|
|
@@ -241,7 +241,6 @@ |
|
|
|
" pred_func (callable): 预测函数\n", |
|
|
|
" data (numpy.ndarray): 训练数据集合\n", |
|
|
|
" label (numpy.ndarray): 训练数据标签\n", |
|
|
|
" 散开数据,但是不在原来的数据上做修改\n", |
|
|
|
" \"\"\"\n", |
|
|
|
" x_min, x_max = data[:, 0].min() - .5, data[:, 0].max() + .5\n", |
|
|
|
" y_min, y_max = data[:, 1].min() - .5, data[:, 1].max() + .5\n", |
|
|
@@ -282,8 +281,6 @@ |
|
|
|
" def train(self, num_iteration=150):\n", |
|
|
|
" \"\"\"随机梯度上升算法\n", |
|
|
|
" Args:\n", |
|
|
|
" data (numpy.ndarray): 训练数据集\n", |
|
|
|
" labels (numpy.ndarray): 训练标签\n", |
|
|
|
" num_iteration (int): 迭代次数\n", |
|
|
|
" \"\"\"\n", |
|
|
|
" # 学习速率\n", |
|
|
@@ -557,7 +554,7 @@ |
|
|
|
}, |
|
|
|
{ |
|
|
|
"cell_type": "code", |
|
|
|
"execution_count": 11, |
|
|
|
"execution_count": 1, |
|
|
|
"metadata": {}, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
@@ -621,7 +618,7 @@ |
|
|
|
"\n", |
|
|
|
"# calculate train/test accuracy\n", |
|
|
|
"acc_train = accuracy_score(y_train, pred_train)\n", |
|
|
|
"acc_test = accuracy_score(y_test, pred_test)\n", |
|
|
|
"acc_test = accuracy_score(y_test, pred_test)\n", |
|
|
|
"print(\"accuracy train = %f, accuracy_test = %f\" % (acc_train, acc_test))\n", |
|
|
|
"\n", |
|
|
|
"score_train = lr.score(x_train, y_train)\n", |
|
|
@@ -632,7 +629,7 @@ |
|
|
|
}, |
|
|
|
{ |
|
|
|
"cell_type": "code", |
|
|
|
"execution_count": 12, |
|
|
|
"execution_count": 2, |
|
|
|
"metadata": {}, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|