1FKq}oHFw`3RTooToHY>sb! zIH4_B4kgDm*Yb=5ijNFb>#(Lj>vtu!0RR9108kfye}C6js4J0@lA>3F~W z?Qh*)5q}}8)vDF2SG!$%;)y5RzW?Vx|9R2*-+c4U`jqRYMT-_%zka>jwZ|TN%=Ovd z-(O3YF4fYdOC{BwM|9z~FRRt6xpU`g?%cUoT!W_?H3;(c^_8!$@8vssf!%J``0?XC z?t3W{7H?7EsdAN+RjS4*Z9U*npr2LmJktBJV+Z+L_0rg`df|g_^{0>as$Zul-Cz%r z*>pbSnYd(&cIVaZW!#s4N=rY>*6)Y5*O*&kU40xS70N3rt#gh(?IW~m(?L!D@11HJ z6{Pv2Z`1|DUsY`Y00000pneJq3$=UqZuRTePo<@$TE2X_?zrQQMybW*^dPRw$;olO z!VKOw?8OW{liEeeaaX_hZ{gZ~I(ep2&!i@Lp)&8*1^@s60DuwY=H_bX(4or9%Tr)r zphk=sp#=*T$j`6g&gH#WmeZ&!f{bcQmP74YG*f6(UuEn)s`AQeb!h3mlhm)qFS#}V z00000evP7|qqS?-uEs7y5C}%})PDl4K7J&`V>xs;Qr)k*lipORfz700000 zTphNC0RR91003NPE|%q(8=)2e0000005k%EAOHXW0001kAP52g00000FbIMm00000 z004s^2m$~A0000m2!bF0000000D~Y10ssI2001xutEU}va&j874gdfE0000qFpqe;jB70*>rP@oknR@B)xe*AddeDlqkH*cP1&6-6R1ONa4006E_jk-0= z;czG+Awf>3^O9c)2?;7HDr(SL1`Qgdp+kpi-n@BoI2;W+7XSbN005|;_3PIwDk`e6 z%lOr6)D=NxWo4?UsPMRNLmMz)fU2vj_4@0tYxeBf4L%($lO zdg`gC6cZDpu&^)RHVD^x=Rre5ef|rRj*#Xw0ZMpS9^JRxh77WD4Wfu`1p9GrKKq$ zA;II?y@?>`DkQZIRdSrot79HHS*E@nBDH*S554ohd#kCxRgb*2T~4Q0rvU%}006-2 ztX8YueDh5e6&2}=FTT(xpM0VP3l_Nb$;!&omtTIV%*;%^{r1~#fyw1K91fM2mn%0n zS99mi)zqm|T|v{5B}=qw)hcCVWGFW`SAl_n8aHlSy`SN=*IrY4db$oBI;4z@4Eg!_ zUG|={XU}TTph4QRXOA2XhsKN&%(jg&p(e&C|AR+q8G@UVZuHms-1at=s+H zs@)Tfx;5a%YP^~%Tlbh5Nk13E>yZ4G=n3TFsh0va@2tno5!;EZ(BTm=NtRC{g~2Qnd(eqWPnf)GWZ~ zvb6yK0001RDHk5Q(xOER-Fxr7+P;0eTb~CWctDaA78a&XojPgHo;@DFCEQ}MXy(kB zvRbVgJ9exlPMoN`ygbFn$16QOT@xluP+VM`Bx&~S+3L`tgN`3RE}PBsMI6(nO;f8@ ztt3gYv9TWAW4GJgRyR$VGDVL*`lzz9vXqpRr1bQ3J^uLPij0huBu$>+DwLL%rj8vu zDmFG&@$vDhsi|>2`%i1T@Uu5-_e7%xLFayXp0HRf4OoeHwQk;2O?)j13-VQLcvD3; zZz4xY?Js}x{$pz5XVHk8qGdIkl-fN;Ax(Vh9OvM%Gg`bpOHYnSl+|qVc>Zo}Y>IB) zM3QuOaw}yYDbe>u=g%1$*u|~@UyCeelagA8D(C3wde;U30002Mh04mxG-SvS-GBf6 z%FfQ#p+ko>b?Q_(uhCg2cDvo}T%B_v%DGS_ARxf)MO4Mb#dVHTpRD4X`Sa&%)22_H-yz|{@^CQuFw8H z7WrAtDk?djzy|uC4|l8s1>700000KUG>u4 z=1)yc)v{&Fl#`RAva&MGnKMWI`t@_=3GLgr*B4)WAxS!U@}&OpkAHY=?&HUgt4*6W ziin7iBrRIBNY&NVuJ%!*M(Nd8UzNk*ki+57k|j&(Rl7Ge>KQ?aiHX{^YnQfd+oqbD znmYSfEEa`?gs4lGF4wp^?>ZNNh6VY_QBv-9-BIGcOzwxGQa!xvD?L2$hATRor?B|^ z_{C+Fs;H__^T5joI-b-900000KwX+QZ>~j)7U}N0@0Q(eS4c>RZomC@j~0Mr*7T4 zDJ(2Zg9i^*)22;b?XzahQht8E+O=yZo6V+s?zuUl%B{P&Ws0UunNnw))oT6OHnEJ143Ec7NlDR>BS+k>T{xcAYSrAib2WGF+&b@% ziHXscEn6-*$LZ6jJ+9|MEn2kD`t|GGu08hHW3JEs{{C9Jbg7muT`EahzI?gcwy(?8 z?oEvv1o`^<%GcNT@*TavZnwLgUVgd0moj1T78RZcx8G0tQi<0B6e(&GHwfl7POr@SlP4q%# z-mMJ)00000Bg)Oq)zG0sm6w;Nz`#I_7%@T%7A%mTU&Ectd$BC1QC9>R)s`%W+O=q= z(5Al1*n3pvmDTFdGWha0UIV}6+5i9m008(kijI!fu3ftty9`MLL5z>%00006K@bE000000U=RdB00000000I-5Ci}K0001B5ClO000000 z00u!21ONa4003YR1VI1*0000020;)6000000ALUVK>z>%00006K@bE000000U=RdB z00000000I-5Ci}K0001B5ClO00000000u!21ONa4003YR1VI1*0000020;)600000 z0ALUVK>z>%00006K@bE000000U=RdB00000000I-5Ci}K0001B5ClO00000000u!2 z1ONa4003YR1VI1*0000020;)6000000ALUVK>z>%00006K@bE000000U=RdB00000 z000I-5Ci}K0001B5ClO00000000u!21ONa4003YR1VI1*0000020;)6000000ALUV zK>z>%00006K@bE000000U=RdB00000000I-5Ci}K0001B5ClO00000000u!21ONa4 z003YR1VI1*0000020;)6000000ALUVK>z>%00006K@bE000000U=RdB00000000I- z5Ci}K0001B5ClO00000000u!21ONa4003YR1VI1*0000020;)6000000ALUVK>z>% z00006K@bE000000U=RdB00000000I-5Ci}K0001B5ClO00000000u!21ONa4003YR z1VI1*0000020;)6000000ALUVK>z>%00006K@bE000000U=RdB00000000I-5Ci}K z0001B5ClO00000000u!21ONa4003YR1VI1*0000020;)6000000ALUVK>z>%00006 zK@bE000000U=RdB00000000I-5Ci}K0001B5ClO00000000u!21ONa4003YR1VI1* z0000020;)6000000ALUVK>z>%00006K@bE000000U=RdB00000000I-5Ci}K0001B z5ClO00000000u!21ONa4003YR1VI1*0000020;)6000000ALUVK>z>%00006K@bE0 z00000U=RdB00000000I-5Ci}K0001B5ClO00000000u!21ONa4003YR1VI1*00000 z20;)6000000ALUVK>z>%00006K@bE000000U=RdB00000000I-5Ci}K0001B5ClO0 z0000000u!21ONa4003YR1VI1*0000020;)6000000ALUVK>z>%00006K@bE000000 zU=RdB00000000I-5Ci}K0001B5ClO00000000u!21ONa4003YR1VI1*0000020;)6 z000000ALUVK>z>%00006K@bE000000U=RdB00000000I-5Ci}K0001B5ClO000000 z00u!21ONa4003YR1VI1*0000020;)6000000ALUVK>z>%00006K@bE000000U=RdB z00000000I-5Ci}K0001B5ClO00000000u!21ONa4003YR1VI1*0000020;)600000 z0ALUVK>z>%00006K@bE000000U=RdB00000000I-5Ci}K0001B5ClO00000000u!2 z1ONa4003YR1VI1*0000020;)6000000ALUVK>z>%00006K@bE000000U=RdB00000 z000I-5Ci}K0001B5ClO00000000u!21ONa4003YR1VI1*0000020;)6000000ALUV zK>z>%00006K@bE000000U=RdB00000000I-5Ci}K0001B5ClO00000000u!21ONa4 n003YR1VI1*000002J!y^#b0&^qwWwS00000NkvXXu0mjfu;U3& literal 0 KcmV+b0RR6000031 diff --git a/2_pytorch/imgs/Notebook主界面.png b/2_pytorch/imgs/Notebook主界面.png new file mode 100644 index 0000000000000000000000000000000000000000..321af1ff28328c6f4e38e083302501d11a7629a3 GIT binary patch literal 47591 zcmV+Cxfn)?P)5JCtcgb?B( zBtan|gb+dqA%qY@h=-7AZC5}DA%qY@2qAM(Z{`U;|8r;x30#T-`}F5qVAud(B{p*5*r&!Y-}uk zetxuQ(V`}b6+#Fhgb+dqA;f*^L|hv0uRcLeegRso7Ohr`POC+$Eux^HkhH8^v|24E zFW+SCfeXC;cqosyZdlvZ{zs`WD5TYDNlr<@)y1WZl^Ti?PNR)Kg)Tc8P@%G`gGs%n zs688ly0}M>v$Hc7FJ45YQsM0ET-E0wgb+dqA%qY@hzHEi`(nu}(D0upTY^r18CT=AuEW-+L_b3K^*{GZ7oPh$wH^q83cy(|K{Xrh`y3UcyPU1uK7Plg+U=x)8b9E zIvoH-=XR67@=dgvWe0=wwCRcD|Mocr2YQDvMeK73ay_=tZ{+Z65J2QOv z@Y=495JCtcgb+dqao;H@EFw8Gms#sipwnqdNXY`( z4=`&zsM=2Cesby3C9Yq;Ufb0WLI@#*5JCtc?pyl6&$i=n=(I(KK_HzL-CsXiolXfB ziKZR7?Tjk+-FM$btJU(_Yp>zp-~bc{P~Lj$EdZuXn}(g8;jvDfIKeN!{6fQq4SDXl z=al79QBkZ|v4XB$yV9*&H&(7(Nn~Usw{G3S!oq^qty}ZVGtc1R;i2sF{rBG!8yicP zE?wx}y?d$p9X)!K)vH(I;^M-;{`D`V>>D?30I*}n4x*!@0f>l*FbG6wG#WN+*uah* zJ4i@Kz{0|Uz`#I;4joG4#*GciiHeG1&6+jz>eY*8&6@G;x8HK)$Pvbj8AGpLy^Ok+ z#u_PhM*~62+xGEVH6e>Kj63Y?)L+u-SSB0qT z-LV+-KH7`>(HvQgS@G=9Vsa(Wd?;J zBO^I+;sis74h0}DFOQoyZ<3vzt(1B5=1l-)nSQ(X-g}SJr%w|U6vShXJw{4O3j6o( z=fsHP&nwf->w`SSfu16Rspt)cj~N7nbbt2}(xyRC66my` zy9RkD!F3v#y4CK9K7fo03YoTe43)k6Jr}0-Ymdsc;XNPcZs=zLi;RrK+S;1gvuD$& zQ6m5{Gc%bvb0()wo#M04K4Z?DIjB@Bx^(Hn!i5WokB=uNCI)|hf8}@u1qB>Aas-u1 zMc1xf0chK{Ep6MjW#PhwtX;d7e*OBDnP__P;>DakeVQRdhA?8p2xa-XbLW^gZ5s3D z&Ewl|zs20#+@S6|cI+T4D~rjKC)2uhYi0ezph=S^wOs`vgb+dqA%qZ>bTcE5`8zL^ z+3TmmWhL?o=}P7k(gC_6&}xeR)oCDo9n=|n*Y#}Mwk?YmExNDTo-e)h5(5Vgtnv{; zB^i}Wrz!$M)p4xKFflO!AU{8!i4!L(0U-c8J3A&#nuMvTDVHx_=ER8;09aXB5gr~6 z6c0-(>Bx~IV0MT-_0tS>L`QeIx3vi^}r9syv=lqm-LEnBwip3bwdu#nla zXA=?rfuXnFdW$JjreI=X!iz7yh`+x- z{rmSPE-vn_>+m3pjEt;Q;Iy*defM4Z_3Kw{#|OyD%0i`55g#94t>xU0CQqKs^UptD z+tv6-8Zcl0KmGJmZC9h(gocK)bm`J6Io8{6zs*xmJyj*gstsGVY@u`K&b3_)A%qa3 zR>a=SC>;b+0z`)Y>U3rI9MZG1GN);MGbl_d4hm^Ce+P#&8K6n7mUB38-~dC03?U*S zf|p-@S;->|#clUt!-mnhb7$txolE=n?MX~b1Ryszm-pU#kM7;O)30AYgU$+@H*aRb zgbB*;zx?tG)22;R{@<@(KaL+i&g|K<>DR9xlO|27mUFB9t|m3i)z!7!9w+tc)dL_o z`R^MkFfb4wA0Mt_DTDEM-mMvRINlC%k*%^SoefuigKl|*n)T>ud z$?a1Xe}8{v$ll78D>;7rc$wRon3yQX*|lpI|NZZO2@MUsI5|00df$7wu6J_i&>`M_`)#74q9`gVqJ8`JeER99r4rTOt3iVXmCEZ@Rl>u= z89jRRLm711v15nw0Yd!q_3qu9_uqe?6)RToK|w(k z&U`&|=un0Z9a(ak}e}jmywY4>2VPS0Fz8$Sri(0K_^XAQHG#bW^9jgR{0LG6W&-?Gc zUmMl0b{dU_-o1O{=;+A4efw~CcW2kGUCO=wPhe(dW)Q`{A6&h9m4O2XGI#D=tgNh< zJb5yG`t;$_rAy@ozVAk51K+|pbLPxp%$PA%`dW$m+jGx7$7i2?CP5(~gb)v%YpFTP zkg>7?Lsn*LS~hg2p}PYnY8B{ofAt#D73U5Dob4=W-`I_MroTegp}&Jbw+Ds_62Pii zmDd08;lp@&c`3bqM~xaq&z?QW$;lxxF_9ZLZZLG{P)tot88Ko6ix)3e_T9B>7vsl| z$JW*sTU%SYckj-wUArm_3e}_sZupo=rBd<(<>cg)T3<3MSC%`i*LU%%Q>Tu>@`#8C z%*@O`m%aFJxFqM zb2)S74A-t*!_(8V)X(#tbm*nj1Ox?P5tF4~<_wOe>JRBz{ zCp}=F+=&Z$^$BiAJMQ zhJ8(%G>J}~IuQ~Q!u#*PZxB#kv0?>Hnl!<|!GW-_Fy-%CFCroWKR>@RhmXDe_S-!6 z*kg?dL(pXPC@dV??k0&4?fco|8GkNl4E?>TE zRF9;zv@}#I6+?y$!NbFYPe1*X1`Qg}s#Pn}($WA}y?QnN{{A>QIhE?kqtR$ksZ@OO z$tQH^&;f66Z-bzje!c$hL4O_R&YcUuE3dqQzrR0GQBl14=9|j3(Ld8Gx+iox9dEqx z26gM!#mUKupr9bOZQEw_wVOC`BEG)9*xA_;930Go1q%$;&zUoa`t|GM>gvjeAAVTs zwXf)&sYq^aE?c*5RfZ>*6doSV*I$3F{QmB{@AAYGPXHBPcYvRM`iX#m03011saLNa zvu4dw)+Hw=)4zXz+}zx7a&n?WhYm{JH5v_WZf*wo&k73*adB~B=gyr#@$-D*#EE!& zd*kNj#<%c{WLZoEHcvv+;BJ^5r}3d+pjaGBQfvC>o81sHiBQ^h{T_wzhQW&_NkC zcI3zr+}zw~+O%nzW$1g%Xf&Eq>-0T<4j(>Ths28R_Zi z=yW>Tv}wbyzy4b8kFBjO0NL5u0A&s{(hsAn4*B`{Oqnu;`1p8YV`H(lw&s~A6+ z{PD+RWMpvl>Q!#ty2YG1bFj3u1fWr)M#RL#uz2xeJUl#ziHRX5CWbfOc*Cf&_w3n2 zP*4z_o}T4yla!Q1US1w?adFI;F@p&cCMZ3LzWeSwKKke*mM>pUQc@DVd-rDGz=2AG z^6=rq3>YwgDO0A9l$6A=W5@9J_AXUMMn(p`diA0~g9a>FvczDhWoBk3fBf+Wd-v{T z@#4j-S+fQx&L1{%QuXXw|jpAzJQ;^=;PLl>cV7|_4}{cld4I>n$t zgOuxL>~$?DDB#?=a|Xj!@5Z4+hw$?9y5s9`yZ7FEk8$J1F?a4<&Ye4lt*xyRTzUNQ z$BBuF;koCYD|i137cQ`G-#-5Q^G}v8U21f2VP6!GZ-GIdX*5)KoTY+Ju*vm(k~4uU}$+DQ;}1rPElA`SSomItn#jVPEHP^M~`Oi+_|KsrE%iK34=Uz z1qB84?Aepkr%#iVl*I7i!|C0-H`&?Qn3|e0bm&ln97kKXZpF&ViY{Hc0Pw;KFAyCa zO;l7Amo8l*Jw2VtlP3ek0jI%(2lLu%uaT0HLgU7bId<$=rOxZ=r=KP!CWig{_miBQ z%=GEg4TdiM`s=Se{q)l$CnwXcT|0xnrHY<`Q2e*LcI{fuojXTCL4gu{OG`^*(4ay5 z>tFvOH8qv6urPzV=jG+my?b{80|SYVkLUN_e`o&u`ASZJimtm}y?XU2P*-rcRwYq@|@PZU5BNRD(9KlarIdzRAhSN|4Ch z+}z+xG<{pLB(+*y?QQA@GAN`Eto-`xuLc+B!i5V;gGS$*=ynAK1$_JMx1}!ZPe1)c zQc@E2>eZuJv(nwo^xx?I{PWLbXJ^x`TeorpD0X&sK-mGR;NW2D*RRjz%a`wYMy%>^ zr)lo>*UZAgqNb`->-0mw3JMD7-Me?WKl-74`ruH>Z=m&3Qc|j|o)Hld3>Yu~8yg#} ztgIM2cC5h+c51bn)YMeYpFfXErJ`NCcBOj6-L3TWbfsrlc}z@9c;k&Xu(GmZ$`F0%o(OnpU(XG^DC8iEFd6& zMvWTLuwg^Y&CT)i^W*yU>qhUdPbTl;;zDq6aHY?^JQdv&YPFjD{CuLLqshz5!_UvJ zQUR8!Q>QAuzrw=82n!2S{$7?ZUrzu2{Rs^X#nRGJNnWp4757YPYU(}BAX(mZ*XeYa zn3!<(>{(J%Q*m~7R%XzI;=FVdCQQJ^#RU@+6JC1hC9<=#m0nmQM~-Cm>eWiX_QxN8 zWccvmsMTuH)6@C+=b!oX(@$}Ab;Z`!mN(yglV5)M1t{(%WN&ZJm@#88Gc)5~|N2*@ zo-qjt32fM~fqC=hDf#odb?c_&l>_L|p#wd8_QcZClA%L~8r*LcJp-Y5Y`%?+4JIZg zgolSK`)}R46+1gS#*Q6}si`S1z4Q{Uu7Bqu*t&Hq>FMdroH-K<3k!UFd>A)woO13J zUH6h492~0ky+8;dgt#AhI9UA^3^L3e^jN4Lj=G&tRPw!12RdzuoI&OE2-0f)o^`C` zdQ1Ou>tT$-!b0-%^Oc{Xq9WR~X+uIn0>A(MI~t9K#fulys#Pm&Y;5rL^~J-(gB2@Q zP*haJ&p-ccaJ(*Ey70>{zmT1s&E?CNiHwY-Q>RV3~0r*o=^Q9+@in96mHzw@#7-SaW}_3MX9rQ+DJV@#ViP5GcYZQ3*?|3!J-)?Hj& zh>D8h)mL9-#flZIU%#Gr-g$>rt5#uQVZp?S6H7HH0YXATs9U!#*REYdtybT0)-iqK zBq}P3Pd@pCB}}~ID_5@E zG5;16&j#3_K?5QqBb8xsCEea-Q=c2^`t|Du!}?Sz6&@ZQl?sfMOdf7#W~Q81O^Jz# zp;xb7%$YNX-o1NQYF`r*6HHA_mDk3^#H3Pxm(_Ld72Olvx^?5j4?kr3^y$>8Q-_F% z2+o~5XY}#E{q|ehv}r?w1`Y7__2tl^L(1RF?f1m(!#=Cxo^f(=A}1&3uAhPBU3VKB z8`iI1&(^J5Y0#hnAt52GU%y`2R^OYZNs}h{`ugJM=Z99SRn9#uEDSd{H#TkBM0R#I z>({Sm7@CuUxr;N~NMfg9hbp zQ!-FvX=!P2zg6@Mywi2Ne*L;Z4?F#9TJqT0+1UgK2P@}3Z{9p*=v+nDy`=Q?^t(z} zFN6?6JjndqZU0UlU82WOP<>}8xb*jiI$d#IpfUqN8p9qzCD-e>F>wToJGUDu^4xRJ z(XnGkt5Yx##fo^kl$*0lfV3%Zwg9n$XZtp!f?~eH(4+)Tw38xIJvxFm~_WP4C{l`PaYx zbx-G39;3dd)MX@6uH!(?^*28#kr8eu{P|onX01lP0|U^2;n( zuz)jX&T!_;8LX_V7&>$){rdG|`}XbSHcsl)sl)59zs{UFa}4qYG-}j{apT4*Q^J=e zEG&#QYt|4N8fx(2^mc)PfeaoznANLS^ZW0=1H}zzeZ$tz&yQKNX7T;^-*fEPF@x#n zt*oq+$YE`0+qNwLOP4OCZ{NO3Z>atI_Y)HnL;Lpat0Xb1tE(&L&YeT2(^YArRsHL7 z`;d?F=wFiq2M(0k-5=oj=bz`b*Ir}Nq)Ghp%P$7s?#IQ&v3vJ!rQy`4Pan+8%$Pra zJ}B@eU$Zfc6Q8~HH%rZW)T+` zN6(%;`S#my`M>}BKV_S{?V1=G8p?+sen?_sBJS?)mEPaS$A_s?rzcu zuU@@azI-`j#*AV3@Zs#(vBRLZV0?VMlJ_b;K3=J(r>7@>{PBmfold9Y#*G`58iG}k z>g@7);lc&Fckj-O88ei7@Lp9#T}@0(Ff%hVxaZ3nURB<;spy^nm@r`i6DCX`D=UlV zpMRbyQ>K*L5HD%>?%llc#vAP1xl?)L?cBMuQV&m0PlEu@?ZKX^xMxB_LNGHkBRV>| z)SJJRl~sk;?M{01=s}MjJt!(F;`7fx=b2}oAvHA>l}g3TnKRk5XAiq}?ZVB?je>## ztgWpLUV{-MM)1>5KarD@gTKGOGE7=OWOLW9U1grDr>AGB9x#;|FYn{ygHER-Ha51x zAaGeKdIsLf?XS81H7!{;Z*Omd99g%!({S&L;|+PD((vnV{gih|wWVdCBh(`LqfNXyL3R6eNc^GuY~qel-qb?U^WOP5fq)%f`M zC^LbrT)Fa&frfy90Ork`$JMJ>$;imS&CRXC#;i`KQ*sOp95}GT`ako`Gd%j}qa-FK zVry$#DhEpa`t_MUeL7iLSzNnz4UI;FgM$O^?(U_A6oiI`vU26hGJ7ypwSfZ%(ym=Q ze);7W&YU?zSXdZINl9$pycrV{6aMp`|5Qmiy?gg&@#4h{7%+ft-MV36VL@l59ef##s)YOz?$BwaM#}4}S z>!&oxJv=;k{q@)R;DZkc4GpDl-@aVCc8!f2H&VB5-7?3CRz^WV0eN|O%J2HdcS=eM z&6+h+8kAps^_9VXTefV$&(9Bke}Am3tWc>`2H%=Pap3aSty?4{BvdLtOP@Y{Xwjkt z&ph)C^XARN-QAr({`dnA4-Zq|u{{8!to}SLGUAq`Oc(8H|{ol+NUwlF9)~$K> z-FFS{)!DOW)22-uu3fvvvSrJdH*X$LoHysg4?iR_GLndh2)_B|8}jq>>Dslc(dS>0 zimvO`t5@mTwJX!6O}k_Mp4*)}caHAeyEA?Ibe??jN#(wP*4zi_wMDD zS6(44Esb^S)*1D81jS?2fB*e=diCmswY4=C78cmq*(vu!N=gb18Z^Mo%?*Hg^X8T6 zRXcLzNSZcnN@8N7L7>sm(UGA;hw{oRuP|@kJlx#exP19ChYufS$dDoQ?AenSUU-4M zd-u|@V@Eb_+*qmJQ(j(P^zGZ1mtTIFg$ozr>gvkgy?d!wubxpsqKck@chaj@FUE}< z$M@fV&*;&knLmHNK|rf#&z?-0G>MNs`iNIweHAk^GmalWPDVxsk38~7h1XqApD@2< zFC-y^5aMCrYH!7J-5T@d=Hmv#$CRnX^g$i1=C;7l?Z4j^7}9Tp4$NG^_32tUzhlRa zQLkP-TwGjOy?QmRTerUJGy%22xSFa|SUmM9xnB+;Z{2@j^DImog=5mNEo%2hsGRDe zvakbmke`hoMMsr~wX!21z*Tdqe*+y4P-!s6&!=v0hH)cA5)gvo#&u+5Br|5r zVEOXpELyY(8yg$Cckj+S@4QoG)60MQ>8EJ5TDEN2!p4mo(dl%I8#hh~3Z$*Is*#AAa~j>E8eI&p(&hu&}bSV*UE{Oqei%Z@>MP!oouQ z{QL}pLZ+ssY}~k!dGqG+!w*03_19lxYHEs)j}I@u{4%3PjWRgq`|rPxgM$NKe)%O| ze)%O$nlxeEx^=w$_S<*-rr8*`Hz2!p>qcZ`By;D^<&{@nVabvu*x1<6wQE;4Y}lY| z7ZVf1%P+soty{OSwYBBRC!Z`;@4&!7#*ZIQXlN)VCMLZ2;)}ff_S+TKNu^S;VZ#O{ zPo7LzSQxpvxdaCX8$FxWxN+ksDk@^gkRimy#bIx6PuH$pl_ark+qPxRnl((HKAkaR z#$au2&7?__$~=~hjSb6|Eu%w+4n#ymDEDipPMz@g_eZ5t@zP5#DYH2>ZQ7K@ix>0C zE3c4{kU(HyAnVt!SCZMUT)C3TlP4h|s1V`5^$zyJMj#*7(b)cI9(T?+~dxOnkm znR%%0WZ}Yv#K*@ocI;TjjvcEk-@ku9?b@}g)UnDE9v)77d_1YCsc5xYA|oTQx3}lS zi4#WcKWEMy#*G`t(xppj)v8sQ&yJ~6r!sopb(!Gqi5q8W$HAdiU;KYB;c;pC2t+v|!)9eWmi=efQmW%KJcaax!)6)>Q(T zPEJm&UcH)EUU>xz3kw=HY^db_GuG0jOL_CnHwg<1BP}hBX3d)MrEt~Y=F z{BoaNLI@$mKi#lSf%v%E@%yQGZlz~~PK%?B<=?}>ZtoGKvIeV$C3+BPfxrGWSf&CC zAE+|~)V8&9ZkH}yV#<^$05ojakaymBr&j85w^X`Hj1|x(T_$hQ3uu$BRH_iQn;({= zzd`L>->B`=)6@Cz!w)%o_AG-34=y!>$lW-6_%I)Q@Bx8=fn`n=dna4BZsn`5zQWYh zlutkXw9J{0gb??itgI~T?Cgk*jm6j3x3;Sz9ze0Nu{3Jbh`hYKD*wi3;J|@A`Q(#~ z7%`$sk1Ot-kB<+F7A@kDM;@t?<89fpg&8wu7z{lWLI@!QkT?wrQ~vHPqz??4x`JKT zzk@*N0Bv#JA=`GvfuIURMMcrNb?a(Bh5MDU=U=H$xM~+)tX^J0!LPF^JiO|!7pHtG zwHnhlLot8!HB^>%6&}B+sE9AV_=3ZS50jOZMcuk}m2dQGLt0uIpMCZj$BrFCrBdpK^?zc)<@N~NM- zzkUoGHmuBiLU+T;$_gJJpGuA8x3;$C%$YMdIXN+L;zXnKItU?zcyN9H{r8L=I~Gez zOF~0K`R=>#YP(9Jn(g1eU&*25^kbmjU38w442X>tybv<001-_qwO`8f2EyKsE zaQN8e%a@h^U%h&jqM{;$>7KE)Lv6(HFk{%-)=qM$@>DiarVv61A%qY@2qBDM(+={^ z-C@f4B1l>Rs33Ji@hoFj#!dVrjAPW4RwajAxw^U<284tVLI@#*5JCtcD$AiS*!TTA zuaLIzubx7G4JkthIY;5@G|*;)_bgCXO^O*&%&4A1J$m-weiNsBx~YuDH9q*LF3;14@EILI@#*5JCtc9(cEI-J*5t*0o)Y8W$B6B|#x^ z*JSvZ5JCtcgb+dqA*#gm>C7 zwY6OZQHH|8LNYQk(CKtldffXer_eXwd_%i-?P%V-xw0%FA%W$~ms3zsfW5svFTM0q zE!MF5oI7`pUw{3TS6_YAVENXqTglDMW#GVpwN$gJS5Q#Ej2ScdzyJF`92^{KyE@_l zbMW9n_U+q8PEHQ3TD9WQM<1=!dQsY{Rjasq^(q+|84MXRgvN~<*LIce*~9YQA%qY@ zh=0CCixv?V7sosAyi@IE-Mo2|B}I}D z%0x#;vuDp9u3ftZfQg9-!NI{qL_|=hPMv!`evJf$wr}6g@4x?EYWW*)yn&UKmGXPX zjvevz^fcJU%gc*NlO}Qe_;L2_+gI&%ttvZr?qt`lU8R;!nluSVM@OTN6BHCwZlrem z_U)vlr7?K$;JdA6m0GlD5pHg7^y$+_S$6sIWfm=3#MG%%v9`7bif`gRefk)@_7Acp zOO|l);zfgH;o;%*=+UE=YGmlrrAw??vxe7Rd#$#sVjwy?n%{r_om;nVVP$1S%a$$a z-o1N;`-O#t5f&E4+O=!%YJF|_?6c1Z4-Z$~pb`@kS-f~LUAlB3EG(>6>!yE(%$YN% zR_k%Q+pk%6b~dwS&Eka@Uck%C>yG1dJ`s0;J|?crIuS-TC!))o@y<7 z{`~peym^y1-+Z%L%c%-lt(MK3H zKyYv{-MV$d#Kgp?W8AOpo8!libKt-MZr!?tg@pwH0Ri;t)eB2Y%ey}2=FOWqc<>+IeYdj!-fr`VZ(;^RPP$=Ddg?#&8ShM3=20kEIuS8q^7D< zBfPx47&B&!!7^iSbUhy*pQ@}2&JU2`?`%a&vQ8wQ3c= z{`xC}1`WEa;~hPEl!FHk5)>4~;K73pf^*ldUE`;peqzOn6^tK09y>d`yRLVQ4j;Qc z2&DJhZ@&>89Zg0?1_K5RFc>~&jM&&%e*5h=l9Q9Mx3{Nf&z>}D)Tk<|d{0y=Rk`O} zSXjuWO`AA-_AC|_7Bp+t%wYZL)2G?CZ5z3{xioIv*kJhB@#DwYxpOCZd3h8S6)E5D z4;V0j1`Qfi-w9P9FffqKn>Ul1nu?Q?6Hpu!DtT@T7cL|{J)P9l)KbI8bUGb}4q3kwIW!AbtDxRkk^C;siT)?j$EC2Xk|C!otD`4-Z$?S9E{x z-Mg2I7cWw;UOi5nI6+}yA?@0=qe+t{{P4pMXfztKva*!>q;>1obn4Wpx-ZKe?b@}A zR;^mmqD2d!_*)uhXJ=)7YHBLK{`xC%adDWNn-dxuN_cqqKjMwMyns+aK>?AGk(@ny z7L7(jqehMB)29y>78c4jAAIluefsp_&p-bpGcyx_mtJ}ab93_w@3Z^$Ie9OPxn_6T zcgBnvv}@On>({T7o105;a4=oEbooczXF>=eg!r4Osj0zdbTc!vQlA&zefM3Qot-&% z?i`mcUBcAVly&RYv1Q8^HgDd{+_`fB_~n;hICkt9AAR%@Q2bf^v(G*wDJcmD2M1nz z?KL`g?#$`ar`tujcW`A15+0lA@v_nlx!rEoJK4 zO+G$8`1|{lkdS~@tL3xLKI73xA2lfVfB*X*UAlCke*OAJwQthX(^;@!0oSizr+)qV z3>h*+8KrXL#tk-a-b`X*BG%T{bn4WJR;^kA#XXQ#ty)Ffwrx3k_AJ@i*>vsNRcW(S zq;u!a%Ksf49BAIWIY*8hxvT4=)9Ki~dpC}bjy&nppX3zk(W3`Fdi3C%Z@#JYzBg~)Wa-kSJpTCOG;Z9OD_5@Y(@#G!e*AbP zFmXTHy?Zy;uV3etS6-p0sE9?278$H>(xeGZnlw>z3YFBnd2^aKZ+_nmA9Hkc#KXgb zOP4Oux^-)^v$MH={W?R34pp{!_St8Z#@OwmqN4cYk3SeOVgzn(ZtUB)kDq`3nepSt zO1_g{)b#hLIyj z;^*f_PEHQDZrxJ$Gxq+za^(vC{{FoB>Z|B}hFYzrMT-_3J9bR@JQf!hM^;uAO`0^p+}zx#_DytjG$Tij#M07|#fukn`0!ym zckYZvqv7YDf2L*2mW&!Tifh-dv3T)foSmKV_4NfHD=P~pCnv^@8^^_q7g@G!86hDd z<#zVClZ1qX3R51GCoL_F)YMeEbm>wmAf)H#=ZB-CBeAiucU6X7jg4`MkB{fS|NXD> zvwr>hDmiXcR22UH{sadHqgJbF(4YanzP_A2d$vlBe=n|GyJm3CCG&NhK7E?DZQEjF zV}rfD{Xb?1Nl;J_F)=YfaW5e^H#egjorez}renvBczAfAR;%gQu_Ni}=_Dp5;_dBC ze0)3rOP4MsGBOeg=3;GaZE!xu z-ru&iwsh#w0VwXVR22!ws!Lv89)Q7+!jfWQV#v?Wr+fGAn3|g6M@L74H>mRN zv-|luS&^+ z)1Md<6jH0zT)A?EtgI~D-QDr`_cyAn_3PI&ZrnJWoSblUbY$@0!AefrJ$v@huU|jv z)Tx8FxA#5u0=W}?Kqw#}KnVyzaofVv(-V7p`)Vl{igQQmKi~QI_$WcImMvQn6B9#r zb~aEvN+visxKeqInm2DwojP@}v9Y01qejYSVts(AQ>RXtn3zz%etiN10}Vd^nVOm^ zUqt)*`chC(Kt@JJrO)rgi4(-d#ocwDS^fD}6qK{Kw#oYstFfL!o}QitJx0ol zc2!n-dOBCGT;cQ2KUbC&78aIDSX~?3-Q5{BY?$(U$%jgIcDBJES#|!w)uf=HAPyWj zfL5#J;>C-~L)94R>FMmc6K(gv9V-jWs#MY zb=T3?np85mm|Cr-u&@vSb8~Zs47u+b=jG+`<(FRqmAhtlVq;^Y{NKvTN(nv-A%qa( z;d3|bijO|}hy@E4uwcOgyuH1dK7D$Hfgznv$IY8JnK^T&l8U0Run<2#KcKkxw~LF5 zvc0RTD>rW3sC3=#q+~$o`0?XPK*+_#h0&u&S9=ek=bwKbb8~a7t*s5($s^(hS7SjT6BCnrntt5G#H7qwxEvfD zXwsxfrG^XClslcXt*tFNIXTMjCI4@%`!Vl@r>7^DmX^fF$8+)GMTQR_ZuGtm4i0qe z*s;tZLOPuetyasQfBs3MMvb^};|9^u(bTI~uhPl8?>Byae)#$Mq19?RaNq!I)~w-; zH{MXP@f&l0-zl-RN~J=l(^Yk~@0wbz#>2yd*x1-Ir#^Rdbi~2Ifr%3*-tjo5rl#f2 z%xBE{+F);QkGZ)y0|yRd@#4k!`}@>dH%ZKmy^l;xOzx|D1&ZI8 z_1C9luP9@$S$XdrdKnoRO3%8Cj0|jTZL6Z%LI@#*cmS2vt}r(@H|XK5@4=zhv}sf3 z%$b8mqhZdRIn13q*Ip9$sc0j~zQkc6RnX4=sFPrbu#i zbtNSwMfrAEuT`s7L`O$+{``5gS}lczgGeI zGZYpUD#_N&&CQj7Usc@Sc6N4TXJ=RWo5{U+<&m12sw83a^Yf#q zsEFTx|DD3ZLbO^f*REYFHCEQu)s?uoIOR?3b``C!O}@Uqv~S;@)vH&Nlaqs$l@%c& zA#C2fnXIfVbUGcWsi~Ygb*f6rGxk1mb8{m$Huk;?43)*$YgXQShu)q&d&tkvCn+h3 zQ>RXq8K@LO2qDD7%iG(Vn3x!Hb8{&uC}8K#od)YSZ{AE!P7Z3d8WR%}gI+379B7G+ zjV;w?d+f2tm^W`8DJdyvwOTG*xWJ!({s|QKl-|C5I~t9K?CflI@7`Ud=M)_sO=xH+ zPd@pi(le$e140!E2?-%3C54?kcPi--O1j(jP5t`yv9`8m&z?PKwOZoh;y8EiT$O$P zJAL{z8#ZjQm&cMNOO!S;6!#E1dh{rpHf^F#ojPS+qsplD zMAPZ%>3skF_W)#OX0m0=7Iy5|fuEnB!MED(?(THx(1EYN{u+%&!;?=wNnl_g?(Xgk z9Xga9J9e;Y)hbjf6<%Im2D9$emV|@^{_~&z7%Y4C*=OebI+|_Uwkf~QpFbb9T1`Ym1T9;(Bs4S>oleK{<;%&)$iTwF zf`$znD%tjZe0+$HkH^c)3wwKeHf-2%Uj&7I{P9O+I`zw!FLU6)0m8$>jT%3y)9E;H z-~emau0^F%;q2_p6Hh#$tgnju+r`C&wr$(;%{SkmR;vjO4Xw6Bb;b$^2w=c~0qohc zhjr`LVP$2dWc4>QGh@`KQEc71mCru=42?#Ei;GLCDJomGY{|uo7y0jh|BFtiWAfz5 z2Hia?T3_3`cJ0cA3m4e1VFN>l4yAwp{_NPXgYUlkj+~qv?Ck86d^h*X*!!qkw{EOl zxsn+(X5iuB!Sl~QUnS*N7h|qjdG8&1K0ZGD?|=V8rBczRO&fxPgKPRUgb+dqaUTl^ z2%uZHZVVeX3}0Vgnm2E5@WtBZ&6}A$dp1yH zv}wc1lPB++fDjb72SP$Zh>D6TbL7e0wr@;LO&LCXIGZ{Z6gb??aQ>RYRx^?T?u11ZE zii#p6B*f_L_w3oj-o1N);vxAXMvSP^fY9{m(|PZ`_wMN!yLaygqeoXwr5<2O zNl6?yaDb~jT<*6G&J;%0io2?R6IO9Dm;Fz_Y@LB2qA{V>sM{Zm!OakLI@#*5JCtcYTdSN+xYX( zKWWmWi45znArcf4LJ0BDF*i5A=WfkH2qA|;U*A%qY@ z2qA5JCtcgb-CidSgFWWcZj6LI@#*5JHFto~x@XQBhH~U5y&&>grnC zRS*v_2?_}zgb+dqA%u9~xx2gL?(SaO)ez!=BE!do5JCtcgb+dqAs#{!6cR!RA%qY@ z2qA=c2vryqQmfTywc47fix5HxA%qY@2qA>HM{2ckeSj*=DP(VNPew+D1crnVLI@#* z5JCtc?sICj8cRz{qqbG)bUIx%*GC8;gb+dqA%qY@+-D@GkPt!$A%qY@2qDBnNPE5JCtcgb+eJgd`{=O5S~F001BWNklGQ40^2)oe=g*&~PMtc~*x1xaJw)}$&dx6P*LqS17jR%AtHg{EfJT>Qsgd8B*nC-|zDB z@-Q_utJ$?u zOu)*@ifPlP(Wg%z{`lh$wr<^8E#)O7BmgjR;zauN>0_{N&z?QJ^Ugb5y?V7;$~IPJ zW+tC}@(JzRx2IRHUNutY!i5W&H*X$JPEM>@vj$sR+ZrkN=+UEW+O&!H-+$jAF!aF( zAFzA(ZZ>S#fTySDJ(V$d@L-CHij3N}D$3JKN=jn>{P}FzvW2XyEC76bd>A%t7=s57 zX5G4V`1|`yB3~hd5JCtcgfLQ-1cfp)GnqesJ|jkq0ATd!(Y*NLi%gg>fiYvoaP;U= z=FXkVgb5R>qBx@z6%|oXPyj$qPEL)Ld*#X%#*7(*Mx!A=Kc5yYS}=3w%rX<3CL|<~ znVCsYP*9bW9UUFbgb5RP{`u!gOiV1b{`&Rn$~4SswVL|%>!VVss-*1Mvu87V_UtM- zR#nQ(%w+ud@tiqxhE1C`k)NMW|Ni}}y3~e<(FS3IXM|?YinAzY)MK=3RkaQW#-J8tX{qP|Jl3mu&9pyZQ%DV z%feEYB25rM!3u)C#Mm`z6fChui6thAs4<8!Cei5QV+^sRSg^(#O=3%8Ax4e;QL$iR zS3t1^0V66%TXx<*d^tZC7Fb{bmHTsDdxf2uGc)I$*)@EbnS*QBuHm!KK4VabjN+ev z{wdb@RVtNmc6Khq9uW}{5fK?*nXGHc8)z6ZWC%8I-i+_R{~jYpjx38NUl@D$?nR9n zHLz^iGNh%YAv`=Bp`oGp{`>ExGASu3*s)^=?Ck82nwpCH_wS=!yLP2&_wL=h2nh*6 z=gytcq)8L}@WT%}`TO?m!|~(CrCA#(DJd8-WC#Wi9$cz+3sS9GHCS0$;ql|gIC}Ib z1`i$#H#fI3X{#X52ZVrU0h3v?W&uFC1coY-zQEASDl01sVPRo-@ZbRg0|PN>(j@8e z@mH^2#e@kHaP8W)3hrgWX3Us@Zr!?}Wy_Wo-4!y>_U+rTYSpS@J*6x;IT=%?OhJbZ z9m=q0L_|bHM8;*bppcoFne_9{ojY;<{CQlsZ~+z;765?${rjUwj~-jGy5MMp=&!omV|>eMk>yM=i^F!VBujEuycJ9p5kRVz%NK3ym8 z?Afz;@Zdq2wEOhwQ>l-A}A;b?(XjJ@$tdo!-vtmdw1;JyBDomwZi%H=TW0Z4J0Kcp-Po1c<|r>qN1XZ zn3z~*eIg=FQT+LI7Z4VF6E1Pw9O|MuxGP(`(tXWjKBMbiVY2 zgaoWuu|j&UR4Vb#JMWZ9ADT98iqAg#40Gnp!K_)ckd>8%7A;y}`t<4W_Vz|#U?9|L zHCC@)4Np%`j2bn{DD7ruW}<)p{unrLpicUnIdjmaO&h3GDk)%A-h6y~Fl5LO%$_|P zW5$dr^W{AS1%z^yMPO*=%$bOcj6~hKb+Kg0l6?6)ckaZ@nKPkOD)IgI-LuzU&!o$O1Zf=fa$Br4TZZcf| z{{1m?=FEI)@&LSvgcb*dB) zs#mWbs#K|hqeqVd07i`(g;lFoNr9ni)vBR!H;ppgykt0WFn$dzn4VQHph1Ih<;oR!d3hOaqi20iojQe8t5(6y%?&b{O!{kgd1~3RC3f%LE&XD= zefxGCIB=j$pGKD(kf~R%9+oUwg7ENgDX&M59;jZuIzIpWbC{W#8EpgTIdkS9BqRhE zFJ8na2WcmE_&(Ww+BcrrwsL7KjQR*-aIT`ycp)@=2*XeJ*=#(uyW-}oIZV8=gEhc zE?vU9b?Y!~+BCSixnaeM75Mq*pD}#+@Nzk?m(}yLh01G|5CBY^I1w6+23A&9Sh{p6 zEG#VWpa1*^N~IEY>(+&-sVTN@-3l`^Gpt^{y4?CjL_|bHWGqGt3MD2cqE@Y1dLRAX zyLWG$Wo2c>(a}-*B`)_VTL7R|tMS@vua$ZGz_VEbxqtZ|Fkk@U;^MGr(^xlcdQY@ytr%ggN9voT`C2n-!MRPXoJTW`H3&0%-1EWWeF6}A3bQB5&-gx7ULd%rJY%wb< zD=b;EBwt`iCX-?M^y%du5SlV&O1aLeC@XE-wngK{jdAwuS-kh&dzdn13hLFXhwSWZ z?BBm1^XAQim6a7XZro_JWmvYhwn$A))tmR|(IY68N}aZBZEcZ~k^-$(iziQ>=q%T> zv$KKBqX4E_3Gu;u9=w`GBY!A^5jX}xpN0AR;o?yNlAgNtu5qoIn-)3($do4;NSoNI>99e2M4rh(L!f`A~H;Q z&JgnU_QtGPv#@;ma)Xc2YPI<4tFOwiS42caL`24Cl%SBCn;XWC9SZ>H)Txu+GQE5E zhMSw4F`6@oTrS7Xojc2|y}aS1@PJ95^^QAS^5l-MV$lSI*1J3t?el<=#JI z8#HJT8Z~O9^K`3a%a&DOkMi^N^~KSnN8#Y$pfhWutXNxHW66>wm_L6$TD5A0u3fv9 zd7HVEN+mx2_+#|z*H0(i-rgQoR#rv{oH#l<;>nXIMV2!)H8onG#?H+PS#6pn3D=Shj4Lv>fz*|N9?0ckT=u8yk3gd*jz% ze?|ZP{c-BlDWs;RqIT`t0D#7g8{^oqWAO0sKx}L*?%lg5)!V*(dn{kR91R*YfSa2e zl9G}TA0Kbjr>0Tqb?Vfqz<1^%Vma+A!^mCg`l7y zy?HX344-`RNvYdVC=~hrg5RV`6HJ>ntxVf3jzNP4VbGvK<=UpTwKZnUm{G260zlKI zP0_Sz(|qaEr%%W9>C=tUMr359QR*o!g+hVey?di~@80Fo-k33CuzK}seDu*r&}y}) zSFfJ*l&SIK$79*DWq9}9cj4&hh_J9Qn46me0EP}7ip7f; zUq8&BKOYYsJb!AA+}j;7VnmrfU5uzaSXfvf zBqT&{Ue&5q3k>?H)oM(gI<>%h+qP|swr$%Qql-jDL_|bHr6RBB4iFI$5fKp)5mEVL zP>6_#h=_=Yh^P``P>6_#h=_=Yh^P`OGALwbW`>lMl=A2cQc_Z2W@c8Q{V1#tN~O}E zr!G;+J$dp3DwRraUS+xdyar{XpzCU8W`@U)A6Gz+$e12Keq7*p_w&m0-?Zly_HPRj z5fKqlMUe?1L}3LoGc$4h`gLSxW|nzp%*@PCt5z+&|KnU<{V1#tDJdzqckdq3)6>he z50#lxsf4?`J8W%j^W{~R>(6UYHVV3~<@p^)Wv8(3?&nq1{Wi3JL_|bHMCGZ-pb!xe z5fKp)5fQz5xTg>i5fKp)5fM=(#Gnun5fKp)5fM=(#Gnun5fKp)5fM=(#Gnun5fKp) z5fM=(q=<`)tLQ!u5fKp)5fKqlIa8RJm{fEhh=_=Yh=_=YsGKnI*15fKp)5fKqlC8UtaWEI^9A|fIpA|fIpDra0iMnptJL_|bH zR0(mW5D^g(5fKp)Q6nn%n3FeqN5fKp)5fKp)l}WYS0MYX=xm*sdRx1UDa*vhCWcrtnQF_LMOqA|fIpA|fJs@fi}| z$+xEv5fKp)5fKp)y;=&~Q%GMX14KkbL_|bHL_{yIqGCOImyZz<5fKp)5fRa=!Jy@1 zh8{#jL_|bHL_|a{t`coDO+-XQL_|bHM6W&ug@}lVh=_=Yh$A|fIpA|fJs@#V&MWHMR4*bl&&LPSJFL_|bHM3oYQLPSJFL_|bHM3oSO zLPSJFL_|bHM3oSOLPSJFL_|bHM3oSOLPSJFL_|bHM3oSOLPSJFL_|bHM3oSOLPSJF zL_|bHM3s=DqB}q@pRBAb#Ky)VGc&WIyFx@nL_|bH^wLr)mGJiVhEl1lkoFlAqGF4Q ziGib|Bdo2hE4nL0L_|bHL_{yGCr_RrCME{;>({T4_PKnFiY+TEivb}bA|fIpBBD~V zwzfuAR#t_z&!7+y5fKp)5fM=(#Gnun5fKp)5fM=(#Gnun5fKp)5fM=(#Gnun5fKp) z5fM=(#Gnun5fKp)5fM=(#GnwBi5!uG)qkzV`t$26x+_FPL_|bHM5G6ULNB<7k22Ay z{TeiCzXk)}{k7P~-@5x)I)3=L-DS{2{jzhiG4}Vd7{6zHxwTnYMMOlv-`~HYyFo-m zL_|bHFBt}fO5k2XsuXB>{g~f0RV5mzXK!QZh$WBJz;NaUatLknyx`LS1WYuR0AK)I9RT27sXs* zj`S(%72ORYA|fIpA|fgPX9|^osi_=wyzNoP+a3Vm>}ZKP-u7^Gu#n2M58Q-hYtCWV z*j;GdeFK7mcjC^yCr0guZ#@Tm7~Bk9+IyC|u1AkEaX;xPgeZN#tiG~>DqICsxC*xO zY<2P$o>~Z1xC){BLgBE$0SitpK!*(-;J(luyJB_$0Op;T2UWNVfz z_Qv9iY3=amuY+M_sl>t+XDYf&1^VLa^dg-ytN&UJCkrRM?*2MX|8p8+c8`(rLidIu;!Fh0Ow7>IttF1% zJ&v9~_r(3Q`}x}X^x&tkFtxxt4cC*>o+O)y(!!M)Ub2yPOLf%OOC-}HZR=kXnb+c4yM5fKp)5fM@O;qtLE)ceiaaI0zs z0O;1K23D;5tAcw}KIV0rhYU>yRz$BTu*|gAr(xasby)q^YAort1igOll`p{1%B>aF z2ChZ6HXGhcym9>Qaol`#6Xqu7Sa*IM)Mjd&7=8lwDtk=$V**x0uRz3^2+U|ZL#Li$ ze#5Y+>$8B9R%oFWT6oxapi7M|`0U_kh)#$`&sseZ)-ufK*J8zr6$l9lLHF+60RZ29 z_Z_^vys&rgUMVftfB^%fy>=QjXdtD3_0?DC)TtBx```acY0a87(>YeF)#96PzJaBs zB^oqnfcf+1BRV=7_3G6#sGprYJK=ipb!2O^k@PePt*W)cpzVWj;N}5LX*C704`ZRx zYEa*yKBlyq0=1bM0zzjd5fKp)5fKr+TsTvx3{`culzz5Qnd0%2($B&vE8(BFNA$tr zu(nc`OM9krQ<#~U0RYTQ%%C(;<_j=1soF#;>*wSL0JxcQ6IUKwfmUeI+_gFERnM02 zb*&dGqFa z>$z~@0@}1`Q)pYRuCB1O{J-&LZ*Px(|NYnCzFvNC8LzK<9S#c|P;Y5H4B9>j0Pt_d zvpSl)Hiw(F8xG$(jOq)k-yJxgS|MSxA1Gj5Gf{+mETbx;pAqsROx8 zj+6IJ;@|XVGgiHgW?-xk0CrP%4$k&d$!4u23jYy?S+AxNt#AyMO;a z?%%(Unl)=0T)(fcFOD2JQsVv1}=O2gHde_?NHuJZ)4 zvX+&VgB!OVN$(R9pY_ARUWF?5hHaLd>&tIX;Ew}0ad_w3rCLJvd+hJne{(-_#IqSD z8m$JC_dk2O)SKRK7OSrKNAYOBx;av_QjwOOhUTu#QNy+d0N|Yl?_kZ}YtV8{OVqTj zi9@#zL2af+aFgI-wNcBy764#*^l~IUO@czMz>KytU}p^EIPdi5oaO*068KDi%u`XqSK3{**=CE z)o>KN?YxovG#O2+HpQ|xmq~dGx-39&lVGH4(sAPM3AA);i5&xWz}eEdSZ(yJ+ZX-o z^+#q-CYGLEibbavAw4_2Sal2@JQ!`;wne*k?OaQzJ%HpKSr+i~d7A+&7S61{u(Mn;BlH+bIAYXh3QHphaK3o!M- zRJ>L9EuDO4OJ}rlYlQ>x2QdHSeEgmGH~QD>k6GFRShapoS@EGph?9evK7 zJBPY;>z2Bng3LQH57Q1!!<1H2@;yn6h=_=Yh=}M_a^=buG;G+===H|N#zHQaL!nSW zE|=@PWHK3KG8tzIz35~BC_et!psj@eo4MA|fIp zB6{_4BaauHt&JJZ{5h<|$5(T;M%3PSjMyV0A|fIpA|iSfFepSXoUoQ*2x}Qu(cK^- zA|fIpB6_89`4|xq5fKp)5m6)-@|Oh z>int_x3ep57gXP>5VSieU*1&B zRD7%W7WZ+##Pt&q5fKp)(W`?SP16g-%gYNVPMnb5w{6=N6DCYRzkdAy09C3~si>}% z%1-%CWXdwpRohi3U8B{YjawT`Xfy$8r5Z=?9mRw{C&13!4t;ACFQ}IIG!Y*k`4|lx z8tBchDQcpzwlUT!*5V`0M(^uE%$c}+`LdKhbLLFM$H(LM-+#xMGiNYq(j?^M z{y&WeHsG>48YK#LlF}bldnJ1r%y*vP!Qtd*ODm zA4Owr<3i6VTbqr&@q2OU!6h_uYE-Q2vFiLPWNI=o%x74k<(i3RxFoxTWF!}>ej*|w zA|fJs^>FzZy>zZ!yN0b>x8nNs>u_^(0|0#U%{Opza>CiOXVJWQa{z!!r9xO(7)(q| z(7t_pRI64E(b3VUSFaubAU-}G{{H^(_4Ne+czAf|w6ki}Dzt6e79k-a0Dw9Zn^jf?OuY?AK>wxX*Bd zuSaZ3EdG1)zc@6o=-EZC!W95;OLhwm!olD+h=_=Yh=}Ob!=Mnobk3hY4K_M3x7bq0}H^i;2t?}=_|4Q#ij2MC8!-wPi`SWPisuj9+?TQW^I!O7kv9a*? z_t&Z4*Vh+uadG+D&23Ykbfg0S%wb+&nbqA^yJ3J)GUfJ`PUu#8-u ze|4k~{}&1A-Mcp~U%rfe`}Se)-n|G22*4L#e1QoQCP-xqtN(d6HZ}$3*}@hID3Bsc zDX>gUo0_O;Qxi>Hnj-E|9R7RazXk<`o@PHqR6-Q~O8N^Q9e%cXbaqZQ0AR9NgQmI6Cc6OmI8%U z;G*mz)KJ4qcopj$h=_=Yh=}Ob!;Pk?On7;D;oP}%xO(*}GBPrBHh|6*8XAhab?f5s zniNp+kps zmWz!XITD8s9m3+pixCqOgD<}L0+%me#)uIkiq&5Lcq8Wx9Frf*mmYC00t?P8z=7Kb zaN?g6n0I;})?HkOUf#X(l?@08K&w`*bkbyyp^kkWotLGlC9F)XP{+PbzB-PY97QK> zCz!w_Umg(=5fKp)RW1w)QJEM#creE9qQD{A8aYgh@25PCO?L|xT}-yYUPR@u{$ti*AR5y+8rA%ZNPt8{|8}B z!}8Vf=+Ps%ySo>=?OYmYu+?NMMrev3)FL7xA|fK9SC1?yDM<(+pw()1UK))CTCEmd zUR-8Ey3UDyFuoHIpLi0tjkG*r}4r)sGj$yj~O7^az4Ym;OlkZH-jsdfz&Da$vjk{>kCraJ`q8^gb@A zIj(kgLT21WBrTsQE%8b{w%g!-$jmL_^5J~gbblLiOY2gdllJjLXp-&$LX@f=A|fIp zA|fJsIVdW+123bDYv-V>RughdwUlOFw=o{=`4J*J6Eah?BI~HRJ_^9IU4b zgxt~^|9lyOj4NmHXxDl?+PfLH0mGy+=5-q4@uA-UO*V4=O~j+$H|niR=~e?z&m2I` z!$gRzjA936vTj~MX3Pa>)61wr%#G~ED;eA5fKp) zy?huHDgn8*E!^k)2+hMJ#7_)B(%Nu144nkqz!6dz$B|Q^O?!;%{p#cHj1f?G=&QG` zDnVh;W@jOGNK;&UvpQ0b|6Z)V+zNXOH^+2D=JmgkdTcjtj_HVmufs}pendn>L_|bH z^y-r(B_#PS}mqVdYKrWZ-yks&NWHK3N3cc`TGC(dz{Mast59wO$ z!?XXniEG`f;lajl0234A_m7B(h=_=Yh+ayZDMUm>L_|bHMD&W`Od%p7A|fIpA|ld@ zK_Ma{A|fIpBBDx&K_Ma{A|fIpBBDx&K_Ma{A|fIpBBDx&K_MzvPo6x%=+UE5wQ5yZ zSy`b)ix$|we}A#+Sh8dZnl)<%Yinz`xVYe*ciurlLV`}2n3xy@1_nZ{Rzs~;qhrU8 z&}cMLzOS#Zw6Rw1Ys;1`I(5vOHxFK3UQnr2s9n1@7A;y-@)Or1CME_!K|!citr{#W zEa30&k4>94>6E#2=@Q<0>n*ssxj`nAVZ(+EM(smhJ9g}VOeVviL4%5Q+_-V$@?Fny zz))fhK*6j`t|GKC|7; z7&eAqe)$Dmx^#h!jSXZn8SdPpk?0R%-jK91R;b#L=TirM#Uxcjg=8xv$*MLer*A_2vf$2TS!7^;t8v(9lrGWHKyW zx>QQb$jHEm5hGB)etpR0a*P@^s?6FaA|fK9l2cT42dHuh3k$=ZJ$tZi+cvnmx?=9! zxd;plL|j}PoSmHws$QSXNPm=&gHA;;4#>V2}#fu0G4AeKO$;7982$VAFIKz7m6(`_Ns}hQ&(E(!$9L}B8FS~(mEJo#I!Zs^ym=FS`}W0$ zAAX2!+qU86&6^l7U;xa_%rI}>JOD-CR{*fJwZ(x02c-8Zm8wL2Es78V!-frmpPwJD zUAv}}S04Ao&@o(^I*uGUf?>mk;oEP&MUNgmaN@)Xj2t-<)v8sK#^3+`_doRP*%M>N zj6ryKID`=R=bwM1It&@ZhI;z+DK>80h!G=3z{JEvC-3p&$7tKOEjo7Wh)+KGq`*2# zJBACR(P+@FT|0z^hQh|i28RwELU3>}?CtH*uU|id>bQ388v6F_i;$2I3?Dum-+lKT zdi3al>({Tt$;k_T|NIjtPMm;Jsnki&$;p9IsYF;<7#1#EX!Lf8h=_>DNRpD0L}Fs1NJvN!_wL;j zckbK~w{G1MadB}XCMHG@8I!-iznD02qV)de&6@&%IC$`2iR;|Fd9wf@Zr{Ewgb*S; zJY0Brd5P@o>;jMR@$nH07cML?|AP-c5DgnP)JgO7^b|8@%#hw+zkXfx=+Q%1T3U*# zRjZ1SkPwlUmX@!s_3PJ*7A;yBbS^$VKH}YX-_@H3K&)TC-k^F)A|N0@tXj27bnV(z z3>-MHSjUEhgowA^daJ68yg$Zqel;MS0rc4nvYt|H6tyTyjL{?Uou(!7t z^XJdkTRt;0Q#d&}iB+ps6((uC=gu8*@7_I;kdPn}6B9*JQj$nc zP8M7~M&;`D*I&o}{rhqM{(We*TKxFqk8pEyL*vGcOI&A4N(z)pCDdv)0N}uZ1L)ML z6Go042`48fG-}ic>({T(cieye^B-7QS)qRY`dF}F0km4JPCu_*yN1)JPXhoBA3lu4 z#6)!K)(yb3r4e1abb*J52hN;1gWrDp4X00^#-vG;N_-vw@aWMaof$UeW%=^u$jr>d z$dMyUT*uzMd!bgV;pyp#;NW1Sq@+lBO`0@;xw$zuZQ2AO1a9BHjUz{nARr*1!20su zSK!(8adviwlamty0s?UL>Q$X%-hKC7T)cP@yLRnDR8$mPTwD+s7+9=jSLe^4$HIjR z@y$2i6yxlT%g`}gnmV$wvhvODFgG`sW~yklS{y!n7=C_!XxFYCoSmJ~p+g7hGf|Md zV|eM(rI~F~+c=va_?XXU`s7ym%2!nlv%^ zxKpQ2p;fC^kjZ2K08>*_G;P`xr%s*HTYlTNZAec~*O}3n*Yf4dF>>Tc$mP%eIXC39 zW~_TMcI;Sbi5L+P5fQzlI8%tqQ)XtS7&U5?03Z|!h4A$B6qhbtDsg>jX=$Q<{rcj= z4?mRB{QUfcTCEn7CQTA&&z=t${sKEO4-Pcp6PKgyOR)`ZPPKX^lc8F%pnh6&d7xD1nLm`9^ zSFT(UGMP-=xpPN4CL<$5D3wZa;=~Dq&LbluL-_gmiLG0=3L!*=%@i_Z441Z!?c28t z6B82=85t?GTCF&B>XdMBa1bh$N(dpuzyJO#00<{1C$VznN^$1Q88K|wFkxqBCmuX_ zptntZW7x&TMf~u?4?5-AwQDE7{PIhkw9?EJGR7D-REriZgiIzACMG6g-n@CmI<`TB z24dpGiDJ*5J;K)3R-8I@N(>n?M0D)fQE&P7?c0k{qec~2-@$_igi*VZZ9wryK6eE9GJ z>zX)mqNrN6s`UQYv17v7*;%Y!y;}VJ_updS!iB=h%1RtPdQ=D@#MrT81pvLTfByML ztXj27x(0H&TmX>X`}_OnYyZ%pLqe@qi`~0-7ud(L2tefIKV>=gx^=e)&aIty)#@vYCSJYhHZrV6?zn>KBdj{Ei3UvePo69W3>YB2FUz1%XlSTTKb}{TF`Snnb$tBs z$3m%83KJ6(;qLA(CQh6vEG;dC5aQWC5P*39{r9EvX=!OfrBaDCYu4mzPv00$OiV2B zo{SznTExV}=v;&6KPM(8CL%dGS*HzsL7}o5!v%?ni4jpzQR1twz7jSzHe&z&{RSWF z>+35*LPA7TRFv@Z^Ai^?To3~W4A2`Cx^m@;08nT^bI_ncqFc9aI%!3H){43(xeEI( zzkBztaB^}IfBp5Bl*XVC5fKs5i^q_l5I348qq4TP#)S(Pr1uUE4${xr+1Z#fWeOr9 zBBW(l5fKrvx3|X+Km364D- z_ilmpHEPrd-+c3pw4`SG^y%o{y*q{v9}WO$(4YZ+|NVC?Sg-)CTek)PbnDg)k&%&l z>+92}51Kb`4&d1ng*I*4gdcwR0l>2*I?p?P{5X2`>V*|6R-k+L?gn22V|e=XDNdd| ziF4=9;lmF<1n}%W0neWJl$Ms3Z_{5xG-}ic01zJ^kJ`0sW7)E0$jr>dmtTGf0Py$s z$Mx&iF?;rGgocJn#}#&8^Kx`_gqxci;^X6`G?hw)w6rv7d5%6EJ9g9=qt&Zdmwx{9 z&p+|^-+xQ@C?_We8jS|#=H`fuj6{bH9g2A+3N~fR6ukG|dwTOqGKNc1$DBEHFl*K< z+`oSxE-o&ZHER}JU0neHHa0d;C={q&yS7x`!omX1&d&MzQPdbdapDA8v}lnpJu53q z+Wh+d{rl+Lxig}oqNMw7YinENd6v}}E{K9GMUjTqiCWBlq&-b|G?CfmZy?YmGwHo&J_Bwf5trqXR^A2v@xPiTU_vZV>w^5@; z`2F|ab<*PF<8^-d&+D(h{(_sEoAk?QN=gbmJUn#Dn3$MI{cO;n0XA>mjHgeZ!otEL zUww9VcCfRv0|1;mcMd9*O7G*-Po6x99zA+s(V|5dFknD|{VOY$mX^4D`La&hd+)sm zwOWn&^XKdQGF{j`$t(94-rOg;rKF_f3)GmHm>@GV6G8~cWU?afYhDi?Jiy(%ccnHO zG-!bI^mLp)eHzW0H7oEqD=Vu4$LQ9rTXn|biWMucZrwT@IdY`X@lz5`PELA*0YLG_ z@a@~TVPaw;1#^m9heDx%o0}VQa&oY7<3_Y^-(E^@(4YZgV`HVV85tS4fB(KtTZN5b zM@L6EJ3Hg>;lp|Z5K5&|`ds7&fN~$#Zm8mnVPn&3wK`7%%axRrgtW9YRIgrL=liZ{ z)27(8X_NFmJ3AXuQBnB(^UrmT&&bHY+O=yjZQ8T~+y4Ih?_pzOgI>LQ>7*C+Su5(E zj1;piJRGwP5ZY}E6sUr>?I3O-x zzAQfY-~(Z5YO1pgK?or(U%o5=hz~yaAYUEBh7A+0uCC(1fde8sI$CKHZ~$OG*st2p8wosWMoL`0L1Lsvqf}tv`9!uD8bb?OhHR;3c4p6 zjYbR}JXmbryjdJSeq5|svqreNxrsO5d{Zj3ckf;SKun)LU0k_xMf~x{AHv<;U1zCQ zQTKK7?%9Y~i(W7F=jvb;^t5(9*)m7S4NC+YN_wO%i*RCxhBO^s@Y^>P5d$;J* zr;m8_=uwHTg}&uu<#A7n8pF?Xc6QdgB+-yMX3d%<_U+pz4jw!x`t<1|EG;d?wQJX; z{3T142n!1fv2o)@ap}?}F?#f9VPj(>l9G~y5QdH6#fujUYinzeZ`4sZ@&4&`|OB-+zlyqecm}S}pG1zpqnn-MV!` zsZ>hWIWMhNE4;nEMQCVfzC1%dYlhyF;?TEz?81c$B04%+G-=XA^y$+l-`F4`A|j%) z#XW`Sg>(1rT`^?H5aI0XEG#W8MboBD#m=2O^OY+sC}e4Asdqn&BS(%%WwveGChFI( zFU-u$M4dWy#LAT`rMxRwu87vHTMJuTTVZBqChFI(FTVZuTj`O`LOgp^^rxSGDm*l=bLY<0*+lyK_3NTnuUEbM>A_r%s*nU5C7{ zS+iyt+)i;7Hz<^olOqBG0)&&3lQ1>MBN$ z9uR;$%{ zX*3#WwOV+2c^P+V5)ly*5fKp)5tXUf*jUKrawrrE$mMdKmrN#mww+5wcan&Rh=_=Y zh=|G`gF-|^L_|bHL`0PkgF-|^L_|bHL`0PkgF-|^L_|bHL`0PkgF-|^L_|bHL`0Pk zgF-|^L_|bHL`0PkgF;lUmMmF`R-;XuHaK+Xkd(i3=T7PIdwE~EeaXnkz=#neP``eC z$mMd38a1l)C$Gn~YuC`BLkFl-DtLH!VCmAOI{9FMcGeo?i;Ig+dQs!g820Vkhpt__!ok4-wzjtD+_^JOpFUlz zI*J;@KWeT2001BWNkldlso>+|gXPPYOZlm(sRe#ce){Prsg9ta zAXKYX4Hgy_@b~w}rcIkle*yAHO-;q{;lrU;t6^_%k8$J1Av-%;$}j3OZ)^pPjiMMb zhOb_|iZ|bU6SlUts8Xd0diCmsxVShezo@a1oSdxpo+T$Im+qts5gHl_nM|hh{Z(Gy zp+rPPL{vJ8itYeaE?c&2LI3{!(Y$$cJbCg2VPRni3=Bk6RFuJWq^72#X3d%yJa{nr z_wTQ_%&=j@P`7SfC=?2;Sg`_czWF9DU%rg$)vKdz+qQ^~j@Bt39v+Tcw{A(ln+}sSRqo^^g(P+@F zT|0z^hQh|i28RwELU3>}?CtH*uU|h{SXkuyob2DfAJe8ylg8)ClP8gtm4&ar{u*v> zZrHJ72i|`BZK&01^ytx}^cUj)8$W(L_U_$_-+ucInVFe*`|Y=3ZEcM?bLL283j53( zQ(OaRN%EQYXDUzC($Kh=|Atl9G}{Vq&65NJtR(?%fl2?%WZ#Zru`bad9FhCPomI zrOlf+3jpHw?b{_f9)MWCetn^3($dld0P)jLKk3cS%*+%{PEKOgs#SXP+qG*a-hKDo zeCgM(Ul%=k^bnSomZECasv;yLM5Lvq8Qk~C$VdS|#K*@=X#oKNA|N23z+-mp+9d#p z`}gk~+>W6F0s_RURjWkTu3g2zfdh+mY)D9mcKX|l|uWGnwlztgM)>GgM+ZKu@OCb^bj|0+$h$$2qDD0dGkb2P>`52 zXO3`ob}q1-A>+>&l9G~2)mA}cIIm{Snu*}x-~#h|_39;pf`SUI!^g)bUt3>){k5o3 zqlQqaRH8|fCgRUO|1_-QLWoC?9tl%ZQ?YK{Iw@`b{Q1Jp&Q4@!XX`ztsLy<97&|+&L_|bnTrn{*A}%gY+`4s3+_`f{+`D&ABqSt=#Kc6Al$0crlamFP zk5Pq6NlAfHsf1dsE|dDx($cVS;X)`B3i$i`>n*cw+cu=9r(@v2fdeMN?xw+}gWN6i@6;7QxrMLY3`}eVC%^G-mdZJ2| zDh9V>h~>+dBQrA-BS(%baUFa2?uA;dhNq_|f`fyRl9D3jHEGfW=H}+uv}qHB5V(E& zHjW%Qf`EX40_)Q^HXc2C1ZQVwI5{~XARqu&uU^$T=G}MS#l?#kv1`{ZL`6lx#l;1I zfq~FyGzOo?`Sa(oaN$CH^UXKKIQz1ddo7=zePvA9+1c3h|Ju9nu&A!Jef;+fNE>R9 zBB*FYMFr6amJ^L)d5vO=MorY%JsJgDdOVh>i5g4di?Kuv))Y}=iBT~&M8%F+QLxKP zF)EQN<@x>LkNss}Ua#fum|d^oyw>t^t6kmt{zM^;uATD5AWY-`o3 z6&^i$gxJ{FLgfwl%$HVK#71#3Y-?)^Pft&5-MSSS85u}TO~v-@+tIaaR~Q)?>8!7) z*yz-$6Krg3(4s{P?B2awYv1#ZNuIG|$11mo5fKp)(W{9`A*wKGX=(WGyYDb=+_*AN z3ZU2Qc6P?KYu9k- z(4iuKAeKfSe`}gn1%$YM` zVq$`tHEW_zpFWs8d9u#>bj3!kTD7oj*)r_du>(K-^b-;i640()JLN}lbaXT}ZQ6vN zfBqTGn>Rfw`$cYy#D&@c{w;n zS6_XFdGqGM-`^jvzy3PLjvWhMUteWiB7O2c4-O6vXxFYC`t|FlBtQ}q6P0o$`OKF_ zS;U6E7zTjQ&`?~vb`2Vh23A&9NKQ^JcAchzv0-XziaB%UVAG~e*uH%`>ej6be}8`* zJ9bPt=6S~i0Dk%97eq%#W|>CnwCEJGadHVQy}Y$jC?>IdTL&di21kQKJwS7gwlUbaXTh9XeFvMNp%nqHyin zHK^5UWg%BTKR=|Wrz0UDK`HmqM;~cjkNiXgSy@@oXf&uHfMANWe0+Q`a^y&~Xwd@Qx^=^@ zUAyq`;X`cNve;blht`3v)m@{V%X3d&~0|yQiDwC6wgH@|m z6`3#sfUvMIOqehMzyA6wYSgF!;Musx$H!yfz=2we9v?n@*x)hAi}kFmEYz-D8_v$o zIzK0de&$Q7EMh}n3b*bk?UUHmt0y@cHMTqfMJO zXxFYC)~{cWCQX`P$&w`i3?Gx?zRTm{;xKXIL<9#17aO}oL_|dN^5g%TqcUY>Wu>(U za@DF;3zf;q$-%&Z1Cf}Rh|ti`LJO3Z1+`kOJk_Ul>(*${paGUIUtTClwPM8zczSxG zMT-_CZsYB@-!61pMnRu__8CTv8l`ieqoX4pJa_<&Mx!jIJbU)+LbrifSy{o$%L`s! zUTE61DXLYghJyzWqJ8`JCGK-UX=!OVapD9bBO@_s(j)*-esFKwwhgJNsijIpG;P`x z0C4;EZPcq*4=YxzKxSs9lH~FB_Qv(=*YWk&Uu(@4DoJcOI5@!7)fKmI-&VGno0}sw zH5DqAs>tKow{Nc%qxo;&J8<9tqN1W;W@e`JCp$YEW@cvCy?ZzO{QOFIC5l#DY~%?F z3c`W~3vlSrp)y}EIZvHBbx@~H9r*hCA~rS_GiJ;v6kEG??LvHfJcbMzqO*?U$B(0D z&z@MhawWQS=~8HaL_|cfpRwY`#L>|az_X`n1qTNM0K&t=we|sqf96Z8JYu6@42Oq@ zWAogV z^XAQ!ZJC*w2n-BFNJt3w@856W6(AxaBBF}Mq!5)UwOS1i504`E=jP^O@ZiC?dGjXr z?b`=SOG};Qva+&p|NedD5!BBsH#Zk)X=z&9GBPr-cI{eBojSF|^?7-DAtWROX=!P& zu&^kyoTHf7#SHMGcyw+0+mW-aBSrH`|rPT|NecY z4KFV*q^GCj^y$;^_4O_CI7>^*B4c#RmMut6PgmZrT)7hK)~&;lBS*?SDN|f*0Kl?k z%P?!!EbQOE9}OBbD6-t$yLVw^WCRx%m*?)2uFnbZYz-QJe}A2iU_Wu<1pNK|v1G{- z^y}A8YoCLI1Du?k5Ed3zYyzUVG4b~HMwKd6aP;U=rA&BuIBacgwVtkJ=(&_uNn#@@ zDG8~msi;}ACe-SpC*&54;k?_(@*k7;8O-0dp|O!CDk@63c7~2gao^>Betx)o`LfnF zZ*OmW`Q?`wHf)&Q{tyun5z)(oNg;Znh7TW(Lx&DwVOxwQAMi+Z!Gp9(elnDb}uCi!=fcU!3IF=nzYJ?gAdTV zcW+d$ULDcV(U>x23c7af3U_yR0MBMsEnK(|)2C0zfB^$==gu8`_uY5!_xD$lMfzgn z(@#G|{rdIc;o*Ttj~?NhZ@xj*s#WpsyYB)3JUl$mw{Kqz8Z-!t7cWM=di4+;9gUSM zS7ObYH3qF)Rqz%%2L}fj85wC^3w`ld7J`F=F>&HVtX#PgIXO9qjEn>Too)E~`oh`S zSt*lWaWTAP$r7ZcrJ-4~W-vE5M_5=Gf`fzc)mL9>)p7gwZS38<7u&XND^!1EWF$Iw z?u-#5MxarnMoJ&@+5muQ)289`&p*d&uf2wL?b;zeJ{}<t%z(SQJ2Epfv0%Xhj2=B&xpm3V&;0W+BsTH{1_t7{-+sfRM~`4@YpZP67sD-D zw1BOxEdl}pFl*K#^|9J0=>9rqFq-R4O<*IcX)xiiM^df0A8Uaw~b>zqqt#VhcToC{= zVZww$b>!_U_?k6qmWYVVo;_O{HEJXpjYh1kt))ea7P5W&_Coc%`R1F_uV23+`|9N6 zRH%&(9XcrcuV23|J$v>PYin!KXf*Q18*fNZP*91kM|5bm>xM zUq(iT3>q{@YSpSGrlzLi;NT$LyLZ?7sOjfb)FbJO8k3xy9O>S@yEr;JN|h>A#Ldl3 z0s{lJ9zQQ4vVQ$~Y23K6n46o6i;Ihl9z9wfJ$j_<*B2YprcDz!H#adgH5ErkN9on8 zmqbTLYqjy@$rA|(2oPsyXE8N3mAZB7NWM*cT>RRY}?6|)8D+~Vq{sy<<qBKR>atu@O5vJMs7Tm&=zgEBp1u#@4M{#naPMEG;d? z%F0SwwQ41M_wFs!$LAfBf^sDD?2+Ixw*Og z7d;{(A|fIpBBEDJY-}vlYBh|FjiFYnwO)A-9O2W)h=_=Yh=_=YDj_C?h=_=Yh=_=Y zDj_C?h=_=Yh=_=YDj_C?h=_=Yh=_=YDj_C?h=_=Yh=_=YDj_C?h=_=Yh=_=YDj_C? z=!IIkbSZp&ePLx~1!rex3?4if@$vB`s^jwI%jnam4_sYcp;D=^VZ#Qk{X2K=M5|V< zU~6j&Yinz?Y10OW4FMdpetogAdGqE%ZFqWm zKHmu!?v$M0-c75?zRu(K+fI4;Rz}(y%_3G8bk|j$@Tt`ey40`nF0c&e( zSX*18ef##v&dyf$eel5ts9wD~EG#VG?d^?Ue)*+P9igG2Xx_Xz%+1Z==;(-#KmJ&2 zzrGkQ3n?in7&>$)tgWr_+H0>NARqu)Sy?*EmNteqtpS!RxQT zj`!bxAAS4w)mdi9kRkB!@PM(gF;=cziLPC{;>wjPs9Ccn-g@gToI7_;tNgrq^Kj?R z9py*fAAkG-Pft&bA3q+JmX?@5e?B^O>V%6IFT&N;we%MtpX}^xbnDg)HEY(y(W6Ik z?AS4k9Xl4aYSqHqZ@&!yu(Y(qlqpkCyLN3PCnsb2^y%o7udLQBU-g; zg}?s#3nNC1K&@J}(5+iHgX(zv_%YhHZ3|CNPyGDz&#<$zLu6#6vj4=16L|XcDZcye zJGi>KV&~4C7%*S}tgWr#@9z%)ICkt9x^?S@F=NJH-n@Ab5&Yl({hv~YAu(JQ0s{lF zZ{I%b*s%kdnVA?cU;wPFtT1QJ9IbNC8^eYuE;bCIFNS;c=z-d`YvaU;6Uffa#+Wf< z(63)VCGlhEchlz0n^C7u9p$~9on49hYKQ{|4j>{T0wyLVTHAASa$sU&f{#D`7(qcn z<#I`?O0W{RVuqpV)Ny2v_`l9CFwb^ZEv@%Q%^jYcEYs#TM5 z?k*NHDk^Lv`=oT~@DNEuA}e zmj3?+zWM^mVJf`4xQ{MXv7cLarm**Li{QY%zcb7|-E{UnBsVrNz zOlP^aZQE+a6%i2;5xp2OF)?!E#tpf1=Z@UFcTeKt;v_ykUJ?@%B`GOM9z1v;ynT!+ z)Z@pGVPaweYisLrsXsL}6+uBkFg7-Zx3{;>GF!K9MS6NV`uFc&Y(IhjH~S?cBLkf} zb%L9l8_t|LgB?3|;PmO!_~@gL4DQ>hQ>WnS>WZ2*Ybx7XwQ7Y^r%vfCpOBD%HEY(O zR;^mFx3@RA9Yg&1(ZEcNOwQAwR4?k3{82~hE)(mE5X87fo zUmzm5d-pDm965sS-MbfApRU+QPELlClM@^r9nrmecSJ`=YaKIU#0XrvbP2n5?ZU~E zC*kbuj2=CDD7Q=*;=+Xs2nq_q_uqeCg0nAMty{OowQJXu*&$(JVMt6&EYa+ng9i_y zLx&C+K72SF9UalMX;Z9UzrNUGl9Q8_7|+ekMOauE8aHl?wr$(O$;kP z%ahZ6*w)q-o}QlAx^*iuGBS{wnu_h)x1(##ri~XxFZtj2t<#*mi~t86rMDKFYt=FJHb~>eZ_!xw*MYnS%!pin+PD*0$mV z1_nx#CQT$EAwis+oFphHNLH>~DMm&{TIF`_+NGR}x3{<4x^>H-`VDpc`gL)3c2?>w z%`A&en>NYj&70-q$&>QaPd|yXv$J&W+*zy4(W6JDTD59oY-}t5ty(2#&YY1ULxzZ*ot^ys_unF7 zSPVNmJIlt68@1YM+qSLDojcc{^VqUwi!#fsZQHiew{Ks$e*L-tkg%{Y5hYyi<6cuTZ&q(7L`gR?c2APl$4Yr>n!-)^v^&4$ecNIBrGgU4jw!x0|yQi zl}aT?j~-QydEPM*5&8M&pXH4=-cV+1ai$Ov5fRbLhckufg-cFOhOx1+@|rnwrp|KN z+1VH{U;vz)oG^Fp+%oTnxw$zaBO`I-$Px7D(F3DKjY3>pT%mH&(a|_`=uokXpw6E^ zAN%(0!ulz**{ii*OuYuBJwtCfXZ{rvopo}P|`gaqZ-k3RZH>w4rTBFM_hf<~i3 z&6+h~Yip}>@!U3T+Th%|bNKVmKcUfR@ZpCaLPSb?X|&|#=3>yGL6|me8r(Ps@bKY7Y}&L5z_T$C5mc{UT^SQIGc!DW`V=>B-c;(@ zv15nUnB-rCeCpJx@bK_J@7}#jeJu=CTx=XWb__FS%)p8jD{%JgSzRTm{;xKXIL<9#17m8gXA|fJswebJVQJJ!`veH@v zxoXv_h05gQ*+crd6S{hEAIDyE>NKBeE2>_HI z+}pNoLuzVjk+-cBr)krs0D#-KZ=+tldRVby1u`=;l_Zb1w>Pd|zmBiJ{u+}fPgagA zNo+VcIKb7_6}NBSR<@a&n};5s znPKCy#5hYke*czJnY&z?P4v}h6DeDh6%>aSY0Dl9E6 zwYI(f`s=uV|Gw6?((tL!L@kt zV)**{;=+Xs@bdCfjxFxHDL<7;g(gj!6uQ+?-%C^kROaul7 zA|xaP`}glR@CpzS5fM>EV^WC9lv=HZhlfXz`*U-1F?jG`+`M@c`}XZC^rJOTR#q17 z-@mUsg8F&o=H?W@YX4$f3m^Et__V3@11`Qf$?ep^TLP$sm z($dmkVPR2ZyN-^I%8%NDe0+S6kdT1b*jVK$LE+)y@bU2}_B;R-I+xPYXf(KT<%-s} zQKLq|+S(cm7cSKLFSB9v%)`TU*qrQwK&yMh3_5^C(GdBqb#wH8mAAYu1EXUG#+9 zf-#)8K2ZK+^7@~@?c%T^wawex8()6;C58PJIEac~(f0oOaFU#oB zqs7L?M)}O>i(wIwAAa~jtgNhL)v8qz6B8rh;o&l2!UUxsh8Q|@s8p|BT@D>OBzyPn z6?=Po`RudLiY#BAPan%u+?qoD`}Y?BTCpjjKZX+%6UElnR(ka4A?MGZmosP1h@YRI zxVgDWdV0Eu=>Kk7wQ7~jn>SDP@82&64<3|Z!-k1kt(IfQjw$^pi!muk*P22XFJ6>$ z=gvv9X3gZCcit%!UqnPiL{z>ESyPBfA$p-S8jS!b^g43nh*r7cl0td=3chB|nk6D4 zvuDqiMvWSYMxzmHYinuIqJ?bVzP(UAZ@&4aR#GBAe}DgC+YouSxNXm#J;mDES~MDs zyz#~x5)>3vqU#YI9W8C!wiQ!TQ>js-hSrb%jEoE!G-#02s#Qx&O-;qY!9lur@2>Yz z)6c7S@yEr;JN|h>A#Ldl30s{lJ9zQQ4vVQ$~Y23K6n46o6i;Ihl9z9y? zN3*`zm^N*ixVgEBsi~9t2T8fpGm9%QrO7`yETd0rEJ0=C`N(wnS zITagUL_|bHRK5&J3aS48fAK|bZm!lVJ3AY>xw*#x6-Ya7na&dPOI zvt~`XwnZg3Y0@Ov+uK8>QsF=U`A@mD(XwSr%$+;8Tx%9U5fKp) z5tRUwLR2p7?d>5V`2PFv3+;RS_%T!}6;7W%T>(8SJNc77`Cs?$-2(u`$HzlN;OgpH z?tN*}qzM)*SWswt)v8r>_EDu$!QI`x-23&iI)3~(mMmF<-{i@Yp;D=^eED*%?e6aG5D`qDKK*&S zOhiOPL_{x`aYc84=v6ju+&GLJIZ|tzlao^g^`@{xhYle-I~%~WzFJsVVE+91002`{ z(~9g`g^G=hg`=Y*e0_b(wVkO`rNJN1`R@Ta-Mn)3l&It3Adh``p?766czmWJ-#yQ5*l zhKP)e#Nx$^@$I+Y>RglO!i5Xiy?ZwfA3luu_;`#NGe+4rc<^9^hK6Fznl*@uio(Q+ z6A>F5t9AVM-+zyBy6A}_Ic<^8xIdTN&&YeS@I(6Xh z@2|}MiHV7Uh``(18}sMSSFUHTUcC(N$Hj{m(W_T4j2t-s9 zV#EmCxpN1H4ot4!Y=hg-cdo#*8CoKO z7A;!ntYgxoNk~smS6=`A_rKAoQ6o4wH~=twObnHpnu?&HAQ&4P!`s^%0Pw*FAD~N@ zE*Ls=C`1I?wr#`Kty{5i<3<=687aq(9Xl4oh7Ci*h7C*AHW3jK5fQz_l9G}nF)>l% z7;skMZb(c_j1ZMnNJxm-+uIkp|IwpI0zgikI#p=j`t|F@($Z2= zQ&W{~A0HpBa-V(nnOIs{%Hzk63)OMq!UX{!5fKqZ_QBrXUjFl+|0wU5FJCUN zzy5l$=T(rClam0@diCkkr%*XpS62xR4lcCa&~wc%DJe++$occq@#Dvp{euS&mf^#PEAQvdohu$59+H!j zqqFU@7*~Dn+_@tFBrGgU*%lHKB1T3=lAN5ZRW>*{SX^CQOWcNt{&UT*MT-_PXU?2r z%WT@TNh~cb<;s;S$~JvtVyKjq6frU~5&&XvZ!drS^_SNEQXwQ5z_ zuwjGN{-1yTS>AZ#4av&N5)lzoQ&U;CY?;osrca+PZ@&3viTX!GL_|bHfZh3KUc6BC0vb?U&v!a~{R?d^@2n3zIk zJv=;MV`Ecj`-KY^U}k29=FOWI+gAPh^_9Qv?d|dK;lmR5cigyfICt)x^3t`~b5RUA z*Vx!t^y$+FPEJlxtJTU(l9ZH`68E(zQBhG?xpJk}ZA@Q%^%ZX3ys1?#|2i~QR#sZq z>)m(X#iK`$P_JG+j2=B28#Zh}R#sMt&NWX_IdTL&di21kQKJwS7pLsEwzkHG4I40L z&K$IF-yQ=84pjEV#l>Ob#EA$F4u-KYm!BgdA|fLCZ^Wb!y;MZR;B`xiOB@(dN5LPu zQeb@>Llj(7s8+371|Mt4x%Tee8!D9wCr_S4c6PRM>s@YcZi)L^oVj!7Dz{SQy{=xp zs#Qj<*8aN4f4%C|se{(;ID(@#Ia)YP=l)5DG(I|frzQ=C749%*T5 z%J#Eo&mt))3C)`~hnblf%*@P?nVE^ez(929(4oZVOGHFOL_{wiCWYvQ%X{jTuGtmt z?(T?*iP8FTdj9-*)TvX);QGD1ypW!rj*}-(K6hWAJb8j!w{B_mr=%<`EwvV9&ZF;K zQ&UqB6%~b#KmHhQZf;Pk)wp!&lFl|vO-)NZTgA)E3t?elr8+i0jYflBy?SBs;>B3K zdNuy|;}2!Q;<6Z5ecavM0YGaZ?(^r*L#4E-u)%Z5#gi=O1KbWGMT3_wEgIb8`d)1mNn`s|X1R!J0K| zFnaW8gX{P7^u#;wyn`V_h9ERF6tS_f*t~hO*22h!+PHBeYS*rf(9qBlADhS5*B8J3 z`YUeUyovbucx6V5zH`-RG^k#^I`;414*+=h@L`dQVY|D#BQ!J=2?+_v$jB(sOrkHp z{1Ty|q4?s9FO(#}f&~jobSvE2wQI3v%^F<0b`3ExG1#tq@*aZ zQ5It|e*Ac>UcDMej~>Org9kBm=upJO#Gq%-o&cWRg82UX?_<)WNod=)E!MAJk6(ZN z6* z_02cmKtxc#etlG{R!wFB9D=RDf@WT&i)~p$Pe0=cF zKmTCUrcKKJvKm)?ReZ{GZQHi^pa1zEG;P`xK|w)f+J?S!-Lq$pvJTLR6DRP+ z7hgc7Qo+p3Oeu5l;6Xfj@&t_=H-?p!mGa7aJbYPxw&O}dk0kxn>TO9m@#AU;K756?g|mTATwsnz+Zp;h4Aq3itY*#5fKp) z;n~A@)M_=1jg6sJtF>Nv|B%g@LR99|YBiFRlVN6NhEG2Eq@ue+MCItljTC>kb);^O$L_|bHL_|bHl@OCc zL_|bHL_|bHl@OCcL_|bHL_|bHl@OCcL_|bHL_|bHl@OCcRHn?$%`3VKL_|bHL_|bn z049Zqh=_=Yh=_)ef02S|1awgjM`~?6|uZ|slTivrn$KSdC4|)#V3IOo-bi|q^ zUCX?WL_|bHL_|dN>S0o-6yoAj;Q!v{Lfb#+*9eox`j$(ZA;CT2UfZt3$JKPT#<@d7 zu{<~u5ohAcp=U%yL_|bHMD!|RQm7Oh>@D!?svZD<0sr2KVFSF-sa-9+W@}c#JtHC_ zA|fIpA~FnFZUsK*YIcT)r13suobGD!MmBL_|bHL_}2HxX^St+O;nh-%M?b1KZz+rN#t7E6-GP zmx}bwcgOK|-%UtKeOl37AtE9oA|fK97l28ja@4D9J-Al0gsF)U-tJHvm##jj=q?cv z5fKp)5fK4kQm9;2bJ8e(TbNhDKTlrXSvd2ix5K$ZLt$lUQqf%@A|fIpA|j#}fJvcp zq$;pDkBC%IPl$+!h=_=Yh_o>&L;!$Ck24S#pMu<6Ca#Exh=_=Yh$;gng-RhSD;Lo* z4-p;n5CD*nl#1w>he&#mR>3_hy}64c;Q!ucq^4z6bXSOoh=_=Yi0B32Bk4;a>F+eW zH*$yae)WbZtlkiX5BfF2wTwo zwa}?ut@7*CbDB539p+81=w1*J5fKp)5z&jn+s9sVDgbJ=3IqPV6NAS5QR3t8#XUju zPV2CG!+97Rsq`N}L_|bHL_|cD0%r=nL_|bHL_|bX2{9=|L_|bH zL_|bX2{9=|L_|bHL_|bX2{9=|L_|bHL_|bX2{9=|C1zq`f+tU&RCG6ph=_=Yh=^Wk zPo6x1iHS*twQpQuEz>K@-Q68AF)_G*|9(Yxg@}lVh=_>jm1SaL0(W=!3TvN9Au2Hw z6B9IS*s!9zK}1AEL_|bH&w;m(5fKp)5fKp)RYFV(5fKp)5fKp)RYFV(5fKp)5fKp) zRYFV(5fKp)5fKp)y+qC@M#0I#vE18v;R{WV{%hQeZjy+Ih=_=Yi0GB!WZ{SjO#{lk zopMbIt?2kec~(zEL_|bHL_|cT#M{S+h=_=Yh=_L_|bHME_+BUT9k96e6{n zNg*O4A|fIpBBEE2N~MBYU3e}~{#;L?HHGp|D`HZJh=_=Yh=_>j)ssKBQ`9YF#wwKx zB2uWZu51z!5fKp)5fKr+{M2f-au--plYmrz|NXa!2ml~AHy0wJ{BPdh`QPWg@+2AYHeN74^5S&JYn15fKp)5z+I@pMxow2+IF= z!P!9t*Nx8GZk&HZUgdcSq5RwRts|tXav~xkA|fIpA}Sk(Ow1{`pmb5mBcO=e$MPRo z)FMVjb%uzDh=_=Yh=|Ibt^`m~<%%k+b^BQUo%tV4Uobh8f1AF>iHL}Zh=_=Y=*7~N zr_no8sNl~0$)UXWMO98jL_|bHL_|a{4?|}Z8SC0uFd@Wb5D^g(5fKp)(W}FdT#nA9 zP)RExA|fIpA|fK9SBqMI5h5ZYA|fIpBKmK`q!1Ai5fKp)5m6vKu|!)!T5QlD*&1xIpXeewY29XD>5vW@l%2X5OBg zob0}t^X|Lv-2a~Y-*e}^bHSY1pH8Mty`-pg|MKP}IrT)4)i++9se52=d#bx+QB$Vw z@t3<&-KII0X6i~0$M0q)}B0C#c85Z|gFMd7y_y)SkqXa4#4dEfCF-&OkkP~_y_wuX96z4EKF z&q0@SI5$i0#9to{dZ+*KXnpNu+8?kqifn)A2g%k4ZfuzL;zZa}+xO&83WA^SkS#yE z{=Dz`jPJ(3_uaz=&+_ZO7V28xdTrU~pvyU&o256mX=c!?qkd`3t@_rMMMLhSdImT$ zZ|>*9_xvsP-O_J;b=d9DFBXU5)EX7wH>|kwtx*R!9!S$|rQWEN7ZM%Fs$bJ-IoFHp zI(u?QdJn~>ZP5ySUkc#z(&NUxYfzp1&u4tM>+v5KyoXZvfgVz6zr+B?zV_$1r2sBl zlxo9>Eiy-oqTqR%W;GqtaVx)bMF31OPXQpLZ^3Ovx_i2BO=f)RW9jEyYt@Qxr1h(_ z)e#8#nh|teU6bEG%X{`4D||=iO}yyBLDxsef^z30t*H+8*!=Bz;ruLs11j0Z(i8!I z(#0Q4?}K~bH~h8@lP{SVt{cx7x;La}=lX)q0k5t>Wcwus`24S5Ht4#uKKt?H$e-@Z z1bF8?D+k#tJ|{O(6n^ibj>70I-&>Fx6=0SN@b-1fLT7SJyD_TtR3D!)oy)LxYF8(4 z?%LJYBnz&Xoz@=%T!UoxWuFWkju+w@2<_*5wMBqA{M^R09n_7Ez?KDYWbxHsOxqvR z69%e2Q=1upTvs}@B?dS``#Hvw#sJ^8xg|Z9w%UGCTh%Z2n$th=k#Njk4ZIlOtdlsN zaN+nci0B77i{UPo>ki<6gB!LTjIpdi$^m#WiX!9Ma}PcH)AU^a$8+cyAja(|1aQ2b zXbD~#FBw0DW6zbx1XR*Fdhq_T08ZV~g92E3vj4ZYr+WOq>FyP2B*fMq16+e!AdGFt zxpBYH_CozaovMfSX~vO*iUF>A@ZzeQSzxqy`l!dj0r`g8mIqHI&sQyg3kU+Fgeg%* z7J#g$D|FpL*R&xsXalsv(jlEI?+VZ(W0wRtUX2+JJ!qro30^YR^Sk0lT*G3(*0lbFP60)^%gBv5@3k`yLXz$W;CMZHU@u z+dS_GzZt;;Qa_G^`newZ8tk;a(D_`C&+X=r?H8^c_lw%9 z->{&EH;y-MbdT}p)IXN#F53WgoA(<)-xiLdWRqf6mJ~rX92=`PWm!f1So7cjn(t z|K6KFfQK8)dwJ)D;oIr{b@{i`fBv37fCn#<^V0X~GsCyjix21DPOl%%AqQug%6aK% zzqLBH%DbKJy3GMTRw>F@0C=q^$}2BDc-%R-bMV{(Jl)AG^z^uMaOdES&cR1^tKK=d zQFMe5 zIQU3#@C_R_Boil2EL;EV*|SM=b91tB<3{J;RVuS)%}QEYT09Ou5)@_e;>F3ldGpHF zKXmBOxi`r^|GabXDimhI@XqmV+dK|l4S+Kh;rO`DdiUAs2@9;&iy*RG_! zy**HuR2y|A|1vSmx4e{nf=>Qn$Tb~n;K!N>r9%9JTVXXebA$@uZ()9+WVTp5lL^wi1ds@^$s=7c(_yAe6K zY=A6SuppT*VL||GNZB#~c0OOee0efs#*AP`=mntHv1~VP+_*4MQ~)#Iqu12bluVj5 zDcE!<6wx_&k%A!st~@f{17n9*B@cWyd-m+mId;K0fByVI6b8OXUAA7pKz%BJ8(>sY zj=j9QW*nURo<4ngvT)(Tu+|XZHK_F&z{Gaeb8B$h#W(c;WO;7v&%jVU%#b0Y+z=>Y zYNx+E=M+T+0OL)VHf>qDbZIcUji}HOw!;B9qT{$8>bBsf^H#539RN^C>FT_zW)ub5 z0FdqdPynfb%Ke6{8vR~9jz(F^hOO}Q0x$XudTU>772fUL+B$SQJ$P^aw(2VdIDiD0 zacGYPCSJyNFdd0U#!E4E+74i0X{TxmoRf|ewE-Y>qy|MJad6sz+cESdl? z9f()59YAQ%QV+l#GDh?-JP#Z=kWw862G^_=z&q}^rJ_p%P$)#ac45#e%E9aeO|wO| z!$Dv>W&i}+h=XJ6*d|(F+J$_>0DL4W4^N3yP}Bk9e%2F-N3!sVW3hCI^;S?CP1O{@ zfOoS+peM>wD-PcG%A*xso0%xSAK8FKBn8T`YSpSiI;>r=O}xKg!ONo4u3dCJX3C1} zRBH}iPh0hPS4B1eIi3SL5t=!`3GrTZ6vybW0K#+G4#0CkX%zkv*H$MIO4Gu%P>8JF zIr#SN+t20N=?677V`hS8*eC~%B3{d2696pRQ4e|{2hu=cP*4vZ9%@2gP`9OsjljWE zfRkyfp5owi8U_tXr24%S;3Q(80>2jM=^XeX9c-fqbW+HsHUN4&JA)!*aqHJ(kT8|U zJiU?P;CNo_02r|m_oRg)@%@m|Ig0ZWX~CAV9cvqf78Q{K{0gDc57f<|s5qRO$1q`~ z9Nca)Wbr+K97j^(0;uD~Ds{$-u3B#NRLa4b*=&dudjRxuL0HOmvQ;UaF$?fYId~(L zT5@o_D;`|nX4Ye7s+4YxsGU3x-k7D99Gq|{^g&@hytmzntSdX!nu9yQ8}qj)P%ReA zFL~M=DJ_ipjN|UdA5M=C{_*L|c;^F{zadCjVIKW+8@*?TWHyz+EIh9@q zxJ&*4?uKy5qonUeabvjTdXeeIaPcULi;Dxic5?5AA0-E$eIPv!DY7$;d8=!9@nxCE zJb4oyPAKzu%`M*_)V}yQJjr7oddNDa9pNpsWgc^%+;6$ZJx|^f#2!EKXuAWvuEa}q z%YWZ-fIGk);12LnlD@t^2W1t@!55x$fY+0BbaXf>t5~{sJmy>VPEnkqG{jD3E}rP| z;sDR{R=soZ>Xx3pPc=Lyp4r{@T5bUD9NYn3bdfnC??rKn;uOWBC=T#Kg%l*bblw5( z0M8`{Clf`SV9F_q$H7OWqj{lx)=TAiZE>85f~;knV-sl=t2fr+m>1cT1uZV+)JuD+ z@e+Ioc+M#bnb(xd1|hSXvX}9f&q&~;TtVddLC9^RWKg`EKF%viQYi8Usb2mki55j! z-z3T;N0KR$YN_7%W%r~RQ5rzChj)fMMR9-^EC32Hkro7xi032;lM==PB)lwX3K~$_~BUr7~oR@*m!wMACwphPfsBmgS@qhz^Osd+}s>E zxC*KJ;(VCYi|1F49uiMc2ifPGga2O^UUm7~xdC`rS65X!mb4&%B?e+V0Bp`kJTYDu zFAvbI;C)pW9vO;4ibK95xvJ6tsz61QycK;0QlYlkY{axh=>r|$zEz)D@Un&SOWI;V zs|6$H09rs7i_(qb;Sp#FK!>t0SO7W&3Id>&id#u>W6vx-EkyC=q%QX`VV<9=uQI@G zBm(*X2(^%m2Y>(`rv!)Az_%&T2?mDE+lhzfGv&5aK6uq#4B!k7wUG!;wdqM-0G_L@ z`f71-z-+xEd>0A;C4hKa6}x7u0Oaup^#u(#bgxG9QKkmed*4S1FA8-84f?*dW)346+uxb5gmI?Xo$|!KvUs5#oFUxLI=1P2l&{FgL}!xBWt+=cr`h= z7k}v3DT-4R2e<>=0bWbFVa1hiIS2QWTMnM?WG-3M{0(=(-xQmMe+{MKK?&9JAcX4rmySR+`t$G)i zqC1(ZZ@k)#;gVl~yCGciDDCT(y*U8z-^~5Wmp*gf`^LZLL@~Mcn_s>aJ!IykQ@3a7 zw%)Ypdg)G`GU<0&x;uVx^EJ}_@P{V6l%*>@BukHaq(}W(y0lNav^z_e`<5>D$kN50 z(ygX#t!^pX+I}cyTiXv=dbS@*+1B<$Dcjn9C}msQ4_UUo=mYOR48H#dx6WrH#4#A^ P00000NkvXXu0mjfU-P +
data
[Not supported by viewer]
grad
[Not supported by viewer]
grad_fn
[Not supported by viewer]
autograd.Variable
[Not supported by viewer]
\ No newline at end of file diff --git a/2_pytorch/imgs/del/img1.png b/2_pytorch/imgs/del/img1.png new file mode 100644 index 0000000000000000000000000000000000000000..693502389aae6c94221550d17fc6054b28f5da83 GIT binary patch literal 55712 zcmV*Q*{xy5E~dQ4|Fsgb+dqA%qa(Dy6k`073{Mgb+dqA%rbSVl0FZ zLI@#*5aOyPiLnqu2qAHs!3ujgb+dqA%qa( zswRoC5JCtcgb+fAtC}RnLI@#*5JCtcu4xNw0TJ9dzekU)8PIhB=_l$4a%IxNx0 zd3$@~?(UA4mlsh{Q7l-nfPjDiTZh%IhK2@8N=m4xsK8(_sQ-lMN_KX3>OT(;54^p- zad2?xw&QCQMNzu#XhH}fgb+5eb?a8PY}vxelP7H*iVy&d9zB|6%a(EDjW^ml6ab2g zizzB9qNb+C)}aUifUB!3zP`SAdwX~Ju_Q4TLI@#5pSFMhe%7s9$GLOo05IM9Xf&F3 z|1X5KwY=TdXf!B_(&~B(4Gm@a^5smMHq92{QC?oog$oy`tE&T=TkgEPyzuh!!ok4- zolb|ny}f)#M3+$%g~rB4nwpwuXlS6kyqvPKGMbv20B~}0A}}xzPfyP-i$M}&A%qY@ z^hsr9Wvp1SfXe%*3>gTX*%W+s)Dl>oT8x#92c zkGs2jw;W%HE2*fcATKYE>gs9$JUl!I4GqQ4&iW&QB{3F42q8qDbM)v@o_p>&%F4=Y z9f}ZF)G|T#@$uoUx87pRm@!>?%&Mv?GBPqS7z{W&I};cfh=+$qmmX6HbLsVZa&vR3 ztESX;lr)g^; zRw-AA?v|62Ls3x?TCJ9dhzJ}V9W5?XYlXOk5JCtcY|3af^2{^ONK!2N1k=pb)z#Ik zT)EO}@bHkNSoCT^K|#2?yJIvO$;imCN|}-v3n7FMqSxEDZ5v0A9<_BC zLRejDYAV~eZ@0LdqM{;dYin_Gaw04&%nFeSVOwEgVK_QEQd?U~adEN5GRGxe*gb+dq(W`y+)mQ37ERqz9zQmLq7Z(@v;fEiZUCxCI7cdwMxVyXK;^Jb( z2!*gMS65fu+}vnvY*Ziqm`f64A%qY@^lDqSYytkeG?Ng0iRod_rcIm7F2mH#)YsS7 zDlrMslbEh+OS@A`Vl0FZLWo|gsHljntSnoHAw-ukJ@Bcjsv;#NrPKRYRaId$8qsJp zczSwTJ3Jw5&dbXSjYdOLQxnzI)n=C?iLnqu2qAi{n3xzq#ukgdtL0eZgoK1n?_W_- z0f2{xhm0*2eUetI#lyn``0w>@4m)cFB!mz`h~BTVvXZ2vByw|esjsic+1Z)k;9w?B zoQRW?le%4bc{%a%@e~vksLQ`ZMn)1I9^S3-9z1xkTaR}&m^W`8Pd)V%%a$#(sP#oy z-`TTgJH1a$O$`A3`t`GRI70Lo{rdGouh*;ByE!B=7D5Oi1kjumfBp5>3>YwgIdkUV z=H^C4MFmHX9%bv+tt?rx1V=|l0Cw!yL117Yix)3OqtQ@WT8h2BeYeMKt@SIfHqp`1 z{Qd8L=i!GR=J4Uet$ug*>{+&L+h)-Xrsx_aB_*BSr?IgSKqlR?g0iwQl9H0h&(Ei! zp#c{c7eYfrnK*HxTK^dg2IAx6Id|?H_4W0*xw$cP=ujq1n82=GyC^Cu;`ZBb$HBn? zX#T$K-@l)Q3l|a)5MayG>(xxxx9NH}ha|>Ah&HOKs#vpT4FGrDbr-{j54UkdLWu5= zkdT0nj}Puf0}nMYh%0MQPErzO1Y) z{`t>;+Byu;4oebaJ3G1Uw?uh)IbVPMHI9ysTyxDexVgDeR8+*VW5>97@gj>BEkdi+ za`^CJ($dn1ii*PB-JP2!c) ziLnec5JI$3RaM2RRjXLFY87YBoUwH{LWpi)G#bgt$zk;9(QSUG(P$VoYLq(3m9w)m zuCA_RW@dJGm~EI6V;Ns;J$K%DCrL?3xVgCj&EvQqdgvk6u3gKIKmN$}?c2HOrkm95 z-+S*p-h1yo_5W^eZX_ioap#?P;^gGS=FOW~zka>?8NK$}YwX*%4<8?&?me+Sz?{U` zU@!pKq(?_za`^CJj7B4i7A<1*=+T6PgfMB+B&JQ9Mqy#0+Iyv}tPC$NFCrr&2?+^d z{P^)|z3SrP!gbeOM_O7M`T6<8$H!x5XUF8plWloweS#@5HeK)Lu*st%y2$ccx#8jAL2z&|!-o%N(4axK2(MQwD=XvBp+n^6=2BW(N@HUqZfdvI>^Hyp4KKX#0;^W7V)^prtXQ#v*w|Rg%gZmjUtL`t|NFoH%ZDF+ z$lZ6}&AD^uxZ#Eyc=5#-EnZsXYSh%!WYNB+^ettd!2M)yD-M!W8!-fsx#~**> z!i5VA8#aufpdbz$IKa<8|IFC2V{vtLZL@twMh5%#?W3lqhJ_0k%0mk)vSiu5ZcB{g zHqF*MRzP`TPe*5iYXJ>Qj)F}=fI>g+$bG!X- zb^reT$J*|u$)jn6^|A%v|tJ3FJ(>Co%-?fzb`*W>2q)+#~PXf%X`gmA+R zHxLmKp)Q@&om$>Eh^|vuSg8Jdr5n)p#A4&YkLOQBhIcdh4ysnl+0tW5!%^5`cn&0#Z^^*tc&V zyLRm&IXRie#zx}e;(FwGl=Sp;KKbMmUU}t}Zawbm)vI~#x#s|Ia&qFKhaTeo`|oG` z`0?#_XREKT=fsH{`>E@btpmz z(Pgw+EkQv+q@<)Uc<|shzdw2MB%z_9m)zgq-=8B#j&x;+?UE&Ex`)wdyyWi;21Bdv zqV2VSJ^AF5R903}Qc}XxPe0AW4?k>Cm&dD>C5druZLK#j|M8}vO zTJ*TYc;CK#+;Yn;>Qm?IufLu*-gu)!2^hejL4z1HXb^Mf&gIQF-y|(9jeq^?Ukn*C zM4j5aC;9HX?^v~JRktRM@4x@PniOAi%{6@f`R5E9Hte$dI668qapFWKPMpXKFT6lb zP7a3-9qLdQ4qKdKPqA*@I?Bq*Brz63^m$QHQGEUN*X-T9m&nLS+}+)&sHot`ks~xT zG;qx|*8t74vlbN<;p^**qoX5LRaG21bco>K;BJq3#E20bIB=lbkK0#_8a1lby;X8@ za;MA4%F1HdvSrMlKcC{_Vjh0@;a0z&F=GZd-Ec6K(~w{KU+4i^;_as2pk1`HTLSXdYUKmGI* z{rmUF!^4Bd#zsz`K8=r$4_d93f`S54Q&X8WYZgvUPK+Nvo{WqP_V3@XE`2A=Q&CX? zShg&g)f3|{zW9QB@4c7C#ztISU3vH2ce(f8do3z+#E22R{r1~diqQI!l9Iahc)7W` zJpJ_30E`|znje1n!K`I6f`Wnw3JU7bw%vV>JxNkhl3LjbAw*y1;o-rOB}+(3O5*$P zzo)LQ4rga)LPA2AJ$tsghB3gYQ>Qq1@E`_*q19TR-EGE<8GP`;2LLhwml>8XU*78f zx8Htyr_1>0qmKv<4raxQ6;xMOvwr=0^}fW*%Zn8&RR#PMoOr*3{{ABqt|RS67FFg98Bp0YpVbVK5koiHRXFFi>sG(&=LMazx|fv z->jCr;4N&_H;2xOAr$eNJU%C1=i@ z!NI|S$jC^u%dy(zTSY}hEM2;khK2^*-QC%lZ5?qKQCrPe66OC%>JbLPw$3JMCSt*vF?z<~@I zGK48prd)EC>`OU!?i~O5&wsio()N{?m#fo}cgIYeU3rdry`B>%PH^_@S<1`HsjaQW z)6)|_KR>2SnZlq!gRFkcbLY+x7Z*ovZY~WC4Y;|v;pgW^WMm{GM~+mtQxt`xN00K| zci&k(1{2dv>p3|&6ciMo)oK|uXb_Q+krs6WX-`vA6Ne5R;@r7&T)cRZ>gsAdJv|8v z3uE%+$!)GBS!iAe(VMuqxbW*=|C+!3?QhbRTJ%Z(@BjV3PT!}tq|s>b_xC3!Cx@)8 zEFvNzC`1$!+T>o1oF>Lde~6CEAR%9SgbKYxCQW8b=UD@&FvVak*#96WeXef`LhBRuoWGwk2L zzuo;Fc;Es4{qKLXfB$|y`sgFR|Ni?{-Hm?y@yE-a`_oT9&6+i9IuzrXGiP}H_1F34 zn{O_;UT9cY7>_^xIFCK{m_>iMGBY!I_0?C|zI{8TrKRm|qt$AeH*X#*R;*y^)TsbH za`ty2gt(kL@4SM9l)g(u&)e;#Q zNkBjV&d$!{<>hhY$Pr3PN_gj;cliAC&-wiG&zUuAR=efJ#KiEozx}N{PoWiidwT)` z0=RJD0w+$K=#pb}#W@xi7qfKfQetCcTfIJT;6NfHBk}e1#o5`J($Z3n9z9BSb~bTw zaoljj4Ltw+^Ze;gf9llnTF$(>X7ahH~sl97?2E##3135W4oH%iUjEoGPeDX;?{`h0IZ{OZ# zZM=?n{q@&*{q@(WudfH1ul-@ehB0W+Ae^0@DJm)=CntxZq9S(f+QshOyLsxVr+DkF zw#di3=qN;QVVZEu$;pY=Uw_?d<%WfYk(QQ5RaF%^IXN9( zokWP9CObQunwlCk8jaOfkFj`G>UHbZ@z`UJ0nKaOE?BU@DuG$U`|rQ6E+B7OF5uU{ z{&kxt3KbON2`|tSi<5ur>+g0Z{dh}>gQ&X8VX%ctdc_&MjEV<-^l=%2~mM>pUVqzlD ze4YLFx4*q&?4}mu(9lpaGc(z}dp8RgE~KfciQ8|#o#&r_zRgtl_4V~MH8tVl;zC(j z8P(O*>hJEq|9(%*c1`HU$;K75fTD}ln?fm)k6c!c&Fm&ipvzD!GkHv}cf&~lM zxpOBjE-sXombO~s(3ZaX>ML%$?KTueVcfWJ?A*EYiepyO)6#n=5 zL)+KX)G&AMT=o2Nb91k_Hkm0g_VMu{H8qt{qef9uQo;uxe86vh^P5h`eB+Hb^4)je zS-f1+WeR7{p0#mQS2kzPoDL_&&^(#ShaY~3Mx&v+y1G-7fK^ph@#K?FQe0fj z>eZ{wN{X%JhaY}m-MV!^^BB1G>(_T^a;uwfzL~e*ej9-O`}gzjfB*Z6`wyi@+F*LX6|M0^PI5|1-+;h*V-MxhnqPJPRcrokNty6pCNK!0%6IWMP z)~#FDWl1qK_a+-QY#3UtmWqlBQd3heITwi#JwZuH38|^6R9051!vn3E6oZ9{@x_Z5 zDJm)guzGi1OFaMl^Ar~sqtofwxN##M9v&Uucl`MAJo@OPK=att+}zx*3ezJ0{O3RU z)vta9Gq;VKf@m z?)*VPLHzTd|LoKa+V6h%J9Ry9(25cf^PhJpJ_3 z7z_qk@g7D9335rh=}M^e%DbJCB~-dv4I{l zc)z5igpC_F0&vSMw=iMCgie?7#1l^d&CT^4X{ECTXJ==={q|c{tXP4)y*;(HwY>G# zTZDv!aL+yWw3+0pH=8|sHelYG!mC%WwrNYjjvYJHaXc@)@It4*#9FOZ9mAiNmc~y% z{dCD~Yin!y^2;v)Shj4LS=TUnaC`y}a&2&vVI5_aoLl5!!=bv}$J++gQ6Qf3r!q3kSXdcFP=FAz69Xm#Lb~bvw zp4!@4=|v{GoY82cp`n4=+FJB_J?GAyBRM&lvuDpzTU(1pqruP5kBEqfF6*Ui(X7-J z6&32w9qq2!)z+_Hug=1|eED*-$_NV!W74EaBqk=Zd-rZuu3Tx&5Us|}&W_h#f1SJU zzMGXRSF&Zx7V7Kk`SjCI`SjCI88T!D_uhLi_uO+2Lx&Evb+~35HEI;l+(W@=GHKRuzUAzrca;V?sngO_nkTu>)m(X zZPu}%c_NOfQ>R`w2^T_$-on}0nMWUel%-3TvTofve)!=B>gwuRZ6jT+MR#cLI&*Sz zV)pFWJpTCOR#|Sw99pdwe}8{`eSOKz&857&9D~6?adB~%Ee$F}M`^WMyu7>!3=Hhh zP(({ulo+?{YT@MM)am^*GBVUzhdXM(fB|X?Vtc;-{(AuW_wP@1babaX>(;Sx<3>tKO32L2WYwxwtXj2-Y15|h=%bHv z>#eu;=yPdLzkdCI<|nO{m6aWyd2ZptgFG&$csQx4 zsh9n}#Kpw{&ELh&to_`c>#n;_5@R7mpE7XZKwf?IRbGAdRT2^s`1$9bNli_qyu6&s z%1TN~N^BjX=;OS-y>WMU$IHu$(W6Hb9Ua{*U8XzA-rkI=;TDzEvTJy6o2Ade!GT+DxrHrTwvd;X$KU?;H#M<8ckUbyKKLM0 zrc5CtBg4j#c3x-3ftj9q+KMSr1?ydpm%A2Eo;(RO&n|7L-rV(G2qAo_@*6IBpdE^ludE}7}Z994LWD*h*F1w9shHPkF>c=$ckvXcWs??u*Leg)p{{8#2 zeED)7d+ag3`syoItXM&MdO8US30!;awd~lj!zNG7larI#wQCnCDJh&fb&87@FH%)i zMO9T5O-)T!Ifk_s`!-k0>rtc8Sady_-jlkzI_m4|+iejxeFr2OoUE>eZ`T&1l|L%pKEfEiJFddGqF3t=!t$ z+BS)CU0t0zW27~b+Lqndg%CmrA%y7bEJ}?1{rz!sbEB%Ns?(Ebb%mC#yrO+hPEP#& z?|;YB(~~#ec!QFX5>~8O!TR;FF$5w1`uuP65rWxwB@?V(QeX3>h+npr9b! z+}v<>cE-WMq1C>7_wME1d++Vi__{)OUXLx0<>KOEae3xUrYD3DLI@#5Z)H(ptkGx~ zH*OpU4jka*$&-|qm*eH-Wv$pctz}DDTwENJCr`FnEIr+;ufEErO`AA#<_w!QZQ`AG z-s!SQ7EYZy#nh=&DJ?CXXfmW+k z$9LD%)DRmR+a<>_7!2HX*IksBmeQ|ZKjPxzc z%hlCYU52aWGHT|M-WNg$A%qa(YGQF>eB+Hbsy~19(MOgRXORH|2B<&h=jYonlHQ@^ z?8WELpYM`meD~dVBqt{W@Rz^*g@}lVPM4wA>#ZGDx9INc(bTej@!~~`%Q9y&Jt2e; zLI@#xD~l83sHiALj2HpH*I$3lxpU_%Ez)cuAtCts`U3QbG0#0+%fzj#X5RkltFM6O zZpC-rd8b)rw4B|!H<>hPlKOLZT#u%Q4ku2Wu(+(Wv^0y$5JCtcgb<>)usAUWc=E|7 zf#xM;{`99mS))j^MMp;ibXnKnzNBTs*)mDCCevEUBS(%jdqSr}hYndYq;3-t5uvu? zcE|NNapFV(Qd3hc9%r1Inre-Zgb+dqA%y4^tdbc2<~P4#=+L16y!YOFY~8xm8pWFB zrkid8nkRgUkB{&2j=chdDbt z^TZQR0I+rIRzCUUlP*2p;K75{pN}6u-lfN~rk7uSnas>g0Dk@JUt@1?f5~kvImgJz zNOix?PUw`Io6E|TD?7E1wVBR6Gc(hynWeA2_F87oo(;fDFTKQ>GiR(CUrYA(_B{CD zg8=N>wae^Q;}>3d!J1(SA%qY@2+`wNEindIxpF1H{q1jo<`%+v^XBo!8*g;^QZ>Ky z;)^d56%_@*!w)~qH{X2IWyiYanrqaS^39t!ciC~Q#b`A0^2;x?X3ZJ^{QUe_wQAL6 z_p#(0O|zC842Dj%;OFP(vuM#G3JVL>WX~2%<8}=O1KYN3Gpme`KKckRFE46pYPjKs z8@e<(e(9x`2nh)R;K2tU?DSaSH{N)I{rmSbV#J76%b#7zzyJMjuD||zmM>r4?caAH zgb+dqAuOhJf!AJpP0{Ie3ZMXrx3{6G99{`X2zQBjAFd-(8S<(X%mQ4$jquej~pxpNgjvA4HZ;^N{u zd<=8E{r20+GtWGuBqSs#jg5^R-p^<>Dtq?qQ6^2Aq<${_`t?(il9D>Kzq#jVG#Zt0 z#x67w>9T_ z`=#pYYQ@9DLjjZ_Lxw1Yg@tC7^X<3aDvpkh3ZV4w-(Oj~cCAuhU*Dm98yg#yojZ3b z_uY4&VlWu4xP44ajCw3zUteY8#*J6pr=+Ar`R#9is{o3pr>BydnyO5hGDQKD?c29s zcHivmY(=Zps_*-s|NQ3;otF?o2qADR9x8jXgUni}+aJvli!WMpKJn3%}n!-reVuzTZ;H?n>E_7266 zmzT$a1q;*|TwPtc{`%{gGiMGVAtCtq_+V#eM{R8_B_$Qx@L^(NV$^kg_w3oj z+_`fvdz`qqIHpaTMpIK0E-o%S`Q(!ZquwAU!>u5hF&Zvu2y?nP;Bi zFMs(9(A;f&!h{Kghldjs6huHk0B&w>I6FI|)9KLb^%NEsa`fm?Vq#**$;na6898z! z8#iub+_-TaI<6(>c>45dqNAhLuGAAJPUNn;?qclNv3PiRP+3_?K|uj=adCY2-FIYW zW}?&S_{(4Z!V^zCL1SYhPEJl3jYjhG^BFW~&?V#Cx^*i{mMj69*Jch34D8hV+n&{{ zSM%I+&jAn=6vVU7K1+0TG;VHgR99D1T3X8K)2CUoWC{NM{+BE#Ha3>Uix;comHqtu zm_L6$)2C0z&(9BUZ*Q8Kny9UjO6}?`MudgrPeDe*HCr{?S`|e}I zh7D}rzP;6Y<-fFd?_RFI{(ANQ_uqfN&DS&+LWnDAXlS6Mq=br!3JeB=`cGJwot>Tf z&%?t5Z*OlL92{&NR=X}-xWJAbJ4i@KpuD`C%F0SgN=j@UR-feU?Tx#;J6>L1L`6lh zV8H?c0s?FuR=cFG=svctFS;x-hURX&n>TOfAOH9VKmGI*Mx)WJat00@$btn6xclzA znKf$`T5ZRBfY;U4v2NWu-hA`TPE~GhZf@Lq>#e-;#vAzg`CW1Q4I4J_&_fT=(9m$n zZC0;d%`?wD)8QD}^XaFb^4xRJk(ZZe*8YBee*ErtzvJ0wpY8O8X306GrKNGl9e1>O zP|}|8@NnLH?>%PBn4!KF6cohy^XF}n7#od79)J9C{_&50Tz0#}#6-30^`#UP6!6+> zukrr-@6*`W*x?ug0s^@2zWaFNjW^V8?N^eXp3d{nKhKseTROD;qD6~XyLPQQuKJZ% zUSZX$RaZ=mQ&LjYvEx(W;j9a>R@glo-@8-~Pr9q{TVW32w`Dij2=CjsZ*yC9v*J-@vEw;*t2Jk8beW0 z5yi#D7z_qnTwL(+@gX!clrdw*Fl*K#oD!N*|%>W=gys@y1E(< z4-b5OeVI6MB9A}*xH|UP5{ja5`0!zpl9EVHPUhUXbL8daQCL_=ZEY=eb#)jF2Hf1- z@bdB^G&Gb+lO{1^#ti1qpWmSt$F4X>MN!zkeLI^sZzeuIo`Qk`s;jGUad9CyIG9P3 zCb4+&Viqo3h)$<#weO4>Gx+JJpKOvCn;bZBfcM{jpMwVvQczGpV`C#;US0$Q1P~n^ z&B~Q488~oYhsw&&&u7Pu9qit{o0BI`QdCq#X=y1soeo!5R|X9l#E>CFm^5h;bLPw; zIy$;j4}@AuNl9V*_U-K5yO-?jY_*d2^z>xduwhJ_HjR7kxrZ@h#RAH|g^ib7*!BTY?BG&D3&US3XFSs6`DO#nDKIT08bh^MEgP2$_Xe?RNit>fIe zb85VRdJX*Y|H3+2rXCuN21QX?y~m-Up)6m%oN3dh*&;ltD{Q1E)EC{B7z-hU5JGe} zgTX*%W+s)Dl|XZkFn@plR!b3z?p0AyL0(>-I$5KKhXSIZU2Bnb%%>ty7bMT0-iIo~b+Q3rUQH5JCviCskEdk&%&s!C=7I*_pt= zKs-D=Y#o;P|LOI5a&vR3tE#UWUV)=*bhCv`Eki=LBA%qZpf}$v7WMrTy z3LYLF1O)}zIwa8vK|w*dySrmF8r6iwQi`JR!V52`H_nn2_dcf2tfr=hmtK0wDrG8) zLS|+rMxzmTcXxHEO3`}^9y}N~H#fC=wKYg$EQAn3h&~}NFOPj%mqQQ(YksOnM)UM#Ipd zL##WgeBrh)yXs#=CI-Rvb6WvUw(-9I90$5&OfF#C32qA>%156XKxVyXK z;^JcCXoMwPU0rc=bEC1bQB7dX@!osyQC?n-%ro0}D2hUHaWNl$_@UWlT)1!ngTWwm zMIYhj=4O@p0wggOLI@#5FQ+I9MMXsb>Vzz!cQbvC=5~)%6opNjHd!+y(SvN-w8^Xo z9;U<^q^{^oTGkhqJP4D-SO_765WQMuWhDlK0gXn3r>Cc_!x2{C<>iG&qoJv(iR$X= zPVayG_;HzVs}C}LmQ__%q^72JdjIO`YK%ss)D?Y9%le|GrpD}YBrz632+`-o$H#N< z;6Yo5A-YIaRTTjJ`t_5s#eIZUtHr~^1881rwzCov5&)zdbsuEkAV*YXu~P5JFg@va*uTKKl%4ZWVBGalzl;pGlJ@;pXOM?6US7_ZUw+BJfdjeu=9_I0Vee#WQFM2Aw{avrM{;s9hYlU$!3Q7gwUZ0=>(>vx zUT;fcXM_^ze%a<>=btv8D?Af!O-p6z;_3PKq+TjQrv!uQ-k;GUCAw-XI z-+lL?(P*fss30*hk)1nta_gCfLiM7M&(cbnrp66_pPd`;^&`#CO0=1jYdOIP!MzG%xQCsxVSiqii%jc za3MOK?uz9eJ9dn;v^47K>Zq@;2bw4QSh8dZMx&AV_;|JTA~-mhDO0B4;NZ~i`5BEy zh7B7=T3Q-Yr%rA4`q{H*88vDY=g*&4U$3jHBQ7qE3l}cX(9nR7j}OzQPgfJ@EnBuQ zdh}>cpFT}xWhEMohKPs=#*Q7UmeG~xw`I!~rcRwoN=gb@Sy@b;Jeg6WMs?()wwk7< zCV)%6=c0EqwRB5jd}Xn*v9=DO+gXwr+u8NZ6zGQ^exRnNhU>1o4y{&8QBe_&j*hkt zt5>k3zA)*TSA`Hl2*H0RS}~0&b9HrP`t<4a@86%YvNFE;<{JhN9<0ttxo6KFJUu;G zwrm+%t+w4RRVgVcoIih_n{U2Z{X=@Wa?hVXKPEJn5#Kh3l)TAcdNl8gm zR8+8R*)nuG9kH>o#Ky+9n~+0u0vsM5&bQxwOLTO!8bfw=HeOy{xVpNw+TOvzfxy5( zqNAg+v$G>EE{^#4c;?TauWobb&>?QR=_WiqJ*lj$Wb@|D`1$!UV8DQGIlrHN`iWt~ zhB0ZStVBTuf|iEam0p`1ts=nQ=EG zBZK7RWb}GHc6N3Q88U?HuDh;BPfTS>UQC~FXPB1n>dEKV88I<2Y}~k!F=NIM85v1_ zem<*LujcUK!vL&Vvj%^Ef9|^LE`|>u&c=-!dG*y-x%19D2?z+_#EBEU_S$ReTHk#^ zUrdZkOG_CsVg$p64Fe!7EKL2K!C)XMDT&O?OzP|F@%8m(%9JVe@82JQ?c28laMMjU z0npIU!20#;iH?pYGBT1ACr)tY%o(OknLc}h&Gc2X|-C04I74&lM{A!b_^RfOpVQC#E22{6W5*7h zot>FKe?DW!j^)UaBP1s$x7z>c(WA_qIg?v%xdo%qsJ0RsjYhuz{(Bl48o2)Y>xqbn z;PmO!t@d?xc4pM5Q7m1$lu45&aq{Fz($mws?cB{_`aI2-dW?j-ZLMU2qA>HYJKv_C+Z*G zu&}UJEu$G38KkA9QCnLJG*4y~8X5{TPh92Y<#oxHfQpI=PM)2)zuUh7IOXd*SASlYHDgYdh{q4 zFJ8oGG-5Cq+T56!X5%!mv$Jb;Q`Oby=kM=-$@AC>m<m<~(c}G-wc+nVHrO$)*k* zI6z`zA^`8d|2`jo{4o=BR%YOw!WQ=-00wk&%%AOqei%&6_tSb?6y>tr zCX0%S7&U4XhYufa)k1ouasvVaICSU`qeqX%$;pYdv@}9OLeygd+<*W5oxaH$Hf$IP z2?VT~S|O-)7iKPoUH3 zh>D70{P^*trlyjZn24e%L`FuosXt8L@k@Q4m->FU9AW9 zn6s{UcaX$b2q8qDbiVrPE1aF32?z*a;>3wSb4#sGr=y^tKy9h(C`U&} zf`fxOefl)%>FLa!JGad?4Gj&Hl$0=U-aIw=>})Hat_Kqi;D|QO-8(bUGbJjvQ%q6X56Phnt%l2M!!y!h{KEwOY!{ z%iDDGoj!d!Uw!qJI;QtZ-=C_g zDoRR9)X7sWXT*pR?B2Z_PfyP_OE*FDA9zPcN3yfCiHL}xsHljPloYGJZ(VtQ-Nn?q zpuL;Bo+K}-}VUyfd{ zCn+iElH1>L#~oy6XQR{UShj2#@$vCJwzbb3=5*&Z)fJr?m)l)xYio&%iz6T)09RL6 z^m;uPFJ5Hi$dPEZTEfG_Ieq#x0|pGh!^4BahY#cE=&1Ja>DR9xsi~=)J$n{cSJ%s4 z8z#QKzIb?ekeHZ=PNzes(@|Dd#+Wf7GX6hu=~6GcTuL_|b%@jGE2 zNsNUMLR>XQjvUFwix>I)^Utxfvt#t=(XEyRGCkQoc<>-!e)%ODjfRkrkT!|2lamuO zXU=5Lo;~>c`(LqKQ|t4_jT_b1e0+Sk{`%{2cXwA?SNHDSOI=+Z&d$z+hlh9QoB{#@ zaB_0G?D()*vu1Jd;6dW!Jj-?y$jzwTn{2B_ETuh^yDmZnUZ zf>x{L$dMz|*VogpUq42U9EqEo8w(aJAU-}`orG)LxN#j$jCDF4zxvg$`01yg*tKgH z-rn9!oH$XPoGUaml+e&n;^N}4v$G>IGE%*n?x_?-QCr8%S)cdXYp>MF0qehKV>)^?gC!^JBNk~Ybsi_GcA0HMjT&NDg7&mSl z<>lqX#>V2{;J~GJpPje*XDqVq#)28jb2$4<1CT)iPto z3|oh2k-l_(si~>d)zuLa5`wq4x2?kw7Ah_-CObPDXJ==#Z^UoA?KUzqGkaVDWR94a z7{2-D8{U5V?JI6;TCVBor=RA>AAjtI=(>;Tvm7yE1fP8JiCJYxUD5YgqrL!Hu1N?X zgt(-#vNG!H>j?`BQ^#dFI5^ub?ki9JPMIzQ7G>iqnC8%H9n!L;7)FV|!4jN5Lz z4d^>-8F%(P`pS8?WICr?Zn?$mGFsLZ(mvSxDT-p1`T`^|7D5OiF3H{9oyNvSa&vRl z*9r>@IdS4dkMD}w5q;_WOzSk)*Vnh2Tuk&n<>lqn*VkijZ{P0N`;NNlrkm6jK}mpm zKhtN}zkh!gELdQ6IX*r<*xA`hUC~FF>I*wNJBxb&NLOkhgb?B~a&vPzbm)+}%#E9y z8>2>z>QR$VS)wnUUqL|u7cN}D(b197qet619AO4UQAkNip`oFn)okkK`tr*!dF!pW ztQ4K-30{2hMT=UDq4@#e`Sa&-baZ6Ys8M~gb^U6fC<-S|oS?C>(JJ+YB*sDrA%y5N z($dnXuCB(%$A{qHU|WYHIw>nFi_+3k+}zx(GRd3KXym~MALPV|6IO^$*xLB<<9YAB z_gXDEWDZ49IDPsw)z#H_dwch~9x|d?%lcyY@ZlCe;4nKeE-x=9DJhBi`g#;a!Duw% z>+4HYR8)sA)`JHRGJN=Oi?e%iWi>T5{P^RKD2jqkr(^c)+3H$u;=k(Z>WGPnVgCI2 zwhqPSwr<_Z;>C+?9flA>bV@@*11C?Oq^YTiL4yVn5D;MNkVFTaKYyOW!b0rr?HM&{ zRJ-euo1>(pggfuNlhV@CJ~0v3)yDLh`S|$o#TQ@T>FH^eavK{PIeGFV27^KBie9K? zeGw56p)NCM3A0M5t*vGM{{76JJzKpv6-A+>q{QMUIF`6@;Q|_srp?kE0#2Mb!RXPW z)dk*#TrVvpCMGgz(j;4lA%qYXb8v8A=+L2@K7E>kf&z?2qx|jb1xz=&07HikwOUdP z;O*_rnl)?qpa1zEnwpvcfrbm-7l7pLh-jxAlhc+sZE@5%Ifz0E(Lo<^>hW=%~^l$4a%It(F%uo^cv zH?&z_~JsmaDsiS{%#HF4(58TBSNSSuTo001BWNkl-EIP$5UTl zkI`r(ARyqftx}DRjl{>tQ(9VzMx(*i)s?AJr{d`7sBY8L)I?HJ5_x%f*xTD>U{R$s={)Kr|DoCpgGYgNwS!-rdS#rXdF?}>_vA~rS_gTZjg^EY)VPfbl# z7aVtTa$?GqDR_8z0L@)|6B82&3JT)r(W5Ae!Zp`iqkfr>A3siJW+pnF4vj{`lqpl_ z-@iYVm6aSldX$S7FS39CezaOGvuDr7!NK8*?{{WqCPt%?ii!$ya&j;j3@lu@5NBuS z4((fCUr$w475Vx3Xti35Mk5m@OlZ|rm?&2gHxwYspW=-h7uVW*{Y07z2~OSD=sdM!Gi~rmX>zea$367dtO^x zOKNIro5k$&^76QF;es0b!Gi}GHf$ItPoAWrq5`c}i=CZat81wxy4o+z|+%{DO0AjdNSA9@3{~{bO#?F9~>MU$jHc`qN0M- z)Kmfk1J!z3*j`CV2^TJ0ps}$LtyW7|SXjG%tE^?ok|p^2`}52*&rn-iE3L-8fQyR@ zt5>fkDk`eWjv;kL@6a9fg;|MlaBwg?cI;sA;K7%?Xbc7ed-v{T=FFMu)Y%CM38bc` zGHTSQcK3;ii6JB;M7{aX$;sisfdgv73b1$YUP3}bT75x`Mk89SmfG4{f`WoB*)=ve zIG7VBPP9pk&z?Q2&c2zPoJ?I^9g7z)Mx)VSFc^r5iNVg!j-f+`cJLi)*3i&EQc@Cg z=g!5+$?3A&9yoA-nKNgq2}xmLA$#}k<>s4jR=X3Gl$4+-3OC<;bF0ccB_##DUa!7h zQBlFZefwCnXc6x2?o6LPo!z^4Gh@b#R&jLX{XTW-6hns&Z8O%iBl{*LB{6mCR5eMe zudipvjvXvqxDW>i2jJ45CtUd&G8&D<#l^93;X*YbZ)j-f&=cUXW5-_ddMPa}rMS45 zg$oy=(P&T;qC3MZhN`+-1K>!KYt!)XXne7)1LO;^V-_lE1r`{Y-}vEXU|rz zrQ+gZVq;@jxNu>cZ9P3bnK^SNyLRnrGp<@u6q1vZnKf&c`u?V*q;TxmF(yoy0GRhZ z7ea{c;^E=J$dMyCd-g014Gm;vWpVN1MFIl@ad&sOb$C~;ii!$yb92?dZH|tP3>!AA zRYOQuiHeG1!-fqkU%s5YygZ<7>!h%amY;)0qaiRbkaymBhoGRKE_0&0SyZ?CjdiQrOXP&04LNe*OAUTwL7h_1xTC0s{jv7z|`)W)c+@rG7E( z?Ch96eLBaFAMemHTB@zBB|JR*ib*jv_m4LvG5`Yx48YINkDQzw^|jK{(pIrSbBk+Q z+W*Jiod?Bnp7{g+_FT*X!@zJ23?K;*LINQPFbH%Z$+9e4j(p3>mN)lSYU5NTaqVs; zwUw&4lG@F0tCHGX?^YBiYsZe`*okCIwooJ+Nk&5AGB;ub0|Id$Vi@LP&fgzYcNk`X zVGah+^Qlsm7^dHT`|Y=ze)_#SQCeEceJ+>Fv3c`m^z`&Bx<6man@v9_C&#aCZZZzb$@JM#1M-O6+O_U+t*1hDe!oDf1* zn^-KyjvYIoQmFvUO-6b5?p-uDH>0nw57X1rFq_S=TCHKu>Bi%9I$^b1VK$pFJw1(k z_wJ#osR>Wp;6GolXahMuYnLdX$!ya$Q(QMn+IrSm?ep zfdD)n4-SXJV^W3D(NV9n!6}tW=yWwp4 zkH^E*)D)CTrN>)Ckw^rQNQBwh*%hCN<+}8;yp8`&OiaYY!~_>y#>U2a?0ur&3i9`aE$piq)p3mj#kU$`SN~OZpt5>mS&z_)7 z$e>UtJjzolm2z*Yd@b|k(pikRGG7UAy*R{TG0bK&WHOo0=`alA7GMM5y2P_qdYuzO zNI39#JR~P4BR)PJ0|Nul>2$E$?UI?hXYot6%vWW?Q?c4>cGH&+vl^hvs`d#u~-70 zKq@II3AMGgTz8GGt}d>{(quAufvg+iZaN%QtSiA3V|R?1t;v(ae8 zB{u@5T1%>$Yrn>BTH}K7FY}MMXsz8ymwHUwi?J#e)3& z{D5bfUhEvRZ#I1`^X1Z6j4wS5mf~%{{`_$l2n5Rpwky5P2_Yn$ghCmh zK+j+7RswLEyU((9ZMLe`447NC*vD=scxQ^6To8|Yr~@CfRn!)CLYYvN8! zOkA=n??Q=*i5M9fS@JtcNl6~9l=Cg@=DC=yTeqUSyBkA8LvHJp#l^*8e0iK-FFAMow=79)Bon!f14#3LK5g~*SLI@#ikzawa!C>%sknZd2!~OgBxj=KrjvZ)e zX@O3sbNk+6t*R+0DVUm?LSJ8>+voFJ#FCSfVKSM})z#(p9d^Ajxm?bzYqb=)Tn@9@ z46Rn{Hh~n6$3tdjCTePGxbChFhXYkrRc=e{Bqb%Gr>DoQ8%0-F7pA7BmfiPa?%lhG z>FH_i=aG>SJb3V6*)i2Zp%7}d8g+GbZe4U84u{uPXqGSK9g1z|Tkd==SBH#7qerlK z@7_J`Wx~Y71kRm1x9I+TtuG7tTjqga#|Z27dhWBy$w_Fn+JMvM^ZBsZY<}f^rPnzj zgb+dqA#0IeU8x5L2cgku0DxPDMxjvP$tR!WT8yPqDGnVvgxcC#SS%K9LLQY$h5Y<{ zujw8;b_}((wP0;~!!VFar8scl0N0iD*s){Waxfy12u`OHd3kwAPftf?W+o~t zD^XEV0kK$&^78UUk0CWR6@7hu9$l4p?b?Ob)>fQ9e;#~3A9lMPIXO9QGbc->Qsn37 zqoSe$JRT1&mkTPD3cGgg@~1cf0ELBxXliPL!C-*H;ebRU!QsP)ecHCDs0b}BEjWMv zJXg*_p%9Ne^2m~d)O{)MP;9#}oyE@Qa&>5Sb{5su)o?nU;Pd%#I-N*LO5!Ginw*?m zvP<dQj@mU$o!95{d*H*Nr!o4HRem!qt#%x#uve-#!M;^M`NkVquhwr!iwvq1WD zofAR`A%qaJ)-bMzbT0aqmKKP`Vr<>IHQZUj&6_uoot+)<#A3u2qAc19^FQ{$|Z5AAa~DPMtcnqHT;uBW~QdfyW+uEJV5T-TeIb^z>k6W(N8B z`C-o0`qAFr4zXB_jEszMXN3?#2qAvLKZhTIEafEFQTTV z20EP%Gcz-ooSY1Iwl*B4Qi-UjC@2&P6c-oc#EBC~Nl6KJw!E@ht(csggkGC>u1l&KlTn?pD36V$??reEQ^UyPI50CnwpyM>tFvGxw*M`?z!ji z`ZLqm|sWQdQChf=8wbMEF)y;yzWt`|WI zjDfkp5dh3)Gp=91j^oFVdwl1^4?o10zVxMKyITWuZ)k4czKzMrN$_|)@cDcc78be% zk~eSOL~d>_8X6j)*Xtn?iE!e?2>^2iT3cHSyALKce!*REaTj_c;lo5;$_LPtjj^m;vbJRSrB0ZL0txqUdDPSn)Y zU}9nd48y?Ta3D4|7W?<_M{{#CG#U;1`}-jli=k91QB+g}hr@xox;jiuOn}el!)CK# z$BrEV1?3|nBWP%7fZc8fpU;OtAaFZBO-)Vc?d=7h&xga|Ku%5$wr$(yR?eB3nP_co zh1qO|)9J*PEnAS2lY`pYS}w0qQBiJX*wfR4+1Xj>bUKWWj{^V{3I)o_%Fx-_39VKO zKA#UhpO3P#GDJm10f0|sP*G8VqM{iT(H?}a5x;WTCLFO zbeNi&g3)M%(P+fT$OzPGHKL=V!;(L$7vZrM>P1ikW3$-|kw^rIL;?UXnM`g0$nfwm zl9G~qu1J-YmB`M{#(@I|0L%rtmoHz&qmMqy1yBHR>((t46civnKA!t*c6Jt5u3SM` zSs4-%5&*d0pj|E(nwpwWUS5ufhzI~cTU#5No10hE;$2l$g~NvrBPJ#Wz}(xVs;VkH z@x&7VfR>gP$mMeE-Mg3D#$Yf20P^$mVK$qQmX_w$m734zBRxGGB_$;Q=H8xMxNrf9 ziHV4ejPyBgtg*2%)YjJG=+UFx`Cx-YU@j=OSS&bo>J%7;f!%J$wQJWP5D475j^Da< z3&)NfgH$So%jLr5%a_sH+l#`&LX?)40+<`S+uq*pHr~0Rp#eva9_7lQxw#o1fBZ30 zQ&aKOQ%?bydr5Kg=1neG_oWPsMk5*<8<#wX27>`rRaJQGvB$VN)7RIB+qZ9{u&{8& zWl0DjWPO>Mn!=BN{A1MC)&c+*oGpA7p@-byTda)PbI{w{i|>E``zR?X!E3L*#yv}g zn%!>a=4Szb$jC?}Cnvi-TawUW7>4T}E0IVL9UYDI^mOR;dJGK>!Duw1ySp25xg47} zZ(g*)D%hxAgx6ZA7eSkqTCdlmva%9IMMVIBtgI|(wOY6Dbai!M>(;G4r8hb{3b9y> z&6_uKpG8JSqNJn*jg5_N-&HD=Zb2~sbaZrJ+qP|7Pz=EB524*|M}B@j7f=Df_U+r< zCI$0FR#ukVjXW+c4lb9A3p}k>tH+xSUxHheO2z%3?ZVBrxUN)veLW5wIN^#7k2O7z2rH(bLS57^Yh(qYU%0etMPHn%_u7? zLwb5TfVtqKudk2$zQf_b^z^jb?9)pb8yoXFIfF{2@|YaM+Zf&9;bExN>P6FM7{((w z;_-NHEvdfnc06LS7-q8>0FaZDgZlbYoD0rb0)b%3$qW{jfiLH9Y;4Re zz-Gn8#VxuYLI@%2-??+=@U3rs3sX~5aJgJ=y~fDeFh4+^n3%xVzy5WcKYu=C`6^KZ}{) zS~)+Dtf;6cJn_U6=3=1DVyluBw*|XdFQU<=9!`azcuk~Q9 z&U{D+AtZ1&Zrs4nfBtg-f9tkO)~@;I=e5^fLvnI*(1$ze^?I(sCNVK_$;J~Bemouz znVFdw7#P6l=qT>py9bd-6!aEcsu$}^sOv@0x>9?Sm6e6At}Xz8R;yjnQb!RH5ngA3 zo8L`&DI$@GYqbqGp-_mtygWSh)KiFwiNPnIe6r-5>(4*`92ScO<>lo#dh{qBd+agf z=H~jfZ$6*z*6O=ZL`1}*Z`AEFGMLQUSHVrWi%S`qaXb!C~3M}F7)*D!0B`%Dk=)8 zsi{Fpm#m)D)Ko-9M#AZIqNk@PC}~o?SpPy%FG3m^13*GT0vZ|`uw~1Z6>XQ8mUN+;qY<}n-*%hvcrn|zZ%2E3J0>P3xX*lTZ4RdS`v>M)VW+33xh8+PT<#ILu>;Fl zBO@aL1^K&o@8()yS!{Q7wo5`yO%2zI?Ql3yRaJ$&yga}68K_{D!Hyj}@WmHjxV4H8 z3=H7Gg9mQkYiny;vSpnRLde?po8SBfBO@a;o_HN&&z(l2!G#MK0#0vYVghEf8Dg;* z85tS$vSb}%CwyglIWBy*_6OCA^)D3lBINU*XJuvKqmMq~W~*L_qeqY8_U+qfZEXd^ zFyQm~C@n4ZX#y{)REncVkD{ig1{RA2LZJ{YmkS3D99Y#E=6ZX3apT4f@cDf3cs%fU zJnY-Ik826d%*;e(WhE*qDj*h%QC?n-ef##|^Upu$zLS`kh_bRWzgvyfYBiirC$3z% z0$?r}7Kuc7^wCEF0K0bWLThU)&YwRIKA#V}-Hx1`9Asx_2cZP~6Ra|bjEqEaaWOvo z>@xs!7g0h&0`~9U@77iS&Ye3*PEPhZW}Fa0$l5nOJ&iZtd=mh*6t8FV&)w^TL`%G@#}JotP*Hf`DjjYfl^p&`V^#(GTR>MN=j8%Hqf1pqLv z5WiNPn3zCYTN@4?Iuy#?5JCtcILBhS}#~34UA`IW)@vXmJmV+AtV?Y z8yoT9!2=pwya5>u2DG=guXsD7(Fmv035H=19UUEloRM%)C=}e%t=?9zSq{~UjVaK2 z!3s%Wtkdc6@y8#dva%BU_wNtIE(jrn5aNfkXU}p=lx!5u&CT5ZsT=jiz%UH=qNAp! zX2sjH6L`wy@_@!1lC_1$<3TQ$1AyBkt-hjqu`vZ&FIXX&d`qEF;K?VS3`Np}5JJd9 zV`gRsfBfSg0sL+Gz2xL%6crWuw4C1EyLVx;*|1~Bj!5E8d1} zHHwLe33hf!n8n1zV0wDmua-fo7aLa~^@0`hS*Zyjgb)&#mtTGv48uUL*Q2hk4iyy@ zc>ek4m)-9E{rgBtN?L^+hF5=of4H*{RE33w_{KNBfxNstSS%J?zkVJ6@BjTjw`CUr zVDH|&_^e1Myz#~xZlB5Ja-2SWdbP3}QtUZp&+$rZqFFpfErn1h^t#RX_&8UO>~=d!N=lHMo4d+64~;LI@#bjS~um;Pd&2 zkB>)rc{$#G`)%m;dR)131>3i8M@~)-_g$@4i<+7mq^72#x3?F4eSN5}uSa%vHcCoL z0L+cs{P^RKF*-U5u~>}U++5`6=W}U{j*jBity`Fwn1EO;#DEHZ~TozWOQ*1_OTi z%U`;E_s*R=c;%H>+&=rezxz9E-nyq^GCj@ZrM{i^Y&gBw@&TXarI(SnI!55JCtc4-qyv zb-7%~%F04_ceh($+|$#8jEoEv7Z+n@W(Mi$=^kCFTU%REUS5u*q$G@wkK>b1K7mT5 zLPA0U%w{txDk@N1T#OSZPQYL=pt73S>yzNE`fB-i9;g7YxJT*s)`7pLKS2E;`1xuC5L$l?q3X9$k&>t-3(!1&cx9WMS=;&xX&7#|-8FxLv1 zn3#y1oE(TmBE-hVqO`OWO-)U1X>8lJjhodqDk=(ziHTeqtBvh8xKU=Mo*xuPMn+=G zmM!S$=va2UmtJ}a4u=D0&z=os_ErshKK*F{VuR}WWw{Z!TrTMKdUSMjASNaTadB}T z-(dsePd@nszxmB?@c#Snqo=25wX+&>{#@@HwO-imcJ%c0;K73j$jZv{_`TEV#L&d)Q z_0ev(b1g~h-TnLbQBhF=0Emr^#gQXNyw0r5whBt6Qdq54w6wI~v(G+5bab>|Wx3X{ z_nF1U(Jo~p){756{19VfW8m?4$j{IB`eM{%GQsI|qN}S5Wo2cMNF=y%;|8u=xq=s7 zcp(hA4!%I@1&ab>LI@#bjeGj(rx6hmfry9*kKbiwWudLD4Lf)4L~n2JvaQ9y(%lHz z0DL)X>7jBX2F83oAFsXk8g}g1f$x0hJ1`gwOMd^k=bnR9D#g3+zPm~}Ts_OZ=<$Yq z*<-WWyk0l!QBqP8o_XdOAvQE=001BWNklwF*|T`+si!=;OY`}BY}vAf z`#Cl?7Vp0ME(Qh$Hbh{|c9r!f0NRN4qP)Buv$M09nwmmQO%0}|raZb>v#qH4`T5wq zc{2cD=gytDcI}$m3(xf|kb1$QuGEAOLdY5?lgSo+h}*n*Gp44dFf%iQzP>)Uz?fl} z6?Yj_DwQ5xq9-OMAQFkz?8DQhO`F1|99l%6S zzx-ufx^yXQ-PuFQ-@q97TesqkKqwRTOvI!nJyCWAmAa64``klYC4t%1Pm1&ab>LI@#b9TNxy z*tBUA>gwtslgZrH=akFk7#tjg!{P9GLXvIUwqa~+3>_UEuv)En@ZbTetE;hd=gv?a zLcn(K-W~2N1dT`}!Y_aMOO%w9;O)2H#@4M{ap=$?96EFeB9RE$+1Ysa-FMw4LVN0| zrw|txhqvE;JB&FGoo(B;t#}*uB@R0=+j`gD-j43>Zj6nMVQ6RwH*ekq0B$+9s;Vk{ z_St6u0F6e2rluwg3=E*JuMd@#m57Ll@Vd0qdc;mH<sGY2wLzoNpufK#&CSh7PELkMBntD91V9J3EaAM z3%73F;)1cY9DK4t;zpR2IyE(wTUP5wKl+i|?@pXJ0g*_Aq@*P7;g8SfrM#?6~I zq19?vJ-?wce*&FDhYqcHdxb)Q;o)J-%*?>$a;^Ki;dDAtUtbTS(Fi`D4~0U3BS(%v zrBVTyYXN0j1I1!7nwy)^(9i&ZK!Eu8cs%jM6Kl4|$4axnNVk6ZHKA(@F zp&_)iw7_PwK_Zc0%a$!DDk=gnH!Ox-<_nlx_ncuE+`fGqE|&|*$;sHaZ(leMA!q`v z7c9oLQKoPtgb+d=QdX-KZ@&2^UVQOIZl>sm&8btTFfcH%?jLr^9QHh_R4QD!aKW!M zT3cITwOWy#osG!I$ROvCgu~3t4DQ~&3z0~Kyu3WW(x7^=@dTq@0MwP55JCu9_j-GK z5g#A_&<4c-aQgJ=aA$#pz?Z-LWxuzLkBHlASA3xEP+ zLI@#b-Ll*5n4X@-7him_rpExUhEu0bK`a)7VVDiGp7FzqZ7ohnNWe=kz2tW~2?+@h z2n5jSbj!}_P1e4dnHfw^PeUja1{45Mz1UcSRWASvj0quxkag?axpO#o?i?~RGksd7 zX(JPh#rVcIz5xIf9Itb1SNLy#``ZDf!{hOgoSX~*=;`V4c>+4J_SkGT^z`%qm|Leg zkl_+kFE)-~)(e2f7!yJWA!LJaI2`!ax4wmzmKH8Brt!w>$Ncf($;rw1@WT(m;|11+ z<8rys*475A)r!c-NNnA@mFmPg<8rys+1Uw`$pn!|gxuWRfX^Y-i}f!Q^@3WA2_b|K zvLW#KeEj_9KZjf{r-$5iEFvNTzxc&30uG9Sxfdf_wrl~zFfbSlxPSkC5OPRXQ-6Oy zOePZ;hCxO~Mo_M8su$~DDCz|T#)J?;2-z@_l9KQr|M4H-@p#mwdYzcxy3a5S{{7$o z-LJKa7bBC&uw}~@0KoY8I0ZrL$o>2GF)=X#0LaM52-AP}K_xj0qux5VE1{ z*|UdR1DI_^pa6MoTDZK{kAM8*kgTn$P$-a=mIeSA8yiDcR~H-(N6_~}g2Ul(;O^bK z7#kY{0HmjHhS3J+xXaoK7c%LLt;@HDY69L%L70GLw^&7#tjg&1M6S$3sR&2IO*iNcTzg zV(nXvdO?9PA%qY@HmrO1?%{ji`yPgdh5&fBP?FWR@EoYsYW(Ma{wLRR7it!Z1zlZT zuv)DE0I5_8wOWm+sHj!hKk-hl*JEH{fP0Y@5fOo`tSm%CM6AmGsa~v2t6487FeZc$ zLdb?@Hki=>Q^Bai&r&YPNx$iBO@3d z9_Bt12n0|l6i_G>5Q#+K^Z5{oM5~&whk?`Sgxzk3!{LC{YQ@yl6m&Wr*M*s37$hYn zAt@;-C=;-)G;dTd!ecGe3kr-0A%qa}P#7H@#p|!Xj>^hPSS*%sXXl|M7K?HC@L|02 z$}5PEj}L2JY&IJP1_q$h>ELua!5rUup3)o5>Thfb%%%*+fXCnv+5tqn)1R3a)W3JQe+xw*O6yLWHM#}WHWuh&Db z*TZNu!fv;7|48r&1Oo1#OeTX|E)V%QVt-M+SUusc7Zey1LI@#*5JCufsL^swgb+dq zA%qY@9%>XA6G8|fgb+dqd8kofOb8)_5JCtc{!y@fMp z&fv_MGkD{TH}Kwj@8S0C+uWkq0HD!m@YY*z1tp^-_-1BiaOTVzJb3UR+*u((6w33u zk?YL8d-w4E`|pQ48$NmOz4y@C+8XX`5JCtcglrfAwHWW-y&KOy`z%hJIDwp;9B4Ee zR8&+1D{mx-G#U-+>gqz4zFx1#`Sa&PmOk+=)aNx=-hKDokgNlE_3Bj&4h{w-EvZzB z#Kgp)q(ulJgb+g3mw*CenM?+yQihXeQT-w#@P2?+@}c<^A*(j$ZrLI@%2hai}VB_t#O0E|W>luD)7 z@91Z&_(>ZiZH?g-)k~Kp;SBYAVXg${-Sn003iS zW2mjI#l*w}TrL-)qoc8N=T2m1X1b-(-rf$A$%L4g7?hNhASESb$^0+3&Aacui@kgI zVqjnZy}i9~I2=$al_)JOMO<7Q0Kn;VqQ1T!-QC?VnM@Fi#ZakK*uQ^2L?RKInwp@| zXz=2TFS_l!s;UY`qY=lC9|r(jyLJt7xg3d!iMV<5CiHqePM$o8#Kc5ctya|3)S#!Q z2X?z1$;rtmD=S-c0qhSx_yAK=Q|RySM`L3n0N~r-{xM%7m1*ueuyu3W*<>h(Z7i)TY8nU#`dHELEmmU0t|-{W^fTa|Qqf1qCQ5DDbH~7rWM#N+m8_xB!dAf=@pA1OT8? zsc`b-Nss)o=k)2PpT@0Qw=gy~27y4}ajY7R2DfkD#^3+_-*Z1}G#cdQ=Ayp79(uhV zQmGWVxw+W6bLWy}vfMpPqtT$VvlF{_??zo+9dtS!BoYa-va(QESO|t;xU}xvxr65B zW*7_xL`O%XsHg}$9!(EH2qAM&6_vfT56`Jr;(eRi-d#(%*@Q->eZ{LudhdGX(=2I2QFT`h@6}pl$Dji;c#GV zY|JfaYG`OcOG^t%OG^uCB)A z%a`%ui!XxD=cBc?6EOeTZDV8H0;DEC0T5<^2n=ek4y*@CXI&}&kfBZ3$lasM$&mNE8S5;ME=gyrd zDk_56Z063%(W6IwIwvJ1CE)Y<7#$tO6Hhz=0A2&D?CflAoB8?FYPH-;je&syR8&-8 z=gyrdD=Wk7>?|4@8gSvl1w8xgvnvYNyqTV!hFYygNl6I+;Kq#``0TUK@Z59Hao=&d zT=?|UPZ1Fjfn&#xK`a&nm^&YT{p(+`Yu7H6mzQH=VgfgA+(1M`1h#J7>UDo6lL;Sv z^bryg67bk#kActUL!;5)!i5WX`st^+a|$e9w-yTYy!v`Q22!RO85s}?g}8kAGQRrN zuYzG1?pT&9&!w()g+hTBUU&h&|NZZA{P=OGR4TV%av}Dd9yo9S2?+_%>2&z?(@#-V zRfY2M@g5JCtcWO+de zjAv(OF*-Vm>gsBwq@-}IZws}xwE+N*9zDthIQ#bPLq$ae3JMAk85s!xIB?(qw~a!f zKz4REH;!<2b{1Bv6gg^Y@515{wMr>>>rl+S77Z=C1G%FMesMYF~6enkBXb8_f`>b2*`_Rx3hK7dl z%rnn$$9?$lVZ8IsJLu`@aceba357y13X>g(&VWy=;67Z-Ee zB_t%^4}bUrG#U+d?AWnr`o37$(pOMWfQpI=*laepyz_WGkASJZz8-05X(%cx0x(xc zbUGcr_~MI21LL-~Ht_j;96NT5dl`_Jn271=X*4u6;L%4P<-WUI-C8Kn^XlvMxSZw6 zlnsR0dcs<+JeRxH*<eX! zWMm}%{O3O}d%T1YLI@$mcLDXsyK&pZD$U zdSMvGqno@`Ds?;GlarH3O-*(CPHb$fUp-I=A%qY@$l?NOG2XLh4>B?`AP@);85y}` zS4Lp2>*na_sMiUD*oQ%@)r!W(MhpxLz-TmrVHnu$cDHen$BrFCXJ;qc+S*W4Q-kf> zx1+GI5PUu#v$L}R;L)PubUNMAm~SQ9u-$4GVke$TN=m{r&pd;srY4*}e;#phaoD?e zuV1s>%49N+&ny-Tj7B4V_q*S@eQvkg7aiBVoQ21<@I3l*PJFd(+cs2GRKQ}fKr9xc zr>BQ&akN^kaJgJw)0Idhn4X?q@%|QSZ*PZItHt#6G+Zv%q7#NKY(Zr6cH_nk+`M^{ z`<&h0WHNc}rawD7>$T2^#bU1B&Hv0Be`;O_vFcw9uJR;J%swR%~E1wVo+XQj*^lR)YsSJ!i5WX{`uz-9UZ;s zHWrJ;<1=sj7KucNj*iCTk3a75J72n!`oouV;;WRD6iB5~^!D~5HZ~SUqmk?W9T5=$ zhGAefn?1HOo6TFDA4+Cqf2!WPD@L}?%lgFGBN^SuDc|k&&Txiw8uUcn-t8SZG0h-NU(qZendn>aNVjU z5{X9u=W@9)F)`s&nktnFGcz+_7{(*7OSRzg`TRw@`!2_qb0QE3mh5^xUv_pjv|25C zdwZc)tGOVIVHl`XD)jaBxqaVevtf967%G*D`^;Owxm+0z4GkeRH5F-TXvKCEe+6=0eYqZ&<4c*cUA5=e4}Z#Y;kC|= zYxni|+3i@py}e$$O3%l3`Cho4TrOX9BDj^_!$CyTcw^>X_M+YJz zBA`?%!Q=7J-`|hf*;#IUqe`WM&1OSuYb$o_*a4f(hQ`K57>!1sTHn=bHIkB&aPi_r z?AfyiF)=Z)TCEr#A4h6x>Y@+%N~IFLy}iiF%7RcRTy%DBZ;Nxc%;tM;^iX^XE}lSBH#@3|OsJ)YsQTEEcVMK2?PS}pIk17QmI_C^CS!o4&vg)i>RrofljBx%*>46 zFE+{2lu9L{qN1QsC{SEnj1wnLEW4~~xX`^~^@RI=v8sWwL?XedQ>Rc6oe182{kg-|F&Mn(o6ee_XWy?PbETual`)D-UAxdW@!3b9y>^z?MM zS&Rz`3Lue4(AL(5+S*zO1Omjw#CYv88pt-@2!%p?@x>Qht8Pq842~T;#?5Lgm&qC@An~nOe;8{Q2_`3WeO7!M<4ToB(r^N#*3^;Of<@aJgJ~?6Jo@CVyf@Mn)nrF%jeA<6b8` zd-BOAQCnM!*49?=cs!)0rlP#O+^ws4ad9!KtE+MD+&ON1^}&M&xixLQ*|TR4j7B3a zUAhFP)5)z*{J{qw_*4!lDJeK{;somJ>(SZS$sJ2hPR^p+h(scM=}TY2?c29;@!~}| z91bKTB;e%9lZ&oTyb^(&S6{Bj<@i#j5{U%+_U%JMLj#(cnov+sfZe-yFI%3zTVQH?%lh+jteJ*_-0~a0^{T3eot&jR%U(>VK5jl zG&BU6Oy+fh(Qx_j!w+%x>{-8th!OuxPEK+!9h#b&@atdy8o9Z-c<#C9@Z^(EhBj4NLr4HFUAhFZSnStWQ9@Q?W@ZL|{No?-{PWMRXifx;MuVD~8od1S z%OT7iA!N1abUF+U4syep1OfpR3I!Aj1weZ`w{q@&z@7_Hwzrf$-FGltIC=79xU)hYBL2Jsr1yq|tbca99X&lg zn341xK}sYNL`O#>Jv|+Iy&gkDLogbR=E``zR?X!E3L*wxXBXfuMUu zc&&x|1qH@r)v#;7-n@AeDwT>GgGmS>goJ{@V1QPu<%Wu=)#??^#Xv%XooI1-dKv=* z1JLXB=;-J`Mn;C$r7DA|v9S^V^iThUsi`UMGYWv$hJ^w0?c2BU(n~Ml7r*!gx3p)d z(7j^qTFv_f&EP^-&8MG!ijO|}2qKXPM~)l`cXkLNglu3F6BE#AG_c$4P$(40$;qJy z-8CjUIvP1SIf#yqhRtR}XJ=PTZ+#0>Q&VucT+}OQjhY`IPfSeU>tFvm z&YwRYvi;G$VtrVR`vr|LCWH_|$c8dKJ&o?}ZU8`HVj|RPb(nKRmNPIgz)eEBb?erk zcVDfkslj)@`&}*|rdHzhg<%-{@BjWU3JVK^nyy~2M^{%D0J>MKC!xAuP>V4kgb+eD z43o(OtyT*Fh>wq_2iL!>lAz5e(-}Ips%kl zXz5xk7P?ogQw#4G>_lmSqQICCLI@!ng3INCR;z`}<$_!;M_O81xU)o7AT2EoQBhHF zI-Oj=5-69;g@5^%f8idSDJWil*mGtwned|@{U|7Dx?C>w^z^{#bRsG$3aP27K}naa zp48M-L`Fu!>2#u}rza?BQeaF7A%u_(VQ6TGTlYL8BO~0|A%4in$UsCy1k7eLCMG5V zPVb|SKEmC*cY}~KvKDAG8eF(=A>ec-CMIAuo4I=hy)apS7=}S+W@b?D7Zey1LI@#b z-E%k`7#SG>Ft-jWk4KL<>k*&N$L7tO0nEMVa5|lSr)9BN@ZbOa-@(cnStDM5{q=yl z&N`h=3=Itdn7dc-`TSsIjjS?0pN~zOHUS9yegRNmOb8)_kPU#Hh$Sj23R0;w%()?f zkjZ3-jEscMX5#`FfBgE_zlKhyquHl75O${O-~RTuey1@wI0(DlPWOrpA~G^EDEAA1 z0^_jLXf$~H?YG074MGSZWZiPPTo@l82LNtD7P7vv=h5HpkuH}DAAImZFtbF~kPkli zz^@k`Y+w!0y<#Jof4>OiMHmIfgb+dqS=VM}W?;A5!7vP>qoc!}9TEfzg#rx2z~OMf zXf&>P`<9j#ns93aV$Y?)U_g6&`--9v$GRuZLc*M`UCq_UzdMl}d%`>S_!Q4niOhVAG~eC@n38Krol} zYuBzpCX<0-7<6`a!eX&Np-`Ztqy%cU8nd&rc>C?QQC?o|F+=4?AAJOcLV<$^4|*Kq za_O=jJa~Y{#zu^cjKE^CAUZl4g@uLOKyX$|OA9(WI$$suAQp>}m6e6!;$n~eI-O2j zx^xK+hXW^0oB*HC_h}z`y&l!o)fgQe^;rAw^y$-(%jK|It*EJ~K~GN)>~=enlao
oB%r_+i0`g(MCcf({dK`a(SrBY%4{{0Y%L`zi(LI@#YG%zrLmX;QbkB`G{w<9t# z64}|=*tKgHMn*<(>Cz>9^{Zd?*zV(xKgQO77Tcm26%`fMe30OZiHX7V^t4|sKr|Ee#@E%=wc>5q zx)c)=6YT7eFbm{BPuEiMMXt8a^whRW@d2l;zcw!H>04SfZMjUwG~-eS$O7| zXCM#=(AwIHOP4O;`RAWUbaXT}ZQ6vct}eI0*kCYVbaWI&MMaC|X}NTPxfu_|Vlj>! zIRdd*jFy%beD>LAcljb#-WIX+dFOArcc4VKSMxz<#0Y*RR85GU2JGp5kW7 zTW%k0t3j`#001BWNklcsw3jTU(*kYH{%3LC9n>u8b%sCWMf+tG&G)H8nLTC@4T_ zX(@O-9;T+I{B9|G`Q?|v=ksAS8ZkOLin_Ww3=Iw8*s)`7!LiHbf<~hOFgF`$a&mG| zj>jKtmsz1u7`8kF%l-TJQBhIh^>^%x?)mEK>d@HO==NE8c{#GOvO<=})xthU*=)8I zZ#y|T8SLzY-RaY(ar*RW#K*^DWMl;Y_kaI~k3as{>vsO;e)reE{uM5li)(0n*adRG zU~}u3ftT04kLV85tQ6 z2n2|Ui9u#&rpJt90)YT!Wo3{`r4WfkC@3gETwENQo0|au+1c5+fB!zrW;3^qR;z_f zCWA_)S~O3~r3-*-bxlf2fH61HsFg0!?W zkNwru)L?jc7$;7ga0^D4+sE|uG;}&03JMA!5C|X^i?M6hE{u5Ek>gew{G3S!Gi~p zpPvtfLIJs4j`Z|&kDg1u5(dluhXVjM#Eabc_;@`2_~UN>Qc_YNl}ZsA8R_wTi^YPds3;siew_Ok&X*Ly z#5NF6UU zU;XM=UhB_#7D!;cSOe8s<#M_3`RAX9I~!|SAomMaK(%7wY;IDi6jrMh4u@mKYl1Nh zoHCsIXM{v0|Nj6wOS3SREqBIZsg_V0hkMn zGcz-noRDF;biH8%Q?@(v#KZ&~4#$!YC=A2k&Ye5BbLS48e){QU-(oG?2U`K==aoG! zw#8t0co;I73~_OB+;>DG5#(|?CMPG6nVE^LTesqqPd-6qWhHWRbCHmcuw*_6A%uii zPfriza=FJ)py*?DAb3W#TRN8TrbUD;ORg z#;2ctikDx0+3N&SM~@x_!!Y>S&whrPnHdZY4&v(Rp$81LAz18r?> zxO3+Ya&mIKerIH41T{4^c<|r>#9}cwoQB8aVRCX3fBDN_aPZ(kw6?ZFuh%0wIvV@; z@8_QPjYcDG-n@ySp&dS@>=lTx+itgWFCUVUlJLwk&!DNP3FptBM_gPS_U_$_#KgoU%ZU&|NOg4thI~IU zF)>`A0nCll>+kPJNl6JJBO?(XAJ6@b4JW75x#1?%X>DxQ}$QxpU`m z`t)gBx^&5{7b9!arcD?d8^g@Z3;>|NzaJKhC8RIV!oi;xCJe*C<#NI4bgsA&FPu~= z70hNcYHDh*Y11ZdJ|~vJV8F$T7ok?Gas2pkOifLpy1E(wuxHO6?t6`mjW~MrD1<^G zE?>Tks;VkH`|PuDxm>t(=@MKn7fzl$38T@7%a<=hB9UPG_U)^Btbqz-!o9G(E}0+H z1%uUU_4v$WGPzZn?CfkbHa0@1)1kMw7qPLi%RWpjm+r{O2rgc{h?0^Ll$V!tZ>r}9 zpKNe#u~-%jj@e4s(b0j*%1S){{PSE|zU+g?e+b=h4;G1(8UE)YMcw^2j4@ z`G}5=#^aAa?y>**FCSuJVo+XQj*^lR)YsSJ!i5WNW2y-ugsdI@1PuP*@px{*g+`-6 zLP7#J-Zd*L3$3lKVGE1}0s-uHJFHggx@!qqip^$2dwV-_a&i{!CSF!n29wDIkw}E` z@p07D)WB}H1P3$;nB#NnbP?4GabY_mbA-a>3znV03geEWM28 z2gV!e;lHD!19rQ8$rlduhe#zQCE>w?2heJ@tC78sW1n>>Fa{1CI)tD7>}UAbfBjcf zRaN2ZU;jFO^PAt`AO7JVJX(!SCX>f?Ad|^Fh9a(a^XtB^ghC-~HXCd<+qxTiA(2S1 zckf$oh={C;Dvu6)tVq##mS}{I8j?~mt#Ky*=qoV^65fM--mEiGs=E7!5JJK$Jv|+Db#>_P?_YF`X>@cn91aJjrl#Ef_S$SVOifLB z%yPVtUav=YcQ?w*%K-p`gM%=e&3N|NXWjl5R99Ey&Ye4935?kn@!ooRtyd0*11&8r z$jr=idzkfQyNxgj8SuBIb^LkIU5z0ItLey*Bk1hx#FZ;o0095guEWt<+^0%%(?Hg-RHc{y%jewhMX=4PgBsB%h%VJ>({Rn7#OIx{dRVCWM^lS zmX@YeU?nFfV`pcl*V?C`ZUwpfqGQL7dIJ+bO} zmX?;(t5=T}En4XHRVt~PHEZJN=*Yo?2T`llI5|1dyLWGc=D)RT*XG!VO3oSmI%-@ZL(&z{v=PusR_v9`A6+_`h8)oQG*t?~2oGn%H0 ziwmt=x8}r&6I82K&EzzyRjWpDaIi9U2ISO4ck0xM+O=x~(7ShUf`fxOb?TIo4|jKW z<$Fs@OaA@$Uy_rPmBG+@_Ux(D64=?O ztxUCKW@d(~t1Fh4mej9bp92RD(5_uOoSd9UO-&^vBm@Ts2ZIreH5v`s+1aG0rxOto z!Rgbdsa2~MwQAJ@;Of<@`1<-9yx?x!xG{V7?4f=8_K!Uav z`t><-4^yo3!`h-uJr8LlhDvmnl)>NySuwGBK(XQGqAU}XV$D)?Ay1Gi4!L> zbLLET?AXDpufB>}t>*CI!%uc2O4;+zKVRhE*xA{Un3zanVxqwy!cU7AUU-3R+qMxN z9{{DqTr>D3=3=4j+Zxo?mSnw8+KCeMG(OP4On z8=uU~OwOD+LuhCyqeqW^!Z{Q|2vL?UU%t$hD_2NJNC0vI#TG4EP`7SfAm{#f_Uu`1 z+_*t)|hZZebC_!v;ax$AXZBo{0Wo3o4vopTFzREo_Jw2UYfBluALx&oz zX$}Yopnm=OkG)TtTCL{Fl`E)JD!u-6Pb;lf%jV6SadL7p7#rl?y?gB5y_;^`y5a5Z z&ECCxxp(g#nVFf`+uQTpbI&Ow(LU|YoH>J5tEEAM21V}1b^ZEvMvfd=Mmc-@EG#T| z=bd-x-n~1{&d$Wf#u5+^!20#;0a&zX5zfxeyz#~x0JLk@jt@Tg052~u!o$P)&wu{I zsZ*z(I3^~B zpr9b)C>D(eVRAld=tpoHz!Y?BqAb$%*;$G zSFTL!)~$;@_21*9)9E;S_H41si(C~dFurl)27!Try!z^^g;ujaO@Z;Rzy3<=)~yZt zO^1hvvw#17rH~Xt2qB(T7cX8UBO?P}U*D&)iKNh%oSe+HYuB){vMTnVZUY7kASx>A znHiZ{pd8C;)vB>$$BtsH3^MA2(4C2Qc@BT5fKCh1<|Nc zqY||}FOOVZUAcPoDi0n!P^Nskb?X+#jvXtsW?Tp%gm@O@Hj6CHu3F;B$vuuGX&OIt z=+M&2jwokFjT%+#-%45W>?w`%0-n%xO^;JrS{lFq{yQp_ihA|xJrhl=@_X^c7ddt6 z6uWotCM_)ub8~YX9UW=Zs8NA^nS~HSh-XRFs#S@KiXtH)f#l?5lV)HLScBN5XJo8Pd zg%CmrQ8DDsI+2-~S?K)EqI|l3{W=Z-2 z^|-paVr6B8Mx!y9>sLG-bUGb3ZrmU%D+?Xgbl&CShOxNsrX*46+L06m3rkD0Z#HH#K4DwPq} zRVo#=Yu84lQjwC9!ri-fOT13;c-^^kN3XmnjRE!~Fcv}xA;dGo%F0Tart1Fv`|`m1 zl(>8ME^%>j0Mw~dr$lp+=GUM>1HSz7OCTp8lHmC1kb9g|Ditb~ibabS6>IL|f>f$h ziQ2Vm15#EzZOW>=kib|7A%qam6nlGne0+QWh>eZq`t|E%XJkn^_)w)vl~PaVg%@66`t<1lO3ji4$mLi5DYj+(Vd-x5LyA;dE&DJhAturRb*EtZy+czJo@?CkucvnBqY`1p7tBO}phG??dw zX3ZLI-MUp8`6<_~U%$?}b?ZvBj@!3yvt`Sc(#eo`CZwjOvS!U1;^X5>yspwXM@!4b zjT^aq`SO#_h7h6xb8v8=e*OB&AUn5i-QvoXD$L3tMfMB&HuM3J$d^N=gR%Rm6a8vM~~+9*I&oR z#^$l*Ny>^Rt2~q!B?^qSS}iwj+@M8^76b(ak(QQ*t*vco81TwI(ofQxv1%*@Pibacea%L_|O%O{ctTU%S+dh0C) z4<5|7-+s%%g9k}ZPuE*Ug5t7cY~R}0*wD3WS0+!MTq;v_6^E1+<^`-@SX6 ztgI{=G-yC*XeigOU#D^7#(K+a+_;f;?b;C$5y7onx5&=U#>K^j_U+s2%{LVu9?pde z7kKdC0omEvRIOT-4jnq+z zXU~$Ioz0jrV+;zc+~eE1b7u}8KFqy)_h{L&B~6+%QTD^7OP5fq)i^mh(Y9?{gLwnb zpFhv#%a=(>Nx{a(hI;ktDa~Uv8V#pTo#N)rn`C5UP^C&0nl^1py?XVO-yc4F7&|*V z%+1ZYa^(sc85uY`JJYdaM>HA@Cr_T_!Gj0b+S<~nQ6m~PYE&w}HD&uuJ+HJ{EhkT& zROV@PcXy|G^X3M}I5RVolP6Dd^X5&mva;~>^rS8;ga71+{C}rd_*sdK286a&F(bbBBNb{g?Rocq}X|aCLR1Z{NN~Z+MZBk?h^O zm+sxWD+65=mPYQe2@ek^H8oXleVsaWQbwmV<^0R5B983 zTDELS&6+ipWlFQ$i-?FII5?Px49<2D)R-_ty`CC*RB}^#sG&79immMRtz6L9FC*=b3kx1Rc<{)JO|4e**I$3(=H^DP zUcE3kHzzbSlpQ;EFlf-AVht2<_Uu{G($aY0g%_~0vMTTmX-Y~8yLa!VcJ10UYt~FT zQBR*f&H3}^Y2Us*RjXDdEG&%OyLU5e*f3?8;NW1+pFdB_mMw92cSo&O>m8Fld-kAK ztLfCK6O}4eA~G_PBS(&qot>>WH2;MQ7pPyqK0}5KL8Vf0=+Ghd?Ae30wKbhPcgDrV zg~-TA_Uze%tE(&3s#PoTZ%x@gFzviLdGaKop`mo_*b!%EXYSp*$Kk_=4fgfEefvmF zO{H76ZdhAebNcjYcJJQJ(4j+><|C$_qxtD{I{x|RA3AmFgqxci2?+`O^UpsVJ$jTb zUAidC6?Se%L`1M>&mI~yXh7@Mt;x>LCM6}s==l>LAJ4vh`{>Z2gAx>*lE#S>Cy0-a zXW+nr*x1-`=FAz+pFhvw!Go1i2u(dc`4#tkNKa44#>R$j-MV38W5fCL=Q(iT03%0^ z)O!h68s%P6QWAUj?xkbLj?}AHkEEm|cJ11QkB<+nTenv7vt!2&s#dK^zkdDDXfzx> zdX!_wj`8A)FDm&d==v3+qAG6znt1Zsv}seWf-_M*NLf*F6uW_TdU`r{?%Yvo^y=2F z%Yz3Gj5afD_XT`MM_EviHV8IGL0KIrfJirxVpOH>gr017A<)2 z-~k$q27pVKE@5V7MxQ=?@bU4XTD594Y0^Y_zzhiqp?2-sv}x0Zs#UAv<>f`6K7CND z)r5wI7AZdw5fQ}2#nGcj4?I0Radma2b?er8K~}C#ojUQ{bI;-E=!mzsH@?2U#Kgpy zydM)26RA<7234z8#mUKuI(6#c>+4(K@)s{&#N6DRo;`cw>FJ5PySozLoIZWpG-*P! zX3Yo=4%Qot!P3%_wr$&DV`GE0wKa_!HzqADjb_c7;pXP1v=nf2b0aD$N-zJ#`K>A2 zm#eVzDl;>a%aICM~!LNupyqFo=PomhYlUMapMLlDJjY_g`L}{PoJh{&6;%V*bz@pPrSXo zsb9aoL0ZYl$?V#-i)PK58JydNrE&ZAZ5lUjOr=VdFgG`+dGqFa0eDf4PkzNcmvU?G zJv=;cbabSB`}SmKXB(7#rBUwPy?YmXdwYC+eU+v}zP`T1#lp!f(d}==xDsXy_G;XFRfO~{rmUzYN8;g^S-C2r$K;JSbpN- z;&5x^?U7 z)!sfz{)yG^-@i{*R+chfWG**1H>LSeTwEO4+1YwcP4kM5j>f^kL1_}7%g4uuw6ruH zK76Qr=IrdOx9z!uGPt<7=>68l#>U|MD$Z|B*}lA=<(2=u${j$!+uK`jx%}r2M-<;_?x`vwpObpHa51<0r#@9ve>LqUh*oyu7^hu31Zh|Me?`5JCtcaumBM^|fo)P^;Da_~VaypC=?F(6((` zqYs?<<$bujbm!OUF6IVU{rmSf*w1-~-Oo+mSa57(V`DULxt|sF_?0G8w$D^~ zUlios5Bbk4D=RCiRH;IrK79<%9|fILP<+6o001BW zNklbm$O)fq~fB+421I&+82aW@TkXojP@B z(V~Sx8jo|D3n7FMLWrkXu>#}J&`{jn-3^+ALQaqu8X8)pz&I)@3U6<3y{6Fl`|G*8 zyAu``hE}UJ+O)7*wQ7WihwF`EtkGzQj*d3^!1yRGE-oY`C6SVnqBLy;xOeZKLB2b7 z?5Nk|wIrh#Iy*blsZ%GmY}tZZtu|Vd>*?vql`B^a_Ct7hxL*HKV*zwo3^QM~YE{h5 z%}Gp5q;B211ukP|W=42;xY0hS)vH(M^y$+)eE3jrG~V#=aBOUB44PO!PNr<1sj5_| zf|;2ak&%&l=V|`)s#>*boI7_8l}c4$KTuQ8(SpRp#OR$bw{G1+rBW$_w-t77o12^C z>gq~(c=#jti<_Gp4h{}<=+J@x{qKKNuU=hg#%;>=6B`?gnVA`*M~^mI+gX~&#}v`g z(b(D9>GcawN=ho$=#-|EdyvyQr*r4ddgn}D)v8tF_U+r)+uJ|Zc|e5_LI@$AB}ER5 zbLTEDXgVQZUtj+D=O1O{R#P}TI};WbModf$c6N5e#Kb5A%H;C%^W*B(tL)vom&T17 zV_{)ITwEMAYSf@|<;t{f-J0#&w-X#3Or1J)$jr}<}TKaah= zeSyuJ{rvp6a^(v9_wT1!vu2o^n{)N*Rbpad7&vgCvYeNf7gw%a!NWJSHu)Sa$fZk{u(r0w)6T0QzI{}xREb)(YLT6tO>Ate(Z0mbJ@*`U@80FWfdjnq$}3n}TAGwbe0)4+ zW@g02#bIu4j=8xx_V)HlO>t=+A5%CvIiXgoxqkgR9v&VfCMFUR5@K=__Pk6f_jEcP z4<9}xBO`XfztV`Em2AQKJS{R#sfUe%)X$*n%`~-kj9bRQBxIgI24>)6sDnMdwY8Z3>ZLAP!N0f?gerlQgdrt+}zyg*RLO^PMzYyg$tOOnc?m2O_wfR ziaZ&#N~NNA@7^3cc8p!ScA-+K@bdDaTeof;I&?@`u5;(k1O^83`|rPFX=zEFI(6vL zqlexyh0$uY{O^DNL#r+qPI+ zTXXK*In-)3*4Ebe`S~f|_vq1skdP3L966%Q4coC}$48FP{kWL2eWq&Ht{p0silax5 zl9`!_tE(&ByLV^Tu3dV|_3qu9;NW0RojRrLFL!r$YS*p}n0}5Hq;u!aoIih_6DLmS z&10PR`@+ucnl)?Eqel<^{r6ukUc88fg~cOB#eU(17udRWE60uy?lN>yFQ0b@b?d@GA&B=ujLI@$AMJiqX(O!fQ&#dI+ zWHxQu#L%Hb^_s1hN4Ia^CNMCNUcGwZ>guWt&J__6!M=U_o{DWK37t;IpMU;|ySqCr zTeif?$_kxMM_O7M2M->^#>R&3-Mc^OYziTS5JEf?q>Y^r70}c0KJ3=5TX=hWQ?+VU zrRLMZ!a|vnswmT~L{$dFHoY2qA1&?GPxLI@#*5JCu1p-EsYgb+dqA%qa3LX*H)2qA?y3n7FMLI@#*sL&)Z7D5Oigb+dqQK3m-EQAn32qA}S zu@FKCA%qY@hzd;tV)1ja%LA%qY@2q7vo35ek1AUQdiUw{3Tix)2v8XC&OhYw35UqU=Kfq{Wf zItxMwA%qY@h$2WxNZ{VRd!(hM;pgXvy}f;j)>opy_}H;yeE#|8#KpyxC=)^mA%qY@ z2qA>29335TbaVtDK0cn?w{PR;=U43Y6}u_*i4!My_uY3TC>BBpA%qY@2=T3yjbjY6e}=JN=jnhym`e=R0tu25JCtcgeXl;PEI5xB^B$p#R`mf?AReS#X<-n zgb+dqA<7LG7Z)1ja%LA%qY@2q7vo35Cz=W z`sky_m8}A$q@*x#;J`vZ%WuGd0cDx3M|xcQZvFc8Y~8xG%+o1rdC$r6;?SW(%%4BM zNWU@VxEHicandV@Mx$ZIj2R3cKAh2`M>Ar?2u_|nskh9H8#fp}d^rC8{tO#7jAhG~ z8C{nt*IHQ^HEI+I2?<61ovGWES9W$b^XAPfQkk)B+cs*}tZDFhR#p~Emo8<{ph3L) z>Z=SKIFOASHx^|R9*g_;@ALlq?=yJtU|xOoRbF}J6+%Kn$~@h_{`!ldLx(ba_;7{| z8^-L}v&qWJQobKOdNjj^4Kw)X?d@IWc`GaV@3T+(8NgIgQBjN?JC;$SMlpKyXvU2j zM^sdl!E$HMo@L_1iAn@pNCi4Q*bpulDC-@i}u=FK^H z@L;jGC$GZpIpyW~M;KT3QDzBfG#XZ{Sb?3L9qrn+W8AoLs8lMx`|i6kOVh%_g6Y$z zvuf2Uu3WjI_nl6sEAV&e>FK=n)>~zkFY)ZFUAs2^{{AIe$K1JdOD8kHqD6~J9H^JX z-Me=Q3=CxC$dP)Vmu9~H{PRzP2XkYeiPH7!ufOu*i!b8k<@Kbq@)yS4y!YOFyz#~xT)TFy&@?m}4YOv=!qd}}4jnoed>5)#7b(W7bFv?%~_adEuz$}9Z+_utst+m}f`GBPrV zh=^drh7DL-TLZ9c*)mqHT*-Uyy$8TAzx-nGyJN?WQKLqUGRf1EP@2yGWogo+Ni1Br zkmsL&9>{s=GG=5Lj~O*; zRM9s=Jd?_8jWOihh&FB7#M-rMnJ{4jF)=Z8>C#2{{-1yTF?eIUW5*7q$+L@#3n3vP z^zYxF<;#~77#PUz-Me}7%{Psv=i%YOh7B8VbaZ6Kj2VQ4gy_9xN>5Mc?YH0Nz<~oC zJa~}#^XF5kQYF2#a@TEPVZr%G}ZvuoEb0s{kCvSf*J6U*IifByL=OP4M!a9=&E?CtGo+_-Ux*3qtAyHd%E zMx%KwZ}=bO#EBCIpG8GQar^e|QcL6a-+yP&ph1OxmY+(cDz!Y6S7o`4#*S@8k(QQ5 zbaXUz>eP8E(+dg;V#tso%HMW&c6996k;|7a13CBQPMtdG)xv%J@yGo5Pe>PqL%ow;z~LYd{m+S-~)lP2jsPrUWkTZPsFu3EK<2@@ui zS-u{((s~9cYpJQJN>B_?w{BfBGBWfkpuYU_OIEI2S>&L2`}XZLY0`x5-MbgM>^I+h zL;wE$adL7hQX1mfRjzA{^UBW7CM6|B2}Fxx_UzgG^wUpl+O&y5g9h>Dn{RUd{CR?c zg7lV4Nl9VbwrxzGKAlaQHgWXmQDS0Zl9(|18df-p+SQNy!6sbL`O&S?YG|= zq&Z~B5Jrs}#W&x4LqtRb&p-b>Nl8gY^Vhd;Uq1TiBZ7m2*}Qo()vH%0GBOf?4?p~n zfddD!ZQC}&!^0UcU;ryuu4LG-VcflY7sv@FXV0F^vSrKAYPHOqIg@X{{g!LjuJOee zUr?`JJ>Gu%ZC-!Vu zp3R99CrC(0K&#baXJ^Ou?c2F?=MLSvb>r=~-{#7dE6UB$!oq^jKKqPszx|f`_wO@h z$`n5T{BvG<=_QhqlBi$5J~L;|BrGh9Uw-+8diCn*J!An?u3Q-p504@r=kn~*rAutt zvIU(^M_5=GI-QQp%uHs^oJsTM&6Q==ty{<9#ft$LIdUZZ`t{@QzyHR}%#5U@Bu0%I zrMxsTrf=WA?Ao;p0DpgfCQh8l>eZ`JsZ?mSTD-lzS-5ba67;NJzn(pN_F!#oO=e~$ zDwT@wzyF>&bLMdB)G5Y~9}mE%pMHwBw>PIxpJvsnRajYBq19^9>2xezy0lo=rB0{g zlTSY3)~#EZo13FntC>E1IxSkXVBfxdtX{nuGcz*|9z00XrcLS9s~7X;&ExFZvy2}< z9y>cbmM>p!(!O1>Vg*S_Nz9%-TS-4MGLp)bD^sOPl}CQ|%P+sMZQC{+930SUwTu`s z0!vFvz3o`CWC=k*LD<;Xkdl(Zm@#9N@dmng@6JE}{G%-YzyJM@`Sa(qZ{I%Uvjqzl z(7AJG+P81dh!G>`)29#n_U*&M!h+P)R9<=Il>%$h3QHeg)22=Q^Upt6Sy_>uo{q1t zFVm+_SH6#qj%LP;8K~82EG;dmTD2(|$N$jocis#UnUx^nQ~L6VY^&}cN++uQTi zS6@-JYE}C6>&Kse{;AjX<>AAJOqw)_cJ116@ZdonK75FsogKr652t(g?j~)=*s){j z-@iYbHf=(y)$-YApV6>kL(NJXM#JpcvuV(v0p{lBY}l}Y-Me?2 zv_AoM?%c^wKmCM_jSXtGnwBkFGGoRJ%*@P`d`z1*jX87Xpi-$AIB*~%M~>w5>C>!U zy_!muDslYyaUMK)z>pzBc>VR)m50C`J9f~oU%w)s8&#@QdE_-yki6;TTDx{FyLa!# z*47rSR?FbQgL&nZR~Rs0fI;_%)2C0fW5*7qCaPh>h8#F>K<}mLnKNe?H*OpNr%s(R zsO_}1wZ+cPj)xB)Di5G}uQg-W`=m*eN^~q9bx!2wdF|S@1(uEZnYvwhz468y%K!5= z=`Bd!7yqU#50I3Uq*os0WlGryaOKJs=FgvxR;xv$(ct3Z!or0MadvhFa%%3DFJF$W ztu0wuS)`_>vT)%-Zr!?7;Bm_@IXSt|u5gb!X2rQ5rlzK1Zf;)S_Yn~hq@|@%uU@@J z=F5~axv+h>YSk*7oSZm(_%JCcDOgxoC}m#Ns#TTs?A^PUpMU-t8yg$a)6*F?Y*>+6 zFctL~z}PjvY}qmzH*QSVu3h>0=buSTOk~QGDa!YA=gy^L$BqRCo@%w4;lqcse*Jo- zLMA#onyFK#vT4&M%*@O%GczM9Dhf|ePXH1U5->9}Q}T7`(j^);Y*?&ki-3RtR<2xG z=yK=Io#XcH+f1H3`H^D?74;rooO_NaKgxArtWv3Pb92Mi)|M_^x=^=nU87B53Ulhz zDORsu4dfJr-MV$d&(F_jV0`J)B>-;UzRjsqr}Vzp>2yqRYx-~av>$f*VY^wUqNUAs2_{`)V0k`I6j7cS7JPahgKY^e9vc*BMb{PD*h z$~tmuqR*T;qtp(3_~D02VDIkkPTRI^ft-hdL4yX7nVDJO{(4${_uY5=_19mtZ{Hq( z*w|P`jvUF(ojb9$wKZ5iI5?OVEm|mj$g;As7&B%JzP`RRYu2pL^t4(nYu2pczyJL& zR#sL(PT&22fB=RJ8A41<3_Ex3)v8r|_~C~|-XEJcZzdohfHrN~0690t;lqcsckf<$_UuVyWF$5=HhMRc zxpU{TWXTd%ty-nGuEO^1OE0~IMx)XD&6X`&7(RUXBR@NS{5XdW9paBa{!kvUKL7l4 zy%%QRefJ#}78V2q1OPcr`o@kOOZDp2Y15_+_3PK?>eZ{t_4oVlzhh@-M_gPSuCA^? zPSeBOrmi6&A+%}JhF^dE6+j8bUwGjKqfL(sOCR9nmtWS~kDq+<2`5jURK9=bop<>3 z(@$yAqzM3b?%d(!mtSV)%$bG#?^a%71qTQ7?z``@apOjM^ytC<{rmNT zr>$GJGGxdQ1`i(0zyJQr=bwMBw>_q8$JMJ>sadn8LEq>1-+!M$g9g!~M-PL1hJ}R@ z7Z+#p{ycm3EE_j&WaGw-dQCFF{`zaB1yN>ZCM#B~;OC!zR<7Oj^mOLUo5$9zTd}sb zCObQuUcGuTb?Q{T7kvQ%0ZMnEqMRF{p`nkwW(txwJ;*7aBO@c(x^-)@S_RCSHH%4; zCUNoNMLKor#JY9s7&mU5@^Bv+8AkfQyLXiUGVirk(Dh#2V*!soCm`o# zQ9)&+F{WDy(c&tJO@MI+dS(`bh~=PMkQw#EBD?X03DQ&Ltoq06RN7 zAmWJ#EBEA)#^vq#@gB0@%iVUGi};5)~s0rz(*f_#G*xulowjd zmMvrA#EHE6>Z>?7IIv~Q7QL2&K|w*ZZQGX3n>Tap*fDfE9W`s#WXhB&%C;0FIXRi6 zq$CzBSU_rODvq)YMcKELgx#KmDZatAZ5u9$wUYjwoNsbyI2^8yj}*+C@M> z0Pno>4jVUaG+H}bm>V~4DF4qLaHBZ=T*AY{m5WTL(-9vZU*OxUKmPcG+qZACY}qo_ zty}lVLd3_%hYJ@j=mo_9HEPtr+}xb==g%vj#l^)D85v34x^?xIy>;uB^8ehL>AX!& zlai7Q@){8lp}dt&PEIaxJ-IhS8yg$mdh0DVY}mk_J$sY_-^Rv9Z@qcJ+SJWzsSKxu-PH{JB~be=V>TensoP5|88+!!=y5P$vkm(k_T%*=TA-FKD0Ei5ef z_~VZag4IWP=bd--ZX*5q^;2H>*xTEakdUC)WUru_hg>!`HhK@!ojZ5t+_`fm=O?cg zEm|lK_>l7=sA|=!$~jXMh3(rqb?O+r7}~dQA3b~aeB@`VR;^<0+_`$S4pXO2MXgpV ze{b8iP475aTU)bu@nXLI`fDKPp@0AW{XotQGCVvSe}8{=?%WCF+@Ni3ZI#*-3kwS- zPoAu-&&?%lg{_Uu`s+g@1u@c&=Kxw>@eq8zu-&`_M6ot2;%a>}0Gy?Yx?FV~0> zBlH5kR;^l*ot;fYLPQi1C;WjpTQzi;poCbwKJ=mA)()$-0e z?eZ^~bUKC)AFdaOUA%aa=FOWczcV*Cr)STedgWVe zY%CTQ7Pz>$07XAHih9lDPY+<-x^>K)IkVVJICA6&%a$!8BO`-`4I3)o zXJlj;+!G+Db~SHVW9<6NueiseuyX=(YI6%J8;vn_yB?<#Cr+TzXdW3f6;?KG-n^Mn zqedwK9pp5}b#--Bo;_@AY`A~_zVdx;ji0H${`zbD{rw+#e<|#k74?1?7Z=CRKmV-P z-7Bw*j0_GRK3r%ymz&n3%4AdaA>>qo#vzJXO42eF*i47!h{L@ z`RAX7=CL4;dIm7n(xpq8J$p8Bad9kJvV_k*`>fF4G;P|H=bwL`-+udz)vH(2r%xYz ze0-Ge>(r@3$BrEd2nb;D;>Gy-`ckc0HRb!**jRq~Qv>yC?+PxAb8BrSfE;3H?7>D*c7p`v5Xiog1K|&Vry&5mtTIVSE%PwsZ^*` zDx(8?6?79Z_CRB78}rwYmGn37zyCgC$Bt#^&Yet{FrmPHIfd=-{BPz=Z8G+>t6jUc z!Dqg{zJ!H^8C~AX%gf*#@b&fO=FOWXrb^aH{yYsDG|+3>XY8|> zm>9jAd2Sxv+}wbimpIPO&IS*O)vH%0E-ntp2}1w(zyAR_O|Uw2=s>Sty_9BHM~@z* zW5GxOM9m9v&W~r>83~*TTZWs9CdSflaeb-3}igAA>Uf(xpp!{TcHs%Kn6$7lyTJ z)zbS+rBdPT?M-xawDMX0nG3X9twC9qnVG57C_qjv>CmA=mA{L6ZWQ&J$)8?IN(v4R z4keo1Vabvu+`W63ojZ53Y11aAPoK{C@#B@3ow-dw^Gi!hQvyq4*P1cKJr;$X6Y%J= zaoe_SOrAWM$&)8DYt}52x9f4bb?X*ieDMYU`OkkIxm;moOX@)vG{G zKg>@*{gkOwrz)+-Oto|8PQt>%c>VR)mCuarUsJAQQ}2iA>FK=r=9?^Dyx3@KEXcVw z1`i&rSLPVYS8m#mDnm@!hhY5r&FlL0>&%`#oAKkvEB}7{@kiyEZ{fm)O8(ZZTldIy z6_jS)^W0QUPEJgnI+b?q+VSb9pPGEWzxUpI{Qmpzt7!pa000>eNklZ`9R zpX+ow#*Q6J`}XbGvSo|X41eUvk;*fEMn(oNzWAbE_kx~1dnzp)3zC(U#r^yDnLmF% z4h{}L&awLZ^Usyq>wtg&>eZ`f@|Z4Vc@G!mPq}VNt<`D?3=AYNFc3dKKi+=(ZH^r~ zMtFEQkkgMLxBmu!r>CcKArx2cMOhltLSG7>*O zKg`U`^n%74H*S!Xl|`dQjg;nv&d$zwdU_VSmaZh4H*e0(n>X3Kc{6}s4U?%NBO__q zvL){B?%ca~56F3#&db5Ufy~UzXRg-RSYM~y7bB)FpZgnA71rdaef##bZ{MENr%&_Q zXP@Ef>dJxz3ydzCk&(feF=P1Ri!YQLN=8OTvHQ&wmbaoP>b~8$aic-LjeSeZ{vojaFh z%a$oMy!-d>SGtX8G#aDjU12ZQjMW(B-RFY_4dRbK{$R|QF>Ktp@sXo`n%Z^3SYVx< zo&CsbqNwLtVcT6$UYa*=&g|KPt=FFL_S+j=EKmQzWZ*S$EmRCeXgwl-A*tJ$z+K-a|SeUY% zkJ^_*h72)iYHG@MJucDF(M*~&i64IWq0ncZ!pcTd_Hp&<)%p47pNWWwVC~wqELyaP zHEY%sn)cD7N7=Y>qd^xqWBa$TV`l38Fn9FuDO09AvL=1qx^-;Zwyn^7LE+b(spn~7 zEwZw+vstrdO@aGi#*7&zrIS~2?z6_q-Sdi0=r_3C;x$hmxce29#UH2NLn?Bm9b8yjr5kB^V? z^8e?bf5zS2T^U0Ka$X)gI5@Cr(RYFT93cKKa(a+qI>u5 z%0-^H`EXvFH*dz%(~}h|Rxo132;P17UHtw1NlZ*+`}Xbh?c0|RKm3p(Lx!+o#R|aq zv;$==Dk=&eA0Gw{8brT-{g^RhMv-fKw{PE$N~L1aqD2fGIFR?>e_!ce4FCVA)TX`- zeVQ11vwi8(r2+^3xO?}m!T!B;=~AIJdBxG9MGMxfSwliXg5DeMyw09Ii=UsL-dom! zYGg}8{uf0BeFjC_w_2^1vuDrhjqYyjGst-nmHPrGS5i_E@$vCM&SzkffsZ{IF-@Rx#^l78-(1bLf1=RIzN2yh-7T2#| z*ZWMT({cCi-2xxRAgAp5;)^dBI&>)0r%z|~>eVb=x>R|{4Gj&YR;^kFL0nm#8^+SB zQl$!Uad8Ef+qr}A<(2n1XJlmP&2Es(#l?k;j0_;B3F)z8$Mn8WOG_g$F%cIRmjbUf zW7l?Zk40&p6HxeeJudO_@l2R7fp5S4)@YyS{0b`@8#QXgnKNe$mN|FsoI&>!FE20V z%$dW$fdiEn2IrcIm1jT<-kRX)M~@!L!}y{_i}>Z2U+C7Yn=;tQd+)th=tFB+`1h@ZiD9NaB!loId{eV`c74$Y}z$cI{fdsWe`C z=_R&r->x*vF0R7TuU4&^vh9$wZ}QfZG-=X=8#iv~1;>$*k;-6xkTV8B{)d$9+qdiW zI}8jAq*A3yO2A@kYm2L^D}Vp}w_YDdFn(-J*^kE5ty>qJPNz3QXi?vFF>BT= zy%sAgSFYscmtQV)UCWm*=fHsjeEH><%$hYz?*XfzTJy3xHwsE`5(dhM?&dSPS*|KHIwbr?FXM%%+^z_NosIlXA`SNAH`syoXG;vcDcFataP3b!eIkngyfBZ53 z`Okl_u&`jsk|n(V{`&>CrpmQ@_ikKVTxi#>9ld+^CN(uxX^z~gRV#Mw+NC#BOMHAh zfBp5BGV*)VrcJqh`!>PB!OAlK{`;>oDDR_8o;;cN-g{4ZzRAkU;>$0;WbD|nChir( zYqKox;i7ygw@s;yjdHtl=T5x~HYO%UZ$O0n;^X5D-b$yWq!@gbUqC>BUh^}+X!Dx9 z4;}f_+P80?$v0)4PREZw{%CYQ#H_3=zWL@GzWL@GqrWwl&ccNY^@7d(c?HAmF}AM` zA3m)2*{xf*7&B&!-ZFuKfsf2f{&hf3-=6#f^Zfny-v#FFSut|tNOtVl!OE2@$8uf9t4>eU%DW(;lGw4rt^Qcs*65YCWW8}z@xVpMBXU-g;@O`^u#}1N`lKAA4PuRS9v);5# zfYHw&r+HUgTpa%X{@B{uqS0s=G-#0CgW{AaQ&_%yIYWjF!P?pywOY+NRpqQ zAIFa$*Gt3E(UFvt6#Dn?U!wg~So*_<4`=GssrdW*qf)8x@bF;q;>8>}azt6j+O=z$ zGiQ#{Pu9uFiKR=IDuWeXy?Rv{g*w;x@#C30cP=R@DP(45;^5$5&{br_h!Kn%H_l+5 z)$!xUGiAyYHgDd{3opEYzrVjp`>`P3e)}!6XU}HMnl;$l+mn@*#f%vM_mb!$$ZJjuLy z^9+7d7UzaerzqFf%hltyVK?)F`D{WNrX6W5x_DEG$S*Pp5I?#>$u!1zl^# zuJ@80i;|oZ#uT<)pkL0IqNvM%{PD-!zI|J7sqloZ~6`)yPz6_%EkWM^knzkYpXa3N#IZP>73 zczAg5+H0@r#cQvSv}loD_sH+Q`;L!4{+JajR$yaeL#0ZU zOd5cee!{6V(&~XRy%71N^^FCLpQUxC$AMV||hqt%)6Uv#W$exw5QSOK3 z&(ft!jdtrBG-#00VxcT#Wn~rE#b(;HX;RjT5|O}I2q8qNOG`^*+qP}&*s3}L?4uS7Aw*ew|NZx$NV*ml7OY&k@`Y15_^*oXdEvtq>xW!8k;QMW5suFOwA{Z!;Bl7tXK2=VwyA7fGBJ&r!cLI@#* z5JHH@qd0wxpPK2Kgb+dqA%qY@h_WDou@FKCA%qY@hzd;tV}l}#*7(5OiWCn%az9Q6G8|fgb+`L1ja&?6SZsC#^2w+MC+J4cW&uq23WLc zQK_x#NvyxLOqw(aS6A0Umn)6qCxj3}2qB&fizl4{Aw&*)dwUu;Zd{^uv}@O{RPv(H zXb1@jDV22@6BQN3?c2A@Z2hIFb?eq9Ems=HPY5A|5JEf|5*Q2d7+kt^i7i{UpwsCH z3kyT1(~+5($;_EEY2LiKvdp@5>sY*aF#sb+j-+3|e*FFS-GbW}mtDJd0pRcN&%}unS-pBSDwPVYR*Sc{HwzaoM5R&zuzvk|_Uze%wY4>wnVG0m zD!%{zd*;lU!>LoJ7(aeI0H1#PDc;`RoIZV;RjXEEWo3m{t3{{Nv2^KDDpjgv^1irn z;|BBQ&ExFZvy2}<9y>cbmM>opz?Cakm_L6$TCEn1MuUrs3kw%6#M#*y$Y~Z`uUVR)`R=>#aCCGeHa3CkGm zq^73g@9)pcFTZSX{1OurnKf$`v9Yn3ndLOjnKf$`jT$vlj`wfB{YG|nHsRsnn46oU zR;!sleL5{#v@m&p3L%6LLWq)+z*vaK_%~u);F;O@?GtSdc|wgc=@- zB+1fHB$A4X4jM#vA%)$Pm7rvGk(hzj7ER65elMb-?cSbtYP|pXey*IE-S>8ae@T-DUnsJOV;?wre(EmLuEu@S7FK7Fdf!a^N8c5Kx5 zAv82pXU?2aUS6IG3k!|?ot>RJa^#3gOG_0T94twC@#2M&laqD(_HCmsD=SMSB_#?8 z2{HCHG&CqbKVPM#rSkLhbLjKx)vJ2&;DP4MnIlQ6uC7)_Muzh9^JTGER9aeU7mVM& zeXAu)mKgW#w~UMo9XfQ#uC}+g*Xebpq@*Y%CB>M_ ziX~~?x^=3lsTuWnhI8}gP3_*j+X%(duchIEfq{DS=8avSe}-a7%FWGHW@e_-P%KG1 zcI+@hu_VRB#OTwfPm+Fx{f34H_4M=@$FE<%uEfMdhx5#uHOpxCo3ne?(9j?+FE6{L z?ZLspN=iynSy`E}Z_S!DMktn~>C>lc_UzeeYio0Q9RL6Tm>2|OV3I6cxX@u=SXh`o zeE8tBe*XOV4xuY7EKDCiejIh5g9D_WpP$;>+l`;o)6hTPxuCC5lX8fn+%a^OJuFlwAx^$^S&Bu=)wRrL3AH%NA8uR!aIc1N{E|dqqSXV2>7 z$&*9Y{`~n<7K=rjH*eOJD_2xpT&#kE0@-Y~QIBUhLoG=j%-J;!3=9n0W~7<$ojZ5x z&Ye4wq{_-lyU$Jy?mH(ZM+F51YHDiI)~#DrTU+Z;_vh^Ma7Oz50001BauAGxN#bm# zx3;!cixw?%TL1a;XZ7{)yS4+PQP* zu=W1_{@S;1pNfi#l%1XJa6Bq1%H?YT006+`BNzjdq^73E?h{B&O-*|E@S(PC+vc?1 z-Q8VRuU<8_dwP15m6fIBg(%Mety2Zyu6&&hlhtNARs^%i$!j3Zfa|5 zQ(|JGmMvR0F5{`It5bG%w!FQ)<>~3E?(S~w*s(+N=g*fU9X)zfd-m+nym|9vu~-xn z6QhkAH!3bJPTt<$^78UhT3VVeUc5NwzI}atwPC{s#mC1hFfdT*>FEj#4Ahk?SCp2P zCY#Ns-rio#oH^6(&DBGRjEvO&{ri=WkRTr)A9;9qC^R%wr%#_A^_bSKU8~g8RGmM6 ze#n~4%uF>lHfq|mX_6!#A0M4Ncg|_;wQJXO>eMM+zI@qO{(j-Y1*bt800030mYdCm z2LxBHTsaYA0se`qs;UX^qqeqIWo2c`$;laYo7mV`Ra8_=;HUrq0D%9V-;)?)!BT2q zl8p6#P$Rui3IG5A!1y2-0{{R308EWw3;+NC05CP4F^1_)#xuqM0000c2hSJ-00000 zFh&Gp00000fT& zFa`hs005YpOTl=?j2YuS4gdfE0092V_wV0bYUffgUc7j*OPv7#0000mQNDit>QXzG zf^k?_m`j}j00000Fj2a@yIpGMQZSB-i<6(9pGzGA00000Fy1;kIusHT;!<0ef^l$g zu+r1hUFr}30001h@z&JTq`7nFy42R?w^FZPzh3$I`3ejSboCSf00000{FT<$Ry8y< zC@Lz-<#V{%Y&P5945GcgT{mvr(7Si{@wf2FFb>R%550002M7+9@Vef|1X zU0q#@h=};>M}7Y~7y|$R008j+%;lxj000000Q?sai~#@u005>&Fa`hs005X8!59Dl z003ZW1Y-aI004lg5sU!<0001{Mlc2d0001(8o?L<0001BY6N2d0001hsS%6;00000 zrbaLZ00000m>R(t00000U}^+o00000fT&Fa`hs005X8!59Dl003ZW1Y-aI004lg5sU!<0001{Mlc2d j0001(+W!DXl!8)!%0tNj0000L7 z%oZoVSvpQ>{hCIn#i=aIESD_zG_}wGaaR--Q2~)14*PPJ-yeL>GmwC6hjYN|{d)O& zDL&8rTo31lbFSyU@9S0>3)yA%qY@2qA0EBq0|<2qA)yA%qY@2qA0EBq0|<2qA)yA%qY@2qA0EBq0|<2qA)yA%qY@2qA0EBq0|<2qA)yA%qY@2qA0EBq0|<2qA`DnFT<&O}iWNmG&{Bdz{!QI^*TU%RmhgGASH*d0g_ikch zV#v$OqoAOG?CflFhb7uLcXxN3ot<%Wb0a)FoJo@=;p5|D?ywXpgTY`hcMw7dA%qaE zRaRCOnVFds7Z;m56d?d`bacei(-U`hcXNjV!1nFi*|u#P7cN{dcPK&t(7ShUX3d(# z{rBH*?ocEl7eWXjglLSsygY8+yh&+kDNs35>E`B!o0}W9wzgPVSz%*igG!|`bEKlJ zG8hb0R8*kT=_oHRCoeCL+}vDrIvoJ^_V#q?(gjynSF^--=+Gh7u3gLZ>(`Zd0p(}n zxBnKRxm8VdRVoz*gP~e~3kV2c!GZ;h7%{>e;Z?>Z3AqqL2q8rMX|-As6B8*YC;-68 z$%)RLJLBx^Z05*>sFa_dPikr^MMXsbxVX3w5Ds)2C01 z#vlo~5JCtcL_K6?W|EYY1b~~H8-am=GU_KRo?fpfF)^QB9dGIi?I7Q412Yu5ni)Tt9)x^yvfL_#!7N=gdp z>FEIU=+UFumsmtcM>Bu^d<+JIOi>rDno6bOgAYDn(4avrb3IAOg%CmrA!?`7={SA* zGytBSp7{FunmHmN8Yd|!iOkGQ)M_=Mp`qB>*)?0ck38}SrKP2kjEh#y*nb@z9r@ym zFYxp8Gx;^uCclCZLI@#5E0&Ou0D!Zzvn1o9RrB@r#l^)%na1863_0=f}jv0LXN8(PmX$ zOK$A%reJNdmW2>P2qFGYK|uk>j~^!`C55uGG8`Nn@bmLy(4axs+uJM0<>loO9UVrt-<9O(yhZr?#6uG&% zY~Q|}va&Me*xkE#)2>}Rrca;F%$YM8IB+12j*cxJb4f`FAPIRxB_}8I@y8$6SSYMR zhYs}Y*%KQZ8#6>EYSOMFMbN2M05I_H6q0?aPx-K8aSV<*BEhV*2#yy#N0D+`4s(fPety!QtQk z{&&9p_FEP%T*&g}%W-jW;rZvEXY1Cj#Ky*&`3~C#Nyvo|Z9-vTAr9+Dk=?s@)2&-Ku3fvv*I$3F9AlJ~ zmBs4St68>e8M}7vV#<^$l$MtA{`>Enx`=&CRXG|95qDrLeG2DGW7n;zWM>=_e8r5(o_qB``1$wYue3*cprY=yW=)t=rVc zC5v+Mn1F|e2Qe`*L`Fv9=jT_gu0Tz!t*sd|W(?nd|2^lk3X2vk z;`7fxSGHv|+P!->x^(Hn%$YOg7s_w!-o2aP;9%y> zo5!hBr!W`{I668qaNt13j~~yZNt3weo_pxlt(!94>E_LweEH>Thlk19ZgnH% zNl8h}ojaF3d-f<_3l9(H!3Q5?%$PCs>C>mysby(tX`DZQo}YgDiM@OGa{BaXDk>_7 zii$GnH@UGA5)%0G%P)ET_19bUx~o>LV)5d|K;;kjlTSX$oH=vo-@kv2(+11R$~brK z90v{@V9%aCL`FtZT3TAK!Y$^yM@w+vzyVTHQkXMmj=4h-LI{<JV1W`f~pKdAfG( zdfWeBxNw1hfPh-h@7%dFCr_Rdr_;^ zw-sg6>2&Pdw+|m5ALh-QhqbjeTCJ96pM4fbM@N<{S;E5)Kg_&&^Eh(k2-mM)Z{a&? zn=-m?5Q7E{;^miLCMhY2W5o`;G$#4iFX=hO@IX`T6;rJb9Ax@^S_Y7ywl6 zL7thJiKnM0c6N3Y78Y{s*fC{Fb4zO1t{wUL`7%P@NST?L)keA-Q)i}q`}V}e#c}1z z6&xKMZ<~U9{rYt-U%t%v@#ArEapAk~zT@oKvoccN0Qvd(0F7E^7!ne~&p-d%+#%g{ z)~#E|$dMyiw{9I@eDMY8>FI=ogz(s7k8%F|d4BxyM*x;ASwccW0x2meI669V|NZxK z>Cz>%S}pzh_2c)y|2?n0_8J9rpzDJi`0!V3WO?%kV% z2M;!CyBS|!UwnOi>viniyuRi5@#C`AO$c#UaB*>A#*7&pKYpAafBccs(o!589Psz| zXYAOq)wUM9c<~}fj~+#<)zYqAI|2d%7&K^5i^uHd=0;jt8U+Of==FND6qakvVq#*d z{d?A|Sq*NZU%!6j<>e6>8Huf}E&clSQy!3%mX`9%FTW5F5I|sHpmKa{Y%E>7c9qfF zdNR&BsIBN?T}F)>#fKk$*xVuAb&`^jm@{V%bLYR zL0MTDfBfSgY2Us*1qB7f#>Vpg`|o3CXUEc|ONohzVej6(KxJ)!l`B{B;fEhGd-iPB zuU~J*J8ZqG*3TL}dbG)|qcSw6tYQm`jErRb`0lw zDz~$_|Ni^U9FY)0)b8xrvs6@6;N#;XJBf%kr=XyK%a<=>YimnbSXiUlm^yVTsi~<_ zXnggLRhRv9(ly1 z?OS|8{`~XLla-YP!20#;>C>l=nImc$Cr_Si(e)mBy`F@G1OSE%8PX!xZ0UQnBzNmn zePcy_A%tiRyu7@W?azveip(935Y48bpa6|VgN=<%lM?d(`Jey6-Q69PN_E%Gb`))& zN~NM>$Brg{@MO_z$fKj9`Rc2$fXW~E2OfC9%n{Y@^y$-FzI>Uqv@}XeO6b(76M=z& z3>!AA)~fHdxqkgRUwrX}i6X68US6KEMx}lG_9nlcDeqCE(QxkEIj&r}LS9}TB_$=e zy1L@+?ai=Z!%Q;m@cQ-ZL`6lBl9EDsc{xr_PI!BJ6BZUmNJxlsoWWq=)TvYK+O@0M zV=yxA9FUZhL|R%JYPA|KFE7Hv!Wum#tu{KHj$_A;asB#r($mu^Dk{R&)s>*2AchVd zdRt#=OchrlgfJK5@6VK!6s}#nMo37AJXjR1o>r^n+O=x{czb&{X{x!6jSWvf{WL3A zu2hn8nYu38lBb`3y1}_zLs@h}zG~Gfpz?=(<;s<2j^=h6jfRygSMv4OUz3!SRO2!3 z?(RJL=%XxKwye&A83_pqtXZ>$y?giGHjTTkUu**h4s4duR%d5tpV6hB7&t$mvZmD_trc1?c29AW5x`I4I9SMqeqpmpFDYzMT-`3 z=+L1W&wKpw$NBWrPdRkx5TAYa89)B`qcTMd;OC!zuJhhsc;SU=dra2l^5x4cU%s3l ze)yr*{eFXjf|x&lKF>b;Y?D4zCMG8G#v5<2W5*71a&l@sMy*yeapFXlELp->X%+#q4QDmE=mT zRudK$hL4XA4h{~arlxZ8&wsY$EmUJ; zV}p;64>xb#iHgg9DkFnIt78k(rsv-o1O-w{IWMKmR;$ zzx}o(1+MlXs&z{YO4I6;U%CgNpz1dXv*t>Uc;^N{MJa{kgbF2LuF=n3%}EefyX^c``bkj^F?O_q_Dd zOZ4yGzuGxvWo77eI@+~sr;M%`&6zWYpMLs@p+kqVdGqF4uj}mWT<6wvdcB^!r%N5TaEnEG$%J zcXjO8k*;04nmHmN8YVe8St(H1ty{N7ZEahZ$jC^ZfBtzuM#)9%Q?<{kR4V@8|NDQ+ z3{O+D*o1u2q)F`Avxj!=+L4o!Q*Dn@bK0_H3lBZ?5C(&Re*OBfXV0EHu1QWvNMPj1 zk=(j<3r|l^E?l^vRBo-!>eZ`x@x>PbTI@+M z)Zm!!zyE%A?b_AkZO`VR#qknxe%h&$;!&& z#*G_5<=*Onfq}B7Tv$AvPRG@&SCv_Qetv#;{2ba?TefVeHv3Q#bI}_7wx9m(Z+~O@ z^yw{jeT%KKZd^0mzkh#=NyalXGnqGU9tMMf9zA;S^Upumt3X({Zr#|mYZunm)?{X8 z^4GuqwFRPWxQK`dX3w4tz`1kh7&dGeSFT(!b5wUWZrr$fC*uI^+O^}8Pd-7VQc+Y? z)S%*Wg@uJIT)2>|tSnZoTGgmzyty1ac#ySg*8=eH!w<85{rY+pO`A4t8t=aQE&zuP z9pckZKfU8Q$;rvQ_S$Oz3>Ywg@4x@PUdcFA&R{rr@F4c~_AFk!SeaHYgb=NbhldB< zyLU&eR+FEfPh4DFt#venumsuJ*~G=gQBY8zEHN`xG7d0n)-2YpU8~H}lVn`9CXSAd ztX;ddMU!!`(1biaJ)O+VOn_#eHr*62z4Q`USy@V0ni{{5LZZyr#& z_BbUa#Z+N7$%h|)$nSplJD_sfdf&c%dFiE>NJ~pIb7ajcBqT&xI{Dpq~`T_qfo>-SR-+Yt8!a`Ik6(4{6 zF-}fS4T?87IG7h+cmb_eD{ISy5UrYviwhwkA=uj5Qc+RCwQJY7c=2Mj8Y4oOTYi2% z7cN}j`t|Ed0k_c5&<1^WZLIL{a5ik%K2d05fOKWZ=Mo4Q}JP=bi&9rw-L;RMH$A930rWb0h$MefCztnncNl6Lce)}y@`Q*DXeIH=Kf(0#77()mlOwHcjo?g9r;qC1W zR4#?OeEBkG&Ya=KjT>k*8cIq^WJZuMIlW#_d3iY{B_(Jy8m?cz&gs*qxpL(SB_$=O zR4Tl^y$KBsZP6L0{{H@a^UXIr@x&9re@DuHo0v-yPxLwNq zWHe;R5MpCvId$q3TCLXP8_hRGNJt2qH*e&w;E zm7YC&5*HU&=g&)2R1{G8v)GWm+iP;qJ@-gLE`(@PY;0@@2nYZw2Nd%2^C>DSLaWs( ze}ph4Yin!ekE5d_E-o%DGBv%vI(6#A8*jY98*jWpOiT>F{`xC%adG73LnTwGkO$DBHK3aETQ)70s1At516I$sDOESaSxLPA)Y@bGYpN`!>41QwY& zRUPrm%gZxkB$cjRyQaj^vuDpHwN-Trerv1DYHMrD%$YOUwrv}!sj2+)pZ`=IC|tjO zohP1nf?>mkarNp|Ge_ER4Ozov90@TOV}cCL*B|TZix)0j04l4cH&tt1;vj?&LI@#5 zbF;`1@~TN|ZfKU@n>X|R`|q2qz|F;r7a2Z$I5{~vxVX5mV#NxceDcY9Cw=DZQ%zy) zk9Kx;w{0KN+^Wt7XpU<&rbwd@LI@#*5N(x37IlNlYUWT`Z0pxwe>H0?#_h2H*_z=F z)M~Y|e!sZ5n8?UTlUzru)$+(AkC2m-L;LpaiHeHi*=L_^&z3$` zg9Z%(ATBPh$?M4D;^LYkBq4+lLI@$+1dC3{|MaIn(XCrI06zNYBerkfZnjvaOql{y z77~k&jyC!AjO%uxa;d}V_sX8 zO2y>KlL6SYX_LtdrHvdp5~wWdwsYssCbhL^&z|N8NeCf?5JHGH!J-p#8yg$ety_mm zr2^pb#~&vlA;B!MJo@OPxVyUp@YY*znf!WHE4%092Q6LP4mw*LC-uLG5%q7e}h96EHU#p7^raNxP;o&#X}_U(N6 z<(DSCUe~T&mA{`od)B1aYEFOq+uuk`Oa$PMfBYjhHa4{$+mw3@3ky@uYiOacl#~>f zE?wH7bDEp+-V+lO8&xTN$dDn79Xl3)S6_XV%a<=VYkXDN*x2yI6HfrJckkXtkCMOq z^2^N`mJmV+A%qaEp2a8R085uH<(X%m0V+pCCr+HmiWMtNzU9+zz4FQ{golR%@aI4O znIC@m!DQDOFkpZ(Ghpl1ttPupbJ6Sd{OxalWA*CQ0C;lRa|P9-BFLrF5t!MHA4tJU)T_un_Fjn6*&3^zA7ii?Z6@4ov?nv}o#>Z|zs z`vdUA6HhdFE%=HRD>!uM5W&I0)wU75lTSbWlnE0iuwcQ07XNt{LI@#*5W?gPt;m~i zzG<+svN8Y$z~JugZg~Cm*A2G%gX4d<h*dh4n469eKHe9)KMTz;=ty^`T|J`@rDaSUZzx`HGQIWyL z#l-*^0s{jL85tRkYG>!pod!EQI|E?o(4m82&6+iava+&zom){+Vc4^0k74%g*#@mv zd&lDsA3m&H%hS`-uyNzYJD!uBoo#sLnP&`u!PV8(5EmC`7&dH}0Wj>?v7^p&Z``!p+%nnG||zcNBPTN{=%6vXR3WYFffpjBS$iD z;6U8n-RaPw1MS{`=XnV@JJWNKH*; z(xgdB433VDOqei%apT6}@9&R?hX>Zy)|8Z#ke!{)jT<*OapDAr4x++%4^B=_I5;?9Wo3m%qah$Xp-F5abqg;quUg~WzI{70X3PL8_g3%HrAvdpzcpF4Y88tY zF9yKZ*OwPxe36KV2%MapC@LxD z%gB)<@%Hw{-Q69XPDe>e32A9*T)%#uUw{3T$jC^gI9^3XMYSS(wK;h3Ak(Hzqp+|L zfIfZtFn#)Th7KJ{$BrFwaBxui{DA`p*uH%`8jS`|PfvdM;Rl8e9m?$4v)Qm=13Px? zP-Z&R^yLayzi2s@-Y;5RLJpPFqqlC|%D?~pZ+`jZ7xa34quS}zsS}eXP2$lRTFTnBYgxH+WrN;mot&I_@WBUJv0??@-rjdSe#3?hJo)64l$V#+dd#X- zt5~#XQN3fR$yZ-}#p1<_Nli^{)cM}t-u&e+f8oU!Uudi*jg3{NxYs5vEsZzde3NzS z)=^PWQSTUhe0-Qadp0XptWcH@+(|-00x!Mv65FUr%q+fnl;M0`PW~6on_0G z-7z6QfBw8uD*!5&jQsuYf3Mdyg%F~pZQs6~ZQHhS;lc%ThjQ2I-McrlX3eVey`?2( zWo40>nQ8LfP(Yh1f_jWui5@Y7E}asB#rii(PGadE-Z z)007i1~GsBd}VEWQy2^ePMkQw@#Duiefl)luU{uMHI z8vy|U3?4j~QKLq2@4ffdYlPJl_h>K}*s)^=Teof{Iy#!Pv^0u}ifGra9e#d(3?4j~ z>C>k(dGchetgNb?J8IM@e);7Wvn1q3M~)m}-MV!gJ$jV1v@|LzDsXdi!^g*mh=>T5 zE?r8ePMzx2)~#E&*u8r<`}XbQ!i5WDW@eI;lY^C&6^@RMczJmd7#PUl!Gjq$ZX6L2 z5e<3}Rn__P=h?Ai2L}!u;Kq#`%A1R;t1I2RcW1RX`c=6%}Z@Vd4 zM%BdJ!^4BO-+ueH*;>u5u&|J;SFfVgYH@IIpi7r7xVX5O^qQh!G#U*lDJhhemSSUL zLr_pqgJ-Qal=KVBXO4dHTau6qA%qY@)YEt0eaDIwD*%~}Zt1Ef=1Z3@W$M(aCb>>l zRu(sI+yKDM&5gjoKm7kx_l`B_(%3{G%>!fu^Nl76+Jsp4^J$f|z z^l|AIt&^$yMQs{a%}EF$gb?B`5+5JWOE0}7$#^Sde9c~X;RR*HvN@ENmU8v#RRBCa zJtgUCMY?q9f~Th^P`P_d)vb`5O8Q0XWy*e07fHy45JCtc>Y&wXS+r;oWo2c6Oi^!b zjIUQwQ4z1c`f9VZX)qW_OiVK$tZeNmT92+>yW-^Jq)bxP}3 z9VI0tWMySFxlQR8t)D6S#hpk(E`$(52vG}-M#K8`>j4=VZ_TQ{c5BzJZPHX!ycr=3!-Jg}=W)0I8{|==J(Ww2q9{4>eMN6a&lyJybUTWEF>;2uEFOO6&0b^>rtsxxVpNUATnVNZfsO)_^VCfB}wdo&tNqeepSwtjIpX-dDSFG@f z?wX=qUAlC+?e|GrWqeJIuW>_IdcVle&*#@)e^s_`bai#5U%!3?1_qitG>g}ieo8XC%g0RxnC z3kwVR_19lXNl8JaQsL|C%eZmlZo5WQR1}$+nM|HM87nKRJGOh~%o*b2<0&mIrL3$B zs4OBgW5x{hdOgw6(aI>EpPwJYh7H5k*0#p`)9dwg@7|sG_;`j7A71V2SFT*4SFc_q zCnqakFD)%4Dk_SbH*Zp2UXF){2O~$0R1)`X+qTiWcW*9Tx(9lr&_U)^* zVaog4wrv~3hY#oc`SV=6c8#G!htjK8ull^y&8DEBphd6O8nmVL^i4^~t*!5lkI;U8 ze&!CL#Td6KYf3_Hsr};M!GjbR7jw@&_n=m*$;`~e&d$!CmAAxw*Og@WT&u?b=nTu)2T$eq3E$nKf$`YPGt?scYxYpC>sv znQ7CeDR1C)wVRxr%*BfrnLd3w_V)H1K71IRPNyXL$B!Q;KR=&Yvu0ssWkqCUB$1Jk zH9iP{%EY^8&z|huxs!;92qlIaH*VnO=7yuAW3}ULZEfk&r3(=e5m;MW6BQLjbaXWL z-g~cd%&}v~m@;JwuCA^W6cn&^>sGwIz3JGoV~gD1FTeak_wL;pJb18KK0InP8o=_` zkK5bZGjHBJ#*Q6JhYlS`PEO|8XP+f2D~rB;`!aw2e7bk3nM)}o%Hl{ zoSmH+Hf$K3J9h?P-@bhm6cjLP)-1BKv)Q_JE2Bn@;@r7&cI-$_P7VOKZrwto(J*r4NL*Z8aB^}|5>lh<*RONt%o!$4np7=u ztgGFWloSF20iOncDI9T}}IXgSksZ%F1Gc#N4 z{yKE%K;OQ7advjDb!LDmIXE}~mOm=IaN$B`&Ya2TpMTDC&ppT1ty{^;%EHUbi?wUl zl9!jq!i5XjuwesFJn;l`=FF*f{^O57&KqyM!NU(fjJ35jue|aKP?=o3^UgasIy$m= z@nW`Y*`jnWPClF^3Xu1(=}H(W_R}NS^DgbDQM(F3S_zl@BGBs4UXnKNf%Z*R}uy?ZV8d)E@b|1I+|ju1i!(agU5@=N6n zKPV`uTGDX!>Q&<7<0&aA0V<~|2LuEFl?Bn<+}vs%`N+@D=hCH1L_|c~HcC`iyIQUG zwozZ>hq{7-0<>B!n>KB_?Rv$<#dVHG_3YV``1p9bb?Zh^Q4tv#8BCZkfrNyF+uAvG z>J;he>FD)(v|8QGxhx$N9oMP%gc+z#6+{kP#^c-e?Pl+?Natk zKYsi;P&s;SZ*R}?<;%&-%j49kQ}plOpP4gf^2sNkDCd9s?YG3o#{-qK5*~Z(F#vk? z>V=n=7q7hXic*ohXV0G168huEk1N-^e*HR&7ca)&-`~`?+$_Ajyc&Ftt*tF(Wo49= zm09d)XhZq=`QhW^1Hga*1K7TOJE^IuwZ4v_p`l9gve3{_Vq#(_FE2OCL$l^&Oh6lR zAC}%PMvorN@#DvdiHRXLHkRJKdoyt0KvXIfmo8nRM~@y#!aQQc2)_B|8?IfuMsRR& zz1r97^$Z_AoUUEF0+5lBK~7E%Ofw#AJ zGv0OcXiC4RFU#vOLI@#*3Cx%=13Npr+mgf^H*RqB=uz&w?>=RU`p%s@mH#&w40TRf z&dkiDSFc{2IB}xdi13}-_3`oH*s){u?%f-Edwb&JBHuGrh#lbV`(+y8lac~M$gN?u-`^0loVfs%Q*Vv0iLsbh)wXZl zx>fBO4?p}c_uqd%o}Qi<3ah`x6%zM{H~?27`gHurRb*EzZu)%CW`=qJ@QpHMUjT z%o5}K095YF4peK`sIah*yu3WtuU`-R_x-?lj-`==TnHhAXeN%1jx{Ejsi~>>`uZv# zCJY9HvUV82&CQM6++1`zU5)1l1qBfv9*#z%;g?^2VdBJz^=daTFpz|V1h#D1f`fwt zK0ZDS8Z-!~9GSMVvLY=ljV@ifH0VC0XQ>RYm4&jb88VzM-Wi`$w$jHdR-rk-L9XcpW3B0|%$;`~G_My7A z57@?{XPr8AA}%ftpjyT4h=>SYc;N;9@sEG7ZQC|fDiueM9&NUJGquJfQk!;zrMOm|br*;bq3(3gH z;DHAoz}nhc`2&?7Y{J6AICA6&qeqXXLx&C&78a77ovjq*sY`HhF#GoH!`0Qb#x09% zZEdl$v*X5%8-#|2l9`#Q6!B`V@0%&_ucb65VKayQ`}Z?>@?1Ox;ycI;R_`|PuNwHp@~M|yfXPe1)M1qB5-J3BLD#th~E zjU$12y&gY5KW5CB(P~D=fksV_HI5E9WPPorOG!!L;>C-&y1Eh_9gUrxU7gEC&Ye4l ztE(#pgMqlXIDCA3TK(uaG<}4;Y8#fMq@;wXs3?4Vd~kGhM5ED=o}NxfNC;}Rnw~v- za_Q0~I(F=ci;D{rn@gWQeFzN=W#7JiBqSu@>+6e7rz0~nlhDvm6MrWfM-p-&gb>2SLPA1FPfusl zrcGE|ThqID?`qp?8K2}IJ$jUHzx@`KN`=3_|7{;w?d|OuJ$f|z_wT23=gxO**Erg~ zapOkiYaSjROqehMXJ=<+H2J`R1C*AQ;^5#w&z?Q&bx%G%KG@sa*SY?0%$PA8J$jVr z=x97VJQzE6EPM9ssaN}O=kJ>-@2{l{88UA|SwnVqHlKg~IiG&|X}#L5sHotD7hd4iS6}75_uk{urAvJD z(MK#lE*A+74kk7>mV$x;rOJA1XD}F)QDWoPj}2kT{ld!1iqg_j zqNAg!sHmV_yLR;I)l2yuJap(#)M_;`F)`?LIy^i)m^^v1viz!FzkcN9@UawcylKc7jF?Q@&PM7_%35JHGHMz7biWy=-@4jf28K!7qO@aWN_sMYFL{{gox-QPnGJw#$+ zqQ!m47L8+k9fN~|`SQyz8`VZ!TpXpPrTF{%U>%n`P%_3PKuvu95tA|md1ta013 zi4!Nbn!Q$j!~AtgMWnpde+6 zudS^uo}Qj2-Rrcaw59ud=%I%I%ioJ!)Q|CXoH=u5quVgnO}KUImc?(0S08QR9-6{n zFp!p(22?Lh)=+J&U)=4Qt6$WIB;-N}Aw&yvc6O$sqJor^6y<9f85x{Acdkv0Jhi3! zyYIgH+C;%B@!!PL!^49~lO{E~9S;u=tgWpnD=Vv3$WXLSd3kxtc4bW&*_M9Mwlr72 zs1KR4E`$(5m_bTP3dfEeqo}9|l}d$^lM}sq^|GjFG&$czC^k zc^*A_lpZ~LnEYvmfa2m}e*XDq3BGMH{X1NtE+3Xv|CY8!G#MK&}y}K zd3oXEYW1~xV}gocJH+cGwl^o!QbRQ;kZ7PakJNl6KZ4jp3b*s;nl zOM}5cc6PQ|_qDuv^Cl{ls?I$b?^fr|ouhZ}eOJla001BWNklG?|x|7pqsVX71d%==FL@%3A^BYot=CP^;Cv_uhNWmW%_~*w_#h z6vU-Vmq<%XL$BA%=b=`@m~;Vj>(;GVlP>8Ot(PhLMO`eas9RD}65YCWtM<#%_(ap3 z($mw;dVNc#(P+&6`dAw2FO_sU9ogC0<_<#$A)3vA0RwpT)mMT4t|PawiH73;{Puy# z-~RSDf`fyb{W?xgPWbux0hQ~AuUxr;PN!@3>xkx|)9JW;`LdF9`TP5uq-dk`i`J#3 z`bBLlYJ^;`*Q3|#?|7U>qaivvnzFJo^m;u$K0bAh!c|mM5FH&&PEHOgl?q2kM}`j{ zj-8#Ia*R%=%=E?v4rQc@E3_V&2DyWe)LYuB!kmzPKX z{{5?cJwHF6*w|RcjT;BR>C>mVcI_HgR#xbAIzmE1s=YbH#l>N7Z%uXD@F$|x)>^OBMh;^N{MF=9lu<5N>pxq0)Z68q7kN9o?Z zI~OioAU{7JwOWm}wRN?=RFy`f;n=Zbq^GB|ckf;R!o$O9-@ZLixtD2dY%CQO6#%%p zx-x9ouxd{t8~SrDgb*!Z`t<2|dwa8J(IQGpN@SGW!Z|uR^7h+r6CNIJvTJyFcwlR5 z%hjt_$Qs=1nRpDp0G{1O)}v_!*|TNWW+uTDo7<#G(>% zKR-Wq@7_(0|yQ;dh}?e1bs|Q3~_OB^y<~C#&ZrIK8(M=zmjw$B_(m> z$Ppz`1~_ow0RH~|)qY{?^?KB5H6Ix3Y4tyat7!-ui9wx(ORZuR^QRVptp=lJpCj2}N9dwcsjk3Dka2%|@jRuZ9% zj0_GOIKZ@N)3CC#0xCPA!C+w8v}x5oSe!q99*st$d_6xupPzpEiK$bk;_U3q$dM!2 zw{IV#MvbZ#M}5BE7cX9tn#yO}(BGPbt1K<%$5 z+_?|w^?IVBqL@5+vhpCHyu7?#qac0z_N}$Q{D1cDJgCk4&L8+&(jy@R2!Xf+0&EUr zFgCV>=lC#jRP+0C}y9<$SJwnw^~rn5W0X?JIL(@bZ#Q_pU)X(wrprb*Uu zY{xiug5zLgPMh0c?n_((gwTb~-yf`=A|yZv2?_Ff%`juc^L(H0^ZkAw`T0EGvfD0I=Jxs;7#KisaPX4pxZs&4u5fKqkDwPhO4-O7OE|Hlw?{8wCXg z?0*yt!(jjZ{T{8@s@Ln0k&&@%Fb>Skf3OEo01y)s1DQ;Q{{DXUv&qRxhr9uEJp&n7;M?E+Hr{>r-8Biu?Sw)hwr$%6nM?*?ZsFSp4<4YQp#gn;eVCq} zhF-6S(P&(=Jbjs1tyUO~M(Fi=Oixdvx3?Gd_4VlJ=wL^)$Ye5PWo4~t&_(USzXG*g z%ok8S?xtN-of>bJXdU7rh z2p|v$FgrWD;s&tX&}lnY^SfhXW1&%k4-a=L�&<3=a=4dOUZ^ z8vy&IW!T6iM`5Qd` z_~STt?i|X>%3v@U9JZlebKh`Pu0o*@hYlUW4}S0izrAUP%jF_IJ|5B0(HI;Ygi57? z*=&YVsdVbNA!~!n zOLcT~usyUooz5v=b|R4oTCH|P0Xd(~cYD=8SK9>#2Rl54bJf$X)oL*@F@aA$`NZLK zi^YPNn3zS6=T3Pqc1(BowGT^Q%yRYVP8-V4&&Sx<81CM^3xmOcoSd9hubRGC9owJq zyIbbVrL!1!MpP`t)p0$!(PS8A*?@Yb*Eu1C_)~0bEPnBeU*H$N_yww}s!&l;ftHpQ zs8lM<%*@aNmp&ksN)Z+o28l$1?Cfmp*|W!|^Tbz*&*!rpA8NH4YPA|#trljpnf)Q& z$1n{06A}^vu~@w3^MRK_?ZQ6-y78x#fw1ufcpsnhA)3NSroUo>kzcX~AW zd_EEq5}X$MT8=yA?TdZqTdqFcZ9_3JF^GwYfljBx=bwKLqtVDN3g-)+micNd7EsU5 z&aPP=Tv_RLP6#1^qM)E4paMhUe}Q)MPXYtA3t|^gbI2E?*X!A#1hKKPOAeV{C^j}0 zBO@bAZW9+5=hQ1Z-@@Uvi`lYe3pzVHp-?Cs-ZvN(6@~Hfai=uw^BL?zv4ewyT?X!x zlatFHdoiwt!3+-%FFPVYDwTRPgvOon_Qk&QEmxl_Z9^iF2*t(4OU|92&)xR2kf&w7 z8op?AcAl04u<|-0gb+dqA!I!YsDNCf(Ky|}_x1H*U|@g^aJOyShQ`K5s8lM4?H21r zPDn_=)YKIE`uZF`pWg!*A0H2$PKS<;4u@^*?+X-*#q4|OmLe95q1Wrt)z#&&Fd3K2 zMOs=Ks;a8kVZ|1U1?A=C4zH?;i;F{dcelfEm5z=MOifKKd+f#Z_V!|WdYb)xWMl-B zlatHNndkHQkjv$$si|=o3T?4iT=u%#xl`W0*mu6=>T|g^q}6Jjg4EvLUiKk|QmMp; zAAY##@!f4N3wc`Rt6`r5u2!qr&n6}&(ACwo>a=-09!w^aM|ofAbxsH&gb+f=dK6GY z)`y0M(B9q-0PO3WBoYZuojS$#kc&hj96Wds)z#H77!2$}PcoSdIXO8l(>;3hD5|Tg zQD0vVKA#T`hXavFg#G*XvqN@|9zDvwR!JZbz-qN(`}XZfPEJNzS{lmA%1~Nb3ZYPl zl9G}|&ml1}5q*7qPD8?X?%au{rY2mxco94v4`#C&nVFdmD}jqdBIM-cptQ6UTrL+j zn+-CV3_Ex3^tep(^72q$Uk{B&1B=Ci;NV~!I&{dbee?74(b(9Cix)4l<;>^v@z6sL zExGuCJLT<*eHW&)SbZ+nhGu7HQBhF=tJMk~j|Z#OinzEqc9F4(iHRkLuCJuMEaYjK zug3oU`*G{mEdX;XQHsT46c-meta|RLyu3VIxpD=;!NJ(Nb*tN}-FkAJ6G8|fgb=dc zaBTEG4zFr#Y=lrK#Fi~v{GAotzI_`R85yfyu#Pw?FE7WA9Xq_X`Z^(m5JCtc2qA^HHUn?>hA7l=PDmOc+lV3A%qY@2qAh?-(>v%T)1!nXU?2i(LP$O7PoHQ!m(q=e3UEq&Ch>#cQe-A&WB_jhL92fLg7F*=%Nih<7mz z!~TfHVo0S@2m}IuXUipO6KiKZwTq#lAzZm~1yxm5P^naynVG@F#Du@IwINBRQiO$t zK_Zc$pr8OJPMknOLV~}u#R|B9e4(JAARIVw0Pnr`-m(Gtdc`n|*Lze)M@JDC7w6S9 z2_b|K;+j&a#Q69)bUK~Cv+|`dKd9AcG*BoM2nh*6baXVNQmLPFH;3B9+FK9p;=+Xs zIDh^;T3cKFos}<*iHQmJVMl#^Jzja`6=Y{;%b3gMb{E3s?a_uh-+| z&6_xW{J7IL7cN}DSHALNmjhr@xzVnJkN zB=+swhlYj*w70jTzrPg(&#)6)YUj|Ypzg3QcJY~8xmp`6pw($Lh@1ifAltJR8>loVuU zW}>>fn$2riSeQc@c6WDUc6Jsjl?vnI;{X7OM1tbtVzjljp{uJ4JRT1`9uLLE#Rv-v z0|2+mptQ6U`T6;%t*u?M4o62vQC(dPtJMksh>wqlNF?&OED0fmtUoH13PVFfFc=H~ z=I&V}5(y*{2?PQGcsw5Xe7;-vC&WEAn++zD2^Nb5Mxzlbl?qc+Q_yO)&}y|985x0G zE=PEHxL@)|ZNfhSyGYt zX1wvn8+h)y=df?zKELI0T?FKMy&eLA0Kvh*005m%=MeY|4-X?QF3#-+Tvk?wjEoHI z-@hNgT!4M;+BH1<@WX821^{>N+(B+`E~2BO+0SNYXL0@dbrcsDBPJ#WfMZ45Y&O)_ z*Q2DQ1VKST0D$J^W;8T3tf+^-yu2KT4jn>7Ly1W;8HtIBc=XXn0n9xdxqbUK z`;fq$GSF(ZxOeZ~l69!jXi#2Wj$_A;v2CWWuMd@#mB`D>TX9(uLI_!3%w{vY)(QZG zhK3?OKHlLzg7^l9!(oRZ2L}fuJUkr9$;nWw)leuD&}y~l?CgYCEXL-|n-}d6@iuA` z{uQY0Vrps%KmYm9QC(dP0Bk_GFm9nh+&300XL~*L^z`6IKl%|03k&hfU;dJfz1C8| zud=RIt5H@~hWz||06=qd`kc3ub0!5F8wg^z?LO zWMoj_epujs& zEF76oSy_p%eeG*bamrc~t~`7{bHDk(rr^@bGY$OeVCowfS_hENT<$!&x_#&(T#nu7(jU{33I;-(qEN-`AZoaHkGuXJ=iugFs!$lMq74>P=5ivz-F5 zv9U`&peO#t<#LghmWIK>L5z-$qPMpf0)fEmJ=SWqn%cxVvR3V)s;UbA@-P1a;Lk&& zNno2_N5A~#FA*Ofzh=`=1FnbM9qH-m=;-JG0CaVAt>~3uK|w(-SG$})9DFGPfq?C$ z_BTGCkL}yHP~7z`*WDZ!B=M{w-eF=S_Fdvt6bkLS?K zy--k4(4ys})9L&cxO%G$f`fxyp8vvLd_o8z8-q@#W2ekTM@LiOwNA+8a(4P*XJ_Y< z_bw}CFc_#!tWyiyg{PxMUFq-d$4`Fp6Sh~Jg7NjmUT;7C@sAxwW&6^)49Mf-<1soq z3Zu~oo6WYOm91qm83qRjojxBP9(I~9?n+!-90mpkR+Qhhkd~GPu~-bXS`EPUF!|x( zVQk;N-C;=g)YOzm$K!A~5Q#)ksZ=ii9u*aZ@$qq|JQ$5e==FM!7LoG?Z|xq$Gc5iL5|UQWC<#!eF&poz@}pl+9*CcXv0e zRx857!jPDl=#_NI+DS}IL}+LztX3R{ zAU6)gdJ%WkvhN#>T>EG&)>(TCEn9m6Z-FcrPX^D+?_xEl?_z>}T%w zu6xt`;{$VzW_o&>9daWUi=6^S`$86WBO@cLdbqG_*Dkil+0H)f-##R$s;Y|ZwYOL- zC@(L^_U+p}KIUq9s|>bn+lIS$?>dYE7#tkL<)GScI^v|6p~ zn^!h(-t3jNgNT3dcsy*{v{={q1kPoI~Po=gytO!w)~~a&0kh;n>#c zl7C9263xxcIC$`&zq3LJA%u_(N}*6-cz76LVPS5+VwD80_V#vYG@4Z{z&0>2fU&VL zY7-lXH`>L2{^x(<%{SkqdE*<1y)M7`&2QrS-~YbPjltHXGi5|9x*~iv)=G-+$kyudQ2` z0r||#%%bmsCWH_|2=RuQnHiYPW^gzhgolUwJ3GV+BoYbxs#~pAyW;(|S}m+rE47IY zW`4VH^){yEG&VNULT($7y)HEx4O&`Se0H356_Be`DqOyN8D(W<*tc(=zq3OKA%u|s zbN>8!udQGmC^Q-k03aeFg658I5L_-7VzC$i92R+Xmwg|xSWInV16ggmsH&<00H5}v z692H*slASUVO=fiCXq;R>eMNJXM+$z2wB%=W@hlmKmHNGpI>7cA0LnW{Cu}wOZniz z1DH%EY}>ZY*ID%|dk^YbF4{_bFCroW)6>%)^@Q5@iHL~scD9J0t)^Yj%IX_mM@NUx z(q2~qIU$4)LcHhMXP*U!!+~0@Momo(N=r*|_UzeZ_Zt`(KwMnh8syNw>_brbe7>J^ z;vEWw0(bA;#n{*w7=}S|ax#jGi@`9Cw}S%%11K#mb(zM~Pe0A}B(7H?kq7`_GMQGq zuYDhT8ta`(r9xd@9Y#h*U@#aUkw}oApO2)ZB&ThyRx4h6?KOwb#9}d?e){RP%C1kX zrd>=-On5sxe#7JO@YrLI;mnycNJ>hA!C=6xTetA?%P%kbup%=v6W{yZ_poEf4g?1W z<3Il6Kk%nN{b`MJ?pwaBV+zO#A%u`GDL$VM9*>9U=xCIbl;F)b--KGN#`Wvhk(HH& z%*;%7+pexIR8>_WF)qBjAEiy7PP*_+9U~Y)_<;#~bIywrWP>Ag8Y~5DJCZx^*jZb932wdgsrdM|O5L+S}VPGcyAYhl8xFEQd7KlEq>H z00;yEzZ~D2Y&ILJs;Uqf8HsJ%wn4AgqoSe$0)YT~_Uv)kHaa>Qk38~-!)J|+jhLF6 za%%)dptHZGY&8M-!iN~^l}4k1$z(!7K>>t9A?oYvaqZeQeEsWRcY5exe?YZs*Dl1y z#sb(lFDh2bO^}1yStH^nu>yg0?f?J zAUQeNX~=q0Qxi%`N)Q(phw<@oeEjjpkjZ3-iHU(;uSaQVDGCY-aN@)XXfzs>m6d^E z80_4+lTD+#x*DfXpGJ6iIA&&M@W222zib+7%^r{k1qH47vAvDM;o!`fGY$(*b#!#N zym1x^g-A?HWPdjp3>Y09MQ(2HhL|^P4ndpvU8}-W-|r`29TPX zx@0=(>FG#FNC1z=LtI=OWHK51+OYfg?;|!g7MYou5C{Z_jEqE4Q4#9v>mAbAx^*kN zdUaS>7-C~%*);scYPI_H_}(%AAo>gvLd9Xl{MIEavt5SKUU^GPHUhu`^pKHH-> zH8th5e^gWyj7B4LIvv{^?1_or001BWNklyOphoq z7c_kS`R5P_1j|kbFquqfX=z~}q-+HC_TFU@diHmCMNL03oqc`|NY&DgPH2YPyXmhBw}mLA6IZtp@M1v&Er@{O{H zm(^;;jT<*GHa3P+r%o*!WVg1q!fZBU`}XZ?ltbUM4@veU@UlN-GMP*pVk!dw#Kpzo z@y8#B!C*i~M+eTIKaWQrebj061dqo<`1;SVS)D+2(${r21VfB*0QK`NDQsJZpa zJ&;}v8nR9ZA%uKMg@lAG8dPlFycttdQ<#~VL0?~=LqN{qa8^8IS1Oe{4Lw&Xl@JI7 z0UPWF2L}U~8{WMUSS%KN`st?_A0Nk8zVa2P5e=@kZ)|KtT3Q-HLPFLkm%e9TDcaM3 z9QgC_?TvuX=OZdA3Uav|g@uK%TCErw8d`Qg`**-bc`&h>b`cpF>FwCz>Xm6f5mxY%i%@$qpO3GD4vcz@HZZ+$bm@Cxj3}$eLmp2Aei*LQPE#LPA0u z-n%Roi!n4b1dGMu_5w&-w{FGQ*ce({TVXUBF*!Mjii!&C*s;S`r?6`F6~$*}X8fF! z)w5VE_~esMFgQ4foSYm?OiZA+w->#=y|7p;P%4%9;DZk^GBU#M)7I7oys=P zS`EOnSC`rMnVz2ZYM%V1rKJU(ot+pP8-qfj!0p?&0f2q2VR?BuKKtx506=?tJL>D} zF*rDgzP>(`m6ahVD9Gh2($=HZw2O_hz5)OwBqZQl-})9Fdgvi++qMm-PoKuoqet2G zJ~A>g@XkB$VCT-AFq_S|bmUB1fxs@VhbjSzfIPfufTa1g*;kTu^k&pZQ*#lpS<3z+NuY-ngeVq)Tk z>;1DoU|DX2fGZM-1jEC_n3K#*!;r~j0Om#l z*hd2hg+eqmG@!1o4h+K}IyxFBPo50e5iToXv)NYFE)E(a!Gi~VcMRJ`TMm#ALI@#VVKf@?`s=Ubsi&S|S3du;X>M-D?CdNuGBP&AJGj5> zW@cva;K2h31Okue#WyuI!Duv6o7h0S(Jmf+^ie1jiVg9ghRm_orA#KnrAwE5b{rbA zP6#1{5SMy-dJr8Q{iO}Y0U$a$8o;05GfdVudp)k^J=)YJHXd)Zi?e6XdMi65ztSjhL}tKWu{iEF+DvEKA(@+ z*jSI#iHV5;!!S^(RM2QNUd$o!hnblfwq2|yAbyO!NMsIH~0I>6;J;mj65g#89 z0O;=Sc6(t%5_n7|6S}**0nD|F)dbUgJ|Exv-uJwfH4-4c``zy@`ASc3pgH7(5JCtc z%V=wBgI23WXlN)hGBW&~9kN3A@85?`r(4w=;rVPf8=9M&VKf>M8XAf%TeeWo=sIJw z+0fS3#?Ce$7p~YgsW3RKIpdh^T(n~%M#sLb*2_b|KLY5^E2#}VR1^^fzAEy9p zofsGxfKsUh0Hmg-di51uAt511Nl5`fZDPIgWxL4A%EG_>+rI&rdvHTR`TAh5Ck}@L z4u^x6UV6!=?;f9z0&+qKA%qY&gocJ9IXM{sFg7-Zj*bqRQy!o!77HFcc!067F#tev zasi_c)#XdbI zwTZyzk9JX2RfXrDe;#_h-lxYQt78wyMIsS?^{Zc@prBw)k52(PA%qY@$O;(@26S|E zz-TlA07N1YCJQnx%p0`{ z{|MxEq1Ws2`s=Ubcfb1```N;PkOFnznLj^#A%Q@EXP4rOI! zFc=Je&C8daP$?E+Bv7jW_V>tFPkKS6{_zuf2wM-+dRAm6b3W zjqEnZ_QXob-2Ah!^>?UN>@^>Fw>sd+)vH?`*i`-FM$b zQ&W?_vq1PoLh*xAuHpuih{|J`RmW$^avq@5JJet!T37^?udzr0RU*VT1cf*m)odRD%`nq2gAd|;PH4! zNlC$;J$t|~e?G;Ah6Z$XbwQ<4fngXVCMKe|xEKO~001yHHiqizYABUT*lae0hlgXw zjvYu#OLIu0rKJTroemKZ5hyGyL_$KslKEe5pLgDQ2YdGH!QkK^dU|?bu~;CLN>Nl) zgs7+}0D#qMMQv>@Iy*a|)9D}-3L%rpuy5Z!2m}Ju*Vm)Hy&X?I^_0W0%gf85)oOA4 z_;CQh=bwKLu~>}Q*jU`YeH&`E8mCX6Mr>>>j7B4>s;bc4-3_zZjQIF?6c-mmEEc;w zulL`7A5&9P=|62n@p@At3=pMMVe>4tA?fZr!?t z*49=4z^kvm3II5D>J;MR;~nyG{``5w#Kd6l-n|Z=*VNRYtE&r7Km9ZSU~q5{wY9aF zn3w>M$3s$55(*0oArgt$eO`O*HI$T;AT>3W{YUZW-^Dk-`At+*RG_o76Y=r!Y`ygN_oJq!22)d0 z5Q#+CzI{8kZ{P0nSa#FX)2OVhghHW!)oMjdObiMN3fSufaIbAGb!NI{uPftf)ULH6c4x85f`}fh%&;X4_gYfWhE?v5W=;&yiI&}&rlL_VJ<+y$OwnNX< z^z<~cv$GKs6N8zV8Qi#W1GTlaC@Ly~#bUvgD_4-2nTg`!VpuE|jE#*s1Z#D5b!cpC zL{U)@qNAhH)zyX4(o#J6gvLQ0|yWi5(14zgVE7Z_C|aq6bc2}+S;&t_iluRg&{IB5&&@R+BImkS{y!n z7(qcnsH>|(X=y3Wo;~aGM*Ym0Gq`;DGUDUov3vJ!r@xn%mt)6{9mvnmhhDE|>*UCh zBW~46VPPS7JRU|zM{)AxNdRye&}C#~u=~u7y8%TZWZ2mrWs>lQxy>@$4zt6ycevDs|+^wUof6cmJ` zM~^}%6atv5k54}N1Uq-`L`g{rlu9LT-MWRKpdf77vc=``bUGbA`sgFX#Khp(v18!z zcxZ2L$E8b`@YrLIv2_Y8-?kQ7ZN0jCJ+7uqQ&UsH=ksyx+BJOR8{Ytj!(q>5x$<1< zT9-&9c=E|7@rOVB0mqLYhfF4O2x1qq*XjQK`wgJPe1(><>lolDJfZWzp=3~ zG&eWn=+UDH4Gl$qe?LC|{Br~a1tB9NW63gE?0T^qA0J0uT^$Y{Jcx*h2#k%5p|rFV zAt52i%E|&T_pqb9yc~IXdDygR6EqqPs;a7>)oR_YA3_Krgb=cN0UeOf&dy?VbQBd8 z6-Y=(V0#-EYHn@@0311Tgbl3r?%j*h(o*E+<{~sS6acV)|9*BKi9~{oj0|?3=7Aa8HwrXX+%Xuu|4Y&i3D=Fd?m%nQYaL7;)y35MjI#;3Mdo`JpTCO?0FwLbO>*~ z^%lCjyB$Ue*zx&%a5x-rxm@u1e5b!}*|G)M+1c#xJ9q9xWo4zqHcQnB!!Y1-x!`a( zF4MP5Pftf>WhMIi`>|=$CIE9miCV2jdU`qlptiOaDJdx^C@5g}i;0QB+i$;(_V#vc z+qP}d^xd(rXEQf97p0}8FqupadFOJuPJvo&Z7q_Ll8~RD4`8m1s8lN4y?b}jfV{c6 z89W{jM~@z5A40^&#$tMU8g+Gbc=+Lm*=?6=TMMnWUfsPOm$O`%+5>QVJF#1?JeRxH z?dQzn@s@0NcH6dXV@GX7MMa^wxENQjUPXR>{-WnVve$Q9TpUtTQZP6;$Oh#1?%hLLS{nPnB{DJ+p`oGp;DZmAJzqiy zA%qa(JpnmB@z$+dc=gp+@x~i(;L}e(MM6S?Lx8c+@bEC?a=Akv=ptatq!ZY19JhM*=$B~aU25) zb3ssle?Q8~$}l!Iw&*#zBRV?TY3Tp(@GwF`LL34Ufj|JUSnToK{e?rz?d5H;SQg!9 zex0~WAP`{FrcHS8-~sztS63IJqoWZX9uBM3it+JrBqb#|?H3;(4~0UpqT{*49*8YG zm#tg3I{a?6S}{60%05W2i;0PWTCIlJY<8Lc$jAs16BC_AE^OMg$?1HSYg;R|T)ldF zJuYXlGM&$z@?7p(U#W%D7!nc^mOWPvhvW1xBq1RIYPA|BlgaI4ySiRD9FEg;1d&MO zP~Q_16G%)VKHIy&ld zAu9V#sL^P|y?ggCI5-HcRtpY?1GCxeFz@x~(W7W8%yu3W{cs$I` z&H{i_50cetbx32rmF#05zPylqL9@8HI6VIN`wtroxk{qG$0)`y)vG(#qdVL!)A`&j&!w*Qm0B3Ya=BbE472393IqbD za^HgBuV073V8DR`2OyP7!QpVw*x1M}8V1bWNM~hbAuB5j{r&wYFE58)ugAfI z2icqM)2B~6-Lx)t^XthzONoexKuJjn3JVKSTU(1umoDM#*|P`_4_|a2gTdhRnX6+9 z1OkMIhvSh)9&!4cJHvK8;ZB{nDmBOGRoS>I!};#ryN8B`1{^wc2nh)Z;PH4+DwQ~Y{`|7}wwG;TVWCrxCEy&u+XV*) zyF4F*!Ql6x%AMR8$mu6TH+= z?4+b5?Ao;pBO@aK=7y#6csxu`PdgoBvBl;**~cBh!NJ(KZy$n!g4p5f!NI{!fuqf4 zgHowUDg4JO&2`o!-IS*VpH8KAu`ly}ENfF2|iRwGWA(-#$Dk&xO~zecb|g&)>eE zT~AMs%OUCW*@xCI+)pePFS@|sO25OFVqeQ*K9x$f>f!r@5JCtcWMu-fhkT{BZ{Lpg z_I6yodKKB(+3bADk&zMP<>i6PME@0CabEv#)Ie=6a`ET3V2ll!TCw z5a@I|Jb3Vc9TF}O2(WYKPTab63p$++adC05TCGs2R1gY}=e>e;?PcU&pRpyTIe|(AL(5k&zLcIdjJCV=rbk_3F;`xEy!NR3edp%jKe> zp#fXBZUu+KK}bl*vgNtlwa(#i5D^i9*49?`+F9!STUuHW6cmK`_;^fBO`)Qq0_o}L zODQmHUA zGvo1tcCs|7REn^$Fi0d46ciNT#EBEjzP5TTZHRz8I5-$*&YVG2RTaw0%Gi08iHV79 zPtw7I2XX7xEu24p9(+C@si~=W_~D0fFMdn&CPY{iCfI^y@r6JTzUvdqj(+_-TAHk%E{jvaGaRLm|kG!(J1u^1m8ce#+>sZ*y= zU0sc)rY3N?TqGtYqNJq6VMu;KK>;c%D)8ZlAF}i34;(nazLVOO-Me=~tJUJ_)vK^t zt?c{7-+%vox5^stgOV9D_3B#SP&Bv zgVU!^FZzD*l~_%^x^q1)$DJ|_4i3iNy?aqtSBLugdgSKjV%M%+%a*4**ZThb`|-sW zU*Ns>-a|q{g3GBKb_Wk0L}Ozk?%cWK@E-D|2!%rI*|P`L)zwg`R1k?oC@d^oa)otw zt`~Qurl!JRFrcxq5!Kbz2n`Lzu3fua&if~XxJRi}Vtjnu;{`Lx%FGXHH5v^R3I#$! zLR>Cf>o3$M*4}z(7Z)yE!1?p%J({9PJToyd!9MJ$udl}|ue^fn>}-7Xt6#;bQ>Xl# zJAh;JbY&+(0?^f~S0NM%J(>$l$V$x2%;1lI{3FhuJ-ebcFWTGNQB_riXPg{3FoY#f=*`aPHhW^!E0$`33&Ge$m3;iFeEobvYc4(;7aTH*dys z&pn5I`}X-GdjK{_4>=*g+>_9OfdQO8ecInyAzvb%JkzA-poFY{X0sXH-QAd(nE^02 z5+^=BepPG45chC69CjFTaBwif!^4rBoD8*E4TVAhtyYW9&Q6HMVr<^L*`ujFo}f12 zUxC^#rlzLw^Pm45)z#Gizy^d118)k%ePgk5w%0>XPY-_dqaUHLun@oeJ>( zkdt-K{_f`6w{Jrxld*Gb2_b|KU(jeY=<4cXr{u`x@)fPML43o$famn|GzJF;p;oKW z+S-cL)Kr(ReDx-36M@U0?c(0Od-(gm|9ebLO|hR*;2jti2IiHOmH67%zJ`}xdWn5? z@>-!4e8{@@>8GFKqmMp3!-xHy9YP2p8<VXfQ6g$oz(o$q`HQ&Us0*=#gAE%#}(dzV)qd z;o`-MYnum}Lrw@Ggb=d4>FH^7c6I^)Vq;?=m&^T}BeI;q!9jL$+bvtRczyV|TCGM$ zM+X3E6YGhu+eKAX75?^b|CSBJsaJe`;cz(kumAclR%oDf0?A!Hdkoeo`H zT>yaS=x7SO)(N>>&b}hHv$GSkv$I}H+h8zIn^>n7whQ|LeBRLC-;baCVnN?gIFv^Qc{w?vqV-PDJcnIVPUXZt!x0j zS~i;v-QC@=TCE5R3qxXJqF2%-YbP-=5uu@>uv)F??(X(Vnl_saFTC&q8{ktgzW&(j zOsCV~#TQ>(lVegqP6#1{5V8b?LII=E2%%7j)YMdeXNPzoH8mAMK|#>#^-wC6t4>d; zR6?)Uvu%O`ul0w+;UFz7&8zL=qmMqqg9i`1kUJ6x+S}W4>Cz>iABO^RLI@#*kVRN5 z7L1IH0GNAUEtgBTPU{hm$HV5$n*q!{V6j@Q9;aosTA@%V0L--s9*^ghJd(A?i176y?>P_r4 zdwVKl-~PVIH<3yjZF_Q1@{ z4BmbBT|D;KW2mXA!SL`f7=}SYLIR44iVz$e3;?LFuSa`(JDz&#DTn>b%gdqFYH|Gd zaR76}w%gj;uzmY>)YjHQtyUv6G!(mc?}kh!Lq$aehK7c~FbpX4e zuHEG1B<|h2hmnyH7z_r4hle9CFOOY#!mhEg5v{GQ&}cLe3WZ2dPe(yPfzxrVRx7Sv zy$XxPQ@S{v001BWNklX zv9S^3^-PqVPSsF2l1|mhzLwiPkYo8 zYTqX!BEs9*B7U}-c0ntvZ+smc9X?AtpaODW?kU8zYuB)M?_NCo@WasS^|*fhIw~qE zaQN`y6{j~oK91JbRvbTm93qhjjg5`CdGjX1!orZBpO3?b4`XI#23M|JK|@0Wa&vRp zeVdw^ke;57#~*(j48x$QsR>uFUd7q7XAvGAj!m03p`)Y2At2XiG#DKnMSgz%qIp^_ zU0`mdMxjuM!-o$;C={Zxu@Rqr_8GqRwXd-Yh}6{7ps}$Ld3kw=jg5s)r(+)|EOhhc zP3UwwJo@OP>}sIP9m5{P%VaV<^UO0ao6Wd!;|2@{10H$g5eS7s0Km0t*PzvEarp3I z1O)}5uC5NHrKLD~_AIzuE}EK}(ACw20|yQuBqW3_BMQa|AtZ3Mw6vhAstUQexhN_s z0+-9h)YO#6JwVSs`z&}o9<*95Mn^|cQ&R(lLV=@4k2(b9Hk%FY?d<^ORy~f7kN3*? zc)~semCxt(P$765rMsX_aZhnc8zoF z8>?v-6B85O&W=wB1Oil4RKRF7;_F}kI(mD1*}uK~^2=Zt20#4a5B-b>_Q?&qY;gbjVLH6Ku%5$;^N|vl9Ga?q$H=~RaI4C zcz75mPMmNEf|onS^z<}TDiv~bbHOkSghC;9?%av-@p1O%M4?bXp-|xP;lq&2<%o`s z#-T%ppw(*8-QCTm6BQMOgoFf0BofHwa)$>Wgb+dki&m?}ojZ4M;J^XoTv+X;n2hrk*DA|oT6<_E>c$Fl*eTrP)5ByzZ!=<4c1T3XtY3py;9t}FI{*gkAr zsZ_#Zu`GFG#Nlvo|Ned4zkeSmPo7-%Y3{;f*uRkG=hc2*_8yYq;bDY?gdi#^irq#a z5I`&zvkiC4mM!S-??+i#8OFxOmdpbogb@Gh?(T+IEOwfb%@(A(SV^Y_0l#eUxr6cpsQJa~&xC`4jnBKs2^9gWe^QEcD7-Q`?pyrj-MWRh-+mj}+1c#=F)=ZC`Q?{UR#t|~moMYH z-~H~oD<{CW0eL`vo7jg!dxJnAa9QcDhMz4QhUe;u`24_~!{K1dmM!S$=)m^v+o4vg zp;Rhy@ZiB^^R!gDz+4YOb8|B$CnwnzUgv)~+W);&kZm*?QBzX`lgR|FR_nAH=yJ!1 zii(0rBtl(X9SRBxV6j-x(9pn+Ua;pwtJUK7zyG~M+GewvedrMv7l+3me;oDo^|*NP zBBG+AuxHPn4Ku`v5JEN@l}d%k$Vi_bCn6$(y^#gx=I8eJ_oJ||5TT)=h>nhC|Bv-2 ztJS*U7Vv6nY66GDL1t#A%fIXOdMK4jy!P5_U>F8TNl7RwD)Q<*n!niZ_pDZ{$7xut zRyHVE&ytgq5fc-Gt5>fgGcyy-&CN(lOG8{-oYS@{l?ovtA?yRH@bGXj41>wZ$+gb5 zPkAyehhZ34EEd>owsjS3*45P^GBOf>_jiAXFTVJ~sV?K<;&ATVIaF3w;)g%{AyQIO z@ci@7!)CKNyqo)*-~1+CeDOtSwOYLV^2_+y&whqyo_Piw4hO&f^{>I>@$kLxeGjp* zv3TjFmoPawi4Q*bV69JgRXlls=dOSZ$UWulr|7PR;OKNZc5yjiZrJ+0d-tGHsnFBY zgUHCpWp84ZOLt^s1Xr$HL1AGbN=i!DFTVLfuRW+Y7z~RB{&J~caFj3a&hd~FJ5C{ZFOiaW>4?X0NkMQttJo3mRPRF1B&?6!u0wpCS zC@d^QZEYrgizhOK@+LA|fJCP*8xOp&{J7 zd6WH*)SY7hbHkI;)6=nk|9+RpkjZ3dXlMY3^Z(hq@9-$9_Tl5--E5Lg2q8Tog-}I$ z?^TK*A{~Vg#9kv{fQo`(0Tr=>pnyn|4odMcK!6~L{|RI64^`NLN9MTZbV z2-|UWbv5hTU0h*}kR^F}c~;dZCnY7}=H{k+j*N^XBO^n3Ih>!LPhMUg*RNlCvMH!NI{CIdX)J8#mIwe}A)Da!bLtr6B!YbtmQGUJb}qDiz7e$;_WWpXt-5vw8Do zlNYjnetu+UXPb;E5Fa0}#36->c1hLi^-7FWScYcIn8Ca6z6%t*1c-}^tI&K^grfJv z@^()KBcXT=(=g*(V&(Dw4)KnrOB23<5J32bjs8J*K@86Hn zXvD|IhpenDva+(wM#j`=H1zD*lXdIXapue!8Z>BN)iI#pVW~=$D%`kn1C>gJy}dnE zt5#Ls3I_%T;^*hbmMvRo*|H_>?(XE~=8}+*Ku}N+9v&W?K7ATTM@Kw8JyEOGT)A?E zoSYnGtbkp+c5&_6HDv@|A%qaN6&xJQp+kqba^;G}!9t;+xoTcs9yf2^H2K@B*Xy}? z^QPIT-NmJ)rE%fH1s-|i5ddOiW68?OV(8GJCVva|?c2whGiPiPkQY_}+%JPxLBY$C zq5H)20pQ&!6Y= z<;!LPxrc`b7cN{NH#Zjt2M47hr|3(yd)b|oi@VXqry_0Guz`O4`Z0O(WTmDX3Ic7d zR*Q#+htizAdiClgBqW#w?j^OVD(sRpckWycA3m%szny;iwk832F|Mwz^y<}%h=>Rd z9Xf=)y*>5n)uUCbRwjMX?o`d1HF0xuW7n=-=yW>V-QDTix35_<>)N$zvv==as#mXW z)gQOg_FJ=NO|xbT~RXnhc^) zl&7aBZQHhG|Ni|{uU_5iV^ptRokNEXDO1ouLCt&Du3eRZKl=9V%b`PuIC$`&k`7;A zU*&sydwc%<_g~V})0IK?9)0vtSWU0uyaai=z*|TTK%E~fnAqNG6#qQa&ht8cl{`u!09(w2@PMkP_Mx(jynHMUXJ1G|p8Z_YVzyB`pB;8dXe)u6PSFWUU z=gx$OhXb%}+cutm{(0Vg_g$7QT}rK5wdm2K2a6XkwrZbe&Ya=&>C=RSgpiPsKvGf? zetv#rWo40&kWi7?DR&P){BVWsyHW+@RjXFzrI%hZTOJS)V79zw&6=g&0P5GTZ*d;Q zF=NJ zs#K{$aBwg^d-gON*l6j}r9i<;T@Mcr+O}=0{GH0q&L%1Lc#Ch(MKO; z|Ni}K-@ct{)v77epWW;7^YibhTy*Q!jc>mB=AJGOSFc{>`|rPJ{P^+8viSITCQO*X z#EBF6>Z`9vN=oAApMN$R%(*1_`T4x@#v8o;`s=*+-g{K7T9vrCIKKMotBT4-xhuS; zr48DBN5{y&ouLFD0DJcAL9f@-yLazW*S&Dz0%2icj2bnn)MhSa*{`kr`s=SIH|0Xn z(b4?*=byar!V5M^nGiwYlZh{`D~EsfOFRP62T z?`V)fA0HpCU%yUDN(vbn8B$Ark4sNaSIWhm1mq(|j9}TaW%u2@><==PN`;S)Pldm1 zktXXx2qA$F*zMaBy&-VZ(+pBgj3-U@&m{^l9{ZJvD07xZ?rY5)u-)a^(v4 z_VzSv*zmrZr~W~r*XxyO0L!CXtXZ>$*|TStQ|d%zFm2j21`Qfip~sLW>p}=2gb=q- zIEzYdZf>dbvx~~<{Q2|f^?Do}9Li;MbT2P292^|b>-Ai`coC`Jy7%Pg=X2r01q=oQ z4h|0GGOg91L4ybg2q=ftiORs=-=6^k22}WQBp??;2qA}05@*j;QaaXk8#e$54i2VT zwQA*l95**NYSgF!NSU}7+^urarArqkPo50?-#pe5m{(rKr>dJebt;`Yb-HWEmqFcx z5JCtc${;N*jf)pAVl*1Dx3?!SFc1$94_hZo{C`PFNyNs+qSxzDtJT!0QwLX9*9twR zl!?mE7Ukl=fdjnt)>~v{WmV{L#GNS&$eo>?nKy49?b@}wtH-ajHRQ?3$$a6=FAz=)6;F8v7zc4|!x{Bn}P^ zL`FtZt5z*rC#TYLc6Pp_IW>h4LI`0!tyW8;MvaJ%k0&lJ4xLWNxpU{xXf(LFx#8yK zhJ%9xc6N3+I5^lkx%U;L(TKrdATKYE+}vDl-n>alN{Z4{T%}Us=jVr?pWj^>kg1TA z3EQfy<)UWIn*8?LZ!B4|gdczW(WD7`(Pq-cKa28Hw10S^!v8xsIPmn-PxH((&!E+6 zZIZr98IT)|MlM{qK&w`*2oDb@D=P~pCnsAct5Wmv@xjN($JWUZLI@!q7;3c|e}8|x zy}gNvi6JE=1%tsrVq&5)V3fFf)M_H#uU^GqFwn4JLn0$1 zIe-2S(US1xao}P5<*wJJj!RY8{PMkPFa&j_xd3kty zd(){?C*0lLm32~5QaEtn0N1WvBR@Z%YSpUIvu97-+}r?&iHRX1B7&r(B<$?$s8OQ^ z?c29E8IjT2^kimcvUl%ZVq#)YtJT!3S<_<8_OWBfxOnj*DJdyvG#Y|}g6Pz#Q;Ba> zBO@aT4-aR|m@xq8bUMPr!-5g@2RP&golT7?bByjZTQS$Qg7&B&! z*$<-d`gZT$ojrT@aQ*sqTDNXZvu4ed^Kk0aDRep=?(XiiZ{OZ*e#hg-k8}F;X)-c0 z&}y~Rt5;8HZlc%gIe73Omo8l*Cntw$)vD3Fd2{O3tEX(gXU`s-ot?3>v*XN}Gvwst z;Njsx=gytc>-8KsaDe3GWSpFwXwsw!O`0?*mu;=dpS9)6Xf$%*zyW2RRbO9UTDELy zc8zm$b2)I}0GBRZ!eB7q@9$5iPMu7eZCP7Ji%L&VXXVP33?4j~{rmTGPIh z&--3XObmw(9pdKAn-~lRWx2DnGohiOK*7Cn|Ni~N#l>M~XJ>XjOZ)u_@u0A`w^v&8 zrKP2jmX=0lW+n!MLHQ@jmqw#e{#B_`1y@(syV3;NT2dx#qq3I^UteF|fB${nfB$_B z95}$fefv0d>J%v{DWs>TmrFN8Vb0Ujld4s#;^yW?beQU>Iak&()L zpLOfj<=nY*W&t_C?%lg-)20niJ@phSm5P1)_OWBf4xW1IDeUa*fPx@1Fffqz?b`zo z78b_NojVyeY#2}wOm5h)0S^xkdi3algM$M%Zrq@1)v7?jL+jS9TWQ*~DV;iXA}1$@ z!-o&EapOjY4jpO|Xjqe;?c29wG#csKw=WJ34qUo)iGv3Zn&mAuHI>GV8{^~SLwb5T zyLay@hSN4av#Lx4il5bUOa{;}3j%eCX4s4|aBTL`Fuk zapOh?4<3A51Cty*dX%iJEV^{*f`fxYiEsWgGBVh@bt|=N*QP~_7RrtD@ZrN8KYpB! z9XsOf?ajrD7umXXD^EW8q_WPTLx(ti{5Y*!x5n4k7oARLa!s~v+lEf3qiff$RH;&h z*w|S9{`+t8^72fkGB|PK1PvNAVA!x>s8lL;@7~R}ZQF2kbfkOt?s$575*r)Kwr$(+ z^75j3_3C%Ltu^@r>&n%E0|$tVjHGkt&UkouaQ*sq_UzeXcCL5q*g}_ z!-o&Eb?a7!4ZQE$rupw>Rwk0nwkBp2Ai{&RNDTy6BcF?I)CnXrS<{10;?J*WM^li)oSV4vnN`umgC2dvvcQ8Mvfe5^75}d?t5uz zX>8xVoz9&*Q?Fh<($dn{vSkaw!NIg`+g3@>#*G{C_V%WK|NiLpdj9$6ANKCuOSf*_ zl=PJJ`xW9rRoManVS7?0geC3TwX0M?p|G7wH>g{7b~ab8Tv2K;>(;GHa&of8WKC8$jBfyHC0)sY15`OZ{8d)FE6~jylB;`70JoT==FL4PMtc1 zTCL`>#~vd%IGF0ytJADmGv&cHA|is?wQJL^T|2zJy$K8quyc z`t)hqw{K6~x^?mJ@Ss7124*j@u3fvvwQJYt*|R5sfq{5?d()#w4>B_|xpe80a?Y$R zqn0#k)Chlnf2CHtQ>RW`xNw1tj0|O+(#rPX!-uI^vnHK8cgEk}pP-;18Z>BNcC7UD zbhd2SLW>qH%*u9Y$B2rGqG{8nRH;%0J3BjCwrpt<_?PAS6nDF2sj#(zpPwIYZf2meuWT12qA=ZDqTQ+{``5gS}lHlei)5LoSmKV^Yi1}xpQXg7Vk4%*w0+2 z)0Mb?7Z(?xAcz5oi;E*DC`bvwi!vIGBqSu5)Vx7K=YM~Hf3v`>wDcqfq_=X|k z15JLzK0ZDcuV?Y!uMk2AA%w6_rE9W&?%X+aIvqd!@PoqI&`2)l`0n3WNN(H001BW zNklQyaqRn}W%FWHSn5V++ zi{{JG(b3{QtQq{{cDA)9e}$|mSAf}e#miN8b~c%rnf&zAPbSL^27?kTT3bd-QhYtN zT8&1dQPNmi*}m0puBanNj$kwzNl8gD8KfOH?YA*?=!lKKH$#pdbz%I>dzw7pPskHW?WioI7`ph7B7k z>tttVbN%{ti&IY)4gM|teuWT12qA=ZD%Dd|Qc@C0Nl85R*kdLSod$z}&6_uK<;s;3 zYeOwLa^widjvb>%j~)aB1Yl=pM`B_kYuBz-)^Tufu=vmm1rM4km5QvaEVJ*jva(8i z@Ggmylas~Zw)nC?|NN8e>}xQSNCn}Xn8Mv%0f`Wnw3JM}QIhnAqFg9-7sPsFv zlr~HG%+Ag>$)}}lOFDmdGFoI|VE4omPnezOqSF)<9^X<>uGMNSrmb*US+8GtvL=7l zD*A$==y@n!t{fa3s8+2Sk3II7***$`MQh7wNs6ymIB-p2x=JhCh3P1%Oce?a4yI+x zmaJK`hGWN$nbeY7^ZV)2r3)K2Y+&WemDtyt z=aEMqQI1*s<%u<{x$hMY1h;$lZod>lHE3;$RYFZE> zgb+fA`%R?^$Ri^o@%8mJYkCU>!DVD*WSIi;YuBz36cl9AO@CJn~ch>*XxOki?jHkdMlouo}{Ivk&%(1G$94Je*L;xx;uC7Y|^y&PDWky z@bI8(*RHHuwF;e1XR+qm-`}4zXU>?Nhv?{Nlm5e&0{4oT#>3m&8#_BYQd3i@TeohB z>!{UgqNAfN_Aw3!2;lJH!`!@i(`0n%=;&y)TCG`A_PfcN{8_77wQ8uv7fKCWwa#m@$n|*5P^;BE{q)loYj?}@`dA|_E)HjBXOn*aX=!P< zH43ja_dO_Rjnut+cat(xRQ2lBiHeHC#l_{W&etl05JCv?AgMF~dEwmSB~8m!zkYrG z`s*)cBw}lLczAH};zi=)<8gL&CO$r18K|gGQi4z`#KK{QTImWeY7^w#41t zo!s195)u*!3JSu*!^7$_T9Q+zPT}b2h`+x-H*el#-@bj+t5;76?yV`?EnBu^$BrFT zsZxbnwQ7-I`r<{+hm>67>!2$ z_rL$4)9G+-L+@bGZ9Y}rCyULHO^K0NWn6DBo{?b@|t-@bjU zTenW>d)%#CH#TqHT&8njjaIE%;pF7R$&)8Jc<`VSY!+>q(7t_p9334wcI+5BoeoDw zM;bS7tbE_QcW)vhBKZ67zm>V2J9qAU%Ms`A7HjfntqvVJpi-&$=bwMb&CSKj%ZpyU zda-587L)b*_U+4|Lx(tc@St+Oe0_bXUAs15eHkrD_wL;}e*8H5_wP5EhrHd z=>_ja>FMbtBqY$RSu>?cyh^3Q+1VLSPtW^4|3U~Mgbi!#+)Mn(pDy`HqRG)|m2!RgbddFY{sY@I|Q zgb+fA2S%moLoS36cSGaGjWHMu{PWL0WMpIj1wm?!8Z~IqqQ!kbSeaU_=JCfL=g^@; ztX;d7oSYmS92}H!2ZDoxZJk6Rgb+fA2Zr<^7eWXjgb+dqA#C9Ot_l)D2qA2qAfLsV6gb+dqA%w623CM*ILI@#*5JCtWkbqnWA%qY@2qA>90SU;3 z5JCtcgb+dq8<2op2qA z2qAfLsV6gb+dqA%w623CM*ILI@#*5JCtWkbqnWA%qY@2qA>90SU;35JCtc zgb+dq8<2op2qA2qAfLsV6gb+dqA%w623CM*ILI@#*5JCtWkbqnWA%qY@2qA>90SU;35JCtcgb+dq z8<2op2qA2qA zfLsV6gb+dqA%w623CM*ILI@#*5JCtW(AYWwB}q?D=ht6<<>bkeL`Ft(^X5%kCrOAh z2@4CebrOUSLI@#*5M_{(lEU@t*U8GtqH*KKxVX4f=MxZJiV$ zgb+dqA%qYQ2sbx3+}zv%NJ>f~Dk_S`jT=|k@hV-D_5J(z^ZM(rOE4~k5JCtcgb>1J zJUuV^peuJS{Da_uhNY*2xe;2qA08Bp??; z2qALI@#5`FP+0 zasa(v&!?Y$%J<)YPhw&s&p-b>FTM0qg&tF*(J*=PWEwVXX!c!xetwDDWoKve>Z`A^ zXV0DrOq~#S*SK-x@bdC1mwjEmdX*I`R+P)WD#F~kb8Vf35>@tdSJcdzGp$;$Z{NOj z=+L2J6LX&`dXDdJLfp$9$bj5nFtB393V!_YM_zvUW#Z%GdE}8tl<)ug>o4Zd zpKr3w#*G`5rsbZVoUO z^Pm4H-)CoMGj{A)cJAECu3fvBHER}Cs#GyKR^h%i8Vzs0`6k=8ZDa4=y{ucej?tq> zmzdY5o_dP)>(>(=9?q66TNp871OSeXj!c>~i5)w3uy5Z!mM&dN>(;H6?H+yfQNqK+ z>Dsj`t5&UI|Ni~_{`>E=YSoHopM92X+qUud-+%MjXP=og317W>HLtz)8q=pw=kLG& zX3w5Iy!-CE)TvX4Z@>MPy?ghvVZ#Oh zT#2$#sZ_VUZQHhO%dJ(){{8#QWj_@`uh$b15n=0Ol&CVFyW*@3vTN6_jjyk71*hiz zRP-F*OJzd{A%wV>ReU?`N-i%ikBp2AB>*mqY15{$c=2LZtXRR|!Gn3}rI$E<{5av^ z;U?>4WMr^<^=c+hp3I6BEBNQ1e@vR|wr<@TS65fQ`|dj$Hf+e_k3UXaTpSA*E;Kvl zuwlap2?^n=uf8HCCWeO}ewehhG>hr$*RLOwCQahdp+l@(xsrf@0Agcf0eI`Jw-_{N z5UW?OCOSHr0Rsl`<(FUbC&Z4m@t89)26Y1 z|9(FMcA zpFW+39(u@PnnOZD`14vuoEb znm2FGxN+mkoSs_=4Gm@d`0;%8)mH#yWo6NzK?B}&-|l6dpYH~Hn4Ure^yx^*k3 zPoE|}KAwXI5Ax!RF9I-q`gDSVf~>kOTeof{J3E_`Cr^@-lf&AzYf-6GgoTB%aN$B! zDiwBicGRm^kLlB=0|l*Z-hKC7E?>S};$A^3%iC|i&5Ri{P^nZ58Z?NJBS!-8T0n1eFdB{M^?E!#J()dwHXa@xKtVHXcXxO8?Ab#`Mg|&< zhWz||KKbMmyuH24R90@4_o9|9TgJ9++i-MrBsVt~l}g3p#fwdj9UdNzR;wi=BZDzx z#+ZyFGGM>}v!>(o=g+5U)28(3(L?!7<>uxR6B9#zem(&K0Zg7enVBsCObk7H_M~y+#ufweQ>RV=5ET{0!Gi})zR%CkXTpRD zWM*cfQmJU)zP<8bURy&*I*1R7%a)iNy2LlB!8VX-1`1<4CADhRGW&kqxN(ddH%_Vfx_0dvqeqWs{rdG(ty&c* z=ySVy^Jdz$YX?9|N(xUs^%UE;ZwFxCzJ2W8y_iY$-~2gPe1(> zCnqNW5)u+D23RF2Ee$hg&ScG+H8?vv17I{70jO869iUmx8Hta&YU^;`T23|*fGBU{(F;sT60~N zE?vr;IdhmcZJM&(g$oy0uwVg;7ca)e#l$&6+hOp2wmdee_X_=kDmyqby&( zoaM`xEBT#2e?Fgo{<+e!CpR~jFTVJKpMU;YImb}&8;y;P<@euzx7dPW#flaD^wUo` zI5+?WV|uJvvxZ^AhM`ugxpCtLK0ZDs`LWchrKIvuoKB}>;>3w8Uc4B8e}AB$=J%CX zUSZX$RmysE=FDOH_U%f|`hf!nm^Et_3l=P}xL-?3%X^{t_;@yL+Qe_a{iZC_>-9>D zk*~l08jVK7nl)P!NF9 zlBrv_ZYJB7R5l9t`^O)D+|jubLI@$m|9K#rtZTJewrttLnl)<}KYl#RmoK+i8(o?U z7cMCOFC47M(nE4-qNAh9%*+G|g7c)Lq!MfF*R5MeR8$o6=g()!k|p%&)vLt)1_uXo z;=~D)U>u-EjT+e5*>U{%ab;OzVj{7zvDB?w*JRzxmoF>-FRY1=ii$E>Ry?gSF)BomDG$n8t=43}MbCF?YAS$o?4Y0^l9Q8_U>xA| z>C-0Lr=_Klot@47Zl$y|Xti1r5)zc})oQg; zTU(MlNl$TO$Bs4W0x@>%Sk|sx3&7B!LzUnO3d&|~Zf=RKF|55VK0ZG5>(|d@+j;Zm z@!^LbmUy3O)vDDk&!aWw&!5kSAAV?(-`8J%-K0h~KR=(Ro_fmU90M#_vV?cud8fpH z^o18*P=axQ{{8zaFDOTi8pX<$E0ymO5)x3UR2FMqtt}5LSFR)^Bt!|up`cl|mzS5x z{crT>(I(B@+qG+Fa?i3xX?ZW?;^IO|N(xz7S<14atxZ<1Ud`*Tzpi|CbaZ6iym@^7 z`R8RyPnRxTlwcg7d-v`%ZQ4``#sPZt=)uvWN6WO|;lqdD@wpO02qDD(c_0JwoSYmc zPMoMb;Kawrm-?`7DL^jzKy@bygK=xzxN(CKBStWD=1iQNoR~9bj>*GYA(cvnN~N+m zU|i9Mzv9~zXDN?*z5bSIEbBIJzWFB4KKm@2Hf`eNmtW@PmtVGezeN?VB`bU>a6db7 z;sni`H@EoR*|TS9+O(UAlD3X7{C?M{C5y#F*t*rBV?T6hvHH zoU*L=j1d_b8MwN--g0b!;^}j7aZ%FNyLWGs7C$RitRN&L#NvLeEe~hUp0(K8$eQ0k zNsb;p%7h6Mlz-Q+U$-jnglffW*W^ ztJ4S&7#L{s+1}pX>?M(tlT(?>29)hw2_b|KqI3^rKyEY|2@4D3*I$3-&p-cU?AWm; z0f$bfGiiS6@9&SRtLq&dvoPQv9lY-}u^o}MN(H^l=N zS65fFTK9XM(P%8OM$X#i`9*6iEh%XhfTAy1-gx5;oSmInv}h6EfB!w-fB$`%9^6Yy zLqI?PKmYtQZ@u*v8#iub#E20kj-5~*=_#&g>wrRq=iSlKk$`{zE?v3=6!ahO-@ku} z`?B`B6s@5yR8rIILZzKYYn1lFtx)mw<>lp-T04BJ^x4_j(V|5Q4j(=Yz|NgJ>D{}x z#dWPM57y?Tq?eSIG;iLVFTea!`RD8FYgOKh>e#U(Yu2oxPoF-#|Ni^D^Ugbf^<~47 z;@euvQ)#VAtWlP8C4>+{h|)cf0eMk#=guW3Cx`dmdrx^-Id$q34I4IO{P^(<88U=V zKKbO1`yOArb`68Uz@R~c7%*S}UAuO@t^I_ChB9v4IC}N!Mep9d2?z){skf~L4H}eK zL)f%wQ;r-tVz&I)v14Za{%^&@!-MPBubV7OOG_guDG4YD*w3Cl%g~`imETZ)etw0# z+zAW}WX6mc3>q{@Y2K_>t4#vcibzjkuw5uOHy4A!paklpMvdaP-+trj)vNgX`&$gA z3*E_esZpZ_k&%(Nkps($pF1dM4RHSad6Q-N`T1PEdX?(ctCzU1YSpTdn3#A+EmOvf z8N)BX{KC~;hS&1p;oP0Oq@88-o1M(fz{l(b6L7{DLs4kR0e8#qd+i!HN|tEMB*|b?cIyoz4IL_djJ>TwEMK{O|)~#*DH07|%WT9J6N4GN~z_ zKYzY5_?SwiLa*1GbiF8i!BZY`a&pMX$S_%!kdUAZaOm&vZ!*3>MWkox(xoP~t)G4N znaN;R?c2BK$dMzgUcK6^nYCK2Hc9`TT$eZBe3QwOCzq+4%dHeYcTh0k+|;R4O~zaJ z^2;w7IB;O8`x`lOq*+-hi`unobN%{tR;^m4+>eVZtvnPpY}hcCFJErbEd0QM10*IU zTI@D(C#=nTN=k}Jz@49;PiktaGA_W7Aw!rqZ=UjfZf-9B{qKKyCm;6_=0>#euUmTlU!$>d=sK0cla6DE|nkEEm|lR3Mg zAmA>(thhC6)|d?b1ei_D1(-b07eCgH9Xr^uW5+FzQz$<_pC5ksfggVO!R$MO!N6Bv zeWgt0RGg*b%$_~lB*-nERxrqF(V^`v17-gQmL@F zwV6v}n;n`CO<) zix%wMxzi+Y0{G8={==wIqX-BHV9b~?v}@Pywy#T*CQW$hrI!c|4aM2n8I49m-MV#4 zd?{BNOXsdln>IZE{PTo{hN9JK$;!&2Wy_XKnKGr+{k{D1%Pd&1fI))>QLS1v^7Hc< zIB;N@etZ4<_h;qGmDH(I$Kv;;m4~8SU0wO+n{Svrc{2I=`RMg}JUl#Dv}lpl>9Llz zc|UvhEFXXTF-}fS*xTEaot@3_;lq_a-><#)8VeRIbc!a+0010ZNklI669_ z)9DyJdbG)4eY0oJ=B>Bh!qL$YgTa80j}Mb3O)A&?SSlMr2qA-7W#1lT$$LI@#*5aJ&4!1W;)LWuHm@#00M zPoIuXr(^#7`L<4u5JCtcgt*5@A95ioi1Z;BLI@#*5aRwJeaM9nLI@#*5JHIigaqV5 z2qAF1#?YG}%-@bhokKM0dKSD!889jP5At50Q95|5I zUVDwy)Kq1iF=NIMA0KaZ{%_aaI!>Ww%a-x`@4w%*<2{HD95}$3F=Ge~4J9NbgdszQ zFmBv9j7B2>k3RZniQB&V>Z@G5cv1OWt5z*Wj~=a*)d2$rFnjiFGBYzRZf`UiY1ghD z+1c4;O7quWf6e;!>&vuFd0Mn+5gRsaP(JtT*YB3=Pnj}>(W6K6{PWM7oG)?vir zmCtkL%%M-8K8zkcTDi}U8a2w|{k_nVB}@3^lTS*`+wtSadHe0ROI@!riH?qD!h{KT zyq^IB29!f;gb?>LnTK46`-n=V0w6Lnk}h4kl(?S3VBpCopJe#(;cVW#S=lZoCWf(N z$1-WsBxU=5|NWOAe)xeUOP1j1=m3YvQ2JoE*(2| zEHMpBmMl@$2iUlABNHY}VCmAO0E`B*+R+s%9biI1@Shj4L^4VxKvV8e+`uFe8#*G_s zad9zOf9KAfxVpNse*Jnzj2L0{ar*Y{OO+~B%ACHESaYs!*U6J7(dl$1=SAGP;`gFC zbLOyc;X-_UeJ!q^o}SL|;lmj>Zk)-r&d$y*@r6-o{`=qm(xXQY<#S9-4CBU)wo+0w{-8`ozT!wB^U+u7OS?(PnNhldBF zM~~*qFTVr|g7sOmW-)W-%rfQSi6@>QDk@5;#cbQQtx3RMQSR1p3Kc!y<>gj2Soe!- z*RBy26?MyXqNAf(wrm-T7cVw@$r2bCST5;MtJQ>thB9W%7(V*wBeU<9FJI12KmEkI zb?eHs-`cfnml$}Jl{M$;PDDjT@z6sLRoMO?RK@Q_H*em&Wto^ZZ5k6MOyG$po-kRi z)oStd^emS&1qKGPa^*_C{PIf@6BA9oJAL{z!NI|_ZQGW;d-vXQKQ1mVG;P|nT+(#6 zl-IqwBJTM@i2IAwkPC4ih>D7$R;^mfXQR=0%ZGs9e*2A0n>Jbe&fVQzdBE!0wJTm; zUR=6#>6XV22?=5N@Zk&}KAd&y)-h_-DBRrK%A5~_!JyP)hJ=Lh_19nH=H|w!Q>Xat zx8KOi%Og5E8aq2XbUGcACr_qTt5yIcCnqy)+BBuvetLR3)2B~Y0*6J57E!NWJyxw+ zMOs=KwQJYrqmMo^IS#=2^XK{S!w<>N&qu9RQ@3tirc9ZFTCFB8FOL~BW)K}6jYgv( zJ3E^uO`7n|JMUP`Ph4CaQ>IKor_*6?Z;!XPHw_vzFnPIg=FAyp&6rVPKFr3A8+47>;M=!awPrx_h<9w&8XFC($dlh2?;T&DNapIW$M(a+_-T= zxzD|$;ruK?%cV&|Ni?NJ$jTEUwjc~XJ?B|c$Y0( z#w)M9qNJxHg@%UGu3bBmpgbWV0kv99P*4!w-rht<46v%a z-?(vuDO0A9pP!G>Xe2W;lhDvm8Z~Ofd+)tx@m$TAF@w0cIPC1~lxy?&Hf`F(;>C;6YPINe zI$F1Gt^B3|tIGeg&pylBZ@;^llAWE+%$YN}eEBk3tropr&$MaN zXxOkJ0H1&UIS~;NI5|0yot@2;DN|_FsFB5d6yA$cQ&ai+>#sR`_AD>H_#!oH)@16` zsV3`YW@d8q=+P3JvX>_(CnrKeLRi0kJukfQg0g(ck|jL<{PR?)QiTsc{E$waI+eJO zQ>RX`WXTfd&6`)|`{;-fBY5nw$JnuB2O5or%*;%N4jpRJBIs84ZGeo745m$+Msjj8 zj*gDl+uJj1)-0tQ>h*fwefM3?pFfY2lM{A!c0B#`(`IQY?RqXRRG{TeN7wv17;R+O;cBKm9aMJ@pjX+1Wh%?6b-POmQE5^bzC7kEd$Y zs%37eg)8a95b90$Gbt>O}`>oOfV8Ma~eD~dVyz2yq-IFZGR7vt~m4;0jPzw*i} ztXj27+0UFgbJ)IpyHZr61q*oe(MO4mjYX@~me^!HK0cmJn>O*=Z@-zO zyDTjOj7B317cS(-AAeL{D17n77c5-3kk?*&4S++34$-PrE0!-`4ivm#88c=K_3PKC zMT-_dL9^U(o z?X}mGvIPa#)ZX5{#B=rE|Na+eXJ??`dJY{rl%73%qSb1xPS?{6%$vzQ6wZYqoCPii?X2`T6+_88U>eTetGlPe0-0x?f6jmY^B=48otvA>7hinA&p-dH++zUV zeDh5P4<1bK-o4GX`RS*haCdiC?m@}P$vpYwlWg3$(PSUR1qTQ7@y8!?;=~EQ|NeW6 z>zq1u>aNx}w`$djHEY%=pL23@xN_wR_3PIM3d(0jMuu4z4ok{P1c3DhxO~%k9qUv(YSGA7A#o6ym|8& zF=7NSyzm0^=FPJ>AWddwrt;uglB!j!Dt*MAot^pPk3XnYs}|2a_Z(x!jIlWITb(*} zh>MF;0}P%voSAAkG-fTyP?(b3T++muxM5g8eYhlhtr zz*M6~4f^)&t9)L$awQ=lAxf|U(4j*Iyu7?Pe*CzyZ1m{SCQVn{wQI-a%a=>cM{zDL zE~KQSkd>8HYPxS_?AWm;wfkeoj%DrIwaRC;TFvXPzpi}NXf*uyzyDQ&iVGJm;OOXR zQbzp!{dw`l7y0?;pOs}kK0c)mDrQMiQqpa;%(z`ut5!AXs~Z*;Mz?O=fP!lj5fNb$ z9F|3C<=xZM)2s}Xc1?@^?$v5F&6+hUx2Eluu9>yvd-(9-N+73Fsp!z51AY4RQGU;A zwVGC~T5;jR1&hblYPBRJB$(u_ux51r{P}$N;fE&W_Vw3aH>(jZO@4kpPd)XN$vq}I zI-1PPOpC!dz=jPQc;=aBl+PX>9(3#0je`ddmg(4*Bqb$Lty;A^-jB6hTwKV=$WT6S z*sy_t0|zRfhYcIX>eZ{Q+E-cbqfl@kDf+ietya^kS1;x7P-*w==;&zd?d_Fd9H32` zHY6k@C@%uGZr#fB&p)qx@9gYs*5|#n>$zyrB4*B3yQbh=xg5Fx|^Pin}8 zxDQ;pa)lZ-Y5=fr-#(K;d5Wu2rHV;lW=VQ_x=BrxTCHZtkRc2iGK9#;NZx$&O`dt? z8HNuZuB`Ljci-{<+PnXls_H+E#x5)?Dz0*>gM%&_4((YD<>yMd-v`Q z`s6lPAf23?tk%|6rKF_D<#K8J_U)>!t~P?8Uw{48w0>6_X(-2z9n&9w{9!zW^#4AR zG;!iYojP?&)22;Rc6PRMb90Sl-JLvnGH7b*@ZrOaf7jO525tP6nVG5D+FIiYSh$-A z(MU>4lEdLpety2Pva&RL_UvBORQs1jNWKf@0Rsle?RG0RHdg8B=>ZqkBS(%jN*?^T z$zNt>rjZISMcz-LBqt}UrKP1uPkgV$`Sa(E8vq9m98g_dohi-r%$YOVw{M>wdg!4Z zj~(fFU$$(S3JVLhd-rbT<>l#-M;?ios=t5#epOahsZrwT+6clLi;K7sX)TmLW|JT&iC^IuN=(=rfZAQwuzsAN!qwL^H3>q}ZxM}+T(A3mq zy4kgT`*y|0$LotPzL4b0a%yU7G6k%m^yEA$`Rdra|4r!nU63N5w`*!@bolV$fPLY1 zyVcm(sKmrXrKY9^lzI7|tE1VUXU?1nC{amHPS((&Lql#G07wMnz&}=NYpYhQSRs$c zqa#O-XvvZ#lB93G`9^hhb&8FR)%^MMb;lidn7+?!swy2kcra*p_PDsXuwyJ* zv`7y=_@Lf@|9#`>SoiwaNMm?B9xYzH*z{zwyRIyOs;VmEHE_APxdH2iN(uK*%?y{O z>8~$p5GPESpa~Nu=+L1$Q3FX02JXMrCDX8Z>B7)N|-A*w=O6Mz`A?vR8-O?be79BYJcm z?1{VXx+`d=Qg;an32JI;3c9ShxjE|QZwC(^G;Va9I(167+;WRbOG{1byzs&cI)41P zk;WcQwC7Rj%Fo+ww_DlS*~Z_JT=IXPLy#l@OC zcdqjC@>E=0Y^1N3l$5BrxHupf?~<37rw>2;FzB+DmKGg6cra{(9=qLc3ci*uT`H&3 zDVxov@#DuUIXPMT_wVoVHrZ^pUIm|CuUECTwVF0nmH)~TtfF`hJy88fEW z+Z)X`KKbO6+OT0m*mWe|tIYgUrn|UYE;TeXMD^5k)22NY3db%7Aho(%K zq8&SSNb>z2o;Y#Bw4T@NRb5@3vA?1{{<|ABYLtHd`RAa^Qc_ZM?%cVkZ$kCdwbx#& zw6wH{Z&=98%nZ5Ck3arsDya#jwY62dckfnqcD5v6c2iznUch=YX3Q{^o=k0$CM6*AK3>l)cXV02GyKv!x8XFtKO&scXV{f>2w;6m4*)=uJ-nJefQmW#yY1@pH_K!x#rB76LuSi4jme?-g)fUu^K;q zycR856t-@2(V|6KvSf))pFVAT=5o1IP*4!@UCAz&OB*+C)V_WDjC%PUJ9g-aC!Pqp zzJGAIb?eqXYw*a_W18^`0(NKdcFGk>#u_@pEYZiR;*ZIdUD#8ozWN8 zu3f8FUU@~|fB${Rb#ilaRasdX5U^HOR?6e?M0}e4`|rPN=FFLT{q@(Cl$0d5+pX&A zYTb9=eF5vAQ!*MGU>>)GJn^s>FZT_1n^ zv1$EC`*ZHxxmvk$rD^$FZ@m>Z9UlNBQr3ZgyrV~t8mV}P4<8O$)97!&fC1XJZJSC< zOEqQ66vf5G$?NqhK0aQBg@vXuHf`FZ>gsCa$@SlV|E)=rCTZcqg=%YS)4Fx*v}eyA z)A%VVDVjfjzE-bZEr-JqbPi8F^^|Njo00OFn3$+7TekE%UHQ#7-&B5nzVW)5{QUf| zwe-Q*?RIV4xKR#=LmeF*M%U+@oE%M^I#r*3`l&wq>@(Tzb`2OXKrWX{MMXs+$J@Ml zvm6eGJRXl+E|&%m9;}j*5;ZqBOY+r$ZrHFvOP4N{*XvbhXQze?84|XWcrX(uPSn<| zTQzUqJf)|n>y0D`0td!gB zR$N@17B5~L(0pp<%$Y_FWm{XD?z!h4Q%z+?Mut*SQZ#4I9NBC(wY0Qo_UzfFH0tv5 zaupU9YW@24#=b8pDT#Q|nwXfVNs}gN=FFK&O-+@<;RtxwxFo&y+H2aiYnNusn4$Ri zcq85Q-h1!Wi!Z(?$(QcybUO9YOE0Ojvs3Z$@#^gC)YPd{13J~8IB~-0oZj{7u7@9f zSi5%ZGHzP!+_}?eAl2QJDN~e_lcQ&!eO9HVr9q!8_C`@rk?QN~je2>z-L6%uR!Iu} zvwHQ_SM~DCFKghyf%14f%F4(6`3l=OevTNLKw?>T`rG*O@O7iXZ zdGqEeKR;gs2M*MwOP4fm+&C>;w#*nK+T%Z%_uhL?g@uJGD=Sk{Qj%OQm+>mB1q&9a zw6s(?IXOy6Nl|QUtm5M0v~JzHh-ui-NKa2!MMZ^Hty(3g)2YP7M8(9!$Y!(2>2&Jm zn{SrgZr6?-JLGUU008t-e>9FI zWgP$zl}I(*y?w>kf5Erkeru%e0{{SYA!Qu^fPOY>)-0>100024LOdY{00000zyj2e z1O0>=asU7T;NOE9asU7T0090a2*?2d0002600B7w0000079b!800000zybv100000 z09b&48~^|S000XRkOKe!003YC0&)NV0000ia8(85g9i_`dI|sl0001(G&ME#%eYrn zKt5u`2&<<600000fXUgjXZvN`t12KLIdY`cQvd(}006+Gy}i9(#=WWn^4#29B_$F8Z>O!uznf)stU*@ zY2w6*di(9Sm71Dr^;7@=00030QH_m_I(hP>#*7)$Z{Ne_^?JSiHu@E4ZEe*jpM0WY z$Byav@#Fp0)eh({)z#HjPXPb`06-5kH#h6-*|WNI>5@i|9^LOH)mLpm4gdfE0KmW5 zRhP0300000z<&V&IRF3v000&sAO`>d006)O1mpk!00013fPfqT000003lNY400000 zU;zSh0000004zX24gdfE0DuJu$N>NV006K60XYBw0000MARq?-0002M0tDm$00000 zSb%^W0000001FV10{{R30AK+EasU7T001mNKn?%^004jm2*?2d0002600B7w00000 z79b!800000zybv10000009b&48~^|S000XRkOKe!003YC0&)NV0000iKtK)v0001h z1qjFi00000umAx$0000002Ux12LJ#70KftSdG00000fCc^syII0%VZn_s99%^UDVr*$MJ~{dJN& z<2>Yf!t;L4IqySJDwPNT00000006*5MKyH=0000000000m=c7A000000000mp+Q&( z000000000J8ia)a00000001zdL0AX?00000000vjgoOYA0000005G9JSO@?B00000 z023O7g#Z8m00000Frh(M2mk;8000006B>kt000000000mp+Q&(000000000J8ia)a z00000001zdL0AX?00000000vjgoOYA0000005G9JSO@?B00000023O7g#Z8m00000 zFrh(M2mk;8000006B>kt000000000mp+Q&(000000000J8ia)a00000001zdL0AX? z00000000vjgoOYA0000005G9JSO@?B00000023O7g#Z8m00000Frh(M2mk;800000 z6B>kt000000000mp+Q&(000000000J8r{?t00000z(XZJKmX31J55bZZEbCBZEdZs ztpfuCrmhqimsl*8v$M04larH^lZS^#OiWBvRFtVJHIzss5(Wpe27_T?VZmT9m`tX%wY8O%mC^Q2Q7V;2+Zg}=0016VSFT*ScI{e5Mutcv zGId?RL(AIQIzB!=F)?x8ym_XrNmo}_S65eWZ?9Y~H*HP8LyShF+1lE2xm-ItJ45da z!a@K5003xDE|;G>ckbZ9gDovBrmhQ^K-}EiUU=b!#fukHsm2}>)zQ(>+}tdcN{zf< zFp)7B3^zA72L}hk?E=C=00000XzAj`i$DJOV|{(S>YGZXl0u<8SO!2-W1c@gK0aHv zY+0~ifpO|15D4zyzb}zURNu6+va+|gXS3Nf8jVJySy)&Yr!wH-qf{yf2M6VHxm+&q z>+2H;1buydstZ_JTDrNp8K~tD!a@K5003xAB9XlN?z=Z`+!*pc#DTz|hCRXN&6~Gt z*Dgcvm(S;ScXyL_=ybY^i;KOzJ;Z^)aAY!>Kp<#oX&D?GByZZ;+4=eT>3v@i76JeO z06;T6Jw4mDZ7VG;#V;Wg1jdK&V9ALW9v;4T?_LAt=a9?g6%`fz{r&hQolbXkb>;DR zaM}aoP%4#eZEdQ-A&0{W3=E{vXnNcWgoOYA007WHOH0d(FTU8=*oa?3ObE<`x3~9q z-+kxo?5y9-N~O|@iVD(k)X~w=)6>)V0~!HPC=~Ve^_`ua_$8Cc3=R&~V`DXhg#Z8m z08rP!z`*+T>l+#xOkEKG{+H^52`?|N!-o&E*=&7nT%k~ul$79@kV2t&dV2DBJbi5( z04=n&wUJ+7CX+dN@??EIq<}{q00000P}kdUzm4xm;IT3=6F4TsCuDtn{k!kJtH+I3 zS6AbhkVc~g1qDG&2u#k&$tgHE7un+(M003&)vuDrk+qZEUI*tPK zbo1uTufF<9FPmy;Xz1` z?$M)1OK`gwzdwL z$3i<076JeO0ALJCrSj8HKP6?;RtA7EefHUBI&Pt^t_~NRoSY0ghd2P*addQaa&p4u zA(O{y2f{)C0001t;mnycH8nM+t_1*NAkQqy%F0qwQncPqM@NTPEJg@17z|HOPyJL5 z0DbfH^u(D+`}_MzhElCTSO@?B0D#em#o~SY_Te&2M*++kh4TOB*#Gw1Z^^6@8c`?| zO-)U>?C$Qax5@!v0OS;HYHHH4D+h#y000007)@$wYIk=xE<;QR%p5sI+uPgI($cip zfyOnZBKeO3+teRFVdu(Y&92+3qJfk2?krXVZ?0002MXl~rNVd^RXpaIfm zqTQ)W9)dVKJL|1Z02mAzVMtD0?Lb%v0001h5y@n-jEoFihGa8fTp$gG85tQenM|W~ zl}aUbYhB7yvm@dwY9z`IUyS5C8xG03*uC$iN-yU{oO(NAS(DSS-%Y&emwf zo}M1OE}PB9$vglsa~2jBY&IJqq);fxLk%s^^;abT0001Jtg^DQyu7@#vr{IMu~;m3 zclW5Ms3FZ1b#-+G1qEGQU2?gc!{NBOxkW@o*xK3}p?W1HB}Ui_0QyB9VH6h^$H&L3 zzhZxXKQ7qW+3CMp02l_B%f+W|e}BK${~91H1ONa4Ohc(uUb%9mwzk&Y-90)wn#p7e zg~H0p%BrfWM<0EZOjTT3TAH4o?&0AP6BC0F>h0~VtE&qQ4K+?BTU%Rk0h$U&v1!w$ zZQHi(-o5+y@#8~2I&$O)olal7b}e+lH3>2$y_%#_DK6mV7ofiS`ud`xqW1Q7nM`JB zY3b_f8XX<2nzKhN7T>*lx2~?Pudk2AVmUfGhJ=K8dwZv)rSbXv88c>tg@uuYPn|l| z-roM$V~@GGxR~N-#u;+Dk`q`95EcRe005?upPye_TRUsktdNip@@8~&bZTnq)vH(6 ztXX4aWrYwbEG%?&bzQP#30Y?P^yx;cB)O}GPNdr5a5yv?O?Bb~U0kx|*n(8aK9pAs&DHaSDZ^P$*1YkqJuE6PTo^ zfq{kUYierB&(CKvnMp}Wj*gD_O+KHWmX>zy+O;R2eA3d=vbD9ftEx-I|!4YaqnOC*xOz`zGTVzF3mZf*??4frLG$7^V45R1jet>FJ^X=%X) zXe!iBYHI4WYu9jj?b@|DIXN*gG5`JF|9$P+wd>cf|M0^Pia-M(wd4$mR?b~y5a<*;ThCgz3b-j7>W?EVr41pURv=$mcQBe^>XzJ9dBql@% z`T6+;1O!N>((>|hgpgb=M+mW4EV2NT$z(7XxIB6CWFC)KUS8hb-hSuK9kEzEefo4J zlWEk$7|+P*s%h$7RS*^e0000c(9_d{Mow#CZ*PwmKnTUg#wrww zA%u{r!qJD=H{X0?Yis+%4?kSEaAE4ysh@xTxjGF~d-v{bY;1h$si$xl`S-v7-O|$X z(@#I`>gqClmB%0Q6hkBuX|y6~*M;XG>cbC@e0+R{ypP|(pE@}?F&GR!pI=Z=fI~!8 z6bfb5tXUKaFn$*EG)c#|9)?8Z*Om} zOeV9kva+(WvbMJN_Vx}A4u;ua)KODYQ&3PK5D2=uy2N5J{sTHVI0Oa;`uqFCa})po z7^m>859DF_5Ed2|N~LmeaF9-?+uGW$TD2-aKR+)oFDEC*-`{`Qv}qg;$2j%0w6w&L zA&f25m-_npty{O^vX_@vTwI)=pC4{f8HHFZ{^+BR_V3^S-h1yQCnv|n#igaCrKP1A zzP{rUIbHEsHT6-cR2&&96bf>y4Mw3*C?paILI{tAR)yc`>+3@ZF&K=wbLXa|rDbJh z6%-VNhK7cRhpYYoIyg8?o;j3`d2;2-l@H#88G?g@ zLsL_e5q30jWM*cPa$Q|rTwI)^qvM!iAwuZx-Mhz+AAjPBCqhC(y1KeP{q$2qR`VgD z+O1I?bUGdPBbCWy@bFzP$Q{0ym)Da|KAD%7S6*J8o10r!R+f~ML~dV|N+s#C-rnAB zoC$ay8hRNMtGA~hnVFf7KmNG0v-74+n@*iNHD*kR5NdC4PfbnTzJ2?YDO0??y+8Qi zgSxspebs0Dx_e z0A1jl9)UnG?5AB_T@T(BSy)(vhK8?b4-7-QC>=tK+yw{-mlCB&dVjRpa)2FeWOMikoC{tDq{}gI9H`4>p?} zA0NMd{d#|Y|GvJyn>TNgkBW+lIy*ZrI}V2S0$sHXXsu|1y005XR9*@UlGOMer{r&xid?Xf&o0^(NnwgNz zW;;4Ml97jo=HTFf3(%=YUq%}Iga7-}Xf*N;`QsCBzWF9XNFWfbT)Fb($&=(Z01QDo zkv{l0932S@bxGYZ(YUy{)YjJ4*47UB)xzyP4<=H!w6si2OsuV~?da&h@AUQc<>cg8 zTU*D)#o5@{+`fG~Gc$Ac?AgYt|3g48t%W*;g;J^X-Cl`FwtAYUDg^gZT_ii%F0 zII(f#Mn6A4Q`ZFm0EVJcsSyzockbM&tgKW`uAopTu3x`SqtU{{!-ri_B9RCLf(NrZ z7>K5gEkJ9Xot+4wfPet}l18J=n>SB&fu&2A&YU^(^5x4%j~+dE@Zip!JD+{_S(y4_ zbee{Rq_L&HzaNI@s3|lww6?Z3H#gVS)s_5W)YjHkRaG$PH-o_-Er&v( zP%f8~p76JB-IB><^XAQ?(P*Kep=D)d<>lppfq`yrZYDXRai_n(9~Vp$7It=aKK9sS z85tS)rIVA>M<0E(Y11b4`(fi4a^uF00|Nue$;k%}9Kg@O%!EuPd+V*YVq#*96Ba)G z^wT6J{Kr53@sEG}L!Ix{&(H6rmtK15rI(tUn~xtqzGB6SF<1HGi!ZKSyY}9D?>+Qk z;U9nev2*9ngoFeL3jqM;DKav$y}kX~wQGDn-_z5R!C(l5!ph3Z-rn9vAAJ1cI+5V+^?p_ z#>V>kdOttE@4x@Pva&KJCdSFhiG0fA@!ov%&EDSLJ$v>D1cKz`FVmrX0v;GdfMCDsZ{Em zIdgCeM_pZAR#ujyqoa+DjY6ToBbM>+SbcqcZEdZWmzS597ea_irN+m{r=+B$r>C!8 zy;`;X9E^nYAJHWnnU-N;O-;?BMT;sbD)7rqn>Ky*)mK`N4P~)dI6l;Fbpt6WDKT2N z=94E+9zT8@m-p`7OJ*ffpR23utFOMQ&XPtOj$(3od3mO;0ssJvhDxPA`skyTm6he? z<=NTUgM))C7R%k;eZhhSq?v-jU^qKF*VWbGQ94#uR`?Fg+S=MUm7FtY&c`2rjGz;# z8bU)uRfCZ9^mL8FLb+VNef#z|-+XiOzzAy z;_;~a_U)TJd-mqdo72*K({fJ`QXN$u4%ZQ3+v zXXoPL;`a9TmX;PvOG|%$|EQ=a(pu~0=H}())zQ%*5C|9y29L*!h=}m=@){f*ymjjq zl}ep4V+Prpo12@zzkhXg_1(L7A9>^v6CKmIA(P3-+(o*K2B(l=Z0hUm?2L_#t*)*{ z2+`^EAAa}&Pqg}w`S-v7{oHfU#mC314u>@arBdnZ>x+Mb)~s1W;zL8Isj0zDXEK@W zp`WMK+uOUozW&OUEA!{iH+5YMXw#-mzx?tGLg?3De|_qyr%YWP0Kh}&g%@7P&CNy7 zU@$PzYvMGZ2?PRsg#Z8m(2=I? zEdZF1YJ-P%r!Hx$Z)j-z2U4huj0@Wa3U`U{s295}Fi`Ep%$Z_e)C zy=$BuojrRN7vkdLyuG~*x-X+0l*vt;BLx5eLrY3Zvazv22vI27bTR_K$Z%7kwY7Cp zQj!*{J2*Jt@oZwTxV^ny&y@o}uiD$&@u)W%jizaWr6Dv63yX`3_w3n&%iFeX+q7wu zF8elTN~N-(pujl$s;Q~Lg{f1g8hT$7r?qh694U0@0st7Am6g?&EnCP-hzx<*Qaw3e ze);9m)47j?Mx&8rGfhoRBTXm*fXR{MJqRIpcXu7rNouz8)~#FdToeHT0lRkX(q+eH zuA-s>5AHXD=H_NxFv8><6Q>Pr;v6ZAh6ex`!J0K|@Z@9gC<>S}3Wb7CQ4bG~l`B_j zy&WefCkBIo5R%K~FgYYJTQxN`_^}0($<%!utOiL(GBY#Dob|hQ?IIJ8n2+-E^5Wv+ zhK2@_NMvPYxHZQb475{ZP%<=WfZhlhtxo;+Ef6cEn>0Q-rnBX+1cOUKQb~> zk9+Cu?Y(>VZgq9FKp>DvBrFz-$KwSD2S-OoKX@{0bb12-fOcp!+H0@9_Rc%+p#O9w zh4>Jd8`abDwbx$Labg1x4-Y<{j}Yqa?rv>uHLHoW0YC_~w6x%f-w{F{9v-@HP=m1W z^UpuWh3M#LT^_*bT~$@pci(+??AWpU_wPUWskOEB!i5XBZQC|`_UutM(%;{I`t<4Z z=g(idbP1<^#%|rZHOha!4?g(d!w)~yq3#H&Oteax4fQBBHTC@Y^XJc>$3JbvC{0YW zXV1QV{rc#et*xy+ckWzDO3Llqw{fUV{@ zapT7R{rgi=QieTVcX#(?%a*%L>X=Lt;X$ z$z-zRZ`9JBO{LCu=>rWU&c001p~{PD*zF)`>r z4Tdnt5SSG*Da8jLe4v*N`uh5k2|}x?s*EU6TM=zUIx3%#6 z`SZBzDucmz;)y5pvTq$#RaGS=B~?^Z;Fs3c)^q31oi}fuhlhuglT&|xe`{-NMn=Y& zGiPu#c;du~oSdArw6tLxubiBmHf-2HUe?#wr>CbQgm^sOf&~jkszXFXgzg8Dn3#wI zr_$2WJ9qBrch=4g8#a)k(h`Z}#EBEQyng-qky=4XnEIg0moKkfyOzA9)9Ev2%!rAJ ziH?r;@bKVrxeNxQv$K=W=U=~mJvlkKudh!om+#oIqoJW;-@bk7SDXCu{^KA2z|$xr zgxuZTAAkIDKR-Vg7nlD2{_gJXva+(y&Q6>kZ~pxGE-o%)3n?inJv}`Lp?UM>slKnN z^XJd6TeprxgKlna3l}a-NJwyYcDA##>+0%iYHGT2<;tZ?mqa3wL?Zduzy6h*n|tci zDfN3i-g@iHFTW)3*xA`FUAiwjP_=G=m=1g8* z-la>ICQX_It%U#pW7@N4&(lvo-O$hgok)Qh^6~M}Z}JO&fB(|bQi((&m&?n`%YA)) z?d|RLxP1UL)!Ere#=BZtTH*=G^+MfD)2mmnK6&yaLTKT_h33$Kq_VOyAt3=bm{?m| zzxCEzZ@lrwu#Nk2xqR>5z3;#OKEAVeadFAa%p7wbh!ZDHtXZ=LA!LN<>}4{UzrTM& zLjyu+=FFK_uU<9KMDraT9b`1BcGKA_mCDf2(9+V<*|TRq_uO+!mo6RU$FZ%g?bTOb zJ$m#getGQJG1ZWASfmr_TW`Jf*=L{q^2;wc+pV*+^S*uiR<2yBeuky6u(0CdVuX+` z)7hUob!yF;H8`&J_4VDkbLWN)8-}ezS6A1&@4kEBzyaLQr_uMgZQC|7*{-Xr>z7}C zxoXv_k=89KDcP}O$GLOo5JK+m?ze8;I(+!>d+)u6U^;sMfU&f+w7l}lDa{@d$F*v*s)^=E~lrb zuV23&Pd{RYC=|;6{rm6TyLbKi^^F@hj{d;R$;s*W-+w2wm~7v^UHuf#B9W+~q5^kU zj*E*cE-qfZdbN&OcQtkI-o16}*5NuYS+b;{py27JpB||Wc6N5(fB*fVLx=DJ>FMdD zk#lrMjvOH|;nJl`OG`_ic;bms;>pRAC!alg_V?d^r_r4iCXwExt*x!a#l_H}6d0LEBq}a0 zCNZI{t?i^qlk}U8UakA=*4EaJjt*Ql!rXdedgq;Ys;a6GLcYGfw{PDL3JMx?mGJQJ z)YMe`x4U-j+IQc5XYg8T;-!~fA~UWgCnqN)Boq}DnYKzJnK^T2czC#)3sWeRy?giK zhidip^=HqXRdYq5P`GvL*8cwfu&}TT7cS^HJEs<8GTEk0n{a&o_~VbCJ$sh?KN!V^ z4I94x`fFVNNs)YL|R&!g@whDBS%yxpD>zFKm9Z>FApIU7#R5T&p)f5ecNm&-kV{J2K5?ygz0=GkYTMF@3vcB;P?008LGYp=cb z!w)|Uc{r>55AxC!RRa%+A?MG7iH?GUgAX1&_{uA<7@;yA9v(qKK`a&vzwGVpEh{U_ z&(G)c`5he{eSLjmu^7+q4S;qO3WZE26N|-teSIAr9eh4NKR>^$tgN@U7canKv4Vqx z-QC>{v3Iq`7XJ9-k6X5EK?qq`Sct`9BlqPSV*dR3fByL=Lg>vm-`uljk4EeE_4T>B zy5d2Gr%s((v0}wYOB!=*At8}S-gx5;)s{>umAZ84(wAO(X~BX8y8qdAA6uxM>gwu% zfB=M0XlUr@t)OIVA+}@3j(`2@U)t?dm$8L?eSPlk?l@!3xpU{1E?uh8>gnm}vu4dg z2r(FphK2?wC#PW-8yFaHadE-d`4?Y&L7ENKS6^T6=jTTraKP9?0Dws-mC6ejE`0m# zwRcO-&F10%Kw@81C-w2F-Y+R-}RNj}byV9?!Hf zVMRs7)vH$#LM#?*`}XacuFm0b)~#EI%fJ2ho1QDDGbWSy?YG}_%ZQ->03ZNKL_t*E zxN##oIvT&DP$xM%NQ<33c@oEjTrPL()~#C9)62_ilr*^j0AL&x z3MDBi>Fn9F`}XZyy?V9!y?6l70*}XAy?XV&efv(IKD}hg5|i{^c5rYA4-XFv4CL{6 z`W@T_zz`M|7Cas=FfcGIEX>eZaMfxrQf;_2WM#&-fB$~myqT1gq}{0E<;#~JIB)@nPf^!DxBBZYiNjvT>- z6)RR~J;}uK<;yQ#yr|u}005vzbUHmQE-o%EZpV%tg@uKgnVC&ZO>J#$ZEbC>t*rwC z1E#JZ7?;>=w$p!jczDFc#f621nYvO4Aw;22Y;0_7Y;3%|y!!h3dV6~%5{XnQmC0mM zsdS|IhXEKJl}cqW7#0>53e5fm42;EM zJ^AF5DJdyUO-;LZ@5bp{5JC!t;^@(%lP6E!wQJXS>8_w=N;*279ug8_=*kR>goV0P zKs9@6cX#)L3*a=T2q7Mir%PX18ja@TQJ00000001C0JCTwefC7O)(;XZ>eE9I; z!|E*d^wUp|z6?pY5*Qe$X*E=Fxm;WrFJU3!;Jw5%{v17*X!!S5FSXEV3Qc_Y?Rn^P=~CFy z(Q*3p=|BGXUw*0k28TV($eX$+m2z-!&~Xa@00000 zV1iSt6RB#CP14F?e0p!(8}D=MKJmm8_wL=BJ$p8OdHwqJciwr&&^zt!?*4!O@Bevu zd2Qaj`QpWkhKLD~R>_U@#W<%K2@9>Qt##Z!>EjIm00000fOgbsEu1uI5-ArJ7Dh%! z8mvB}A!D?Be0)MfLv`PvzrVlk8!;^&k9YCn#rgB+XJlj`gueOan-^bv(QxTWZ{EDQ za^=eQ_ICV|&1NSgB+Q;YJ0Kvy*Vot0&5iXRLspE6iYh25Fi@@Zi=1Xtr%rWoanXH) z!?t{qu+YlNO2_R(${7Fv0001>BelXp2L}gtclV~ICWKIKZthc0J!Rlp4UfrW;==>@HOuApHvodN&=0001>KD9cLB7|nln1Ksdu3Rx#WyU~8 zVU4>~F^1;l<+X0zI$S<~{=6Y}QCV5}%rnp6m~iFFm4$_cn>TNM_+mn2tkaAP&>dw) z7BxwwQk|;<00000046kb!@@<27U4p1aj~g}7mmA$C5&nD;>EbY=krA(k>0nzdGqGJ zzCMIde0+Rzax$CE)@XGtX1p{N%0D@}M;>_u7n+-!8yg#qUjcKb+I%M#i}kzlWl}asUyfhVZnq_Ba8*VQlAtAU>TwJW<@WPs!8hz9V0000008CsOH2b{# z^2@l;)YNp~zyZV5XEZ@UK|CH0mv7&`ZTt$Dv)0yDQr11WRk$#H`gAQ;FDxt^ zN1aIHXwf1P z6}G~n>KBd%jJft)rdB3+=vS)DJcf+M@ps$@9*z7++OtPEFW$V_h2B^|#mM>rK=jVqIlFQ{Eee{vxc4T8?gA0c1MyN+6 zB_*k;skpps*|L!q<8U}6z|-isNZ(yNccn&BQ&SB(NN*&%e1osP`YL|>QC3!FxR`eH z=FPZ}m6es3m#4)RdU|^P_~Q?~Rtf+B0000?L>i}*+_h^L=}NkP|Ndv6eb$(>X;Z1x zH{N&ymw){6$BP#)8fZsuZf>~H+}v#D=~84e+4Ijoj|cBDnat;(e}0sOU0q#qp{S@x z{au8IhvR~#-9dYLdj9Lb{!61(^o4wb8XYO-=jXR_9{nYjG& z%P(uu61#i%ZaixU00000006qsI4oo`nWs;m4h#&$FMs~|=lJ+|GO*1EUV7=JIdkUV z@-xpolbf4sh`spv`H`9B3>SRrP9l-4TD2-OGZVjjvsI^jf#!QK{75e*4YQ(Gelk-rk;=n0WsDc}+J`S64TB zGYf@6nLBqbE`RaG7ut=fQ%7xWZCzcRcI)Qn=O-j2oI7_8zl@EI{qVyNM_*;$ym`2A zb*4(*sCq6#DqM}06jT9FbkG?=`Z0z>!+j04W4?a-8U-X}U{<&z;BAHAU z5)$(B&p)fV)?07AwPwwl9Xoc+nKQ>!vyTD*00000bEMRkP$(psIWQ)Zxqkin)2C01 zL?Sge($mv({`~o8o_U5e%|%8=sVekt;wzzFJ7FJlQZU8jg5`pfB*fQIddo! zN@Zo`=nJbxn_IVT9UL4~>yR|`>#x63D3lp9X6)Lv>#x85>hJF#a}|X`aqZf*4I4I) zfr1F3=;-M7_VzK??da$rxmc!8pDqvx)U0QEdOF#iudi=n*%)VPWAYd%1Jx4qhxYG*r!sje^WT=;Y*7P*9-77QX)aYw{Piu&~&= zb!%f|%d4A9G=eL^6B!Y_ga5`1tJX>`|6)YHHfDWec57$H!Gx zRz}+DfBp5>(f38JGK5eQeSK|hZ9zdnX=&+@`2!X#SU|F;jIN-dVAZNs z)z#JH9dB>%g$oykg@y5WJO>8{g+kHa-{0HYTU%ROU0t1%lT%t+N*1oHtPBVU7=0H> zNl6zjT)^e9u&_;=Hbq88T3cK9_xJbp^))p$m6erk*svicCPtkK59{#Z!%si`Gy}jMs+}Lb3i^XEGSTdQcr>Cc*qobgpAU8Kxb+{viLV5oA=fC*k3)MJz z6uWote&?NcaM{t(ar5TQ@$vBv4h~YOR3s90c6OGPl}(y7X-LeE5c>ApZ?|pRMqb9n z#VuO2C^R(G*4B1lV4$wzNIXO6%3k?m`Vocx=w{PE`Iddk?muq2Rv2o+Zg$ozrP)#Hf_4M>qR#r-- z(w#eZjyjkIUssBoci1d_KRjvNAI>lQhG+ zySuBCFIOZIty{NFHK%AuNJvsrQba@q-i1&o?C9vIsHjLwOUug2!lQY;y}eUXQo_Q* zm}o>Ikx(d-;gfly zQmGdI!QpT?91fe!#@W%#M}B_(ojZ4$nwr|$+S=OMT3cHO1_n%Bsd0?OVmUiIJ2^Qy zIXQWFc*MlSL`6lJx>7@tD_ts;;)@-wbX`!XR0e}#VPU~wFqllHwY9b0XCohlu3;fU zNFtFOI&^67-o1r|g<5aK(a~|unl(>7_0)_RGt^&8Bogi1xpVK{y%LE;{k7O^_NrB@ z_U_%Q+ITXoj*gCH%a)Omd&4?)>ePxAE7afn5SK4sUbSi!i8?eD9UcAo=bz)yOHB%e z;-!~fI&k2?D9gP1>Z@OU_0@y#A31Vl%a$$b)OP;-`9J>nqmPdde);F0f6kvj9~n0+ zLo?%5sM&{?|kG_$bnwr;Ne_hj_s4gxpFTVKV2OoT(&cX_XV&A@f z|MDpR4em;f5DEziDK9S{JuE~Bak<={o*rCINJvOePgiGO005xA zuCA`GuCCtRUgJ+;HPKKg6dM~G2L}f(m#aE2vGHBGa^>2!YZ)0CTHnk7HCbC*$H&Jf zCMJ@RGNuAoy3x>RG#eWmJ3Bkv5znCX5Ec^o`T3_$pZ@dDKlAeP#!Qe%rBc1TyrxW< zGHceXS+izEMn-D=(5tPj?cl+K$;rvMqu@x3IXOAanKNh6qD8A$uU4~R4Iv~Ji@*N* z>o33jvbDAK!B1^$Y|flHLsH;qM=Ta!x^yWmEiErEub`kno!pWE0ReO8&i&ip{zm#q zYU=p$;~#(g@vxD+g@wgG|M^eSqBz9;`}e>4>Z^bM``^P3CAGA)eDu*rw{G3KaN$DL z_v`EHy}iAW(ZfQ#&G+Ab|I(#P51tzo3MDBii44vhT~Sfd!Gi}+ojO%tUq8xX_^WyB zvBwrITBO>`R~-u_Ufyz4r!oXwrp8SO3IjF;r8v@ z_w3n&%ZCmfQf;ON0013zbaXT~H{;$Sz?i61sgw9s+Q!Dl-rnAUfdRQ( z&StZ5w+9CY2Y-KmA0HnEgQ4I3c6WE@=jYef*0#5|i^XCK3kx=zZDV8O?d|RF@9*j9 zsrBPDg+ftSSeT!m-_g+_kw~~)uAQA-NJxk-(d-U1nxxYip}eD73P&vbVSQ_V#|{kw;i8*61rL zmCDl6Qv3($?d@eUnU0Q*!NI}N(a~eBYZ3y1AR{BAzP`S@yPL^m+S%E;xVXf|#%ghO zH8eC77Z=yn)pd7wOQljKlgZ(5?CtG+eSQ7?{mC4UI@UHXFR!Mirn9qCDwVR?Y#xs{ zdGh3_s3<(DP&-Pc^7QG`)z#Ipv9V-s3;+Pokw750fB*iFZaesY3Y*QQ(P%UpjZUYV zwnb~aQz#TNnGAQ*6AFd6+n(wIOeWLY+gtso-a5K?@#2p^{y55WQha*}U%D=oO6BN( zKp!8UEnBvbbn%7;SGo}>mCC`vLAhKmm&^P5`UC>Okme#Llj-j6ZlIP!gM@_u0001Z z=qZ&-KA+#+-A&%1)9EfQF822J78VvJtk^^#kw^prL1$;D>TNoY$Mf>?GW34mefQl5 zCpsE4h5@=8_K!So-n?DAb{TrVaHX4yOePZu1T8HssuRU?xm+j zkjB{X@bJBR_ZlcS30&#sK&e!=wY8}Rha3(kFfdTl@k*nEun+(M005eiN~IMQ6{MYt z$K!c;c$iya%!y-ga1ak|z%MN=ErWuB^xllq($ezci!YK4+t55{R=mBvzx(bxXJ=>q zZWgX|v!YNa>g($}J3H}9CX*Q)9IVGH9l}BY0001JK%r2Sl$4M=MIRp@gJwYhYHDk1 zYiMY|WhRq3dGcgE-o6hE46I+jo@^hO3Dw}-%ggKV;lrwvQRxV-bn|4mD;>gp00000 zXrQ{f8s90>Xta=!5V%t`6HZP}!NI|}Q<+2};q&==-1ysXzm4xi@wC@^+%nJwjtTKM zQeR*H?z`{mapQ2MnpE{`&`pgNRF<)@#1O3J#{3>d}k-Me+%0$l0i zf*!AQ48lSH0001tt)rtuEEXe#7z~D|r>Ci_14iTN>520b_V@RbyoFjgbLLDuj$)wza<$&H3C=qxTE`(PC!@)0001hF$e?#JdHAw$+Wk(H+6Nu z*c==jEG;b&LNb|5AP{J=h1AqkG8ZB=6^;w!Yie(APfJVFVheDkk2|_w=>&v@00000 z7y}6p^gdrUFdQ=OhT`Mr*yf}RY6z?006+? z?%%(E;J^VLA7lbk>FMdgw;F6V8>cq_-a1^xZ~xL{{zXWE(oO>wzg{Pp$s_uJaqs=s1M zNr}NK1q_Qc7#0^7$H&L3zam`e+0%m-@e`6 z-adEkTvOLeSC*ER6%`c^27cAm)pR;tE|;66R_0GCmEr<^AU!eNx^=6#xOmZ`MP6QB zrml+y$X7uSnUY>j=6R(n6pG^F;Thi6|b{sENbju-WW~GUz2= z8Hw%HWS&?0ty{Nl-@Yx8NW8qf92^`30zq9}ovABjcC^0I|IbGBR2cvO01vIez`&xS zqK=LZJg&XIzP_ZSq_eYAB9YkG*hEK1tG2(1M4~%)?ld$sNTpIME32@uu&}VOAsg)I z=s0`!Y-ng`Y-}t-NFWdt78W))H~01RvDxgvz`&_fr;^*Xy1Kf%ckgz0cdMpPh>wpC z4Gl#IwY0QkXJ@y!x6^1eZ*T9oxHuMzHPV52dV2Et{L0G8h=>UCW^ZqAOH0etsZ-0! z%E+4vg`%vitg5Q2tE)??R6063#>K@sIy&M{&z(Ex?(S}7Wp(e~y`G*P7K`QW?LBSU zG%^~;Ku2`oz=0JjR`m7tWoKuLM50F@ebhKDSEQaW+-Te(Uzyfn;lt|j#~-IqC<=wb z)DGZO)va46G+S%FR8LkEf22P(ojSz~6h~RKIU0q!q4rj>LL?Y3pOP73nd~i&N z5bEsgl*wdMr%vT?IL*z?xw*M47K_A4si~LmyFPWo1=W zRajUUhr@AjaM11x)s%U*A*iaaug}ZN>+I}A2ywaG>C>mXy1F8Sy1Toxv$OBtzdtxQ z$mMb)A|irhz|!^0;{nq=IARtx#cG)+p`+}w-{%;0g0KCKjt&Zi;^gEsZQ3+4Tf@0?=bD?F zpM3I38yg$^&hNkf-q+W+dGlt3P;qhbty{O&uU}tPRaID6NTpIYY}kMh>gwvcbLS5J z(ZH8B{^{=O>dMN>YHn^;C=|}l&eNw)H`*_-I<&sh|IbGBR2cvO01vJD`g(*AX)BvC zV+Q%i)z!73p`oFn0f&Wod3h3v^l3Vsj&Bie-@fhc?mlncJiM-hgTu*_ zC#$Qg$<~HYDwRP&K@}Ahot>TJKYB$)MQCW~ke+fB3MDBiiM(X7SZB_h5eNi49*-Qz z>eZ`pJD!b=O-Dz^y?giO%$bAlp$&ILrKP1SSFSYjG}EL-#XKVfKA)eKmPVt|e0+Rp zG+J|WGahCm6betDJ}s3>eSCaaELL4z-Sz9&#bPmeC@?TEaPHi>z`#I%fB*XW`pU{m zg+hV<_zH#M!i5VWk;uix#ope&uC8uK14VCdFO^CS3JS8Yu&Au8Oixeea5!c-?2tsW znhu?nNF)ZRjr^BXX|$plUg8{ zz`(#^lbg|KG%G7BlE1FLzTVf@cchq5p-`lzrc$ZY1q&98lGl{W<+il6;Ic#_QSHuz z%lK(%e}8{_dwXJHBDs~Zv$JC|nXRp@BZY+sAvZTSD=Vvtii+verz3=#o0~-kjTr+lS-v=ad9{fjERXkdh}>cPR^uBlgL*P5)y(_HHL(Q96EFeKLJ4qRaRDt zL?Ta5&&7)uBZLMA2ag^-s`?l{Iy#z^U0q$zo;};x*l31fAvu>c{o*VwEyZFnLP)7p znop3RDY;z!;)^em42@g1Y+1c}HBL(WprWFp9Xoa)gpMCSzJLGzsZ*y$MMdT3=Nq-g z`ar%i()6t+^SsjM%$alk{Q0V?Dn6ed6ciK{6-8SAGBYy~LQ9t}#ZN5*0s<~xyqJ}h z_1I&Nsk!mS#>QpKmXV*1{QP{WR62F))TvXasxF3qOcD|jCQqJ>5aRK8moHx~EG$%g zNNQSIU+JnKECc`mFqA|h`T6IcahbtjL_|ckpKb*J03ZNKL_t)<#Ke$KYiepLDk{3V zx};L6QmK?mrS9(T_#>fE7!VLJ(q`}6xzp0pl8}%)ARcE>$SDDK0ZE!gM<0``K0qCo}KC1wQJX|T^myQ(T^@5AfUXwJT5MdLZMVt zRCsuJu-WXszCP7u2%z? zOeT{J8~2(}e}8{(Z?BDw&5)Q7A$0%#eS{E+s97u)9$ebi)<(`)Pft%=zz;aOy1E7j z2kCS=?mbA>rPJwNUS6uBPb(`cOG-+*y1GcLXrAMpv>q+y;NZ~I)MS7f8C7LvC3%{2 z>(;F;Tegs1#1B%90B_y8HFfILprD}f7#0$wi-(%b^Gdg|v01ZbO-V^fVPRoeSy^Re zWnyBYpPwJT_PJaxIZRJaPfJV7*49?JTuwUtk1jAUQ1zz+_nm&QLpc61admaY&r0y` zaC>{ZK8{a6^fE3K!a@K507F?=SS(z)kV>U8nM_+-Th*tJ1qB6JSy>Sg5m8Z5Y&M%p zrJgx+M$OH3b#?jp_+)2idwF?TSy|yX@n||ctjpTknog%@W@dJEb>U9~0|UFdx-MV7 zOrz11N~M#N)8fU8RmZ&~BqWfIo!FRnGx%1op`pRe&5h6J&zd#s!DTLAzTDc{`p6@X zI6FIAT3QYa44gW3N_Bxz+D{C6L?#*YV_{)|Zx#m!2hHbZ5yLU_u=(_HomCr5a4?T= z>@d|&@pp=2dmQ7bZdUa{0H4plcI}#tjZH#A0+-9}>FN3N&p-8cNP0zX7BxL{?Ck6w zg0N6ERu>9|2%%BNgQ=bvcwv(~h0z`Pb<(u{W_zX6>GX(*h_JA*!otF=tgIV1Zg_cl z;cI_Lizti55{t!BsdU)fV-IE+!h^aAyv+yK#qTF4C#$}xOL7;z)A~wR1z{lo0Dz&W zRH~bs+pr%M7Z>C7nB*PRwk!^ZgKwvXHGlqm8ylMwCr(_wdUe^dW%%Buw6xU1!a}uM z>5vig9UUE$Cr^%viD57pssSnqEQbV9W8!kTJRYyIvQi?EP$(21ADOg?j>-5(WN75^vo6UD3p;P(P;a|KO%!7cS5S8E6s$Jl@*7>>FMcF{UhT)AnqVqQBi^492gjAXlS6*>FPw? z_Q`^D$;^>QqRK)y0fZx+XCL)j2PK|wflM+o60Qsw34 zBP~30=1lxo!jE-EUwB;5G%Pg3D_txW3j_l4QZAR{JUT2E%hJ-)!NH-Yr-vk5ZD?o^ zi^a~)&iGdyhjt{kuc@gSb3PKBt46iEIKJ3%w{x*r?5={OJT(VeU+Jo#wGaRRfCfA~ zJgTd!ot&I-`puG(5;FQ9Aru`Q&FAw^pFWLeQ0VFDq0{N%;o+)VaB*>oii*n3&Gqo` z;PH4K9v+pIm04L?o}QjUp|GH!z}D85#6^~tmNXhIKR@5Y!-GPh(CKt8mrKU!B_t%I zq@JR$pJ= z*4Czen~6z|$e=hJ4sK)V?(QC`8QFxUOqr6No_^uN1s@+D3Wd_v))pHZ>*M1S6%|!g zRh6Bc-PYE|VzKJ$>t!<8v}x0Z3~e1&KtMoFPEJit&H3}^ad%494r6X^ZjFtN>FMeI z{{HRl?PfK^Xb6&ZbEHI2BMA)+#T}=|b;=p3RQl6TKi#--!^z1hAt6C16rMP7Vx)zg zoSc6B_1C<-yoiVhA0MB)ckkZ2ch8u$)fe)8k^T;9GQ%rfC={MLb;{P(mdoYR>Gamt zR-7aZhkS8yaThLJxNzZupPwJjL`tPnr%juN*Y))Dtgfz3Pfu@YX^~2$d_JGaWRBkR zGb$>I&*$glKUoSYn)OlE0m>FMdIPR4LcOG_^=FM&WXY`8_CP!=v+cg5sZ=j7uf>ZOpF4L>%|DSzj>w?6Ty9-m9YSbeU_d65nN`;*gwUi(lV~*By?gig zd_Ijvv$wa$(;I2=4OFF5F8xr zC-pRBBpU+OA!@j9FE^qf)7J z=g!q=6*Iijt*oqqgM;tizu(l>Lvl zg($(D=RB4Ew!<+nLT@UYinysNy#X?v$wZ@?6Jr0+_}@-+^ke8t*xzb zLK-V8tH&RI{LY;_jg5^pH8o5olgHzk&%A}YT#x5)=E8V7`>($G>hR&iMyQ)XkuNJYHul?ZztwbgxYEZX z9j|l(#ufqq05DUHjg4ZlI4UZN^!l@~u)ytm<~I6HP2=~7NWQ+dwl>q&1gMXUxf+sg zQB9<+Y23wx#Q3eb*2p1i+Ej?al|CNnc%>5%76JeOFjG7pk4mN9ym_;=wY9suyREIQ zq@*M@HI>KXnblZ-^^M;na&U0KSscV-u{jT=14Mg!J5G^GqtUeM?Ut03L`Dun=dy8u zd`;HY);PtErr=5+cXYqf2^d=l006*D+1c4GUc5LzKR-1!RU(nl>2zCL+u-2fh=_=B z+6XXykBCO2xw*MDG&CTDnwpyI?d{c^EgG1FLZKkD4!XO$56O9}CMzqeEnBwi*|P^t z$Y!_khgww5 z?rww-lgSJV3)6Z#a=CoPiWSYx&HAevFgOnnkCP`)>JrYul|EkR>q^IHAAb1Z=u6-f z%(rjfzIX3lNl8glQbrVljb&bFFy`T6OxHMr8p1wCHr*chEiOG``d-Mbeb zAMfVoMx|0^GFfwTGd@v_Pb3n_<#IB)(}bl^DALl>=FFLcr<56UYR-q!ggqH1?12LS z%z>SqoxQz1o?W`Jv5~{!!2P1R5ekK*Q<;NgRvgAYE?%ckH;H)kS|$PichXc0wscQ=d0GLv=* zrBVr9+p)gBKHZy%$F&K2GECS52LPBAe}8`_lZgkww^LRW|Dpe>HR#a3F4WTPC7!0dj3=|5* zY&Lgvbf{D+x7*ENFbWC^wr}6=)1VsQ3d9vxS67D%Ge9EbQ&{nmXl-p3i^V=;9TyiD z+uGVroH#+$%dTC!R4Uc*@UYct^>{pqiHY^~^()RV9QefDZZ|IH0M!)u)&l^5Akk>F z!oouQFEv7FVq(H#v1DXq#5!M3F1OpQR4Nx27xABLHoLH}FuD^+a=F}J{pwd|&YYQ; zn22JsAQI$9^t`;hx8Hs{x?MftPTz!-N+q$RWYq8UHD)5caN&YPBB`ydU2TKq<>d<( zF6`K`qp+}$N~P-c`j(cK`uchzCb@FuN>x=A@u2_k;lqW6g?;<>B_t$xJf80EZlzLr z;=~DjS$ngbx!mgN>iGD0gpko_q|@mf4hJE0{rdHil9JV8POVmZ_wLw0(gghS4rAwDYB2isk9fQHJ+wHe+-xdf2J9qBHJI>9`_4M={IdUYVT98O2i;Ig* zO-*bzn>g0=^z^-Z_xA7KpPHJA5Sp5rYHMpddGaJKe1y>d{LlZSrlw|RXBQO}(dl%z z+uhUCGcz+o1U3kv+1c6F*4BoGhRn=NDwXPTxt5lel9Q9yJQtJ6bn)WF-Me>ZWMtsL zW^QgSE-o&Z8Fc(F2DMt<*49R&(TFm)*=%?2+z|?e^ZC`))p2ogUaxm*YO1xh_4Mh}t2GF(co+Qkx4%tGOG{5r4^T~kPaFUM zLgn#zMn^|YCKLXX&1Pq3XTt!bji=M;luD(`<-&h*x!i(+f^}L{z+$m{?|a{S`0(L+ zBo4yX*x2}!pZo+rEk_;P>6^sz^77Qw6b{i5LVP|yFE1~;L&?@i>#3)nnwy*Z^wUq} zayjvT9J2fO?-v#p78e)eYzYK{#>U3`_wTQmnpUeF9v(h;@F4E2Or=t*tE(v#%IN4Q z-e7QWkjZ53*|UcTOL#n9kXLz9Qj**4#*?%XMECVj%x)Kp$x9)2zl(3L``)7942;(!Ms#NlwBdg`h9`FSG5M+o)z_v4rlk%kE3 z{OsDbi@{(Zgjg)rzJ2?KhK2(4>JFwBMn*;s95{f34ZNA#?Y?v8&fdLyaZHF1%FfO% zEG&HV=n=7($Ky#!NhvEU!_8AT=yE!p#4Aah$iagLv$L~tvUEBf$AoL1i%O+ROH0el z%)~`RqtP-mGb5Q*Rjbw3)zuMY&Stas?%g{yG(_GY@D+#<((Cm*ckT?3h`%5&i4}Rh z-lnFexVSjHZ%$55ety0}p$O^3T`reMBnnVX!JIe%0EC1}r4|+zrlh3cKW#RfOeRw( z6lSwIwi$auc)i}m#l_*_;faX};t5SC6c!Z~t=~d(91iE5ciwsR)mPUkeGrD%Uw{3V zzx?Go#e@j%^i9BQHY*egnM_8+gsG{ixRooq2U;V!`1tq}Cr;GX){c*lfArBu_wL;z zUj#OrZE9+&qN0MlOGZY9%jNP3&oH@MURYR&`$-ZC3k#>Gr}5{Jk&#H|v%xLh$F2}-3hK0e+jlZAzaQ&UsqZ~WJ*NlHp0W<60Vm3X?U74sJO zT=;yxN~OXJ<3t6A!@<3U32Zi-!C(+~(VACaFp2mJ@{(9l;Np!|I>DSc004v`BO{}* zun@o7LI@d+#*vYco}QlZ@o}wIYc`v0Hk;GwjBO?#Cl-rErBaQLkN5TUO-@c)EEfDd zgTctp&(F=x-GDrN=R4nd_uY5#^A*ASSHzzikdw!oPZ|0bX;D$p`|rPh=FFK5$PC=+ z8^h!AIGs+L&1N>6wOZ}?_;^oG&&bG#(P+dQ#KpxG6&2w=j8V770u@+RR#sM4mc?S} z@9+QfpZ~mX-#$E=ZgFvu$K&}APfAEgFdB{iGo@;^+Oo2;6*oo*c|0DyUccg~svt?F z((~uf6P^9kYIR&(9FNCC2kx1kpRf|NTP)E@6c)Vbub9`JMLZOhDI0zx+9}{{! z9-U4{w6>8`Bbx7h1X&CI$I@st{s&4(NU&P1E|-fKa_PV3B$LS`VmXaQBNmHS%-EXe zl9G~AT3Y()r=OOWmrJG6$mh{nu}cHaElxb}6&Pe9{(`(DRus5+qm@oDCk_Ar;YmnH zC@n2rTwI);oyE_EZnt}BX(?9ASv_g+(t;9+WFrR!)YQ~`^wCFGu3Y)=|Nd{>4a(=} zFhU`60g5y=HT56<;U5kkKD?3T40n2LF`3Nt^z_wQVxl6bun^;LI6HUl%*n~Qa^=cP zFTE5O7iYKI&1N&6`-BY7Y2lxO-EMDhZ}05vB!7wLl|cwO91a?d7D;<3hr{9Vcq)|& zxAx!`5+X~uAEOWapihp1*5uRVvYHi7gifcEpZNWg!oOa;c+uy3x7+RC9E1f~3;uDV z!{L~in3$WJ^ZB05X1m>PqCf)oMR7PBD+a(po=atAWqyAC@bK`tbLUc0Qg-av5y`qM zYj&Fnd<6!Xh`%5&i4{ew13=(x2Xo>801ye0NF)>rO(v6Guh;AK&~C5+_T!9Tc07u@L^jKN?C z1OkCTkdTnD-gkP)msCnhN^)}Y+}vD#em;Z2NJ>gNe*Acl`!X1eUAuOzHqRu3!EidA ztHp0Y!u?1k5{bv-nVOoatE0@pwEQFDom{Y&IK>M!Vhaa5$V!r^Dg!cs#Mr;Nu`JE>0v8 z#mC2UIGoL}a50@uudlDKudn~tfBo0~{{9CK9?Z_ps?}<>TD`EaV6|Ffoxv@P!{Lbk zDkCGKzP{dnzWtbhJAM67sZ=JD$zU*;OeTxP;_-OId@CCuoHq?L8Vy&uNF>th^=qzR zK@f>VOG`_uJ)6>KG(MldxVT8nfZ~HfS!3Q*givm7ZbwIl$K#oqnUP2&L<}YpiHt_0 zf2-i);v&%+%VaWFeCM%R@6Etg?4GCB>-{@(lF?{19*?Kj>w|A24z(7@J4Qauv`{D< z85vper;yGCuU)}rvmZTr6iiqc%*Eg@@D&(cD_&0FT}xz}|HJ_R03j3~AHR`LGhj2= zwr$(CZQEj<3$UT!PJf(){GMrfd3k<*9!G9?**%#|7UaHCskFbpKfqfAsZ`q4)wSBM zEEX%kv>zCqPESiqo0*vz8yh1JhGwx?5{blrKFOY*9%3^(olc|Cd?x%{TwDxe{ttwZ z!{L~jnIV7UbUNj7`D%SZ2~w%Fx3@R=1BF@(gzW5Wl}feZ2Or(*^{P~=*4EbWX2B7Q#hsm<#K=9f*?i;14XISRX46?^Wu?Jj zXm4*Pp8j1f*YxysfM6h`S|BhOjHafhmX?;exjCW%%3v_e&dvsNfRL!^6|l(|8CXz7p=-xkE(h3WegMk3L%MxItbF{(A+!0;4EDKOeuI zz{O&-+1lINBkzL0`A-}G00000Y&n5Ck<#h((b3WN_I9h)N}*7wRBCc^@~&OGva_>^ zZTNitv(G;J=+UD`j~?NEj9e}^K!aFgW1~zayM6oi^71l;LZQ)U5{ZOZ!+=JkJ^Spl zJv}{_E?vSiro_j`*Votc`Fwnm7A3xsN+1cIQ?eTc%bb4N1-qE8+$zAiSs;a0|>ZMDU@ccJov3URf{e69XL6oE~ z7K^oK&z^@5AKtxt*W>Xp7>tsVl3+T8(`d9~$By;%^jx@b!Rd5TC=@1>nU$60vuXla zsI@@I%gf_%I6XZ*H*em=3-00N??O6LoJeJ%(co0RR91000001P{VO000000001ZqCr>)000000000_Gzbd;00000007{L z24Nup00000002DEAS?s`000000Dvdj8teOYb#?Xh^e`9&hv z@Qx!RBlqv$C;oJ~Tr?VuLZRS4xm@mxFTNOA&R5mb)8lr#tE;Pn-=(*=*X?%i*s)`s zva}|jJiq_``+xH{e-o?BY<_3Yo;`BpNJ2tFtTO@t00000z~f-;W#6}L+g4j!i$7bf zR=Hf>+}wQR$Puwv9AK~F;^N}sV&c#9=g-&H)~2PUMVQ@nLZ{QI)TlL_E-x>;-EKag zAFTud00000003b9tQ{7T#l^){R#wvK^!xYkpFDYTo$|Et%F4>3n3__ljE|3pun+(M z00000uqA{R7GhGV^xnODE|-f=4`=tso7d}AsZ<381+mV^)t7K_8- za5x-Jr_CqM2N)IQlV=|dkD%It3 zJ$(3($K#ckm-}pR@#4jrni`2jvSw0Fr?b1edtze3>2y*kl(e+8+S*z!mrHDL<;s;k zd-lxF&v$ioS*_Oi`1luIcme;U)9Jdpx)v4|yk0MbLXk)$2M!z{c3fCkc=YIzUa$9f zJRAlgZTC*{M>gJRT37 zPS4NJ-@bi2Ie`E8uh*N9kWgD&o1UJoR4N}mdSo)0=yZB|diu_t zJ6S9i-bJle4-O7)-@g69g9jRohC-nvCnq;HHYOw_^!N7<4GlS+P9~FCSXfwDSxLlf z%gf6{LqkfX((QJ8y>MqOQ96np#v004-h@$vDNmX*&#= zue|a~PEJltvxaOon@*=Q8jWVNIkq`@%-}$aT&lP;T4G`%`AI1zpwib#Y%4vSu+V0+ zQK?iGi&a=yc=zsIpRjOwd3kwxIhdHx?RH-<}^XJbWKYpA% zn}|Z8SX^8@e*8F_&GvXa_{-VZ+1A$9hK7a%2M*vEb!lmd*hQn!%+Jp^G&Bf>LWGb` zr@L|E28+c?Pfri>9NXI3_3T^T)A@k^l4lrV`F1|eSQ1)?@vrj zL-BbZb=|&w`{2QY zLFR|7ySsaOdV1HcT}eqv2qBxzX0=-JPX>eG^5x4lH8p$p?xj+xHk+-ZqvP`B%g;Xh zED=gsES8%$Z%U=o#>Pe}l{!B^f8)lDii(Qq>FNFZ_w)IDkH^#5+4=eBpC3JXlw72( zt*!O-^~uS}Uaxm}c=+<=%bA&(Ua$A$$&)M=%Vx9Pym`~>^={w39q;1tc#@NockI}K zgVLFqnah_izxd*dM2u>+T3cFLva_>KojOIQ)7@@&PfySF>(@`5I6)lu^Upu0(P+ny zA15lJrKN?q3;+NCY!Y*GbML(K&b4dTVx5sEh23ud?6c24`|Pu(rlxOw>svADrsQxq zW@l%0I^D(}`pINAo6TnP+}xZ{C`?aJ54&|C5>V+IY$Gc@oUm|scsM5~heDwwB_+At zZoOVlo|sfFm*e)aHTCuN;a0f+pA|a2tgOu8aNNIt|IndB#AYKSBVYaMS8-H>|LbXf2wr$&n5K=0Y<>lo#CPWCaSgbWqnLOPNg+i&WuKwd6|LAZyLap7!#YLG+_QDG< z5Wy9j%_iO-w6(QWS63Gn77{=0-o5+s<;#PEgE;31A&-A4R{WLCc3WZWyS}K>zH5v^u#FWiuH#9V~ zw6qXmA&W=7@mVZh^!VVYl1w+_@7{p#cB@SU*ckOYgt`{@Jr#Xq&R zwY9aiz5e>^XU?42u>81OE|p59R;zu!=WsX)2?=aA8~1{Xd85{rX0zFF+mX#?Gnq^l zi-q_}r_oph*a=CnJYU12xm=$DPfSeoSt3Fp5CrZ^ zfYT&@vtl_L3$;ytO) z2EY5=?{3_<@o)e3Z_%AaZ$)OaS)ow4-EQI={8W~Zkgy2{zinOQ_x=bWx7%$pnRGfG z(LYYDRxd6tN~O~H`1tkC3{?8Yh;5~>9TpA_4k{E1{5c^ZAv-(!x#ylE!V;-eiWi?C z@){QxM{Xlp4L(ouXg!R@c1$KSq#>|@Q>dt@ zxOMB+xpU_#D=Twya)P-Z91h3e;NZ;6jMZwz@BEgRm&51`snu$8b8}bxNvG3^L?Zuj zcOsF)=TN}|zdadB}zdodUc^36}ghXg8>>a&;6zfxYWSD{dhkB=LTMtsUPo6To& z$iU^iw6x^k49j3J{4)ap0ASlq+>1jNG$nAE^WU{=xyfs%8 zkAz;YA0HowO5b<^Dm_0xKkBO2#78 zxF?H?izA0{{_SZFha+(08TosQz>}KLXtbxFep;i^3=a>tx3?D*6jWAL63v_bEEda! z3l~aCN}hV^DI%mffBt+J8ME8%3m7FN47#_cJDAu~;kS!Dh3e z4G*OzCMN85JD!z?_!leGQ>M{qB0ONRSS2MT5FW%(Qc_Y$NeR&=F*`fEu&@yIqxe*MX=y1`dJL_1rAHww z%+1Z6nVIo;JTo&h5{V?p!EzJ|MI;g}E-w0f?{qqsmzM*K8$<{Rg+i@X8-9+XipgZw z)z#(Z<_--F;cxI*aPl^bi;LtbXAnXjkH=^@5Dw=krTSN?>M@m}9fqB_$<9_tBY|8N75^wD?qdX=!PIo^fDfu-WX=(o%Az zhZj(+C<Ln^T9F9*RXti46 zg;S7na&qKyxzCs6Aq@Zk05;gf#KiZ$_q|x>0<3@>pL@ODfBBbxnVOo4O3GHNb!==5 ze-;P?1qB5#%g81{qtWv7^NAo~e0<#J=__nDo6V=vVb$nOf=Z?4=jRi1uZ)e2+3oh| zq#Tu0a6eLwMicxB5D1~NvNEUBdH?=>d@^pgdw6(wXlSUhu`%$D3#D5ZnsLMisTeR(%IRm(P(g7=XSd%CntM*dx^WqwxFbiTU%T472@@Jl}hEv$Ow7Dq2Au!mX?+% z<{SV3z-sh*{hM#TiJv>+4c#VZwOY@dITLwHg3IMnC=_^-JPwDm+PrrlhH`Ur@hpHI zk4K?U_;(x&mCNOl%jHC+2RT3tY$S4}%jNQ@46usMc(b&$wA;6D7ZenP)RTltr5-tQ zq^GCn{Q2`vr;|dVq@|^uIB|l@<*vDJUS1xD!|CqszI*pBPAWY;-M`o3I$<)IZEbBP zlgaD#(&==uSbXr{LA2!KQLBan0 z`|sVm7v9ku8yjUZ*_}Ig@JK=igHc{yj+brZa=FKkAMfn!?C$RNcsz7EJuffs=+UDa z|AHqzKK|grgYE6@w{G2{QmGP&9LX*)Z zM5R)tQt8mpkjv$AI22R}eLKF%`DwPfo4?CSshr^*%DkH3Pgpltj zxUii)d-l+wL+d&{E&u=k0Agiwa`N=))A+FgrkUB~hzg?7Xn*<3UotZ@!%N3zvkeXo z;?Gj4G?*30K&%)HhSAYc{JE^GEbPIbQ0ZF;xzfwa%Of288J$-?YPFilWI{{`0000y zuHJq3UE)0(EreX@p-$o9 zFFIl2(9lqEadA|V0ssI2z-A+t%Rm48a|A;Qx1j6SuaA$9hq0r@Vj-pw&&tY*YNo)t zAgW2H)A>wx7$mFJN>qAwc6QWq2G$L^(j%O3D59_s|JyJzF)=$kOH8-|0001h$IQ8N z=VF}&5Hh02Z+O*5EQlo%iSXnWV3Xr;IK-M{;jQIH%wi}KiC_(qErDF=MD>LyqA6$E z+S(>3C*$JcjvP6%!K zV1$_m{3vG&tTUq0iT2(wK+jJA007|saJ$_feDDGOOrcQX;^NZM(yFSei18Z% z;F%uM)6>^Ej~hy%P~Z<+Iy~67Z{JHVy;M?C;`Mq*Mn>Lw=bgU3KA&xJa&rFim%sS$ zJ2NwL^5n@4$!3%hRVJ6qL)wv;uw?7bMQO9y`uh4NCnrrN6P->^OiZk*s#&#i;)FdV*uC~2G zp%@t%SzKInI-QxBna@1)%tq!mio&jRG6)L+004j$6c-m~Wo0>?PQ6|~JUl!(IeFs5 z36V$?crTeuMx|08v#@Y+aS?ymy2};5`s%CS`ObF?2E(IAk31gF?%lh8^{Zcf{p(*J z8yh2Uw!FOD($YfyhR5U8*Vn7n>W$5B)DTq`>I5XXGa*7~>-He+@9*#F=}AgTDkvy$ zI-Qe~lh>|Yd-mC9B@&6xmU#Zg#Kc5mt+g#Z+X_)-L?s64F{t#rckimzYKcUWnVD%Y z7$znr=I7^6pFX`}h2Fk>TP~M#IGo(vTqctlcHhg*AnZyfgRl?)003BlNF>V1$-$pX zN=p9x=RbFMcR&5~(*bsIyWL8q^6{J1{V^C=c>er(fk5!V2Or>9=`X+h@^`=c-J?g3 z{_>Z+3)L^wSN^?m8f1`ydeymoyq}9kR0#cI?=ZnVFfI znu`A%92~rN@7~13#A;z-X=!O$S=mPCavc!UK!zO_Zrw^haNvN~>m^z{Z``OuYBb(m^d@+O8-BJL@6@>006*ai_7IoBoeJwYq#4!{P4q?nwqMr zD&kjz!EpBM*_}Ig_V@Q&EEc_9-`m@Z5IT13SXx>dLI}_K(bd(pw6qi#7nhThQ(Ie0 zeltBXGBPkQpx5ge3`RyqMqOQ9LP7%m>CvM{DwV3PuI}N(hibK&PN%1&q%<@%Y-BGl zJjWf{%B_Valj*%WLUakto{q@=)mF&K;&UU)&P)qe5C7wen9^%r();ns~1XfzrT z6QaL10It{~gu}wE+eGGrsIn(8EF}KViQzh3G3px_7@$xnd-v{r3}QkQL8X&D4g~=K z0068v3WY+UP*^NhZf>qzE+>bDqobpAI=!fC;E+1V8p6$l|Nmy0*hXf*Tl z^Ho(=lo1cIFd159&wOal8 z=bzWq)a>59+h()fyLa#M<;!3F>Q|}M4VpKO=t8+gV?uwpf@CsT;LVO6Jt`CmfBoxU zyIigf$yf9dRW?6AAJUG*!{uY}(Cl{iREnv|24JEEb-Wl$5W3{p)(Y{=$U|fwz45<(HjK=VzaNwlNt4QRj3z z|M!3Y7k^GmOFMGp2=TIp%;WJOgocNQiEnapa-M$r=?#1H0-|VodivV6Yxr|%X=#0Z zz5n|xqtS@_n%=r~Yjkwf>-DnP?8e5%f`Wn#&+jGzVIcqj0I&j=%jIx5oKB}sr|atK zayp&3g)lumJs}}MCX?Z)Osmxz42GtrrT|GLB_)yjd3(;~}?T zuvn~uf`ZY}Q6elv2xVqw5})zh@fM3EdgrR;WNC{jn_vb(VIfujfr+@k< zlgSid%li8I{QUf@SFeUTDsOZ0c~!9{I-QQ&NF!MWE#_!6T4iOW%jGf{470Pd7cX8s zc<`Wq=i%z=>b$%>E|*K8P&69NojZ3XCnrZnMoLRdW0LI%h27})cvL!%$E&QYbT}Lu zjb>G#SO@?B z0IZU15y^)-7?nn&;RwO)c5mGXfl8$k?eMq}skOEBx#ynq*^EM=5O;T4T3TIQ z-4|bcp;D=~Xjn+}c@A}m;Nwy00)c?2^al?f^!4@i^z;zlU^sS4OiVm>>=?d5*lad_ z9k4~i!muly48lSH003YG<>lqMxw$kNjmP8pOm1FSSlHRwIXO9*pPxTAHYSxy1Gk|C z_%)cux0pB3`OM<5MKPJo|NPJYtgNj3@sEFe{`~pC8|UWc*4Nh$4h{|s3~WsH)>{~1 zA^xy+$5r~k?{4tgZh_&~F)1TJX*8cd%KW=Vr_W5=9?%fRy4didW_O-7egg*ZGzJlpW8~QR3g$lj;X0B{0&0LU@(xk#1qwS-LbnwmHG6XT+>#s zbdSelHk--cOixdvzgD{2?Uu=8cwS{To1L7TtWv3ns-KyeL4WO{zZHdD>15Da2mk;8 zgsix@_~y-<@$vB@k%;Jih7e-0Sa?>$AZ2D|(&_Y}p&=qHaX1_bgPrLiP3amoHy#Zf?%W$+23k)6>%& z4yUN7DAp$trm!oW48lSH001ClSy@>O24i@5*k{N}YHI4}=xAD6T6}ywpU?LhRp^h& zWY*W$x3#so-R`WcESt@S*F3DPtzF05hsfs~x1zkfJcLkUV&cAi`^eujnM}Q2uT(0X zPABnPb^7#a7K`=ahaWx$UFnEOKGZ9U=ybZYw6sMhASo>^mCNNyrP6MJSvrnn^sCnN@OybQmJ&gTpSLkyu7@+x_T>~GD67ZauFkeL+v?Cu5_2n zwdIznpwsEwwrx`?m1ARLxGD<^3wP|;fzK;3F_Fn+rlh3cjU^Jvkt0VsJ3Gh5#+XcI zetv#^eSIWNZ7~!{rIT&3`UU_105$_Em71TQKR7t(Gog8HZLP&(X=`hvP$-8E9a=Li zL%r9Xb@r8{eqQ&CN|rOk7%8qEIMXw88Kj-}pv=Uw!5v z`OR;B^PAuNW_>fXA&ANni^ZX~KeO3vVqQv}PDeaUZy}|nrK`;u!(cF8dg&$N&+_u} z^78VH%GdhRYPI+SgTV-+6Dd*Yi;Ig}uF|PgYC}VVPls@VSSs){^ed8P7_|~_+73y9y zGcyYd3kV?=i}lz~SfdRYSju1*sP4!>KeN9BAv)Syjva;ys53GX-E1dvS&Hw-a z03p+Awe$1yPtIf0OE0}dG!nuK4zCJKde`t<2AQXuABvD@uFGkJi`$!s>`@Bkqc z-rzu@(rq>yRQi@cuJj1!NrJEt00008mdoXunVA_K9c^i8Nli@+b#}+CD>XHB@7}%m z^H%Ic`UE1X>A-;l;q?Y&GMNH_0DqpIo`%-}o1E9{#S?F$zmB5|BN1|?6En4f&5T^> z5e|rjun+(M00@@T>AZRKW@~G!SS&tx@L;U7v!VX(@BWTT{r`^*5Fu=GLuR zzYjYdJV6UW$YQamRH`WC46K{ExjAClJ)+{mKGdBqO*6{s8nh}K><|yW=5`bqOu|cVIcqj004qj zT3Y&}AN?rSxd5voo(_NVlb@`%YG0`0pkB<|To}Zu3;c%joGK?(*0000$2=KVd zj*gC4X9TS3+u#0nbl2&Qi;JUDsrX6MX0sWMMu9*;qtT*x2oNf#(g(4D(BoYbCRJoBH4u?vmT3lSj&+vHgCy&Qlzav7W$K1wLI)sG) z00008)A;!Kx4-@E`T2R`8;B1#j89Pu1cJBUe!HZkWWA4Tv)L31g~Q<>z7dH;B9SN| zAz{4_{e&|bjf;zmI-QRAhRI|~rBXJVz21k0N{^L|taJzq0RR915I(Eb`upGi{=*MH zwApOLmk=CA*P7jQj~zSqo$q`{AP{U!emow}{QUgF!UB2j85)fy5C{?z6B!H!jYgx< zXiwVOp3&uUx!i8I+wFEbol8qgdcB^!Pz04qO-)TrNlDqT!G2Kb8z8oo4q+hx0000Y zwY0SK?z`_cH#fr)XB+J4r=R}jH@{g}Sh(?rcDY=0b8{MvX5$b2giB6NPD@LRNdN|w z9xEGA=@1qI0000WI&?bS-Me>h-n{wn;X_#Wd|g#kR2(~Y?BKzJTrM}ZIdQpMdcA&W zX~|?V!Bge>p-?D19#0?;2n2$dx5z=IZ;TDDbO;Lp0000GWfqI2wY7C{a8RvQYqi>i zg$0#nrS4?_03ZNKL_t(a73)lGVM$3zLZMJB78e#478e)S)z!s38uaJ!c=UR`*=%+? zoeqZs|2Ni|+QOJjCX>lzFc?fGGd@0^&*yK##UY^5qbs(R4q+hx00000002DEHr-nX z00000000008wtWf000000001ZqD3JrY;JBod-iPP>3~SIx3|Cd-g_2{CDs`MAzP0- z$nAE&_uhN0t*y~b7Od#ry?gJy_a4l?2mk;8fURqdIc?h8+k1O^@n;H!!eX&RB9T-o zl}e?s9#ISp4-aQ&XLC55sHd#g>$O^KK|w*(Qw9hjx7*#<*SCH9_E=|R1?y4u(Mq$s zySu-?|M};ikB^U!O2z;H00000Sx~Ko+qZAuxpQYtO-*iY?$XlI?c29+-n_ZqIRmS4 zI-U3K-7}lb>yfxzE*~8oU5}IjLP(`jb$55iIu|QjkE)MWnpUgTX0yR$_W%F@008SG zs1-1Zi;EKy67c7ShK9?RFOQ9lm6n!DB$D;a8(7)Y)Rf2LS&x)G9?#U&6j9e8>Lw;8 zVx5JRtw+^IG0pn=`l_m`^=KXk0000004T_?@c-;Ur&m-|+_-ULVPRpluyA>Kxuc_F zW@g52w{yANf`WqW+qctbH2kaA>z$mOl*{Ehoz7yha5$WdjEvgaS~i=FH}H5oLqkI{ znapG|c|0C2mz$oRUQtm&JYNP*e?>BxY;bUJX=#Z@qlv}hnwlE1Sd4#CDwS8SUVZuH zmnSDDM@B}BMk9;GN=izqtE&?Vg+vNEovx>+N2O9(tyVUhotT(dP*6}*RD=*385y~I z_wKP{$I{Z$i0vH?$8Uf8+w$`A#>Pg3klXG4;DZki95|4cmUjRCeWg-Kp-{f|wXZQ4 zjF8T#rKM$ZauOkQ?%X;2&B22Qb8>Rbt#oftJTV4u`)9=tE;QY;la(DH%CWD-+1E3WnZI`Jnog%f2;t&I z2z}!l-(WJC2q6lEf^(=;DqSvDLPA1eVd1uI+sKR6xLmI8?(WgiQM1|1VzIKavTAB- zg6~urcGU+iy4CKBU@j-Dxw%;=6qc2hb#!#h&(FKvZa$x1US3{YTuf}!(b3V{+xzOP zuj0tCy}f;6V&dedwy2g@pyL*PE1-R9#)Y2^W$A000002ua9cAwno{0A@5Ao12^Ibb5JtIh)N^ ztJU4z-DE-fu} zyWLAmOH)%*J9g{{K7Ah#9z5vl>nkWIC@wB`I2?HWR;s;Y{| zk%^73*Pi)A*O=jP`0dVQ!xXD}E#IyzV^R(W~3 z+wH~?OGsx_US7`Sat8(mcJ10F5C{-LB9Vyr_2$i+4u_+tsEEVisMYGBp&^w@^}-7; z5b3B?s)>n-?Cfk@wlbNlrKRP_ks}!y83KXez<~odZrl(E1huub2qBz3vdqlP`1p9a zT<#wh(&_ZPygY=EUa!A!;eyxeEh#BUNJzlX;!{&o$B!RROiT>5#K;0XqoWruUOaH%fX^_wz?Tgfi^XbaXz1$dQmfU^Jo60xl89kkE?0AN zvq&VWtgNKd>64R_?d|O*lc}kx32)%>crIVQytuenT3X8I^Gznx(9n=lsXTS+RFG|G z;Z=R$q6=_e1amnNluG5q#6)Rn>9%d#C=|-@@bKNccP$nRao77Z8ja`ApHE6k+P!-> zo6S}#mEGOl8ja@Y(W7CM0I^MPZ!bP>ZEda7>Fn?CZ)s_H>Zzyl^Yifr3kwUEE?r`= zSXEV3EEY?v)n2`Nm3$8Z00000Y(?ROh2!Jn2%(gelofw%YinaNnWs*j!p$HhB_#rZ zpuN3)a&j^^Hy0s9p-`TG{(15)R4TQ%x7TPi@_0Oi(Ad~mUS8gwJ$u4S-^aqjLSJ9s zu3fvz%F6IJrKP2xeDcZt`}fIh7cQ6U^y$<1F+C+EB_Sc<{Q2{8xxBi%8X+__HRW=- z4jw#+BQb;!{ytRQ-Q9(Sg+8Yi(ix?trQyeJu~?j(ob2-}jYd0l>J*OKOG--EY<6#N z@BI8c(aeRX3nI2JC@A>DAO4_FC^9lKxLhum%caq1Y&JVRJ$=ReQz(?e!ou$EZmm|E zl$3*ZO7$MZt z)1%R7o__ji9Oxp1Dk>^2T)1%e?%j-x407vh;LC=L!C<7Pr;m(`P$(4t;$2=|-oAZ1 z4xbQ0Wo2dO&Yc?>8EI%}z_r=e*Qe2FPM$nT6njoiPIGf}cX#)$UArPIy#Q4oxab1h z7r|Uk1hd&pG&LiH($dnbR%=&RS8;K1fS@-eC1u~feZ*%fmD<_aIX*s4)LQT*KzzBh zv~>FPY2y8bL?Zd)AOAQsG(?1jZEbB73gzU8OeWlF_r(`q$mR0v?CceLkXkI3nVA{fqT=`~{M0owGqYOy_(_*oT!GDIYqeUN z%@&pP<#IWlPS4NJC$>ijNhA`TPG_}RiOur!^U2-Ml9Q7u6pF!Mz<GXRv+&1au@VvzLYln>ckPqQ<-|AR)DuFMX zkoYvfW@Kb|JRaigWHMQ5YATP%BThje5O6r0+1c4Jj)j7&`ZbF#TK5H&O7&@mt*EH* zcszlJV&Y4VP+ne6p-}Kkt6;2H0%Eb4+@{T7FoZ%OQK3eoadC06prC+=2@yh>nVBng z8wLOX007uRf@&?iaNz>+nZ;sl-@bjd&Rtrq79rHt)z#J2<@1x>ZYMsEj*gCwj_Pze zo6Sbdo5!n>62+R8kfuU```cG|0kQxhM#K@LVP}- z{1cT*rO{}_LS(tQxtW=nUw--J*w|QESy^swZh#?70i>j);8vGN&L{w%$5VVP@^Wg+ z%gg=!{d043%gf6ym&@z*dORMY5Q34AkdT&^Haa?5Utf=hRE>>|aX1{@BDA=;h!7&i zZ4z+9rbeTQmR8$7m=f@* zP=pYJ!5}IWzt`|@r56f?(S79s00000u)%_QhTFY+cU)W?olfU)I0Atn!2AmMVX?Zp z+P^K4c>KC^=Z;J!lS-vcO-)=bmrA8hOiXlibP!u+WMsVf;){KKeKMJ>zrSB1ku)?k z;1B?PW@kB@nnmaem0Xh%uix5dZ)H003J~P!F{k z85u#&GLIjRm`o;lHWxCzUN4i$a&mI^@89pU7a5n!ZES3;tE*Ee6ptP~YHn^mb?TH* zC|omre+&l0WHJT6eE|9S`T6fsi&S=ZQ~%q$jh2|0sL^PA$^oB3{1F!ymz|wGIyy?up4n_39v&8nL_|#GUt(^z zTcJ=ynE4fjcg>hgCh}$J@p!trx@a^SF(YMoI2?}K?OtA94t2+pk`jl*(ca!p{?hC9 z1{v6dSM_TaUEup-#WYvb+uKV{zpt;4N~LCJX9w72aBz^^Oosair_pFc>=8J9|NNw+ zr0m$SqpPdylTSX$&(FuJtEp5f4u^B($dMpVYIt~fcz8G~D~pI{_Y%my(hq z5{dfy`dBPhN=k~=YE>u{K68_VU1I**r>3Sdnal?d9@uO)ywW<+3Kv*WQPI@Y)TK+8 zN=iyxF4xr5l-+LkIYd@gR##Wo=bwL`k&)qcyNOjjdj~-Dd6rVXHo0^)= zpFiK+++0#p!sGFlmzVLX4CLXRQmM4NyZg?aJ9Tw+JRZ+zH1_oLthVfA@R?sts3lxp zUOqiNefRENl}eS8lHzbU6bgk-r`xk8!v^2&q6Ad`VUlFQAI_?%*@Q- z;GjmM$;!$?2$@VKrBYd5US3sIwdU?&SAF233w&R!mZm=*k0+PQbvj*odODR#mC0m! zy?*D;oq(_)6-d5Sw2h8hg1T=*tKidl`B`yojX@rTFPWH zbvm6)Cgbz@;Y~ja00000ut`KeEaY;zr%s*f>FJrAoSdGXrcfve2?=FoWq67|3Waj$ z(4jBC{8FJ%IGs*`K(KG$zRb)_a#&bdSvfj7IyX0m#}1{YrhersUm<#b1x|lOH8nL! zNl60(14BbYE|-hRWTvE~l$MqTe^MD48EUn9e0y3+x%gD&UA>x|CuKK`5x8{8j+I~rwICD<_wV2D@px|Cx)oA7 z000000GmosBYyz!H#IeN{rdF-2M+kO76K5G=H_OH!|~#aF9yF$dwY9tZ|`fby%xr7 zy#N3J006*W^jizT6Jlg!gvn&C)@KiZ;Dz^c3SMaeu$j4BE~C+Cu~-}qhtuhFI2@6z zQ3Mza2Axi4GMRC4aSR57!{Knb+*oJIm%(7TckiBDE}x&D*Jw0qwOXZ8#X3`4m_#BG zi^a*w$*HNSMMXu8jg0|%#>I-;?KT(;_)aHo_E=|X3u7{w3F{G>tn>0%aXOt&r_*Y+5+j)@6pBbB zN=Zoxa*X==86O{SX=!=z;K9JaKx}jJm{F-zK5=zGN zG@H$_&B_0bzooskLHSXjsO4vYzhvC zV|I3SwH2p8)Oo#LtyZhmYWaMAdU|?HI@Qn3&As!^JJ+sV+xSC2nFa<11_lOx^PAs1 z^UO1EzWHWqYU;-40q*n-W;UD6X7k+KoKPrCPfuUh1+*b71R*dQjd+a&iA2)S&=B)C zlmGw#V$S7qsZ=We37j|_PC`Ngo6W`@qTrv5NI3t>VzJomc9Y3Obk#E$3eDj;%#B1tq z0JzgPfX!yZ4Td(G&15o>yItsXI-O1@7KDsS4)gNz*0uTQ=FOYm|Ni$~F4y`U0)&LgWd8fV|NHLUyVvg!aHq%I z^78WZ^t9D##eY&Ll>Gess82xzVIcqj002U!QmN+V=J01Km70~6B@&5Zo24g~PN$om zo+esyGBPq!Qc~9AK<~f*{=4tKi$6mj(b)1S|1)RKy#D&@>v15s(>D*TR;yGhJsuDK zGd(>$y5mb}Km6ejqnI230000Ud-L=2#FHY6#VRf?PDn_IZI+&7adB}%q0nS9;YK{8 z(MY4wqP~K~?|%2Yciwr2_!DBn*zzg=hYugJ+3d>7%IF>i?(|KC!{H<*CK`=K{0_)u zGDY`Jht@&>0001lz-Tlo6bk&A&*$gmRlX+32SIR=A4bR%3`T(sNmVJ9^?IeG2c zHT)Td9c^+%1zo;;Ig%g&?)0r9ig!8&VIcqj007oTOi0M(a-%qx30Mz&KA%`tj;OdW zy!-CEM6dx(Mw=W_L2kGE*T4RC*y+HXzJ)~VPRAfD1ONa4z#6PpD>21oR3@|l>n$rQ z3xCk*bm5H*l*{FxfBtz?GX*xt_3PKe8_fiF`j!*P&(b$&QYW zsi`TO&Bozy3JMB#?AU=DwLkmpGn2{m+H0@*%$a-k>{++l{mLt^_?(g3?f&3{5BBfh zPp8v+dU}?YmM9cTa&mG_O$~WPNQc9rP$Jbr>3TQdV2JFy-$nq@#DvFK3y(X zcX#*b=&0FjX0cdVSy?qTHN*=8kH<4KG$fPBOeT}ZFMbe6&0}B3;+OtFlaOy z{6QoVvDxg{W(EXpLfjirqtRq$W`>%=xpU|62Uxj&3&EA;^?J{pJNMo1emB(J z;ZEOjBEQoKYj+o(nVFfKoGdCTDlRUj(P$GB6YcHoCX=bDsVUThUAuOT&1Tot)p0nS zsi~>n-d??4Z!(!uQ&acs*+Zw(M@B~O-Mi;@yDKUxh`o$PDq@=aAb!uuVH#e8qMXS{s42JF7x389y?(S~8-CkW?EfflEHd|L$ z*QHCBjvP6XmX?M$u-olDJv~`jS^4?-G#YJYW~RNp-EOzn)z#q*3m@t^caTqC;N^5ItJs!{S@bJXML_tA8Zf>qnC`1T( zJf6#!FE1`GmX?4dez zLbKW2)YMd3T8jTnOG`5t3?m~W4Gj%68ZFf09Xoamw~3{urY=#WvVZEtO>y=`xM z+gjV&YR9);yQ|k)trf1eiq%%@9-y+3orJLWOdy1i`TOJj>v^0{fDo2|yqlorE-tRFuJ`ZX=ka*tu&}JG3?by<;W1D) zL?Y2sPd!C6n6|UCOG-*gO-)_1W(}TVY;3$?!vg(&TU%&3^>Pn8H2TeRLFVDilV$Pg7MD~)ClciEAv5xuq`7JFi2?+^SR#te5 zv$JzbN=j~SZd6nhLP#JGxVX5?o;_Pj-T(jq0A2L<_Tpg)X*62D4?w}h#AGsQG@4SW zluD&?xf~B#sH2*in%34<{28hWClO+2RaRCuH8ru>Y~6ngC4G__Nl7Ogyl)|eLeYq? z*le~+rRwhP9_qqeTwKWQB=K_ya^e&U#mdU6tE)@nhZ-61^Yf!nD7eiuolbXgajB`P zA-AR#2n04ZHvP8eBvygkiIz^MdwO~bg+ih^bzhd2mJ*2se-?|y_4V~09v)g^LJEb_ z+S>ZpUw_%z+0B_VNBb$2oVZ%8?&|8Ywzej|rBbOD78Y%7ZNwBVm&@UBOiWBP zGcq!&tEe4S5C8yxkrRnT_=A=UE0~ywyB(qyNJnXDY4`&SKsxCVyDT*| zbx1#il0JD2yQGs1UR%gyGBt*##s4Z4ilHt{qhlLRhs9!POzitYMvZZh=yW=h$s|HJ zFE1}1kH_cpr%#`b5Nc>>=;(t@;af(RjVb901{P$bCF0S5{Z8L z=_iea;unu1grcINu3Wj2l$7M<<>lq&g;xpy0KjO$XL8(2T%}SO85!Bx+4=kXo0*vj zg~HRPPshc@5hDQ*KRI^n7|{SHJw5&5!-x1Q3WZ{5Xvk)>eSCcE?d|(rVpdjGZf@@S z_3Mdl_19m?Q;dv^Hg4QFw)q<~CMG8M zeyQKp*MiUI;}4U%s?fv3Iv%WK!JU4DLky}iA6 z?%X+e@ZiW_3O`6_ zhF#Lh1`i8|(Nc84h4uI56J1`1q7hahgbWM}h_P5W9FD1}DUZj)VWB`Epi-%>uC7`V z?7LDp=#t4~2qA?+k&==k5{Uu=0zyMW4Gj$`6iP-$MrCCso*B(+5o)A>`rVQBY7&R8-{Q;h|QmOG-*wTU%$&oJn4~v$M0GpWi?m%E7^5 z&6+j&`T1Nfx1gZF*4B3B%$Y=sQvd(}BhlH}dHM3?&dyFZH#aXYFNBatB&w*Wz?UK2 z>Fev`{sKy+va_?ZyuAF6KmPFZ^NWm(>^n1$$D>dvd_F%gFmP1XLU*`ah7D~103ZNK zL_t(t8A8a=(C`s2dbBt@JL9V-p}f4DMx*t;l;egr=H}*RW@dQGq#k&K*k!~{)Dh7} zY4VOYV{L8y{rBI~>2y3i;ge53`N=1r?B2cm?%lf@b8 zb8v8Y?z!j2CEFuM>@uPmu#P5IN$>3J%*)FQ2?-hRj7$i_F6m@r^@hq})Fo;mlgTui zI7=iF@*(Tx<&~bE-qF!vYHC_uUOsKwG@@>8paeCh;5MB2^1$QqIyyQcBO}Ri7x|os z+w2m}KKo^DZ5AK>({TZTD6L}s0^AoLMS{uTq2RArKRB}91I2{Dk{p?*O$C> zgb*=6PQO?zR%B#kcz8IU&(F@zPDx2wxpJlUo{#_l00yN}sjgnV+S}W!aZ)87-sz4? zrQ-3rv7n%!?Ck99>}*q0Q{tSD)z#IB#bO^HA1;?Wj$z>_J}G|0X3d&K{#DT0v=b*z%$ql_Z&P4OTv5Dl-@drGxS2C&4sXO^O0^6&LnNp% zrLnOQ{oRxlHyh9hy2#xQ@qGX>hHt;Tyu6r9=G?h+FI>2A>(;HfxHvq0(8Li!N~N-` ztfrxup!3%eAqw@$&L2E-oJGFcKp-iEb8kl%JoE z5b8JZ!(rj1s4dY2vCD>fvxo;aM3cF;5VxiyIxFD^^kT8N@0>Gc%uuV_TH@cT)$08G{F0Iqu~=+qXz1nT6&xHq zkqg4GOFG#oyv`oS=*`W|#1y4cNi<0x6-7lw!?4=&`uCI4v!0 zbZc}00APwJFE2MTG9uUVjV>=QFWdovm?D$ODk>^mTwJWItV~QyxLocSEqWltHAR^ormrwQAwA{ zWPW~r=H}+LwY36)pzjR$U2a81MaIU)-rn8@1_rsgx!0~;BhT~apMOfF($LUQ4-b#} z`ue~A`ilrR9z1xEo}O-CU=R`#Vs37pot=H}-n~b$V#77;lKy`Z8F@b3-Q9C@b8p|i zjVtSMOW)BwiKtYnvuDq`xVRV^8dg_VS65e0n>J13lI-Q>b@}pTiA3V&=GM0_q6TYg z>nm5TxVyVsSy@S?(xRdwgb?u#2^SZa%*@QYckc>?LOPw^)YMd6UG3`XNbS|kz?Re}P6K&e#XhoP>n zu7!n#k&%%T|GsU)!VhZu_Rq)g;B6%(CBzhGXXp9z=MQ>o0VW!mOtyXd_V2#??xmMr zLI^cBHg4X$xuKy!V>W$#eFFmna`gs|520z|M5a=ys8niHRMf?b7w_M{KW*AHjRxW6 z<>mM$8MoI{sZ%%FkrLU{l4Rc zLZQr^JNMULf4z3?T4G|NE{QW33^Oycs;a80sw!e4jYgX@XO4@D3qpuWr7l^rq_D7% z&*$gn=Bm|dLqkIc2M3~>G$0_LtgNiQz8-hWZfsj&*Crl$R7 zweQL@nas_bH|v;qWo6~nt5+i;B0N1k@xVC>g+e3}UB7-kH8mB7g$N-kmFn;B@9*#5 zZ~nD>g%BbhjQ{`u7%DwIy^*xi85AC8o46+v3Wd$h&0%3-_yn?(x?3vvb8WVCMG zx|J(eo;-Q-KmYj;LTK&UwXePQ+6Nzeuxr;Y@@#UsTq>24-&2CSBlg=1aZ(^6`Jq+- zOvaKvW5$fCswzBsKeYRHtdp4HaVK0 z=<*1swY9aatt~7p>=EQ=Oy%X}SzB9^gE~DuJxfbVXJ_ZUyu8Ws{00C39#^KOrrO8% z!?z}V-@%Kg3_6wr?o~)cCZ(mN2%*f(%*@P8VxG><&aSR5jkf`h9pXM?BHtD1LZwm_ z6&2BFH2hi-T}<|C?yzqbiHKs7Ru!VZhoAl7had32$;ruaadDB6k#ss;m-iII^Jg+l2&CK;Zh{blrOwYs>t*x1+@-+!o7Dn6g@;NY;BWZt}aXy`Ah z9tol!<49hVJP`;40z3wRMhBs)s;Zir8vI#fD0N(2pi4ufiHX={L%mtVW3!{l+`1A! zh_Sb~$N%c<>swk{%49M;eb%g5L^HIsv@{BZvT)%-{4XBa^1*`#=knzppGG&MC56LFJ3;ykHRsmjXA&|q(O!)$GBDHKXaM+b+)u_u|x0~8Otq?1jK z+CnXOJf2ditg5Q2uC5LX3+uOc-{j)$?VXmEcInb3H#avUBO|3!+0oI#(lx3@1UD)RO9C7$J})#{v_90r5I;cx~@ zS*22?rKPpBw9K757eB_Xsj2Dd=?M%B)VP)5a=BbC_mREF*~rKUSCEQCA}#r!`1&1e zrmL&#ufP662yNWB(a6Z?%9Sf>wc66sQeR)cxw*N$z1_^rO!wNwiH3-BhkAqL<>htp z;>9t@(W7(z{P`I(W_FFse zD{F6WU$9^Sc?40FN`;5Qm&s%u9UTIJKr9xAg@w7fx#1bOT&|g!S>MOozP`SH{q+}l zNWC#-Zf=e%)5Kyi9suwWEOgX0G&HofwsJTejSg41yC#)N#VyCYy}h|yZcR;%LZL7+ zGV=5D3keAs$piRtq*N-qySwpc^8254F>l_y&p-bhP3A_VSFc``N~N1NZAwT;pwsEK zwY3Kh95{RSEJ8>q6xP(#$mQ~`t}guVjvYJx`OkmOn>SCPP+Ylk<%=)A=-Uo_vLJR@ zY;5e1emHqcx`Ttm6Hh!*QBgrmp-?DsadFw%*#d!}q@={i$S5EnAT%^o#{|Q}!;OuN zi;Ihkii+?X0f^J`1T>P8PDYu$Z36%R0D$q*)zy`kmseX`+uhwwrBV$I4cTmVY-}uX zBh}g2nVp?oS6A25(}PE=4hjk)w?#}(Pk;FEA^uFG(U?r8t*x!EuP@Q=ODdI~Jb7}) zj2V4jrJz=;lai8bZEfewnKSn5iV#A@#l^UhlB=uhNNzj8qtwySQC?n-5Hd709LA72 zYuB#D?d~S;V5CzJv9mlqJ^Ou0qjpfzC!-OTbi$;sEd&4n03JPKV`Ds^#Xw9eO-=F5VoOU4+$>HOc=#eT+zNzQvu5G2 z5KKnePf!Dal0F%Yu%r_vP3qS0u>>j(!WebO0uNhd&92mk;8fI-mdbmE4C7_<{iWW;W=va%Xp-$)LJ zGm*#G09qs_CJyyo_864(NoV9God97W0000028Rc2M+iwI5{u_g;*xDYy>{_L~Q4m%wv>66H4m2?ckLI3~&01QrFU!NEd%|?<;n} z1R^QfJg7lnKLOVDI-jzyuAGI;ltzDcE6^k=J4Ue zcu->i02maNN_BH{qtR#xA&EpneoGjbAj-?j@ko+18qM9^edMp6Gcqzdbm$P1$sCQ` zfw5&`VshxvAso?-1eElNZ`4aV(mgEf>FN3JfB$>&;>D3K^6}Hq&~WV7F`^n50001Z zTp1V`xVX6B&-i6oP?Io0sMYH7@^Yb2i2rqSa~rL0fesE1pMLr&j7K`bQ7DuzzW9Q} z;fzXZP|_!?u`B7ihJ{=%SFKjp*VjYe)4qCpd*yOD4%q?K+yLayn3=AB_1fir)KnjJT zq@-kwO1iFLVQFcpmzNivPA@4b8LeeMHk_TE*RNmi<>fWr836zQ03HQ4n@!v=N+gov z;$nCGzdwXKYkWsX0)23a!c0rxt1Vo`wcJ11=e*OAUPZ>)3grczv z92^`*x1{SdWKC^tZD(g^bab>@t>*D~VPRpowK1ktDvusL8XFtSU@-FX@>*M4sZ^?& znOR_9ptG|xF`G;#S>%&CShOSy@d@O=`8;%E~GvBt)Y< zu3D|GtgPhmcj)vSGu9zArFINlCG=u!xS1&dSQ-a=CK3 zeBr`{xXddQirn1Xva+)7?rsAEgK5*Ig@%S|bSJ=jp`)WityZ&GEO&SJprD|>yU)PD zz|qk$BqW5q)+s3|=H}*petsDl8I6sNYPH(j+&m~K$l2MM&*v8w7It)W=tzwQB_e0hh}ai^U8E!^z1hA|gVeP-JFi*3{JW_V${XnE3ek`1tscuUOjG z2&cSm-MY%k%F@!(&dyE)0|P57tMKq}3kwVKTJ!n*f`WpMjt)INJ$rlm@bK`yZMel^ zab{*_ZEbCDZ!e3*a&vPF3JM~Z6p2KVk&#hdT`iNzOifLFe0;Qb)xi67&YU@VdU|$*xTDnPHOq`% zZW*#+@9sg1ZF+iod3pKDl`FHevnwkrB@zjf$?RLSo12?UN=llVn#5u;olft2JV>R| z?Ck8CnwqYzE^><+J3G7h_;~!8%jFgo6?JrU&}cLp8=KJ3P~ya`dr<{of@8DUhK7a$ zfk35F$>s8rk`hZxOIur8c%Q+eB$LT%Yio(B0}6%W;^JavW;RBP+qiL~ySw{quf2wE zOx0>NM2U}{#%56O+S=OijR%!Vb#-+mZk0z1ZSUT_ zgU*zmo-UKgqN1XVjEo8k3(d{V$u~)AwK_L9S0obg`FtNApMZb>Cnu-Y*4DhdJTo&h zVor%fa{Kme4u|97;^O4wB$vwz3ky{$mA$<^ote2GLtjE<#aHkz86E?&GSm&^VA{hghiRVr0_ zdb&!bl1L=M!NJ7M?u{Ea7z~E9v$Knfi-CbbNl8h4ef>c7ft{V5Wo2b9E-rW}X=!OW zIXO;FP97c}c6N4pdV1B>)xN&I{oeK|mC6ejE(inyCnqOwZ*OaB>!zlrhYuf`nwk=M zZf$L?s;ctv@F0g+N~JO{FVDut#?jG{SbYl%i+lI(DV0ihcXvxm%YKIrD=jTW2vt^A z*3{Ivy1Lrf*i4%?jZUYlRH};?FIHAodU$xaySp138}s>m9*^hd=0@Zk?*$_xBM%P` ze8FMd_=4N7IA`l2lN=lrZoD2;OiAA@ywQ;#zS6A1-z(7Yw z$C{d&qN1YC&d%cE;_1_;`}_M_Sy^$pTpo|-fMg6Yp;wbd7Mzb#-;Et*wE9fzzi?x3RGi2n2G(c z1_lN=o&5a#)YMcalNk^Yz-F_BLSar$4njy@U!OQ6Iy*bhojWIyNPK;LU0htKRBBOC zQFC*%o0}UxclY-8o;!E0xw+ZP%ge*V!_d$W$C=&T-R|!0{YGebp9+P-ii!%naU2~T zYinyCK77dGaEOCpBqfVDbj{7p5keIe6*q6*^!E0iIdi6tiIS}IoURhaLQc~jO<%N$Kg+g)m?AiAA_K=W}fPerS8=I!4 zCK`5zwn-$C z=H_OZOh%*8h*KySBNB7JgRV=)TU;I)Mk ziKMEkDljmRLZR5$*qED}mz0#axw&b~*3r?idi832bBPeLwY5EU>Qr%YF|I&E2pJn2 zZ`iPbnBU9GD5JzP|VG z-!CXAaCUaaagmPMNKH+pP$&rr2}DcWC!ToX(xpq}#Zf4f#Kc7M6e^Ya@ZrPG&Q4w8 za)ChL;^H!U_Uu9DL=-2D-@BjPnzu&oY$HBp2sAEax=H_~McnrGe znwlDObMw`!SCgOgPf2m+SBEuj3kF z3WZ|z>ecvVFKjm3*x2~|`SUy;FC-)cAtaSbGcq!)tgN1V@=3gOe}Dh<^z?@h9}?j% zLMSygl}@LxT)7f&Qg3f>Gc&XF^z_QgO1u_1IXPmnc)@}N#7g=4`u_UsuiEz%LP#VM zJ@wR6#8$Plvr9@!N=;2AUL-Y=l0{ZuUw{4jbyrtcqLk^9cwSzfg@pxiNZ8rgB_}6K zrBY%w2i-CQ8S3uVvDjK#TF#p{4}a!xI7+25Gc&WXv5}~s*C;+#R#ulTU8=6G_Vn~b z2vt;6bar+U`;pCNQz(=>ckY;(nOR#~BZP4H8Wk1g>+6eCzy;yny?d)xts;`uv8Vzt z@i7<-UtizG#>S?mCY4Hs5Nc~{Yinzx(P-x8=4NJQ`uh4b8jVJyjr^TjQR;!(%8HV24nN)%^Npv zB;SpU9W5o@%*@Q(+#E{!s8A>rN~Kb%RLbS@j*bqYP)L4J0+mYTa5!u>dsN09?Q8Ho z$K`TWDiyvZLI`&*vkALPJBz6N7?+ii?X&N=nFKq4sQac6PS4wRw4Yk$Y!4IyzcdSm3s)1Ho~H zL?Y28EMzbkt*xz6sZ^Jsj>qGfo0}6cAwq~sr3MEFU%q^~tgLLPkAL*_^=HhOG3ab6 zl`1+qTBG)#%jI%791{~0;!0y?W@cn$R99C=WECOQZz~0{SlrOi;Opy4-abqw)7#rS zKR>^{y`9*tR4SDm4B!oGVPQdj?<#I?*V)-gUIeaaBF|G>TkGNBK}?}gC{|WhwY9an zuMy_z>PkL^SzB9EC=}wDsjRG2sZ<)xCIbQj9zJ|X{40@2YHMqQgM$%5#IhV59MaR% zYin!q`U(UB6B85ix-*$fcX#)~!ot4WlZ?$~lea26eIHrirOQX?NtXQ#Q$Buz+1IEZeB^}3yk1{7yleM)qZiF~?ix?znwOUU1PmmKZcz_B0smJaJ17M7Kjm6esXx3^2BQv6T^Aw+!8 zE-EVO%9SfgNl9K_US3{aS_-X9Ceyg9#&8aYaW!SL*}63K#{KumQ{-~FNF)-8L_huX zlg7-%TDP^eu~;l4Bcr|v;@#J`+bdp?mX;PGCNVNHB6ljIQmIrbRiniVKH@cABiZjf z8iOzC>FE)_(q)Y>jbnyNrP63LA|2deL*tlXFc{?RfcI2RP7ZEdN`|}J$z(E#L_$uX3cw_yr>8e<+B7>mJE2e=gqj)v03ZNKL_t*8(b1vN`4)^i zCX;DpWo2$|K2TTfN5I_N{H?d%+OcEDojZ4K+_;gEkpUxBjvak{{fLN&*x15meHLNPHhF*7qWGc$Vx)v$vsptiPFEEbE!;=_jzlc#gJT#bQewC7c!P^6@! zh(w}*fPm1@P(wpQ3Wbu9kx^M$iD$r1)(5&zlFQ}&cFZ$0G}L%Lp*~1er`W&U_T#c%|IGd9AKh2aZ%Pft%vOAC1w z22C6xMmiT;?e|YS9`DwzTQ)W}At537 z6x`k2{l_1F5Hq;AxMXBx+`oT6CML$z)Kn-G;@-B?rcJ{$$Ye5OW8;{Zn7)aVV_kSL zGFHTnSy@?GsZ=VVP}tqwjhjBoWU^sg)Br(WUtdp8k4~o>8X7X0Ok-o?af}8v zSXfvjBqSsxB;fAo_{myJOG|Teb3;SJc;{{s!&P%uR#qGi2Y00E_tE^g=(nWHWHS7B zymL2+(dl$LovyF1Pp8wFOs1)+=@_*a?bjf;M5LSzBAj z#KfFGfByRQ>#J6+BEr`}6GsSzhlfiflC-q6w6rvY5QD)WcdHw8%Z!#$DYgiq^z?Kl zlNlc$PlTWv4?&HLjN;C*>k9S7EqXQ-VaiT3O?C$QauCDg;^TR{c6O>A2b#-;W1J4Wu2Xz{^ zO2l}|=yWsM}A97i$*tMyd8+{cKC^)MjWWU-{w%!>2zab{NWV3uV@;Pe(gkj)+1A!ZZhWXvD7w45 ziTWhjuNoU0iHwb~WMN)jUQ8x)?%cT-E?l^E>sDM` z9G*UC;^^;A1^)j2K0ZGB`uZAmfP-$C(K0H<7LVod#1l`D514*W7r0-Cfq?;&$<%mY zZ)IiG*4EbC+&mU94FdoG000;x+Ug}sOH0*iwYRso#&jBu=HcPd(9odEO)Z97OpzlQ z9*;-+znwy)+Kg92u7)9RR-ZGgi zJw2T~QLR=Jm8OIGo_%;Ogq?f`S4(WzfVCLIQz6C=`Z-gqWC^^lcZa%a$1xBQLfH zA>3wzyuSFomm0I>2!KiQ&V+ywX3VEKp-IInKf(H zg$ozXojd2@;lX0DdU|>q8X9KJnuXgghlGS=XJ?DWVrOS(3WZWrQ&U}C?e6Zb@v8bk zMMXvZ`RAYK&Ykn|@uAb{?d|PcF4xr5l(-kPu&}VQvMMPlp;D=4W@bX6u%x8K-Q8XH zFf2Ja+1A$9($dn%$VeiQ@OV5NNcTIlpPyfKb@iP)cN!WR*lad_dw6?$`|R1Xi5BE+ zHrvwDGCx1xz`%gbX7}{;@cH~vAKuO1-@mrDwy3D6rKJVe!FF|Z)zsAZ`S}F~1|ozU z9UVP9Ja{}FuB26|R3edxN~Ole#v+8GqodECKcAA4;_dBiVqzi|i%UyODHKY-ova>> zLDxtZMn*=#!NFNsS-=1OyQ{0KTCHwuY^<%V)#w{Gd-m+}=g(igdezz4*~Z2O4|r2u zT^%1Ek86#BgM%w7Dz09=>f_^MW@gsa)y3sW*iQO$Kw&NFVl|6 zWG-F0G(9~%FE0-v#AdUXEnC*z-A%r~w6wHbv0_Dbc6NDrd2eqo4uOc!C?q5Vhelah zSxTkS+}u1mI$ER2qAu+0?Be6&v$C>sb92>dHGbuqN~OAa^Cq5wLZK{LwCMi*`+PoM zE|;5`nZ?G&IyyS)et#Jd5KvZDR$pH)lgW&Xj5r+5f&~i(YIRMaP!=y!tgNiU!ou|QbOwXrn z`FP_P8X7t{IFOs^#>B)}TU&Fv+?<>o3WZ{9Y)mu`WHOm6R;2M1h< zG>VxV5?$6v7s0{7OeV9SpddXxT~AMs&1NrOzPz}&nB2UO#bT{oxiT*=ud=eTy1E)~ z9A95wqUoujpk>#2E~RnVDHtRaI406)}-Uqs^H!2fub@&@D46 zMqX^O@bGXNjV2HXs;jG+Os1!&XJBC9`Sa(A8I($;qoZSXb~fH71P+I@bm>xDc^DcR zYGq|rSXfwGT&z$i=yW=p%^t?d3IG5A0N|0Kz^JkSOiW6p^61f{-rnA`X3ZM!y!5ZK zvhwQHs}T_qo}Qj~NFIekArgtMU%xJuN}qoE>G96sC{w9azyJQbQmKrIiLtP-pi-%7 zwYs;rx3si0BO`-6)(!vw006+`^617q1pqu|^78Vmt*!n2{fS{(_4M>CEiIj$ouyLg z<2OWgeSLj%b8~ojxRsR^9x$3hp)eQ>TxZ_zXvqKo0001!!kE7p5diSG>UY=}g+ftN zQ^RC3AHUbNm2nzuK000000ANakun+(M000000H!nu3jqKC00000U`m6q5C8xG00000rZfl( z0RR910001BN`tTv000000001{Gzbd;00000003Z0gRl?)00000005>m2nzuK00000 z0ANakun+(M000000H!nu3jqKC00000U`m6q5C8xG00000rZfl(0RR910001BN`tTv z000000001{Gzbd;00000003Z0gRl?)00000005>m2nzuK000000ANakun+(M00000 z0H!nu3jqKC00000U`m6q5C8xG00000rZfl(0RR910001BN`tTv000000001{Gzbd; z00000003Z0gRl?)00000005>m2nzuK000000ANakun+(M000000H!nu3jqKC00000 zU`m6q5C8xG00000rZfl(0RR910001BN`tTv000000001{Gzbd;00000003Z0gRl?) z00000005>m2nzuK000000ANakun+(M000000H!nu3jqKC00000U`m6q5C8xG00000 zrZfl(0RR910001BN`tTv000000001{Gzbd;00000003Z0gRl?)00000005>m2nzuK z000000ANakun+(M000000H!nu3jqKC00000U`o@|eb$_uoUE*@{QUgF!a}iFJa%~k zKu4*mspFjm000000015}u~=MJS0|N9&CJX^Jv~RBpiW_7V`Jli0|($18~^|S00000 z#vO~rBBH^ZoE&?5dp4Urk^~27M5<6Ijvqh1YSk);2>}2A00000V50Hy@i8zk$jHc0 zC=|m^WRS41v9a;Ukt0&6bl3|3000000000mb{GtXhlfW?OUtlR&=wY|RH{9D_CQPs z000000000J8H2&-=;%XkudD%q2 zhVvT$000000001w4G0SX00000003Z0gRl?)00000005>m2nzuK000000ANakun+(M z000000H!nu3jqKC00000U`m6q5C8xG00000rZfl(0RR910001BN`tTv000000001{ zGzbd;00000003Z0gRl?)00000005>m2nzuK000000ANakun+(M000000H!nu3jqKC z00000U`m_nVc|dj`OmDZtaatkwSZHZ!nf14fjEoyMZhZg!_i=G?sGtrj2(-02nnPAt9}; zt@!iq-Mi18J=^bWTE3c?Hf`E;@7}#fzg+V691G*MUL!ZwTV_nPwzh_Zgp6c{Dd_Ck zv%7ci9`9TL@K}LU&4e}RHEz;f1jo6yP^nawl$4a0ms2Q|(9qC*`}RHi?6YIHxF3J~ z@xu>49MVq?9z6K`^UweE(@$fQBQUw0IdkUKS6?08Z>y`TqobooB^$SH-5Qm2hN`{2 z{o%uh8WTq=GZKl!&CRW+r-wXo|Ni}-e){RCqz}gHuo*9l7cYMB;K3tU&}bc{ckbMY zkB<)y4xTY%#=Lp+&Ye4_F~gsK{uvt^8xau^8XCHF>(+*bhJMo_Ry;R1S11&YJY%Cy zrBWR_bSNSsA|fIpEG+E(_urSvWCP87|Ni~8YuAQ_g@uQQ&zw2)yYIeJDwSFi*KsS2 zwZ0p_u(0sumtT&Gii(PgiiwGtH*enQ)2GKS1J%{lue|a~cz8J8$Zx#y201^QHf{3k z!^OqL!^2}NGNV?jlai7aE?gKM9v&7JHh=#7YuBz3-=?Rh_sxu_r>BL5#fcLq#v(tH zOJrnZZEfwNTw-Zy>5LgO_U+p@DydaeR6O&{Gr_^Z5fKrQk&$0~@kQVAUSD7T_SI6;>Axs`Q)Wbmvl+Fr>EzeZ@yWyXwlN8OP4KMrsX{R>Z`B%`udJ&H6BxXUN1iws#XU7CR8>_qHa5PV`FkU z$sI30ga8{)zx+M=+UiPw|@EMmw1XmAXvM0txP7{ zxN+mCFI_H|zw*i}J9g|ic<>;VO6~3Keeb>Z)~{dx#~*)CC=`Uy&p-d%_g9~N_L)c| z8uiTJ#T6D79zTBE*47pwl$)EoZr!@WhY#axVnjp)m&?`oNq2X5KtRCKrAx;mKaIi{E+YogF)N;D53F z{QT#hd+yzL-`%%wA3i>H(b3VdX3d(VOP8KMf1bf$Xqof!<;!BR*v7_YBrEc`nkan> zl}hE$KmV*yC>RU|o6SZDB_<|jWo7N%yO)^9%*-q+D~ou-&0?{#va;TL@4d*#$YaNj zrKYA{x^(G-4?eK4u;`oq!i5X*F}HZ}V%&0d-n@Clw{p3B$BrF;{P9O>YU(e){IX!d z0^%!;&WAQOHhcE$xp?v7y?gim_~VbyKmVM3PfRv#+O&^8`snJ_tM~8Uzj*QDo;`c0 z)c=2LhlYlJ`|Y>4Zrw^tOFMDm#Qgd5iC+;b6%!M4^5n^T_wHT2di9-m-Z3&VijR*^ zPEJlsOG`;f*|u#Pky>nQY*tp*vSrJ*Y}s=D{Q3L$@1H+^e)Hzd`uh4WzWCzBix*Q< zQa8l-o1PE_4Uc$zWVB`si~>)@$vm`na4>)M8uXYTZZ>rb93{L zKmK^+c@PSPMMXs;PiGj?($X}h+`D&A`;&X!9Y22j>8GD2Pq}mFj;pJyy}kWFKhgdA zF}aMzdX3_qniNi)IDsEQjT5ge+~>GY33{b8&HT_|Cz=z+nIW{msqIeWNdeOeXv9fB*Z!3ondCex82%=}$lX6vu=Jp`f6k zk3arc%YH-%9Y20NK0e;k(sC^FGr1f%aNvC>lApFUkvQ$u{aVZ(;an>RN#HPzPEdU|^9-@l)HvL^fT%P*HNU*6Kv za_iQuwzjsIn3#SaIyyQ!9zTA3(V|5Z3Wdkx85$Z+n>J0QQXzz5V`IPh=9}>F@W#eQ zKA-R5;c?)=fwgPbYOK^JpL|kVTYLWec{-h*kdScV#EEy_d8e$b?81c$mX?;!KmYvl z<;%%G*}Z%B=FOWkGc#}8xM62!_tHx*B_$;#BqXGzrKP5(y1Tm{IB>w(*%{AlV`H;r z%N8n?djI}?fj|%u5%KlcUt3#SlN0>mhaYCoo_*`qt(!M*y1BW1{PD-cHesDsIEn1uy*o8E^_y?L!3~gtgM+ti+t%3F zNX$U)NYmQdx_I$ofk3cs-8z4N|A>f)=;-MG{qKJRC9ct1V8)CY?d|Qaz4lsAP!Mh( zrO}e=x8Hu7GiOd@WMp`FcxY(oOE0}7lgTbzxUgcyii(Pgn3$NDn3(O`x8s>}a&oq9 z+ctal?3kFCsHmt9Km1UkPz+-WP$-lie)u6WGBPwYG%PIanP;BCtFKb2)~#Fj%P+s| z-@hL(`u_d<`}gmE{q@%`U%rf|eEaRU#HxuzqSs%4Js=OP7X)g#`r#En2iFJv|+tKnOyi@b%YU4+{&6h=>RY z33=m>I~IC_H8eEr+_@9CPYVhPB0npU zNF;B*`DSo%ur8ZU%PvC*ojrT@;K74wX=!uj%n1q#ij0iJ)9dT&w{PE`n3xzB7iVv8 z&tkFGtXV_OgIcXlPEKCGetkIe2d5JkWIkvX82tcHzQ>_>e;gQ79CRn;QcI1LA35Sy@?6PfvJw zIC+Nk>(~GK>#yV~#ESFz{1q!!F2h7Dz9Wm-1A20oup zT&4$-m6f$>)vECD@bK{P;NW1QvT@MUtOg2&;_dC-Z~G}MIXO8xI$HY!j^5th0|yR7 zMn=wx^!u7Zf;y$TySu3U|`_$&p+SU*(neRR9u0j_AfuNwEVC&Yc+GkU%)i1p8!v6jHO-)S)x)KfP_5cm> z8aMHcb0bnrPfyRm!QrKsUP1_^rlykb0|v!nvA+81E4&N;```cm`RAYE;o(+RRvKMA z&!0c9R4T*6!;6cH`?fZ=u&~&)X%pVZ@4fflvSrJbELoD5m!~nCm6es7n_FXJBXQGU zZEf9eU(y#}e9_q0_|~mkZ@u-FTrQ_lspjV92q7Ac_Qo4;&}g)M`}U=zq#%R>0|S5f z;fI%Be)-CkEA8#=#7ces`RB>W$q1qR{QM6;{LtCi`NI!CJb(T?La4N~^qqI!nLmF% zP60DEHr}{#BYyJN)6gsBQ(1#y>xOnm6*w|RyNish_f91-R_$!3a z{{8zGELac~6-7=^CX=mSzrM4x6Cu>p)U;*G7Gj&MTD8jB+FBqGJp1gkVzHRTVtxJf z*W@Qj-+%x8qD6~NojNt>?wk1Dc;gLxilo!&xOv!;B}-CMQ^_|mgwoQ|ojZ3Dj};mk z8a8d(B#}sn14awET)t}6s+~J`e*XFA2%+BI-dA3E<@3)!|M$QDjSxypOZ)Q6FaP(y z|8Y1R^mp54I-S03*|Irv=7fZV+`fIAoSL4V-i{qRa9Aam%U^imh3~)ro_tN!(V;_! z7A#nB^X5%_9{=&jAD?;VnM;>0QK{6Vq@*|BeACz0m#Bo9Idf(}K)|_k=Z+jXqOodg z)~wmSefwvheTEQ{N~Qn)_rJGq-%ebQ0|NuCtgOgC>04FU+1Z(zn)?0s-{XICa&n%1 z_Sq9BP6P!7A%yDc>Rx>DMe+r>r>AGhk|moqZ8~t^0F6ddC=_3R{q?eC%dTF%s;{rV zaN)vVe)(nd=FNC!kw{ciQ*+_Mg+9p=?G!nUS;|9@=Wc!=|03ZNKL_t)Rq_eYg=gyrUee@CDyp4^GiHV8! z_Vxqy3f4GEwQm{iHgDei=9_PZhKAxbmCNPtzyJO}{_zj|ZDCw0}+Wt3PX0q9AV`JlfH$GW&bMwiQCvV@rt^K*f zwQJY*?Ai0f4?j$wJ{=(>m&=LUhCxrWeN|Lc5cQ}U)N1vYUw(P?=us`1Q7V;*iHWmj z&AM^p27ZK5S67F3Izs5&xpVpX`AJDh_}(BpJA2cnO{Y(v9_V&oAP@|c8H7+uN{X+q zubZ12F{QV+cgvP7@4x>(4*RcPzrJeKDraZsXP$ZHi!Z)F2$hwUB_t%=ym?dOk@t`k z78ZW|@yExG9kaEyRjbwe_U+rUWlLLI+gD$Gg%8>b7cOktw25fNrv3De5Zb+a_lgxO zZr!@2aY?nZvhw%$C!c%}LdC_!`uh4_US8VAEEyfBW|B7cXAK=cq%6 z4h07X&zdz0&p@1Mam9u%=FFLM_3G76KKX<=&;R2e|M>935Alvzwrp8!Z0yRFD~ZSA zUw-*zTwEN{VdT=KORv55nvTmNT)K2=_3G7w&i2hW-%OuA9iPAlYA-XS+XFO|YuuzT z&b5WO&E$gz4}Sgi*O-`??Ck74d-e=95gaTbggQGrD=RAzLPX019bLbEorwGK?X{hq zUEkS6B2jmDH;2P{?X}l%Q`MH1mcCDSs8niHR1`w!>#x7Y&+1evRa;vdLde_O+s4MG zv9XZ|!1D6)9z1wJr_+f-h!HJG3JMAkLTa^|DCBqwaq`8=%F2k=Accj62%+NQVj}Rv zKf!lJ82(C6Pmica)!1k^Zrs2zAwmcbD?)4&d=^elPR5n~VzF4Gqdbm>c|2a4B&t^hd%=PQ#2z#>G}Jg?H2C}b6IE^c`ugv_`|gDc7j(&k1{)ijx8Hu7 zc(%87>(-8rj$w@15EmDhn3#w^GZ>7|KmR-@Cx>YJ`s0s35;Z>vA(cvX`t)gy*T$Sa zefr5KpCs<&_U_&L$tR!S*a;zIZ*PC($Ps*;V@Hl0@%Hw9;e{9QGe|u>ys!-o&2 zq@)xV7vm`w78ddG@k9mSv(G+TR8&M?6=Ursdmad2=TzMVgRzK)wt z`!2)IpFe-_;6ZXjvZA6QQ&Ur7gEN`T7hinw%9ShRl*vyS7A{eQ*# zt5>gFxpK{#HTc`+=4Opc078gHqnVqVH#ax;yW;&C^l(K8Wn^T0{PD-+n2^usA3uKl z=+UD@9!yM3h^G(L)zv@#_#^RENJt2d?FY(3Q&Uslb>VP0I-X|^A3m(n+=igzRwC1W z!q>jJ%F4C=@Tf^wQzO zhjC1Z5YpGzC$FIP)2xQ{^mGFQ1ER2N`0KB~tgWpF>LY_4KYrZQ)bwBf`WI2HZEtT+ zRA|@N*B?7}jCfug5)!g!&mJxPCcgXbJ1w0m4;?!6^2;x4OnmC8r--WHdGqGk+uKi@ zHjOyjxVgE-$H$XLvKfZv=H>$j4&b{Z3Wf64TW?*ze*GW+_y_SIW7)E0a=Dy%+@t;U zju3KjaT(~6x^?STjTrvev15Z)e`!xs7mF7!_Vo0`FBmHKXu#6a^6c5O@4WNQE3drr`|rPR+_+IF6dpQsi1_WphYte+ z0)GDa=Y)iWg$oxZBqSU?dUVjBG%G7BJUsmF-Mbq$Y*@5t(UK)g_U_%QQOQ(TSeTNM z^6tCu;(rH9bEvlmx?kfah4CMWG&?&xJ3CvgR(E!G?%K7B2t{-xl}gE@X-TD0giyav z0kt5)Cxj4gZLHB*4wK8}`}XbY>FHU!cI_X3{IPfM-hN+PVQy}2XlSTVD5|QeG`_-- z6?t(8Asot*Zx?!cdWfSLS4MYsb`rJHy}iACbJ*0>M100GkZTz5Z;4Ztr>E!t`+xuM z=FOWA9z3{v_wMu0KaUV1YVa{~BLs~l;_FaFMFlZ~mbM?09l7TxwtV?=qPdg?b8~Zz zrn8QYj&^o-I`;k3SeBWY88M#Cf&~jsojNt_(T^M*9f>pAkdU8TVy>>P8V9g0G**pD zr7m5%l-xj(?Ao3w1_-|wY4=7O(BFXUcA^h{@J!| z+r^6)5kf{rMm|11MAMqze)}yxK7PT11w;h}ZU!?@{>i(BthcxK&Ye3OHf$hIG%zsO zuwjFiE<<*9cK8ym%X(?he#mXvvV}a7L{?Uojg5_?qhr5G;nDxx-QCF(eSLkWO`Aq+ zC-pEc=f3Yb@Avzh^FHT&-pgS!Ij-&<9UbI`sfLDzyLayrLs^WBjBeh% zi9Z(=6-}8k1uwxX`S|f;dwV<4ac<RYlF4zg=qf}td2sCZlv}x0(6&Dwu zJ9nJvuyEnR z2M->+efze&ynN=&nI^XJd*?(Vo;_p`S)x%0AtWv?K4#1q?yXSt0w9WajN+22r>FPi$rId!fDmFZ7@3)w=H})CBiZxI zbU;8rVq#)(aq;@~>rb9M+0|QUZjzFcr%#`DcXxmI@L_axbYNg0`PVUH#%O72J%0Q+ zIXU^oix)rr^b`61lg(zkySuYktb~MwtgNgvXU^QacaP%j;#gf>U2<~rAAkID{P^)d z{`ez3J$>A`adbMpzP=s@XlrZ3sUz-$`JJbIbbIi<_{!D7*49>6S65e8*UOhL4;eD# zmtTIN2+Z?H?cRtf4#M{XzJC4sk|j${pFZ8x)MRRE8W$JGJqnSyf^r{oLeBBP9ZX;{ zxdZU~i>$2d>C>lmb#<>_zrJP57H4N?o&zleZjpQ|Cj3?KyTkpkdD5gw{Hnn`$7EB4 z=Rh%-e#VR$@$vEg{{BWrMrY5S6*yG7zP|q8!GmUIW(yW9Sg>Hh!i5XFH@h!K-%f;( zq@<)Uw`&}@bA}>YxSKehJ$uGtv505nH8nM|va%cxGSL5R@vf+-;C>J;FE39#&M-7I z#1E1i8X77pDijnHmM&dNG~?&y=92GGgq-J~rlw}}=+WFm0m<8CGMQ)3o?WqG#e)Cu z;lqdclouvl9H(;Fa2?Ukp&La$%Hc5rZriHR99WC+gy z!sHSMiUMC?c1cP~;z{N-H8l?&JlLgP6(dKEbaHZvjEp4u33H>)b|iE$+t$`*ZEd|_ z!v_<(|#*>eZ`f&YU5-UUTDDN9E|2EFvPp z@i0+bT)c;)ytsQlb8kgVOpMqHMe&YNoE;(}BCA%dI)DB=UY?egW^8OM@GPKSr;r8= z7!VN=v2fwS<;$1Pm@z~6KT?=BZJMK_qrSd=NJt2IM)9huDl;=P1qFqhH*dzo#AIY- z+`M^{Xee%LYkTwN&5|Wc?CtGw+J_Ar77`LtQBgttdZDJKCMhW?KR-X58xj%{E-o%c zMn=RyiS66BJ2*Iy`yo^4i`#?m#kVr$OjuZ0OH0eDRjY{G0(=)sKA8AD?c(C%+!4kPt~lBl@nD1QHRg1KuCDIDfdlW}y&Dh^ zkei!ZQc@!PNMa1PLy}X$v(N2+19vwA27|$Gb}XKK5-7rR;JD%DfQRj!K7G2pyj(*= zgW?TWH8nN*`udY6Prh*BLRMB*R#w*4t5>^Mb?>b?Fu8N4y}h01%0GSjbno6hj+t*` zVq(ZAT4!e`&zoKH3dP06xs%LhvxzW9Mn<^YzjWymo;7#YtXUsEeE9hB?BOoFolA4+t92~5#uWxN_?eFg&8X8KTSLW>5 zv&1M7gpin+n5L#Ct^{7adKG7gxw$#+N1C0TO@8z)eB=?=Q7SNJxDk7k&1V1l>#t|d zoFQ(}X3w6To}L~Y9E|&M$jZu+dx&66CiBy$PsBYdN5Z)YJX|sEW0E>)6hBo}RV^a< z=bwKNLSx5{<(Sq5A@uIuJMJ19S!HFVrKRPG6DNpzI5%N(i33G}FHClg8Z{~;BqS>< zYuK=1ix)56wQEW-%BH+yN>mD2T`?{Jv#@N0czdEQ7(Ywzf7kHKpjWdGzSf z4I4I)|HyO4u~@906iwL8n>Y9F-J6nC+6PoD5>H0$~0iHIc61a@^3)Wy3n zE3~z>B_?G!bLNbYeGR&i58QjFw6t{GxN+PsBJPPtj~-2!FaZy1BJAG1+tt<8%*+gb z9W!Q3L_|buYb!2+2Mic6aNs~=V`K7PL`6mC&YjCW-v^nDj0~|(f{u<3PSLe%*YF$} zLdLu=ZV$c}-%4WY>guASqs7I=fBWq>yaZn-l$4b4>scfuBzic#I4){?Qnws9a3Ilt ziNRp}@y8zsA?{~6OePces9w8vE%D$V&v5YK#fvv@-pI3WcFVhmv2&Aq?D=aryG)IPFqWQsmhk5JGx-dI13e95eoXr?~G|UcY|Lv-2?e zzg>BS3EvG9Cr;eGdv{h=mXD7Q_XK6w>C>l|E?r9OAoLCN@)bTC9o1}*iAIi(i+gsA$RaHDPwWOq^rlw}Zh!M%j$zfq(mo8nJHf>r@UNiFK$&=RB z)>*S=ojZ39zY(RYYxv=ZAJWp&&Ye5w_x~Y;c#fn$apDAn!7ws1x^m@8R8&-EW+u^z zKOi8Wy}jMb%PT%UJ~}!&A|gUeOe``olHUmUURP99#AGrxH8n#*Lj3*xlarIFC%NKw z@#4k$`udqOXQrj4g@uKsr>B#rIz$MqUAuO{f&~Kmf`1o?VMv6yxHx{jYZ@CHIYx$* zl$10#H}_Vr41%nzthTmxSy>rEXyCws#GM4z+}zC3?XZvDg(V{+!!e{=Mn;C`8*e$r zx3smjrKP2DGznto&Yk0E;<$SCs)mLJc_xNIg9gdV%ipeZ|9@$ux5d)#}9Mx#|!RB&7%A3uIvSy@SblL`kZ zDJgw@eTvx*g(u7|%{e5Mn-1p)Tuc+IU`1lAm6qM zkNYU4&Kd4o>WYdA;--Jtuwi(VBRK$z#VRc=#p50)Oqeiw^k|MlB_Sb!cySTWgbyA( zn0&$tJY4xPH8qWiiQy=Ax((OT$wwob%}z{A zAt6pqPQvtEG&MDih=}0#Ye7K)#}RV={CV=FGb<}=-@bimX=xO7!Ve!lT)A>Zn5n!4 z;y&X#J3IMJ6VN@>#k-Ik930}};^N}sdL`9JP*H;rVzb$x9+S=M(yLLrHL<|`+U<>-rkPiz_V%7 zra^-SwYRr#*s$Twojc;<;I2 zH8eD2WMm8-IuyS?uClVy+uNJ`QU^k5X{nQwQ+|H_fB^$$&6>qxv50vfi;9YV`Q?}V z{QNOv#!Qtw=NCQY-nh3adG+U zufGNl9{kf!Kjr4;IyyR%F93i2^;cV4+qe1ZCiB>_W7XBwBS(%gwv&ty?#9=1ii( z9~cUieeVm370Kf#{Di+vd^DCCnhFR&+=oAzb5YGrcefs3$;zHd3)l~wEcVQSB8Wt55WoBj)53PELx~M@21qTPuoH-L0 zeIrJU2nq^vc6Jv2brd}P`s=U0zP@(%+#oIlt*xz_H*Z!^QQ?>Yn}fQ#`cFUoUM1A=1fn!NkRTX(jPEHO-fXvKH zj#t*CrKORpui4qz91qFJN4dZ}K?s$Xmvg)XkNhI9W5WmC=gyrRz2v*6v9ZzK-oCcBR#H+@ zOiXOntXav)$;9xO;NajbTeh&-?7@Qvr=_JC8X8tqRN(F6(GH=Zp%f3uyUoRsO4^~uEBxaos4-Y?l`0(!Cy9W#yz+$nit*yyZ2ox3; z;vrt#qoLlve_vW!s;8&Nv1vU$y~BqOySuwLHa0Su%u%C8`S|#dXKED_6T5WjlAoWS zmX?;Ns3?=kG%zs8$jBh?J3T$URjXF{`}>pEtfQmz^y$-X*Pg((4<>e(J zA|fUxW@l&T>gtMr9W`pynKNfLZru3g%a@Lh4mCBkkdP4aTX_Vg>+RdOH zZEI`eC`)-Yj1C#GG)sC{rmBoudu_1 z4@XBwFJHbKPaPp8C1qn{L#`ofX=xofa%An=wM|V;OeS;2j2YLiUBkWCu3WjoGvQme zZgp{S!6&T0zrUKA8uj5y;pow$5fKr1-gY*dEhQxt6cogB0wiH<-MTd*BErbXh|Okq zbaX6Ouz>v9Tk=7&b?erbFJE%kcuh@B@kNK@1fj?!giupcQ(<9Yb8|D%;f1=ur_L@B z5fOiX|L4!2OG--ODJysH-c8I>$dUPSa&j3N892@?7K_1PsH&Lqh|dPJj6D zA$6nQ_lU(}O`bgY<;#~G*XaTHRR^lS|Nh(0&yV~zLI4EnQi1=i`KF55l$4bG{Cxac zdC*mQdV1mE;T&_-0MJ#!bOq=34Rs;~;2YGXdF1}XFY4$a$eBJOOvc8>##&oj|M%*I z2%+ZYW(I@7-JDonUM^&d2LNQ>bxHM2MgE(L%y*=uq(od?9O{JNYxxh}C;$Kez{<f++k($ZpQ zXGfk2>zgGhDVdd(^)GMK$;rvd$?0F-XnzA^3&D4+ug4Yw000000PuZ*v4sEt00000 z006oSs)Yam000000MM^NwGaRR000000Qxnk76JeO00000K)(jnLI3~&00000=+~fH z2mk;800000{TfsY0RR910001>UxR8P0R4`Nib`Ew9sca$;gOP(^0i`8S68Q^qVl!2 z4gdfE001zk76Qk&$|OdcCqLvckf`+S*zL z1%+N;bFUCG^Lw(7000000Qw2276Qgww1>gwJ5@9^Qn0|Eki9*2g8h9^&+^n5+s zZr{E=ZQ8WHSaYusGV^<~j{pDw008<4=tK$tUmhMF`T6-_VPWd(>Z+=$%F4>l&dxP8 zHAH}vloSsS5B#~VuFlxl_|>adD_5?ZGiQ#vy1KTuc4A^8zm;_To}NujP2>zYdi3b++qd=g^_7&A=yW>q(}fEc=FOX@uC7j_(KIzR zv$M1Da#2yy^73*U8yiJMMKv`wEiEk~(>y&r&z(ER5x1K+Z?0awnj`Z&J3E7dg6MR* zrluy1M$^{T4h{|`qC^A}CjNnefq(q*hoPaNva&LbMl&`xE-o$>KI;Gg0002KN6=ab z02NP9Ph(@_yu3U~Nl7-F9Tyk3Xwjnl{CsI?Y3{(KrKN6eZh?V;ii(N|p?B}z+1lE+ zw6r)lI0)QOM@NUHrKOvj+o3~;5JC(FW8=n+hYlUuv1129==SZ~!NI|aiHWkZvIwEp z*4Cn;B1uU}Gcz-NeSH-bmE7E1^4i43#a&%pX*3#M^SX8GPM$pJ=H@13szpUb(?bDBygCLl9Gagf{Pa~ z{_w*O#2@|r{hvO48Xq4&X3Q9bP-9~wo6W{QH8wW7xw-lK`{PWjsj0EBuoypnytcNs zy}iAMhlh=g4LNSHv9b2{_8bvDc<|ucw{LIUxPkXeZEbC3WhHmIgo%GrQqrSGkItPt zhof3tTx?@wQ&3PaeE4u7a}NLj007{-1FeMsP#H63jJLP9q@*N5NJKgF1~5g zrt#y)|Ni^$M40sS^rJ_QlIw(JWo0ojF;P)bxT1v+8Zu*eK@kdS~7nmKc3TU%Rsc{#DFhK7cF_wLP~Kc6FF#l^+TmoF#k>Z3-DQdU;(Ui?3O z`V<`Ge9UUD4BOp*k zMaBRA_dkw>^78WJ2EECXCvyaN`SPW%t}efIjvP6XV~M1sBoS>ZD=R%cyi7Tv0002|CqZi=0905k7RM3> zgMq6k!UU!c&w*!6hM=IJkeZr$`t<4Y@^TFgjijU`ej#gWYV`H>Cr_Sy;lhQitgNi8 ztgBbA5@Y##LR?&&dp&G6o18#mkRE}>Vo@ZGI@Lpm4pmZ8!Xqc2K7Bf9&>-%59kz7o z()|4VO`A4dym*mLr}KQ{qA>BNjt>9;006*$65Id*K!rT-DE9jG>q(O)@eKU_{d?|( z6ydvJ;>3x&ckj;1%JT8?DJ?DK8Rqoq(@U2wUA}xd(QlJq^JZ5~nKFgku!g;Q^@_WN zkW5Za?&Zsu-QK9Zy?tzKEJ7$YHrCG0jykZas%k_;#E~OMtgNiKYw6vKKL7v#0Kk79 zR0{#1a`Wa*jwNw%aYjZ)JOej2HWn5Zl9!Z}lr%Rt&zLczcVi_hE32)oT~=0x5E?je zU|U-o`Pb&==CNbPl9yb$a-|zvk&%%hzq|n%*>2pJ*K9nF)=Y5 zkrbYej?SY;j~W{ruV25ubm>xI{(@hO!4Y}X-S`6l0002|=Rvg)04hyQO+i6Hot>Qs zAvT*G5fSnJ{rgp`R`CohFE8)w>-+54GyJuxs>;pHEhs3c=lv4X)6wHh`Mw9zJ}CCsXZ`IdkS@WMq)1QMI$P ztE#FB4GqN$nM~%fW5=qitEu0>p{S^6Vq)UtLC9!`h=^ENSnS@t zTT4r8;J|@A!^FnM*4NkL&uwjOAt52-$B!o_JMCfo0RR910RHn}${7HtY}vBq_3PK# z+S+V3yR);CPN!eGbcuWT95#IT@Q{#@ojZ4ym6b_JNl8jd?%cW4*x0z|(P(UJw70jf zt*w=mloS&an>A}za&q#hQKRs$!NI{>wrpXu*@FiUPD@KOG&HQJsKDE0u~-%s7NMb` zix)5M>PAgXO|!GJH8eD2WMph?Y@D2&#KgodUApAw=clEmB`PY)WHJp53^Fn@_+<#; z=+UDQ5fMw4EMYR4Y&Kg;N-8KQi02GFJlWXT%$PBQ-vqD-p=ZyY9Xoc6!C**AN{Wh# z&YwU3!i5Xm!MYuP00000fd4iTiis#VrrHPKTa%xk->2*M@bJ*l(J?nS7bb9BUERWk z3%mUe2><{90001bj^A6ss6i)E0H}0n0?%HV?Gpe10001he;HH@0RR910001>UxR8P z000000002=YcRGDe8>8FY#{&u00000-xnBL2mk;800000pv$0I2mk;800000{TfsY z0RR910001>UxR8P000000002=Yfvo&00000004k~4XT9z00000007XhLA4M700000 z00800000 z002P02Gv3U00000008LMpjrq300000008|OR0{zB000000H9xkY9Rms000000Q756 zEd&4n00000fPM|Cg#Z8m00000(62$Y5C8xG00000`ZcH)0ssI20000$zXsJp00000 z0002!*PvPm000000002}8dM7b00000005w0gK8lF00000008uBP%Q)i000000DyiC zs)Yam000000MM^NwGaRR000000Qxnk76JeO00000K)(jnLI3~&00000=+~fH2tXhD z`0?ZF)vI-Nb#--hBO)RMhWGIBNJ&Zg7b1obN=Zra@bLI|wgouY+S(Qr6!cwqfc4fv zURPJAqN39C^?ZZ=ljXp_S&)LS4t95MnL2gq*Ny`C%Ai^ZfM9`vfyv3q_;Ye{@{uD) z_=ViKaU&5DAruf0pr)plo12@Po9pW8$`Sbf{re3K4Sf+|0KO49IXPcD3f=LYM!SFd z77Ehl=H{TFAT2E|b#--BRn?U%SH5`hf?we2yo?(+&e_?SXZU&Z<~?}ufag!kmM!Cc zV3d}YW@%}OW1_6AJa68-qeqXj*=&SRM@L6QM1-!cu7-w&nwpx1hK7fSM|pX9H&XGn zbYpjOT$cd={D^<;2mtUMc<|tXm6a9oSx--oU&uLg=1iJ2iTHZ^_H8dOFMfe9T)5!s z>N;%Lu-=O)0N;@2=H`Ti1d8+J+w`4AyWjd23ew%XcTb-_{rdIm($dm6N{bdPx^w5w zs8OT113!QMoO_{}nHh1F>9*$PW=BUyF)^{-yLZo-GY2oMs;ats_pXSD2tvr(+FDLd zEA>`8X9V1Vp3OEXJBBUtE+qc`gL-!va&LBbMumt zk`*gf;E{)|t*!Vc5fPDyhzL5JuBxg^qtP539BOK6$p0-bFSoI=QBqP;QBj#UZ(d$r z9>2&inapFyju{#n>gww1=;)Z3n3R;1kON3cO5VJA)4;$$MMXtLMP>2g#l^+Ngp;gDxRL6O-)VsCpw+}`t@s$E&BNQ5JM=1k0(Ot-Me>gZfeZ`NRaMp0)HF3UPnC>l)@O5={CMG8L@84gzaG|oYvZA8m+O=yN8yjD}dbND{az#Z& zO-)T}YwOC&N^;zG?AU>KleV_DqoZSOZ7oLxLPA0`H8uI|vckeb6B82}ji#ieWMpJ? z_wHSBajKpg0>e}67p%Ft*~`mISy@?4O^rsQk#nH4vok0th)$<#YHHGGG;M9|;NW1M z(MU;22@DMUJ|P>eI)4U=(M-DZ`rbiMx#xgI`!hki`*${X=yPuG`x208qf4n zM_W`>6d%%xii&D#YFb)aiHV6E|BZ-<(A3maQ&Uq=Q1JBhY-?*He$vp;`1I-1)~#EW zl$2;Rnwpy0o;`co+uOM#aQX6O?#_e_4Gptq&BB#c>b)Nl62g&(2q8Z|zv$>_en}P; z70u4hHZn5extA%55rKt3Zf@>^1q)PFRp-o^vuf3oI-RbjrlzW@>hA7NKK?1r9YVLSo8-ZV zwY9bQTBD(%p{lC7aN)wNtSo+sDk>_nw6w&R5@ls&a#5L;m1SsXsIIO~qtOfv4gdV} zPx2q>bo%@E?;RZ-6%-Vdm6c6RO`ku1-qh5zdGlrk1qBTa4Fdy%{QP_(d`e16P*6}( zQW8#rii*miLxC** zLTznr6%`fu^XAQ)DY}`txw*NyxlNrq_2$i++(qq=KmK_6@?|Y8t+=>2IXOAC^4i1@_nfTYr%E}chRvbKdP*+zMA@uCoGiz(>-+%v|=X@CA z;^Gr0PP};W;?SW(5ke&;C3bdpfBp3r@i6$Wzy7MMth{*fB5u;Wd-tx5jZIQg((Ku@ z5kjr4t&0{dvbD9{zkk1&m>84E3=Iu6Gc&t>{knvNgpG~OxpU`s?b=0bj>TdnCnw`e zU6rKOD-Gv@Z~+Y%BIjg5^K78Y`Ha>SGP$B!Qe1O!A!M~@vl zmd$4S`T4C`v*zQ+k0Bu;_z`F-WB($`&Y}>X?M@Q%I;ln&P$7C|??CcyJ9TzTK$S=JJA%4+rY;1IM zbMyE2$DIXgYHBPjEXI!?udS_(1MJ$h>*L3d*RNk6Ja{mR#oDuH&zd!B5)u;duN@s7 zmX?-oZf=JT9YP2(7>tb@Hy%24XvdBn91$=!Hr~E{`{&P}@o9@CBqUf_S&4~>3EcbL zP*_-4Q&STg8_RPqQxqfAg+OLz=AlD}qN1X3RU{)L!_3SqFE4M%kRd#y;pypVY;2sD zmnSJH$!4?T;^G!9T9lukFD)&-X3d&2XU^=|vxf-GWHM7zQws_TcJAESje=Cjf`#I| z7UIgj_Q}Nl8hzwzgtoV*COqC@4I6@}#`H{D1%ZpOEVm zJ{8n%-@Y9j9GsY#C@U+A5Nd60Eh;LKl$6B3QlC47ZeKUa?CtGWu3Q-$9E>~5ynOkR zUyj|labx%H-4PKH_=4Ec(edfiC;U@lVq#cWSWHX|&dC=qUaVQO=C|K|Te4&c4!~eA z)~s2xXU`rrH8q6L&6_tZEiETcp6uY@fafN7`SRt`rAxE3vxyG6adC0;=FP)N`10k; zs#U9Aym;~c{rjY(q*0?ru~@9_+qVY<1nk?l4~G{Q7k71a#jT(n9Ube|tvh-0q??-? z{#9UsbMoZL^z`)P5`?TrLV6q z{=9D8IyW~r{JD>Y9*rJ7dgsoa_}YdLa&&a8udjdi?j8Q>?d^?QuJG3xGiL1Bvj>;^ zJXu&+5I2{Kii+y$>g0BS=g*&?K7E?#=Blo)?(6Ft5DW6>(w;tjO8kA!oH@3(w)nH0oScn~&EJ3jy>H(>e3v|A$PkWs z>OOqHR82>W7-4E^O4RM0oSdFK zc|z`FC@(KhvCDjYeS?C6a2*dJG=BW}$jHb?j~?;N3Sq)i?-ztnY;5f8*|S|;U2%R6 z8#e6Z$&*Kq9%Zpu2%+NQ;^oVi6ORT)jT)t_tjsSmpFVwxj*iCn4G19>6%||q5i%y! zbai#_+_{5eg%HZf$XK#u36sgJuCB&QZr!>??0SJm0-Mbi6&1yga>$5->epX?)zi~k zxpJj2apU&p&6|LL0HOoAtgNh;mltv8`r^flKmYtQG&FSZ;K2wXQBhG}U*CWJ`G>sY z%+1Z0En9{^OG!!X-@l)`y%8ZKCMITSY02?ZY;3H9g9GYup7TrE@4x@fZ!aVM#Rx?q z(An9!ef##9m>8mY%FN7c{`~pp&Yj~IjWJ`!czb)}s)C4!$m-RrH8eDEd-94ED^gNY z$S2*^t5@gFoy)I=i3Am-!W1mj=QXv)#>VvY^rcIe3KKXiEX>i-k=RhTJ%9e3Vt@le zXxOk}!NI{xmMq!3cW*^Sg}@bdDHYU;i;E2n4RM_iAvAE{z`1kh;?KgII|5PfZn6gt z9;{rsk{CcSb?Q`}m1HK9>F(}+>eMM*CqxKINJ!vwgu!5Vd3i-eMG=3THf>sDWaQSZ zTgmNpD^{$)bwY%Yfq}vJ@#7~=nnaWUQ>RWfH8s6);|3AFwYBx|;lnryg9Z)Swr$(_ z^XJ3D!f?G&R8-X4+nd~>cg~zSM9)|W2?=j+?~IHLauO&CoVK>M0|yQePl6Ca>gww2 z)~$R0{yo1O2K@w73jq+Iu&|IQ-2eXjZ&g**KHZ#wfdR*oDO0B4&R0w(^XAQ)CMG82 zU$wNf{{H)KAy+OZCr8wF5JGf1eZYVLlz(uU)(5=;+A(6NACHb?esZ)vL)1rKF@*uU>uS$`x`d z$N?ryn4qevN**>TCnra45R;Xa#SKuHxVZS3F=L2bO#FqMQ5?pN8%Mt3px9;Y?d`?I z#YRR(&2=0bwW@ff;-#()1MNL~D@4LPMHk)EEuc=2L#vxA6;2%SzZDk>tD%%4A>{P$tQ zhJE?+h3B@`tXXsR>{;S#QBl$8(W56$oQQgy=R8sGWp2dTK~V@46%~yeH;#C|gVE`9 zio%K`e-J{87cb7v&PE6g88U=Ur;~gCMn^~UEHnrdXQhyb6U7t_P3=9ll zx&Z*4NC6Pw_3PI}E#lt2dlWN^_KJ}sM{+EYl$2yJ7zm;2>gq3FzHr|>5%b7#%g)Y@ zi;E-f@G2@Q$UVM@XSd{4iHnOjH#ZL+Jh-Bwg8MP5yu3Uy$j9E^J~lR%=!Nz8@nhVA z+NF5Dd-ra{h!I3@BC?vAn$e?2b9cd&mzTeD=MM3eV^SXx5fP57ow&F-c}xZOBtYDM z5fc+5{=#H3FW z#*uGrZEg5Y$j;7g$dDmcR#uZIPqw$Wr@j@SNSZJ)5y;Tc@WzcBG#ag;p`oIpLP0@6 zOiXO+)~##Tu0;st=H~9)xf2O}ByjXA!z3gmf`fxkojOHs28xX z26-wJ4n)HRVbY{Y#K1O3N5?~l4&jGQRaI5*-@m7xM1=aR6y|Uem@WKxdwUNYIB?y% zbpk^ogrcLPO-)U?x77`U1`TR%ZWbn(v$M0av-9iMuMZwP7#<#;nwrX8Dt0Lq0?n8) zBR)Rf*VnhDrNzd^#=^pa=&&Hnxg(J9JL|-W6UUDqpF4N1o}Qk)y*KSFXA-2P zrD0xl0M$YOc=Pr3efsn%gTbh(s>1VzvskQ0j~?OKAZRq&wr$(`V!ITx4zO6PQKLo? zt$6|+IB=k_u<*cv1H=Wu*Vk9zwpv?T@p5r-adP)CjLl{f|C%>%-nMPqnwpwqWMmQ( z6RoVQ@K0TeCyT}6S1l0}6XT8mM;!R2fa1X~Se~AqL}%u1tbv1rgF{SAjH06AmoH!P^Yf1%KaQ7oFV87jgak&6x)`A- z1Pl!g`3)--GLj4igGiUUx_V`0C4O#l_Uu_=NGd-R8PZ1u3lq!9j&3Ev1`{Z;=(HM+!09loh2b5v32X#O`A4dyLRoj z-+mi3Xi!8%1ot#@6c;9*=OFrbFHAKxH47Im+_`h7ySqE?^21~@XU?2S4nuKXclE*q z`VVL?27otTU*Dvpr1k69+u7MAB_$;#CHeaLE?Tq*f9|6?A+@n%$JW-?3he!YwY9Y! zK72SfHkSNQkYi4{4<9~o{OjY#k5W=nxLI$?lquXz5U*anA_fbIii$2^zsmaI3hy3JK_z4C_j~>l)d<(xR z4TT9WaKFgO$(5Cr35=Vns%k_;#E~OMtgNi4s}1}JjEO+gr%$h~t^M-lOIlhQF$~7c z%q%lAGcPYsUtb?D>B*5WWy+M}$B#QXIgK1Sl42BY4+)v)!ZS5B&B@7WZ*NaaOEWh& zC+^_{=DDP#B=^}wF~t!zfyD^FLZBNN!hKS_e*K#Kx;a~0TRfOEB_*ZXV?SC$2k;#o9a2(KL`NNjP)kb- zM+@HV+qXHo*~G=gEm*Jse>OKakBW-oSZ!2Pl$n_s@zu`GE-o(a<;$1Dh7BX`PP!CN zDJdy^eSMy@=ZlMr8yOjq2U#J67!1bw^XGBP(!Zd&xtXKG=c7lDD5mb@Flf*qj-F`< zp--Pa;dxWL7hd3gF*7qedGe%?F~kF4x^x^09}^iF8G*gp^!4>`-MUp-SxKB|OP4Oq z%*@Qs&nMbFdU7NXyDuapBr!3O$lJgF{+nN8h%nLSU}|c5_Uu`Tkw0A}AtAA7(W0wY zug1s6lLr$D%yT(8IpUQbSZ8M^9--F_!W1Js3jqxcjq>vHd-v`Mzpa}$Z*nY&i;E+V zvt6}nRdRB2K|z7CvNCxPT~`azJ}OxJ{QO?MdKDcVE&MG1$B!T1xN)PvV2c+oK6UC8 z_p_UvoScy(M-pQJ=Fgu$XwaapKKrl967@MN)l}B*s&brvAK6BK~`2) zTU#5~2D^Ihbai)ATfThx^XJdGm#eF*mz9-0e*BpGCmM}bQBm>Y#S8Mn$B!RZR#x(y zYP&CRUzo_lVg=IB(71c|E=MVslaoW9G6(ceP%Q+2%7X_Fi2ijYB_;g&+I5eDf&zJl zOko5B1cZi$rlqA3&t*S+_`tJ{AtNIrFE3Br_*Pd}uUof{BmOgI&UAKmZfI!0U+>(x zbMoX#V$_hGon2K`RcL4^zEt4XmsM9+lW$VxIL%gNuucg@r}0%$Y6>8jW`M?%jtEAL6e?MMcCb3WVhA>+9y`M%+WZ zfB)Xa#f9ILGs1)yxL;gcT;9EV7Z4CYy!)%QwUu~BR%~o6F-Wqltt})ZWc>K?-J4ZH zU`(b@pI%s4$g|OauwcQ0kdP4aOCyw&lqxDJ9z1xUp`k%6?D>%}XwaZDXU@2~x_

    U$tr#5n%Z6;XnTPqmPe|lamwqkKHIpd%a-UyLWF@RaInUB)=B6wQJXM zyoWs}Cr4CNlz71j1v4`+up6igec5zWU$0cP}_N_+M-71m7$eTL=IZ@_aKTB_-tfT6%8l)~zlsE*csd zGBPs${{9@(l<_oe+O*8f%zgXz?cKXqQc_YxL_}6rcEg4ZJOjtZ#%|lTEhHqQv$J#j z`0;*zeovo1B|i>yb8{0H7hkq)8J?hQ(xgcjFJ2^ii;0PeUAlD1&(BXwOG{K#l*wco z7#L(^WN_SK+S%D{-n^OozOSyv6TgjW@7}%M-rf=t5=?}moFV19cpT7At52VckdQ{4SITd zhYuficXw}WY-BQ-qehML@$sRUWKUptf%|2^fC1O8T?-5h)YjG(6B82^6_u8jUa?{Y zz5#vq?Aftn#~2KTq@<*%sObFp^DkVu(7ntN7?aVXNBj8r7#kZ89z0l4QIQxR$C2Ju zt5*5@`;!;y=;%Cs`jmW^(JUm=nTrOU`_~5|<;tgONgo!q{qeqWMMn+m# zSafuBh=_=Yi;LqocXug6b2D;wWvFFJJEC3kw%5 zT15T{zrtRa^^1sz#Ky)(MMbS%z52_SFA@?GY&Kh6UH!_HD;#sZjvF^FFE1}LG7>)< zl9G}V6%`#me7L*2`-BM-K7RZd6cqI8)hjleEg>NxB_*Y+t9$$QZQRByFcl9UKGf6G z?laq-l zSh{rXbYpiDBqStKQ&WHY?Ke?TQE_o`X=&+|D_8QHR>#uPa>R%cTefVet*yo5^qicW z@IkU@(V{_v2D!Ppeg6Epv$J#9uwelK0YsGX#WAO34i5MPmphlh@ij=8xxb+FyLcaIx44o_4I{$&9H0n?^Uv$VAQ+7ST& z2*&aHF(E-GQUCw|{YznCp^c5r*N%k%v9Yn%*4F)@PKXJdD}}*eT)cR(CzH*9o+vFX zU9x1!*Nz1Mpbzzz>kR+^0D#S%J9qBfxnDaLRLaZCPn^N(#?l6hD2NY;A1|3JU)H?UM7eFMO?Z^;}=)OrNT&t5Z=?=}CZo zC?zGu!^7ii#{z)w36vz?EP@A?|Y6I2TU=)MaVE^OYsxqJV8^X84Vwsx;XBPS=P zSJu;2pFVwh@ZbT*!rqEZOH0etsZ(29TgeLp0|O5nIM6HW2Vd*3`C5#PjsN=VuYX}f zy>*n{x^>Ic)KpnnSwlm^z`!6iHI*a4)vH(a^z_u#)m2qh9UUFty?e)VJw(Fq-@o6` z(9rXU^*R=db^Q2ob#--hb#)qzwr9_t_V#vuf$!Y8V{L6sqtVpV)HF3UPn+1W|4 zav^i6uW@JoE zF=NM$MF`!$e}Co5m8VXf!q-G~b@k`ZpL6`>%a<<-3JNABCVdf~Z;FnN&fvj=|Fz9U zM@OGKch1_{y1BWz=WF})>63|x$)Q7sqNAe`Le0(1yLRnzb#=vGv4;;I{_@K&-rnAR zet!7y6GnY~y_J=fiHS*idisC?11LgXyLPR)xq0;H(LG5>zXh#@0CbIKAKYl#F zzX*SU`M&f;x_WU>eHUV5V{L71|Ah?+JW7QW6&2;}?Tzb%2%(7+CmuU?jC^agbLYgx07&qqc^;;NdYq+~!qz{{5} zc{c4%n>Ovjg$uY&h!B#Ml|6Ij%&AkS_^n*XTC>mzty|X@@v*bBJ8<9t zt`j1Jl$4YL0s<)ZBSI)9CdSm%^oJjQ=!^J#Q}*xQ|F1o}*|>3INlD4ot5=%pMU;I)H&PR+nt@AqoSfrO-;LWY5VQB-&U?%xoOiT>N?^3 z_wW7v{SO{I*wWI{?Nsz(;GGN=mqY6h}|0-@A9u+1Xh~M@LszS4&H4-@biJ zCbJtkAR;0X5fMSB(^XYfX*8OHg9A=Ji^W>Ga^?B+=K})+@uu(Gxf2)|xNY0EYuB#f zCE?-WMAANg{=9A5HU$L*++}F*-n|_i9mH0Ym6b1Dx#uU@@ELhKq2&!0bEy?V8(sw&aRjm>5gzrK6-ZpV%tIE%EkwH+ND zYin!Ce;1f80`(zx`SN9FXJ?MTG&D5Knl;Pc-=F86LI`DLWf>Y8;%;V!hK7Is`6qdE z=H}*a-@aY8Y#EJ4n=oMl(I4;KyLWDGZn%G%l9CenSxHMvikK-vl9{$R;^l9 zTU$GQ`gHOZ@7=pMcI;U4(Rky=4WdO(R8+LQyxhjdMp02wO-)TpON-)+#yE~remP@h zWmQ~U%<rvQWyA0 zPs)zn@O0YiMYwsHhki7~nD?B_$;= zF!1Khn+663xY#r`H7zPCqFB|;nKLOO)7jY>9v<%I=0+@`)9LTuzjt(WR8UY*R#rAO zHGTg4c~eu<=FOWG6clj3>-_wDiY=z3qyz;8B_$={3!I9I%ArGt*lhOo>(}-5^;J|< zG&D3kJw3@gi@NltxKh;B)hQ?_kPj71PfxG3w3K5Z$Ke0Gyu6T*5KT=@j;k<6U6N#H zXV05AkNgDi!-o$v8jXnd?%lhOA3rW7CB^TU-XsI9GS$BrE?E-pmVhoYk5$dMz-f8lN_Y;0`I&(A-3@+AIx@7_HpC#TrhSS2MT zgwWf!Z`ZG1PrgF8wze)>w8+-hcK`nUVq#)UCNnfN)XdE6`t|D)5)um*EI5DuyuH0W z4*dD^=gP{;jEsy;n>G=ftE;PU3mw{QRa`SZ}BLy7PS2?MvWXTd7;N!=SZfpYySu%;{r>&?1!f)fF2i9;N=ga}3NBu}NHiKSnamX{R`~h( z;SB%s<%^Y-m6es1rKKgY=0E@ZbHa9797xBCvsh z0sh?B*y!fw=I`&1v$v+E#=^p4{P^+wMg?;mrPMh?&EDSL%gakuRTZbSqoZTbo;|<* z`YZnR@#Dwj&fD1R*|W>a%G%r8B_$;}5-uw%d-?KZEiJ9MxHvgEIpQw@4_AcH@4x>( zbm-8$ygXtrAcXw={hvO48Xq4&X3Q9zaN?G?u&}VErY1Hv7XMUSTx?@wQ&3PaeE4vl zDgA%#-FrM#dH(?Lue*e$a;b=i(mmSlx-5@eiVCTutCZSGcCpoN$fmR&+YKp|kfPd` z3|b^TA-g?^E~2YqP@x-A%`j$ue|%rR@9R8gX3iYi+8#ddzs8xFGv|EI@jd7By?jnZ zMFr{oBgT#$OKU2Urn$LURaKSjG8M~GqGGP_nTxBnwbjGJ zLqkJi;Zrp>Hl93rvY?=Vx!oZzFE2PaI5swR^ytwDq4xIn*RNmWw`5kc;;O2uNIxo# zNF<7kjEswmW7wFEj*j{B=TDzL{onuoH*Ugs`t&J2=m?>-w6wCavXqn*9JiO2mM&Yi z?CjaI(&B-~j~`3h7=#dq!x=epU2=1CGd4E%^z_`j zcP~Pyva-_I+4=J2%Q`wb(pHgebQg~A_y z{4p#nEHpF}f1bJaX1G%H>(_70m@(A41tE0z?p-A%rD4N{G3PA#{`>D;TwL<=^J!OM zhOZFT*47sEG)z$ew&(_wrtsQ z?%X+C#m$*B$I8me)zy`>dPhb^Iyg9x`5@WZ*#Q9oEPsp0&dy%2V1dk!9Xxn&^ytyJ zewH>Irc+mc)R{|I_W-?x05H+h(+dg;!Z#3da&k+SESWrcGOekJsIRXN4GksZg8KLG zA0HpTbLUQ$J#{WFF0QVw__d0P$}hkCLasNZrKPsEw)nmlA=Il^uj$jLGpuUNm@%ZQ zO-V^9C@3g1Gn36W(CF&wZriqvH2$qxwd&2AH(kit;NajefBt;@T2)o`*I$3VapMLV z`+EHNankdH5E2T7XV0Epym&En4QJ1uoi}eDxswYC2?-Am$FUPaXyCwsM~@!8bLS5E z{L!OFhYuhA?YH0JMoL9R#qYlRZs5Ry$B!RJ2;uHcav{vj%$zrGoYWd@~Wt)AQv#1`$fZW z$|)!)xVgE}w)4b^6Ve(f_ty|;b;&4oe5Hd3}J9_kJKtKRFfv;b`zHHet+Ejjg z_c?d&Trwiaz`%gKJ9FktmPN;W$guSE^nLsGQ3sM$R8)NR)mNmzd-v|WVZ(;p++6CK zsjUolc6JvpUL-8V95|44Xg_=QEIvM-3{4z2Zd`D1FvGlwLx&DAOsYI^;J~I$ zn`jFcEm}mnf^BSU1`ZrJXwV>1+YBB&*vZL>n#o4ohYuh2?Ae1aaJ_r?{^5roPMtb+ z@ZdolHOb4%2L%ODQ#~=)-iYx^v1-*ST8JJWA1|}}3n64;V)8Lp;gFD!oSdBN*RLal z;^N{A3=A9`99Vu=A_WD7zJ1S~I~N!j=C&dArUM5KkgwmqecRmJJSi#3+1c67&d%A{IW8_vW>8vEQZjMk#4A^>ELpO|-rj!p z?Aak9A=I%X2%+-wat?!Uj5l$!ny|t3jtsI01Q`4H7n$E6= zwrle8@{W#<)B%cAd3kvj78bN7-lU`?a)aB})>c|tYHx2({eX^+4vD4^Lg&w)7mt5d zuU>ur{CR|snwr{(5hKXho7B`)CnqOcTU*jWfydrR+kWbyq2lxTg@uJnmMozzR8dh` zvSbOvl%W9w2H1 zP^zk`&d$!%4+sQ;oSYnnn;Vuzhh!ZxY}&MGw8%;z5YR6F?d|QYH=v?)Lw4rkf2WzuH&Oq({1 zHj2#D)Rdvn_&Q%diWRCr>7EEMCKa0RyNtjJmoy^At5wdt(gMot2eUMMcG{SFiA&d_F%rJKM#@ zg<<8`M_z@Mm6eYjJLco#Q&v_MA0NMa_imP7WMFJ;?C0m_>+Ad5&N>h4000#;NkleQ*_<>jfVsSh7M95!qi89|B=5{X1UK0ZRB@bu}^xw*Ls2?;lD z+@Q4ri+lOv?&l0Cv7u)o`zvE{qW(#Q&LiP?b>B;Z=aNuBy%qHn>TMF zA|mF@nPX>XXJ=>U;NZY8$%FxIY$rlUSy`FQ?HY}E$uJa)co)aLd-sGwA!#G8udmnF z*QZ`-Fp|IkA;jf!#T&v+OiZe(s_<)DTU*?a+|<;><#Nr<&7GZ{IUEjtx1gYadXK^~ z&p~~Cy{@jV_*6jZ?+OHhq@<)pix%1azp}D2+}_M)zi60GIU^$@ZEfvaw{GF(%#G7r zE?43pF6zb`8X8jXq7XvQpFi)@r;o&&Z;XA42$_crAtXNY>g%t+e*gY`N=gd;v#zc# zDk_S)n`h3PadmYi2W9;D@#W>^_#946O?7p3RZ~;5u&}^ShNN~CqE4Rww6j!Z$uP^$ z&-e873YzSXZ+=9?#v~ebc5*Uw{3z#P!^|b*rJFf!03N+3gYE z7TO8iWPX@wY0RNqN2E5 zF7wla-oAaSqN1{M=T2N2N=i!J-rn~1_GBK!k3atC>FG%wX3XGIT>ZNZ2nzvVB0dg* z&*w`^pCxh70>kHNXgAz6c-r2vW5=qhswPjK%)3dwgNY$jESVazY4=8a1l1vGLWbSI?h6S5s4?-Z3yA8bU!qL1HI+~hSCMhY2Od~-EDJUpRnKA_jfmvBuxIkQ7 zT<|#3%a<=x+veGCJQ6!gWtNOMax_IE(fal46A}`J4* zXlS5)T_6y=e*K!<8Pj%LoXpb|6F(=Jca7n#y1KgA6i=Q!K?wEl-=CJ&1tIkO`E&6I zjjFb`*3HfB(4j*l4j0F!lxP?#d^W|UqoWfQ6_uNttEHtickbN4z`#ybyrV{q;`8}< zY+iVHI4LMRw@v05#ip9&^ZD-X?oLil3?nx8?c29$(dH>@QCex4%u9~Qp_Vg7s<7#bP|2M2q5ds|yuj~O$DWX_;EcI=q5vom#mHp}kHPp7`V zp4R16U0qEZuZX3jq`0}cQG3h;0s)7^p*AJz>gq~tiKiYcQ&ZEbsw&!m!^e*wldg}U zLx;Y2@#5XPcN`8UI5-$DoHJ)mc6PS1va+<{Ow9E4_20aC)85`ri(bg@78Mn}efxI% z_U+Vn$c6O)951o7pMA3t8RW{tFO>Fev) z*Vju+;L#~E51BN{$;qo%ulDlt5`U|_yj)RHk@jz5Z*PD3@?}j;O*1nyd^0+0)+{{h z=|BJZPk4BE7dBq}EM+bkB_$>C4t$bZ==t;Kii(P~zEcei4GRm4^73+hef_ax$Nuoc z545kBm6e&8nBbq2xZ^Z3PgiM-jEpKPD;Yi@je&tdR#p~mp@oHo_^|w&H*Ye;do?vR z3l}boj*e!25T(pg630;Cvo9`9P0clH)~r~u!o$Pk`0?Ws&rE4}JRW|rWy_W=TeeW& zGBPrf_;f+)#xqy5I3~2Ww`X|lL~U(tQBhHBY%F!5!~!-EIT{9rl#h~l`FQkwo|80Wk~JA-uCU==gpfpbLLEMZ|}UkJn|29{rdG?yLQn& zY-3|nT3U)zmkk{{^y$;5w0fS$ZeqNb*XHjtRl=i@6{OiWC3b2F_q`Ps8) zcu910w3(S1^{r2F_3t)%RuBw8XOU@0L~?Snw9z#!EiJT}A-8VbYHe-(OKN{AeSQ6D z)22Oo^avr;t5+{_CxNxLw$g46KGCzVG&D45bG|h+G$cL}mo~qJ$K!E099kugojiGx z*2R&Pl{IdX@UI*RNmSym^!S>Ehxdo<=V&E{@vbXl-p>SXfwF zTT60^I6FIMXJ;1`6^T#hU_((+5s&hvF68t1r%s*1O_Jh==FXivWcCZ2{i2b1$|)%+ z&7M6wD=RA{C51Y3Py9$tm@t9MClO|1i^ym>ohYxc#%j5ADEn4L0=*avi!llecf*hKGma$pa#hC^j~>p`pRU!$abSO-xKeLPGA{yNCa*tE=0% zabtLR_{R@INKa2EvwiS`m9AX5f-6J?1%>|o`{(E9lMmb2*d!(<;;HQ-k?8E%vt?yv zAK#fHZp@f5nVFf?Ys}E0LyL=x#k2es6%~=hA@AS6_wn&@b8{o}Qr4|ohhv+YH*cz` zsnMnfoH%hpd@Ni@NXW*G8%Ye)(9q!R?M+S1vV8gSy1KgP=xDro0)b%v{{7FMJ)>TX z?d{@uHGZ``;Mw+$hLQd3hiGc$dB zd=Ns?cHG?D{M@;7)FsTPt27oC7LJaNUS3`#v3_f7tF+vnGWG4-cip;mt5&UQZf?dK z|I<%D>FDT?tPj+aq`JD=-QE4rp+mHXni8~s5Qb7h2sJb`xVyXK-^G|KeCFc1di82? zaWNS+`ryHXg9i_isEk(lSFT)1Nl77rlSm}ua5yVhuH3U{kFpE+}eVRQhMx3_n7b#+8U1Zlr`{`@(4{N0ctL%h7a zNJfx9|NJvHHkM?Gyl~;d?%li7($d5y&QTpce0cHV#mw1UKO32~HygILwk0Jc+1c5o zP3j{t*CYs`_3PJ%goNNU=2NCjnK5GqLq1qGnwpyY{r!&}JBF_^etv#8ZrmVE5*s#b z*tBUAIYryr+G1j23JMCyKhcH_8}jnSpdGcfp4UMHsmwI`5>FVlk z-@bj;tXb;n>J}CjBrSDJOw67=dxC?5RaI4mLZQ36J2izsad9!8;w3&Cs-dCb{{8z_ zR#vp1wz9I?vuBTwk55ZWi$EaI(b3tyeLFQ%tAc_;Mn=ZYoja#aohmOcFAxZ9Y-}a!-F>BWyXvdckkZqaujW7Xqc9k77`M&b?a6+IXMLdh2_hauU)$qzpJC8 zlaP?$>+AdO-MjYo_K6cGMny$Yn_6Y=*VCs@seiILNX?!-yLa#2 z8#iujZf@@A=+M&A3JVL9IihCBkRj*KpWm@#M^I3Zl9G}@AecCDB1w+I?Ed}x>gwwF zHJd{wE-^9jk3asnefu^Ul~h+(w|VpC$jC?|Bctilr%Sx2{N|f)%FD~C)0rF{9oMg4 zFFyQ<4QXd7L&;cJSOf(HEnd8s$K$oNwV9fl{_@K&_|aI{o;`cw(;G%`}VCsAQ(P;cur0Z&W`Z=@4rjj@qmB;Z*On>54&sEu89*T zGM}yt_U+pj8ykxgyNg636&026@NkI%oHu%F4=$ zii&!AdcncLB#j}h@QsX&GBY#rHVcJ9KA%5+{P;6x&M@B`yScgb>C?yG-~Yvn7x<>! z%gc*w07Er<VS*Dz(5-to0&6b z((<^n=j-bm5D-8HXvoXUA3b{1+1WWSFRyRkzHV-AT3TA0H*bFR>J^@LYhz=RpPx^v zBQ-U(tgNh`fBt#Ggb7MYNPWpnxdkjPrCl^zyE&5j2UcFNF#(^zI^H6;Lzn~NOWW4 z#*NF(&FyLFygmb#r(9E0lcl9)Sy>r#r{Dh~p-^aSY+PAcNxP6=zkYq^&Yje!5dt7n zrz-p}%@ux|(Q*-?I@&EeQzx@6EN!(jdP_T37PV#&(008(B zeE9Ie-`}6jfXTmITU(pNL`vr7<`EGQpXf(@eSOJ1d8*vp+)wn2KpcdH007VpB_}6G zMMa53qJswy(h}%(Cn+f@d-v|OwY4RQ+DDEYnUohVIcqj000000Q6`O76JeO00000K#vAtApigX00000^k@(k0ssI2 z0000$j|O2O000000002=XiQ<@s8ORn+jal|00000008(HPo6yK+83F^LNhb7uB{XR z00000006*e*3#0_wJ$GGXQ)FMMXt_ z_a*=U00000@OOIp^r^hO{6GHjkB?aitFRCu#OL!*ojUd4!2>RrTU%Sp=kq`2R{{7- zKv)O>00000dLTZZ-`LpL($XRj2rMitx}0f-U>g0000;W$LHHxtsQDxsn55z+G-0{5FDs=p@;~AA}j2@Lc$1;L6YAe=lk4mUdTv77W#Sr zbrSA4*K@)9x#yhEAt@9J1ONa40000001Sp~=n4P;00000001yv5Htb+00000000;g z1dRXy00000004#rK_dVF000000DvJu&Q00000003Y}5Htb+00000000;g1dRXy00000004#rK_dVF00000 z0DvJ;4P5~M00000gb)%6h27oVVzF2vkw~Rdi9{lo%MD#AFeZ`7WEzcTVq!w0(dcx# zxw$!u#WHlI2FlORzkmOJLqkJrYinz3YfDQ@Utgc0D+R_R27_U5Z*OO3XJ=>U;^Gn( z78Vi`qTN%F6bglQj|cz&005vmfj}S-2)equWHOnd>jIuy6bi-C(vr<)TUl8dwkB7u zT)BSzdS+&(P$)EPO~6yk+}u1WDk?TMHZCqsD+h$25dZ)H0EWTi@tT^NBoc|CD*~P& zG#bsx$;rmXM$hM!$z-XismG2TYi@4V^QpnJ%*n}V)22-e7Azo>M>Q=Gf<^!U008J4 zpU-b>Y!r*d%3rcrENg3PGcz*^g+ifFOiWA+RXs4)DHMwS{(hNECX>l}dV2VLeos%2 z@&=}+rcO>ydh2z(c=6&-KmAl&TRWhVBogV#G63ot@&57f@YuL<++0oHKd_$#D9UL62t*s$S1iB-YO8I<#b8~Zle?Rf1m6es3mzPe@D;A6Q z?Adek=FI`$LzD<~YS0@jE-r50zI~b<5Q0Vk0002!iA*Nra=E>|z4#-QN_BK}k&8Jgb5Q49Xg~z zUML6}0RR91pbrv>gv;d;LsD&RZCzbmM>)*~01e3H^4i+k_V#xCkxr-k`T1$Rqr17e zdGqGY_4W1mBSehANVvPZfB*gW_V)H_?FB(200000bWSdp7ZnxZh>=7hxw^V?I2=P) z3Ov(VTU+bu>TsD(rw0TCXz>+BUtiyvHEW3D17L8Ox7zrFP;v2HI zwsy~+J!tz#TQ=?<WZ_c_V)G?SyeTVl9EzYRi(Xp0iYAa8;z2ZlC-omRd#`(5dZ)H06HO; z%NrURaM{_}*|3!XV0gqW+R)ITStp@LBszTfFfPLa8^D;6NdLEj#*rgOh?S6r0YM`G z0001Vg3ssUCDiG3y0x{np{oPHaBOUBOifJ@LQ<)e&*y7!g!J_Ej*bpohKLauIpP*= zYiqlD_3DV*L(m8S0001;AReIAT}2uIgCJ%$61T2eZr;49)#?DCTSRB0Dz`2KjQ{`u z0MI^#LP0FE!Dh1!TNwaULENZaU0v#qP?buhnVFfm3@LEHm_T$kW@cterPARyhM*Au z0002m*V);LADzw2%y5bk0F0c8iHVt+8A3=dmlLl%RFs*Si3elDY(_AK;J?x$ktjPm zd-yG>dZ`Zp0002AtgNi8w6wInyo=vSs7Pm(0zg-Y7aWC!g;7ya z!)ysbBLDyZFvchpiYr&HR99C!J3EJlhSKTu?(Xigva<5>@;P(n5G$1z7Z+z_WVpDv zgoTA6gu1%AYHDf%0|WI_Nr^;)3%KhB3@SfAKRY`+Dk|#9c1cP~lFQ}s@$t}YrBB4| zO5DIIYH4Y~1!ymIMMp=kTD2-5Ab`bU2?T=N+}z{GkC&I16C1GE?Em_&|B8-|wzIS2 z^ZBKvrOC<385tR$fByNLIdcviIB@#(X=3AFe)%OJAYj9W4f*-`hPaxss#A3vV>GBh+aJw5%}wQKS5@hlb#AyiOM;OOYMaN$B?o5;vW zy;YKU=B85NVM7xVi3Fy`=^t^ssv9&C&)hIPRV`b$ZhiIDS7kC;US1xL$8&Xcoj-s6 ztXZ>m@7{gu)-8k(l}i2b#~*!se7IchjT<-Y?CheVqVOBB0|yR7Mn-PhwCU2NOE`DY zvSrHx0|S$jlObYM5plZ`Z#{+rf5!m;0D!SXCX+pS^vKQ4O*vvj2vI1M*x1n*)9dw&5yb5}Vlv4Anwy((0pfhsty;ATA(W7iKtzlPp}+tB zJ3T#}#bPa4vIPAnj28$5#0FhmT|%J{m(QFz^Z4=OrAwCv1O#l^vc<~E>g%t+RyTR%=|Emy2qk)NNRmzS55ljH5}J$33-CX=b3dXmXx95>44a^gW8 zj0T&{UbJWtE_ZZvG&D2_1Oi)I+u`@3QmHX9F{!Dkw{G1E3=FKVulMxy^!E1FeSOCy z;$?@rH?66uDUKUqPNRw_6bhTomdoW&_Hp5ETMmbV5E2T7AAIn^7hinw)?07A{PN3x z{PD-BQ>S`*dWem=T<)1OXI8CRC6~)T|NL`(Ucys=xLr+6O^4soSc1m(_V%>2w3L*T ztgNi2rl#RH=5RQZCQX_>dv;u0Tu4X={AMbPZ0xLA zvu4kp4M8{n0E{8{UHedD=cH08i9{lX*fAK4$jHdBurMx{o0pe&=FFMp%a`LcIl4xr zQt=2?sZ4;W;`w1_lNe78c&TdDGO?bo%t^I;-QDr}11| z8ylO3h6Wwf=-EXig1UYC_OfNm)~{c`bm`K~n>RoI{PSD4Zmq7a#y=&K$rC3|#D&1X zKw^A8P|Jv~pA7%zFDonS`RAXvx3^!ve*M|AXGe?}5khTkZRzRhJ9qA!G-;B%yZgr< ze_T^jqlc;*xf?fb1O)}f#>SpLeR}wD$#S{8q@?7BAAX3Bk9TlzShZ>ubmap8z*vFT zj^p$BgZ@+?5IniKoQa7^U|`_#<;&%Ax!#fr63^VYYZQ#0a#z6cZ_J-eyExC zBZ5YC6N-SL3>7Hi@0A0^Cwm|>GcyrFrlzLF#l-;u0WipDD5L3V#03}ur@H+7{Mgvo z88c=iB_%0;k2}Mke8bh*+4;#QpTxw(`1||gZ#W#z=FOYy>+8S!?z{T>`W-uVy#4mu zpMCb3e(L`eAcm(BH}Fsl6EsRBlD&KPe(}W@#BZj(z5Tj%>*C|%!@|Nw{AFutX-Q8{ zPft(3aNz=8mF2nTo-?Y5@$lipW@cuuz4n?O&LxpZR;*Z&mX?M;1_lQ1*|TT)^5w(7 zN35)@OixcgckbMkD_3MP*_JI^Mm$kkT3Sv{&PN}8^wdvHdHncsQc}{ob?dymybN6z z000;WkHxxw|9)9nnQ{(QxmSLe7=W=hkoiwbky|r_CkoFQ#hp! zkxW%CmseI+DsRB$a%*dAy}iAIf`U>~Qm$XWzHHeth;0T%#M|lyjU#r{fG7R==by2$ zv70t+%FoX)FE7Vm#>B)dSg=4S6yk?lcXxN8P)OX~j*gCWI-M9&w{z!CCX@O8`|nF6 zlElQsWy_X5_uO;m&!5lD%{9msja|kVG`6?5Klj{o_>C7r$j;90v(G+Tzka>y6CQAc zxo+LMzP`T1#KeSzgm>S4S7-HAn^Y>@v13PASeSl-#+P4ynTQxa{P4pMKm1UYKXYDQ zUT?hd#v5VhI4?g(dsSg_e`s=SxKm9a1IvRpT0Dy4{ z4i0W>YrB5^dSzv$tE(%GM(ghGE-NeR>gt*^XAYjS*xTEinwsk7=4N4GL8H-ndU{Gq zO5}1mp8TT+OeT}Z;~|7PIy#)3ob+?jF^bFOD$gqk3JQ91z}_${EG#T6EIK+m($doK z%sSVJ&Pa_jymq& zzkmGr@%8K1pFDXoFE6jXz1_vdB`7FJDwTfx@yEDlX!`W&Z@u+aX=!PFeLaOj2@ek^ zkw_;_oInUgMMce;HS6~6+qZAuMhMAdvi&z?OmzW5@HaZm+uuMRatg`n@C zv8t+S{`~n|E*F1XzkdBU-+c4r>5l?se1%RN5}2kx2v+H-loAATwY$Dp{oD@0K*}Z$#dq+DJv^0EiKK?&hGE;XD}Gf z&dzh^&L#TvXf&F=y?sqh4Nj!aVzHc^okK!G%+1a9Q%N?PjWZ7P_4P@mQg!=no+)i@ zZOYTP+}+*P3L42|^4z&|Gcz-JJRXn7b8~Zxi;GK4OvFFEb?cTyBAGdJChm}&I(2GI zO-*iYuA7_NhF(|>E-pTC;>4Xhcj$Ebu3ft%63KxB2Z*EP z=H_0$e0lENxv#(e`j0>UXrOBvd&p$+tXZ>$--h($RB7F5Z*LC|53i`GKnPK()E|HR z@%7hV*W20k=I5V(e(kl_qN1YkYY*K~C={Nap7_7y`1p7tdenugsw&*=CY4H``emBk z-Q8SI>lQ92BqS_dx>Rqc*0To>9_Z&p=gytO zg@}jz{OuG!ewP$(3HkVqs_9)1ac5o&8|!_$i>6pCg8cNZ;M zgx7l@k@Py04*<>JZbox+^F@mmjkvL%g2uwaLSn%2wr$(iuV1g9^Xi{Mp?LW4p?=O) zRaJ!xlP6Es^|_v%p2lbAN@3&-06^C$6bg|7r=g)iCX*SqJ^&0wE|)hnG~lwcv$JM7 z|5z;6#*G_^j}SKkqosUvZrQR$m9<;-6f|z#x)rA|^6~N6w{M?*PHGTbE*Ga9(1WI? zCS1_NawE@9|J$>3rI3^Y0H6nUc6Kxx4Iw0x$%rL_0WdaIRaN+<2AxhH&HUT=_;^Q0 zM+9$XfpH^|Nca|YadBC`e7P#S=p&;^R#w){n>TTJ-@bijW@dUgsai@)OA8AN>+0%+ zLLrOAvbVQ)adDYCbt?XUPDL`AEGsMP=+UFPtLFg3YcL|ymoAi)l%%AjG&eVE_pl0u zqN=K@u&}VTwY8(8Lo61v*=%cT>j@Jk1OxJ@4x^4k3arsY;1h;r{?D7^XARlwr$(YnKOquNN;a%a&q$d^XD&J zy2R)6iSO^+xiie4iH|@2_>)gQ8AaU@Qd)(R=yKGe^z`)e=g*%%e}2FM!NYV<&73*& z#*G`pAGW%>IyE&lEiLWt-McuY-jl4Yt>fe4ckbNj?d`2%ZF6#Rrc9ZF5K2f$*sx&( z@qKY|@n@fXmYkd{5{aJN>*mdyGiJU$U~Y8_iPSD2t1Wn?Ha4rAwDaT{Qr7 zYsr!&F)=YJZmjd+scmg-c&Sr_(3UM*bbUG%_4M?-`R1Gc{{CNo{q>*`BSNUVyE`c< zDJCW+K0bb^Z4g2a9z0mPcJ1%K|E?S{>W9C-KQ3ftWoiB3ixw?9bm-84h*4uwsWdS$ zF*Y{V)6?^qC~8m+NgF2LQtp z3WYeaKSIdD!otJDLo0{fyLWF`SQz?GXCq8*1V)8eX5-_JKURG&o%b}JKYt#N5vS2; zFTC)Au1}|m^78UUixzRYT>R18+DJeKsOiD`1 z$;r8T_3EG8&I6Gwj`v9Yl@tST-pzJLEd z?rPJPwQJWB84JW>aZ*weF0Wa$W~d%iB8Yv`<;#~>ty)EVq*AHVrcDbA3kwYmb#ZZF zv)MEnt-Zayva<5VjT?!Hi9J0%GMQ}m?%j2Db%zfhR=wK9gUE*;eu&rDMF=@NJ3s&Y z^Il$F4h{~zy}cbB9VI0t?d|P2#o6rHvmG29h$Ez>rFC|8B81}N;*`Hv*ZK43SFc`8 z#EMQ%PV?r?i;j-Ax3{;lvJwac4Gj%fu3Wiv>5@<=6pO{5fBt!HZtmH$XH_4+Etku8 z?AY=3*IyIgSXo&uUc5LsIM~6#!P?qdAQ13)JT8}e<;oR&!>6RAlu56K%loTHyj}VHAin@LKwhpe~|45}$Z*T9qx;li= z^y$;DUAso5>f|i|kH;e>g-fMU4bGxaC;|fmi;IhA&Ybz$Yp*R{ym**rh1S;A?c2AX zK7AU0{Ns;5lmpH|5yMk=?AWn?|NdWo`2}a_wYRrFeE9J4<;zu1gBBDNR9IMu5V~^Z z%Iw**RorWUvuDr7$H(KS+tbtY(@#HLyLRoMbr1*yd-m)}NJzk)gle_pwr$&pl~^4e z9l!qi>lG_j47G1jQPJ+*yHitB5kk(+&UfzIIeGHr2OoTZ5IS+<#7i%|q|t=}0Du}K z5=mKE88P|;XAm%KmB2Hrwzig72FBFXblkXcTF(#H+}!-;n{N`i?g20oUS3{@4joc= zdb!SrrxGb}jA6mko}QkC3m4*u(Z|OpCnx8lk3Je|W(A(geCN&`TU%R%P;+zhtFOLl zR09l5OiXs~-i^x{85wKVtikIG86gshboA)aM~@!exN&3Mx^=_9UAD8c`~COdiFH|a z?%b(*mUf{~$mMeJK*&;n!b(#T#T~WDp&s!#j2A6cI5lUc9)txcG$^UKl3Y3+$ldPbws{QdojajGpXEro@JFjN)jnNTP!EG#4tQXy5xw``d*$Wj2q8~T z&%1Z;jvF^_#9by#n2?^Hj{lTgzkdDu@4wf1E!FYH8*dQHaV91vMn^|Ke*D<5RT|3l z>C-1nn4sduBogV+p+oo$bZu?zxpU`K+_Ag6d+XM%y}i9bK|vQTT+nQB-qDasrR&$P z$I<)q&p&_e+&SX$Xc%kPuKo7gZ*low|N2*ce*W;=3j~6H{No?E92*;(n3!m3X{k!} zRFF_S#lW+mr>Cc^ ztgN)Ol<4kuaB%SP@zLGOWivCg@4x?Ec{mTeu?2cYtge9&dgYZ@zWw%F%~rC|ZP18^ z`C$P80XjX`h;H4wg+o45Q`0kN&fxw-RZN;RY1gh@xcudpUmDfg#3T~wx8Ht?jEuw| zb8>P*LP9od*nnf>F^$Dyz468yxQqu?sv;>V>FU+1CMG7QPMuO-PD5|L_~MJaygY=E zudna%lx^-)GbTmS!zrTO~{{6#m{Lx1rwY0P#gxGBMpMU#KNl8h5etuFE)PM0j~;05l_) z%cWAONF?g%>EZEsm6etG`S~R!C0$)zcmoE5;pgY)?Ch+E%Dnyd+duyJI^#JehvU&(H7Jv14z(`KHFF(CwVYpMLsjklh{fV}-g!s47nDpUFJ8R( zjW^zyJ9qBr|Jg@Br%^K%6%{@{J_w<}z`)^qP>DH>*zVoCKmYu5%}zR+IgLF%JLC2Kzs=FiAJM2J3H$?50gTnxNzaZkt0WlH0A*4frEp?mMvQr zELbqgUT)n+aro&OA;jTu3>z_Wx!h~lt|5dN493o#JJsEt$z-lxy&9K)`|UR^S8mkk zbo!AaM{eG{85$ajzmd!3=gys5uwa3wr{@PBd_bg%9b3G;y>V~y1~bqA03ZNKL_t(x zadENg9lRzcCK|+1TJhU&zu|j+(xgf1MvMrd>C>nC`S~G)BoawtV&YJnojG#`M~rMX zd+XM%8r0Lx&25;}z5oEAH#Rml6DCaX_4Va&IJ%fr1^~gt#Dv4)`1<+=1qB%-b1#WR zTC`}2A^y8v++hwFY20*7L8qv|C zM{%F(qD6}|nEHtjTDo*;LP7#U=B9%%d63I}@&jK(!GMP-H(M(KCXfzs~PPeeIU^1D8t`tHDQK{63 zh=_=Yh~2w)7Zem^Wo0!qG_Jg02r2Thl~=F-!z!6(9_e?sSYAKdQx|HcTrIhF2}{iX?86*cE{z?(o)S1qBr5; z;s5^kzgt>bPMtcnXwf2~A$odxe){RBfPjG2t5=VSg@cHv2i4!bg@=dhtUALX!aQ$p z?-AGY9LmIr6LF!UqN2aQ|H%z%Yio%FHpli^UpE4s%r)E0FU@%^M@x`>Xw1$R;FTeZ}CzU}6$>s9Xr%wk2 z1nk?lZ>)^`Q88l^l}a5ye!Q+LGbkcx98Cq3Gro3obUe8MPR)uC;&3>l8HG!sP&_<5 zG~OKm00000JUetdJe3$*$mjFb-S_0llP6D}RAsZ5Uw(P`ZHP25zP`TdRzn$^&BleX z5;PL*?Cf^#-1+Xi@1~}v?%lgLCnpCXBoc{s@7|q}k@3eLf9QWWP=9}ad3kwJQBiq$ zc~@6gcXzi?D8$PfD$C8yRqL=;R#t{u0g1THR9XLXD8xO65E2LkPtKCBuCB&~(XV0S z;NUPuGb8~300000ebQ~v=;Y*t3%$L)ot>SAO2ICduXRsoV$4gF5{_C&5u3fwKWQaI=%0ZW&5x3db zUw{4e*I$qRfP>y<#FwMb{AOcgGs+_X00000fMr!1toe&^iS&@gJXRG))!uQ z;nAZH4G{9UcGg|NTEVH@6KNHe9@TQ5O*-(kSJUw&>?JBZ5YA zbMsLipBOz3000000KhPG+tcXp?@yEq3JQXQgLQhkp%8P!JUl!C0|Q5YKyPpF(I3RH zI2_K!ix+3lo}HPQi4gkkyYDt{-mJTns<&_7UcP*JTU#6cXl7;>9UVP$=1dc$(000000H{K@ zL8Fb0jkB|JLqh{XC^t9vrI%jP>FI_-r_*s^)~s3o{`bEPQU@c%U@%UdI_2l*ClZO| za{2e)fB)^b-|FH-XU?2iyLK(^TJ-Yr+P!=Cx^?S_MtN!wSG0Zm_7UgVYK$0PJ^Bnr zgJx$1000000AK*!4o^i0O`A3i7p`2nqU&=Fg_!*{<`UTGnwy*3>eZ`p`TY6wx;RBy zS=lSEyn-Xf<;#~B6clXOu;J;87?HkiGh$-!Fl)@HNFtGpx;g*=0002s>8JCcasK@I zxKLPFXsBt8V{WMoeOjFw<;D=X9ZIQ8}QM7mc1000000EVHDpmF~E`9#d{(MKOOHa6c@+tpET30000mB7Fpn2%)dO`U=ly>*(lMzka<;CezP( z3G3Fa!-cf8G@Xu6B^FHY?d{dwS+wZPnKQT$92{(7VlwD9%B#SubzKw+1s4Wgr+!4b z3%!P+aSM`2Bw|sSqeqWwxmrpVE?kHUqj>|8mX@Za>Hq)$004leoSuTl$jHby-+U97 zuUxsZb?a9BoR_e4=~6E*FNBaxCj0EO&vbVp3kwTe(A@w5M6Xy3kl#30q9M~}Yx>Z|%(TbxWLzw^#Jxct*kKV7_d zQAa0oa&p3jrluw%PvRn#N?(8dbv$X1PN%>A`s>4N?C9u-3y&W^R{azcCQQHubqAVu zc6Pq?)>~@rqAf%Vs&%E9mzUS_<;!t-+qP{w8j0=i?>~L|bX?xDWs3&AxLB-5-zP`TrA-`lru z@87>4A;e@dRoq3PP$VTK?c2AHSU?2;00000JUjFkG$MrT?Cdf!GA2%(h(Bg$X9ooZ z?b@}A$K&bY>|`?ex8HuVwY5bEwY9ay#>SpMe_q{#)YQ}r-$g?rk!H=Bh06yI9@K0u zpDL=Wt7~d%G}|{nKR-G;IyE&Fe+&-~|KyWThTkPFE)Ew?ojRp@2U>7&Fp+|2Q`znVDH?YHCD8go@|V7UD|F%ga+zQqt&|-}C3smrAAM$B#dL{J4sH?bxv+K0bc; z?%gplF@{=g6#xJL000<_Lhrh}yNP@u7@baEvt~_lanTzrJ?uT4I7CLMSvew5_de#C>@@9+4p? zGBT3S=c`!HjEoH8be^7`85tQvZOP~JKl$Vnym-B-scCw8x8ULTG5Hr>Ccjiwm30W-u5O3Z=KV zx38~{&*#_H)>c(>Vd z2b-Il_xASo^z<||G?bK-tX;b{EG$fw3J>b!$&)X?{4(*8N~QYv__({fySuwPIXRh` znK2j)27@7$N;^9{c|6|3hYxdebCsuAl1QZ2Uw{4J!Gp?C^f12s^2_($dk>dwZEZJf z*bo&JWn*I_kw}C>VS9UfNlA&nzyE+Y0tlfaM~-aUwvG505fL$e{`|neKub%@zP`Tp z_V()P>Kiw1WMySZBoc&>jg3uWVq$D;EJEn$(W9F;Z$=0e6chvn1r1fVoSYmS=>-M` zYA_dZfV+3^PM4U0NTlH4;JI_>dU|?tI2<;cEf$OM+3T!Gb28Fdwc71R5<|PS(BfifB*jdhK7c=wzig*mX?;5zP>&~S85D1H8r)hwdHU) zwzjr`fq?-50RaI4%1P0Uflw&y?(P7hf1#A31PdzqP;tyr<*(4j-h9WR68@pwy?EFoqL4(jaLv&)t(Q~m4%T)upH z#flX~OroyP(9o~G`U(eTDw50PZ@lqFLPEkY+ic&y{hM#TdGh;Hr%r9$xKWkb&YnH{ zr=NcE@bJJN|Ni^$*|TRO{RWK)p`U;LdDEs%I7`r=f`fze^Ye#4NL5wUKmPF#b;r0m zI5=$Hy!qpgKUQU9xmP~DX)SFT^bo|&1c@&9W;MN}#^GBR?}qD3=i%%IU|2CRud zAP@)yU0q%JUy1EmL!nSCEiKt>HXhGqK+x!VL!nSCEG(?7thCkWh71}B`T6N3h=(8!wV9orT}({O z{Q2`&u3V{NryN2^Bocl5?YCcl{dG%A%acE~u&_u;Ng)#RXhtLwUAlDX>eZ`xd3g^X zK2#+irjL)$tXZ@E>%abs7=fv-KmYu5@7}$G#`z{DCjb2BKZ)MR0U8?{zxn2ypMU;& z&?&5@rlxb|%-Oni>%4jMl)ta7t#x;IM|uw$@i9O8=%Y)QEe$u2#*4EZqIbBUnO;%P`OG`_4cQ=d0vbMH%cXyvMWeS7A z7=A~ELQz~?jQ>Hpy1M9ex~;9PpPyf7Xy}Oh8U&xu&&y@@p~M_Jpvyu7Nas`mDFi9}*% zX2#)g0s;a;LPGFtM$IS`isa8;lh8eI=YY;-!E?(FP5nnpLSpb-E7002)tu~@uk&z>h& z@lhxg@ZhK)1OBPwCicyhFCgXCs z(CCJx#YTsq5dZ)H0D98g+`M`7W+Fi}bS)a3auaxXcpN!$#NOUsyQh#yBwQ|+7@f%B za9mtmv^z-$s7@}I*Vfjyx3}YubUNM7&rj?9e$ePfMJtUCK_dVF008u%udi>-nl*KG zb@(Ghj7G@K&F$pLlUnR=l*wep#l=MM;Njt6kSr`m6bSn zpin5|$B&2L!ARKI+4=eT;XqL=77tiBeUvIHDxlGg(11p-tgKXPcL*8*0001>a|aF_ zxO?|5E|W+kh!~C5?c28pU2<6ib#-;bGQvJSK1?Q4D~API!D6v|e0*@Zv$K;JG(Jko zjqdB~3yp46M$_mJGy(ts06@2Lb8}ChK5gh)fZ-^I@h4B7eE9I;C=b}(-QC*Sip%cq z?kpB-lm`S_$6~SYYS;*&mX;QwP&mp13WY+V(LFpoAYwE^0~%eGW!^Ce8UX+R0H8w( zh2o1Zz97nmtqf4n{{8z$v%5l}AXebCv$M0cwbe$YfcDwi+S=LK;qowxrmCo>rUn=6 z?CfAvs?pM{(IIFA0001h4yB}|Xm`dG&>bSGFDWTWOH0%EIPLB2B9RCoM5EDMTwJtM zIiMRZE-pBcW?x?)kzi8;JRXl|bXQkbt8X9of+1VKy-N=zhBxh%5TyAJ+kjv#79ArSF zYprrXXOtUVl`$X?Gy(ts06gTa0EV|k5>|>)9F@L zR@$r_&<$&AYdW2d5Ryuz0)aq-BPchzwY9aD>j!ke#>U3f)D$5kl}h=1{)pQ{&W+oo72D2H*9Q*_+5{a_2 zv(?&>c=|LmGsBrSz?eXz(ag-u5JC!tqPx3Wt$jN?JE76XA`=r6+~~^hdWJ&POO*fs z06hKf-MdGu?M9_it*oqke0%}}1Igqu{DM*@ll}YO|3(PK#l?Ahdk^@jR4V=T*I#8a z*`PlKMMXu1t^&{y5#$#Z7Dh!yslH=xZ!a#uY{oH%&1U1~>+S6&Iv!O4jXrj%-sliC z0ssKe8WR(f*w|QwLebmXTT@eW_wL=cwzgTbW*NF(qh)Gp%H?vO3=1nNDyUSdOeQl( zt&CqwOA9VM%iWB-cI{fVYSr6szkU1mZ9~^Z6U18WDw0SfxPW^wo<2!QNpiV7K0f~G zyQ_&NBN|af#@Xm{xxBEju%x7FF657`SlZ!l0m_^78VhU~s9syL)|oeP3VSfbY3nuBWG`L8>$+5b*{~XdH8h zCLk)Sc%!RuE05anNW~jeh6Oox6AMip63#H#Zv_8$O?3Q&VH; zN*Nv18{LSS761UiQ^wcV_wnP$JRT3vwy&+NEh;K%Z*Lci#TFJ8p`oG5eRo2k@c#Y# zb#-+TiG;;s1qB5K1qBT_Adkm8ckWzZU|@K7I6{ce=NA+dG&ME#^z@jSnfdzqPM$oO zc>P~fQ}f`#gN}|4~h={PYwZ%V8O-*%n zc4o0yj~+eh?CfMP81C-wQ>RWPW&!EwiV_kMmMvS>)6CQh8l zWHJQ;0h7rba5SM%cEy|inM`I=Q&VnkE`z}!BB=EA^sun7 z*|TSh#p2A&%+AivdGqGs@U^+QIV~;C)6+8~Bt#?<<>uy|KYxDt^5sKKzobwoo}Qju zE>}5dEGsLswzeKHhlfNWRaI5FxVVIdhRS5JoSdBW^z;{Be33$-;0+233(d^TA|fIz zEG+nZ{>_^=B@#(&Y^<)YsI084yu3UpD2T~q+Su4=)}ZQYZf++2S@d&8bwx)pogpD1y}i8`E?gKedU^Kj*-Mu$_4V~-u~?0b zji*kXI(zo4p08Rh>h?5>#bR7As!k`>@%j9uq@?ihaH&*UQc@xkiEM3cr%jtiEKYFZ z#0i;9_S$Q&A%qGG3-8>yvvA=;E|*(dTPv5#U0q$HqN0pyl&0#4CR4X7)d+hU6$*u1 zE~ii^IATNyk;!D`|5j>iYxDB*csw47M6$E9n>uwW(Zs2#sZC8yFTVJqg@pzF=J(%! z@9F8;uweuGPou9{v!=Yfyr7_fOeU{gyA~lN5D4zyzu(x{*x%pJVzDMnn1KIu3j~6D z_wF?{HOb|2dwcuH$Vk2Y1y+UXjczPW3jhG%=~G)%rLV8AudgpIJ2^QuH#gVS)#3lAD=I3i ztgI$YnuHKCH#d)nh)7OOrc$Z+0pjl6yUxzeadB~YUmF{nGiT0JR8$a08$h8@j2kzO z%jLGWw-f*0bGh8Wz`z0hNF)+z(V|7fM+SqDl9Iyb^En(2aUm;LuEc$S78Vvf9`Dhk zM=>!mIIPm$6%`j3FJHb~&x>x0L?V5jPF-_8Z>O#>VEyAAh`b>C)xPm!qSj7cN{#p-|p` z|9ylIl}bH)_^^Y6Ltb89MMcGo88ZgFR&a4~k;!DKsj0oay$cpBc>n$PTU%T2+_|Iw z%O4&Q=L>~GwRR+aBaHSD|5kf!y_+xT%@}^Cj&YnF>H08N-=f3>%ON3BLO3LNS zmx=tM^XJcZaB#SD=g#)++Yv&hrl!fs$t)I&IQa47$BA-YUf!`|$08#mjWB2=nrx^@ zX((he8Q+I;xqR$qP9~GdOO`Cbzhx#SCb_w}MMXvUmCcjv?Cj>unS&4t3=G7bRL#xJ z4h{}_t+6%`e?Zi2IOA;en3$OJ=g*gymseI+jvF^FBqW6BIn2t+LI^EhycoaJ^zrez zc=6)Bd-tAu?l~0?USD6oWXTdoM@RfIKR;h}vM^cz03ZNKL_t&{kxZUEdGh4R%A4io zi`L?Tfr6cUNV+1VNYsJpw{$H!-=!`{Dtzqz?NIy#ydXoT^2yvL6px3#s2 zL?XFd-rwI(1gNgAt~YMnsIIQ|@bKvG@6XTACx&I>)u^stzkdDt^#PS1{_1>ud`e48 zBO)S5Bodd)b#ZYqGc)Vy=~3QBCX*Ev6;)SPcXxO9_xIzFQaP|3@WLDaKTT|)yDQRv z#E1~Gv9W1rXwd(8Rbgvu>*nTGTU$FIVnhhx$G!^}F5r&>fgm$8bIzPOK|w*pqJ^26 znYbX4NSd3QeSCayggk!yc!bc!ix=@vMIzDd+qai3TSgpw!GZ-VSFZH(@?tO;I4U#p zRSJla0xF_Xsd%uWR4N_xRmhlNV`D?Sqj7b0&CShiZ*L!JW99hJ&CRW;sj0oaeJloz z8c$6$&PKPeu!xV3FDfc3C@3f?DJd%}i;a!-^788K?d|I7Vzb%Az3uAiYHDiQ($XT6 z$%v^0!}Im^B_c+IP*YPALdf6Wf52vqjg1H)M@L8e`V9XaZfk4P#`S53>WvOTBLDyZ ztuZk%nKy49nM|hB>6Vt3%5N?oK74rZ-o1$vCx(QCn3fxj6crCE5C}XxJhHR1 z-Q3)WP8&Rn&&9=rCopgi9u zIy#ydGK!7(tTS%hxcvP5y1F_iC#TBF${90eJh{!~%a>bPTBb~yVsCG6YHHfo*Ee9s z+Atk%I=v!;%r&yIvNGDB5%)O^8VTT$W5mBaLWs}jqyO|9W6C*!@vC~=viPA84|Bzo zPZ1Xv_s@U+v$nSOi!Z*Ysi|>wb^ZMF&yBDT7Af7R>b`C;F)_jMLw|q2@x%}6QvQ9x zS20Wu73HUG{9;RaaKRWt#1HEJxiH#Br&6gCCr%6s3MwclxOeZ~&6_vf+}!Znv;ke{ z3MoYIr{M!6r1$z*nScMo;g*|TR`SXd+_C0)CAZOM`)_;I$lxY)$RM0vpKfO-5p z9xosuAS^75Mx!Z*uSD26AjBFGo6Y8MIAvvJVzHP+B6)at4A`K%ySuKgE;2F_&q73M zPU_SD73mr=|I-NLBHTqhXhb9s2ylufBHqIn(%IQbY%|pS9~@pPKTs-%n)Bz+M+klS z<(GJL95GnV2ob|m)lJ$#L{MXTT?*w85#K7qWLH++7>A2vG!c%*J&i`*=wvcEI5@bj zuCB4Mv9q%i&x0877ND=Mk3=FV4`v|(MTJ5!;$LzT6BCh0)YsQHpy_Eenn)y?H*cPD zNM<}aW|2CLZY;x&0RR9z-4qIi@|)fI`g-NZ3s+ays;a7?-sR(TFSBONYHn`M&(9~m zSB{~PA^qM{<@ZkEu{(8|inTsRz#i;GKHS=qgN_gr0FySuv|K743tX-Py)rlzJ83MD^3-^Im+ zL?ThCR5qJU^!Y?bN2jHwojrSY{P^*BUSdN-LuhE|h^h0uy}j?=z1!B-HfS0Hb8~YG z3yTL29+;SzP$-nz+S=CER@FP%401&}6&M(ZN9P)6BAjE#j=lf>`-cu4x_R?ve}Dgk z2@?(-I&|a4jpN6U&zm=I>(;G-fr0Jq?bD}EXEK?G4<8;de|1n7FJ9cVX;WNW+~LEA ztE#G|Oqrsb1t&K*ciOaRyLa!ta^*@uKtMo1fYGkvNVFHxZLT6FlZi*?c64+MHSWOp zQK{6FloSsS51~+4S64@)(QqP@LG||b{`J>ij*gBkEiD}#9S#l-hW)+M7}1wLR8F#? z7-6G#cXyvXd)Cs@lFepQsnnL17M!{a2ZRw35f?68xNzZumzNjLo=PT@r%s)U_jPr3 zt*EHT$jE4JZk9+Sm6errI(_&tr6D09m6eq_IXNvYEqK)^J3G6`$jH#p(5kAcTeoi2 z)zw*AT1q66_V)Ji&(IIFA005v55fKq`xjZ{NyT8Am!{N-CGpDq) zl=vx&#agy(S$1}IZf+7#wyS8G*3SVE}?(Xj5;^KmW0t*X^ z$&)9O$>iMJT)d@3B5`zdC&Y+IXO8wIZ~`T(#8{636ZS@=+~`uN)EI_evREuXKflJt#)gIlGMQ{{ZXO&Q zOeCstc6MI8cyVrSZe?YqLZPs?w+{;oBXSpw8#k_}r>CT(q`0`)!op(a%$Y4MEk#8| z!<^3A+WNWYp1Xhlep6GELZL7>H^*smSS;4_&p&_v{{8y;`l_lbI-SnpaExc2M&(8y zF(VhrXkT#w0001*>Fw=JN=ga}3JMAe!q2QyskFSjJR>7x`SRssapc(8y`oK3aCnY7hxw+v9sKdkSyhlVtOq@7T z4|UV2wzf9BvaW@N#W0Hx4P{I>`ZG(dMu$0#0001rX{v_lnf*rve72+?}9V^AY`2t*x!kLg&O&aE%Iuf|%f^Za3qAy;@sawN@>lV`?=z z1dRXy0G>7+4u?!8-@bhtPcdq3Z7nJ)N>5Mca5zSlfk1U*_lg!RT7)OBl1MPPY0SXg zjOOO%ixw@?V0RlE8=O!?BoZmFJ_3vukH^F5tSJcae7#$%wcCU!VVr|^G@xXxt_#+Hb zHFC;<{gy3T2CQYLA_|4#@*jwrtt5rluwYLF3rr;^K1V%o&ZJ`xOesh0{|r)vxY0N%H_b;MedOik zrSYNgI_Uy|03jq2i6|6`^3o%~cr-UR6QfBzJUkc-#%PWPjXov}Xmk|^6zFPrYH@M# zqeqXTqN1FfoXBLdR4Q$1YQndX{t1ObnM_73X7$XH%jH+EUX6)~!At0jxKQa+>6yJ5 zp4kfr02qU~xVZWA=U=*X$SzBB4`Fw;>eSJNX$%MGk*mQSyYu4yGNrWSnO7GsiJAeLs7Z(>i zM%Ki{#LdkuI5=1rryEgST^+G<<+H4-tIO2Xlvs3CvoY&q-7|YLJhK-L05B4J_wEe~ z3q$|uY=qe{Mu=EuLSbcPB`#Z7Sa^7NXyve; zo}NUbmzS4AqZ<{WP*_n>fy?SPx=zA|j*bongJC3n8VZF1&!Yf6Jw2MuXn$%vvp2&t zd*J{8qjKQD0asU7gb;~Df)T1lg^1xjJUsU8+o#1NdwYA+>2!pUOeQNWEp2aa*W$r} z#&|qlX=y25u*cNYbTmVepERJ+amOPtxc2t;(KNbFhNm(Z42eWC;-m$kPW#ZJ6y#OG_U=ek_$r6$*umi%WQTII&z6LP#!`KYskUtgK8V5-Ai4Gc&U( zQ>Iv0SlqmMlgHyVH8oMGRD{r^Ns|UFUYVJhX<=dUPcTP@D zQ&W>%E~iqd-rnA!p`rMI2%+BI-sI%uHEY)VfA;P(xUK6<0QR})9VEd9_6CZiC>Bv- zQmSjnmE!*+R<4h*wWY=-VyPL`E1;N1IOQ1`v31(b00>eb51%IxfH zgpfv~86F;PXlQ6_Ynz*!b2uE2J@!~|ey`DJ1_lNi8XE51yQfyG{eC}#!6+>)t*)*n z8wPuNdU!luN=nL|J9msmqup+Q>7|$OkJIDvba!`8OicLwej1IoVZ#R8x@$I@@7%ew zu(058I8L8FjSzb5vB&W2x}l?R>C&a0J9o~_&2@Ek+3j{dpa0A=&)~P_=H~9-zi%>` z{C`T( z4R(g7Rz!=Mgg@v}ZwqwVRk#X6!ZJS!H z9v&XH+wDG|FF856v9WQ<8IwcrxYz5&$2mlpLjUvt03b{Pf#5g4`OT}ZzB)NMndrKJ z{}=xM7hkXy6cqgW*T0T#e?mH)URqj;FV7G{Q&UrRyFDi-CyHMIR!XT4()dxLRv!|XrcTOsmZr!?dxeY89%eiysHgDcsT3Sk@(F_Jd zYiny`V2yy&0sM0?Ae32>FMclI-T?L^E-CzNKQ`1SrbCY=kr~-a6uxG z)YsQDnM|kCdHwqJq@<*Vh6en>+1c5io}NR84y`B(QmJ%dVPX6B?Hmq={H~dqncKH- z@7c2_Gcyw*G(A1t*4B3X_;Gyj5kmj_zyF(=nVFxTzhT1$27}@CdV6|$R4Nsj_8^2F zJa};H)~%+drrg|I8ja@hcor8I)6&u&x-Vw4`TY6wJ9g~I$;rWK&+P0hm&*-jUZ3ET zL8H;MwYAadbn=)x9F7||Zlt87P*32{XP`!-xqkgR&bmVs5)kVpPl+&-M!(-L7K`iZ z>bP94-|wHEp1yVK*2$A6mupO3@>lTQd+%jsWo2h)hX_;X9R~n_m9p7vKls59?%lgb zz5-L@Bt*ca$mY$PfBy5I$7lqa*Xtc0A2*xL_$i0O$8EnJ+~e^C zZ*b?%ozl|Mva&K<>7=Bj=H})*ckV1%nog%19vgouB7#kbI8w?H( zvRJI0J9m;vi%2BG8RJ8xrlxwmUOeqANiLU@4U%nbZFO~ZIIThmaX6eEJ9aP_jKRUd zaLOl5Pfr&W72&J)5IuABdi~a|TX8ys5aRK8`}Xado0}tV4d-v|$LqkI$dXt9}g^`hwy?giKR0MD4^?GmIxUp;3E}StUg!1$AOG``d z-@i|O%IEWCWMpjIxDhvP;grnnc9Z>5a3TBm@6XTA$Hg)j44g4ObYIkJbyikZZf-6< zM07emH#c`RGr{U~y88Nh@|bftoL#$i4Gj%ZHwb+OB7_VELqkJDh(dyec}gtF@Aq%t zz8%kUMi4|nK|yhGu|lC((T;mO9*IN}B23}zH~;{w2#?2m>#es=ojOIn0vThRk?A6N zYPH7b8$kf8)v8b^Mbo=&g>M7!IIHsqk ztE#G~AIZtd@pwD|$r~n@%S%g3aSu#VX=&-q%nW`!GBUE7S$1$6I`tKWLQz^;iV(8d zY&xATphqi0sHUbyE|;(9Tj+FpIO{r4=c>VIG+IeX3AHniR4T<8Bh~2WXuv^Wv)Orh zdE`+F5M~s}l#--WD*1eVKqX5{OQ)x&sjmdD&y$*(O3uZiR4VZlTT9k0^uCD2VzpY0 z7Xpe39*>9nA(J>94wK0we`60l1H&mKSeU28l0qNeXq6MrjspNd1YUdXwYT4X8~;~J zMeP6uljTHRa7U+%jEtZC>}Nmu$xq_26njoiPHAZ=xu}E5WEvS6>FMd2n3&M%bXKd? z;c&R!?pRmjk>~UI+-|qS;jmh*I-PD}Vxp&~XJll=WHR9mxLodr4I6M*xLAXr$44B3 z9;+ocu)Msyyu3V{&DP)F|K~sddH3$!cog5l!h%R73LX|E6belyQ}EocI-PFg#*IsE zj1cnqdc_5o$CVE|)73i4a11y@XXpQ z7K_aEv|4R?dis(Td+5GoWMouSRDAmBrQ0Zxz=T7asZy46~46VV)98 z3VnE^RZciN4gdg=*|KHJpZ@fxOP4PF`q#fEd(%+!8EAowI_e?ia=9|+Fio>G|iM=W@ADr_*Y+;u%?}@Jt)QB{-eV_V)J9&Q9u!c(xmakjv$w)9I^O zK!V5Pi9{l`T8&$ZaO( zBV+UC&8t~l=%Ke)L!W_R77}bV|4&D2#gx$14rj*!03c!nK^#7O_`rb!ot>T6uV24@ z{kl%4OLV0kadbMpsj2Dk;lsOj?Ml?FW)g`cB_+jdHX95EgTVj|O|iygGLw>$l9G~y zLSdrr#X!*GEb2jzN79I8WMrhJrOnRH78e&YnatGG)T2j_hWS}0leul%w&mu=WHOm< zw|lwlE=;(Gs#GfV`FzvU)AjZB_;og$y=32O+~+WK#)#*%U8yC9fZA-f(0|#POeR4P zCr_RXKbKf(6i5sPqoSe$FSivjCX=~br}i-SMIaDt-MY1|u1=v)T)1#y_wL=Xo0u!~ z85jqVolC2i@Er#Ld>t?tjK;>s#>U2f`Imp`@9)2R_wIuS4>TH$Mx&XZpSRoXiLT(I zptQ8~(4j*W6%`c~6>DMrErK9KB9TZW%FD~MTCFCN$?0^uTrRiU?Q*$%K3}3MxQ@|i zG!~1+WHMPS7Msl$iA3a-ABhD)kDWLKJ$^|eLWoYM;}b$6kr)hy@MlYtNFXK+ek&0Iwq)`YQ?x3p+YGd_JE_rIJdeWQHb@NK7VEaEs!?!UEaO%VM#X zykD|hztGT@?D%Ie7=pWrQqk#jkw|1P7{YITUTGAlA6)%x=_x5GBO@bAzO|x#!K-m_ zIGp?U?}w8#hI29m3w;Jg*OI4GWakpq+TU>i06++B+O%oYrcH^i1&Av?pT9=38W1-S z^mQjz6X682SS)jMb2zWV%M6Z=j)wVJnM~H--yh-*giI#u>grnVT{fE?Vlonp!C+)% zWvNuE@$qr$xO_I7EtN`x=fLdg=^-~`Fc@??Jz$d3g@uI(W+g!gxm+%lN=1Fe?RLxM z^5uG&l4LSjZ*On-U$oLFkn;2M)oS&UQx>hL5S>mpKR>_ZyDQxnfj|&uTU(;Hv=H^LHPw(vPBu5Ndt=7*z`%EU2J+#@ay1LqEG`6?5levM% zs71O z;q1%s@bJvc3?BN3&x9K{Zjd>=LZSH6pZ>Jm_l9{g1b-^@85l*y#l`sM1wJeehoil{ zef3@c*Zz(J00000fVC+m-BTG1#@N_cdwaXxZYKzWMx&*rrES}`Ek8e>+(s-GKl$X7 z_wV1ofB!!2At?|DLNul|H#d)tj$Xfh-D0s21VN|MrBW%mDg&KPfAYyEdwO~EtgNi-*RPk9lmv9w6bJ-Ij~?yp z?CkFD_W67a2BWB`=`awFKe&ooJo}Qj_=gzs^Zh|0KELL7#UcfpKR4a`Fsi>%k z$K&<%^jy1k4KMVBm-}1Mp5j8fySs1RyonH^(P-J(*|@f$_l3{r_xJbTym`~>_2Ry) zcwQV_tX{7VSi+tv%#$Hl=rb^iSS;4z!-wzQz5CTyU(skZHk(~mR#sVA`T6Icucp|w zzvBP^0001BZHi==(C*=e99YdfoU5eKXzty+cjU;CL{;DsaOu*es;a8kO^O2m z00000z}HIr#x$;d8jXgUM&Cs00000Uk8vh{(pvshRVvy z5?u?hDmtC6xVRYBg9ZQq0000WTH?Co#@d9(@=Z=oK6vn8`}XaLt`1n0w6wIew6sLm z0ssI2004kT2PBQCt*vcpYKqI{9y)X=U@=Aj00000008)!gNbke000000000i3&u18 z000000001379@=T000000001%1xX_S00000004kxLDC2S00000003ZFkTe1S00000 z003APB#i(700000005R1t7Qqhy1IILdYDWmLdfs;Gnve+tgPzl>ZGKk&>tKb8M$-k z4*AsM@zCjXf*|lyfk5!=v(Lt;&OJRnUaz;Vt}gtK^!E08z2426H^-<-4;4`7ci(;Y z+u#0nqAIiYoj!f~(4j*@p)k=E0RR91003a!h~ZlHn>KCQx^*jlY`5Fxa(PQj%b`Pu z($mvJe5$OhtgNhze0uim*{xf*W@Tl?uAZyGU@&O3sI}HwEEccVD;A5RRUiNW00000 z0IX6BlSV2oms?$3&0sL@+_`i7`0@CBX&h|axG{>QDV0h-pAShR00000003a^h*Q#t z$z-zIw{Lqq9tI<>-@7jO{eHDtT~bn#=!!hb$bQZM007n|kH=#&nQS(j%jI&r-7c5Q z<#HvuQtKF#$z(7XEEbE)sd!TIy&w`|!Wl}aC4l-up@?(UwPoOHY0 z1VLnFWo_NMmHKz^(xpq6vG0`t03ZNKL_t(LckY~vaAmo9DFwoR>8 z4-XI9?RKBfmzT3L!*=+9Y>{P4OKA(@lU=$Y@*Vfij)BBG<{`ka+6Zh`jo0^*P`~58s+1c4j zrSks$`)0G5!C+)(XE!u7u-R<<5sgMOI5=2aTYLBJU9DD25JXy9T61%=P$=y0?;jc( za=YCu7OS+hw7R;Q%;+o@%h1q}QmOQMy?(!6EEYF4HBnFfk3Rb7 z2qA(XBoawRMh5ji&4j=~HaMy*x{WZjjOmCen~k3ar+VPRoZz9Ozkqr>5#(P(ToyR@|Q=FOV{Nu$MLu~;nO zWQ<;~_riq>QmOQ*r=DW5SRRjObaeFW*|SHF9;ME4qEILn78Z^kJ<8#5d_Et3@xg-! zw{G2PYHHfMcQ4Lh7Z(@Fk7%{pxw*NfrlypX6oimoum9|`&)95sc6N4{``FgjCKihi z9z4k9a{Ye)^z`(lOP5ZbJc)m$`6{eMhH2b&Y77RHk-|6vyUDC+wwrtt8YZr}1b2uCw9UT`hUVQS&C&@(1X0u(pc1cdiCnDW5>wv{rvOK>2&(hqesa=w6?aArvU%}fHlJ9ay@wP zK(E&)x*}f}e!pL*)9G|Nu~?j)oz3NP<6j2|dYoCUR;$%IJ3E__l9HXB9dX;kYRt~g zzV+5ySFT)%|5txK4Gatn3=I74cfUJ$@Zc-2ypoxjxyl0Lnlug%4;K^^5CoB$n(Fm> z4F&^sGF7=;j@#BAs;{pPx8UKY3&~4!2M!z{HyarldG5LAaL$AO^?JQG zZrnI{@F30!@n_T0(#Vg@&CR{=!VBbYDJ3PPp`l@5U?BXY(eL+f-@Y9`CJ3USpkQ`( zR-sUA+O!EFq*N*^D=Trvh!A44*$>@i>Lfq}LDbdNefZ&rE|+ViKlp`(h0)Q`XP$Y6 zOuaZ94tc|=t*x!DuCBDSlzeN)jvW^-UK|`8#5G3<`Fy^doSfp~V*C_0f8W1<|J12d zxH2>vZOfJ|AAb0u&1U2Acz82|!SL8)kKqGO5JW{qgnM|gqpMDy* zUgAJFoz5FKZmj5_0RRAq9goMOR;x7{O~C6s9#1F~ayT5^zb@fzBkP*`Z)`T3)9Eyu z&1BC{qtR$I8Z$F9!@tN`JqUUnI2;b#*ywOL%w{vS^-GBd^mM6I8n?k>i;Iiz zzWeU!)2BmhgM0tQr#_D)@&MwViR8ib`~8!Hh7gbl$Qi^bE^(=wTCH9riY zP-wMUSDG}Aj*ga>moNDT!e+DSbh_Y!UsF?a_wHRXX+#L+=jT&5NJ>gdPfw@Tghr!@ z#bUGBOeT#2fgs?3CnqNdEP9cYloYya3NDlS%96*~Xf)!aabjX(!-fq32f3)I2$Dts z09YfeR;xmx@Or)EEBHTXp-{L6$6u{qOePbre@2e-uv)G2^YdgktGT&3y-A*NH5$#r!h%dDCZw49TDv<|p zxg+`EhaX-cku~;h_jUBp#s;a6lzx?vd znKRYZ)dd9w;rxkoxm<&TgDREEZnxu`2NsJZf^L>Noo=~4&3e6FB9R1-_mfB@0bNG| z{%fbb3-!Qc_Zq#bTM6nZZMoyk76<=xD5ie(l<|AN}Y@9*+k< zh33Tgqc%JmjmDQ>e)*?A{ppS!J0d75hDqbbjT@;Ai2-;#o=7B8tJQcAqg*a0`$mT5 zcDw0x`jY1ym&>Ilc)@LPE|)8GUb^}lU7@F1q0{M)J@%MZs~sL5Zf|cdDJiM0t|psC zgV}7hbLY;LmzVF`w~tJC&YnFRLB*U-C%)Gh%Uhs`z5Nj+J ztE8kvuh-Aa%;0I~#>dBVa&j^8?q zQcA^UvvKeI;J0ixTj)-kOeS+J%+QsVmbP=}PCT3Ir=NZrqDoy|U4?~()z#J1CbG!p zp=L6f%S}ngX0w;9gTvuKaZj`+CnudwC!Q;a{Nu9HU8d9N)YeYYk}m=P0EnBpxj8a< zV6)j36%~*?Bv499N<~El+5JbQQq9lLNBvs@f?i%;4na?#)YR1S@^Z4p;=zLlu?YJ6 z@4p|AF-H9>K=|-%n&i_r-+c2AfB3^n3rS?sSXfx7QmK4CpGu{YN~K{A(!*0lFDxts zyzX|pEf!0N@rnqcl#~>mP8WHNql(31)z{Y-78VW-4dGV;B8m`NSXiJ=go6YcyF?-}nM`Eo0qVDhKAy3#u&@w3gD!Q3+i-}*;@~;iJRT3syC4u?}-UQTvQRjE|u ziY!ra_wL;{-+YsN3K`>CK%FKBA@t^(Z+`XFS1T$Zkx3(i!N|(WQmItq2%~B$}kla6v*ZBfETGlDF6Tf#F@k47#|H@e;KJ9qBjKWbjD zcX)VsXlSUpxjFO)nM~%+ojbqy;)|J?8Js_Oz21POFk`B-vs0_p;;hf>^-fJq_4f9X zQ?_JgW{!@IQd|6FGFf+bH@@fR^?FA}Ml>2tPEJk)U!9qmSyEDR>Cz>#3C`(sYPDMY zc-yvZgM))3BO|zO4u_+yt?~7)(Ybwil{+XC=|h+&Q{7`Fud~0D>(mzJN0Xv-EM#N)mOvs zS&-m)L9(*4u3x`iQc|*_mTMY~cIeQdo}QkwXV1FbZh|1Pva*gHJ0=ha9{Sm$q9PuT z*WKNH^X5%lRCacDaDT`cVX;_kZEa?=+3)u=7>xAv^!@wyr>3UjcV#k}PN)0ilTTli;+b000PwQmMpUU6@SfD%YI?F+vc8 zOePy19(KFkE|*KGR2CEztfs(#phLs*8bqVfWHQ;%(2&RDak*S7m1>ni|L_0)Z*rYE z_?fSLv$L~ryz$15fBfTcHVzy_7k{TupFVKlKujn61poj5K%zJtj={k}{8%QFg|oaC zNED;dI5swhA6HgZMm*>gg1(MWgT8U&#)t=)(FG{*_Sw+@FivMsi`S0mwV{Yp*XJ{4*&oFfVeRj4EOBRGA(&=;_ zkC*7`fN=5od^(-(^?Dr+huiIDGMV9jmJB+LMuTR?b%e*`kwJI4T%lJ!51>>k$@WPY z&A5&b1c7J7nVOoKpP$dj$Oy49On(dj0068-=g*)2?6c1jU5iyQ8jbjYSS(I#O~6W# zv)7Q#hG8Ouo|KdX`NKLw5Cj=?GKgU!SA&BAjq6uiTU+Q2plc`q000mjUa$A}zyCdc zOb`T@%gxHls;Q|V2MdLO=by;V&W>>%Ne{PWMprJ7MD5{d9+HY=SLzkUIGMmi|1|vB+xu&LO z$r*k0di`Ji@)znWJRa}VsZ;T)X_Q4AbcI5JAFSWo1Vu$fr%s)!udkO#Bu1mLx3~B0 zx8I(eoLp}Eg9i^DKYqNlw3N^1fA!T@uf6tKJZl?8WXR-ldFU-6X#@ZO0HUd^tSm1t z&+T>_42I$1;i;*qW5+&HC!c&$DwPIoiD#EhPEICQk6YKXJw+V!g@pzDVEr!7_@f{FsIs!MtE=nI zojbX?x%>9*tEs7Z_St8bY;^tCfBn}dpL|lM(_OoE&0?`cHp%cBL5A$16Cgp-2mk;8 zM3Y1!DJUqwkIT!;|NQ4acXxL`_Sj<~KH~Lyl}hEKw;~03=}D*46I+vrZP>8E;c(Q} z*5Yw}{r&x4ef5<>p=fAmpl-(F@%HW8M}6h~{rf7Fs-mJIuGNhma-PD7lg9NM^v#<$ z=jP^SW@h52gM)*&Z{MDroLnwxtf;8ixN&2=YZ(I(2mKKk(D>sY|CmOjsZ=Wb^rt`l z>ArpYYHMq+U%wu(<^KKqpM3Jk+qZB3@P|KiI-T*ZXv~nA|8gK{1ONa4VnrYjNTpJp zPUmzw|Mrly8`*Jw1JK7G2Op`pLO-)6HJ42Is`UWCw*BS*5bvJgUeeuA#9 zuEoVgE|*(SP_T9DR_d%IBO@aN0|N$wfyrd%-7!}4syBNqN1YM)-PtrkbMo4 zMmn8NW{l`>jfYFl285Hw_1mTzAmX6oX;;yDZfTsIouxhv(M|Wc=brO;Jpcah|Nbat zj0jp90RRAi#3BfSAP6>_U07Hsm&>V1_7cX9X?z!h^v^Y(JM_zh9GRtet&(EX3rH&ye6bgsK zQCC+Nw?iFuWXN1D*NQ&)CC6ciLZ_Sj?V_h!M@+4k+*-+1E{^vjc`IReI5>e&2f}{}u004+4kH_P3 zx!i8IUa#-!>TbuS*;wK9qr42H+!K?tpMt-m$M<#JuQ za>eCx9XxoD&1Q$#Ql(NYE-sdol&s%baL_6m3?Gf4)9Li;>S~Y2V>B8cJa};a{Q3R+ z_ot?&25eSWS65V2BoGJ)g3xNUH*VaRnwlCJ8Cj=eStAa5Qc@CLnq~cVPell+RI2yi ze_tpRmY0`5^UO0PB_;p#Pyb{xnW)>~dk6dW?d$LF|LISE%H#3A`ORFGy~93f}gEGsMP?d@%DZl=@eV`F1H9xrrf zHa?$EeTqjM;g!(LW;3F6WW_`xk<;lU7v^TMSk!T4_+l>j-g)fM>2#bwc)i~Bn?E3g zJRZ-LD_8V-{mz{`mt1;*s;{pPAyipe8JDWX3Jx4v`Ow5iBj_|5jcmi8nVGqA<;tyF zx1M_HsesK0f*^n0Sy@^2_4QwT@r7EgUZ+W8#6cGb1S?(7a}AoBntJoiH}T`wUVH7- zsZ%e#^b+|BhQ~2ZOicX4Kl}s!TWT;EUVr`dJ$v@7)1;Bi^B+3g9g;=>001DGDl01s z3k&IVx=17nn18>tw6wFcb82d;xVU(Hd|W1zg}y5v;@xm==O_G@KY8g%UW~3sUa$Ac zl`C^|b31nIC@U)qz47AWqDrMoOG{hteSpc3t+dhU(Fi&fzO#d8MhOkytXaPz4mvsi z)+6KIy?duloeG}FYHn`M@Aoe*E|PcO@C-T+9p}9EJv3>AF4q7606;W}#bT*cnx38> zykZ-l&(F=x9UmW`o13#*tumP`;%~wK!Q=KulG$u#u~=*8%9T6jJQ~f6h!V2UeQ|?50znV>S>X_qc@Z_}0gL$Iwx;!azaZkE zlg;l5zflz#I-MR6wQbwBp}!@BOeXWlks~D~B?uvd!7w;DSXWm^_WW;bY(xmn%*@2Q z(osT&?4f-qprsK2004-eva+&k*RJvTe2GLtT_B##X0K?4=-k{~27@s)G}P48gkN#F zTndF^O)d7w=kxK@f@ZThEiEn4)rrKdTep--C5OYAnVF$p7w+A=*Wqwny?PZPbn4V8 zJbcmNaEy(OaX6gf;^KtWI7-OGX~_v-LU;s%e)Z~ApU;<;md4?5j7B3)5w~pFf)FyB z&D5Z`wzm5Heu+fFWHL1xjb5)$N=kZYbM%@OanLty+Jq0wIvvx<<#I1vxX{#x5)H8u6jGtVG|e)X$gz4g{x@4ffl_3PJ@laqJu z+^N&)&YwS@=$%+CJa=~pkTe1S008lmmzT$6GKYtU16GI6%*-4c8_UYd;`8}pu{dBf zV=xwr)!5kB*4F0rdh_z~91aIw<8kZOtud_q3X%Pt78e&i9?yDQg8_F+bT}N-)6>+~ zy|}>B64Wps&-pa4IS) zEEX##C#Sl)8h26+2zq&W`RM4VQmOQKJUkw+va+(Su5LZwDk(-gm$I-TnLbTP&6< zSFZf(SHB9FFJ~Pg^ZbYY-?9Gwd;9vd4y9?vg+@rz&l;ulN4ix)bgzS7y*`R#9iJ03NQF)~=` z>FE#cr9$9I*Z=?k01zMN&Yfd2nNK|NM4~Ga4=R;vetsSy#Nlu@ZrqsY>VU8e3=H5| zA~Q2H@hYP$LIxeLgdY9+ff!h2(BF9DjSoKfAO`gU@$k)We)D_Z`(Eg6)_3;_0001B zebMQ3b8~ZFpY(~GUc%vUSgqE?RtAK_YPI6z0Yy5e3;8Lh(+NRe7pOsxY$WRQ&p%H# zFhYyexeNE!hE0DzeDcsweVYHVz*wY4=fGxMSI)IBm-EEc(DbihQT zU~MAj`$C#^C_H^wLXV-p7QNMgRZ+0K`^SRu-8qKJ|LLK;~5_x$B&sz=4x7;Flx{zCMNKFs$fkC2)a}%U1fpa`ObH6M@PsQ*En+0 z)R$j=In0kh(g*+m0D#z{(P$+lCHOMMFUsL?{_DT~Yn`rC`87dyOl7m#Kl|Cw!teJ1Nh1IN003f+$Kw?i7UIW7qj6$l z0!BTp5q`gaVq(HSM{DijKn$%LQgrR5OkBtl$4Z2r_-bO6=0>@Zns=6w^%Ir zX--Z~YHDf}%f}GP8TD_0psy)5n@uj4ldCf3xL*4FZP zy!Q5X{4}7A3&a`q_!9*2+H0@9_~MHzErfv1ApigX0Ej1QPepoXh1>tJMn&3;5z64>}czM6vtE_V)H4{NM+6yB#6q z_xmAfjK6@x&gb+0^FRNyp`jsyq9ADm0000$yg3{Wg+k$SxyV-}5{X125ekI~tku_n z&1RdMn7|!WojS$kaw9Gil12ak001P6$K#ouoz-f!iLS`kPI7XxR4QG~ zMP$Sv=!ue+mX?*3m5`i#adGkOx8H7QX@O;0ssBL@Hg0Dv_vR&yw|x3~B9 z_Tt9`L9p3ui9{lk$z(Datjdx=!^6Y*`T4O}z}H|f=ybZ0l9H&G3=l$IueYzSueP=} z(G^)jEJ7cxGP}FG`}_N!e)?%XpC6Tq0RR910DKL_wxzMQwzi?6Vat{+g@uKSi;LH< zU%z(kT1>wYgy43&Z{NOcwOV6QxLhtD8yky7$p9gwR;#umT znA95p0001BHDbG3OIcZ&P$&FpDz|A`+UCX z>1i_7AnGP3Clg(TrNtujQ7p5uv9YG6CKgTW000000AC;RTjGFDEBw>(;Ft4hL`G z^ZAB`hDJw6&1SRD=MxA7+1c4uRaNBGXXx^mG&(vuI5@btxJakd)6>(pY}t~Yo{ryA zDwUTnU;f57zA-g5H8L_{GMU(Hc4}&BeSLjON(xzmUa#-z=~1iIcDtR!;Up&~mz0!j z*suX1G%_-B^XAPXM~-A=Ws%#vT(0-td#|#xvbnh#A>{RXfB*a6@7=pMD=X{HojXdU zk|2n``@6qmGMOvdqt@2esi`T1(3vx5@GJZG?=L7Qz>mFNZ%0RmLZPtR?R-8zCnsmi zmM!Fg#a}c$JgihIO(qjUC@CqarltmeT%}Td`Q?{(yM1wS@tt?xK?tR!q&)M?Gt_UN znVGqAxAv^xE25>Iom_X+y32 zl`B{DdObo2A6|seH^2E!7K?=tA_xN4P^naUJRYG?SXx@TY11a^icB7lr@Om*Y;4SG zwX)glyu7?ETegJXT{Gg)hdy-6{Vu{eov@acmXwr~jT<+1bac$k&3V0Eu~=MLSy@(A zMsCy5(b3!6d+O9FoHw?&w@*$^9zTA(qoZSbdfMS|@OZqEl9J7vH-}j7IGpom_wL;s z4yUK5N2k-#XtaQBFpWmj+1WWiKkxVZQ&Usx>gv|u!dU#@R904UI2?^e)7{;z(P*A{;t6sXWLH<0NF=JLsNirodcA&daByK^;rQ|6_}x2q z?hFkLm6erMR8)Aq-o?em>FMdsn>UAFet^4o@Amcem6Vi}m6f?%u912WhI-dDE;{QP`;Y)3~&TU%QX9XgbglarK`w0G~`&p!JsDJf~| z)~yI3Ts^AX++04NFPF=MlST%EQB+if5Hc7H=gyt;`~BtRq`JDA!C*{HO|`eTo6Y9!+qdHld_LdBix(Fb7Ah(##A318 zY#tgKQYw`vPMip{{VlT4hdy*6eiz}KP9&vLIXO95QBkpJ(Fw>s-@A3|R=3;T-{0Tb+PZJw zzT)CyyutkZ{Dlh_*lc!9O%0pP*6DPYFJGqq1_1y7007pkxF(Gg6B7ubjEsyW-)(Da zW3gB#PMp9^DCOnlNl8iV?d?-jQ-y_v2qA(Xo__ji>PKiaT5oT!$z&3VLCW*1-whA z(@&f@fwTJZ@^TJ`)7#rSH#bK%k>N><$n8r?Nd}zkdDtQ%^k= z!9gR1s66@N>W?r&sHdk#tJOaC*kd>iMhI0^Rh>I`?&i&#IXOAhmfO&$4Hc8g%+Agp z85to6BKYuHESB2ZTAW-Vgf?#6c;?KRk&%(6rY0QCzP>)KR(t&Taq_Si6cn_yv~+iO zZ`-zQl}9f`=tCd65WkCXPA8JpY9*Vg5kgs6S$4a{DT{t+NwTwGi{dGaKAcS9sLqkJk(%9D4Mi9jDhu<-Kb z%b|A=00000U@eGk=P0YyYBrm3i{BStd?A<1^YinU?3-${*;FbOZjEvM4ZbE*sZ`6A zkFSHtwfLVsd+gkW?zw>-BcKo!qRrxR~0pEiEmLAPA$; zh@Wz~T!fHPsSI_P!oXxQ8yg!}xkn*XR#sBmfpIzHUIb&a*+QXkMRV%lPJ?o}oP1?s zV#4S1m6nzwge(?|TCFZEEhRHXgb<(4FE20GYPGm?X0$9>`KTOWxm=!{oJ`FC=(P#lpxK&kEKA$i25Kw%|kt!=I34*}4w8F9E5lBx@r?!VPnaq@w6f&SDlWAdL zp`@gQ%oq_uxw*MZc1Q*Q00013Yhv5dc<$Ue@-dsuuC1+IuG^SSr$Y#Jb#--hbp^cT zbUMk$V`F1uV`F-~-r;bNbGncZwr$(i+S>ZjM<11ym6es1QLo{`ET2lN)p|UhKm6ej z!EZSn4t&*%5E6^U)VF9f8l6rj7hWqYEX>W#{pzc)#>dAuZroT{SQujHR0tUv8Mwt} zHG337z{M;6F6#1e7K^37zkhai)?%@EJRZN_@ALV{gAfj(P?(jKH8wWZ*w~1Na*dCV z^LRYmnzXR6fDj_bi;{4os8*|8&E<7Cm0$f4cDY<;vzcu53fKi)8Y%Q?6Fwe~$7Zvs zui(AF^M$(IZllp?G#cM~@4bKzhCd}z1fhTEp^Mhx*lSu{?-}MM?;ZI3PiS7*%00000fLMra(zs*C4lb9=U@&+* zUQ$w0h*=--rDR=QU2r=jd2x2*#*NX@QJGA(efxHSKtQ9>CMPF5Iy%TLb8>Q?efHVD zzP{1X(fZsh6Z|b~HhZ~SEnyyk&;iBuq4rP4 z0`5})00000tWB{^8gp`T!kjlBUp%o`Eb1IHR0e}#bab?!pkU9QJprGh5(os%&CT`o z^$LaJ{{8zcEiETboJdJYd1(2;m`tYGYz}|>5Q>Y7i;Ii(dVP0y_x=0#4Fk5ZfaB3Qknu&|KLX5(JU6TZo?Q$EqrANQ*s)_ipAQeBduaK= zQd3i1E|*553I8LZrKF_n+qbW@v~+xY9Jf5+c9MXcC(MCu5$q9e)ARfN;eQ0f%R*2u zn(>2J@#KNikl2&?z>2!K> za$ugH@x7(=$j1fX}b8{%D zyLABE7n)==8tr!bax?TseEv}3`F?``UPUmGG5`Po06_e$m84N15ai_Ks8p(e87w>= z55C^Ty$7k+SO$ZEI;#o_>XSz8F!s>$gW-u=?%cT(utC5@YG}cQ<2DC;L5#;%1!PJi zBO~FI9Kjyp)|CjZQ~7+p%jKe8DBrtxFSzh<(%rJMGQ4QP{QNw1J`ygMo1dRQHa14B zp4Dm{9v+rRBxJ@Fe8jw7uR@_%W#yL?**Rl2o2jRz&*$sv>Y~%>fAytG&IQ`l8?O4>RqFEc6dObfJG2OP0Bu-rinn`F(wTG#V{GKR?7r1_uYJ zO?-IZ<#GXv`23+tN=iyjPL|8%)P`t{Ml(M@ztW-r00000;xDdCZiKdT=gzZd&wlpV zX9WcX>FMcs4v(3cnIlJzq^GB+q@<*#rVbAenl7ola&Zq00}hPew+@=FOYCy1G939qB9X{qvEX$ksKZKSGFf+b_l+Aj>g(%8 zB9X~t>gnlOZkf&SE5DqT9^uN$%9)v&n>TN&)#{9l442ELP$=|z{mz{`!(0?`Ir;hd zcS5Qz8 z@ev5ewr$%kUAlDU%$bUc3Kol{*Xu_|N5x`sWK-q>00000#M2r|8U+Hui4!M!dU~d& zre*$N}*7=-R`8Mq}{uB=jP^8lg8@m>anr0+1Xh< zW+^i>^YO>L;vXm4-la5(w-`NxhOYiVg&{SgbsX0!1z?C9uVGMVI3 zbq`fgP_S#)uD-s$yLaz0nauqB{Dy{x-rinni(gGmjnnCzoSdARn##<~T<$6#AyigY zcI(!y+}zxND|5X2KtJkj6ZFPF>5$H(b(dU|?#b93|R$DL+nWo_TS zy|1tD_U+p|9xwcMOB#)K=+L2ofdPd=(cRtc_xrhAZca`PP9PsD;?RdabPxSqgn2r# z+3Y8tc%q}Dqo=3G?RF<8C-2_9J77hPUX za-_4f6GtH>C1uZ^JwBiB%P+rNQ8@qr0002-7uLWb0HSDmdiv_st9$qE4QOcuU`1M5 zT3jyIv(G*o{zux|+k1O^UwrY!2xb@t00000_}W@SEsfx7Vq|25#bPbj8xVl-MRv~% z?vw$rmU%oLlgVVW*<3D{+wFF_T&r1i2{4&V27|$3vAA3=lgZ@qcmjbS(Ul71^?Hp) zBMv$l_e57}9b>UrOeT}XVzF2(9*-v$i-T9FN;sp@c>DHkxm-RsH>cHVH5!dttxj~M z)-kD6nx3AXmX?;8nYm%ZhUVtx5M3!F14$!@E1ga^Jw3f?)23)GR0se7;1S?(IP`iw z&Kwe5mq&`*?RLA}cDtP%K}`^ZL?X$^$Ov<6eC*($n@lFF)tcCvJYsO}O+Bi7K3^;r zCnqN-Jm?b>6RoYSckkXE7#K)wO&&37wK^c{uB@zVZf<`3@y81b3#0NCaN!Q(!C)|` z)oQ!lJ}@wVN0BAEMgRZ+)&!T!_29vS<<`&wQRnyjbvm6+rxT0C+1c3%>8=k!k29;) zYPDKtXJ=DVQnItN6S8*n?Ck7YZ@qQp%9Z$k_1DwDz`(%3!0&$dyMqT0zVgZ|nVFfZ zED(}L5DzAk39tGfl}ekMni77a3jhE>!g)L%wOSoKtrU;P6AFbK4hQ$Iga0yC!~Hil zo6YHTn$2di=cmzVG#ZVWnVA8LV8;{$Jq{cW2X1V1I2>lPnc8}<*X#9qeR_JjR4R>I zpRdKm#dqI*_w?!0A-3`R{h=qr2ceM%5Rbtj52oMmzkK=f<;#~}c;SU_ed}9z;poV~ zL^uEd004+LtJSJdD5#63CMPGSq@)Oi!ZkSl>QQ2~TIc8I7Z(@FS6D1oadGh~mxc=S zt0Cy|=kGiSZZE@W^7Ze)`j&?%1&-f}$X41ONa4K>VoH z>e<;@{Fp|g<>lo`B$C8d>1#``*U!w%kWGI%IXM{_8L{{x2>RNg)9I8-rO)TXPqVYL zS3lZqN$gwv16#^}d00000hy#`VEh#C9 z;B^4JJ zC%Q)9|7T)i0_Tl18m*$Dg3V^HzD&E_J~A=_L0_}R$H#HrNTbop%gduOY3=0Xek2Os3;=ZCpH+~ETN002O2c|0DuT#l0m9*2|vjLQE!8CX>Mcr!|Nm2$@XAWHJ## zE|*KGRIakXfS^NH6bCECWHQOVY6}YsPNy^Cq9Ew&1(V4vC@8>>7Zw&) z)2(!BYU;|BEBG-qGp=!DfG%FV80H-!NE!hE000m}T;s%IF}Zdk8Mp{Q z(AN=a(A8>n#O1vG_S7kb2am@qDJj{!c{A=K@z=lp)oeDu_~MHJo$ODaKJE2-UwGk#fIaeh zy}$qc@AvH4!(cFadU_TY7YTw$OH13bWeastRF})8P$ zj~>PK^msho-Q8njV^*t`&1UE2Xse(1AAO}aH|L&v&%Me0+_N<`)z#Gn1qB5M2h(V@+S=Nj zoSeSCzU1WOktTKJ$`uBKk&uvJXJ=PmU;p621Bpb^*Vo76@#f8&N2k-Ps;aWGvb0)l zL_`GfDVa=m;lc$DhckEXTn2;D*w|Q9RMgqoxnji%giuIG$lbel>+9>u!+CXebxEbt z=;&xuIVmbC8XO#qjg577c2+8tg@uI~85zr$FZb~9z$*+64i*;|dwYBP`T5akw5Fz} zoSdA&!NG)t1iXS&D!p*wf<~jk^C0#2_qVsV+u7L}Z>zSp_U_%gAt50+VzeZ29ApLr z1jNV3>vX!x%F5c>T7Q54M;>{^+1VK(q|@mxUAolW-5nYl>ged$*Vk83QPJ4gxOVMY zoQLe}?23wt;NalU&`_;b+uPe)Utb>+6Eo5x0{{R35JJR6aBgmHlbaJ@IX5>q96wk- zvLYE2`gAnLLce+Q=6L4_JUsXA-5YkD2@D$h`}>oVlS4y8@xLA(9#W~as;Vj}DQOh* zx~8S2;rcWlkJsJZ-PF|N>+8E2AP0>IAugAjnwmCDW`jT<-OCHD6A zTefT=)(;L2PESu4i9|$PclYjHwOYMq%^DoVnbOkIa{c;sKR-Wmj6H1P#l^+W&d&4a z&nL2X=FAzTQc3J%Nl8g(XXonGt2rDFUgGQPo1UItR8%x)&K!i0SS;rA`Sa$@Gm|#} z006)egM)*3{7f2+Hss?`Ff}omOd5@*)oPVWrCP1VL#kScD0C{73e}9$h@G7sQRpg_ z%G%o6^3OIlHWJm#(3^1@!PSfu3Z<^DuD!jT%jKF`c>?=1QYaLI=!?tc>U6sP{{E3B z#pmfnUqz@|KpCz`#H=5hH~{>FVnG>8GDOJUr&l zpKt!!BPXuc>-+lpTwPs>cd1mWv$Jz|cQ>&_AQ13)JO>8{)i2m=ww;|_b8|CZfx%#O zb#=j%tN;K2#!f1g;umIqSi#gp-0cw6h87|Uoy}%L{4kABC={a5i9)ncR#p~%0Ua8r zuguI$^D9hXO(T=ZG#FtS|2vAALk&9A;dEFmmcc^fiD(T5?6S7DW-^&XfEOGbEEEbw zBGJs5GZ8|qt*!n2{bt&x8YhSla&mG)2uUOo{6ei(S5#Eg*Vjv>QngyG)9LhjJ#h)) z_|1GAuT(0tva)P#Z5J7m2_UzfEOP3mq9impNj~zQkG~UU{$$9YL0e*`@q1f8ma=F~l(9jt(W(>K- z{QUf)qM|3Bc!KD@{?HI3YE0kpGr#`&>mkPl*|KGe!SU?r={a}q9C?YIo!!>0TPHSu z6UM>80pBl;bXb&ML7^jry1Tpc^71-5Iy4%Mlao_qWF()@A9BsEuC9Cc?sax{(r7dv zAD^V8B;vkn+8K4Bi$o&)Vv0W|ICSVxQc_YwL&K&`n{a(N_Vw3a`}+FMojZ3D^EO$C zA`=RQ=GUCSpm7v!P)!+fdLK*X{4t(M*2cz$7$Jto<2gDy3WY)(G>XMyDwXQz=VvBC z%P9e;o;$?4wR>-=f;g2 zOG-)v0zqkMsk^&-Qc@DpmK6X1z*xv+vMX1v$Ye5qfB)d%V1$rVDy^-p#Xm!qv$C?n zJrT58txP7Xsj0bi=~8%j`0UxUjaL>5g%k=!BoakMMUBf|SdO?Yo4(ByeSLlLuP33V zriMnN8UK{yMmkPTPHZ+CFPYW@{}4q+zPGl-ub|NT`};3myr|RZLPA2Ut*r$D!OuVc zykyA|({R* zesYFQ93hmDkf2Z~va+&pI{^lRF=x)4u&^-l))7L)usuU!u~@Tb&rV245Q#(u1qJEp z>1)@nHQxgh006+SbUNL&Yu5$`2MxYdiAQ^uqf)8FeB213=;-Kzf`WpA0!K$j;yWK} zZf=&#<)NXW0)b!>gT`@uj{J}rR6ew{w1~yxfPetwZhkmu3=Iu6D1vE>CI(UBNLx{xXR!ZLsdQjqfZXIVFffox zrHaMkmX;Q!QfX!goFNlL2(`7fpoLNao9M|_t+j6Xi4;NV~;leu8Qf`Ng7 zTeofz%ZE)IA*9u6ySuw1A|f_#-n?zwwkMx_lKj(UZEbCDZ{O0=Vo799r_)11LLPhU zF`Z5~Y=t!d0DxhM#p3Sn?zwa4PQ+ul*x1+^GiDSP782bJFo8he=H?b094wVe+uPg6 zeY@uU3gQO?B_$;Yp&`RU95hbf>NNvIk^KgPM*Kv8s3*X8O+!{H;2|OW{r&O3_%^bk zq2b}=bKH%((DAUVXgc(1)M~Xyj~=zLv3cc{S4^$LVzK`G=Rg1WG;B@dWbOuT?B3DQK`hZ~wM47vaZz4gPVVSfSXhV-EIQHwIr525o>VDk`$F zvc|VI7ytl%BWh}D?Ck8wHH70UI5-%0Z6KDYRI1wAT0Wo8;cy%r90UTv1Z~#f`eqiJSSUU(;x3XLshz8L?PA zYu2oV3l|!%K&R6WA3nTk)25b|7Cfo@Q%^m0@Zdr6Iv;-cp`)YYkt0Wb{PD-w*w}yl z>t94vxp(j07hil)DwQ5Na-_DlcK7bxfBfSgAI6T27Exrl8qAEzyq*IB0*Z=?Zr{G0 zkdWZu;2@L9ii?ZK_iWSYbl-pfJ)h6FwY6<%XlQ6?@b>mL_`wbi4!&~bibA3A_xB(6 zVSuZv>(#4Q0|Ej#9F9_{EH5ud2obYl@cI0_yu7=2?@A;RYisNF_V$K`20uSPu~*!nKSP0?k+Aa zc6N3Og+eG4(r7fI0yaB4Tc^``dU_hS&;S4cV4hSeozO1gE-o&3E5vYXVzF4O)#68` zetv#sWo5Hx&z`=w@{m6esm5?^26g$ox>mwE<3pwVb6SFX&+$jHsj zMF=sO%r$G)7!1mY5YlS3TCJAcP#H&$#Ml{N3bL}Y(rUHuz4zXcBS-%9r$1$9XB+ey zTexsxSXkJdJ9lufN2Ad``Q($7l$5x*xcvNlyiP+y!}HHSk6(Lxd(WCRi_hl^1Og6+ zvuV?&wzjrso_R*CR)6{BmnTo2T)%$(XP;sJ?&;}?j*ecmXpzA>US3{ICR3?Yk}H=@@$m3i zx^$^jD#e4>xwyEjTD6MD!(hg!n2GZgs4>N^5x5C&6=gvYKw}B3JVLHnwmU4J&7vT$jC^UOjcT2diU<#%F0St zS6A|slJ4&Ac6N67z61aOz=$Z7$_X7-5#PL$8;l490(WK z35~qsVhS1@925$LEEdaDU2$w|?E3ZVckI})bLY;qv^0Br`?|Wis;a7oo6T`U6xoO- zX+*z@Lf7l{`T6<1y}djh&(+nnzrX+H&6}2of>Xb?&6H6WI-U#GxODRK^RHgL z>gwwHyWjl|ktPv92*t+6B7`nqzKs9XYPDCcTtNuM$Hx=v+`oUHcwJv#j}XES1Y=@i zXf#@Wem;}QWV6|9HoL5>j83Nq1qD5XT^l3wlRKb^t7%-ldbRPw$jHdZ$Vl=MXJ_Z7 zOP3m~wtM$(;FMd|>1k>OE|+UCYL<(Oi@`29Iyw%SRpXsyGMU@AZ?`bwrQ&(RqS25zBh$rIA?Vr6B8gIJA5Gorb|r=W_83XMh+8X9UUB%n|z#4}b8 z508X|gzML@x3;$8AyTFt;_1UEg2w4y=w)SPm6eqd5fQUy&BFg?XJ_BIal@cugGQs# z>2&gA8cPPrpUOsE=+4g02wzt7hhlB;^JbJN;Q4I#Q*@{SHRKH(fsgqxE-VMoWpp@u)~Vr-i$=tg6p{Q^78WX z@`!b0GFe|=pK(LG2}0a@j&xj&sYa*Mm6w;(Xf!-giY2D|Z|+!vMuQZl9b9*WYn%{5 z;o;$UOjNB_Yj7E|+3c>aF5(soH$fyv7t_nA3!R8Jrco_xXJ_Z3w~yRH z6$game#`hZc~lYOZ)vQruMZ(~{rdIqzWa{6e0)c2nIOZC(Do}28ZA*!P(Y*6rbWfE zc|(p*qtR#@8ylHS=5+t{0sw&N&ePMgxw*NerNz{|M|O606bi+->kD3D{#mtNudk@6 zu(!9zKm0nKP9zd}dU}#a?@*~!*RNj}3Wdbo@I)i}PYw(WOy4_cgpgP)RwxufK|uyn zFV@%BQ>j!uzk*aMCGR7?O|+yD)6_&v?>^G_;a5=T`0-6&Umw1jv|6n~p`g)dI3gk! zy0^D?S67!iV&jFXt;)%=+J0JK|ukYv=i6XOlaoE-LPHmf4f1WP$<-Dwe|J&4Gj(P z@$p0UDx6+ILPD~#vMyh~?C$JW@` zI502}6%}O=pb7*6fk5!kf<`+#J6yRcl}gRzf9e}@2%NsYzMp>j2_dv~>sC8EyQ^2P z>h*dT7Z)oltB#J2o}L~yn{9c`l+Mo1ufP6!=gytqeDlri z+qX3u4VTOH_Vy)!orwLW_fvePEO9izyOU# zW3gE7?(Pd0E+kJ)2><|KQrOtoEL^zo%9Sf;&z=no4CHV)6bhxkzrVAybJ3zjxN>9m z?Aht*>1WTL4G9Ucx3?b{7^tqU?&;}Sv}h4|)Ki^KS65eu5K^gBy}i9+u~;sb$H&JL z^Ti1S0ydj%T%{Qn7WUImKbfiR9A8dOPK}L?2qC##uG8tJ={TaTt*u>MT|6GopwAEP zCQ7AJ@i+n@At3^Rps}%0qtW1SA~rU5q%}5EgjTEV@9)R2@iY>aW3$;rp&Pg7oEH52 z{OEN0g9i_)s;V>^je~R*u@w5F zk3RbT`|qP^)jSo;$;r8X{raPiK1wXn>-8_a^wKlWJhNoUl6C9Wb#``s`Q?{Kj~=x! z!NZ3SH#awL*sx*a#*I3iuC1*NkE1j7rKYBuUx709hdBZO004e9`uh5ci;J6@n)>_u zsZ^@1tu2?!O-)TDZZu^wSwTTTb93{+z<`a74VTM}j*cd`a>T=T76K;EWN$G zc-(bcTia0#DK0002+@Y&nj z&z(Eh%nA+;4(21e#KgqJ#6&YIFc^%dpMHACw4zIOPjWAo5^Ek3asn!MM<-K+p&P004lA z<>BGMU@#CuYPDJ<62ZvrQ;=S-7l}kTq-QV~W2te%+}+*rycBA+y1KfWm^>X!9Xg$E zd<%W|?%lq=zT=QH@KE^q`91T@GZwB4LF1TYWn~>bdQ_{`PIgAXwDIk?-=?Rhk1>&& znwq0Wk4|FmpvK0=qeqY8vAF>NU|3Wt)!*MAPuZtXC~9kKCp$;LP)$t@9`ck%qXh&6 zjD4~}ayn4xQ&Vki?f4eDot@pk|NU;D7!7 z{l}|knvIQ(pPwIoEs;pXVlmV=P7yktPAnErM4@|ndcOPayD*086h!{YrBEpU`@jFo zPOVl~RaFrYA@^WJS%o#Ig5Tnl;OXf(5rw{O+qRcp zdWncq^m;wCESN;(<4>VbUV7=JC!Tm>q=}4vTr5j8H8sg(vgG7sywLT9ryA5{blOu}mgYsZ=Z$D<~*v=FFMo zhSzerys)sav9WPrV1U73I5{~bCnq~PI^uVQLSaQkMNdx;LWs>~hlYld<1`Dife`BG z=*Z8{Z*Onc>-8KCCpI?Lpz*g}udl1C6AFbrJv|DA!p_dl)6+9PKHgMw;l{?s%a<=d z`sky$@rF*PtEi|D2n2n7eL9_v#bV8vF(V=(!rtC~$d79@ng8qRJ0~Y6=jZ3+Cxwd_FUCIu8jYr?sHnQSy1&2Q#>U3m+dD2Uj>%+_KaNYGx3^cX z*RxoxfPjGL=xF2Ov$3)9^74v}jV14OdV0E(lT&zjcy4ZPTU(o6uXl2CijI!<_4O5r zL}g`Vy}i9wR#sdtch;;~4h|0F!@GI&X0cc-5D4UQIfKFQ@$pGaOw?#Jd3kw_jg5nY zgANW3p`oFnp`qjlFy{9Nr~LTikJr`JRaI5VWHK8Y8xDt)kdWZ)>`dNkkw{cpTH4#& zOQ+Lk%$SjokYLfUsH4P39vREvCfB)#{X!4b!P$+V9a~m2OR4SFDqhn}j zsKK!{fXj6L{P}b`y|}ozx3?Eh&>R;RM{b8O_A865va<5--Mi7z(ed%|7A9U_Ute5Y zERjeC2M5VXty;AT=X2O2LpJK-9`>@$$;qjysad;rZ9zdnU0t0*p&Fj6QKKA+EKvnObC zQ0P;EN~LOTZSC&v#=k*SD%H==kGN|ZcU!k^4G0K$`Q?`f1_me;3IvUl0uPi*-19J* z%zys#pNWZyqezOjfB*jR%-Vm;$;nZvRCDIcv9q%)D=Twyaw6YC>Gk@eq9UnODiVo8 zLqj7YBYk{)y1KfGi;LN8HnFBcp}2kfHjl^S^Z7nLK5DhPtgK9@)6JMM1Fs;JO4HNR zySlpgd_JGgXR%l^nJg?U4BuR4XJ_Z;<~lh!g@%TDdU_5F43w0VC=?1GAD{?iuKN1=z`#Iq0H)Pyi;Iih+}ympyolX*c6QFr&em$R0RaIn zE-u8uA*-sYLI~B>)ipLY`uX{}xw(0Jds|yu>vXz|jEuUvy1>A|fPesddwY>cBoqq$ z{r!oY<5IA*vkMFi#PI-=$;2-t5=nY`dT(!UP*9M+zrTZngIFxCtgQ6$@v*hFB{tpN z-7OFZ{QUf)qN2RKyc!!D%gf7UGFe4M#mt#ABO)R=9F9OB5DJB%p`o}q@ZoK0YEmc^ z(b3WPlqf4JYj1BaDJfwxnbFbFK|w(Zh2p`32iDfs#Kfk(b3`W?~kwW!NI}v=g)U^bOZ+n2L=Y(+S=kMw7YOz!(Fz`&CLxB4fXZ)6bdCO zDk>~2jLBq{m6g@i)schGf`S5>Oy=wB>*wd^PfQM!LDVwYRs^XtdEuJrxmF@cXvN^ z>QqHV1<`Zb-rj!8mMz5k!NI}l>FFYoC?O#MFS&d7u3D{Lvu2G!B@aTVrKP2;tSmG% zG&wmLF9{0^yLaziX=$miuP=_8EX+n`W+sI~S-pBS(d_$?M;^I+`7(KP6bfbCx^?6w zR4Vnsg9kF1%#sH=VzHRd=g*rrZ`d^vLdC_!ot>Qv7cL~m6^Mw4_~C~i?%cWK>FH_t zP)Jx&QBh!E;INx+Y;1ILa@w$A1NqTlNl8g(XXonGt2rDFUgGQPo1UItR8%x)&K!hL zYiny+Sy@0p!2J31jnlk)_pVl}UAJx>afm`gL(iT)d+XM%HEY%otM&KyFIcdEIDeQ- zCO!?;ty_num*MevdcFS6ojZ+rdwcr}7cK~e!r0hYgpg9H%+1Z^a5#@W_88uJ zL_|bRPR@e|4~SqGA(WY!X>D!2cI{exNJBzG*lc!APEK829o~z=!a})RzG%@RVyD8w z!p@yLXTGEmLQ<)8)22h zJ3AAngolU6nKNgUN+q$I!yXw^Mq1n!UbZeSE{{I?D1Oc3@w8fPUS3{XTN_cgZ*ci= zIGoFuFE=za1O){lglcPRWilC2j$AI6LZRHbbBE1lySlm}gm7>>XU?3kurQngz7Vpr zv)8X*Pb6#Mr3%2*$6zqR!ou3x+S=RO@!%-k-QC^Y-834_$;pY$W?NZV(P%UpjW(9q z0)hG$0|NsC0|RooT%}TxS8#E0@$~e3I0xBGp|ja+CnqN;^l_olXtY|bR;yL3)xEvF z5{ZO7&Oen(rCNf|=YRX{w_knr)rk`)@N)_r#z5#ep$rZ$gTdIoef!p} zTgkVeBQ=57q(C6h>2&yp2_Y059DMKIJ*iY`P&b0(N#b8CD=TMbXY-@xxVX4| za=E;vr6nXJWXStkkw}CPii?XQFN}_kuBfP}tgIvljpnlsU6$(XDQ&UV#3_^(5 zmZzs@PEJl!Qxo1_u~_Wj;6UDYCX*Qu5KvZDW_&!!xLhvzsN!deB_$=jy}jg9oy_tp z3!_jdU0q#2{q&QEhsXT+^UZ(zlM~nL^?iMP#Fqn0Ab=wP03ZNKL_t(Sh)Sh8J3A9A zSaM{BG>YOjHsobX&MiU+S5!)+Qd6^9;Y9lT`|-c{#K7?(d4=xoZk&`*D5TTretv%B z`#E=acd=MJFfc%T%UgJ<0x&I5sZvcrmX;Rc^4Ds$U0q#WU0su#x8DLMCntAz z_p#hWj)JK|$I;`%%*k()tE($+%l0rgYHMrz+;h)u+O+A&kt6Bp={SOgh;c#@hnGg9 zty#0?*=L_Mb?;}ni8^WYdVOVO<%}6Kh}I4P0RcHVIhB=_26sHh?dzgww1>Ykn+rBX?ZD{bKb({tv`xq9{L>C>l!gM)*EgUyt#N~JQm=f-djNAX+B<#H|Q zSAhEsl9#B}YN=Ezl}f+-@=Jr2iM{Ub?q;!Ac6N5g3F6{2?tzVWq_eY=h*<3G?8u$j zs8lMIN;POpgTDj~rp+939fMKA=yW>qDNFVUGdO3cR4R=|BhtYgMGVdv27^I94!EQW z3kz|xRWjVoPo+{R6bhocn_#}`4>NvFfzK$3M1o(8<;ud8N@Z47maVPr;>C*%9$1=B zoI;`4*w_#O6{b)qh!#r29vM?cTHKf=m#sl@<3^|CblTe5Dl02HIywdh2DDl&-dSRo z@wZTae?O5K+(wAl<<8DdjYf0)_;KT%QYw|iU7dxODge_6olf`m_V)1bkVquGy}bsV ze!;k7GMO9>$H~dbR2T7w01EwKqEILf4i0QKo6TlVVim5FlheL^`<{LF**kac+_-Tg zH#ZjsPo6kdR#u6LiK(fnsi~>s)mM3gwO~e^z_`gabrnIi9jGIEiH9-cTY-6B3eiq z=f`;0@SUYW%M(jj*r?q&@Wb2k_4PHb+a#h0l}cr*fbhqScLZ;Uydy*YwpsGsH{?2I zK4{4vS+aGUj`0&*@}a=-Pi$%&zQQpx`-~3!yXw^Mq1p+;>*_j-IY)%ymjlAo10r~Y%Km& z?(grvbmdhODg_i-`&vD=I2%Y-~b9L&*!}a=Az(s;#Xx?%8Mx zo;zsv?Ahcycyf(4jyH&Yy#^QzhCyRRY+ztuL{IDSR){X+1adtCo_)yI*O%OLZ=`hs zEEa3_?AZwk2_liGpr9Z!kwZ_#-IEpadYdnCm`Hhb6a~&eyBM;DOypEXyLPPBc zUNR{)Dwgb#<>@GuN`wCWy3J&=UZls72 zqR}ty^oVBh23%cTJ32c0`ufO^>Xk~ROeP~9@LK{`>>77pB<4jWvPujNiJ9;5XbPQ9 z4+#nJ^z=M^`m|6eH15KL#|h}{>@?`-ijM=)%@03KG>8(-_ZJ;0YinzJd;6A_7L7(@ zsy@fr*}1#BTP~LyPaTWvQ9C+144yCG9T~Egb)s3aN0z`%K)buU$;}!y8clzHKT%hP zORBN4apugKrZQt(D~|sA#52YCQ*CW+M8?K=Wnsa=!AvG|!GZ-BFJ8QL>(jHNzu(7dWGMNSs`#Bs= zcXxM3N5@3WmjwU-001x+6H;4URaK?e>qA0943^Vqw7|f?*49=_Zh0}>7KH{ve(?V;qHqgs4=ioSYo; zLcLy3RLtUM1Vc8{wY9bN@$spyt|lM1{{DVEgA;j>n}=!GJ+g$4j}MhfEh#A>ca1AA zFDL)YVzE3uJ)4@EYHMrBpVeqIM5xc_^Lu-H8yXsjca=(|CFhkyA|ZcDB9YY8)Hpjk z<0l|vyt2r6JYGypOhZFMX=y25GHl`qA+cC2kw{`=V;vkEj9Z*qa%9HE*e_dz5N-lQ z-d{Y=r@?B4g@yk9{;saB4h{~+&BO2vAKBU220I8-U;_XE0ASLMe@&xaudk}A;&Qn| zcDoD-2`Mctt*ophIxm^W=kxRO^6uWfE0IX7t*zVJ+Z!4h{QUgHVllDK+_`fvUc7kz z{Q1DZKo*NNFfh>C+B$dcT-;DTHa51Ppg=B{`}+D)D3r#=#)gK5fPesBU*8e!*PJOTle(z2m}I0M@QmL(b?IV!{Jm`R#K@{Hk&PxNGdBU0|Ejp57N$@ zIpgl`?&9KNXJ@BSD1<^G4zq_`IXpbPp`qcsi_E|^>uS|!^7}2G&H28 zrQsTILa|s(qtV>l z+-A?7ZO|rg#flaA`T1pKWjQ%H3uo@jQ+WHQ&RSyNP0Bo>SD_?e!bp11;P95Xp0 zmh6!wVq#*LOlE0mX--ZKolfU+xvN&Ks;HggSP=JpKfyd*mSg`_EJjTVvaX6f^ zva*Vb3XMi%ZEelva!2uH1poj505HBNFvc+ezcN~__Vdp_4+#mGJ9qA6=VfShb#>RS zT}w<%3-B?! zgH=^kxw*OI5r6;y0001{ps6wfF96`Tqqw-()zvj3B7zuNmQJU;xVZTG`YM&mU*AaU zEiEk_9UTb?2^%k7o-20000mWkJvg0C?C!LPD~#vMyh~?C#as~hZ004OSpid(J zzcy39Pa{I8uCA`Uyu7!!cVJ+EMx(JQ00000006)w2pRzZ00000005W-K_dVF00000005I9XaoQN z000000ALaXjQ{`u0000008E0Q5dZ)H00000fJqQE0ssI200000FbRT20000000000 zCPB~$000000002MBnTP-000000001(1VJMJ000000001!AZP>t00000003YT1dRXy z00000002yapb-E7000000DwslGy(ts0000005A!HMgRZ+000000471u2mk;800000 zz$6G70RR9100000m;^y10000000000lOSjW000000001B5(JF^000000000?f}jxq z00000004kV5Htb+00000001xvf<^!U00000001UI&Q00000006)w2pRzZ00000005W-K_dVF00000 z005I9XaoQN000000ALaXjQ{`u0000008E0Q5dZ)H00000fJqQE0ssI200000FbRT2 z0000000000CPB~$000000002MBnTP-000000001(M1Kg|C@d_@&(AL@DJd%}lgs4~ zVT%BmmzkM4*;xPp00000;9--?<;~5_N~My`W(NfYS@@}m4I10p+72E(2sh{e00000 z001!QSS%J1D;5?O&X_TS%jFLHsflWys?lh^`s%Co>(@iX2mk;800000Q%z`SsEv(H zZf>qdqcOkcLoS^gp000000001t1%tr|3=Hh->@>gHganN`o$mG5 zUx$bh000000001{G6sXu+uN(t>CCJ%AwgqdVPQ#0$wZ_K000000001B9P#;lfk0qp zg$W573knJ*B3S?c000000084oCX<Q00000 z006)w2pRzZ00000005W-K_dVF00000005I9XaoQN000000ALaXjQ{`u0000008E0Q z5dZ)H00000fJqQEj?$n0^r!s%{Kp@E+|&wNwrt7F%v`*9@x#p3w3D2ioS&b6=+L3b z&IkYi00000U})1XXmoLL$^S)eZtjg6H;x=RvUKUv$J%J=qxnzX{v6 zZOhKip6pzV!1v#OzjyCm{JN{FD>gQEa`Q84v9YmTU0su%i~mACwqVMd)~7uH0D#|` z=@&F&TCKLSva+V8hC-pl#l^k#)?2%F?V7mFeeuN?Z@&5Fh(7Yc2Om85+;d-k`Q^mq z2!QeNhd=z`yYIdmdpbQmJr5o{7<)S7>(;GXlbr=aMMXstiDa^KVbbi`vzwZl#%s0T zID?C83Z9Js004l6rfbkRFfg!f+qTV{H!obc@bKZo2%()jcUoClO~kf5JUk*IB8GfR zuh*N&VSawTMx&XCECDcHA|fKjr9M12H@BpuWbEmTBe`6D=FFMN&V`|Gzx`G!l}>gp zOqw@u9*e~quho9z$QRetJR1Q3000Y3*PxN0)oQ=~`fH6w!(cGDTrNUr-MV%8`T6_z z?};I=;>C-P9Xo~) zTDEK%ZWH_HqmL5rs@3XepMCbyrAwKanI})4T(oEr@s>fSM>jXO*I$12g_!O~IDJdx@PMpZj&c1f-+H0@9W@l%YmX>zr%$cmLtn~Esr=NbBNG&xrH9tRp z<;s;icI>!t;ljOp_byzxuzmY>D=Vw#pMO3hBO^02^YrP{^XJbew!-7__Uzen=FFMf zw{QRa^UsG59}W)>H`rx=fB(PyZ`AoELlRKP=rFE zt*x!Mx3^BGLkOj&rXD_gI3XdSt*uQY5(NeZ9z1w(^XAP4JN53n?>03xUAS<;+S+>c z>ea`OAAjw&*Q%?lFJ8Rp;^Ok$bI+|>wTk?ay?gg=-@ZLBFYm^U8y+4WFTC)=>C>lI zuU?&%m6e&984wU~@ZdpTUtheko15E?9XqI0>b-mS#A0z`V&X?1edOxuN>1>TPd=G9 zZ{Dq2w{G6N>F@7<;J^Xmn6Ox^qeqV>CnqbF%IfOsR{r)JHX6&Dw`bm`KoSFh@Hy2l@X{N%}#@4WL4-sru1_YguFjppC~{`aCqi&9cj z=FOY8V#SK$;^L7W#;&feWy_X{#p1^we>@^0A~7*BIXU^8Z@$6rW@KbM{q)lYACX8T z;o;$Lzy0=~|NQ4GSFYeJef;sq_+7nTf9TMmIdkUBnl&pXCT7c)E%*W_Hn(QYn&#%_ zwQJYL$H#kmdbYN<;?x6-pa1EnpU#>!D=aMRkAM6lUOqTDc<|uC z*|TTQnl&pnHulj+A0={2rBZL+yt!n_66125J$rUtU7bPR-gx7UPd@ns{dX75qN1X8 z>((VDB_$>%;$u}^U5(!|=*cMGR;e{87vM^ut z4<0;NyLPQXYIpA3*|~Eke%;m8wPMAJqN1XuOP9vP#6(3!J@?#mGMP*)7H`)oKg(jV4jnr5)mL93gg*Q1vmbx_F(Dy=!{Hc=X>sAg1+7+_ zkdRPOQSr}z{?i~4XJ_Ya+qU65k2l_UW97<~%a<=VzBA@yU$I zJpcUj_V)I-Zr$3qZ=YJNrc$X+PEH6R8jbdszx;(pqrLUkTj}ZP2%)H`s82rmQJKmPdRl#~>NP;YPV zOE0}tTU$#$yY}wgyJpRrTeoi6*w`S1zWCycojZ44zI++KTUc1QYuB#h$B#!xM$X>D!Ywr!h2q1d@|=dxwX_U+pzl}hm@ zurp`QY}~lGJaOi1f+Eeo7C^%mqc3m6i43haZ0P%{M$A5B<_dz}ngxzdLNv z538)K?7)Eo$BrFycX!w8^>4lP){Y%Jy1Tm%9Xf=&FkHNNaoe_S#(fv}?b{a_8EJer z%4D)Vd-lBj_S^W}Zfk2>w{G2x88ecTlP$~=0002+a7@>lM%)_n{{8#s&Yeq1Nhv5O zc>VR)N16x@r4T|gnG8RAcXxLmQ3}_uUnibb-@bhtA>`rVVZ54DD(&y@=ka(izx*<8 z1l!r!Y1|)@N~O-3GY28`(MKPt)oO&0PN(bc?nVfOgoL=cxwW;m5#d>Jaq<28_pPn1 z=gyr=PUO<1OZY`;X(>WTuh$cIW_XFgZC`bDHI5h&LSs91XU~#9i=$ zeRcQl-K$ouB3g}ldV1m)fBW0t{_>Z<;M;42kdu?s(W6Jx)6**|Du|Es`TW2A?Qi(@ z8X@%5Q&08w_7asy`}gmE_uY4K#E1}@F=NK3pMHu<3UhXLPD@K8>K=FP+Erd&Zei27 zo}Qj#$Bq#vNo;KF%9SgxUAu<=eemGHwtoG3gLwG(@#DnP83RQ{MK^BT`1s?G zaoB(mTC`}<3opFzx4-?3SSK$pZ`-zQt)ZxR9u% zvazu_c<|te>WeHnC316f4;(l^ZqEJHS6?|gI{x*qf5j0aLTJW}8AQ=EG&Fqi#TP@C zgsAQFE3(vPb!s~n3y{6f9b_ zi1@y;wY4R_9xW;QVRdwL96Wdsf8$Xolzsd5UB7<)_rL!=(dm8V%9U!h+VUZS8X6kN zZ83N}-Yc)X0$m>g002xu(=}++YPAIg1qB5Kdc9sIlfCrPOGKbzA*E7D9>Y+nR3e0k zXVMlTf-8iOLZLti4LKN(TCINTt+xgS1~zZreCg7q{rmS1IrNB=lasBjtwy7%udg?F z3&&mL%^`$vpi91a8W>EY}vAfywJwRX3Lf>M6{0(BKMoc{QUfI>8n(#f`Wo2OO}w|b#-+mV#pzR zcz9TNgPxq6Ox)QMn#vEo^7HfE+}ympyoO9{27|8v03ZNKL_t*Q(xppVw{9gj<;5xd{PWMmm{kl0 zWA*CQ2xlai=TxNMs$*MI2?n{?f(A$#^3({006+Go326Qz`($> z&p!L?v(IK^WH>lDJoC&mW>y|D6dadvO^58cG$h;<>a)*2>+9=FOG`U->XdQsN8+Z? z_%6-DY9iy+hTTo$6-<4E$K!qW*=H#!Dc7!D`_rHP^z_qDpF4NXk^~LlE}EG6`_XBt zwYAmR*?GvbuC1-j&CSi=&J`iV=kv+2G>5}6Si#!b8b{!5ZEZXr&md4o|6Sj!(P+N@ z`s+=bHZA@|NlA%?r;wRVBZU6*pa1Z9yt#AdzWnmbav)RPc6E80>qP`BRuC6AB z3dUSqTrAj+p;>rJ7&oCbpDXj_xPANfHWo2clsj0^6$ow z9mal256jF2WgsLZNak|j&N{`zbDAP=*o=!bDH}VS5s5-@y8!u z{Y7YKsD+s~m2=F>%If8pU%r3;erjs!U;p~o4I4I)yY?CQ=Rf~>`0(L<`}PspAO;g2 z5%N<8!r$n zI(FB2e^)ixQlXh zbR3^#Qd3h895@gZ6f{0Lo+LaTudS_Z$l3-TkJsDVi=S(d ziN#_IN8@mFa~rbGhiDayM}&IgjW@{EU*p>hm`I^yX=T3XtzTenmyReE~*nl)>N45~3dKfjuq8sn@=B$6TP zGcg|@A7a$daX0Ey!pFylJox8`P^r|lYuDm==TDwIY5p4$H|5C6%BrfW`r?Z(4Bj34 zDQ#f+^5sAN0*8ENE+|vHyu4n2{q?I?ufFld8&y?R$bzD`wzf9jgqdN70RRAi-;`+| zG$Mpfo;=yo(t;-dKnN8V7q_*wIXgRl_uY4g4+R@Q5>RlU={QP{4Mw673bm-8bx8HvI zyYIdmasXH}&Ye5g+uIu!7M7l#e)#a=3l}bs2faiHJ@?#mix)2*U47KlVPj)6fBt+t zy{7>>osJvMkrxgQ4xT)D(!%qK$z<~Rd_1QGp{J*(sHh0PmdoV^Llc#jmXfCd7)Kj6 zY#>HavbVP<4_~ZSt8Hv-$OEM+6bd|8)JVx>GK0Adi;Iipa(PHd2>#c~$_hssr%#_I z4}oKEZ;yvuBCJ}q>g36j1`*D&W5*URUTh}ROiWA^i9~pqsIgQf>uEe%hS zF*;8^`Q)inr>d)~*=)8YPsFUPtsi^rF`~E$V?U*bW#)o1kH_OBCnt+UB4k0)dwY8u zN0mSS{PP$x{$GsGMgRZ+U>f-~1dS?{3eTDL(n~KfnM{>R_2P>!-n(~?PN#>5hgVis z?%ur{KWrYI-rn9smnXlTgD$RKKCIy*c6{`bEVL-IsK zL|nXhkvJdh?d|z|KGAWmrKRO}zx$oRm>(A6^ZEPt@2{+^#Q!!mHSO86=iPVTB{%Kc zxpU`7AAMwHWksIKA}A;*H#e93R3$JlaP8W)zx&iHtjffV@cUn=6rA?O6B$bM9ix$$5N}3j_P_&Ry zsN7ul{{A?R$9bH`-O2q`Gq2}g*Eyg2IiGXS=N#vKKFfI_eUI@00|qE6D#pdd2~L4S zx_0eaNl6LSrL&@*qwGjXS;4AX=y{ECUu~G2l@8{2-r!Rc+L z?C|jL;NV~egCQ?3@8#v?>+36h=HthY-?nYriWMuGo0~Ztj+U0zh7B9286&l{v<@CT z`18*{zkBzty}jMS!Xhp%t_v@u5u~7?ke!_!6ci*UC&y$md-m+<>FK$2=~8m7v$ONX zix;h|tjITil5dg>3=E8mi|gp<(9zM^ym|Azd-u995srq2MqFH6NJvO!Wu=mmlA@ww zNJxm2lM_A7ph1J$+S>Te`rf^JZ`iQG$;nAoRdvLO5xaKnA_!vh=FQ2;$lq??=SfJSrUW6*s^6yMMZ_8q9Qp> zXjoVn-#oFTPp{Gvi8-O@nwy)wy}cV68Wa^3<>lp#jg7OivZ#q_Bp&)bd-nYD%P-_5 zi@{*HySpbQCdS3Zb;~XYt&IQx0ACA+ET*p%49Nh#D17fRhcDLa*RLHN9fiI`f$q(l zH!K#byu4gYFH-;j000m}aLN_RKcRan0Q`eV^I$6_C1uvES%??`0001F0ryw{@O7)I zs@l7EZ+?FM=Pn2U006*06M{wn_*$i>r^m&`@p!!5yLa==84Caa007+uV;bS#2xA%n z00000=rE=c00000006oIK_dVF00000h=iaK00000002Zn&l_yqN1YDT?+VDc>VhIs8OS+KSzxk z_4@T|QHjgT%O_5pXk%kzV`EcXT>Sr1z<;u=tSoD5Ya1IITU*-?A3l8U;{0QM;uW=` zqGIyo$=z5U0FWsJjQ}zf6&010l|_Ee%F5cleY^Pdb#--X*RCBgV#J_9g9Z&6WNB%+ zWy_YgZ{PAIyMO<_mzNid#j>=tG&eVQc6L5==nz2=uU@_S;fEidKYz}b{@Af&bLPwu zy2YVGhnkt0Sz20JT3QYtK78cJk$!%DPoF-e68!PUAO8OSo!aZpVzF4YwY4(cge?61 z_usc~-~QaC=zh0u-Foxpjl^WNwYA~l;Vc%*!otGL%xvVykxP~=A%74Khoh~nE$WN( zRT&u>y1Ke#^)oj&H!(4BadFwde?Obe7WH)t3ybpda_M)c8!PaoOP9JOA3;l&EQySa zynOlc<;#~XEiGlVm4B+IPoG*_TT_3&c<~}4BI3k}6PGVvzIgFsj~+dQe(U)0V6 zmX?-e?X|PB+p%K@kH;ej!p_c4)T!<2>Pm%4wY9Yx8X8pXH8nN0v9Z~*WlKXtgQ%je zS+gcSKE6}C0|4-aK+p&vL$`0=9x-Bs;Af!<3k&V+>;?`Tc;Ui@M~@yodh{qOD~rqJ zT3cH`e*Bn9R#a5v?(V*1$&#X?qT=G>>({UE+O?~H|NaC)^y$+lEG%r*s#WxC8yg$9 zY}vAN=T1@E&CAOxE-o%EE-o)GFDNK5Ha51gv7sVQJw3hQ!-seI7m&udapP1~Rb{#f zStuzf=~VRcwfN(YKLnps@HunljFXd-o}OM_US3H_Noi?mNlD3!88bxPpo`(|?oL*} z>({TBm6b(CMqa&o)yBp~=yQakqN0wDj^yNI>GSWd3f$V-`up#{e|kQGnwy*3+uO~| z%w&=Izk!;X+PHD!s6R_fOYQ9J{_~&zh)Unu+B$RQ%*@Qpu&}V=;^NZM(wjGLrlh3k z>FF^Tj81J@Utgc9y|-@NN>5KG2x9c;(O0fq5lsB<-MeeouBD}=b!vA20KO0i8UbXe zs;Wv~U!VLeK4^UT^5y*b^D{Fumn~aH-R|`7-#;`obmPX2o}QlV?d{~kty{Nl+O%ox z*s;`i4GawI?d{3Wvu4fWa=Ay39;Md$`}_a$%P(45TGA9)MMdSOpMIJ;b!tjV3c1A6 z(sKU%`BLt0*F;B0tE;QabQ7e`-Vus-_3G7b%Jty-0nle2K) z!f(F$hFr*GGAB-)XlQ8oDO+bS7{i7Q+qZ9@hlhu!rze-oE4Zf-+{3@Iom5R(bt?tIBU@rv5L7i0jCH3W?S zveMMlq^_<`{a<|Z=FPX?ek&?*e0=<@S+j&jmD8tB*VWZMcI+7WXG=@Vci(*{X1lSm zu^TsTY;0^K2qGsZr=z2zvo}LSh76%v8jl@2wtDqy^7HH0ubrHn9zJ|Hd-iM-6B7#y zi!o!yWM*d4znh(%?ds}kV`DRJ+_-V$#!|NbvtydVUI zdsS6c&7C{f)YNp;s8M!ycJv#phK2?|KR*i#3o9!tGcz+sN5`{g&x+cMl9G}sQ>KvJ z#wJagR9sxlWHRXqDk>`G%$Z|mW@cewF?#gqy?ghPozqCGSFbK8D2R)T8$EionVFfn zx%q+x3tql_Ne~2=%k}j1OiN3Pii#q~pTfY7cN||x3@PnH6?o~mzI{&Gvx7jadB~D#*DGDvKl#Z zvW5?C2S8Z)=O-)T%ELLS@<@D*(%gV|;JUqz#5;`6%G&D3KB4Xgc zfuer-Pq%vYY95bw`t)h~!utC9r%#_+Sy_2_c<|LaF*;j;v$C>mZEdM;w<}hx`1tW- zR8&-8U|?Qe9{IEE*|UdCeDmhb#fuk@8#m6z#%9czF`G7R;&3>f+S6srmMvVk@UOrA zB6DtNXb^Rp5Cn1d>{$l~2eLDygM&kUem*@b7K`=j)vJXI7n+!uj2t=A+1a_GqN1gx z#oyoG#KgqP%F5o}zOb-RR7u32T;fj_Y3g%nX=zeYl9iR!(4j-A4#R9VJ32a=#bQ}m zS&bSs%HH0d+S%6D*5Kgakt0W1SXh{wn~P~)riPDJS69!SJ9qo`?Ww7$Ha0dw`{dua zaig@fbo1uTqH_CmEEa3ltXZ+Kv3$!@Qc}FVy?uRs#W$7njfNFkA%%WRV%;VPA|WAR z^ytwR78WKZCTrKOZEI_zuf2Tv^2CV~&CJY(4<9~z_H6n%1wx7|s`x|3X0yY?!_Cdj z$&Tn@VPP_Q3IhN#!jzl@06L?+y`2ownwpyG>+7dZok|cyTU%RAO%3_k-`{`y`0;$- zI(_=|!Gi}y<>~J3e(KaI4-XH5AZ%@IQ&Uq-O-)55?$@v1nl)Mb7uQoO|1VP-te}C4jS^M|zC-0)Xy}dm> zJ!4~I<>cfDf_U`kk-WUT(0p#*yt!!6qLh>ra!2aw>Xt8GP9JMjQBmRQ>bhso9&$rX zO--v-t*WZ3`tN`LOQl)8diC__(=T1Rq@<)o5XAod`xh)&keiz;CnuMYkr5mmJap*L zdGqFp`WdA!tx#*%u61&9DkvyWR8-{gcMF*Y_P6Oi|pxw*Myd*Hcq=cY}YcIwnAD&8wAD=R80I(qad)wq4? z)TuFJ#-yjG4;U~&XsMc-nyy{DCVkA-Wiw~a%*)GjadDxR96Wf?$H#{thy@E4xVyVA zTC}JO*@~~gSFc`;jg8IB%p?b1e)#aAw6s)FQE}b6btWbz+1c4iNlEnFm`tXxudlhe zIYAKZ?d?mKF8%Gd-~9aiq%Y5&J$oKMe!OJK5-I|G{ra`g((i$XK@c1c z$JN!<&CTt`jT;OG^YPk$Lmx zb?Qv)0uK)lFE20p@AK!MfBx{p51N{qnwpwHK|u`-4bt@f5LF?CCYE?{UcY{QV`JmF zbLUi5Rk>VlL`1~=`SYnx*SWd5TeoiAw{IVLeaOkladB}eC@3JW9ulvp5)awJg$w)l z?_XG0sHCLC+2^?nsn;aDXPyZA8&8(*RNl@xVQub z1!-z(N?-Wq=H|V7_tw_ddV6~dO;BH79}^Qp1%cYy+QGrW^s!#{_V#4NNDxHt-o2MC zTSkvsuV24DZ{9pn5hFnmp`oF_{PGKVZ%Pn^k&#hEM8wvuTgg9f-@fhX=}F$y5(F`5 z&>&HbuHoU~F)=Yz=&Pfnla!Qn=gu7}K}bl*+O=z`4QXg-Bqk;vKYsk)y?ay|eSQ6q zkPtFrBnV>R!i7yuO;k&WMADa5s6KuAgocKaH;4=dW6qp8R#sNzj7OyB&z~PSaDa>$ z34$0kYE)QQ7}c@u)~#Fl`T2YH?4f#)IygA2Sg|4`B!tT0#EBC-cI*%{`b*HGM~@5* z4XOKn*%>-?=%YuEs6V+}?&;H~$;UBTT3QAM2G_4&??SfXEAWjQHyj)ssHu8-^yoqF z2QFy%@Zn^{NDzdAfBYM%3v_&&6`I(-U5KH z0)j>WSt%(gp>E)=U%xJ9qKo(M-zz96h`AA0Q&VehZYDn~D=Qy9d^kEf`uzFx78VwP zfq{ITh)Cncjk|mIE>!?A9336W2>=ZZ4Rv&M?%%(E=+Gfi53@BjHBC%R=t~9-8dOtL zBP#O&0|wB?_9!bW|M=sNq7rjBoC_B&Oqnu;zHrQ#F;sZqQ8HHYwB*Brpk*b!yzP|hR?dw9e;w!L&gF||HI$tke>FMg~3eH{J z1%jtZadGkB!Gpj5{(Jhup+kr2>FLq?g|b*IdV>D_`}17^1`HVR?AbG+8x>Vur94?A znmKbO-x#*+>};~>SWtF$HeaXuzJ2?C^UXI^RaMe&QK-hoM(Qz&>?kNGFqus1$82b5 z`1|j_sTj$_!y`L8n;ue%(y0n5zHXm5aboJ!sq`jR27|$3vB=CzOH2Fp>&JIBV6j-_ zwO8U5m5_AE&YwR&efo64y_06Y0N@LO?x_H>Qe9nbU|>LgzIpRzaB#4wls$X)Y;SLG zZ*LbBH@392@ZIQ`nwpxLnsPWC@>U=qAYks?xzySxPoAWvrpCs``uX`CKYm<%IrH-J zsMg4qmX_{Uyx8)S(%iSR9;@r9bAf>grNW z8G@cafBx>>JHcQ{MMZ`Duy^m?UAuOT9XodX`0?J}-ou6s6PnM9p}S4aIxwJ}muRaNEWRaI4M zYH9?7UL_?Zb#?VuuU_fs=nw?ag>i|hs;Vt5EuH;V7rcG@mL8oZCnwj`)X*z)U0oet z8fl0>rbb3a85tSj;oy1GhvvPdLY*&aQ5L|q~IR90371_ttN zw5_e}(_gx%qM{=GEJ|J0*4D=5a;eI5@ZiA*4<693sL!82&(F^nJVW_(szQpd+m)4- z*REa5&CR7JXl`yM4|HW^<-L3NsK#Uxo6RP#-V(29v*)0-aR&(U0Yi_bLLEfAh=xaojZ3HFJ4R#gt@tSU|=BMR~QV&;K76M-n}cT z-_-s4_l=B<1eY_JOgA?-YinyWGcyMV2Qtjy@p!(zzFW6$oiJfSUS3{mYAQXR6i-b} z&BMc^SFc{d!NK%KEsB_sk06Lkmo5bc2FAz7M@L7KDf9F5Gcq!$1me3ja=BbBEiJ08 zOptcyg5)u*wrx)tz=n%ZeC1{iN$;-h+{yu4g|w5Fh-AS(Fha5&POHMeiyrrH&`T<*z}C-2<3L;qq~Sy@a>jKrXk z=uCwaU$?nj?%K6$MUBDca=8u;4tzs)DH5-!grq|zGzZL{3h;G7_f&vx79Jjc6n3r38jDO0A?~?+pFVvI4GpP5k9+p) z`TqOw$@aSK+qXwWMM*ylk7NOu3up9VVnQEICcVhW$e5TIOG``Y_J!UuCQ;wMeH$7Y zBsL~6nM`MA=QC%{SXx?A6Jyf#?%iAHE>p9QYHMpZH8ly|7e0RcxZ5WM6ktrKhE(HDt(;Q>RXe zNyA_;)Ya7mi$@T|S3uDw000W>NkljXgP;*W zCd$jpsb<5nvNDOU7hk@7c}7Nt(3i#M?p|rHL+`oUH3@56ps*;kDqNAh9 zRek#O2?+^VxpHNv3V-X?txiqZLV5S@9lgU6K@exooRR+PN=iz0c6Oqkb_<#@V+Iu} z)2XPa2=<-(`|rQ0rYa_rIcd@)zPTvaY<5~&nwa36kD8iVr#foVODlN0TvJoS7pPyj zaDgv}^z?N4u%e=(BEA{()6&wY1XHI@O-oDTyOlq1;K0O*6NNS!P$YIh4Gj%lyLPSk z8@_4Nrv3KYZ-UE{l9H%-S;UBlh|t&9A2VhQK@cB4d^mIFjFXcSUz$FB`tQE3Brb#@DT}wY8P6ws&EsVkw!Mo7dFTJbd_&zVNTV z{(AQ88U6JP-H58L(wr>P)Mr7?&dv!52|`!7xVQ+dKc8;Ggb6AtD%9LsLQS1IH8C+! zusU73bV*ZFQ(~vevuDqqJ9lpB(xv2|iHV7`XU`T)He<$&&OY^^SIEwCc6L5|_%MB( zFrAf^RaI5h&6_ucu9bL2B_tg(TU%SfCryHvH~{#PA!r1UiQBhtQ*#oOm6h?$PavpI zpFRf;9GE$CW^!`!+qZAYg)d*ejE;^D4Gqo6$e?cYPoF+bB_KEC>gww1>N;@XKpv0x z(@#JB`s=Us0g$t2&u(vTm;N0I7cN}z_xBGC4V5xIot>RsY-}tUsI;}UMMOkUQ;$k1 zGBPqgKK}Ue<5W{XeSJN7Yx4Bz(^IETQ6sV%8X6)ZBKYQJpoE8q`}z4%H`%XVz4Gz# zp-OO$9xovw;nk~G^t;dRzyE&GqD4(jP2`_NMMVh-3DkizG&FQ| zbzQo2DOFp}ojVsFA20C@btWbz)Js8ynlNF4pP%3O@#BviIr8q^J8~g812FY#tXsD( zCnqO5I+_Z!-oJmpb?ep(7cK+@1c=JHqobp^xR`wDA2rX-AAkH|Z*MPjW~MoF=8%sV z{`~XL)2B~M+3{736DLkkO-wu<@7%d_1qB6GR#pT-3?4kVq@<+2zMe{KZ*PC-&>`}L zs5~C;$dM!E<>jJgkorV&a&p_ZZ(qE4F%_FtR#q-qvSj=A?cyH+NJ)Hkm3Xp9Q=bL- z`1n*;SO5C!uhe#5ym&!&H1P59dGX>!WMm}uSmeWp4`N<2DLn>*k(!#CnVI?1Pe0Kg zIkmL3P~~@VanaV+_VV(gmTH@oh^dgBWol|VZQ8U23l>n1d$?R~VPPRT=ut^YY3tUlix)4Z zKe()@sG#Qkl6XZGf5`0Z?YUfTOiT=QiO9^%>{^p40DLYO(+D6F^jUDq%F5QSUoY`1 zW5mA5Y#nX=rG;xVT)oa)llQo;h(|fM*Vo5b2L}gRTU(+15*-~K$?<6%4yV1n-PqXp@ZrPMiv&6)BqSs( zEX>Nviosy?=+R@U}$S=lP#qR3JTfT z*+D@;a&mG^CbMVHo}Qkb)Z=_UiegmX_9r4IAi_5bEmcW@l%I zhld9T2QwH9d3kv+FE3wTU+IhL?CgB;;zcVfD>XH>xpU|8y*5yMX-AA05gHom>FL?l z*7ot^M*{bXUv$<+}zAy zFm!cwv$C@2ofS84-khAA?Ck7J9$6zJqnw-^iM<&E0s?$|e8~OUvSo|V33ykmSixek z;^X5tY}ml#@syO5ZZONaP?DzP;|NW0|#@C}q zkCLs0OOFE1}AC)cxQPY(|d>Xn0^qF=v$1qB63Nl9d! zqokxHCnu+&p|N7c3Uc~T27{53lCp2#zBzN|ynFXfK|z7X<5^l-o<4n=Z+_7yPo7ZI z+qAd0>*(mXxVT)qc8!{@CNVM5)6-LEF?4iv^!4@g^71B6o-C@UVk%@8?AWm*DJjX# z&8@w?oxxx*nM@XoMV;U?X3Wsk)C>*|uCK3WGMNkp!^p^pdI%-)iYoq)F&K=aM~`mW zw28%Hk+U&PnKC6kJ-ushTLpm6f+5YM&z&Xa)dB!tf^K4Vt z0ssI2008`}DJdz5Su2yEanhtoef##6Ma}>K00000(2W`z8jOsL#3YbO(5R-S78Mo6 zWHM!uIRF3v0001V3l4|#@#9BjWo0pGWHo!Lv9a;Wl`CbGIRF3v0001dy8HL<8yFaf zPs8Bxc(NcV-$_g<+n|vk z2sWFYmX=mgQBhM<^X%C(Hk&Qe%>hUQK_dVF008_8vDxhU`ugVPW)6olV#EmX^WRWp z9y9^~00000z}HJwV;TVf00000;2!`%BLDyZ0001pgrE@s0000007OF22mk;80000Y zA!q~u000000Fe+h0ssI2004kU2pRzZ00000KqLf>00000001Bof<^!U000005D7se z00000004-Dpb-E700000L_*LA00000001H(XaoQN00000kq|Tj000000Dwpc8UX+R e0000$r2hj(j3X`BD3gu=0000_007Yl0ssI2$9D?u0001qdQ@0+Qek%> zaB^>EX>4U6ba`-PAZ2)IW&i+q+EtFr4FfRryAAZW|2Te{agUY?AS^xkE>}gb3bXZMHI%98bE@5PE zVr4FPZEyep0000yKX`CqV{2t}AYx@_X>L6t@4LSuAZcVhB3Cs{FimhnWoT(gdU9n` zdQMbhdTV1jWFkL43Osl^cx`ZPWprU6cx`NMb2@lEB4K22Vr4pRb2@EhbYU+dAb2`> zZE$pJJtA05P#{BZa%CViE;KGMEk$@~b}}M93LrdkWM(>2L`EQZZES9HI&x%YJtAmy zbZ|N^FL!r$E_X97Z*pfZF*!LoFEBDMGBPc4WM(aMd2V!Jcr9*oBO*QuARs()WM(=< zWpiV4X>fFDZ*CxRWM(>HVsCYHJt86sARr(hcx`NMb2?>sX=XhlXmoUNIxjD7b1q?I zZ(?OGV{dIQWq4_3FEK7KFCq#cARr)kZES9HI&^7fW<4TkbaZe!FE4I$E@5PEVr4F4 zZ*4DhX=Y|GF)lDKA_^cNAZ2)IW;#%5cx7x@L}_hhZgXjGZapG5H8~;*ARr)Rcxh%j zP-%E&Y*|EUZDnqAX>V>lA~G;JA_^cNAarSFW;#i2VP|DmX=HS0Jt8q83LqdLbZKU0 zI!SF|XJtrbX=iA3Jt8tNIU+AU3Lrc$a%5&YQba~R3Op}(I(ThxZDn*}J_;ZpARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr1LARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(LARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h3LqdLARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hAPOKLARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr1LARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(LARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(h3LqdLARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hAPOKLARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr1LARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(LARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(h3LqdLARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hAPOKLARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr1LARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(LARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h z3LqdLARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hAPOKL zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr1LARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(LARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h3LqdLARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(h zARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hARr(hAPOKLARr(hARr(hARr(h zARr(hARr(hARr(hAPPJ`cyM83Yh`pGWo~3WB6lJ`J|W6oL;wH)19L)2R0s$N+u={( z001BWNklZxWMV zAPs4D$xH%}o7nDJi37}Jl>j0pUqEz{?HFRC(QpIah*^wXh1!UlDPUZ-QAF1OlbIw) zy^AMx-#h$Qltf9S^!yfvisrqf$SdB5=bU>^>+0%CA%qY@2-!Hk#Y;d4A%qaB96|^o zgb=D6LI@#*5ULzP2qA2w^&S<7k5#|^{KvaD{mD{qXV zsNe6m+ill%@j-mGynccpxbZ6|nv`!v2q9H+MF=T@uIt0$5T7TLiK?m>7Z>C4Sl9K7 zi;L-Ws%hF}GRbVamLJ+^G%`)oFbuIp)3ot;d~tE1>-u;+#uvdxvCnim)pgyr?Yw?2 zE-vs*r_-sbs?+JT%%RJ)B7~62p)H4yn}L_A*X!X=UDpSLK^(_X6!m&NRaG@j(=;uP zW7sglFie;252y1*Xv=z?)7>> z5I}b5x~?dSX`0XwU@#bne-p%U?EC&`G@4GQp69_nr0crx`#}%{L2z+#adB~h&ruY4 zo(FqU6h#mgp66+rc6D_%91asIXD}F;rYVaaNTP1Hi&mcJL3u!yjmKkERbAKBb=@>g zAw&}WL{TIwm^hBHGZY(yV4_K8D-J3`2vrUtjUkF6*kE*BPgpVvz|N|w!cU|qimIw{ z92{1X<>J9@=V}mJo9# z84ictZdcd!`I-|#2vrUtYr`;%grx*w$S{x?h5_qEg^rjo3_G0;4qBj@Ow$~VMsXbX z`+aze3V@MGRaMh8<*yURF%BV2R=)2G_goput2#mmp~@kob}A>1W3l)s48tG@AZy?` zN(huZk4*Vh=)Uipra2f4WVInwR1gF(>Uf?PMbTg|m`ooE)ilR7+7Rm$8EXcJo zzABi7X8p?ZwIYNNsvMF#O)?;KGr%&g8$*oeAPhs{?J`Z1DufV1l|yPx7>17HAgUBA zYvdPn$8icK%TA|*aN3f`@;q;*NL4Z)B8G;Sf)GNea<-aIr-M{3%5`Z1XXw z)sa0WTCtEA@sJ|H60%@{dcV z%szyW3Sg0o&BL~Bxeif+@pvp37@ABb7Z(@lqDzy>1QnXDuC7eeM9N*1Z4z~zQ2z+M z$=%wvJsyv-ibvE-O7|wt2RVN)E-sMT?&|8Q*Xs=igY@BS+ZI)ju+Vxi7~sp|e|h)o z18RGT(S`dZ{!3NW;`^mEw)j_>Gv~9H5Z19Gs~|5?ukZW1u48ErmM$xbl9`aVxO0(Z zF5O$=9OldaJ5%ysvPu#oL@xW#@Ane{Mk_1+Rc!oQy!aQ!Eoz*}{m7-hGWQ{b&|^hP zk(a1<)_$TW5_#Uldgd|-c}w!Flq!mU!B^Yuc4a4BqSROBK7^2MS2?X#3s0_At0kv-?RL9(TD4j&__^EdcDvoi zt6{6vN_T?SJG|lHLve^e<5W&&qTW0uk@=8CDFC>HU}#Zt67r@=Pac`Q-AI}IzvYwv zlGQUD4kwd|VHjZ;B6tPL0~Wi4Bw9`JuUUs{@3^Ye!s72THYffZDcY{)AKxGhRiJfH6D-UC0C|tx~?m9 znEV9G+=mcCmGghk2wm4**DZKH8ip~4k7i@gb$vRWW+v)IoIzR_3dAz<@pueN&u};t zZ6}k7co&DYY%-bPi9elA!!VSe;E4kzdP|>=I2mzg6Nkf$BIp0rG;K1Olu!Okm9vP@ znQ8wxj$PM;gnD6^2{w04e`OH!3OB4&s+=mcCmGghtwvFUjD5ihs>y{F|frmu=e!xKVz$w3%G$ z>x(bGc=+&PVjn`tGH6m(K;d1&3t|ui{eFKsop!rjJRe)FmN5LHlA@BzafeRC!*tdR zc$-0UQ<*XUZ<^E7)75ya-hco7IU3GXW@~ZE6#ts_l;$Y@Ri?DrlFFYELN-L@DAz{s zFbsvtNq?Q~R5{4V7soMD0*VR1bzMjt{At^^csl#O4ALQD9&+?yIV;wrV5zxSOM2#Vf=_BUAG);K2 zEXzXtW*CN}(FlQ@=tqtfm0P8o@MpGEw#Q>N-)gcy`?EhYuiaTq{>;|G%araFyBU66D zHj`+T*@U-)tdR!~9{j^U{DbfNC|`wooV+ZAYza-O@Zh>Gsxb&hJJRW*U|z{4Wm;{3 z#1VxL>G)8hWG*7q6Y(hvKeiW#SZdsOPSq#=8 zWJ_p_Ehh*9SRIfaUX=YyEDI`bg0k4ftu}x;Qkg|jjkCX+;R zvrj+$G|@^&UI79ra}W1^2m3Km6CkOmN`x&JlmIEYSGklgFZy`% z;&SGWv%Y`-eqxJ%4Ydv-R5|r}y$*sPv3N&b;FDefl-Wc{EhgF$n9A%%qA2QiyOYTT zqs6i;6uw5nAz=l~8#$}bGf9;*hsptPU9Elv7BVt0g*PE9;9E^RX*?suJ6WgG(RCeD z4psoctCH6w-D-P)5du)+WD>`*{O4dW!2Bmt3aP3pBA*<`5g|~@b*A0Sc&{)F`~7~m z+uhyWbsWcWoZa2sPN#!mi9hjQ*x&O!$8oydZmZS8M(FZZtJQ9|5oJXdWHcHAJ4FySpn&iehX4c|^%Cc-?N7w~UZkX-r%WGR}!)cgSm(UKS)zYnh2ZQ!h(8)P~|AH^+oyJdNg8zPvRjm8jZvnA|+MACbJbGGQ;7} zwrw~%`~CiKIFze>$ti_qvWMxq4iyd;7(_V&m=F~nMUiYt>h*e%P`zHyb=_XC=Qs{Z zlq?eW^U+5iReQO<{`%|m#%9&Mg2!svtIb8}P%$0`g8}ZiVHj~7$8jt~Glp5_0COBi z#3>F21H>Rg_4fOH3|#~uVh2<$MI!P|O8!pAAK56CgY`Zz?_=GN>$-^rKH^0jD}es> zU;p*5{_3yfCQ8m?B8~%+n2HR;z-(j~hFFNVBr6~yeuO)$U?$cy&G-F&zprT;mHINY z&ehcwyjRNz)=697Fs`7d;gAy1?g=xY+)2Xnhfx9h9|Hej1r*CjHBEC}cQhJpj39`j z2tP)AM~FH6S7v!;Tw(bZ;6UerDNV{dmEivp>;B~J*oc|T^E_2mu|>#qQaP(% zZH|g^P*nYX-}5}%w)4z{Y0IB!nvUZPhePD#gbx%`vZiSmqUlh@MgwI7krBsnzu$Kp zr{KXZYaqPt3dEm|<3J0}+5@RM4U0ZD3}e=q**Th!Eq|dm45QQOAQaSfU6=`l6%dF( z!1dJFQl$suY5#Uz?b% zk+VP;jZiwbpp!5RVZu?a!w})b6bs`qR)x!c)~8>q)#^$>cEj9QkV$ow!O@WW;wJ#< zFTWnleRmQo4+w2JWJR2wp7J6TQ*8*yU@%BzO;mEMfa$k7Ve3u=lZwa*xs~W}GMOON z6J`|A1f{{yP}8)@WRf^5vQ({8tpf}5sBnNHTn2$PVlW63V4j&U)ADDUrt7*$2a0T1 z*uiz(Ir5LEN3~^H!{JcZ^=`Mj_Q>~ibv%4)oS6)=d;8J%b9S25vm+Q zww)Cef1sMFo7SmhwK+ltg)d3CoF{l7_O0;~0tEWjkUS zgj-6}v|g`=t}M%n<5&oh%;4x7Bcma_77UISRrzFnGxuUEhG|me5VCcIVTgCl#LHzA zMXu}O*^NJK+fKayrK2F_;v@z0N}`pV#FEU%-Me@9_xB5Sm}w0>JXQ#k56Z?f}@dGK`ue)IF1~qBV1Q7 zcg?DP7Vm*jfH@ovMd7n3iY&_#F%WpyPngY7QmsJZ%-3oe)I)&iqMby}6G{RyuIQ~SS z68;P6?{T0xOf`%5K&WyEsV|vP2$aDuHc^*;{IF5tFfUfJh zt~;GhMTU~WU?AovF`3EBQ%%!E#c~9eV&jdih^%rlh0d#2uU3CD^QB8pnC`+bbR0*N zfQ4HJ3EYuKK!}4if^+C}IuIxY!O=HHMk|#DM;F+E7Jo_LYX(&gA)7385>W_Z@v7%} zNH_^MK|v>oPC&g8u@Ti|d%a#>+ssy^w#>TPJYl*MC1BAN=6jLi3xXieJ+ve;Z56}e z5b8gj4MAuE{MU_<(aOTX(S%UtYz1%Lyg5HV=XC(DU%$@W{_x?$`KGSCC{Us4I!N(6*Rf*^m3GMN!%m9x~y=ydQt zf`QiP@*`9^gw&mM6oR5C_LD{o12uWxi$d^{Dg_TE{Vj@ujR@Zf1*P)P9Rb5wDNfbreHFA+r<~SgYgSH$( zW>Y^DH+AFS;2?AR&d$zyPb|}cC7bRtOTfaEs8k)II}?Usc%Ikq_eH%eg*grgRSqF! z_0%U<-WpX-rqDS(J*`8f+d0xDuU$!_>=Ytekj)acqUxXHpe8OqLX|@ZsZ8b6Cs!UR z&^n8xOI|Tp{w*Ye=Xnr1_0Mr2Tz-n8tkLC1sB#D)q%Pc8*ApZbh~?GwEHE?7kuG^H z$P1Sc&s*CZ2kGGbI=K7@RSqG9Y$LO#OI{1TUa#BjigFE;$)s5qnfiuQsdC=EdsheN z_a>3&gQ)h!bQ{Ra&NAy;I7w4&4fDL-nqI>^4>+*?B8w{*CfA@EP_p_h!M z4n9JaLkL;J+?iRCATL&FBUMgQ*4WP>bmZw@OyQaGB_Vf^ZMmN6Cw;1k9q!$`2cfgb zRU%Y5gb+d+DRk20`K@G0fe%9cWV*ecK7G32w<{@S#L@8~p}n3yeY%XRM5uBIA!NH) zc3sbv37whLPl4M@?!Ua-C^Iuqv6QLLRU%Y5gb+fip$=1cf!piy^70qI_=Tb{ArwlTSYR@sEF8hpRNV3?)=KWCLGJw+cS~7U!dnKB};{yeOjk_wQ5a zEKlg95r&_WlM~sxb9{V!CcN)2xdq2?`ww9YU2u$d-~9(Nb+)Dng-iqr9l96c>dKDd1bY1cVS$XQ4B9bKmz* zPEP81ddJ7d6`tP1hY!n#2c^$skyJpW=FpZy2qCj^<2tg;rD1z}dvnBwZ?HwD+S8*& zhfw8^Z1(r}Z{NPn>!2vg&dyHe%Bj3s0i+~v-n=m&p)+^$IwiU8Vj z2qB81D32dM&fK0?Ns6pj=+L55M(8NC=xjZ-<_wL=bpMN?JP)$mgSDUM8+tM9T z=&V5Ktl&Zss+>h7ju1K@e)!?h(GiV0C0XxUp{8)7%Be{%qIy%wds!PKe18h zQ0S0iHYYCU%P+qykT_*z5FvylCh3P+)KKWm-JCHxHMvlPDyIU8L!m>+tlZCmSB65T z{OQ$1UQp;zV#PQlPFmAoC3#}cM~@zH)fFLR z*%Ys{%Uc>Y$2z#02O}>S0$gFHJ_aLi56!maAROmLi38HBtJ2L0A*6El3;Fi9zx^(Y z`Hn@4&T7tt7M-ThY+Ft`wx)QM_|ef(!o3Ak5Z9KI)lRd|jp2TQN@{A!KC~uOq8=9UO&D&Wufh0OQ&|hS(6Hd)n1(Xf8T03I5;>wJgjZ4N(vpafhwoG62iYi=q#QjklBz|qjJ(4 zFE1~5c6N@BkEwDpsplG{n#}quyEyZG-^_JqilTh+#TPZXk2NpKO`$_JQ01g!ac)#R zN-COX4l@tUIV;1mEcwSTZ01j%JV{I^H1H5Yp+liVHb>wPuiTr^;WB-K(!7 z4<0;7NE7TZhvHEReOp{rURw%WS2qeEg(>R7F@;VIh0Y4D6{)YvnYE-t z!X6{+K(mH0%hsJlbk6hV&pBcmN`dQYCIO_-3r5z&`T2SAQnI}NoiF}_LWe?!Dre~` zCm~{HYQDIchpWn$O=hfdtpw1GUa)q%eR+BL!3Q5?N^P=sKKkgRYCHV;>#x%r^A?IX z9SR)^9jcrqN}LKyI?QC|Nd)L{RrxZ=OhI;bcBUxG&d$zgG^&ZcZ`9PfJi2fA3siStkt?R3LOd^s+?u1oIK^RIK?5%^0Bz8e3j|}Hj>NB zOC=RGTtNAULbb{XUtxcL|L)zpiLrEkeh$Tk?~-XpeDA&Ye*4?sDvEOF&K+foyY{QAL{HjU!!YEPQBv8I_j4u65m&C9L|%i$ zSV|?k#*w>^tB24ztv+o&Ej&+qZ8Q>~MN|nz{Y`_ur?`q0phq zS+mNiiI|`{hpc@B{_p?(Z-pH~sUXPdNXi~5{fB1s_4Ib_2~s2L$sMD)+W z!NJ+tS=zBB3z{Y>p1P6eNP7MHb#d2CiKY8*5 z&)jrePF0F0@0mVd#5AGMq0phqSwCxBKwgrxIfqFC$ySLTXcUpUIuVzH;Oj~h&%wb# z<}By^5x6oXyweMVe`2~D0C=vYRk9ksdDOU9XUEWN{FyTL=hnbn5H=z zjYgx<)z#J2)s?(%tJP|?S}n`6EX#rtlJ|tfN$ke!S!W(Te7K0O_W1bt>C>mRJ-rIg zus&z9CDg)}la4#C`BkGihmiS1j~t$y7tjN_lh{qzc<_8!(u+`DqU!m`b5`EJe}9hN z>c8%c7M;eO302ODXpp-q?+h88L&&Vm&~`B=;YlC z3LUDPQWB>TNoZ)!Atl+{+v7#Jk%XBiPxM%p^}X+X5BvP>-~O$lD9@ffgW|!gL&p|{ z&I;tk@$vEE32Z2Iwp8Ub1unKCC7GipBFXb@{qC6-WO*cFalZQMEBU92U)h^CZ?3MclxsT>=BMpc zJS%`gheBt2RZfCNEFjNZL!OX3_*29t%S}p3pN~KO7&$QTo|?Hx=hm%T9KM7UllhAi z6Uo8B0jjL;?Ce1CKozBb>6vMQ=O(YW$B!S+(OcdkzWO{OD0C=vwo&CYrEpc5$Edv6 z>h0UNM@L7G9zA;g{CV2;Bkw7H-{;Str!R|K2}qGbEFpbfy?VvrOXlV$Klw>|TJ_~Hwk^UluB$;k;e-nnz<)vH(g`};66W9RxCS@-t# zGKEg99uX8eD;7G7XY`@UsX*myfW#3epXtfUdp?#_Kgf=skUI(KBgQf9?TurN_v_A` zJC~Q2@)rD=*eI(X@%g|1`@hf5&hYvC{QSj>7mA`_ty2OyMp&>UJv7I~O!&6M$}9xc z9UdM+CE%w@uNH+)vxH718GSZ`7W~tTFkj})M6wxS%%~3^e)wVevr2rO`M!}*KY#EC ze*hDD-kdQSjlTE2?|t*lH~3S$jDmaj?tS~)-%iV{yy|^<(TLSr={HrW45d=Iy&N z`Z&*GR7vKiyt7*T7q>VkCnt*w9gOG26Zp9pxlD^rwH6)m^AYEOm4I{na)oZA%2|)f*(7&Wg(@eH%!l~X zr%&ZKzx2DcxT>;yUgQ)}ByZQVXU~50qaX44OO`ZNi|2#9NhNc8=Ek%h5@JX;GtV7i zb98hh+kS*^Oa7ONheBsop_A4$V(6OJo z#6^}B7=9aPXJ=<;XLx~r@#011im<=MhG3#H05XPjhcpRj><{P9Wux7Fz>(e76X6w*=L#2$HMjlag%t;@9gY|P>IXS z%e2Fb(udTU%!f=t^l>`L#j97Ze*4?sD$*J>F?D6es|w@LuYdjPtE;PD{pwejmzVI( zVf)7)f4l<4llO?YFIxk+lc=qhs!NI{I&$okvgU>$u><2&i0e^{Gs&dF8 zKc2j&*sQDG@@zl-en0V!OX)*4o=kUDu{Q_irG!~XQItRY!#~Viu@A)~el;t8M9jA; zc6)@5e+~5Ly?gf(I}|Ha`Lb8LXpT_jtdor_NS-HCWS2og{ZRTW&i(uMGq-bLe{C=3 ztfTs8Kl|B#{KtRr?$k}_2z`TGWppZ0<&fO>zjXSXZB{>6c}wX-2>9faPd@qN6JCe< z2p!9^a01jfR5^rHqkiyVXJ?1fhY$*#wFn*AIVEz<6RI3SmZg4V3y_dLckbK~@sgB2 zgiz=#E_7t)6!i^N4k7DQKXP#ZA${aDCzL*fQ0SBtI(S?#_=YNnkou}0k?ABYeS`p_ z^l28Db$A^pbe1P{L($6@Zq!1KI3Ji%Gq-E_V%_)=rqwe zHFvFFLX|Tci!7De>}6IBLYRC+nDespln_#LmD32J^W@2sbFcle{XPK7E>5JLc})yO~)5nV_XsFvHjiF6P%?f8E5dQ&9ADR%M`E8$|Ei zxwA62uYCTCe-UwuPfkuMbWYLSNR>kfA)CxkfBMrzE@MS97B0@ptc;kgU%YrBw#YI5 z%OSs^r74}X~6_~glxI;`o-lN7R)!H3Mq*3Uox ze37H)d7b1#GoqGI<&c@5EHt7LvQQ=JJHo)6;kF-tqbna{vDQ%XHe9pxf;>>#_tvu$q&n${~c1?V^=J zOgWj;XRRhtoN80%b;ognAQ+FwS65e8S673JXH=M zglrvR-UWtXG;4Nj#JnEIvFo~{(MZ>IY%xvKwr!}KD2g1%>2|x0tN^FVaSSY8wZo@D{leES{6U(y1(c?JA7T0wPI?3FKZ{6*7Mcect@UP=I zQ51=jFL}_+3qqAc2qC11yeYO||HRaoo~Uk|8pALYQ`bzhS}LL7?lp zrfKrV!C=tq_2M}0bUKQn*tQ)-QNQ2EY0J~L>$-}fgkfk|magl%uJ`->APCZ1M8mvp zUDx$I&ooU{RTGQ;L=)3AJ25GgVIiY+jfU{31wdZuZ* zt{X+sU@*W&(=>a%p67Y}e!ti2xvpy%hH08X5LlKqolY@zVdGa{eT9vf9W_m}ZQJua z%d*Dfar!7&Vr>{k9LG4@^g&0Xk$ebo+|^&wFbw5zW7$X3>-B8gwryJ$G1NT~0)gTDaKep()zPr1N{xdsCY=qcC z4kyDf+U<52hCvV{4k1*IIF0fLO<#~zs2mC%LI`OPa!`wH+p~Iq(oCc_R!g}q)Kz|V6mRe|P01@p(=^$P1o46IrD>Y3>yG2Vnk8IXX?ne05CrXZ+b|5s zqx2S`atgZ5Qv-1v3u}{M7=~d8TMJqlh9UaT>_pxehG87XVsypVBo2`&vP&K`{q>iw zatI-WG>h?gyhtog=Dd}jsDAm&UzV8~S2H`V9>XyD{eBch_!c;S=pI;@hQlE=N?L~r zpPj0z))SfC7M~=-ViZO3eIK4au_X*cSx1(+iK1;B$Gf|`kgAD8WGcdv z2QB#ewB-;&Y6?@@*MamDTQD`cu4~&i!bE)EhpnaG?_(n-s_%aHyX6OfWm#w&$8o#e zo=&HkN6EC8$OqMReO=+kX$FIV>$t|l0oE_ zxQ`_dn!X@ZIfM|Z9C8C#@RFEf%TJA&6V)I6(H|{ocKq`{|MOXA$F-oUDi&2mQKYIW z>=PL6)9Ew}Lrv3g<~Z%iWD*1c_8bm}5R}+ck%Dd0TcH2M&T_Y!rd?fKiBpn4gW+%p zkD=&IY(YQhKix^@M)7?`+ss2uCKK!fKV$iWW?qm2TInxL8pKj75`X^r=e)wj93CEK zmU&lLESfa)2_UA}GCL>cEqS9n!_8z&O3aSwqhOy34_b$ZEmqQf%#5JHthZe|;Dgb+dq*bu;q85-EMa}9m}$IcXtcYfdoMyC%<2|%E95PIw%M8 z<_)Bhh{H8yED=JL(|8=mX|-CNPN&ssb-UdqCFLxBsEKT$TmJ0pcDuH1Pp8w#WHKI) z9mlE3yExEwebz!kn>Uzm9HJP^>mA88A4rWDOPRD%WM(?9rx;Shg zzu!k$L3HalPPf|?yP-quiH)x7cDr3Bp1lUN(OWN z2a*^|H5^EDXv#e8SkMIHK{PBmLh^=$Kx@| zs$qZB9vhFxwrwLJw{6?KUJtF1Gdr&>(qM}ZKv9&*WP&%Oi;D~Kzv)ggk3N}9R8<`g zhr{6zHDDWkN2b%MZQDp4hSceqS4`Xsu~E~s(P)Ip3|l6X$#goMPN##xK-_L|3&d~A zwr$b5ZQHous;VY>M%zRW7Z(@uDdFymW3BjSyZB&Ud?e$tV=({wzyEvQNY48yRXCVy zK9EEwH5^FAq-{BQS2c5xU_7X*YTNc`G}3k5w(asGBy;1{)fMVapt)ff=|e0yGRX>H zR={PsY4eI}_`a`c8s3I=UEkf^g&QkgyA>c z$)}%wnm&3E1o%xVTqt-!qw%hs%C=y{%D7`Qv4 zP-V#xlDQG~Ijmwc45Qs{KYsi;afk&+CZWfwspz_%4$nlT6}g~1hP!yaCmu<8IK4z`j)j46SAmO*i$DF-KP^5)B_~g)a+)!%_If?b zvc&jy97oeM!!QiP5TT2hJPK^orfK@Vk1#{LJruXieAFgLcknawHu~sVlKJ5x`JIDxjn>giB2+)KAlcgRn>JJyNQ!;^c}%F8CFEgL5}Hfhn?j; zMRO6+Der?w(i_8g5x|%}hZ`eaC)XhUv5A9u!I3Nm^FROdKj)3)yrWk;m^qME6MdXH z3<{!;6XOB*qT~q48?*=$mYb&!vB=0IE1-qTO_ujAg4dCRNf{nrOc=BFS=<(}qT4@%aWsAJ>5(2wd02!*13)j_6%gRXxuWfsIWc%rlMTyun=Z=$kZ{n?8_c z{j!N+P-alccX^SAtr&H3^YkGW8JT3+P~{M^B9J|0zIg?X3_M$H+vdgOK;l3mger#+ zLI@$-3!{$-A%qY@l|u+2gb+fNLkJ;+5JHth2qA