diff --git a/4_logistic_regression/2-Logistic_regression.ipynb b/4_logistic_regression/2-Logistic_regression.ipynb index c6a1a2f..497cdea 100644 --- a/4_logistic_regression/2-Logistic_regression.ipynb +++ b/4_logistic_regression/2-Logistic_regression.ipynb @@ -241,7 +241,6 @@ " pred_func (callable): 预测函数\n", " data (numpy.ndarray): 训练数据集合\n", " label (numpy.ndarray): 训练数据标签\n", - " 散开数据,但是不在原来的数据上做修改\n", " \"\"\"\n", " x_min, x_max = data[:, 0].min() - .5, data[:, 0].max() + .5\n", " y_min, y_max = data[:, 1].min() - .5, data[:, 1].max() + .5\n", @@ -282,8 +281,6 @@ " def train(self, num_iteration=150):\n", " \"\"\"随机梯度上升算法\n", " Args:\n", - " data (numpy.ndarray): 训练数据集\n", - " labels (numpy.ndarray): 训练标签\n", " num_iteration (int): 迭代次数\n", " \"\"\"\n", " # 学习速率\n", @@ -557,7 +554,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -621,7 +618,7 @@ "\n", "# calculate train/test accuracy\n", "acc_train = accuracy_score(y_train, pred_train)\n", - "acc_test = accuracy_score(y_test, pred_test)\n", + "acc_test = accuracy_score(y_test, pred_test)\n", "print(\"accuracy train = %f, accuracy_test = %f\" % (acc_train, acc_test))\n", "\n", "score_train = lr.score(x_train, y_train)\n", @@ -632,7 +629,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 2, "metadata": {}, "outputs": [ {