Browse Source

rename confusion_matrix

fetches/feikei/master
Shuhui Bu 6 years ago
parent
commit
b920ba9550
3 changed files with 1 additions and 88 deletions
  1. +1
    -1
      README.md
  2. +0
    -87
      tips/confusion matrix.py
  3. +0
    -0
      tips/confusion_matrix.ipynb

+ 1
- 1
README.md View File

@@ -76,7 +76,7 @@
* [Python tips](tips/python)

* 机器学习方面
* [Confusion Matrix](tips/confusion matrix.ipynb)
* [Confusion Matrix](tips/confusion_matrix.ipynb)
* [Datasets](tips/datasets.ipynb)
* [构建深度神经网络的一些实战建议](tips/构建深度神经网络的一些实战建议.md)


+ 0
- 87
tips/confusion matrix.py View File

@@ -1,87 +0,0 @@
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext_format_version: '1.2'
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# language_info:
# codemirror_mode:
# name: ipython
# version: 3
# file_extension: .py
# mimetype: text/x-python
# name: python
# nbconvert_exporter: python
# pygments_lexer: ipython3
# version: 3.5.2
# ---

# # 混淆矩阵(confusion matrix)
#
# 混淆矩阵是用来总结一个分类器结果的矩阵。对于k元分类,其实它就是一个$k \times k$的表格,用来记录分类器的预测结果。
#
# 对于最常见的二元分类来说,它的混淆矩阵是2乘2的,如下
# ![confusion_matrix1](images/confusion_matrix1.png)
#
# * `TP` = True Postive = 真阳性
# * `FP` = False Positive = 假阳性
# * `FN` = False Negative = 假阴性
# * `TN` = True Negative = 真阴性
#
# 你要的例子来了。。。比如我们一个模型对15个样本进行预测,然后结果如下。
#
# * 预测值:1 1 1 1 1 0 0 0 0 0 1 1 1 0 1
# * 真实值:0 1 1 0 1 1 0 0 1 0 1 0 1 0 0
#
# ![confusion_matrix2](images/confusion_matrix2.png)
#
#
# 这个就是混淆矩阵。混淆矩阵中的这四个数值,经常被用来定义其他一些度量。
#
#
# ### 准确度
# ```
# Accuracy = (TP+TN) / (TP+TN+FN+TN)
# ```
#
# 在上面的例子中,准确度 = (5+4) / 15 = 0.6
#
#
#
# ### 精度(precision, 或者PPV, positive predictive value)
# ```
# precision = TP / (TP + FP)
# ```
# 在上面的例子中,精度 = 5 / (5+4) = 0.556
#
#
#
# ### 召回(recall, 或者敏感度,sensitivity,真阳性率,TPR,True Positive Rate)
#
# ```
# recall = TP / (TP + FN)
# ```
#
# 在上面的例子中,召回 = 5 / (5+2) = 0.714
#
#
#
# ### 特异度(specificity,或者真阴性率,TNR,True Negative Rate)
# ```
# specificity = TN / (TN + FP)
# ```
#
# 在上面的例子中,特异度 = 4 / (4+2) = 0.667
#
#
#
# ### F1-值(F1-score)
# ```
# F1 = 2*TP / (2*TP+FP+FN)
# ```
# 在上面的例子中,F1-值 = 2*5 / (2*5+4+2) = 0.625
#
#
#

tips/confusion matrix.ipynb → tips/confusion_matrix.ipynb View File


Loading…
Cancel
Save