@@ -4,7 +4,52 @@ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"# 介绍IPython和Jupyter笔记本" | |||
"# IPython和Jupyter笔记本" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"本在线讲义使用Jupyter Notebook编写,因此首先介绍Jupter Notebook的使用方法。使用Notebook,可以方便的将理论描述、程序、数据可视化等集成在一个多媒体页面,方便大家的学习。\n", | |||
"\n", | |||
"Jupyter notebook 是一种 Web 应用,它能让用户将说明文本、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,非常方便研究和教学,让使用者一目了然。Jupyter notebook特别适合做数据处理,其用途可以包括数据清理和探索、可视化、机器学习和大数据分析。其具有以下一些特点:\n", | |||
"* 编程时具有语法高亮、缩进、tab补全的功能。\n", | |||
"* 可直接通过浏览器运行代码,同时在代码块下方展示运行结果。\n", | |||
"* 以富媒体格式展示计算结果。富媒体格式包括:HTML,LaTeX,PNG,SVG等。\n", | |||
"* 对代码编写说明文档或语句时,支持Markdown语法。\n", | |||
"* 支持使用LaTeX编写数学性说明。\n" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"## Jupyter 安装\n", | |||
"安装Jupyter最简单的方法就是使用 Anaconda,其发行版附带了 Jupyter Notebook。在 conda 环境下安装 Jupyter Notebook 可以使用 \n", | |||
"\n", | |||
"```\n", | |||
"conda install jupyter\n", | |||
"```\n", | |||
"\n", | |||
"当然,也可以通过 `pip` 来安装 \n", | |||
"```\n", | |||
"pip install jupyter。\n", | |||
"```\n", | |||
"\n", | |||
"安装后便可在终端中输入以下命令启动:\n", | |||
"```\n", | |||
"# jupyter notebook\n", | |||
"```" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"## 常用操作\n", | |||
"\n", | |||
"" | |||
] | |||
}, | |||
{ | |||
@@ -70,24 +115,20 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 1, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"1-numpy_tutorial_EN.ipynb\texample.png\r\n", | |||
"1-numpy_tutorial.ipynb\t\tmatplotlib_ani.ipynb\r\n", | |||
"2-matplotlib_tutorial_EN.ipynb\tmatplotlib_full.ipynb\r\n", | |||
"2-matplotlib_tutorial.ipynb\trandom-matrix.csv\r\n", | |||
"3-ipython_notebook_EN.ipynb\trandom-matrix.npy\r\n", | |||
"3-ipython_notebook.ipynb\tREADME.md\r\n", | |||
"4-scipy_tutorial_EN.ipynb\tstockholm_td_adj.dat\r\n", | |||
"4-scipy_tutorial.ipynb\t\tutils_git_advanced.ipynb\r\n", | |||
"5-sympy_tutorial_EN.ipynb\tutils_git.ipynb\r\n", | |||
"5-sympy_tutorial.ipynb\t\tutils_shell.ipynb\r\n", | |||
"bokeh_tutorial.ipynb\r\n" | |||
"0-ipython_notebook_EN.ipynb 3_Data_Structure_1.ipynb\t 7_Class_EN.ipynb\r\n", | |||
"0-ipython_notebook.ipynb 4_Data_Structure_2_EN.ipynb 7_Class.ipynb\r\n", | |||
"1_Basics_EN.ipynb\t 4_Data_Structure_2.ipynb\t images\r\n", | |||
"1_Basics.ipynb\t\t 5_Control_Flow_EN.ipynb\t Python.pdf\r\n", | |||
"2_Print_Statement_EN.ipynb 5_Control_Flow.ipynb\t README_EN.md\r\n", | |||
"2_Print_Statement.ipynb 6_Function_EN.ipynb\t README.md\r\n", | |||
"3_Data_Structure_1_EN.ipynb 6_Function.ipynb\t\t test.txt\r\n" | |||
] | |||
} | |||
], | |||
@@ -272,7 +313,9 @@ | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 4, | |||
"metadata": {}, | |||
"metadata": { | |||
"scrolled": true | |||
}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
@@ -301,145 +344,6 @@ | |||
"source": [ | |||
"%run?" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 11, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"from IPython.display import HTML, SVG, YouTubeVideo" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 12, | |||
"metadata": { | |||
"podoc": { | |||
"output_text": "<IPython.core.display.HTML object>" | |||
} | |||
}, | |||
"outputs": [ | |||
{ | |||
"data": { | |||
"text/html": [ | |||
"\n", | |||
"<table style=\"border: 2px solid black;\">\n", | |||
"<tr><td>0,0</td><td>0,1</td><td>0,2</td><td>0,3</td><td>0,4</td></tr><tr><td>1,0</td><td>1,1</td><td>1,2</td><td>1,3</td><td>1,4</td></tr><tr><td>2,0</td><td>2,1</td><td>2,2</td><td>2,3</td><td>2,4</td></tr><tr><td>3,0</td><td>3,1</td><td>3,2</td><td>3,3</td><td>3,4</td></tr><tr><td>4,0</td><td>4,1</td><td>4,2</td><td>4,3</td><td>4,4</td></tr>\n", | |||
"</table>\n" | |||
], | |||
"text/plain": [ | |||
"<IPython.core.display.HTML object>" | |||
] | |||
}, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
], | |||
"source": [ | |||
"HTML('''\n", | |||
"<table style=\"border: 2px solid black;\">\n", | |||
"''' +\n", | |||
" ''.join(['<tr>' +\n", | |||
" ''.join([f'<td>{row},{col}</td>'\n", | |||
" for col in range(5)]) +\n", | |||
" '</tr>' for row in range(5)]) +\n", | |||
" '''\n", | |||
"</table>\n", | |||
"''')" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 13, | |||
"metadata": { | |||
"podoc": { | |||
"output_text": "<IPython.core.display.SVG object>" | |||
} | |||
}, | |||
"outputs": [ | |||
{ | |||
"data": { | |||
"image/svg+xml": [ | |||
"<svg height=\"80\" width=\"600\"><circle cx=\"300\" cy=\"30\" fill=\"red\" r=\"0.0\" stroke=\"black\" stroke-width=\"2\">\n", | |||
" </circle><circle cx=\"297\" cy=\"30\" fill=\"red\" r=\"3.0\" stroke=\"black\" stroke-width=\"2\">\n", | |||
" </circle><circle cx=\"288\" cy=\"30\" fill=\"red\" r=\"6.0\" stroke=\"black\" stroke-width=\"2\">\n", | |||
" </circle><circle cx=\"273\" cy=\"30\" fill=\"red\" r=\"9.0\" stroke=\"black\" stroke-width=\"2\">\n", | |||
" </circle><circle cx=\"252\" cy=\"30\" fill=\"red\" r=\"12.0\" stroke=\"black\" stroke-width=\"2\">\n", | |||
" </circle><circle cx=\"225\" cy=\"30\" fill=\"red\" r=\"15.0\" stroke=\"black\" stroke-width=\"2\">\n", | |||
" </circle><circle cx=\"192\" cy=\"30\" fill=\"red\" r=\"18.0\" stroke=\"black\" stroke-width=\"2\">\n", | |||
" </circle><circle cx=\"153\" cy=\"30\" fill=\"red\" r=\"21.0\" stroke=\"black\" stroke-width=\"2\">\n", | |||
" </circle><circle cx=\"108\" cy=\"30\" fill=\"red\" r=\"24.0\" stroke=\"black\" stroke-width=\"2\">\n", | |||
" </circle><circle cx=\"57\" cy=\"30\" fill=\"red\" r=\"27.0\" stroke=\"black\" stroke-width=\"2\">\n", | |||
" </circle></svg>" | |||
], | |||
"text/plain": [ | |||
"<IPython.core.display.SVG object>" | |||
] | |||
}, | |||
"execution_count": 13, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
], | |||
"source": [ | |||
"SVG('''<svg width=\"600\" height=\"80\">''' +\n", | |||
" ''.join([f'''<circle\n", | |||
" cx=\"{(30 + 3*i) * (10 - i)}\"\n", | |||
" cy=\"30\"\n", | |||
" r=\"{3. * float(i)}\"\n", | |||
" fill=\"red\"\n", | |||
" stroke-width=\"2\"\n", | |||
" stroke=\"black\">\n", | |||
" </circle>''' for i in range(10)]) +\n", | |||
" '''</svg>''')" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"podoc": { | |||
"output_text": "<IPython.lib.display.YouTubeVideo at 0x7fc0000b64a8>" | |||
} | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"YouTubeVideo('VQBZ2MqWBZI')" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"```json\n", | |||
"{\n", | |||
" \"cells\": [\n", | |||
" {\n", | |||
" \"cell_type\": \"code\",\n", | |||
" \"execution_count\": 1,\n", | |||
" \"metadata\": {},\n", | |||
" \"outputs\": [\n", | |||
" {\n", | |||
" \"name\": \"stdout\",\n", | |||
" \"output_type\": \"stream\",\n", | |||
" \"text\": [\n", | |||
" \"Hello world!\\n\"\n", | |||
" ]\n", | |||
" }\n", | |||
" ],\n", | |||
" \"source\": [\n", | |||
" \"print(\\\"Hello world!\\\")\"\n", | |||
" ]\n", | |||
" }\n", | |||
" ],\n", | |||
" \"metadata\": {},\n", | |||
" \"nbformat\": 4,\n", | |||
" \"nbformat_minor\": 2\n", | |||
"}\n", | |||
"```" | |||
] | |||
} | |||
], | |||
"metadata": { | |||
@@ -458,7 +362,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.7.9" | |||
} | |||
}, | |||
"nbformat": 4, |
@@ -882,36 +882,6 @@ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"**cmp(x,y)**\n", | |||
"\n", | |||
"|x ? y|Output|\n", | |||
"|---|---|\n", | |||
"| x < y | -1 |\n", | |||
"| x == y | 0 |\n", | |||
"| x > y | 1 |" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 38, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"True\n" | |||
] | |||
} | |||
], | |||
"source": [ | |||
"print(1<2)" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"**pow(x,y,z)** 可以被用来找到幂函数$x^y$也可以找到第三个指定数字的mod值,即:($x^y$ % z)。" | |||
] | |||
}, | |||
@@ -1030,7 +1000,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.7.9" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -578,26 +578,6 @@ | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 25, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"data": { | |||
"text/plain": [ | |||
"False" | |||
] | |||
}, | |||
"execution_count": 25, | |||
"metadata": {}, | |||
"output_type": "execute_result" | |||
} | |||
], | |||
"source": [ | |||
"'Rajath' in names" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
@@ -2145,7 +2125,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.7.9" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -511,7 +511,7 @@ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"就是这样!只记得用方括号括起来。" | |||
"将表达方式用方括号括起来。" | |||
] | |||
}, | |||
{ | |||
@@ -685,7 +685,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.7.9" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -34,7 +34,7 @@ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"将上面的语法理解为,定义了一个名为“funcname”的函数,它接受“arg1,arg2,…argN”的参数。函数在执行语句后返回一个“值”。" | |||
"将上面的语法理解为,定义了一个名为`funcname`的函数,它接受`arg1,arg2,…argN`的参数。函数在执行语句后返回一个`<value>`。" | |||
] | |||
}, | |||
{ | |||
@@ -62,16 +62,16 @@ | |||
"source": [ | |||
"不需要每次都写上面的两个语句,可以通过定义一个函数来替换它,这个函数只需一行就能完成任务。\n", | |||
"\n", | |||
"定义一个函数 firstfunc()." | |||
"定义一个函数 `first_func()`." | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 2, | |||
"execution_count": 1, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"def firstfunc():\n", | |||
"def first_func():\n", | |||
" print(\"Hey Rajath!\")\n", | |||
" print(\"Rajath, How do you do?\")" | |||
] | |||
@@ -93,8 +93,8 @@ | |||
} | |||
], | |||
"source": [ | |||
"firstfunc()\n", | |||
"funca=firstfunc\n", | |||
"first_func()\n", | |||
"funca=first_func\n", | |||
"funca()" | |||
] | |||
}, | |||
@@ -102,30 +102,30 @@ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"**firstfunc()** 每一次只打印一个人的消息。我们可以让我们的函数 **firstfunc()** 接受参数,该参数将存储名称然后打印相应地接受字符串。为了这样做我们需要像所示的那样在函数内添加一个参数。" | |||
"**first_func()** 每一次只打印一个人的消息。我们可以让我们的函数 **first_func()** 接受参数,该参数将存储名称然后打印相应地接受字符串。为了这样做我们需要像所示的那样在函数内添加一个参数。" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 4, | |||
"execution_count": 6, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"def firstfunc(username):\n", | |||
"def first_func(username):\n", | |||
" print(\"Hey\", username + '!')\n", | |||
" print(username + ',' ,\"How do you do?\")" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 5, | |||
"execution_count": 8, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"Please enter your name : Jack\n" | |||
"Please enter your name : hello\n" | |||
] | |||
} | |||
], | |||
@@ -142,60 +142,50 @@ | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 6, | |||
"execution_count": 9, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"Hey Jack!\n", | |||
"Jack, How do you do?\n" | |||
"Hey hello!\n", | |||
"hello, How do you do?\n" | |||
] | |||
} | |||
], | |||
"source": [ | |||
"firstfunc(name1)" | |||
"first_func(name1)" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"让我们通过定义另一个函数**secondfunc()** 来进一步简化它,该函数接受名称并将其存储在一个变量中,然后从函数本身内部调用**firstfunc()**。" | |||
"让我们通过定义另一个函数**second_func()** 来进一步简化它,该函数接受名称并将其存储在一个变量中,然后从函数本身内部调用**first_func()**。" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 7, | |||
"execution_count": 12, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"def firstfunc(username):\n", | |||
"def first_func(username):\n", | |||
" print(\"Hey\", username + '!')\n", | |||
" print(username + ',' ,\"How do you do?\")\n", | |||
"def secondfunc():\n", | |||
"def second_func():\n", | |||
" name = input(\"Please enter your name : \")\n", | |||
" firstfunc(name)" | |||
" first_func(name)" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 2, | |||
"execution_count": null, | |||
"metadata": {}, | |||
"outputs": [ | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"Please enter your name : Tom\n", | |||
"Hey Tom!\n", | |||
"Tom, How do you do?\n" | |||
] | |||
} | |||
], | |||
"outputs": [], | |||
"source": [ | |||
"secondfunc()" | |||
"second_func()" | |||
] | |||
}, | |||
{ | |||
@@ -415,16 +405,16 @@ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"当一个函数的参数在大多数情况下是常见的或者它是“隐式的”时,使用这个概念。" | |||
"当一个函数的参数在大多数情况下是常见的或者它是`隐式的`时,使用这个概念。" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": 33, | |||
"execution_count": null, | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [ | |||
"def implicitadd(x,addnumber=3):\n", | |||
"def implicitadd(x, addnumber=3):\n", | |||
" return x+addnumber" | |||
] | |||
}, | |||
@@ -1060,7 +1050,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.7.9" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -11,7 +11,7 @@ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"Python中的变量、列表、字典等其实都是对象。不涉及面向对象编程的理论部分,在本教程中对概念进行解释。" | |||
"Python中的变量、列表、字典等其实都是对象。" | |||
] | |||
}, | |||
{ | |||
@@ -1275,9 +1275,9 @@ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"找各个方面的练习题,并独立完成能帮助你掌握Python的窍门,例如给自己一个问题并解决它们,你还可以在任何编程竞赛平台上提交问题求解。你编写的代码越多,你发现的越多,你就越开始欣赏这门语言。强烈建议把[Python作业](https://gitee.com/pi-lab/machinelearning_homework/blob/master/homework_01_python/README.md)完成,并在[其他编程练习](https://gitee.com/pi-lab/machinelearning_homework/blob/master/homework_01_python/README.md#references)里面找一些练习题或者项目做一下。\n", | |||
"找各个方面的练习题,并独立完成能帮助你掌握Python的窍门,例如给自己一个问题并解决它们,你还可以在任何编程竞赛平台上提交问题求解。你编写的代码越多,你发现的越多,你就越开始欣赏这门语言。强烈建议把[《Python作业》](https://gitee.com/pi-lab/machinelearning_homework/blob/master/homework_01_python/README.md)完成,并在[《其他编程练习》](https://gitee.com/pi-lab/machinelearning_homework/blob/master/homework_01_python/README.md#references)里面找一些练习题或者项目做一下。\n", | |||
"\n", | |||
"现在已经向你介绍了Python,您可以尝试您感兴趣的领域中的不同Python库。我强烈建议您查看这个Python框架、库和软件列表 http://awesome-python.com\n", | |||
"现在已经介绍了Python,可以尝试感兴趣的领域中的不同Python库。强烈建议查看这个Python框架、库和软件列表 http://awesome-python.com\n", | |||
"\n", | |||
"\n", | |||
"Python 教程:\n", | |||
@@ -1286,17 +1286,15 @@ | |||
"* [Python官方教程(中文版)](https://docs.python.org/zh-cn/3/tutorial/index.html)\n", | |||
"* Python官方文档: https://docs.python.org/3/\n", | |||
"* 本教程来源于:https://github.com/rajathkumarmp/Python-Lectures \n", | |||
"\n", | |||
"\n", | |||
"**最后,享受解决问题的快乐!因为生命短暂,你需要Python!**" | |||
"\n" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"outputs": [], | |||
"source": [] | |||
"source": [ | |||
"**最后,享受解决问题的快乐!因为生命短暂,你需要Python!**" | |||
] | |||
} | |||
], | |||
"metadata": { | |||
@@ -1315,7 +1313,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.9" | |||
"version": "3.7.9" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -9,22 +9,23 @@ Python 是一门上手简单、功能强大、通用型的脚本编程语言。P | |||
## 内容 | |||
0. [Install Python](../references_tips/InstallPython.md) | |||
1. [Basics](1_Basics.ipynb) | |||
1. [IPython & Jupyter Notebook](0-ipython_notebook.ipynb) | |||
2. [Basics](1_Basics.ipynb) | |||
- Why Python, Zen of Python | |||
- Variables, Operators, Built-in functions | |||
2. [Print statement](2_Print_Statement.ipynb) | |||
3. [Print statement](2_Print_Statement.ipynb) | |||
- Tips of print | |||
3. [Data structure - 1](3_Data_Structure_1.ipynb) | |||
4. [Data structure - 1](3_Data_Structure_1.ipynb) | |||
- Lists, Tuples, Sets | |||
4. [Data structure - 2](4_Data_Structure_2.ipynb) | |||
5. [Data structure - 2](4_Data_Structure_2.ipynb) | |||
- Strings, Dictionaries | |||
5. [Control flow](5_Control_Flow.ipynb) | |||
6. [Control flow](5_Control_Flow.ipynb) | |||
- if, else, elif, for, while, break, continue | |||
6. [Functions](6_Function.ipynb) | |||
7. [Functions](6_Function.ipynb) | |||
- Function define, return, arguments | |||
- Gloabl and local variables | |||
- Lambda functions | |||
7. [Class](7_Class.ipynb) | |||
8. [Class](7_Class.ipynb) | |||
- Class define | |||
- Inheritance | |||