Browse Source

Add Intro to Deep Learning

fetches/feikei/master
Shuhui Bu 6 years ago
parent
commit
cca11920a5
4 changed files with 19 additions and 1 deletions
  1. +2
    -0
      README.md
  2. +17
    -1
      References.md
  3. BIN
      tips/Intro_to_Deep_Learning.pdf
  4. BIN
      tips/cheatsheet/conda.pdf

+ 2
- 0
README.md View File

@@ -47,6 +47,7 @@
- [optim/sgd](6_pytorch/1_NN/optimizer/sgd.ipynb)
- [optim/adam](6_pytorch/1_NN/optimizer/adam.ipynb)
- CNN
- 加一个基本的用法介绍
- [cnn/basic_conv](6_pytorch/2_CNN/basic_conv.ipynb)
- [cnn/batch-normalization](6_pytorch/2_CNN/batch-normalization.ipynb)
- [cnn/regularization](6_pytorch/2_CNN/regularization.ipynb)
@@ -79,4 +80,5 @@
* [Confusion Matrix](tips/confusion_matrix.ipynb)
* [Datasets](tips/datasets.ipynb)
* [构建深度神经网络的一些实战建议](tips/构建深度神经网络的一些实战建议.md)
* [Intro to Deep Learning](./tips/Intro_to_Deep_Learning.pdf)


+ 17
- 1
References.md View File

@@ -2,7 +2,9 @@
可以自行在下属列表找找到适合自己的学习资料,虽然罗列的比较多,但是个人最好选择一个深入阅读、练习。当练习到一定程度,可以再看看其他的资料,这样弥补单一学习资料可能存在的欠缺。



## Python & IPython

* [Python教程](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000)
* [Python-Lectures](https://github.com/rajathkmp/Python-Lectures)
* [A gallery of interesting Jupyter Notebooks](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks)
@@ -12,12 +14,17 @@
* [Essential Cheat Sheets for deep learning and machine learning researchers](https://github.com/kailashahirwar/cheatsheets-ai)
* [手把手教你用Python做数据可视化](https://mp.weixin.qq.com/s/3Gwdjw8trwTR5uyr4G7EOg)



## Libs

* [numpy](http://www.numpy.org/)
* [matplotlib - 2D and 3D plotting in Python](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb)
* [scipy](https://www.scipy.org/)
* [pytorch](https://pytorch.org/)
* [tensorflow](https://www.tensorflow.org/)
* [keras](https://keras.io/)



## Machine learning
@@ -29,14 +36,22 @@
* [scientific-python-lectures](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/tree/master/)


## Awesome series

## Awesome series & Collections

* [Awesome Cmputer Vision](https://github.com/jbhuang0604/awesome-computer-vision)
* [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning)
* [Awesome - Most Cited Deep Learning Papers](https://github.com/terryum/awesome-deep-learning-papers)
* [Awesome Deep Vision](https://github.com/kjw0612/awesome-deep-vision)
* [Awesome 3D Reconstruction](https://github.com/openMVG/awesome_3DReconstruction_list)
* [awesome-algorithm](https://github.com/apachecn/awesome-algorithm)

* [Papers with code. Sorted by stars. Updated weekly.](https://github.com/zziz/pwc)



## Lectures

* [Machine Learning](https://www.coursera.org/learn/machine-learning)
* [CS229: Machine Learning](http://cs229.stanford.edu/)
* [CS 20: Tensorflow for Deep Learning Research](http://web.stanford.edu/class/cs20si/index.html)
@@ -53,3 +68,4 @@
* [Deep Learning for Self-Driving Cars](https://selfdrivingcars.mit.edu/)
* [史上最全TensorFlow学习资源汇总](https://www.toutiao.com/a6543679835670053380/)
* [Oxford Deep NLP 2017 course](https://github.com/oxford-cs-deepnlp-2017/lectures)


BIN
tips/Intro_to_Deep_Learning.pdf View File


BIN
tips/cheatsheet/conda.pdf View File


Loading…
Cancel
Save