From fe3fe73c48a1e9e42a0ab0c986996cecd0cce181 Mon Sep 17 00:00:00 2001 From: bushuhui Date: Thu, 8 Oct 2020 12:33:22 +0800 Subject: [PATCH] Improve python lib tutorials --- .../1-numpy_tutorial.ipynb | 623 ++++++++++---------- .../2-matplotlib_tutorial.ipynb | 27 +- .../3-ipython_notebook.ipynb | 240 ++++++-- .../4-scipy_tutorial.ipynb | 350 +++++------ .../5-sympy_tutorial.ipynb | 649 +++++++++------------ 1_numpy_matplotlib_scipy_sympy/test.txt | 1 + References.md | 2 + 7 files changed, 953 insertions(+), 939 deletions(-) create mode 100644 1_numpy_matplotlib_scipy_sympy/test.txt diff --git a/1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb b/1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb index 7a53ac7..2dcf94b 100644 --- a/1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb +++ b/1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb @@ -47,11 +47,20 @@ }, { "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# 不建议用这种方式导入库\n", + "from numpy import *" + ] + }, + { + "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "from numpy import *\n", "import numpy as np" ] }, @@ -139,7 +148,7 @@ ], "source": [ "# 矩阵:数组函数的参数是一个嵌套的Python列表\n", - "M = array([[1, 2], [3, 4], [5, 6]])\n", + "M = np.array([[1, 2], [3, 4], [5, 6]])\n", "\n", "print(M)\n", "print(M.shape)" @@ -697,7 +706,7 @@ ], "source": [ "# 从主对角线偏移的对角线\n", - "diag([1,2,3], k=1) " + "np.diag([1,2,3], k=1) " ] }, { @@ -1002,35 +1011,37 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "float64\n", + "int64\n", "8\n" ] } ], "source": [ + "M = np.array([[1, 2], [3, 4], [5, 6]])\n", + "\n", "print(M.dtype)\n", "print(M.itemsize) # 每个元素的字节数\n" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "72" + "48" ] }, - "execution_count": 39, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -1041,7 +1052,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -1050,7 +1061,7 @@ "2" ] }, - "execution_count": 40, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -1082,7 +1093,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -1091,7 +1102,7 @@ "1" ] }, - "execution_count": 43, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -1104,16 +1115,16 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.21286523712879435\n", - "0.21286523712879435\n", - "[0.77573698 0.21286524 0.68518057]\n" + "4\n", + "4\n", + "[3 4]\n" ] } ], @@ -1134,18 +1145,18 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.73171836, 0.46544202, 0.72372739],\n", - " [0.32390603, 0.09679475, 0.95467059],\n", - " [0.36051701, 0.78361037, 0.00716923]])" + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])" ] }, - "execution_count": 43, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -1156,16 +1167,16 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.77573698, 0.21286524, 0.68518057])" + "array([3, 4])" ] }, - "execution_count": 45, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -1183,16 +1194,16 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.77573698, 0.21286524, 0.68518057])" + "array([3, 4])" ] }, - "execution_count": 46, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -1203,16 +1214,16 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.96924573, 0.21286524, 0.70297393])" + "array([2, 4, 6])" ] }, - "execution_count": 47, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1230,7 +1241,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -1239,18 +1250,18 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[1. , 0.96924573, 0.53434945],\n", - " [0.77573698, 0.21286524, 0.68518057],\n", - " [0.32862765, 0.70297393, 0.39513101]])" + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])" ] }, - "execution_count": 49, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -1261,13 +1272,13 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# 对行和列也同样有用\n", "M[1,:] = 0\n", - "M[:,2] = -1" + "M[:,1] = -1" ] }, { @@ -1308,7 +1319,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -1317,7 +1328,7 @@ "array([1, 2, 3, 4, 5])" ] }, - "execution_count": 53, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -1329,7 +1340,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1338,7 +1349,7 @@ "array([2, 3])" ] }, - "execution_count": 54, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1356,7 +1367,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -1365,7 +1376,7 @@ "array([ 1, -2, -3, 4, 5])" ] }, - "execution_count": 55, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1387,7 +1398,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1396,7 +1407,7 @@ "array([ 1, -2, -3, 4, 5])" ] }, - "execution_count": 56, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1550,7 +1561,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -1563,7 +1574,7 @@ " [40, 41, 42, 43, 44]])" ] }, - "execution_count": 64, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1576,7 +1587,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -1587,7 +1598,7 @@ " [31, 32, 33]])" ] }, - "execution_count": 65, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1636,7 +1647,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -1655,6 +1666,8 @@ } ], "source": [ + "A = np.array([[n+m*10 for n in range(5)] for m in range(5)])\n", + "\n", "row_indices = [1, 2, 3]\n", "print(A[row_indices])\n", "print(A)" @@ -1662,22 +1675,22 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([11, 22, 34])" + "array([11, 21, 34])" ] }, - "execution_count": 69, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "col_indices = [1, 2, -1] # 索引-1 代表最后一个元素\n", + "col_indices = [1, 1, -1] # 索引-1 代表最后一个元素\n", "A[row_indices, col_indices]" ] }, @@ -1690,7 +1703,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -1699,7 +1712,7 @@ "array([0, 1, 2, 3, 4])" ] }, - "execution_count": 70, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -1711,7 +1724,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -1720,7 +1733,7 @@ "array([0, 2])" ] }, - "execution_count": 71, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -1868,7 +1881,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -1877,12 +1890,15 @@ "(array([11, 12, 13, 14]),)" ] }, - "execution_count": 76, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ + "x = np.arange(0, 10, 0.5)\n", + "mask = (5 < x) * (x < 7.5)\n", + "\n", "indices = np.where(mask)\n", "\n", "indices" @@ -1890,7 +1906,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -1899,7 +1915,7 @@ "array([5.5, 6. , 6.5, 7. ])" ] }, - "execution_count": 77, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -1924,7 +1940,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -1933,18 +1949,18 @@ "array([ 0, 11, 22, 33, 44])" ] }, - "execution_count": 78, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "diag(A)" + "np.diag(A)" ] }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -1953,13 +1969,13 @@ "array([10, 21, 32, 43])" ] }, - "execution_count": 79, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "diag(A, -1)" + "np.diag(A, -1)" ] }, { @@ -1978,7 +1994,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -1987,19 +2003,19 @@ "array([-3, -2, -1, 0, 1, 2])" ] }, - "execution_count": 80, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "v2 = arange(-3,3)\n", + "v2 = np.arange(-3,3)\n", "v2" ] }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -2008,7 +2024,7 @@ "array([-2, 0, 2])" ] }, - "execution_count": 81, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -2020,7 +2036,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -2029,7 +2045,7 @@ "array([-2, 0, 2])" ] }, - "execution_count": 82, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -2047,7 +2063,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -2056,13 +2072,13 @@ "array([-2, 0, 2])" ] }, - "execution_count": 83, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "take([-3, -2, -1, 0, 1, 2], row_indices)" + "np.take([-3, -2, -1, 0, 1, 2], row_indices)" ] }, { @@ -2132,7 +2148,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -2143,7 +2159,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -2152,7 +2168,7 @@ "array([0, 2, 4, 6, 8])" ] }, - "execution_count": 2, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -2163,7 +2179,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -2172,7 +2188,7 @@ "array([2, 3, 4, 5, 6])" ] }, - "execution_count": 3, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -2183,7 +2199,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -2201,7 +2217,7 @@ " [42, 43, 44, 45, 46]]))" ] }, - "execution_count": 5, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -2228,17 +2244,17 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.56313066, 0.29002953, 0.61502088],\n", - " [0.1022442 , 0.26811919, 0.01595774]])" + "array([[0.01114895, 0.05665904, 0.29848178],\n", + " [0.05093977, 0.00040534, 0.14069349]])" ] }, - "execution_count": 6, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -2251,7 +2267,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -2260,7 +2276,7 @@ "array([ 0, 1, 4, 9, 16])" ] }, - "execution_count": 7, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -2278,7 +2294,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -2287,7 +2303,7 @@ "((2, 3), (5,))" ] }, - "execution_count": 8, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -2298,7 +2314,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -2306,9 +2322,9 @@ "evalue": "operands could not be broadcast together with shapes (2,3) (5,) ", "output_type": "error", "traceback": [ - "\u001b[0;31m-----------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mA\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mv1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mA\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mv1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,3) (5,) " ] } @@ -2333,20 +2349,20 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.72376121, 1.02741179, 1.84320475, 1.4644025 , 0.93766737],\n", - " [0.93371216, 1.36026092, 1.81889819, 1.83440464, 1.04760436],\n", - " [1.09260054, 1.80363181, 2.27237106, 2.28907943, 1.42251772],\n", - " [0.53394728, 1.08528537, 1.22967423, 1.23649788, 0.90293134],\n", - " [0.71121961, 1.11261141, 1.74864104, 1.46510406, 0.95440664]])" + "array([[1.903065 , 1.67919746, 2.3622027 , 1.88412044, 1.11105008],\n", + " [1.41054459, 1.8120306 , 1.88727633, 1.43014072, 0.86699677],\n", + " [1.66542157, 1.50549264, 1.92165524, 1.68084913, 0.96953227],\n", + " [2.60415277, 2.45432125, 3.10136235, 2.57384453, 1.3456306 ],\n", + " [1.2318307 , 1.12068957, 1.38086198, 1.18571816, 0.5442449 ]])" ] }, - "execution_count": 10, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -2360,16 +2376,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([5.346923 , 6.32008278, 7.66667311, 3.19229347, 4.84861051])" + "array([5.14498999, 4.21899366, 6.02247961, 7.06795814, 2.91510261])" ] }, - "execution_count": 11, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -2380,7 +2396,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -2389,7 +2405,7 @@ "30" ] }, - "execution_count": 12, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -2407,7 +2423,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -2417,7 +2433,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -2430,7 +2446,7 @@ " [4]])" ] }, - "execution_count": 14, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -2618,20 +2634,20 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 53, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[[0.02229536 0.67037896 0.40832169 0.50556638]\n", - " [0.86868781 0.82208649 0.9197217 0.30321799]\n", - " [0.98529543 0.59989498 0.85806822 0.26069024]]\n", - "[[0.02229536 0.86868781 0.98529543]\n", - " [0.67037896 0.82208649 0.59989498]\n", - " [0.40832169 0.9197217 0.85806822]\n", - " [0.50556638 0.30321799 0.26069024]]\n" + "[[0.45130455 0.64330743 0.28059702 0.37347175]\n", + " [0.88485087 0.9022088 0.6700072 0.10678579]\n", + " [0.98276964 0.05115262 0.29053376 0.40809875]]\n", + "[[0.45130455 0.88485087 0.98276964]\n", + " [0.64330743 0.9022088 0.05115262]\n", + " [0.28059702 0.6700072 0.29053376]\n", + " [0.37347175 0.10678579 0.40809875]]\n" ] } ], @@ -2643,7 +2659,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -2653,7 +2669,7 @@ " [0.+3.j, 0.+4.j]])" ] }, - "execution_count": 23, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -2665,7 +2681,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -2675,7 +2691,7 @@ " [0.-3.j, 0.-4.j]])" ] }, - "execution_count": 25, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -2693,7 +2709,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -2703,7 +2719,7 @@ " [0.-2.j, 0.-4.j]])" ] }, - "execution_count": 26, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -2721,7 +2737,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -2731,7 +2747,7 @@ " [0., 0.]])" ] }, - "execution_count": 28, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -2742,7 +2758,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -2752,7 +2768,7 @@ " [3., 4.]])" ] }, - "execution_count": 29, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -2770,7 +2786,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -2780,7 +2796,7 @@ " [1.24904577, 1.32581766]])" ] }, - "execution_count": 30, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -2791,7 +2807,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -2801,7 +2817,7 @@ " [3., 4.]])" ] }, - "execution_count": 32, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -2826,7 +2842,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -2836,7 +2852,7 @@ " [0.-1.5j, 0.+0.5j]])" ] }, - "execution_count": 33, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -2847,17 +2863,17 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "matrix([[1.00000000e+00+0.j, 0.00000000e+00+0.j],\n", - " [2.22044605e-16+0.j, 1.00000000e+00+0.j]])" + " [1.11022302e-16+0.j, 1.00000000e+00+0.j]])" ] }, - "execution_count": 133, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -2875,7 +2891,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -2884,7 +2900,7 @@ "(2.0000000000000004+0j)" ] }, - "execution_count": 34, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -2895,7 +2911,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -2904,7 +2920,7 @@ "(0.49999999999999967+0j)" ] }, - "execution_count": 36, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } @@ -2931,7 +2947,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 65, "metadata": {}, "outputs": [ { @@ -2940,7 +2956,7 @@ "(77431, 7)" ] }, - "execution_count": 38, + "execution_count": 65, "metadata": {}, "output_type": "execute_result" } @@ -2962,7 +2978,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -2978,7 +2994,7 @@ "6.197109684751585" ] }, - "execution_count": 39, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } @@ -2991,16 +3007,16 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.6281761069770216" + "0.536617668205844" ] }, - "execution_count": 40, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } @@ -3026,7 +3042,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 68, "metadata": {}, "outputs": [ { @@ -3035,7 +3051,7 @@ "(8.282271621340573, 68.59602320966341)" ] }, - "execution_count": 41, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -3053,7 +3069,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 69, "metadata": {}, "outputs": [ { @@ -3062,7 +3078,7 @@ "-25.8" ] }, - "execution_count": 42, + "execution_count": 69, "metadata": {}, "output_type": "execute_result" } @@ -3074,7 +3090,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 70, "metadata": {}, "outputs": [ { @@ -3083,7 +3099,7 @@ "28.3" ] }, - "execution_count": 43, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } @@ -3760,20 +3776,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 9. 添加新的维度:newaxis" + "## 9. 添加、删除维度:newaxis、squeeze" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "有了`newaxis`,我们可以在数组中插入新的维度,例如将一个向量转换为列或行矩阵:\n", - "FIXME: 加一个例子说明为什么需要增加纬度、删除纬度" + "当矩阵乘法的时候,需要两个矩阵的对应的纬度保持一致才可以正确执行,有了`newaxis`,我们可以在数组中插入新的维度,例如将一个向量转换为列或行矩阵:" ] }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -3782,44 +3797,26 @@ }, { "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(3,)" - ] - }, - "execution_count": 86, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.shape(v)" - ] - }, - { - "cell_type": "code", - "execution_count": 87, + "execution_count": 79, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "(3,)\n", "[1 2 3]\n" ] } ], "source": [ + "print(np.shape(v))\n", "print(v)" ] }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 80, "metadata": {}, "outputs": [ { @@ -3837,7 +3834,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -3858,7 +3855,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -3867,7 +3864,7 @@ "(3, 1)" ] }, - "execution_count": 91, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } @@ -3879,7 +3876,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 83, "metadata": {}, "outputs": [ { @@ -3888,7 +3885,7 @@ "(1, 3)" ] }, - "execution_count": 92, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } @@ -3902,35 +3899,113 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 10. 叠加和重复数组" + "也可以通过`np.expand_dims`来实现类似的操作" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 85, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(3, 1)\n", + "[[1]\n", + " [2]\n", + " [3]]\n" + ] + } + ], "source": [ - "利用函数`repeat`, `tile`, `vstack`, `hstack`, 和`concatenate` 我们可以用较小的向量和矩阵来创建更大的向量和矩阵:" + "v = np.array([1,2,3])\n", + "v3 = np.expand_dims(v, 1)\n", + "print(v3.shape)\n", + "print(v3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 10.1 tile and repeat" + "在某些情况,需要将纬度为1的那个纬度删除掉,可以使用`np.squeeze`实现" ] }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 86, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 2, 3)\n", + "[[[1 2 3]\n", + " [2 3 4]]]\n" + ] + } + ], "source": [ - "a = np.array([[1, 2], [3, 4]])" + "arr = np.array([[[1, 2, 3], [2, 3, 4]]])\n", + "print(arr.shape)\n", + "print(arr)" ] }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(2, 3)\n", + "[[1 2 3]\n", + " [2 3 4]]\n" + ] + } + ], + "source": [ + "# 实际上第一个纬度为`1`,我们不需要\n", + "arr2 = np.squeeze(arr, 0)\n", + "print(arr2.shape)\n", + "print(arr2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "需要注意:只有数组长度在该纬度上为1,那么该纬度才可以被删除;否则会报错。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 10. 叠加和重复数组" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "利用函数`repeat`, `tile`, `vstack`, `hstack`, 和`concatenate` 我们可以用较小的向量和矩阵来创建更大的向量和矩阵:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 10.1 tile and repeat" + ] + }, + { + "cell_type": "code", + "execution_count": 89, "metadata": {}, "outputs": [ { @@ -3940,28 +4015,37 @@ "[[1 2]\n", " [3 4]]\n" ] - }, + } + ], + "source": [ + "a = np.array([[1, 2], [3, 4]])\n", + "print(a)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ { "data": { "text/plain": [ "array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4])" ] }, - "execution_count": 94, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "print(a)\n", - "\n", "# 重复每一个元素三次\n", "np.repeat(a, 3)" ] }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 91, "metadata": {}, "outputs": [ { @@ -3971,7 +4055,7 @@ " [3, 4, 3, 4, 3, 4]])" ] }, - "execution_count": 95, + "execution_count": 91, "metadata": {}, "output_type": "execute_result" } @@ -3983,7 +4067,7 @@ }, { "cell_type": "code", - "execution_count": 196, + "execution_count": 92, "metadata": {}, "outputs": [ { @@ -3993,7 +4077,7 @@ " [3, 4, 3, 4, 3, 4]])" ] }, - "execution_count": 196, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } @@ -4005,7 +4089,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 93, "metadata": {}, "outputs": [ { @@ -4019,7 +4103,7 @@ " [3, 4]])" ] }, - "execution_count": 34, + "execution_count": 93, "metadata": {}, "output_type": "execute_result" } @@ -4037,7 +4121,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 94, "metadata": {}, "outputs": [], "source": [ @@ -4046,7 +4130,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 95, "metadata": {}, "outputs": [ { @@ -4057,7 +4141,7 @@ " [5, 6]])" ] }, - "execution_count": 97, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } @@ -4068,7 +4152,7 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 96, "metadata": {}, "outputs": [ { @@ -4078,7 +4162,7 @@ " [3, 4, 6]])" ] }, - "execution_count": 98, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } @@ -4096,7 +4180,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 97, "metadata": {}, "outputs": [ { @@ -4107,7 +4191,7 @@ " [5, 6]])" ] }, - "execution_count": 99, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } @@ -4118,7 +4202,7 @@ }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 98, "metadata": {}, "outputs": [ { @@ -4128,7 +4212,7 @@ " [3, 4, 6]])" ] }, - "execution_count": 100, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -4153,7 +4237,7 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 99, "metadata": {}, "outputs": [ { @@ -4163,7 +4247,7 @@ " [3, 4]])" ] }, - "execution_count": 110, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -4176,7 +4260,7 @@ }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 100, "metadata": {}, "outputs": [], "source": [ @@ -4186,7 +4270,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 101, "metadata": {}, "outputs": [ { @@ -4196,7 +4280,7 @@ " [ 3, 4]])" ] }, - "execution_count": 112, + "execution_count": 101, "metadata": {}, "output_type": "execute_result" } @@ -4210,7 +4294,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 102, "metadata": {}, "outputs": [ { @@ -4220,7 +4304,7 @@ " [ 3, 4]])" ] }, - "execution_count": 113, + "execution_count": 102, "metadata": {}, "output_type": "execute_result" } @@ -4238,7 +4322,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 103, "metadata": {}, "outputs": [], "source": [ @@ -4247,7 +4331,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 104, "metadata": {}, "outputs": [ { @@ -4257,7 +4341,7 @@ " [ 3, 4]])" ] }, - "execution_count": 115, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } @@ -4271,7 +4355,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 105, "metadata": {}, "outputs": [ { @@ -4281,7 +4365,7 @@ " [ 3, 4]])" ] }, - "execution_count": 116, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" } @@ -4308,7 +4392,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 106, "metadata": {}, "outputs": [ { @@ -4331,7 +4415,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 107, "metadata": {}, "outputs": [ { @@ -4367,7 +4451,7 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 108, "metadata": {}, "outputs": [ { @@ -4396,7 +4480,7 @@ }, { "cell_type": "code", - "execution_count": 163, + "execution_count": 109, "metadata": {}, "outputs": [ { @@ -4406,7 +4490,7 @@ " [ 9, 16]])" ] }, - "execution_count": 163, + "execution_count": 109, "metadata": {}, "output_type": "execute_result" } @@ -4804,76 +4888,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "* http://numpy.scipy.org\n", - "* http://scipy.org/Tentative_NumPy_Tutorial\n", - "* http://scipy.org/NumPy_for_Matlab_Users - 一个针对MATLAB使用者的Numpy教程." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 版本" - ] - }, - { - "cell_type": "code", - "execution_count": 178, - "metadata": {}, - "outputs": [ - { - "data": { - "application/json": { - "Software versions": [ - { - "module": "Python", - "version": "2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]" - }, - { - "module": "IPython", - "version": "3.2.1" - }, - { - "module": "OS", - "version": "Darwin 14.1.0 x86_64 i386 64bit" - }, - { - "module": "numpy", - "version": "1.9.2" - } - ] - }, - "text/html": [ - "
SoftwareVersion
Python2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]
IPython3.2.1
OSDarwin 14.1.0 x86_64 i386 64bit
numpy1.9.2
Sat Aug 15 11:02:09 2015 JST
" - ], - "text/latex": [ - "\\begin{tabular}{|l|l|}\\hline\n", - "{\\bf Software} & {\\bf Version} \\\\ \\hline\\hline\n", - "Python & 2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)] \\\\ \\hline\n", - "IPython & 3.2.1 \\\\ \\hline\n", - "OS & Darwin 14.1.0 x86\\_64 i386 64bit \\\\ \\hline\n", - "numpy & 1.9.2 \\\\ \\hline\n", - "\\hline \\multicolumn{2}{|l|}{Sat Aug 15 11:02:09 2015 JST} \\\\ \\hline\n", - "\\end{tabular}\n" - ], - "text/plain": [ - "Software versions\n", - "Python 2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]\n", - "IPython 3.2.1\n", - "OS Darwin 14.1.0 x86_64 i386 64bit\n", - "numpy 1.9.2\n", - "Sat Aug 15 11:02:09 2015 JST" - ] - }, - "execution_count": 178, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%reload_ext version_information\n", - "\n", - "%version_information numpy" + "* [NumPy 简易教程](https://www.runoob.com/numpy/numpy-tutorial.html)\n", + "* [NumPy 官方用户指南](https://www.numpy.org.cn/user/)\n", + "* [NumPy 官方参考手册](https://www.numpy.org.cn/reference/)\n", + "* [NumPy Tutorial](http://scipy.org/Tentative_NumPy_Tutorial)\n", + "* [一个针对MATLAB使用者的Numpy教程](http://scipy.org/NumPy_for_Matlab_Users)" ] } ], diff --git a/1_numpy_matplotlib_scipy_sympy/2-matplotlib_tutorial.ipynb b/1_numpy_matplotlib_scipy_sympy/2-matplotlib_tutorial.ipynb index 8ed7696..40cb41d 100644 --- a/1_numpy_matplotlib_scipy_sympy/2-matplotlib_tutorial.ipynb +++ b/1_numpy_matplotlib_scipy_sympy/2-matplotlib_tutorial.ipynb @@ -18,8 +18,10 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": {}, + "execution_count": 1, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { @@ -41,6 +43,7 @@ "%matplotlib inline\n", "\n", "import matplotlib.pyplot as plt\n", + "\n", "plt.plot([1,2,3,4], '-*')\n", "plt.ylabel('some numbers')\n", "plt.show()" @@ -48,7 +51,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 2, "metadata": { "lines_to_next_cell": 2 }, @@ -56,10 +59,10 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 12, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, @@ -435,18 +438,14 @@ "source": [ "## 3. References\n", "\n", - "\n", + "* [Matplotlib 教程](https://www.runoob.com/w3cnote/matplotlib-tutorial.html)\n", "* [Pyplot tutorial](https://matplotlib.org/users/pyplot_tutorial.html)\n", "* [Image tutorial](https://matplotlib.org/users/image_tutorial.html)\n", - "* [手把手教你用Python做数据可视化](https://mp.weixin.qq.com/s/3Gwdjw8trwTR5uyr4G7EOg)" + "* [手把手教你用Python做数据可视化](https://mp.weixin.qq.com/s/3Gwdjw8trwTR5uyr4G7EOg)\n", + "* matplotlib Gallery\n", + " - https://matplotlib.org/gallery.html\n", + " - https://github.com/rasbt/matplotlib-gallery" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/1_numpy_matplotlib_scipy_sympy/3-ipython_notebook.ipynb b/1_numpy_matplotlib_scipy_sympy/3-ipython_notebook.ipynb index a036950..841d053 100644 --- a/1_numpy_matplotlib_scipy_sympy/3-ipython_notebook.ipynb +++ b/1_numpy_matplotlib_scipy_sympy/3-ipython_notebook.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": { "podoc": { "output_text": "Screenshot of a Jupyter notebook" @@ -22,16 +22,6 @@ "text": [ "Hello world!\n" ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADDIAAAOoCAIAAAAWUqKZAAAAA3NCSVQICAjb4U/gAAAAGXRFWHRT\nb2Z0d2FyZQBnbm9tZS1zY3JlZW5zaG907wO/PgAAIABJREFUeJzs3XlwXWd9P/7Pc86559x9kXS1\nS7ZsJXachSSmBX78WqCQpLT9pgFKIKUdQtoyFEpTCpkmKbSQMrSl+ZXJlIE0ZSlLoW0mgcS0TQK0\nIZQA840DiePYsWXLWizdq7vvZ3ue5/fHka6vrhbLsmzZyvs1zvXVWZ7znHMXeXLe8/kwKSUBAAAA\nAAAAAAAAAAAAAAAAAABsHGWzJwAAAAAAAAAAAAAAAAAAAAAAAFsNYkkAAAAAAAAAAAAAAAAAAAAA\nALDBEEsCAAAAAAAAAAAAAAAAAAAAAIANhlgSAAAAAAAAAAAAAAAAAAAAAABsMMSSAAAAAAAAAAAA\nAAAAAAAAAABggyGWBAAAAAAAAAAAAAAAAAAAAAAAGwyxJAAAAAAAAAAAAAAAAAAAAAAA2GCIJQEA\nAAAAAAAAAAAAAAAAAAAAwAZDLAkAAAAAAAAAAAAAAAAAAAAAADYYYkkAAAAAAAAAAAAAAAAAAAAA\nALDBEEsCAAAAAAAAAAAAAAAAAAAAAIANhlgSAAAAAAAAAAAAAAAAAAAAAABsMMSSAAAAAAAAAAAA\nAAAAAAAAAABgg2mbPQEAAAAAAAAAAAAAAAAAAACALahYLKZSKdM0OeebPReA01NV1e/39/X1xWKx\nDRmQSSk3ZCAAAAAAAAAAAAAAAAAAAAAA8JRKpbGxsc2eBcB6jI6ObkgyCU3cAAAAAAAAAAAAAAAA\nAAAAADbY7OzsZk8BYJ026t2LJm4AAAAAAAAAAAAAAAAAAABwbjlc2K6wXc4lcS6FlEIISYwLIYQU\nUgpJC0+klMSIGCNFYQqRoigKI8aYwkjxHhWFMdJURVOY4VN1TVUVttmn2K7RaGz2FADWyTTNDRkH\nsaQLWrlcPnnyZCaTLZVKQohgMNDZ2blt27Z4PK6q6mbPDgAAAAAAAAAAAAAAAAAA4PQcLsoNJ1ex\nCjWrZrumLWzXtV3hcGk53HK47XLLFbbj2q5wXM6FVBjzqcynKT5FMXyqT1N8mmKoik9VfCrzaaqu\nKUFDiwZ8nZFAMhYI+32bfZbthBDN53v37t3EmQCs0f79+70nnPMNGRCxpAuU4zilUimbzaZSqUKh\nWKvVpJSWZXIuFEUxTbOjo8Pv9zN2weU9AQAAAAAAAAAAAAAAAADgZY4LWbPcuuVarmg4vGY6pYad\nrViFqlWzecNybc4dR1iusBzX5sKyue1y2+WWw13OOSdi0qcousZ8qqpriq4pmsrmY0maomuKT1MD\nPiUa1Lsige5YIBH2hwwtHNCjQZ/fhywEwAUBH8ULVLlcPnTo0NTUVC6Xr9frnHMppaIohmFMTk4O\nDQ1eeeVVvb09moZXEAAAAAAAAAAAAAAAAAAALiw1yx2fq0znG6mymataxZpVMx3bFZbjukK6XEhJ\nXMw/CiG5EGL+uRBCEDEppC25w6XKXMYYY6QwUiQ1nzNGKiOfqhg+NahribDR1xHe0RvdM9jRlwj7\nNGWzrwEAIJZ04eGcW5aVzWYnJycnJiaq1VprYTcpZS6X49zt6kr6/UYsFvP5LrhKdAAAAAAAAAAA\nAAAAAAAA8DLEhazbvFS3p/P1sXTlRKaaLpv5ml2qmZIUSVIKSSSllEQkhSQiKQUj8pYIKVueSiIm\npBTN7aUkySQtPCfvKUkSJGTYr/Xkq/lqw3J4qWZ3x4OxoK77VAU9iAA2D2JJFxzbtnO5XCqVyuXy\ntVpdCO/b9hTOeblcnpyc1HWfruuIJQEAAAAAAAAAAAAAAAAAwKbjQtRtPl1oPHciPzZXnS02SnXb\ncrjlcCEkkSAiKb3H+WgRIy9cNB88osU3x0nK+fxRM5a0eF8pJbH5fWuWM5OvVurWVKYy2hffu7Pn\n0v54ZzQQ0JGLANg0+PhdcBzHKRaL+fyp3m1tG0gpTdPKZjPxeLyvry8ajW7KPAEAAAAAAAAAAAAA\nAAAAAJoaNp/I1Q/PlJ+fKp7I1qqmy6UkIaWUxNhC8IiI5HzeaLmw0cLjSmuXLF8Yx5VUM51qw86U\nGpW6JaXknO8Z7uqOBTRVYaiZBLAZEEu64HDOq9VarVZ3XXelbVzXrVZrtVqNc34+5wYAAAAAAAAA\nAAAAAAAAALCsYt159kT+wGRxtlivWy5vbw3EiIi8JmxLynMs3mhFq61dqLfkcjFXqv/0yGzdcgKG\nL2BokYDuUxFLAtgEiCVdiKSUQohV1hKREGKVbQAAAAAAAAAAAAAAAAAAAM4PLqTlilSpcSxdOZGt\nmbYrpZRSKkSaygxNCRmqpjIish1et9yG7bpcLJQ6OqNqSWvZUtZtWbddTWX9iVDAUHf2JuIhY3Mu\nDcDLG2JJG0cKYux02c3TUxTFMHTDMBRFWWkbVVUNw9B1XVVX3AYAAAAAAAAAAAAAAAAAAOA8MF2e\nLprT+Xq+alnufN6IiDRViQV8fYnAjmQ4HtKJqFCzxtPlk/l6sW5xMd8daP0VklZY6x29UDH3j6WI\nZDxkIJYEsCm2YCxJCOE4DudcURRVVTVN24AmkdyVrkWuTdyWjkXcJtch4ZIQUnISnLhDUhJjxBRS\nVKZokilMVUnRSPWRpjNNJ5/BNINUnRR1lUNpmhaLxWKxqK7rrNlfs4WiKD6fLx6PJxJxn893tqcG\nAAAAAAAAAAAAAAAAAABwFmxXzFWs2WLjVO82KYmxiF/b2RO5pDeyozuSCOlEVKxZUb8W0LWXZoqW\nw89NtSTynjVsd2KuHAsZV44k+xJhw6epClq5AZxXWy2WJKW0LCuXz9u27fP5QsFgJBI52+yO4NKq\nyUpGVrOikqFKTlazsl6SVo1cU7o2cYeEK4VgjDFFIdVHio9pOukB0oMsGGPhLhbtUiJJCnexSJL0\nEK2clDIMvaurq1wuh8MThUKhrVObF7Hy+/39/f19ff2G4T+rUwMAAAAAAAAAAAAAAAAAADg7lsPz\nVStXsWxXkJReLoiR7IoYv7Cj84qheCTg01WFiLpj/r5EMBbU81UzXzXlcqU6mtZfRUlKRsS5rFlO\nptyYydf6E/XueDCgo/AHwHm1dWJJUspGo1EoFHL5fC6XM03TMIxoJNLd3R2Px4PBoKadycm6Ntl1\nYdWoUSazIqp5Wc3MJ5PKWarlvFgSm48luQojlRERCUmCmFQ0punkCzB/iAVjFOpUo0kR7lIiSRbt\npmCc+aPkDzMjzHwB0hZ98WmaLxwOJ5PJoaFBIUS5XDZN03VdIlIURdf1QMA/ODjY19fX0ZHQdX0j\nLyIAAAAAAAAAAAAAAAAAAMAZcrmsNJyq5c43cCPpU1nI8PXGAzu6w0OdoeaWQaJ4UK+ZTl88MFuo\nVxq2w5lcpuLR2VVLmn8UQrJqw84Ua7lyIx72B3CDHeD82jqxJM55Lpd77rnnJiYn6/W667qKokQi\nkW3Dw9u3bRveti0Siax5LEdWc7IwzdPHZPa4yE3JWp4cUzqm18RNuhbjLgkuBZdSKESSSEiihVpw\nxF0pOLk22TVRzTPfjNQM8hmk6kwPKpEu1rmNJUfUnlGK97NQR1tbN1VVOzo6rrjiio6OjsnJqWw2\nW63WhOCBgD+RSPT39w8MDPT19QWDQVVdrR8cAAAAAAAAAAAAAAAAAADAuSakNB3XdrkrBBFjRH6f\n2hv198UCQWOZWELQ0Hrjwd5Y3XG54wpqqZfEFv3dXkhpuQpJp7ZcslZKSbbLCxWzULUch5/5mQHA\nWdk6saR8Pj83NzcxMTF+4oTruowxxlihUHAdR1XVzq6ucDjMVm6dRkTk2tKqylpBVnOiMEO5CZE5\nzjPHqTjDrCpjRJKk90XWTCAREZGgpV+GkqQkLog7jIhZlYUDSyGZ8EeV4oxSTlF5jnUOK7FeCney\nYJwZIVJ9RMQYCwQCfX19gUBA1/V4PF6r1YQQhqEnEomBgYHOzs4zrv8EcIHxGhR6H9XNngsAAAAA\nAAAAAAAAAAAArJ8Q0na55XIhhJxv4iY1lakKU5a7G6gozKcyTWFerSMPnVklpNNvSUSSyHF5sWYW\na6btIpYEcL5tnVzL1NTU7OxspVrlfP6rRErpOE4qnQ5HIqOjo8lkcrXaQq4j6wUxNyZO7Bdzx0Qx\nTY2SsKrSqpHdUIi8b61mU8sVm1su5sWYpJdnYjQfarJrPHtCVDLKyRdZKMFifUrfperwtbJrRAnF\nvcpJiqL4fL5YLKbr+tDQkOu6UpKqKrqu+/1+XddRJwkudpZlCSEMw0DADgAAAAAAAAAAAAAAAOCi\nJohsV1gOl5KYlJKk7Ypc1SzULZsvEwayXZGrmNlKw3a5JLlCraN5qxc5OF0JBOm6vFy3SzXL4WIt\n5wIAG2jrpAGKxWKtVrNt2/vRK8RCRI1Go1wuW7bdjEO2kU6D6iVZzsj8JJ95kU/sl5kTol7SSHiF\nkaRXD2m9mkc9dXzBmVllVpVRmmc1Ck2qtSw5FqvlZWJQiXaxQIw0gzFmGIZhGGdxcIALAufcXqxe\nr1cqlUAgsH379lgsttkTBAAAAAAAAAAAAAAAAID1k1K6XLhcSOEVPpKOK8oNZ67USJXMRMgI6pqu\nKURku7xu8VSxPlc2yw3H4UJKSeesWhIRcSEbltOwHLFCZgAAzp2tE0tSVXXZblDNJcvHkrhD5Tk+\n+XMxfVCkj8riSVkvCrNGkgvGvCpH54iUJBhJ7lC9KGYOy1KaTT3H+i5TB6/QBq+kaI9XNglgC7As\nK5vN5nK5XC6Xz+czmUyxWCyVSsPDw6FQCLEkAAAAAAAAAAAAAAAAgIsfo2bnNCkFMdPhqWLj8MmC\nT2Hbk+FEyCCict0ez1QOTRdSxXrD5UJKIrlcnzdvxPnxVlu74mxIzs9Fci7EQvIJAM6nrRNLisfj\npmkahqEoCudcURQiUhTF7/eHw2Fd170lp3BHNsqicFKmXnJP7Jczh0VuQnPrC2XbGJenrfa2ft63\nnZDEGCNuU91mjYKoZFijwuya61pKzyVKrI/8EYST4GLHOS+Xy2NjY5OTk/l83ssnlUol0zSJqF6v\nb/YEAQAAAAAAAAAAAAAAAODszBc8kmI+/+M9pWLNOnyy6HJRrFmJkE5Ehap1PF0+mirlq6bjcvJK\nJa1eA0mus1qS958QQjYPAwDn19aJJQ0NDRHRxORkvlDgjYZXJEnX9Z6env6BgXA43FpISXKXzKpI\nH+WH/0dMv8CLs1QvSsfkK+Yszy0pSRAJq84yx2W9yDLj6uBVvstez7pHyQgRU04/BMAFSUrpuu7c\n3Nyzzz577Ngx27Yty7Isi3NORMtWOAMAAAAAAAAAAAAAAACAi1TzhruUghGrWe7xdCVTMl+YLBg+\nlYhM2y3XrXLdqtuchFx6i36Z24ds1bUtB8atR4ALzdaJJcXjccuytm3bxhirVquO4zDGYrHY0NDQ\n8OBgOBSar5YkBTmmrORk5jifeJYf/78iPSZdy/t64pKIzX9VrfKFdabfZStFnZrjCCISxBinRlla\nVVHJkG0yPaA6FuvazkIJUnVCegMuQl4KularpVKpVColF0ojemkkVUUxMAAAAAAAAAAAAAAAAICL\n3kKxpEWIpO2S44pizSYmSRIjElJKKWi+BJKgddRAWvZRLrfl4pltwnUBeNnbOrEkRVESicTVr3jF\n8NBQvlBwHEdV1Ugk0tXVFY/FAoGAt5l0LCqlxfQL/MhT/ORBqsxJbtOaiyQ1k0FtGaHmT0vHkQvN\n4NZ4CCkEc0yROebYDVGY1na9jvVfpkS6SdPXNgDABccLIeE3PQAAAAAAAAAAAAAAAMCWt+j+uJct\nIklCerfOvb/mFy+340qDrV7GY6FJy6Ix2cIqRoyhlBLAZtg6sSTGWCAQCAQC8Xi8q1KxbVvTNL/f\nHw6FNE0jWqiTVJwRUwfEif1i4mciP9n61SNbwkYLX0/zz70ma6RopGqkaqRopKiSKYwpkhFjiqCF\nXlTzgU3BJJEUUnAmheSOFC4TXHJXIWJs/rvQC2lI73Bs/jkRScGpXhSNCnGTNEOTXPZfzrxkEmom\nwcVpvlzZYggqAQAAAAAAAAAAAAAAAGwF3r1vKWnhDiBrXTe/cOFxDTcJvdQSW6i6tNaaSYu3XDg4\nqiUBbJqtE0tq0nU9Hot53ymqqs5nkojIsUQpJaYP8EPfkydflLU8I7bsFw9rCSR5T4QkxWdIX4D8\nEcWIkD+kGEFSdaloTNOIaaRp3rZSCuKcpCu5y7gjHYuchjSr0qqSWZFWXXJHYfNRp2ayc/lpSCGL\naf7SD2StoEmmDmks1Ek+1EwCAAAAAAAAAAAAAAAAAIALi9dITSzUQWoGkVprg8iF2+NL1hIt3osk\nLZdwWuQ09ZNaSyex020NAOfGFowlKYqi64uzO1KScGVlTky/IMb/rzh5UCnNtoaBWuJHkqm61HzM\nFyDNkD5DqjrzGarPT3qA6SHyR5g/QkZQ0YOk6aT6pKIyVWOqTzJGUjIpBXdIcCa5dG3pWMwxpVmR\nVlWaFcWqS6suXUs6FnGbXEs6pnQsxm3JHYUxb1ZyflLE7DrL1wUxHuogRdUGr5CRLqZswVcNAAAA\nAAAAAAAAAAAAAAAuUqrCwn4tETKIyOGiWTZpSTUjRosrG7El2zDGXM4dLhyXOJdSCLneaknef6iW\nBLCJXh4BF+7IRlmkx/hLT/HJZ2U131I6bj6TxIgURpJp5A8rkaQa76NwUokkKdypRJPkj5DPT6qP\nqT5SNVJUpmjEFGJMMsaYQkxZKEtHynwTNy8LOt/EjSQn7kjXJqtBZllUMlTNiUpWltOiOCtrOWpU\nFCYW+mu2hECJZHmOH/0ROZZihJgRJD1EinreLyIAAAAAAAAAAAAAAAAAAMAy/D61O+Yf6Q53mX7H\n5c1aR1JKYuxUVIgRa3neEktiUkhaaGrUsJ1SzSrV7FLd4nzRgU5XIWmhY9Eicg27AsA58TKIJUkp\n6yU+e1hOPCtOHpT5aSImFoq0ScZIM6QRIiMk9KAaiLJwJ4v2KLFeFu1m4S4W6WLhLvKHV0oCLfvV\nxRY/WbSN60izolSzspJVqllRTrNSSlYyspITjbJ06syuk1Ujx/L2EpLIbsjsCdJ0JdGnaD61e5SC\n8Q26OgDnlqIojDHGVvwdv8oqAAAAAAAAAAAAAAAAALgohP3a9mQkqKuWK1wuWlqwSbnQTs0rlsS8\nch9LYkkLXYUYIyrVrMlMZSpbqduO5bKF1nBrqZa0uGYSnaqWxFqLlwDA+bLVY0lSErdlcZq/9D9i\n/BlRTs83RyNijKQkphks3MV6dqjJEaVjG4v1yEBCDUZI85NmkM9gmk6avpHViTQfC0TI56dIkrmW\n4lrSbkirKis5WZoVhSkxN07ZcSpnJbfm27oxIilkadZ98X9Uu056SA1EiSkbNiU4X7xffi+3IA5i\nSQAAAAAAAAAAAAAAAABbW8jvG+2JDnUEuZzvMtRq5TTQMhsTUabU0DW1YbtzxRoRzZccWXUCuOkI\ncGHa6rEkx5SlGTFzSEy/IDLHybUlMVJU5vNTIKoE4yzUoSQGWPcONTlCHcMskiQjfM5zEqqPVB8z\ngt5PjIiklI2yLKdZflKJ9YlYjyzMiGqezJJsVMgxSQoyy2LuKOkB1n2JEoxRuItp+rmd56ocx2k0\nGo7jtC1XVdXv9/t8Pq9MzlrGqdfrtm23Ldc0LRAI6LquKOsMYHHOTdN0XZdzLoTwFkopVVX1+Xy6\nrmuapqqnD5y5ruudqRDCG8dLFxmGEQqFfD7fsidlWVaj0TBN07ZtbwKcc+9y+Xw+VVW9afj9fsMw\n1nGm3tk5jsPbqhYSMcZ0Xff7/Zp2th9wIYTjOLZte6ff9oLquh4IBFqPwjm3LMtxHNd1vaskhLBt\nu1QqOY7T2q7Ve+44TqFQyGQyrZNvPYSU0ufzrXSd18KbUpP3fvBeESmloijqAk3TdF0PBoOGYej6\nWX24XNf1Xh3vKM1T8/l8gUCg7VyklLZt12o1723mvabNE+/o6DAM42wmAwAAAAAAAAAAAAAAALAO\ntiscLh3OXSFdV3ApuZivQtSaJpq/vbfQPo0xtihntPxTIknzdZPaVxCRtF3XWbij10TrrZbEvFJJ\n8ziJBkmHyCEplpy010ZOIVKJ+YhUYhoxH1JPAOu2xWNJolYUJ57lJ56R5TlybYUxQQoZQRYfUPsu\nU3ovVZIjLNZDRlgxQqQHSDNoU2q3MEZGSEkMslCCei4RO15NpZTIHBepl9jMIVFKCaumSikdU5Zm\nxcSz3Geo2/dSJLkJU11Qr9cnJyeLxaKU0ouSeL8MotFoT09PIpHQdX0toZ9arXbs2LF8Pt+sqeP9\nhohGowMDA14mY33JJNM0U6lUoVBoNBqu63oLpZR+v7+joyMej8fj8bXMsNFoTE9P5/N5L9RCRN7v\nv66urksuuSQeb2+oxzkvl8uZTGZ6ejqdTufz+Uql0gzEMMYURfGiSPF4PJlM9vb2Dg4OJhKJYDC4\n9kicZVlzc3Pe2bWGw7yETUdHx+DgYDgcXuNoK7Ftu1Ao5PP5crlsWVZzuZfmSSQSQ0NDkUikdVbe\nNa/Vat61klI6jjM1NVWv15eOX6/Xjx8/vjSU5vHeUR0dHSMjI4lEYh3zF0LUarV8Pp9Kpebm5jKZ\nTLVabTQatm17p+NFkfx+fzAYjEajnZ2dg4OD3d3dHR0dZxPqsizr5MmThULBC6UREWPMu2LDw8Nt\nsSTXdXO53PHjx2dmZgqFQrlcrtVqjLFYLDY6OvrKV76yt7d33TMBAFjd/ffff+LEidYloVDoYx/7\n2CZN5+Xla1/72sGDB9sW/s3f/M2mTAYAAAAAAAAAAACgjStksW4Xana54VZMu2a6Dds1He7yU3Uc\npJTEGJsPAMn5YBJbSC55nWSklz+a34bkQqRJEjHZ3Hd+N6/1kZQ105nJV1OFmuVwkpJJOtXlrcWa\n6ycxYiSJiCkkGuSmiGeJl0naRLQoISCJmEqKTixISohYiNQoKTFi66yhAABbN5YkOLmWLM2I6RfE\nzCFZLzLNkP6IEu5i8V6W3KH2X6b0XMI6hpn/bKMbG4KpGqmaV0JJJZKdwyzazcIdLJigzDgrzVI9\nT2ZVVnNy5kVhhJXEIAvESNFovcWEzlKtVjt+/PjU1FTrQillMplUVdUrorOW0E+1Wh0bG5uammpm\nj7zfT729vX6/PxwOe4WX1jFDL5Y0NTXlpUOag0cikaGhISHEGlM7jUZjZmZmYmKiUql443g1k4aH\nh3t6elpjSY1Go1wuFwqFdDqdSqWasaRqtWqaZmutIFVVQ6GQF+Gam5vL5XI9PT3JZDIWi62xMpDr\nuuVyeWZmJpVKtSZ+vJI8AwMDkUgkEAis5SVYhWmaU1NTk5OTuVzONM1masrn84XD4eHh4WQy2RpL\n8q755OSkl+LyFnLOC4VCvV5v7WHnPW+G0ppL2kgpBwYGOjs7zzSWZJpmtVotFArZbHZubi6dTqfT\n6Ww26+WrTNP0ImLNCkbBYDASiXR2duZyud7e3p6eno6OjlgsFggE1vH2894zk5OT1WrVi2d5Bxoa\nGurq6opGo95lsW27mWA7duzYyZMni8ViuVyu1+uMsc7OTsMwLr/88jM9OgBcCPL5fEdHx2bP4vS+\n/vWv/+hHP2pd0tnZiVjS+fHQQw898sgjbQsRSwIAAAAAAAAAAIBNJKV0uDQdXmk4hbqTKjXyVbtU\nt6umU7WcuumYDncXChh52zNi1FapiC2qV7QoliQlSToVWmJy6b5ebsnlombaNcuxHS6lpPkjrr1m\n0qJqSc0JExEJm0SB3Bly50jUSS6OJTFGpBDTSQkRC5IaJh4npZPUBKkRYpvZzgjgIrVlY0nSsWQ5\nJdJjPH2USrPStli0Sx3Yw/qvUAb3zGd6jHCzk9qFhhkh6tquRrqU/suV/JSYPiBOviBnD8tqnrLH\nhREW/XuUaJKCcVI2p8FTvV4/duzYoUOHWtMkjDGv2Ex3d3cwuKZrW6vVxsfHjxw5whhrDsUYq1ar\nQ0NDfX19gUBgfTP0KvccPXp0bm6u0Wh4C73qO0QUDofXWITGtu25ubnjx4/ncjkvauPNk3N+1VVX\nNYtFua6bzWaff/75Y8eOzc7OlsvlRqPRbBzWlrnhnNdqNdu2K5XK9PT0iy++2N3dvXPnzp07d46O\nji6twLSUEMJ13WKxODY2ls1mWy+doijFYnFgYCAej/v9/rNJJlUqlSNHjhw6dKhQKLRWS/KiXZ2d\nnc3ueB7TNNPp9PHjx2dnZ5thKW+qy1ZLqlar4+Pj09PTq8zBsqzLL7+8eZ3Xwqs/dPjw4WPHjk1P\nTxeLRdM0vYZ6rut6DfVooRqTV9DINE0vITQxMREOh5PJ5I4dO17xilcMDQ3pun6mjR29eNbRo0eb\n8SzGmGEYrutedtll3jbe+2psbOzAgQOTk5OVSsUr4+RV1VJV1Ws2t2xaCwAuZPl8/q677qpWq//y\nL/+y2XMBAAAAAAAAAAAAADgDrpCluj1dqB+ZrUzm6ulSo2q5rssdLlwuuBBcSO/+YGsMqD1a1PLI\nms8XxZIW1i4OMJ16lCQWjuWKhRzTgjVXSFoJJ14nUSZeIKqTlNTeyY0RY8Q0IpWYShQirZN8w6Rf\nQmoXsbOqCgHwMrR1Y0lWVaSOiJkXqZJhmqHEh5SeUWX4KqX/cqXvUhY4fexjkykqC0QpEGXxfiXW\n4xpB5o8wI0TpY1TLyFJKzh4S4YTSfxlpmxNLchwnn89nMpm2WJLf7/caeK0xTuE4jtcmjFrq5TDG\nwuFwo9Hw2qWtb4ac82q16k2yGUsiIiFEuVw2TbMtUrMSIYRXBimfz5umSQv1frywixccqdfr6XR6\nbGzMiyXl8/nW38crTa+ZhiGibDZbq9W8Ux4eHk4kEoax2iuraVo4HNZ1vVwuZ7NZWnz1/H5/KpXq\n7e31erqt5TTbSCmFENVq9eTJk15opnV8IcS2bduWZp68uFUul8tms63XvLVOUnMQInJdt1QqrRT6\n8Za3Frs6Ldd1a7VaKpUaHx9/8cX4KuIKAAAgAElEQVQXx8fHU6lUa5O71pFb92q2+fNKKM3NzVUq\nFUVRLMvq6+uLRqOqqp5RLqpWqxWLxUwm05y8z+fr7e31Phq2bedyuZdeeungwYMHDx6cm5trG3x9\nFcIAYHNJKb/4xS/eeeeduVzuHe94x2ZPBwAAAAAAAAAAAABgrbgQDUfkKuZkrnFsrnJktjKdqxXr\nNvdqH0lJJKTwYkOLYklshUCSFzZaeW3rvsvEkry1on3teqslMW88hUghkkQuSYtkg5i5tDEcES0K\nQvEc8QIJkySRzyZfkpj/XLwEAFvV1o0l1Yt84lkxfUBKwXp3+S75f9WhK1m0l4USZFwQXdvOgD+q\n9u+haK/s282mnpNH/1dUsnzqOfIZLN7HgmfW3GoDLZvS8FIdmzLOSoO3jeP9uPbBGWOqqiqKsnQc\nIYRt25ZlTU5OPvPMMy+99FI2m61UKl4xntbDeVbqU0ZE9Xrd6/mVz+cvu+yya665ZvViTn6/v6+v\nL5PJhMPhtmGllKZpzs7OejWr/P71/F70IlOlUqlUKnlhqdYTCQQCg4ODAwMDyw7uFb5qRpHWGCxb\nullz3zW+WF5NphMnTvz0pz8dGxvL5XK1Ws1xnNMO0tpXzstjVSqV8fHxSqUyOzv7qle9aufOnWts\nrudRFEVRFE3TWtNFzWvium6hUBgbG9u/f//Y2Fi5XN6QtzoAbK5nn332/e9//09/+tPNnggAAAAA\nAAAAAAAAwBkzHTFTaLw0W/75RGEqX6+aTt10uNc9jdoaqBGjhTCPJLmQ4Wk+LqyVzXwQLY4itXRx\naw8bnVq7sNH8/Jj3wE6tWYIt89MqtykZEfMaxi3aii2cxnyoSZJwiZXJmSBeJlEidg35+le9lgCw\nyFaMJXFXOiZVM7I8RySVvl3q4JXq6GuUnlHyrbMd2CZTNRbqoGCCRbtVIyQElydflLWCKJwUlawS\n7WU+g9gm1FZZKU60WeMsO8iysaQzHbwtYtJsKOY4TqlUSqVShw4deuGFFyYnJ5tFdxRF8fl8uq77\nfD4v1UREXozJtm3HcRzHaZ0G59zr+9ZoNDjn4XBYUZR4PK7ryzco1TQtEol0dXV1dHREIpF6ve66\nbjNeY5rmzMxMMpkcHBw8ozNtchynWCzmcrlqtdo6VcaYd+ienp5kMtlW0okxput6IBAIhULNq+QF\nfRzH8SpItWaAFEXRdX31ykCBQOC0BZ+klJzzYrE4NTV18ODBF154YXp6ujUc5vP5/H5/MBg0DKP5\nijQnZtu2aZpeholzzhjzyjhVq1XXdaPRqKIo27dvj8fja3/naJq2UiypXq97xZyOHz/uVbpq4yXe\nOOdrLOgFAJvuAx/4wP3334/PLAAAAAAAAAAAAABcdLiQtivmyubhmfIL08WXZsslk0shpBDN21tn\nWKlovZWNVnqkRa3fSJ7ByIy8NNP8LcrVgkpt6SqS848kiSwSDvEKMZW0XlJDpIS2ZtYC4BzYih8V\nx5TFk1SeYz6/MrBH2fEadWAPRZKb1exswzBGRkjp3qkEIqxzmB99mqSkak5WcyzSRT5UijtXvGpJ\nS3t4cc5t206lUvv37z98+HAmk2lmkohI1/XOzs54PB6Lxbw0DBFZluU19ioUCtVqdekNbNd1i8Xi\n+Pi4pmmWZV199dVdXV2rTCwYDPb392ez2ZmZmWq12lzlxZK6u7sty1rfWVuWlU6n0+l0WwM1RVH8\nfn88Hk8kEpFIpC0wpKpqMBiMx+O2bQcCgWbZJMuySqXS0snouh6Px72L0xpX8njXZ5VsVhPnvNFo\nTE9P/+QnPzl06FAmk2nLJMVisZ6enm3btvX09EQikVAopGmaEMKyrEqlks/nT548eeLEiVwu1zyu\nlw3K5XLPPPOMZVnBYNArmLSWZJKiKN57pjWWJIQQQrium8/nDxw4cODAgWKx2LpX68jN98Yaa00B\nwOb63Oc+t9lTAAAAAAAAAAAAAABYD4eLbNUem6s+O5E/Nlermo6czyMtc5dqpftkq98/2+C1bNW1\nbZue2b02SVISa6aXmuEkInKJODk5so4T08m3jdTomYwM8PK1FWNJ3JaVnHQsJTnCot3qtmtYYmCz\n57RBFJUF4xSMq6pOdkPUCtIxWS1PgShiSeeU15Or+aP3O9iL/szNzR05cmRqasqyLK9WUCgUikaj\nnZ2d3d3dXimjUChkGEYznZPJZLLZbDabLRaL5XLZNM3WkS3Lymaz3lC9vb2BQMDv969ULigQCAwM\nDGSz2UKhUKvVvIWMMa+MUzabLZfLtm23le1ZC9M0U6lUKpUyTdOre+Sdta7rHR0d3d3d0Wh0aVMz\nv9/f29srhPASUc2qP9ls9ujRo60JJy+CEwqFdu7c2dnZScvVx/JyPP39/ZFIZPUwkGmaU1NTL730\n0uHDh6emppqZHk3TQqFQZ2fnwMDA0NCQF0uKRqOBQMDn87XGkrq6uqLR6PT0dCqVKpfLrut6g9Tr\n9ZMnT/r9/qGhoXA43NXV1VYgaiVtmSRaeHG9vngTExOzs7PN/JNhGKFQKBgMai2CwWBfX9/6evAB\nAAAAAAAAAAAAAAAArEWl4R5LV16cLp3IVAs1l4QUgtNZVT/a6GpJZ7H9CjcZZcsTuZBBaqmQtEzN\nJCISRBVyJkgNkNpBaphoEzoaAVx0tmIsSXByGswfVnp3sXgvC3Vs9oQ2Hov1qLt+iZXSVM3JRom4\nffp9YL0YY8qC1uWlUunAgQNENDc3Z9u2lNIwjK6urm3btl166aXDw8NeHSCfz6dpmqqqzZZhXjYl\nlUqNjY0dPHgwnU47jtM6suM4uVxuYmJifHw8GAz29vYGg8Fl5xYIBAYHB3O53LFjx1qXe4Gbcrmc\ny+UqlYrXhuyMzrpZLak1NeUdsb+/v7+/PxBYpiViOBweHR0dGBhoxno4547jHDlyJJPJtBUHIqJE\nIrF3797R0VFa7t8E3r8VDMOIx+Orz9Z7LZ577rlcLud1YfOWB4PBkZGRSy+9dPfu3T09PV4+rLWJ\nm6ZphmFEo9Hu7u6dO3eOj48/88wzx48fL5VKzRCV93IcOnTIMAy/37+WWNJK75lqtToxMUFE5XK5\n2eTO5/N1dHTs3LlzYGAgHo9HIhEvnySljEQipz13AAAAAAAAAAAAAAAAgPWRknJV67nJwoGpYrnu\nSsFJtvd7YYv+bi8+dF7rJK1hbXP5mVRJajZra30uiSSxhYiS8J6b5J4kO0C+7aR1EtMvsmRS5aUn\nnz7RbHDTv/eGK1fs3AOwYbZgLEkqGgtEKRBjyREW3KJ39H0B1jGsGGGpKEQkmXr6tlJwFhRFaQ3N\neKWDvK5h3hMiCgaDXV1do6Ojl1566a5du/r6+pYN7ngcx+nq6goEAkIIXdfT6XStVmsmdoUQpmlm\nMpmxsTGv9tJKsSS/39/V1dXb2xuJRHw+nxcG8qbqum61Wp2bm8tms14WZ40n68Wn6vW6V4TJtm1v\nQO/R7/cPDAwMDAwsW8XH5/PF4/G2JI1t2+Vy2TCM1jZtzdH6+vq2b9++xrkt5ThOo9GYmZkZGxub\nmpqq1+veyKqqeoNfdtlle/bs2bFjRzgcbtu32Z7PMIxIJNLT0xMIBBqNhpRybGwsn883S1NWq9UT\nJ05Eo9GhoaF4PN72flgWY2zpNtVq9fjx40RULpdVVdU0LRwOJ5PJ4eHhSy65xIslhcPhYDCoqqrX\nE1DTtuC3NAAAAAAAAAAAAAAAAGw6l8ua5abLjclcLVVqkCS5fJ2kc10D6ZxUS2q5Ubc0obSQJZJy\n/s+yFZLkQjhJLmypOEQ2uTlyc6R1kxojtqZGKxeKEw/99Z8/nJv/Qb/+3huufP1mTgdaVE7sPxHe\nuzVzYlvxhrcRYt07GRH521MIWwwzwiw5IqVkRmiz57LFLS17Q0Su69brdSkl5zwQCPT29u7atWvv\n3r3Dw8ORSGT1mjo+n6+zs1PTNK/d209+8hPTNDnnzRyMlLJarR49ejQYDG7fvr2ra/nvH0VRotFo\nR0dHIpEIBAK1Wq3Zv4wW2swlk8nOzs6loZyVcM5N0/R6jdXr9dYBGWPBYNCrlrT25mJezmmlVWsc\nZCWNRmN8fPzo0aPpdLp1tn6/f3BwcPfu3VdcccW2bdtWiYi16uzsvPbaa3VdLxaLpVKJc+4t92pH\nTU1N5XK5np4ewzBOmxZaNrpUq9WOHz8upazVapqmxWKxkZGRa6+9dmRkJB6PB4NBr7aWN7iXJDtt\n/gkAAAAAAAAAAAAAAABgHUyHnyzUTxYadcslxiQt3NFjC5meFW7lra2O0dqrK53a8txVV2onm38t\nro20bM2kU7WUiKQkYZI7R26SFP9FFkuCC5J14vHP/vXfPzRz/T/uQyzpIsE0nbQt2LhtGZpOWgcy\nC+fasu3PvIJJrusyxrwmXKOjo1dcccXo6GgikVjLsF7Ht2AwKISYnZ2t1+vFYrHZOExK6ThOJpM5\nefJkLpfr7e01DENV1aVz85JJPT09qVTKdd1mkkZKaZrm7Oxsd3e31yVtjVzXLRaLXve3Znc5r9+Z\nruuxWKyzszMajeq6vpbRhBBCiFXiRyslltaoXq+fOHHi2LFjxWLRKy/kCYfD27dv37Vr18DAQCQS\nWeNoXou6arXa19eXyWS8K8AY45zX6/V8Pu+1ouvo6Fg9lrRSyzzbtr0iTFLKzs7OkZGRK6644vLL\nL+/v71/64iKQBAAAAAAAAAAAAAAAAOdO3Xan8vXpfL1uc+8GlqTFNYfkeapstLFbehbutUmSjIgU\nhSnKwt03KYg4SbGkWtLKNZOkJOZlk7xWbhly50jrvrh6uMEFx0skfXN/joj6Nnsy5ww+JQCnpyjK\n0tSIx+fzRSKR4eHhq6++es+ePWsvSuQNGwgEenp6du/ePTo62ravF3sql8szMzPpdLqZWFrKa6w2\nODjYVhOo0WikUqlUKuW1mVsjy7K8vSzLal3u8/kSiUQymYxEIhdOZ7FarTY5OTk1NdV6joyxWCx2\nySWXjI6OhkJnVktMVdVIJDIwMNBWEcrr1jc7Ozs7O2ua5mnHYYwpirI0j+WFtFRVTSaTV1999dVX\nX93Z2bnSuwsAAAAAAAAAAAAAAADgHGnYfDpfn8rV6pYzn9EhYq1lh1j7H8YYY2zxRtS2+UrLN27t\nqZ9W37dJYeRTFZ+qKIxICpIuSZekIJJEgkgsrookiAQxQWzJcilICBImuRly5ohWvIELsCY/fuAT\nXiZpS0MsCeA0mkVrli2Bo+t6T0/Ptm3btm3b1tHR4TXeWjtVVWOx2I4dO0ZGRiKRSPMQ3kGFELVa\nbXZ2Np1OrxKFCQaDg4ODXiypOVuvxk+lUsnn86VSyTTNNdYlMk0znU57R2ymahhjhmH09PT09vYG\ng8GVqgGdT60VjPL5vFfYyavqlEgk+vr6BgYGOjs711jVqZVXM2lgYCAYDHplsWih+tSyga2lvFdh\n2d5/RKTreldX19DQ0I4dO7yjnOkMAQAAAAAAAAAAAAAAAM6GkLJu8bmyma1YNhdyS/BObT475ZGM\nGNNUNRzQQ35dUxWSnKRJokHSPVUt6Yz+kE2iQCJP4vS1DADgQil5AnAh8yrfLLsqFAqNjIyMjIyc\nUZ2kVn6/f3BwsFAoxGKxmZmZ1l+ZRGTbdjqdTqVS27ZtW2WE3t7eTCYTCoVa95VSCiGq1Wo6ne7t\n7e3q6morp7Qsy7K8WFJb+Mbv9/f397fVENpElmVlMpmZmZlKpcI5b554MBgcHh4eGRmJx+Prq+oU\nCAQGBgZyudzhw4fbjjg3N5fJZE4bS6IVQmxSSsZYJBIZHR3dtWtXIpFAnaSz57ru4cOHx8fHS6US\nEUWj0cHBwT179pzpGzWdTr/wwgu5XM40zUQi4XVm7OnpOTezflmbmZk5fPhwPp+vVquGYSQSiZ07\nd+7YseOcfhxKpdLY2Nj09HSlUnFdNxgMJhKJ7du3j4yMXDjl31aRSqWOHTuWTqer1SpjLBQK9fX1\njY6OJpPJ8zaHer1+6NChiYmJSqWi63o8Hh8dHT3XLxwRWZY1NjY2OTlZLBZN0wwEAl6Rwp07d56f\nWOfs7Oz4+Pjs7GytViOiUCiUTCZ37NgxODh4Ho4OAAAAAAAAAAAAcC4ISZYryqZdrNkNR3IpScqV\nCg6tWIiIrbq2dd/2/iKnG/ms1y4mfaoSC/rjYb+uaUScRIVElchdqBHV9odWXOJtzFySFeIlkqiW\nBHB6F8GtOIALxKlQ7QJFUUKh0ODgYH9/v2EY6xtWVdVwOJxMJnt6etLpdKFQsCzLO5aU0rKsbDab\nzWZXaeKmaVosFuvo6EgkEqFQyDRN13W9FLCU0mvl1tPTE4lEThtL8koQZbPZQqHgOE5zGl6/ub6+\nvr6+vnWf6caybXtubm5ubq7RaDQLQTHGvFBRX1/fum9Xe9WMurq6DMNorT7lOE6hUPCuzOojtGax\nW5d7L0owGPTKa607yvZycM8997TV9/qLv/iL1rCX67r//u///s1vfvO73/3u0qCYqqqvfe1rb7nl\nlltvvXX1fNKxY8fuv//+hx9++Pjx40vXXnbZZTfccMPtt9++ffv21Sc8Nzf3uc99rm2hoih33333\nWaZe7rvvvkKh0Lqku7v7/e9//9mMueGWvl533313W62y//7v//7a17722GOPpVKppSNEo9HXve51\n73znO9/ylresJUC5FlLK73//+9/61re+973vHT16VC5pqkhEwWDwF3/xF9/85jfffPPNp32VW917\n773VanWVDV544YWPf/zjbQtvvPHGa6+9do2HaDQa+/bte/jhh5966qnZ2dllt9m+ffsb3vCGm2++\n+brrrjtH8SDTNP/t3/7tq1/96g9/+MOl336RSOQNb3jD29/+9re97W0b9cJ5Dhw48OCDDz722GPP\nPffcsr8BVVW96qqr3vjGN958882/8Au/sIGHJqJGo/Gtb33r0UcfXeXid3V1vfa1r73ppptuuumm\neDy+sRNYo/379+/bt2/ZVe9+97tHRkbO83wAAAAAAAAAAADgYsGFaNi8ZrmmI1whpZi/vbXmR3lm\nW8qNHXOZ7T1L7+cSY8TIp6qJcCAeMnSNkbRJ1EjWSTotBZBaH+k0S4gTcRINEiZJh5h2ZikpgJcZ\nxJIA1okxpqpqJBLp7u5OJpNnGdYJh8Pbtm0rlUqWZbVmLGzbXksURlGUSCTS29vrlVZyXbe5yjTN\nmZmZ7u7uoaGh1efAOTdNs1QqFYvFer3OOfeWe8WiIpFIT0/P2Z/pRrFtO5fL5fP5tkiKYRjJZDKZ\nTK6jfZtHVdVAIBAOh9tG4JzXarVKpbJKRGwtDMPo7e3t7u6+QK7khemee+5pvgM9H/3oR5uxpIce\neuiOO+4YHx9faXfO+VNPPfXUU0996lOf+od/+Iff/M3fXLpNPp+/4447vvKVr7QdqNWhQ4cOHTr0\n2c9+9rbbbvvMZz6zStatq6vry1/+8uTkZNvyvXv3/vqv//pKe53WkSNH/uRP/qRt4Yc//OF1D3iO\nLH29PvKRjzQ/QU899dTtt9/+85//fJURyuXyvn379u3b19PTc+edd37wgx88m5CN4zhf+tKXPv3p\nTy+bNmtVr9effPLJJ5988s4777zppps+9rGPXXPNNWs5xL333ptOp1fZ4ODBgwcPHmxbODg4uJZY\nUqVS+cxnPnPffffl8/nVtzxx4sSXv/zlL3/5yyMjI3fddddtt922seGkBx988CMf+cjSN3brVB99\n9NFHH330j//4j++4447bb7/97CsYPfHEE/fcc8+PfvSj1TfjnP/sZz/72c9+du+99+7du/fP//zP\n3/KWt5zloYkon89/+tOf/sd//Mdisbj6ltls9pFHHnnkkUf+6I/+6Pd///fvvPPO3t7es5/A2j3z\nzDNvetObvEJxbe655x5kkgAAAAAAAAAAAGAVXFDddmu2ywUnKc+0mtEZ1zFiq671yHWNvCZM15RE\nxJ8IG5rCSZgkTGIuKZJcMV8GidFqNZPY4uXzTzmJOokGKUFiyF0ArGj5vlQA0OSVABFCtFXa8MIr\nkUgkFosFAoGVurytkdeIraenx+/3e1WOiIgxxjlvNBrVatU0zVXCE7TQeqyvry8QCDSDwF69pXQ6\nPTs7W6/Xly0W0uQ4TrFYzOVytVrNdd1mvljTtEgk0tHREY/Hz/5MN4pt2/l8Pp/P27bdWp3I7/d3\ndHR0dnauO/TDGPP5fIFAQNd1RVFaL6bruo1GwzRNx3FWv5je26ZtG0VRdF2PRCKJRCIcDl8UraMu\nNPV6/ZZbbvmt3/qtVTJJraampm666aZPfOITbct/+MMf7tmz50tf+tLqHyuP67oPPPDAa1/72qmp\nqZW2URTl3e9+99LlX//619cyz5V89atfXbrw1ltvPZsxzyfXdW+//fbXve51q2eSWqXT6Q996EOv\nfvWrp6en13fQH/7wh1deeeX73ve+02aSWkkpv/Wtb73yla98//vf7/Xq2izf/va3d+/e/Zd/+Zen\nzSS1Gh8ff+973/uqV73qwIEDGzINy7Le85733HzzzatkkloVCoW77777qquu+t///d91H3RycvLN\nb37zDTfccNpMUpv9+/e/9a1vfdOb3nRGL3obKeUXvvCFnTt3/u3f/u1pM0mtarXafffdt2vXrs9+\n9rPrPvqZevbZZ6+//vplM0l/93d/97GPfey8zQQAAAAAAAAAAAAuRq4QdYs3LM6FXEDy4uSdkde0\nZOmZKgozfGo07O+Ohzsjuq6aJGskLSI+38Ft3X+ES6JBok7y9DebXk6s7IkDTz/5+L6HHvrGNx56\naN/jT+5/aaay7tEqMy/t9wZ76KF9jz994MT6h2qd3+P79j30DW9+T+9/KdvemAU2Fm6KA6yTpmnR\naDQajfp8vrMfzefzJRKJeDy+dDQhhJdMsizL7/evlAryYkmZTObEiROtyy3LyuVyc3Nz1WqVc75K\nFMayrFQqlUqlTNOULXkar7rP2bRFOxds2y4Wi8VisbV2EWPMMIx4PB6NRs8yPuVFiHRdtyyr9Wp4\nfe4ajUYoFDrTqiTeeyaRSASDwXPUbmlrKxQK11133f79+890x49//OOxWKxZdujBBx/8nd/5nTOt\nevXzn//8N37jN37605+u1BXu1ltv/eQnPykXZ9EeeeSRSqUSiUTOdM5EJKVcmmrau3fvFVdcsY7R\nzj/Lsm688cYnnnhiHfs+88wzr3nNa3784x8PDg6ufS8p5Sc/+cmPf/zjbR3l1k4I8fnPf/7JJ598\n+OGHd+/evb5B1o1zfscdd3zmM59Z9wj79+9/9atf/YUvfOGWW245m5nU6/Ubb7zx+9///pnueOzY\nsTe84Q0PPPDAe97znjPdd9++fb/7u7+7bM5mjb7//e9fe+21X/3qV2+88cYz3bdcLr/73e/+9re/\nve6jl8vlD37wg9/73ve+9rWvre8jv3bPPffcdddd19bekYgYY/fdd98HP/jBc3p0AAAAAAAAAAAA\n2AKEkHXbrVvufCyppVzS2dQrWm6tt0yefl92astlxlytXMBqNJUlwkZ/Z2SgM9IV9fkoS06BpH2q\nd9vSCklsheVtBZPIma+WpMbWObmtxcru/85XvvHQEz8+klt6D07vu+L119/y7ltv2LXW/4GePfDQ\nAw9844kfT1TbVoS3veb/3PpH7/0/uyJEB/7htz/ynZx3hNf95b67/5/V5jfz9EP//M2HlhmRiMLb\n9r7+bbfc+rbXb1+t8EXL4Sj8uk89dPfe1c9h/6fedvcP5o/W+Rv3fuODV86vqDz+4d/++xdsIrIq\npy7W7EMfvOGJ+ePrl773H//hbf2rj3/RQCwJ4DS8X4FL07WapoVCoXA4vCGxJE3TwuGwN1rbsaSU\nruuapmlZlle/Z9kRDMPo7u7u6+uLRCKapnHOpZSMMS/VVCqVCoVCuVyORqMrJZNM00yn0+l02gvi\nNE/cCzz19/evlMbYFK7rlstlL2vVWtCo0WhMTU35fL7WfPQZ8UabmpqqVqttI3j1qyzLsm07EAis\nEi1aNo6tqmowGIxEIrquL7sBrMI0zV/7tV9bRybJ82d/9mfXX3/9nj17HnvssXe9612rd0VcyfPP\nP/+hD33o85///LJrd+zY8cu//Ms/+MEPWhc2Go2HH3542UJKp/WDH/xgYmKibeHFUipJCPH2t799\nfZkkz/T09Dve8Y61V80RQvze7/3eP//zP6/7iE2HDh36pV/6pccee2zv3tP8c3IDua7727/92w8+\n+OBZjlOv19/1rncVi8U//MM/XN8IQohbbrllHZkkj+u6t91220r1w1byxS9+8Q/+4A/W96XdqlQq\nvfWtb33ggQduu+22te+Vy+Wuu+66n/3sZ2d5dCJ65JFHfuVXfuW//uu/urq6zn60ZT3//PNvfOMb\nlxbTYozdf//9733ve8/RcQEAAAAAAAAAAGArcYVoWLxm2q7bUi6J5m+ureFx7Vue6fYrbCmX2ZK8\n/jOrlSpgYb8+2t+xe6irOxHUmUn2DLmzJM1TpZKo9ZGWLFl2ORERCZdEjUSdpLtxr8xFKrv/nz/x\n8Qd+PLtiTQB79oUnvvLnTzz0ld+461N33bBq9ofIOvH4X3/4E9+ZWH606sSPv/mJHz/xnT+6995b\n7Uoul5uPJVVXKUgw8+T/94m//ub+3IobVCf2f+fv93/nK3tvuesvP/z6ldJALYcjq3r6EktWdTbX\nzGi15I/IqlZnc0tnY1dzuYXMVGUrVXBCLAlgnbwmbhtV9sYbbaUWaUII27Zt216lBIimabFYLJlM\nxuNxv9/f2rKNMdZoNGZnZ7u7u3VdD4fDy47gtXtLpVKWtehbLhAI9Pf39/f3BwKBszjFDeY4Tq1W\nayvsJKVMpVLf/e53w+HwWd7ebjQa2Wx26TUXQjiO4zjOOsqxrP4qw+r+9E//9Cc/+UnbwuHh4de/\n/vW7d+8Oh8PFYnFsbOzxx0yFQBgAACAASURBVB9Pp9NLd7dt+6Mf/einP/3pd7zjHW2ZpEgk8sY3\nvnH37t09PT1CiOPHj3/3u989cuTIstP4p3/6p7vuumt4eHjZte95z3vaYklE9PWvf319saSlHdx0\nXT/LKjjnzV/91V/t27evbaFhGK95zWv27t2bTCaDwWAul3v++ee/973vVSrLF9x8+umn//Vf//Wd\n73znWo74vve9b5VM0u7du9/2tre94hWv8LKbqVRqenr68ccf/8///M9lW7Zls9nrr7/+6aef3rVr\n17IDttWq+Y//+I+2Dfr7+6+55pq2hSu9c4jotttuWymTFAgErr/++l/91V+97LLLuru7FUWZmZkZ\nHx9/9NFHH3/8cdM027aXUn7gAx/o7Oy8+eabVzrcKgqFwqOPPtq2sL///2fv3OObqPL+/51JMpNr\nmzRpc2mhKZe2KJViXSl4obC+oCjVKl4AdSmrj1QXFB7QRdyf4GufB9EVF8V1wV3XsiIUBS3CasHV\nbfVZKUq13LTtUkihbdJL2rRNc8/M749p03QmSZM05Xrer7Em3znne85cmpScTz5f3eLFi2fOnDlm\nzBiRSNTU1HTy5Mldu3Z99913AZM8/vjj6enp06dPD2fEnTt3htAkJSUlFRYW3n777VqtVqVSmc1m\no9H473//+5NPPjEajdz2Xq/38ccfl0qlYR5+X1/fHXfcEazOII7jM2bMKCwsnDBhglar5fF4zc3N\nDQ0Nn3766TfffBOwCuSxY8fuvPPOioqK0bAYPH369B133GHm/FsFx/G//e1v0b3UIBAIBAKBQCAQ\nCAQCgUAgEIhrEIoCm8tjc3ncXmpYK6MReSDFam+AphgMsxqI0QAJcaKcidqciRq5hA9UO7jOgssA\nXivQFNAUAA0YDOeNxPVSYhp4wGsDyn6tF3FzGvatWfbykeCSHz+s9QdfWFx/6rU3V88I9uVeZ92u\np5e9Xh3A0WgI5uq3li1rWaQffszekyUrVrx1ariE/Vl3r1lcv3zra0VZo1sW4RoDyZIQiCjBMIwg\nCK65UXTgOC4UCsViMZ/P5y7N0jQ9rBSGKToWHx+vVquNRiNjsOTr7pMlJSYmBpQlMbXJOjo6urq6\nXC6XzyqJx+NJpdKkpCSVSkUQxMiPNCZQFOXxeNxuN3dJ2Gq1BhQZREHANXKapimKoigqCtkTj8cj\nSZIkSSRLioK//OUv/k+nTZv2P//zP7/85S9Zv4Aej+dPf/rTc889x63Rtn///p9//rmnp8cXSUlJ\nWb9+/ZIlS7ieZwcPHnzqqacuXLjAinu93j/96U+vvPJKwEnef//9y5cvt1qH/GHz1VdftbS06HSR\n2Sza7fZ9+/axgvPnz1cqlRHluVRs3rzZ/2lKSsqzzz772GOPSSQSVku73b5t27b169cHFCc9//zz\nDz744LC/Mtu3b2fdIT5ycnLefPPNGTOG2HZOmTIFAB577DGbzfaHP/xh06ZNXHFPZ2fnXXfd9eOP\nPwYsyPX+++/7P+W+Edx2222lpaWhp+3jD3/4AyshA5/PX7Zs2e9+9zuNRuMfz8jImDVr1q9//WuL\nxbJu3brt27ez3h1omi4qKrruuutGXvJPIpFs3Lhx+fLl/lchPT199uzZzzzzzDfffPP4449zZXwe\nj+fhhx8+efIk94qzqKmpeeKJJwK+omo0mldfffXhhx/m3gCLFy/eunXrnj171qxZ09LSwtpL0/SS\nJUsmTpzIVYZxefzxx4Npkh544IHXXnuNJSZjPLRWrVrV3Nz87LPP7t69m9vx+++/X7p06Z49e4Yd\nPSJ+/vnn2bNnt7e3s+J8Pv/9998PU8CHQCAQCAQCgUAgEAgEAoFAIBAA4KGoPqfb5qKYKm4QsVtS\njDyQRubDhAdepcVooPk4LhYKEqSiyanq68eqU5PEQl43uJrB3QIeM4DHzy2J65A0nGcSAAANlAco\nK1DWa9stqeXQOpYmSTl5/qIFBdNzUnVK0mk2G+urDx/Yta/S533kqt+95mli+3srsgJ4JvVWvPT0\nEE2SNHXmgqIFc3LSdTLS2dtSf+Twvl27mWSu+o93BLYZ8MOwa81QTRKhnT5/0fy5M7JSlUrSaTY3\nnvz20MHdBwednqzVb61YIyvZvkAf4amIAFnOkvXr5wOA6+TuzR/X9w8tzVm0Yn56/4K8MuvKWBIM\nC7Q0jkBcFuA4LhAIhEJhQO+lcGRJDEzBteTkZJZJg8PhaGlpaWlp4S69A4DX63U4HEyhN5vN5tP6\n4DguEokUCkVCQoJUKg1W/e0iw1S1C3E2Rl4GKFZJWGAYRpJkiEp8iHDAMOx///d/jxw5cscddwSs\nrvjMM88EFApQFFVbW+t7euedd54+ffrxxx8PWIdx/vz5x44dC+iUs3fv3mBzk0gkDzzwAHfcgPMJ\nTVlZmb+CiuFKqeAGQ3+DioqKamtrn3766YAKFZFItGrVqh9++CEtLY2712AwHD16NPRYBoNh1apV\nAXe99NJL3333HUuT5I9YLF6/fv2pU6cCXuuGhoZgmWPITz/99Lvf/Y4bV6lUhw8ffuutt1iaJH/k\ncvnbb79dWVkZH88uXG2325cuXRrQzid80tLSjh8//vTTTwd71brtttuOHz9eUFDA3XXu3LlgAj4f\nHo/n0Ucftdvt3F0FBQV1dXWPPvposKFxHF+0aFFtbe29997L3etwOB599FGW+R+X0tLSgOoxiURy\n8ODBDz/8MITBVXJy8q5duz7//POAYt8PP/xw586doUePiLq6utmzZ7e1tbHiAoFgz549SJOEQCAQ\nCAQCgUAgEAgEAoFAICLC46FtTo/N6aEoCvMpbThgQQyNML8t1nsxDLBh+wYHAwxwDBOR/NSk+NnZ\nabOz09I0CSK+C3c1gOs/QHUB5gWgBgRGNAAFQA11RaIGN4yxR2K1ZLp7gHYAZQOIuMTKVUPLvpde\nqhzUJBHaOev3flqyoaggJ0OnkpEylU6flbdg9eZ9n765ZPLgh+mu+h3rNldzP8LvrXj55cN+6dIX\nvbl33+YVBTMydCqZTKbSZcxYsGLzvk/fXJQenptG3dZ1b/mJnIj0+17bu3frusVzc/QD88uZu3jd\n1r17X7vPL6W1evO6krqIzkRkkPoZBQUFBQUFC2boB6Oy9DkLCgaYMUyluysKtDSOuEzxqQ1GQx0S\nK5i10lhJTBhlUkDNis+hZ9gkQqEwOTk5JSXFv+AaTdMul8tsNre1tfX19XFXqd1ut8ViMZvNfX19\nHo/HV0GWIIiEhISkpKS4uLhY+UKNHJ9Vkr8aOuZgQaBpGsdxHo8Xxdlg3KdwHL9MzuQVyh//+Md1\n69aFPof33Xff/fffH6JBQUHBgQMH4uLiQrRJSkoqLS3lDnT27FmuW4mPpUuXcoNRqBO4FdzUavW8\nefMizXPJefXVV997771hLXMmTJjw+eefByx6tX///tB9//u//5ura8Ew7O23337xxRfDeYkeP378\nN998E9BZ59133/3++++HzTASli9fzjX3UiqV33777axZs8LJcOutt/7zn/9UKBSs+LFjx0IUthuW\ntLS0ioqK8ePHh24mFAr37t171113cXe99tprHR0dIfq+/fbbp06d4sYfeeSRjz/+OPRvKINMJvvo\no48CFi87ffr01q1bQ/S12WzPPvssNy6Xy7/44ouAR8QlPz//yy+/TEhI4O5as2ZNrNz76uvrZ82a\nZTKZWHGSJD/++OP77rsvJqMgEAgEAoFAIBAIBAKBQCAQiGsHD0X1OT19Do+HouhRZVDyhA2KjjA8\nwg1jbRiGYxgOOA9wHmAYAPBwTEQK4iWEKk40Tqu4YZzmF+nJN2ckTxoTrxA5cG8L5j4HniagrEB7\n+32SRrhRHvBagbJdu25JvRVvba0eXOHQztn43saCwGoa1YwV27cvnzyo/DF+vHm3gdXIsO8dP1FS\n6n1btweu9aaasXr71kWpwyqTOg68tbveNz8ifdHW7evydIHmR+ry1g1J6ap/5/V97GINiGhBsiQE\n4jKCka3w+XyuEoLRxAybgZElcd2SvF6v1Wrt6urq7u52OBwsZZLT6TSZTCaTyeFw+Kt8hEKhTqfT\narX+IqdLzrDeUaMq+sEwjM/nCwSC6ORoYV5HRDDuueeeZ555JpyWK1asCLZrzJgxO3bsCOcKZmdn\n33HHHdx4CJ3KbbfdNmHCBFawpqbm9OnTww7nw2QyffHFF6zgww8/fJk4loXPgw8+GFD2EZCMjIzl\ny5dz41999VWIXqdPn/7kk0+48WeeeebJJ58Mc2gASExMPHjwIFfZAwAvvPBC+Hki5auvvvrXv/7F\nCvL5/H379k2cODH8PDfddBNXygYAv//97z2eaP45xOfz9+7dG8IryB+CIN5//321Ws2K2+32P/3p\nT8F6ud3uV199lRu/6aab3nvvvfDvdh6P9+677wb0xHr55ZdZRRX9KSkpaWpqChifPn16mKMDwM03\n3xxQetja2vrGG2+EnycYDQ0Ns2fPNhqNrLhIJPr000/nz58/8iEQCAQCgUAgEAgEAoFAIBAIxLUG\nRdE2l8fm8nipATcgDPoVP2F4HQUjwF6aBrrfawgwwIY0GdI8ZOZ+OZJvahiOYzjev+5GAx/HZGJS\nLZeM1yVkj1PPzEotnJ4x7xcT01NU8SIPz3sWHD+BywDeTqDdQFFAB3FIwijAAjonMaeIOVcU0BTQ\nXqBdQNmAtgOMqHDBlUvH4d0Vg5/Ba+/bsD4vkIhoADKjaOPqnEEtUf3ukm+HGCZV79o3WJNNe9+6\n1TmyoMlkOcs3LEgNPT/D7pIjg6Kp9EXrQyUEkOWs3rgo3ffUVb1r32gaJl1TXGELnIhrB5/i5JKX\nuwphyXMRnJxommbeUHk8XjgOPQKBIC4uTqVSyeVykUjkcrk8Hg+GYRRFuVyunp6ejo6O7u5uJpuv\nl8PhaG1tbW1tdTqdvhHBryScUCgc3eOMkAF19RCYsyQWixMSEkZPR5WcnKxUKqMrxObrcsnv6isU\nHMcDihgCcuuttyqVSrPZzN313HPPBVSfBOSXv/wlVyHU3NwcoktRURG3JtfOnTtffvnlMAf94IMP\nuK5mAf1gLmcEAkH414vhV7/6FbfL2bNnQ3R58803ucHMzMyNGzdGNDQA6HS6t99+e9GiRaz4F198\n8fPPP0+aNCnShOEQULZSXFw8c+bMSFPNnz///vvvZxUZbGxs/Mc//nHPPfdEmu3ZZ5+98cYbw2+v\nUCjefPPNhx56iBV/9913X3zxxYBvXnv37uX+KgmFwr///e+RKvB4PN7f//73KVOmsNyJOjs7d+7c\nWVxcHLBXwJO/ZMmSKE7XvHnzli1btn37dlb87bfffu6550YiKDx79uysWbO4J4opM5eXlxd15ljj\nsJgsFgcI5XKN/PL6mwFx+eMwmUwOh1CuQTcPAoFAIBAIBAKBQCAQCMRFw0NRNqfH5nR7vBRN0zTQ\ng0uiNO2/PBryZ/CWAxojAQ8X8HGhgCfg4yQPF/BxAY/H868s4td+aGYAYBRNADTttxcAwP9TZx6O\nE3xcKiblUlGCTJggE49JjBuviVPJACgzuFvAeQbcjeDuAMzeb3QEdH+iwceh40Mj/ZsHvFbwWgGu\nTbekjsrDJwetiCYvKsoZtuqYbv4Tc95ZdrB/9c585HC1c8aMgV7VhyoHv587fDoya0nR9H0vHWHX\no/BhqKho9D2RzlxSlDHc9CCjaMnMfS9U9mutGisO1q3IGL4XYliQLAlxWXMRdD+XFTRNe71epoya\nfxzHcYIgCIIIx2iHx+NJpVKNRtPW1tbW1ubzyaBp2uFwGI3GpKQksVjsrzRyOp2tra0mk8npHJSk\nYhgmFouTk5N1Oh1JXka1K3Ec5/P5TDU0VlwoFOr1+tzc3JSUFADgCjtGCHNOkpKSRCIRkhZdfO64\n44709PTh2wEAAI7jWVlZFRUVrLhUKo1I33PddddxgxaLJUSXJUuWvPjiiyw3r127dm3cuDFMryyu\n7c3UqVNvuOGGcPpePsybNy81dRidOovrr79eoVB0dXX5Bzs7O71er7+S0ofH42GpcBh+//vfR6dN\nXLhw4ZYtW44ePcqKv/fee5FKrMKhtbX1s88+YwUlEsn/+3//L7qEq1at4p6QkpKSSHU2MpksCo+o\nBx988IUXXjhz5ox/8MKFC998883tt9/Obb97925u8LHHHotOATZ+/Pjly5e/8sorrPjf/va3gLKk\nH374ob6+nhXk8/mbNm2KYnQAePnll//+97+z6gk2NzcfPnz4zjvvjC6nwWCYNWvWhQsXWPG4uLjP\nPvvslltuiS7taGAqLcpdtKcRUpf9q3Zb3qWeDeKypKakeEu5xQEg1C/csKlQ77fLUFqYveqoM37m\nH6sqVmZeqgkiEAgEAoFAIBAIBAKBQFxbeCna5vTaXB4PRTGin0E4SxlDApzF22ArHzRgfB4mEwkS\nZEKtXKqKE8qlpFwiVEiEYiGf4PN4OMbOR7MfBfwfewIYhmMYn4cTfL6AjxN8nojEpYQb3EZw1oHL\nAJ4OoHqAdgA11AkJ85WYowNsWJA4056mAWNkSX1AX5NuSc5T35708yIqyNOF0YnMKZipPPjxgC6p\n+kg9zMhintR9Wz1oNpCeF0Y61fQ5WcSR6iC6pI7qI4OqJCJnzoxQTkkDyPIKcojKyv6UjSerWyAj\nnONChAbJkhCXmBA1rbxeL0VRl1yZxEwvhJggWCmxSKEoyuPxsDRJvtEFAgGfzw9HCsNIZ3Q6XXt7\ne09Pj2+JlKZpu93e0tKSmJjIqHYYvF6vzWbr6Ojo6upyuVwYhtE0zefzCYKIj49XKpVxcXECgSAm\nxxgrmDJqzGNmwr7HMplswoQJGRkZNE3H6tKwCCiPCAffPC/5XX2FUlBQEFH7cePGcWVJt9xyi0wW\nzt8d/XDrUsFwsqSUlJQ77rjj8OHD/sHz589//fXX4VjgnDhx4sSJE6xgUVHR8HO9zCgsLIyi16RJ\nk7799lv/CE3TVqs1Pj6e2/jrr7/u7OxkBdVqdRRuNz6Ki4u5sqQDBw6Mhizp4MGD3Aprd999d1JS\nUnQJZ8yYMW7cOJa/1D//+U+Xy0UQw5ZYHmTx4sUSiSSKCTz66KPr169nBT/77DOuLKmvr4/rQwYA\nTzzxRBTjMixbtuzVV19lvcAeO3bMZDJpNBpW47KyMm6GgoICbsswUSgUDz744I4dO1jxAwcORCdL\nOn/+/KxZs86fP88d6NChQ7/4xS+im+eoYCopXrmnEUB9z6YNeZer243DUL5lQ01uydq8Sz2TaxVT\nRemOPd0AABn6lZuGvEFkFm8p3jb9jbrKtUWb8irWZl+uNxECgUAgEAgEAoFAIBAIxNUEDeD1Ul4v\nxbgjQZgeSExFtmAtwed7hAl4mFQoSIwTaRUSnVKqGZAlKSSEXMKXkDgfp4GOYiEPCyROYnyMvEC7\nATwAHqAc4OkBbzM4a8HdApQdMApoCiiaMWUazhtpuDjzgPYC2IG2X6OyJMNJw6AgSJs1OUz1zuSc\nycTHA7ofo8HQC1kyAIDe+vpBryRlelY46VTpk7VQ3Rh4Z+NJw+CT9Jys8FYHyckz0qHyVP8zw6l6\nJ+guI/uOKxXk9oG4xASTJdE07Xa73W73KClLYkLAUmJRp/J4PE6nk7tEDQA4jgsEAoIgwhTEiESi\nlJSUlJQUll+I0+k0Go1Go9HniuT1eh0OR09Pj8VisdlsPnshgUCQkJCQlJQklUpHUn1mNPB5R7FE\nWkyhOrfb7dNy8UaHS3TcCMjNzY2ofVxcHDd48803R5RELpdzg/6+YgFZunQpN7hz585wRuRaJQkE\ngsWLF4fT97Li1ltvjaJXQB0Yy4HGR2VlJTf46KOPjkRJ+dBDD3GFa7W1taEr90XHoUOHuMH77rtv\nJDl/+ctfsiJWq5UrtApN1DI4bgk8APjyyy+5we+++87hcLCCN91000hcwdLS0riHT9N0wAkEvHke\ne+yxqEcHgP/6r//iBv/5z39GkaqpqWnWrFkGg4EVVyqVX3755eWlSQJTSfHa/a0A5LS1mxZGqeoa\nXRyG8k2F2Znzni+vvdRTQQRGmLth00NqAOfRDcVbatgvDQgEAoFAIBAIBAKBQCAQiFEAB+DzMAEP\nxwKsdWI+CySMa4aEDW7967wYqx0GQMuEgsxkxW3XJxfcPP7OnHEzJiVPTlWlqeOS4vhSwskHC3g7\n+jcqoq0dvO3gbQdPG3iYn23gMYGnGVznwPUT2I+B9Wuw/gusX0HfMfAYwWsH2uvnk0QBDPVM6o9E\nGqcBKKBdQDkBrklZktk4aG4E+vRwPYVIvU45+KzF0DL4aFDlpEzXhpVMpw86bG+LeXB+0hANWai0\neqnvidVs7g2zHyIUSJaEuMRgGIbjOFeZxEhMXC5X1LIkxixn9PyWGCERt+BadDCWRVar1e12+8eZ\nt3M+ny8UCsMs4gYAJEmq1WqdTieRSHwyGgzD3G53d3e32Wz2DeTxeHp6erq6uvr6+nzHgmEYk0Gj\n0YjF4jAHjYKoMzPKJJZ9lE/a5XK5Yl6+DXHJwTAsYD21EAS0e4k0SUQeMz4KCwu5eqa9e/cOq2fy\ner27du1iBefPn69SqaKYxiWEJMnx48dH0TGgDiygXhMAvv/+e27wtttui2JcHyKRKKDmo7q6eiRp\nA/Ldd99xgyOszBVQvRfR5IVC4U033RTd6BMnTuRewRMnTrDe2mB0rh0ABKwWxz18iqJ++OEHVhDD\nsOi0dD5uvvlm/wKpDA0NDd3d3RHlaW5unjVrFsv1CgDUanVFRcXUqVNHMsmYYylbuXZ/KwCkFm0q\nvjzLb9VsyJ/3/P66YV5+EZcWeeGGtdNIRpi0DcnHEAgEAoFAIBAIBAKBQCBGHx6Ok3yc5PN4OE4P\neDGMEADAMJAI+WNVshv0iTeOV984Lmny2PhxiZgurkdFmuL5F0TYOZ73DDj/A64z4P4PuP8DrjA2\nJ2urB2c9uOoHGjCP68BZB866/geuBqBbgbICeICmgfKzO4rJBjTQVP9GXYtlUnp7ewdlREQEpUpk\nWj9ZksuXxNpr9WtDhrc8J5PJgjXs7fUTFMmU4VdSUfofSq//rBBRg2RJiEsMU56Mx+OxxD1er9fl\ncjmdzqhlSUyGkQibQkNRFKOAiUl+t9vd09PT09PDWrulaRrHcaFQKBaLSZIMp4gbAAgEArlcrlKp\n5HK5fy+KohhvpK6uLrvd7vV6nU5ne3t7a2ur0+n0vwQikUin0+l0Opbf0uUDj8cjSZLlXcRcFJvN\nNnrXHXGpUKlUYrF45HkUCkVE7aNzCxMKhVzbGIvFcvDgwdAdv/jiC6PRyAouWbIkijlcWlJSUsJ8\nvWJBkgGsMIP9Op86dYobjFpS4yOgLOnkyZMjTMvCYrE0NrKNRcVisVYb3jcAghBQDRbR5G+44YaR\nmORx7Y5cLlddXR0reGmvncFgsFrZ/5KYMGFCwFqB4SMQCKZMmcIK0jQd8GCDYTQaZ8+efebMGe6u\nWbNmTZ48eSQzjD2OirVr97QCQPzcDZdt/TaOLxfisiSzeFNRKgA4j25YW2K61LNBIBAIBAKBQCAQ\nCAQCgbjqwXEQE3wxwcNxth+Snx1SAELsxQDjY5hOIZ45OeXOm9JmTEoer5GJBQ7wNIPzR3B8A31f\nQt9XYPs3OL4DRzU4asLefhzYfvDbjoH9e7B/D/YfwPYjOH4CVwO4W8DbBZQNwAsUIxsKzyEJowEL\n2JLZSwHGzQAAPMAFgF2ToguXy0+WFMG3/An/hSAXDCRxuvy/WxpuOiJoS//pReZC4N8Wfd81Nlxe\ntZkQ1yA+WZK/7RBjdDRCURHjP+RfmCw6/Eui+uPxePr6+mw2WzAbj4hwu92dnZ2dnZ1ut5sRFGMY\nRtM0n88Xi8UymUwoFIa/xo/jOEmS8fHxiYmJCoWio6PDVyvH4/HYbLaOjo6uri6SJF0uV1tbm0+W\nxAzK4/FEIpFWq9VoNAElAhERrE4fBJcahINAIJDJZBKJpLe311e4DQBcLld3d3dPT49CoYjO5wZx\neRKwtlcUjFB2ED5Lly7985//zAru3LlzwYIFIXpxK7glJibeeeedMZ7c6JOYmBhdx4B1EgO+Vni9\n3paWFlaQMYqLbmgfN954Izd44cKFEaZl0dDQwA0SBLFmzZqRpLVYLNzg+fPnw8+QnZ09kglkZWV9\n/fXXrGBjYyNLTxNwSgHPfESEee1GaXQmCbdkXkQ3z6xZs+rr6wPuKi0tXbx4cUFBQfTzizW129aW\n1AEApBatvTzrtyGuIIR5a1dOK1l11Nm9f8OGioXbLledGwKBQCAQCAQCgUAgEAjE1QEfx8UkT0Tg\nPBzztzvy+8mNBPvZv4pKCvDEOFFGckL2OPWklDgp6cUpM3jbwdMMbgO424C2Ax+YKm/AXnoNCbNQ\nS9OA+Zke9f8EoCkAAIrq30vTAxFuS1YkWHy4ljBw1BgfgH+NypKGCIJcQVtxGCo/8tkikQQJMPCF\nYmdveAmdLmewhkPWiYdolIabn3/bES6UR3Barm6QLAlxicFxnM/nCwQCt9vtrx9ibG9G4pZEUVRf\nX19fX98o1fPyer29vb09PT0xkSUxrkXt7e2sGk8EQSgUCoVCIRAIIs0pEomSk5M7OjpsNpvDzyrA\n4XC0tbW1tbUpFAqn09nW1uY/LlNWTyqVqtXqxMTEkcuSQhN1CTzfmXE6nf4WU8yZ7OjokEgkSJZ0\nNREXFxeTPNwSS6PEL37xi+uvv/706dP+wc8++6yrqyuYY1Nvb29ZWRkr+PDDD0fx63/JiYm1VWhM\nJhP35V2jiYEyIikpiRvkSqBGSHNzMzdosVg2b94c24GCjRWMqCVlDEqlkhvknr2AUxr55UtMTMRx\nnPWXw0UbHWJx83CdpfxZtmzZLbfckpCQEPHMRgNL+aZNR50AQE4pLkYSEsTI0RetzN+waH83NJZs\nKFlbUay/1BNCIBAI2SFtQwAAIABJREFUBAKBQCAQCAQCgbiKwXEQETwxyccxAGC+/R90zS6w/YDf\nXhowDIM4MTFFn3jjeE2KKk5KenF3E3jOg/s8UB1A24B2ANBAYSEGCoBPEoT5F1DjSJQw8KuwRvXv\n7R+IY30ENGDcuF8ECxJnRwAwAWDEcGfo6oSQyQif7sbaa+4FCK9QmtloHnwyWF1NqVMCmH1tetnd\nAtJrtgZT/shkpH+78PIBsKu/yaTB2oUhOXIit6V+rk3hHuIygsfjEQTBqsZF07TL5bJYLBaLhVXU\nLBwYSZPVag1YzCuYc08wmPbcXoxbUk9PT3d3t8PhGGHJMLvdbjKZWltbHQ4H41rEDEoQhFKpTEhI\niEJhIxQKdTpdSkqKSCTyWRbRNM1IkVpbW+12u9PpNJvNZrPZ5XL5/JlkMllCQoJcLheJRNGVYfKB\nDRBwL03TXq83ulPHnBmlUkkQhO/QaJq22+3Nzc0tLS0OVLTl6mK0FXKjwdKlS1kRl8v14YcfBmv/\n0Ucf2e12VrCoqCjmE7sIXAQp1ZA/CweIiRuWXC7nBm0228gz+9PR0RHbhCHo6ekJv/EIz2HA8tHc\nimncy4dh2MjVhxiGcSfAvXZX7s1jNBqffvrpWGUbIYbSTaWtAABkbvHCzHB7OUyG2tqampqamlqD\nyXLZvlM7LCZDbU1NTW2tIYpJ+vWO7hgv8VlyMNOvqTWYAtivhdHfYqitrampNZginbq8sLhQDQDg\nrNyypeqyvT0QCAQCgUAgEAgEAoFAIK4G+DguJvgigs/HcXoEMOtzfBwTk3ytQpI5Rpmui0uQ0LjX\nDJ5G8JwFz3kAM9C2/qpnFB3GRgFFgTfCjRrYaPoibYADRgAIrk3RBan1/5pyiyHc7+c6W1oGZUnE\n4HedtXrt4Gq4ucUQlo6osc4QbJdMqR1UFFlbjOHOr8NoGFzSkCq1quBNhxUm9fYGVU1dY1yLvyGI\nywocx8VisVgsZslfmOJibW1tLPegcHC73V1dXWazmbvA7xt0hGobAKAoyu12d3d3t7W1MbKeqFN5\nPJ7e3l6j0cgUU/PfxYhvonMtEolEKSkpOp1OLBb7C4MYWVJbW1tfX5/D4bBYLP6eTyRJarVarVYb\nE7MTDMN4PB6O4wGVSTRNu91ut9sdhTKJOTMqlYqlfrDZbI2NjY2NjdxVcMQVzZXoffXII4/w+WxX\nwp07dwZrz63glp2dPWXKlNjP7Kog4Ct8TJQlAZPEXOkY7B1qNIhorBGew4DSIu7Z405JKpWO/K0Z\nAs3f6/WyfA2vlJsnoLvbBx98sH///ugSxpSabdsqnQAAZO7CQn3otg5DRcnaovxsvVwo0qZNmjR1\n6tSpUyelaRUioSYzb+HakipT4I6GkqI8hvxNVSEGqN22sL9d4RZfO1NZcX5eXl5ecZmhP2IpXzmQ\nrrg00JAOQ/m24sJcvVyu0KZNmjp16qRJaQqRXJ9buHJbuWG46+ioLdtSXJirl4sGe2sVcrk+t7B4\nS1ntcAqfKM6SpWxlvu/Aa4bLX7WlcKDxpkCSH0tt2Zbi/GyNUMRMf+qkNK1CqMnMK9pUWhOOPslh\nKN9SlJ8plyvSJk2aOnVSmlYk1+cVbRn+1PkQ5i3MZ2q21pVuKY9KFIVAIBAIBAKBQCAQCAQCgQgL\nHMdEJF9M8Hk4YFhQu5/ge/r3MhB8XB0vTlPHp6njtQqBELeApwlc58BrBHACFZlB0gA0AOW3+Xsd\nUYANjQRryUQwlgESPaRl/96QGVij9wcxwASAE4Dxhj+aqw/d5PTBtTvjqVNhfhm7vvrU4Kq6Uq8f\n+KoxmZ6T7ou7Th2pD0MjYDh5yhx0pz5d79eyOpx8AOA8VW0YfKabrA/WEGB4GYPZcPG+oX55g2RJ\niEsM480jk8n4fL6vnheGYS6Xq7Ozs7293Wq1er3eiEp92e32CxcuNDY29vX1RV0jzId/eVQWXq+3\nu7u7sbGxqakpai8Et9vd0dHR3Nzc3t7e29vr8Xh8Ch5Gs6VWq9VqdRSyJIIg5HJ5YmJifHy8SCTi\n8XiMD5Pb7bZYLCaTqb29vbOzs7e31ycMwjBMJBLpdDqdTherWlc4jvtbYTEw55OiKIfDwRhERZqW\nJMmkpCS1Wu2vaWN8tsxmc1NTk9FotFgsMSmxh0BEh1qtnjdvHiv473//22AwcBufP3/+66+/ZgWX\nLFkySnO7Cgj42x0T+VpAcUzM/Z+iEN1GTUS+gyPUBgU8Udwg9/LFSnrInT+GYSyB4BVx8+j1+hMn\nTuTk5HB3LVu2zGwO/k+ti0NVSelxAAAgcxfmh6p/Z6rYlJ+ZOWvpKzsOHW/sZt/2zta6yj2vLJ2e\nmV1UauB2ttTWVDJU1ARRLvW3q/K180lZHIaaisrKysrjjQOjOluP+5oZ2JIXQ/naPH3avCe37z/K\nmmd349H9bzw5LzMzf1NFsFlYqrbkZ2bfu2r7/qON3UMPsbvx6P7tq+6dlJm3sjxY9yjPkjw309F/\n5Pu3bKsIKf5xVGzbtJ9pWyvPzmb9kWcoX5mXmX3vqu2HjrcOGd7ZWle54/lFUzPzVvrkXYGwVG0p\nzMyct2rHoTr/+Xc3Vu5YNS87t7jMEJ48T5hXmMeI+1rLS5AuCYFAIBAIBAKBQCAQCARi9ODjuIQU\nxMAtCcMAw8QkX58Ul65TaOQiErdjniZwN4K3HcAGQIGXhjANCi6a0dEIt34lEw64BHApYOzvqF8T\nyLL8dUQnDx8JS4Jz8sCRwY+3pf4pdDPyBp+YjxyoHnYZpe7Agfrge3U5Oam+J9ZvDx8Jx3+p98jh\nbwedL5STs3RDdhPk4EqCy2wdJmPHqVPGMMa8FkCyJMQlhpHOyOVy1nKg1+u1Wq1dXV0WiyXSEmk9\nPT11dXV1dXXB/HJi4pbEYLVa//Of/9TV1fX09EQngert7a2vr6+trbVYLKwMPB4vLi4uJSVFq9VG\nV8GKz+dLpVK1Wq1QKHzLol6vt6+vr7293WAwXLhwwWaz+QvCRCJRcnJycnKySCSKYkQujGESV5nE\nzMThcNjt9ijEQ4yrk06ni4+P5/F4Pi0XTdNOp7O9vb2uru7s2bMxr7uEQEQEt44bTdMffPABt+X7\n77/PegUQCAQPP/zwKE7uCifgq2JE1cqC0d3dzQ3GxEDOn4AiGD6fT44CEokk/ImN8GUz4CXg6ly5\nly8m1w4CXT7u29nlf/Okp6d/8803EydOfPfdd7mma62trStWrIhyijGioqSsEQAAyMz8PH3QZqby\norz85w/5dEGkOmPazJlz586dOXNahtrvMnQf31FUuLYmxqZkofTVQ/Y5arbk5857pbJ1IEDGZ0yZ\nOXPuzJlTUn0GWM7GQ8/n5y4MJJ8ybFtYuMp3mKQ6Y9rMuffcc889c2dOGTzK1so3CvMDHeMIzpKm\nsCi/f4KN5aWhqp45ykvK+w8vtbAoz//wHbUlhXnz3qj06ZHI1Ckz595zz1z/4Vsr37g3r7CkNmBy\nS9Xa/PxV+4cewdy5M6elxpPMxLcvzN8Q3uUV5hXmMYN2l5eWIV0SAoFAIBAIBAKBQCAQCMRowcNB\nTPAkQgHOcUPC+jcMC+SUhPltvphMRGSmJGQmK2RCHni7wXUW3Aag+8BLAxXp+ilTH83fncjfzSgM\nh6TQXkpDnJO4OcP3UgLABMBPAJ4CsBh/sfkKQZc3Z7Lviau6ZHfdsEKijkMlhweVOtKcmTl+n4Dq\n5yyY7Fs6MR9+Z7chdK4Db+1rDNUgY84Mre+JtaLkwPB13FoOlFT4qZKmz00ful+plA0+MZ4M7cDU\nUnn45PDllgjwUzpdvC+0X2SQLAlxiWFKcSmVSoFA4F/niymRZrFYLly40NLSEqarhNPpNJlMDQ0N\nDQ0NRqMxRNkUmqbDVCYxswpWg4wZ8dy5c2fOnGlpaYmolJvX6+3p6blw4QIjoOnt7fUXJRAEoVAo\n1Gq1SqWSSqXcVclwwHFcIpFoNBqtVisUCpmjoGna4/F0dXWdPXvWYDAwnlKMkRJjXpWUlKRSqWJl\nXMGk5fP5LPEQ42zU2dnZ2dkZkZMHA4/Hk0gkKpVKo9EolUqCIDAMwzCMpmnGxerMmTM///xzU1NT\nT0+P1+uNybEgEJEyf/78xMREVjBgHbf333+fFbnzzju5fRE+Ako9AopCIiWgPCXmsqSA0s+1a9c6\nRgGjMQI5/girywW8BNzSZtzz6Xa7Y1LYrreX/e0E7liX+c0zefLkr7/+OiUlBQCmTJny3HPPcdvs\n3r37k08+iW6SsaCqrKL/X3ua3NzMYK0s5WuLdvT/O5TMeOiP/zpnMdVWVVSUl5dXVFTVmizGf/15\nyZSBm8N5fNummLrj6FdWOGiapo88k9EfUS/5V/9XuBxVKwenbSorLlx1qF+zQ6bO/e0nP5ostTUV\nFeUVFTUGi/HIe8umqfsn2binqHAtS/5jKV27ob97/LRln/xsMdVWVZSXlZWVlVfUmEw/7142Ld53\njGvZ1eNGdpY0hUX9Rc+gsawkuF+Spbx0QJWUMVSVZKlYW1i8v/9y9k/AUFNRXlZWXlFVazL9uPuZ\ngaNv3F+8cCV3DEv5yoWvHO3//YmfsuS9H02m2qqK8vKKKoPFcISZvbPu+PAfSQAAgDw3L5v5JMJZ\nUV6BdEkIBAKBQCAQCAQCgUAgEKMEH8fFBF9I8Hg4TtNY9G5JABhgElKQnCDVJQiFfAfQFvB2AGUB\n2g0U4y0UshQco/K55AZIEW39iiUB8BXAv2ZlSaCbs2C61PescfdL75wM6R/UcuDl1yv9VD95i/Nk\n/vt1c56Yoxx44jr1zuqN3wZzYOo9uXXN5iOBHUp8ZCxaNKhzcp1656VdhlCfUjoNu156x6/CXOr8\nRTmsLzkr9frBBXRzxcEQDkwtBza/Ux2OcsBvRd45nP/SFQuSJSEuMQRBJCYmqlQqkiRZ0h+apnt7\ne2tra3/66acwFwvNZnN1dfXRo0cZE6DRLuCFYRhFUXa7vampqbq6+scff+zs7Ay/u81mO3fu3E8/\n/VRfX9/a2sqSNIlEotTU1LS0NJlMFixDOIhEopSUFK77UV9fH6Pf6uvrYyKM0EepVCYkJEgkkoD+\nRtHB5/PFYrFPF+XD4XC0tLQYjcaoixlJJJK0tLS0tDSRSOSf3G63GwyGkydPnjhx4ty5c8gzCXGp\nCOh4VFtb+8MPP/hHvv/++7q6OlazoqKiUZ3blU5SUhI3GBNlicUSYB1cLpePPLM/SqWSGwxY4O8i\nE/DwwyfgJdDpdKzIKF0+q9XKfevnXrvL+ea58cYbKyoq1Gq1L/Liiy9mZGRwWxYXF3d0XKKy1Iaq\nKgPziMzMzQ7aqmRTab8SJn7utvLSlXn6ofZFQk1ecUlFyZIBH93uivKaUZjtMDgqNqzc4VPlLCmt\nKt9UmO1/yTS5RdsqKt67p3+azuNbijf4z3NQ8UPO3FS6rTBz6FHKMxduKyt5qP+KdleUlA3RJY30\nLMnzfbqkEFXPLOUl5f03+JSioly/o6/aULytXy8UP+23FVXsCcizF26pqPjzXHX/wW9buYF1kWq2\nrS3tP3/x035bXlFS5H/6NLnFJRXlv53GliaGQJ89kKC76lLcEQgEAoFAIBAIBAKBQCAQ1wY4DxOR\nfDHBx3FGM9T/X0D5UCCHpAFoGgdaRPBlIlJKAk53gbcTKBvgNAQyfQiOnzdSCCekAN5IIb2Ugjon\nReWlNDjWgCyJlwB8JWCx8Xq4+DidHb2RMXRNV1WwvCh9UPhTv2PFiq3VgT+3dhoOrF72UqVfAbeZ\n/72crfqRzVj+3zN9QidX48drlq4o+baFtY7ccXLfuqJlO04NI0oCAN2CFfP9DJOqX1+2ZlcQ5VTv\nyV1rlr1ePZhTO391EeejeXLy9JzBi209/PK6A4GUTr11+9Yte9nvYEPgLwWwnjz87dUpTLoayxxS\nXtrjBABMIATsqtZd0RS4HQAAfBLwmClIwsTnuzPCPAKBQC6Xq1SquLg4giDcbrevXhtN03a7/cKF\nCyRJyuVyr9crlUpFIpFAIPAZHVEU5fF4nE6n3W7v6ek5e/bsiRMnGhoaurq6aJoWi8UYhjmdTrfb\nzfLp8Ql4RwLjzePxeCwWy5kzZ2iaFolENpstLi5OJBIJhcKAyh632+1wOKxWq9Fo/Pnnn+vr600m\nk79uBsMwgUCgVConTJig1+sjKr7DRSgUqtVqnU4nkUhwHPedXrfbbTabAYDxSQIAkiSVSmViYqJM\nJvNVfIsJjAmTRCJxuVwej8dna2S325ubm+Pi4pKSkvh8vlAoZEyPAICiKN9U/W2WWDCypL6+vo6O\nDrvd7rt/PB5Pb29vc3MzSZIej8ftdqvVaolEIhQKhULhsEZZFEW5XC6n0+l0Oh0OB47j3HsPgQiT\npUuXbtmyhRUsLS298cYb/Z+yGqhUqrvuumvUJ3clExcXJ5VKWcU6z50753K5Rmj2dvr0aW4wLS1t\nJDm5JCcnc4ONjSH9Ri8KI5RG1dYGKPI0ZswYViQ5OfnHH3/k9tVoNCMZPcxrF/DkB5z5KE0gBF99\n9RXLXIokyb/+9a+333476++Wtra25cuXc189LgKOmqra/n9oDSpIOBjKy6r6W2UUbyjSB2kmLyzK\nT92xvREAwGIwWQBiLAEcBlPppgFRDTllQ+m2woC3oDCzqKSkKnfW9joAcB4v2VS2trSwf6Img6Ff\n8aPJzNQHHERTuHJhalmJQ6/P1OuFFgDfICM/S8K84oWpO95ohH5dUuFC7gk0lQ2okshpRQv9hGSW\nsk0lA05NMzeUbsoNePKFmcUlm8ozl+7vBnAeL9lSvqEkf0C65KjYtu14f4Zpa0sCZpDnbirZUJW9\nqjJMEXpmbja5/ZATAEw1NbWQF9SPC4FAIBAIBAKBQCAQCAQCET18HJeQfAnJ4zF1Y4CmaBoGFn/9\nftKcyJCffB4uIfgyoUBE8IF2gscC3m6AgTIpwyiTaAAAmvXTzzypv6Ab+D0OFok0PsKWzNERwE8A\nfgLgV6gsyVX5Qv6syLoo73vv0LqswecZizYuryh6fUAiZD21Y9n9R+YULVk0Z0aWTgYA4Oyoq648\nuLtk3xGjn0WHds6G5+equPlVc5/fcKR+zcH+IhAu45G3nr67RJuTk5OqU5JOs7nx5LfVjb6lIYKA\nkLWMyJzVGxedWra7vr+R+cjrS+8/PH9J0YI507NUZP/8jhzeV7Lj41N+KiIiddGG1TMCWIeo8hZM\n33zEZ/lkPvLS4sUVi4oWzMlKV0pdVqPRUH9o367DR/qnKE1NhcbGkPoprV4HMFDzwnhwzf31OTnp\nSujtJfJWbCjQh+p6BXEVypJot5PqbcMAg7gkjAhQIeXqwe2ke9pomsbj1UDEuLjMRYPP50skkoSE\nhKSkpLa2NovF4m8a5PF4uru7GxoavF6v0WgcP358cnJyQkKCUNi/GOJ0Oru7u9vb25ubmxsaGpqa\nmtra2np6ejwej1gs1mg0GIaZTCZWjbCYaJJgQJvlqzf3n//8p6enJzU1dcKECampqWq1mmt0xBRu\na2lpaWhoMBgM58+f7+joYHn58Pn8uLi45ORkJk/AQj/hIxAIVCpVUlKSTCYjCMLlcjHCHe5JEIlE\nycnJKSkpvtMbKwQCQXx8fFxcnNVq9TdGcjgcJpOJEf243W6dTqdQKEiSpCjK6XS6XC6aphm5UrAa\ndowXlMvlamlp6enp6erq8r9/bDbb2bNnLRZLU1PT2LFjU1NTdTpdYmKiVCoNmI2B0Ut1dXW1tbW1\ntra2trYKhcIJEyaMGTNGLpeTJBmiLwLB5YYbbrjxxhtZ9kgffvjhq6++yjymaXrv3r2sXosXL46t\nOvCqZOLEiSxpi8vlOnHixE033TSStNXV1dzguHHjRpKTy4QJE7jBEydOeL3eGJrVRcG5c+dG0p11\nqwOAUCgcP348Kzhx4kRu32PHjuXl5Y1k9DCv3cSJExl1rH/whx9+8Ol0o4Z7+AEnEAJuwTsAuPXW\nW5988sm3336bFd+zZ88DDzywYMGCiCY5cmqravt1OKQ+iA4HADT5m8o/MdQaDLUmvb8/Dwd9poaE\nRicAgMMStArZKGEqL60YKD+Wv7Y4O/hfQPK8tStnljxZ6QSA1vLSCkthvy5JKBSSAE4AaKwoKbfk\n5QeS9uRuMTjYAlWAmJwlYW7RwilvvHIcALorSsstCzm6JENZSUW/cii3aKF+cIelvHTARElduLJY\nD0HRLCwuXLt/RysAtJaVVDjyB3RJVaXlA6quvOKioAKizKKVhRsq94RnSabR6+UArQDgrK0yOCAz\nxn+XIhAIBAKBQCAQCAQCgUAgAIDPwyRCgZjg83EY/LSU8/koFmpBFcOAFvCweAkRLxUSfB7QLqBt\nQFmBjrSgDc3ZuEHw81IK0hIL1jdIPGj74caiaaAxwEkQJIAg4Zot4gYAQOoXb91sXLbCp/wBa/3h\nt144/BYAEFIpWK1c2ZB25vqt6/MCiJIAAFR5z29d37vipUqjL2Q1Vlce5Hz8T6TOX7+496WXK/sH\nICCQOozMWv3mxt5l6w42DszDfOrg62sOvg5AEFIAK1fWRKTO37h1dU7gekayvNUrcqpfHrRVcjVW\n7nipckeApkT6oo2ric3LdoSUJakmT06Fat+X1l3m+iOH65njKXi+QH+VLExfjbIkjxN6zZTXxcMw\nkCTQhAi76E5Cow3t9WCuPsraSfe0YnwCJIqLL0vy9zQayRoe4wwUHx+fmpra1dXFiFF8uxh5itls\ndrlcvb29VqvVbDYrFAqxWIzjuNfrtdlsPT09bW1tLS0tZ8+eZVriOC4SiZKSksaPH+92u3t6evr6\n+vznGZEsyV/w649AIJBKpTiOM3N2uVwdHR09PT0Wi8Vms1ksFrVaHR8fT5IkjuPM8idT8c1sNjOz\nbW5u7uzsZNVu4/F4cXFxer1+4sSJKSkpI6zgxiTk8XhyuTwxMbGlpcVisTgcjoCXzFfuTSyO8e1E\nkmRSUlJSUlJHR4dvaAzDvF6v1Wo1mUw///yzw+Fob29PSEggSdLr9TqdToqiCIJQKBQajSaYLInx\nYdJqtenp6Q6Ho6GhobOz06dC83g8zNW3WCxdXV0Wi6Wjo4Ox5hIIBHw+3//S+H46nc6+vr7Ozs6O\njg6TydTa2iqTyUiSlEqlUqkUyZIQUbB06VKWWKGxsbGqqio3NxcAqqqqzp8/z+qCKriFQ3Z2Ntdx\n59ixY6MhS0pPTx9JTi4KhWLs2LGsS9/d3X306NEZM2bEdqyIOH36tMfjCfaqGxqj0WgymVjBrKws\nrtAqOztA5a9jx45FMag/YV475n2WJcDq7e2tq6vLzIzemOXChQttbW3csUZoAcWwadOmAwcOXLhw\ngRV/6qmnZs6cqVIF+ffbqOAw+Sy15Bp9UG8joT43T5+bF0a+iy1F8h+7pmLArIjMWxhQUDSIPn9h\nLllZ6QSA7qqKGijMY8K5uXo4WgcAULejMNtUvHZlUWFetiYsLU1MzlJ20cJpW44fdQJ0l5eUmRYW\nDb3jDGUl/QcZn1+80G+fo6rcd/S5hXkhJyzMzc8ld+x3AkB3TXkN5DMaqtqqGtNAhvy8EHe6PK8w\nj9yzPzy/JI1eT0KrEwAcJoMJQB9WLwQCgUAgEAgEAoFAIBAIRCTgGEbyeRIhXyLkE3zM5QHmu5xs\nP6SBRVXuTwwDGjA+jsklQrlEKODzgPYA1QeUDWjvgLFQkEVk2ifxuWj+RrHLgNFA8wAXA18BeBxg\n1/zSoSxn9Xvvpb+07uXDjUMlPi4rR5BDaGc+seH5opxQn2mT+oLNu/S7Nmx4q7IxiBUSkTpz+YYN\ni7Oq17002I0IciVUeRtKtqdvWPdWpXFIOpeLqxciUues3vj8gowQK/S6Ba9t7V2z4q3qkGoj6eQl\nm19bkWPeujlUKwCAjKLV8w8/fdDIjruMBuNV8+noVShLAq+btlvAZqFcNixegylTQRjKGeWKxGWj\n2hro7jba6wJJAk15RvTV/miJieEQg0wmS09Pt9vtHR0d3d3sb1Iz4pXz5893dnaeOnWKIAhGakPT\ntNvtZiRBdru9r6+PkfgQBKHRaMaPH5+Zmdnb22swGNrb2/2nHUxpFBEikUin04lEou7ubovFYrFY\n3G632+3u6Ohg9DFMHTexWEySJI/HoyjK4XDY7XabzWaz2fr6+mw2G8vGCcdxkiS1Wm1OTs51110X\n0DIh6tkmJyczc3MEWdmSSCTJyclarTbmyhuhUKjT6dra2s6dO2exWFhn3maznTt3rrW1VSQSEQTB\nVJqjaZokSbVaPXHiRKlUGrqSXXx8/A033CAQCNxut9Pp7O3t9Xq9vr3M/dPU1NTZ2VlbW0uSpEgk\nEovFTM04AGBuJN+9xJQFZFI5HA5GdtbR0cFIzUZYUw9xbbJ48eI1a9Y4h9bbLS0tZWRJH330Eav9\nDTfcMHXq1Is3vyuWW2655b333mMFP/nkk+Li4qhz/vjjj2fPnmUF4+Pjp0yZEnXOYEyfPp2rSCsv\nLx+JLOmbb775y1/+ovdjzJgxETlvWa3W7777Lro5fPzxx9xgQAOkW265hRs8dOiQ3W6P2iPQ5XJ9\n+umn3Pjtt98ecAJcX6hPPvnk+eefj250CPS7DAC33XZb1An9kclkf/7zn+fPn8+Kt7W1PfXUUx9+\n+GFMRgkPi8nn1iPXRFNxzWKqNdQaamtrqqqqqqoqauq6/YwUYzLFsDHV1g6MmJkbtB7dAPrsbA1U\nNjIdDb5KarkrV84sebKyGwDA2XjojScPvfEkqZ6Sl5eXX1iYn5ebGZ5CiUUkZylzYVHuhqOVTgBn\nRUmZqajYXx9UW1pylOmqzi8aorwy1dZa+h/KHTXlw9QDrHEIGVMoMBgMFsiVA4DDUDNQz0+uz9aH\n6i7PzMyE/cdDj9GPxndfOU0GS8imCAQCgUAgEAgEAoFAIBCI6OHhmIQUqOKE8WLC0ufwra0NWXfm\n+icNfcrn4zJxRQ2FAAAgAElEQVSxII6xXQIvUDag+gDCcUui+yU+IfyNsCBxpj3GiYR2SBrJWOyh\nSSA0wNcAflXXbgofMqNg477piw7seKfkwJHARcukqdPnLC4qmp+jC2chWpa1ePO+AkPF4X2HK07W\n1RuMZqsLCKlSq0/Pypu/YP7cLBUADFl6I2TBa+nJshZv3pv37b6SHbsPVxsDzY9Qpk+fs6hoSUHW\n8N8ClmUVbT+Qc2DrOyWHAxwsoZw854nVyxdkqQDAHKA7J92MDe+9qX95c0nl0GSGeoMTrhK7pKtQ\nloTxBBgpoXrbaWMtdDXzPC5IGIOJ44F3NZin0R4XbeuiOxqpC8dppw1XjcVEskt4aAFNd7ABws8j\nEom0Wi2jHWEMkPz1Oj7VSF9fny/iK7/iPxCGYWKxWK1Wp6enT5w4cezYsUajUSAQsCbj9Xr9ZSvh\nHCP3cPh8fnx8vEqlUqvVZrP53LlzZrOZUbS4XK7Ozk7foTE6KqY0mMvl8nq93NoxMFDpTKvVTpo0\nKT09XavVMqKZmCAWixlZUktLS3d3N8s7SiAQiEQipVKpVCrj4uJGWMKGi1AoTEpKSklJUalU3d3d\ndrvd57YFA6X6enp6WL1IkrTb7XK53BWyJijTUqPReL3e3t5eHMcvXLjAmEL5RvF4PFar1Xf/YBjG\niMaYe4O5H1wDsO4rmqYJgujo6GC8uGJyQhDXGgkJCXfffTdLsvDpp59u2bKFecBqj6ySwmTu3Lnc\n4BdffHHu3Lm0tLTocv7lL3/hBm+//fbRKKw2b968PXv2cCewbt26qItpvvLKK//4xz/8IziOP/vs\ns5s2bQo/yYEDB6KTJb377rvc4Jw5c7jB8ePHT5gw4cyZM/5Bi8Xy4YcfLlmyJIqhAaCsrKyjo4MV\njI+Pv/HGG7mN8/Pzd+7cyQr+9a9/Xbt2bdRvggEPf/bs2dFl43LXXXctXrx4165drPhHH3300Ucf\nPfDAA7EaaDgclgGhCCmXh3WnWmrLy8rKK6pqamsNtYbG7vAscy4GJoNlwC4oHFcrjd5XSc1iMg3I\nkkBfXFpSk79w+/HBA3O2Hj+05/ihPW+sAjJ1Wn7+woVFhYW5+lCnayRnSV9YlLe28lA3gLOqtNRQ\nvFLv21VTUtKvBWKrksBkMA0M0nrolUWHwh7OZOrXZPlJ1DTDSdQ0mRoSjod1VH6vgBYLkiUhEAgE\nAoFAIBAIBAKBQIwWGAYSkq+OFyfF22wOlx0wxt4BhrgiBXVLAgCacV0S8EkBH8cwABpoF9DuwTJn\nQz5tpX0/Lra/0cjHwgYiGABGAy4EgQ6IZMAvdkWjkZK17tCxdaOUW5VVsHprwerelpMnT9YbjC1G\nswsIQqnUafXpWVlZuohrBMn0eQtW5y0I3sDl8isRp9QqQ2YjdTMWr5uxeF2v4WR1XX3L4Pz0+oz0\nyZMzVBEJgGRZBeu2FqzrNVRXnzS0mFuMZheh1Or1WTk5/keasWLfsRXDZ1PNKNo8o6i3pc5gMJtd\nLoKQKXWpOn1kU7qcuRplSaQETxqPOXrdZ47QNgvd28FLnYqPuQGThr4PrxBsXXTjj57GH7wtP/Nk\niVhqNq7SX/wKbgDAVLzixjEM89XGCj8bj8eTSqUpKSnZ2dk8Hu/UqVOdnZ1c4Y6/XmTwDc8vyLjy\nZGZmZmdnp6SkCASC1tZWVhKKojwej8fjCTj/8GFclxISElJSUnp6ehjtVE9Pj9fr9U2JpmmHw+Fy\nuZjpeb1eZlDuofH5/Li4uHHjxt10000TJ05MTEwkCCKG8iBGuNPa2hpwqZuxaNLpdFKpNOaaJBiQ\ncOl0urS0NJvN1tzcbLfbWW24IjMAYK5UOL5WPB4vMTHx5ptvTkxMPH78+JkzZ4xGo8Ph8O/rG4Jx\nrmLq/cHApaQoinFp8m/MtGd0Zl1dXUiWhIiapUuXsmRJ586dq62tJQiioaHBP87n8x9++OGLO7sr\nlZSUlNzc3KqqKv8gTdNbt259/fXXo0jY0dHB1XwAwF133RW6I2Pz5h8J5y1m/vz5JEmybLRMJtO7\n7777m9/8Joz5sjl58uTnn3/OClIUFVAYFILt27e/8MILUmlkZpPffvstt6aeVqudNWtWwPb3338/\nVyy1devWRx99lHlxjgjmunPj8+bNC5jtrrvuEgqFLPvAs2fPHjhw4O677450dAD44osvfvrpJ278\nzjvvjCJbMN54443Dhw9z1Ve/+c1v8vLyEhMTYzhWcPxP23ACOktN6YaVa7dVNgZVo8RnTNNYjtax\n/1y7SPgdSzhiwME2zqGGRZrCbVU1+Vs2bNpSdrSVdazOxqP7tx/dv31V/JSHNmzZspJb6iwGZ0lT\nWJy/8tAeRpdUVrty5UA1wqqSsjrmUerCYladtmD+mcPh9HUczEDCcBI1efhqS/9rcSlr/CEQCAQC\ngUAgEAgEAoFAXP2ICH5ygsRksRk7rWDHAOgg7kg0BK3HxsR963G03+OABPc3CupmxI2EEY/USync\nlgAYAC4EIhmIMVeeLOkiINNlzdBlRV8WIgLMhsFPywmlMjzdk0yflafPitEMZPqcPH1OrJLpMrJ0\nMcp1mXEVypKAT2ASJS1RAoZTvR3QdAK8LqC8mHoCJlFgpATwK++oaa8bnH3Q1+k11nkbqqjW/4Cz\nDxJScKkSRDGr8xXZlPxEGz5hLKMpwXE8UlcJDMMEAoFCoZg4cSIAuN3uxsbGnp4eu93u8bBd/lgi\nFcbsRygUSiSSxMTEiRMnpqenjxs3TqFQ2O12xqaIcW9iOvp8ccKUJYWu+CYUCpOTkzUajc1mEwgE\nLS0tnZ2dTHU2pgsjdgmWnMfjkSQplUrlcrlGo0lPT7/uuuuSk5OjWJENDUEQCoVCoVCQJMmS/jDW\nQWPGjBkzZoxYPCrvnUxxOpVKlZGRQVEUhmGtra02my30xaVp2uPx+M7ksDCF6giCoChKKBTGxcWZ\nzWar1coUYvNdBd9tEMIxi7lb+Hw+QRAkScbFxSUkJEgkkvBvbEbnxDhj+YKMLi2G1Q8RVxBz5szR\n6XQtLS3+wc8++4xbr2revHlJSUkXcWpXNo899hhLlgQAb7755kMPPTRt2rRIsz311FPcQqJxcXHD\nCsX4fD5LtsgVX3JRKpX33ntvaSm7ctL69evvvvvuMWPGhDHlIaxatYr7jqPRaAKWUQtBV1fXH/7w\nh5deemn4pgO4XK4nnniCG1+yZEmwV85f//rXXFlSdXX1H//4x9WrV4c/NMPbb7/9f//3f9z4k08+\nGbC9XC5fsGDBBx98wIr/5je/uf322+XyyEqTWa3WZcuWceOzZs3KzMzkxqNGpVJt2bLlkUceYcXb\n29ufeuqpgFXkRoNw5SWm8uL8wu1sfxxSnZqZmZmZmZ2bm5ebl5urt2zJzVzF1vJcJIbIXxwAwxyZ\nnwqHo2ISZhauLS1ca6mtKC8vKysrr6iqYx1U9/E9q/JrasuqtvmbFsXoLMnziwrVe3a0AjiPlpTV\nrlybCQDgqPCpkjIWFuVyDs8XyLjnmcLMsGVD+lwNqz84Y1mAzz9TtNZxCAQCgUAgEAgEAoFAIBCI\ncBAS/OQEaavFXtvUhYGTDuSKFMwzCQBoAGblK4Cfhf9yJO2T9fg7Eo2yv1HMWzIPcBwAB54MiGQg\nNIBdNXY2lwEdB1Yv223V6bV6bXr6jLyCnOEkOh0nTxl9T7R6fcR2TIiLxZUn0AkLHMekCXjy9bTb\nQbWfpXvbqM4m3pgbeGm/gMQ0TBQHWIw1H6MK7fXQNgu0nfWc+45qOuVtP4vhPFw7CU+5AcSRLZvF\nEJ/xDwvGJylStyQGkiTVajWfz5dKpWfOnKmtrW1ubu7p6QnoMOTLj+O4VCrVarVpaWmpqalpaWmJ\niYkymYzxbeKuhnq9XqYkXEzUIRiG8Xg8hUJx00036XS6+vr6hoaGxsbGrq4ut9s97EkQiURqtXrc\nuHF6vX7s2LFJSUlyuTzmmiQAwHFcJBKJRCI+n/1bz1S+Gzt27NixY0dJlsQgk8kmTZokk8lEIlFt\nba3BYOjp6WF5X/mmBAO+VsHutGDEx8dff/31Op2ura2tqanp7NmzTU1NZrPZZrNBoGJ8wcBxXCaT\nKRSKpKQkpgLdmDFjZLJw387oAVhB4Bws4hqBx+P96le/YokwPv/8c4lEwmqJKrhFxCOPPLJ+/XqW\n3svr9S5ZsqSqqioicUlJSUlAVUdRUdGwvkFisZglS2prawtn0GeffXbPnj2slwWz2fzggw9WVlZG\nVMrzzTff/PLLL7nxZ555Joq3lY0bN+bn50+fPj3M9i+88MLp06dZQZFItHLlymBdJk6ceO+9937y\nySes+O9+97vZs2dPnTo1/NmePn36t7/9LTd+ww033H777cF6rVmzZteuXayT39TU9OSTT+7atSui\nP2NWrFhx7ty5gPHwk4TJww8/vGvXrs8++4wV37t37549ex566KGYj8hB7mcZ5AheYctUWlzkU9uQ\nqTOLiosK8/NyM/VsVx1TmOOGUA1Fa/sDcs1gVTaLxVeVLRiDNd8g2MuLPDNvYWbewpUADlNNVUVF\nWVlZeXll3YDe0Vm3vXjtwtptA75FsTtLwryihak73mgEgOMlJTVrN2UzqqRGJvW0oqJszlx9g5Ca\n/JWbivXDjcE92sHKdybDMNXWIijHNlgnMBKPJQQCgUAgEAgEAoFAIBAIROSICJ5GLk5OkMSLBXwc\n3F72Glboz0kx38/hP0+lgaYBA443UtiuRaG9lDB6+Azheylxx/KdGBoHTAT8BBCoga8ETDDskSPC\nhSRcxvrqxno4AgAV5vR9KzJCtjcc3H3StzQjzcrRj/L8ENFzlcqSAEAcz0uZTDuslLmR6mzCbD3g\ntILXjfV1YnItLlMBKcMEQhiFelUxg6bBbafsPWDtoDovUC213nPf0+3naGcflpiGazNx3SQQxl2S\nqXm9Xm5pLd8CHp/P52pfwoGRzqjVapFIJBaLSZJUKBRms7mvr8/tdjMKFcb6CMdxHMcFAgGfzxeL\nxQkJCcnJyWlpaSkpKUlJSSTZr0vl8Xjx8fHjx48XCAQwIAeRSCQ6nU6pVDLBYWGOK9jyJJOTUfzI\nZDKhUMhYH7W3tzM+PYwrD6MU9mm2GBsekUgUHx+v0WjGjRs3duxYjUbjm3nM8Xq9TqfT6XT6WwTR\nNM3j8QiCYLyaVCpVREvgkSIQCBISEgQCgdfrJUlSJpO1tbU5HA73/2fv3sPjrOv8/78/933PzD2Z\nzEyOzaGHhFLalBYaLEpQkdQT8bBa11NF9yJcl0pQqvXnXlK9VOJ32bW4uKYuuy3rokUXCYLa6roW\nL91tWS5tvRZJATGFQpNSmqQ5HyaZ4/35/XEnac5N02nShufjypVrcs99eM89k2ma+5X3O5EYnXwn\nIu6Ta1lWIBDIzc0919Pi9Xpzc3Ozs7Pz8/Nzc3ODwWBeXl5HR0dfX597LHd+39guVqZpjr6oRo+e\nkZGRlZWVm5ubn5+fn5/vJsYmN7aZrob8/PzS0lKPxzMwMDC6PBwOL1++fPavPSwy1dXVE2JJTzzx\nxISXd25u7nvf+975revSZtv2XXfdNblRzdGjRzdt2vT444/PsvXUD37wg0996lOTl+fm5n79618/\n6+bhcHjCFfdnn322o6MjLy9v5g1f97rXffjDH/7JT34yYfmhQ4fe8573PPbYY+HwrHoi/uIXv/jb\nv/3bycuLioo+97nPzWYPEySTyc2bNx88eHA2zX7uvvvue++9d/Lybdu2FRQUzLDh3/3d3/3yl7+c\n0DkvGo2+7W1v+6//+q+KiorZlPqnP/3ppptuikQik+/auXPnDBuWl5dv2bLl4YcfnrC8vr7e4/F8\n//vfn80PM47j3HbbbXv27Jl816ZNmz7wgQ+cdQ9zsHv37nXr1vX3909Yfscdd2zatOnCt1sbE0Xp\nmT6K0lC3Y9/wzDHfhs/vP1BXOV3kp+dM1mcGMwWPoq2ts068jFdaVmrL4ZiIxBobGqNSOmMGpqex\nsWn4ZlZp6dlSj3ZheeWW8sot2yTaemB3TfUX9rkJoea9ew7UVVbZIuk9S3Zl9ZY1O+85KiJH99Y3\n7Cgvj+7fs9/du6+iesvkb+XSslKfHHUf/aHGaM3Mj37KY5aWlokcERHpaWxslckD6s5oamyabUus\nM++nvqzSGXYJAAAAAACA82UaKuT3FGT5S5eEOvujbT2DUUdEO7PsliQiSmtHO+JMeS11JM2zUP2N\n0rWH4dltSpQSZYtnqfhKxcoTg7+pS6tg6eoi+YP7e1Rp/s+Hf19d+8ZpO0bEju6p/bcXRlNJuZXv\n3EjnqovXoo0lKV+mFK42ogPGqeedgU4dizgtjbrvtDpxRBWXeZauk8I1Klwknov41ZmI6p4W59U/\nOy1/cVqP6u5XZbBHJ+MqI2TmlRrFa438y5RvAcZVOo7jdhuarluSaZputmNu+7csKxQKXXbZZXl5\neevXr+/q6urq6urp6env74/H48lk0jRNj8fjzj5z+9nk5OSEQqGMjIyMjIyxwRrDMIqLi9/61reO\nvVrp8Xj8fn8oFDpr94tz5ff7V6xYkZubu27dup6eno6Ojp6enkgkMjrTzc27uNGl7OzsrKysYDAY\nCAQyMzP9fv8FjarEYrG2tra2trYJc4U8Hk9WVlZBQUF2drbf778QjZom8Pv9K1euzM/PX7NmTWdn\nZ3t7e09Pj5vfEhG3x5U7ks+NFuXn52dnZ5/rUQzDCAQCy5Yty87OXrt2bTQaHRgY6O7u7u3tHRoa\nGk1ouRPlvF6v1+v1eDzuZ7/fn5mZOfq8+EZM2XxrSoFAoKysrLi4eGhoKJFIjC73er2BQMB90s/1\nEWERWLNmzfXXX/+HP/xhdIk7UHLsOjfffPMFTQcuSp/61KceeuihJ554YsLyhoaG66+//v7773/7\n298+w+YDAwPf+MY3vv3tb0/Zyezb3/52bm7uWWsoLCxsbm4eu2RoaOgjH/nIQw89VFRUNPO2O3fu\n/O1vf9vV1TVh+W9/+9s3vvGNDzzwwMzpnFQq9Z3vfGf79u1TDqb8h3/4hzm3wTt9+vQNN9zw0EMP\nvfOd75xunYGBgS996Uu7du2afNfll1/+ta99beZDrFu3bvv27XffffeE5d3d3W9/+9u/9a1v1dTU\nzPAPk9b6gQce+OIXv9jX1zf53urq6rNOr/vOd77zm9/8prOzc8LyH/3oR6dOndq1a5c7W3Y6TU1N\nn/nMZ379619Pvsu27X/913+d+ehztnz58m9+85t33HHHhOUdHR233377T3/60wt03BF2YWGpyFER\nkdbW1ml6GDUdONQ4fDNctb122rTNuKzPpDlgdpb4RM40M5omodLY0DjHGXB2eUWZ75HDMRHpPbD3\nULSqcobfI/Qc2H9opK9RecVIyqen8cCBQ42NjQ2NsnnHjqqpSrQLK7ftqTtU9oFH2kREepqahh9L\nes7SqPLq6uvqvnw4NpxLKm2qH0klVVZvLp28flZFZZk8fkREpO2sjz56oG5bfVNpWVlhaWl5ZVW5\nW2tZZXnBPUfaRCTWsP9AT82WaR9C46FDs+2LJa1NrcMn2i4llgQAAAAAAHCBmaaRG/RvKM1LpvTh\nF1qifTHRM/U/GrtcT7FsgjHdicZGfGboYzSbXkpqFnuYfS+ls/dtEhERQ0QpMUMS2CAZ5WIt2FCj\nxWvNOytLHnxw+GpL539+ZWuw9h/uqCyeFOiINR24r7b24edGL7F5199S/caLOPeBRRtLEtOjAjlG\nfqmxdJ0e6pXTL5lD3TLUnew7bQz1Jgd7VaRbckskkK0ywsqXKR5bzIugf0kqruNDEh3QQ71Of4d0\nnki++mfdetTpOG4lBkXEscNmwSpj6Tojr0T5Z9VBIe201vF4fDSWNPY6rpu88Xg8Ho9nDkPcXEop\ndw+hUKiwsLC/v7+3t7e7u3tgYMCNkriHcMM9oVDIDRhNmRdRSoVCoSkjIHMbMzcz0zSDwaA75ysW\ni3V1dfX29kYikWg0GovF3NZEbqAqEAi4UapZdt85f5FI5Pjx401NTZFIxB0uppRSStm2XVxcvGzZ\nsnA4PLceV+fKsqxwOBwOhwsKCvr7+9vb2/v6+oaGhibHktzVMjIy5vZMuV27Rp/9eDze3d3d398/\nNDQUjUZHX8OGYYyNJXm9XvfoEyJu58S2bZ/PN7lLyuhpT/trD5eKW2+9dWwsabJbbrll3opZNJRS\nP/rRj97whje0tbVNuOvll19+xzvesXnz5k9+8pPveMc7JnxTv/LKKz/96U/vvffeV199dco933bb\nbbN8Ri677LLDhw9PWPg///M/y5cvv/LKK3NzcwcHB1tbW7du3Tq5p1FhYeGDDz74/ve/f3LY9/nn\nn7/++us/9KEPffKTn6ysrJzQWysSiTz22GP/9E//9Mwzz0xZ1d/8zd+c50zAjo6Oqqqqj370o1/8\n4hevvfbasXf19PQ8+uijf//3fz8hj+Xy+/2PPvrobP6N+/rXv/7EE09MTpVFIpHPfvaz3/ve97Zt\n2/a+971vQj61r6/vl7/85Xe/+90//vGPU+72mmuuue+++8569IKCgh/+8Ifve9/7Joe6fve7361f\nv/7222+/+eabX//6109433766acffvjh++67b0LYd9QDDzwwm0ZTc/aZz3ymvr7+ySefnLD8Zz/7\n2cMPP/yxj33swh1aRMoqynw73SY7TU2NIpOGg4lIT2vr6LizGRsLNdXvOTCaKYpOSNycmZQWa2ps\nmi6W1FC//+hM9Y7J2kwK9JRWbS7ffvhwTESa99btra3cMm0Kpqm+bu/wLDZfxeaRvkDRQzu2fODB\nNhGRcGvV9qrpcjnuWXDfpEbnkqXnLJ1RtqW6ovbwwZjI0f37D5Q37HfrDW+u3jzlwyqrqlrz5SNH\nRUSa6+vqayurp3/0e2q3338wJiLiu+6bDSOxJLtyS1XBgw+2iUjv/t17mrZsK516+4Y9ew7PullS\nU+NIgqm0vIw/OAMAAAAAALjggn7vqsKsoVjyVNfAUDw1MBTXSrnXE2XGbknDd4ysOYYWPfIhY3oO\n6fnqb5SuXkoupcQQEVPMgHiXib1GfKViprn/BURkTfXWd/7n3/5m+E+JB557+G/f98uSjW/cuH51\naXEwKNLf3/TCs88+9YfnWsb+0X/mxi/W3ly6EPVithZvLElERFRmrrXyDZJKJCNdKtHvaNHxwVT7\ny3qgQ518xgkXqbxSo+Byo+AKlbVUBbJFXfBWMTNxkjrS7XSflNPHUq0v6c5mp7fVGerV0X6JR7X7\njpeZa5a+3rzs9UYgZ6HKTKVSbs5mysYMhmG4rWXS0nfHNM3MzEx3mtvo7C133pZpmqZpWpbl8Xhm\n7mEzyw436eX1et3gkZt9SaVS7hXN0crd6NW81dPf3//iiy8eO3Zs7EwxpVQgEFi5cuXKlSvnv3+P\nmzzzer0FBQUThriNPrlerzddCR63L1RmZqb7dLhj9ca+nNwbSin30Of5siF7hCl99KMf3bZt2+Dg\n4JT3rl+/fuPGjfNc0uKwYsWKX/ziF29/+9snj7USkb179+7duzcUCq1du7aoqCgzM/P06dMnT578\ny1/+MmWHJNe73vWu2eRaXNdee219ff3k5alU6tlnnx39crr80Hvf+966urrppq099thjjz32WGZm\n5vr16wsKCrKysnp7e5ubm5999tkJ48/Guuaaa3bv3j3L+sf64Ac/uG/fvtE9a63r6+vr6+uLi4vL\ny8vz8vL6+/tPnjz5zDPPxGJThwxM0/zhD394zTXXzOZwHo/n5z//+Q033PD8889PvrehoaG6utqy\nrPXr17sDWLu7u1taWp577rnpji4il1122S9/+ctZ/rv27ne/+5//+Z8/85nPTL4rHo/v3Llz586d\nRUVFq1atKioqMk3z1KlTL7/88iuvvDLDPu++++6bb755NkefM6XUv//7v2/YsGHyedi6detb3/rW\nmcfnnaes8ooy2XdERKTxUGNUyqcIjmQVZo30OWptbGyViqnzLo27a2oPjj6E2MRJbYVlZVlysE1E\npHnv7v21FVWTojvRhrptu4/MVK49mkvq6emZ1NyprLqmcsfhx3tFpG3f9po9FXurS6fYSbShrnr7\nSKXhqpotIyvZlZsrCx58xM3l7NjdsHn7VKdDpPHAgabhm6XlZcNnIz1naYzSzdWV2w8+3ivSuGd7\nXaubSirYXL15mshTec22G+tuPxgTkd5922v2VE796KVpz5kKxg+Es6u2VW+ov+dITCR2cEfN7qq9\nNZODRNGGHWd5ksZpPDQy7q2gvHzKegAAAAAAAJBWXsvIC9mXF4ZbuiPJlPPiqe6BmJZJvz6f+rqX\nGvmYwsxdiM61m9GMe5h9L6Wz9EZyM0kyrk/S8AP0i7VC/GvFVyJWjqhFHrRYGMHKL997x6mt9z03\nekF7oPmp3zQ/9Ztpt8i9/v/77r0fLJ2P4jB3i/y7RfkCqmCVGe13Oo6nkkM60muk4hLtU9E+3S3J\nrleM3lY90K77O1T2MiOUL/6Q8mSI1xbLVpZPLK9cuGCBdnQyLsmYJGKSGNKxQWewRw20pzqa9elj\nzunjTvdJMxFRevhtPGV6VSDbKCwzlq5TeaXimacuO5OlUqnBwcHBwUE3luQ2gBERN89h27bX603j\nLDC35828dRWabPKQ1NlQSrnxrAtT1DlIJpORSKSlpeXkyZOnT592x8mJiNt0Kisra9myZYWFhQtS\nqmVZaR+lN52L5xnBa1koFPrrv/7r//iP/5jy3vNsbPMa94Y3vOF3v/vdu9/97o6OjilX6Ovrm9zQ\naDrV1dXf+973Zt9D7sMf/vBXvvKVCSP5JpsyeePaunWrx+O54447poz8isjAwMChQ4dmWc9b3vKW\nffv2zW1825vf/OYbb7xxckbq1KlTp06dOuvmHo/nhz/84Yc+9KHZHzEnJ+fgwYNVVVVPPfXUlCsk\nk8mGhrq6KFcAACAASURBVIaGhobZ7G3jxo2/+tWvzimUc/vtt3s8npqamulOfktLS0tLy2x2ZZrm\nv/zLv9x2222zP/qcrVmz5mtf+9pXv/rVCcs7Oztramp+/vOfX8Bjl1VUlMiRZhGJNRxqkC1TzBks\nragolcNHRURij9duq6+sHw3yDIs27a+trr7n4NguZz2tPeNXqqiqLLjfHX3W/GD1lvK99dsqziRs\nehrqa7dt23mwd8Zqs0pHsj+xA7trD1TUVpZKT49kZbnpmcLqHdt3H/iy2zBpX03l5p49u7dVjs0H\njVQ6fJjwjTvqxvREsqu2bVnzyM6jIhI7Urt5S1b9npqK8SmgaNPebVtqh5sF+a6rrh45YWk6S2MU\nbq6p2vb4I70SOzryhleyuXr64Wyl1Tu27a6850hMRNr23VpR1bpn97aq0rHr9zTsrtmy7fHhCnwb\ntu0YH10q375jS/27HmwWkbbHb6/aHK0f9yRJ64Ed1Vu+fJYnaazWhoam4YOVV1bQLAkAAAAAAODC\nMw3l91pLwv51K3KViKXkla6BnoHYYDQlokQpEWdySklERJTbCEBEhnM8Wk/8OJ+uRe6V8jOX68cG\nj8YvHLtkYvBodA/TbTs2ojSyshrZUoson5gh8SwT/zrxXylWvhhccLxQgldV3//j0n/75rcf/kPL\nWS66ZK5+59Yvf/mDVwXnpzKch0UeSxLDI/6wWrLSuPw6rVSq+WljoEOLOFqUEh0bdDqbnYEO49Xn\nxQ4amTkqVKByV6isYiNcqIL5EsgRz4X6XbiOD+lIl/S3O72tuvtV3fWK09umh3r0UJ9EB3QsohND\njhatxVCiRFL+sHnZ683LK4y8y5SdKcYCdAByJZPJ/v7+/v7+CU0aDMMIBAKZmZlzHn2FC2FoaOj4\n8ePHjh3r6uoaHb0nI82KCgoKlixZMm8T3ADceuutU8aSLMv6xCc+Mf/1LCavf/3r//SnP23ZsuX3\nv//9nHcSDAbvueee22+//Zy2WrFixVe/+tWvf/3rM6/W2Ng4muWdrKampqys7Oabb55lAmY6t9xy\ny/33338+KcytW7cODg5++ctfPtdIbn5+/qOPPnrjjTee6xHz8vKefPLJz33uc9/73vfOddtRhmF8\n5jOfueeee+aQx/rkJz+5evXqj33sY7OJXk3n8ssvf+CBB+bw8OfszjvvfPTRR48cmdiGZu/evQ89\n9NDHP/7xC3bkis2VBfc/2CYirYcONUlF6RSrbNt2457b3TBK8yMfK2+sr67eXFlWaEu0p6nx0P69\n9fsPt8VExFdyXbkcPtwsItLT2jq+nZFdtb16w143NSNtj3/h+tK6GysrywrtaGtTQ8OBI80xEZGC\nm26rbLr/kWkmuRWWlo60XOo9eM+my+4RESm57X+adle6K5Rvr999qPLWfc0iEmve94VN++uu21xV\nWV5WakebGg8d2L//cPNIryLfmlv21NeMe7x2RW3dLXvdXE6sed/t15fW3VhVWVFeVpplR3sm7MC3\nYVvdtjO9htJzlsbKqqreXPDIg2diTGtmSiWJ2BW19XUNlbe7saO2x7/8rrLd11VVVVaUlWZJT2PD\ngf17Hz86GikK37hjT+3EpFBWVd2ezzdU7TwSE5Hmx79wfenumzZvriwvtKNNDfv37z14tFdEfCVr\nCpuPTjHzcaKeQwcahhNcFZsnt8cCAAAAAADAhZJpe9YUZ2cHfIVZ/r+c7G5oaj/ZnownHaUMrZUo\nkTGz20ZpLVpr0TLmV9/OyMeULYum7GY0ZokaHaCmRdTUvZTU5PXHLxm7pjNpycS9jQkwjRp9OI4W\nM0v8V0nGerHLxFskZugCnH6c4Suu3PrPldVHD/zmP39z4Klnn21qGTgTUPJmFhWtWb3x+sqb3vnO\njcXEwy4Riz2IoJRYXhVaYi672kklU5Fu7SR1dEBSSUeL6JREB1RsQPraHFGOL6CCeUb3qyqrWIcK\nnGC+ZOYqf0gsn1heZXqU6dGGqUxLDEsMU5QhSinD0KKUMoY72WlRorV23HmbolPiOJJKiJPSqaQ4\nCeUkdTIu8SFnqNcZ6JT+dt3bpntedTpPOP2dKj5oqDNt4Rz3vdb0KDtoFKwySl5nLL9agnlizt/w\nr8mSyWRPT4+bcRm9vKq1djvfBIPB+ZxNNg9Ge0EtdCHnzHGcRCLR3t5+9OjRl156qa+vz80kuY/F\n5/MtW7aspKQkJyeHHkLAvNm0aVNpaWlTU9OE5VVVVRd06NJrxPLly//3f/93165dd911V2dn5zlt\na5rmRz/60R07dixfvnwOh/7qV7/a29v77W9/e4Z1IpFIc3NzaWnpdCtUVlb+5S9/ueuuu3bt2nXW\n3kuTXXHFFbt27Xrb2952rhtOduedd15++eWf/vSnu7u7Z7nJhz/84fvuu2/JkiVzO6Jt2//2b//2\nkY985POf//wMbaWm86Y3velb3/rWG9/4xrkdXUTe8pa3PP/881//+td37dqVSCTOadtwOLx169av\nfOUr89zc0bKsBx544Lrrrpvc5+lzn/vc2972tsLCqYeCnTe7csvw5LJYw979rdtqpjhOac2e3Qeq\nqh85GhMR6T2yb+cX9u2csI5vzUfr6ndXt9YUvqu5V0R6Dx04JJsrxx6pvHZPXUPV7SPNenqbD+57\n8ODYfRTc9J399ZX1lfdPX2zNyJixM1obG1tltCdSafXeA3bN5pr7j/SKiMSaDz9y/+FHJu7IV3Lj\ntj31OyonPdisqt37f9BTVbPPDR/1Hj34yNGDkzYXCV/3+fq9O8aletJzlsY/3OrNJQ/eP5L/2VBd\nM0Uzq3EblNXsPWBXb64ZLiLWfHjf/Yf3TVrPV3LTjvr6bVOO7Kus27/f3rJluKtT79HHH7zn8QfH\nbfvR3fWV9ZW3N8cmbz1e9NDeA24MylexpeoCvYABAAAAAAAwBY9lZmeaAdsT8FkZPo9lqoKwfzCa\nGIonE0knmUyltONeahzzF60qN+jLC/ozbY9lGlM3TJpVh6TxS9ykkTJFPKK8oixRhoiW4eYLk2JJ\nw12OxvRYGrtnc/z+lUzRk2lswyclIkqUR5QlyiPKJ95lkrFe7NXiXSbmXMYUYA6Cayo/uKbygyIi\nEuvv74/FfL6gN8hV7UvSYo8liYiI8maYS1aKdqzBHke00/qiEe1z9Ej2cjhn6Uh8yOlt00P96vRL\nKcunPLZ4bGUHJZCjMrKUP6TsoLIDypepfZnK61ceryiPWB4xLMc0lTJEa60dcVLiJJ1kQpyETsQk\nPqSjAxKL6NiARPv1UJ8e6pGBLifar5MxSUQlEdPxQYkPqVTcLUePDOtUIoYS7Q1I0VrPytcby682\nspdduAZOsxSNRjs6Ojo6OmKxcVcWPB5PMBgMhUL03blIJJPJzs7OpqamxsbG48ePDw0Njd6llAoG\ng6tXr169enUwSGc7YP4opW655ZZvfOMbE5bfcsstC1LP4mMYxmc/+9nq6uof/OAHP/jBD/70pz+d\ndZNly5Z96EMf+tznPnfZZZfN+bhKqXvvvfemm276u7/7uyeffHK6PkMvvvjiDLEkEQmHw3V1dXfe\neeeuXbt+/OMfv/TSS2c9tGEY73znOz/1qU/91V/9VRqTwR/60IduvPHG//f//t/3v//9wcHB6Vaz\nLOu9733vnXfeWVFxlvDDbLz97W9/9tlnf/GLX9x///2//e1vJ/RlnCwYDL7nPe/57Gc/++Y3v/n8\njx4Oh3fu3PmlL33pvvvu+/GPf3zixImzbnL11Vd//OMfv+2228Lh8PkXMAcbN278whe+cO+9905Y\n3tXVddttt+3bNzlckh52Zc3mkkfubxaJHdq7v7Wmeqr4SOmW+kOlldu21da7HX/G8IXXVFZvr91e\nXVEoIj1bqsKPPNIrIs31e/bXVo5rkWOX1+xvKNtdW7uj/mDzuElgvoLrtmzfsWNbZaE01M9UbMWO\n/Xulelvd40dHy4g1NTaKjKm6dMvuhsotu2tr6+oPHp04cMxXct3mmu21NZvLpmneY5dV720or99R\nu2PP/iMTH6yIhNfctGXb9tqayZGmNJ2lsbVU1mxZc/89R0VEfNdVbymberUJ5dc3VFbvrt2xe+/k\nRy++gus2V2+rrd1SNv1/QgordxxoqKrbXltXf3B89ii84aO1dXXbKmXPTE/SiOihvQfcCFq4snpz\n6Sy2AAAAAAAAQFp5TJUX8ttea3l+sH8oEYnGewdjvZH4wFA8Gk+knDHxHRHt6GCGrygnUJgd8FsT\nRv04E2NDU3ZImtwJaXT/yitmjli5YmaJYYuIOOPjR6Of1dgpco4oNe5eGb++knFHGbcft3IlYoqR\nIVZIrLCokJgh8WSJmTlcBuadLxj0cUX7UqbOdTzHpUtHOp1Xnkk1PZV66bB0NjnRiHJSjpwJALmf\nlTozUFKLaMuWQLbyZyk7aPhDYmeKL0PcWJLlFdMrhiWmpUxLKyVaK621k1ROSqcSOhWXZFxiQzo2\noGKR1FC/ig84g70y1Ksj3UYq7radk/FRJD1SjKFEK0vZmWrJSnPVm8zLNppFayVjgUcZJJPJ48eP\n/+53v3v22Wc7OjqGhoZG2wjl5OSsXbu2vLy8vLx8zs0SLkItLS1//OMfjxw58tJLL/X09Iwuz87O\nLisr27Bhw+te97qLrceJ1jqRSHR2dr7wwgvPPfdcQ0PD6dOnR+81TdPv969ateqmm25au3ZtMBgk\nSQbMp7q6ui984Qtjl+Tk5LS0tDAB80Joamp64okn/u///u/YsWOnTp0aGBhIJpOhUCgrK+vyyy8v\nLy9/4xvfeO2116a3JV57e/sf//jHl19+ube3N5VKhUKhnJycVatWrVu3Livr3P4d//Of//z73//+\n6aeffvnll1taWiKRyGj9ubm5V1999Rve8IbrrrsuLy8vjfVP0Nvb++tf//rgwYN//vOfT58+HY1G\nMzIylixZUlZW9qY3vemmm266QP/od3V1PfHEE4cPH37hhRdOnDjR19cXjUYDgUA4HF6+fPmGDRuu\nvfbaysrKC9TwT2vd0NDw5JNPHjly5OWXXz59+nQkEjEMIxwOj/7As2nTppUrV16Io18SGraXV9xz\nJCbiu+kHTfunzCWN6GlqONTQ0NTaExU7K6uwtKy8orz03P//Hm1tOHSosam1tUfcnVRMlxKaZvue\npsbGpp6obWcVlpaVFk5TQbSnseFQQ2NTT080amcVFpaWVVSUT7fy1FU2NDY19fREo+IeqryiovTs\nlabpLJ2naE9jw6HGxqbWnmjUzsrKKiwtL68om/3DF+lpOnToUGNTa0/UziotKz+nkyfRAzVlm+5v\nFpGCW37dtKeK3/IAAAAAAAAssGgi2T8U7xmIDUQTsXgyOdyvaJh2tO31BP2e7KA/N9Nv6ZMy+KTE\njkqqX3RsuFuSmtQPSU3uVKTHdTNyY0YqJN4S8ZaIb7kYwZE9jMaS5MznsbEk92L7uHFz7hLnTA1q\n7PKxsaTRyIApZoZYYTFDYgRFGedzDp966qnR2xs3bjyfXQHzI+0v2tdSLCkZl6E+5/SLyb8c0Cee\nTrYdM+MRR4v73jl6NXL4zebMsEgllldMS5leZVpnhriZpojhznET5Q5xcw+jlbjj27RoR3RKp1Ju\nSsntoqRTCUklJJkw1OgWImPmVbqxJCViGpLyhsyiNUbpRmP1m80llys7uODj2yKRyPPPP79///6j\nR4/GYrFUKjV6KbeoqOhNb3pTeXl5SUlJKLR4ZmpeirGkZDLZ1dX14osv/uEPfzh69Ghvb+/Y1laB\nQKCoqGj9+vU33HBDSUmJZVmX4og64NK1cePGCS18tm7d+t3vfneh6gGAuWjdU1V26+O9Ir4bdzUe\nqCld6Hpw6Yvu3VL6gUfaRGTDnU837Chf6HoAAAAAAACgtU6knETSSTqO40wMFmhHm4ayLNNjGF6P\nqZKvyOD/SqxRUv2i4+NjSZMHqE0fWhru4ZEj9lqxrxT7CjGzR9YZuZw/XcZBadFqmrsn9GSafj9K\niZgjc9zOt7kDsSRcctL+on0NtUhRlleCeYZS5lB/SinTMKXrFRnsNVPx0U5FMpqZPPMGpCUZU8mY\nSETUcGBoeIfjgxxq8m19pvWRjOx29F3Qmea90hh+o/PqQJaRe5lZutEoKTeWXK4COXN52GmitY5G\noz09Pa2trceOHWtvb49Go1prpZT72TTNzMzMoqKi/Px8Gn4sIMdxotFoZ2dnc3Pz888/f+zYsbF9\nktz4UTAYvOyyy1atWpWTk5PGcT8AZuP555+fPFbs1ltvXZBiAGDuCrds31L7+P3NEju4e3dDDRkS\nnK/W+t3720REwu/fto3XEwAAAAAAwMVAKeW1TO/EAW3TG27eMeZjbAhJJsWSplwuIkpEJ8QZlFSX\nJE+LEzuz5siRxh1UJsSVJl2JV6YYXlEZYmWJ4vIoMK9eQ7Ekl/KHzBXlRmZOKpDrnHhanzhiRDqc\n6fOULjdddOaNTomITIyDzrD52QKX4yp0dx/IMUtfp0quMZdvUNnLlL3AsxLj8Xh7e/vx48efe+65\nl156qbu7e2yfLcMwvF5vOBzOz8/Pzs5mItgCisfjra2tL774ojt0pru7e8IKXq83Ly/vyiuvXL16\ndZAZnMC8e/DBBycsKS8vv+aaaxakGAA4D3Zlbe1N9bc+3itH9tTtr2XiFs5P4566A70i4ttQUzvj\nVEAAAAAAAABcxNxckSPiiBrtS6RlYqciPcWHGlnuuD2TBiX2sqQ6JNoo4jmz4ZkBcDIu2DQcS5rc\nEkmLdkTZYuWKvVIyXiee/Hk8IQBee7EkMT0qtES8flOZyvJorZ22F3SkW+KDoqdt6Cbjh6ydPVt0\n7oYPbZjizdCZOWbhGmPldcbyq1VuifIF0n+8GTmOkxoRi8Wi0WhXV9eJEydefvnlxsbGtra2eDzu\nxpKUUkop27aLiopKSkpyc3N9Pt88VwsRSSaTQ0NDkUjETY+98MILL7zwQnt7u9vLSkTcGxkZGYWF\nhVdccUVJSUl+fr5hnNckVADnKplMTo4lffrTn16QYgDgfBVu2VFTd+CeI7G2+h17aqsY5Ia569m/\no+5ITERKttRup1USAAAAAADApWqKPkmTOyTNomeS1iJRcWKS7BJljlyhH7+mGr+tTBoGd2a5IypD\nvMWiPGKXzftJAV7rXnuxJBERUd4MyV9p+gKSmZtqLnaankp1NqlEVOnZt0BKd0lKtFbK61d5pebl\nbzCXlxtLVkloifL657+YRCIxODgYiUQikUhnZ2dLS8vJkydPnTrV2dk5MDCQSCTGV67C4fD69evX\nrVtH950FkUwm+/r6WltbX3755aamphMnTrS3tw8MDExYzTCMvLy8a6+99qqrrsrLyyOTBMy/xx57\nrK2tbeySQCDw8Y9/fKHqAYDzY5fX1tXs3bTzaOzgjtr91TRMwlw17q6tbxORgvfv2LE5a6GrAQAA\nAAAAwFyNdjw6a4eks/dSEtGOiIhOThFCmrBkQuckrUU542JJhik6JpIUceb1hAB4zcaSxDBVRli8\nfsPrF2+GmB4JZEtvqxPpUrGIchLiRjkvcBVq5IY2LW2HjMxcFS40i9eaK99gFq6WjByxFmCwpda6\nv7//+PHjbrSlq6vr1KlTbW1tnZ2dYwNJbg8ey7KCweDy5ctXr169YsUK2+Zi1LxKpVJuL6tXXnnl\nxIkTx44de/XVVzs6OuLxuLuC+zSJiG3b+fn5V1xxRVlZWUlJSSAw3y24ACSTyW9+85sTFn7iE58I\nhUILUg8ApIFdWVt329533d/cXF9bt71qO39phDlord9edzgmEr5pR90W5rcBAAAAAABcssa0SppD\nh6QJS8Z+nHUPavo13QiUTopOjQSVAMyr12osyWV6VDDf9PqN7KVO+3F98tnUq885rS/IYLcSEXVh\n35eUiFIiWrRo5c8yi9Yay9aZy68yckslM0d8mWIuzLPjOM7p06d///vfHz9+3B3iNjQ0FI1Gk8nk\nxIegVCAQWLVq1bp165YvXx4Ohy3rtf2KmnexWKy1tfXFF198+umnT548OTAwMDQ0NKGdlSs7O/ua\na6656qqrVqxYkZGRQaskYP5t3br1mWeeGbtEKfX5z39+oeoBgLTIqqrb8/lDVTuPHN6xbc+W/dWl\nC10QLjU9B2q372sTKXj/7j28fgAAAAAAAC5xU7ZKGhMbOkuHpLFBoulDS2rsrDd9pt2InrR8eM8i\nauQ4AObdaztEopTy2OKxVWaeysx1fBliZyp/KNV1Ukf7JRaRWERSCaW1Gokonc+blRo+pvvGqLTH\nK96A+DKVP2TkLDOWXWUtXa+K16iM7HQ8tvOoU6lYLHbq1KmmpiZ3yeTRdkop27azsrKWLVt21VVX\nXXHFFbm5uV6vd75rnV8TzsPCTfw7w3GcZDLZ29vb3Nzc1tbmOBO7DhqG4T5TV1xxxZVXXrly5UrS\nY8AFlUqlTNOcsLClpeWOO+742c9+NmH5e97znrVr185XaQBwgdiVO+r3lh9oikpWT48IE7hwTqI9\n0Yrtu8qlsGLLZjolAQAAAAAAXMr0DN2SZtch6VzXFHd8mxJlizZEpUQnRGJncksiI/Pg9JkKAcwv\n0gnDlD/LWLreyCrWyzeYnSec08dSp4+pjibd3ympuBLlNk+ac4xSubEkJUrEES2WzwjmG3mXGQWr\nVP7lKmeZCi1RgRzxZab3cc2lVKW8Xq/P51NKTY65uLxeb1FR0bp169zZbbm5uX6/f57rnGdThpAW\nPJnk9XrD4XB2drbX650yPeY+Uxs2bFi7dm1JSQmZJOBC27lz565du6699tri4uJAINDe3n706NEn\nnngilUpNWFMpdddddy1IkQCQZnZZVTXj2zA3dmlVdc1CFwEAAAAAAIB0UMNdiZQWccbPYpOZOiTN\n3EtJTd527JoiyhZriRh+0TFJ9kmiQwxHHD3XC/sA0mwxBxS01slkMhaLxePxVDLlaEeJUoYyTdPj\n8di2bZrmmVFWlkdl5kogR2UvVdlLVShfhZY44SKnt1UP9uhYRCeikozrZEylEpJKGkrkbO9kbnuk\nlBYxLG15xfKJxyse2/RlSka2kV2k8i4zlqxSS1aawSXi8V3QszF7SinLsmzb9nq9Q0NDhmForUez\nSrZtBwKBrKyskpKS9evXl5SUZGdnezyeha76AjIMw+v1ZmRkBINBx3GUUm4AKBgMZmRkeL3eBRyI\nZppmKBTKysoKBAKmaY4O2jMMw+fzhcPhJUuWXH755VdffXVJSUkwGFzczxRwMVi+fPmxY8eOHTt2\n1jWrq6uvvfbaORziW9/61hNPPDGHDdNo48aN3/jGNxa2BgAAAAAAAAAAcDEZCQxN0TMpfR2S9JhY\nkvKLlSeeAvEtEyNDdFyS3RJ/VRJtortERUXL6EwjUWohzgmAxRtLcjNJAwMD7afbu7q6BgcH4/G4\nYRiWx8rIyAiFQgUFBaFQSCmlxr4BKSUeW4UKDF/AWLJKxwZ0X7vTdcLpPqX7Tjv97WqgXUe6Zajf\nUI4eeQ8TGdfsbdz+RFLKVP6gCuSoYL4ZXiLBJZJVZOasUME88QaUnSm+gFgX1/gzy7L8fr/P54vF\nYu4S27bD4XB+fn5RUVFxcfHy5cvz8/PD4XBGRsai777j8XjC4XBBQUEymQyHw6OxpFAolJ+fHwwG\nF/AMuPGjYDAYDodt2x4cHHRr8/l8hYWFq1atWr9+vdvOys0tLVSdwGvHihUrZrPasmXL/vEf/3Fu\nh/jTn/70q1/9am7bpstoCBIAAAAAAAAAAGCEI+JM09xopL+Rmmb5uM5JMtMe3NW0iDdfAjdIxjox\ns8X0iU5JakDir8rgcxI5JMlW0VpGhwO5o5EAzLvFGShxHCcWi/X19nV0drSfbu/s7IxEIolEQill\neaxAIDDQP5BKpWKxWFZWlm3b47rdKEO8fuX1SzBfiejcAZW91Ohp0f2nnf526W/XkS4Z7HXigzqV\nEp0SrcVJiXaGo0lKaWWIYYpSyrC0YVq+DJWRpTJzVTBfBfONcIGECo3sYvFcvFPPbNteunTp4OBg\nf39/KpXyeDyZmZlu652iERkZGQtd5jzx+Xz5+fmpVCorKysajY7Gkvx+f25ubm5urte7YKkypZRp\nmhkZGfn5+YWFhW4sye/35+TkLF26dOXKlVdeeWV+fr4i/AvMl+XLl591Hb/f/5Of/CQ3N3ce6gEA\nAAAAAAAAAJgPWkQrEWOqbknp6JA0fDlei9aiTDF84ikS/5WScZUYI1fedVKsfNGORI9JqkskKcoR\n5XYWMURMUQs2Bgd4zVqEsSSttZNyent6m5qa2traIpFILBZLJpPu+C3HcZLJ5NDgUE9vT0FBwcqV\nK/Pz8y2PZUzzBqR8GSp7qc7MlWTMSEQlFZd4VMcGJTHoxAYlEZVkXJJRnYhrnRIRw7DE8opli8dr\neP3i8Ys3IF5bef3K8onHJ5ZPeWyx7Pk9K+cmHA5fffXVy5cvT6VSlmW5s9u8Xq9t236/37Zt276o\n608vn89XVFSUk5MTj8dTqdRoLMmyLHca4IKfDTdG5jhOPB4PBALFxcVLliwJjSCTBMynoqIir9cb\nj8enWyEzM/OnP/3p9ddfP59VAQAAAAAAAAAAXFjKEOUR5RGlRGtRzkiDorP2Rppdh6Th9UVEi/KJ\np1A8S8WTK8o3pgZLPNniLRZriSRaxOkT5bZLMsTwivIIHZOAebcIY0nJRHJgYKCzs7O1tbWzszOV\nSomImyPRWqdSqVQqlUwkBwcHRUswGPR6vaFwyOf1Tb07ZYgvoHwBGfsW5aQkETXiQzoxJKmEG0sS\nJyUiyrS06VGWLR6v8vjF61eWLcYlFrp0Yy6FhYVKKa/X6/V6X8vzvyzLyszMzMzMXOhCpuX3+1es\nWJGZmam1zszMLCoqys3N9Xg8C10X8FqklFq6dOnx48envLeiouL73//+2rVr57kqAAAAAAAAAACA\nnGAJLAAAIABJREFUC8wUZYuyRQxRWpxz74Q0m+UiorSIJUZQrCwx/RMbICmfmEGxQqJskYHhXJSy\nxAyIkSFqEQYkgIvcIvyui8Vjp9tPt7a2RiIRx3HcQNKUBgcHW1paDMPwer3TxpKmZJji9SvLK06m\n0o52HKUd0Y6IiDIMw9RKKcMUZYhhySXYq8adC+aeOtM0abdzkcvIyFi2bFlhYaHW2rIs27YtaxF+\nawOXigceeGDfvn0HDx5sbm7u7u72er2lpaXXX3/9xz72sZtuuun8979z58677777/PdzPgKBwMIW\nAAAAAAAAAAAALi6GR8yQGEFR1nCcaELHI6Vn6oR0Dr2URLQjhjFt6yPltm4as4LyiJklVrYoOjsA\n820RZhcS8URXV1d3d3c8HnccZ8p13MBNPB7v7u72+/1FRUXnfBhliGko0yNTvdtd6ikepdRruT3S\nJceyrFAotNBVABi2adOmTZs2ubdTqVTa304LCgoKCgrSu08AAAAAAAAAAIDzojxiZYsRFmUNJ4rm\n0iHpbGsOR5TikuqTVK848Yll6KSkBsWJiI4NT3AzlCiPWDniyRXDO09nA8CIRRhLSiaTkYFIJBJJ\nJBIzr6m1jg5FByODiURCa01PIABAehHxBAAAAAAAAAAArw0eMbPFypaoISJT9UaasUPSzL2U1Gif\nJC1ai4pK7FUxl0iyV7zOmTlu2pFURBIdEm8T3SeSFBFRSpRHPDli5RBLAubfIowlpVKpeDwej8e1\n1jOHjbTWqVQqkUikUqn5rBAAAAAAAAAAAAAAgMXD8IiZJWa+mDmS7BGJikqlp0PSFD2TEpLsldhJ\nGfqziBJPlogl2hEnIonTMvS8JDtEx0S0iCkqIFa+WAViZjHEDZh/izCWJCJuIOmsqymllFJaa+2c\nJcAEAAAAAAAAAAAAAACmpiwxQ+IpFF+JSETiLaLiop2pOySpSUum7Zw0eU0RUSJaEi3S+1uJviDe\nFWIGRccl0SnxVyR2UlKdI0fxi6dE/GXiLRYjc7EGJICL2SL8rjNMwzRN0zRTqdR0DZPc0JLW2l3Z\nMI3ZxJgAAAAAAAAAAAAAAMAkhiiveHLFu0p0TFJRcaKi46K0aBlud3Q+HZL0aCbJpcSJSPSYJDsk\ncVrMoOiEJLsk3io6IkpEK1FesQrEf6X414qVywQ3YEEsxliSYfj9fr/fPzg46DjOzCubpumzfR7L\nYxjGzGsCAAAAAAAAAAAAAIBpGZlirxYlkuwVJyK6W8SZtmfSTP2Qxi9xg00TaRGRVL/EmkR5RDui\n4+JExXC7KVli5opvpWS8TvxlYobm6QwAGG8RxpK8Xm9WVtbAwEA8EXccZ8o2SO74NsuyMjMzw+Gw\nx+thghsAAAAAAAAAAAAAAHOnPGLlii4Vu1uUktirkuoQ3S+SGAkYjXw+hw5JWkRk+Hr+2Mv6SkRE\nJ0X3ixZRIx/aK2ZIvPniKxX/erFXipU7rycBwBiLM5aUl58Xi8f6B/oT8YSMjGwbSyllGIbX683P\nz8/Ly/P5fAtRKQAAAAAAAAAAAAAAi4uVI4GN4ikUzzGJviDRFyTVJWpM8EiN6YSkpuuZpKfqkDQV\nPSatpLVYIfGvF/9asdeIb5mYWRfmQQKYlUUYS/J4POFwOB6P9/X3aa2jQ9FEIqG1Hu2HpLW2LMu2\n7ezs7IKCguzsbK+XKZIAAAAAAAAAAAAAAJw35ROrQFRAlE/EJ8on8VfFiYgMijMkEhVJiiEio7mj\nMR2SxjZVGt7b+MFHavwNR0RMEZ8YGWJkiDdTvEslcLXYq8VbImbmBX6oAM5iEcaSDMOwbTsnJ8dx\nHL/tb21p7enpSSQShmGIiNbaMIxAILCkYEnBkoL8/PxgMGhZi/A8AAAAAAAAAAAAAACwMMwM8ZWI\nmSX2Skm0SvyUxF+R+EmRdkn1izkyyk2NZJLUlJmkMTscG0hSIqJEiTgiRqZ48sW3XLwrxLtMPEXi\nzRcjJIZ/Hh8tgKktwjiOUsqyrEAgYBiGZVmmaQYyA/FYPJVKiYhhGB6PJxQOFRQU5ObmBoNBj8ez\n0CUDAAAAAAAAAAAAALCYGGJkijdT9BLxFIqVL5488eRL4rQke0UPSSopRkIkIU5CdEJ0UnRCJCGS\nEJ0UpUUp0SLKFFEihihDxBLDI8ojyiuGV5RXvH7xZItniXjdWNJSsXJELcIgBHCJWrTfjaZpZmRk\nWJYVDAZjsVg0Gk0mk+5yn8/n8/ls2/Z6vaZpLnSlAAAAAAAAAAAAAAAsUsojZlh8PvEUin2lOFFx\nIuIMSrJfUn3iDEhqQJx+SY18mewXNShOXLQWwyvKI8ojhkfEJ0ZArCyxssXMFitbrBwxQ2JmihkQ\nI0OUXww/mSTgorJovyGVUqZp+v1+v9/vOE4sFkskEiJiWZZt2+5ANwAAAAAAAAAAAAAAcGEpr5he\nMUPDX+qk6Kgk+8QZGM4hpfrFGQ0nDUgqIjopokVZorzDn43xsSQzWzw5YmSK4VvQxwZgJos2ljSW\nYRhuPmmhCwEAAAAAAAAAAAAA4LVNWSJ+sTyiwyJJ8SREUsND3HRSJCmOm0kSEWN4gpsoUcZISsnt\nn+QV5b3IMw+maaZSKff2U089tbDFAOckXcPHLupvUQAAAAAAAAAAAAAAsNgoU5Qp4hMRSU/44WJk\n23YkElnoKoC5sG07LfthlhkAAAAAAAAAAAAAAECaFRUVLXQJwByl69WrtNZp2REAAAAAAAAAAAAA\nAABG9fb2trS0DA0NOY6z0LUAZ2eapm3bRUVF4XA4LTsklgQAAAAAAAAAAAAAAAAgzRjiBgAAAAAA\nAAAAAAAAACDNiCUBAAAAAAAAAAAAAAAASDNiSQAAAAAAAAAAAAAAAADSjFgSAAAAAAAAAAAAAAAA\ngDQjlgQAAAAAAAAAAAAAAAAgzYglAQAAAAAAAAAAAAAAAEgzYkkAAAAAAAAAAAAAAAAA0oxYEgAA\nAAAAAAAAAAAAAIA0I5YEAAAAAAAAAAAAAAAAIM2IJQEAAAAAAAAAAAAAAABIM2JJAAAAAAAAAAAA\nAAAAANKMWBIAAAAAAAAAAAAAAACANCOWBAAAAAAAAAAAAAAAACDNiCUBAAAAAAAAAAAAAAAASDNi\nSQAAAAAAAAAAAAAAAADSjFgSAAAAAAAAAAAAAAAAgDQjlgQAAAAAAAAAAAAAAAAgzYglAQAAAAAA\nAAAAAAAAAEgzYkkAAAAAAAAAAAAAAAAA0sxqbW1d6BoAAAAAAAAAAAAAAAAALCp0SwIAAAAAAAAA\nAAAAAACQZsSSAAAAAAAAAAAAAAAAAKQZsSQAAAAAAAAAAAAAAAAAaaa01undY2tr6+jt7Ozs9O4c\nAAAAAAAAAAAAAAAAQNp1d3eP3i4sLDz/HdItCQAAAAAAAAAAAAAAAECaEUsCAAAAAAAAAAAAAAAA\nkGbEkgAAAAAAAAAAAAAAAACkGbEkAAAAAAAAAAAAAAAAAGlGLAkAAAAAAAAAAAAAAABAmhFLAgAA\nAAAAAAAAAAAAAJBmxJIAAAAAAAAAAAAAAAAApBmxJAAAAAAAAAAAAAAAAABpRiwJAAAAAAAAAAAA\nAAAAQJoRSwIAAAAAAAAAAAAAAACQZsSSAAAAAAAAAAAAAAAAAKQZsSQAAAAAAAAAAAAAAAAAaUYs\nCQAAAAAAAAAAAAAAAECaEUsCAAAAAAAAAAAAAAAAkGbEkgAAAAAAAAAAAAAAAACkmbXQBQAAAAAA\nAAAAAAC4ePX19bW3t8fj8VQqtdC1YHEyTdPr9S5ZsiQYDC50LQCAdKJbEgAAAAAAAAAAAICp9ff3\nnzhxYmhoiEwSLpxUKjU0NNTc3Nzf37/QtQAA0olYEgAAAAAAAAAAAICpnT59eqFLwGsIrzcAWGSI\nJQEAAAAAAAAAAACYWiwWW+gS8BoSj8cXugQAQDpZC10AAAAAAAAAAAAAgIuU4zijtzdu3LiAlWAR\ne+qpp9wbzAoEgEWGbkkAAAAAAAAAAAAAAAAA0oxYEgAAAAAAAAAAAAAAAIA0I5YEAAAAAAAAAAAA\nAAAAIM2shS4AAAAAAAAAAAAAAABcYu66667R29/4xjcWsBIAFy26JQEAAAAAAAAAAAAAAABIM2JJ\nAAAAAAAAAAAAAAAAANKMWBIAAAAAAAAAAAAAAACANCOWBAAAAAAAAAAAAAAAACDNiCUBAAAAAAAA\nAAAAAAAASDNiSQAAAAAAAAAAAAAAAADSjFgSAAAAAAAAAAAAAAAAgDQjlgQAAAAAAAAAAAAAAAAg\nzYglAQAAAAAAAAAAAAAAAEgzYkkAAAAAAAAAAAAAAAAA0oxYEgAAAAAAAAAAAAAAAIA0I5YEAAAA\nAAAAAAAAAAAAIM2shS4AAAAAAAAAAAAAAAAAeG1JpVItLS0tLS2nTp3q6+uLRqPRaNSyLNu2/X5/\nXl5ecXFxcXFxVlbWQlc6d8SSAAAAAAAAAAAAAAAAgPmgtT5+/PgzzzzT2Ng4NDR01vWLiorWr19/\n9dVXh0KheSgvvYglzaS9vT0ajaZlVzk5OYFAYOyStra2eDzu3vb5fEuWLJmwycDAQHd39+iXRUVF\nlsXztagkk8mWlpY07nDKF9LctLS0JJNJ93YgEMjJyZmwgtb65MmTo18Gg8FLOqG5uMXj8ba2trFL\niouLTdM8z90ODQ11dHSMfmnbdn5+/uTl+fn5tm2f57GAU6dOpVKp0S+XLVumlFrAeoAFobV+5ZVX\nTp482dbW1tPTE4vFEomEbdu2bWdnZy9durSkpGTyP9nzb+w37JQ/RfBT7sWjv7+/p6dn9MtwODyH\n/9NO+TMtPxyev0Qi0draOvrl5P9R4kJzHOfVV18d/dIwjKVLl85+81QqderUqbFLTNMsLi6e/R4m\n/Bjv/nmce/sC/cjd1dUViUTmVi2wIFpbWxOJxOiXc/6vbnd398DAwOiX8/mWy7s9AAAAALzWaK0b\nGxsPHDgw9v+DZ+V2VPrv//7va6655oYbbri0fvvKBYCZ/OpXvzp+/HhadvWBD3ygvLx87JK9e/f+\n/+ydeVxTZ77/T4AkLAm77EvYEhCCYNQKioCKthYcEa0FZ1qduVO9t7Xzmqv3/l51Zl5t76L33lft\n696x7YzLtNiO2qq4gRsqAioggiJhkbAlYV/ClrAkIcnvj1MPjyfJyYEkEOB5/3XOyclznsA5z3mW\nz/fzxeYo/fz8fvvb3+K+Ultbe/PmTWz3d7/7nSWsM0FMyMjIyOnTp01YoM4baWb8+OOP2BpVVFTU\nzp07cScolUqw8mvXrk1JSSEuc2hoaH61jwuJ77//HtNBIgjy7rvvRkREGFlmSUlJcXExtpuUlJSc\nnIwgiFgsPnfuHHb8l7/8ZVhYmJHXgkDOnj0LrhP86U9/giIGkzM4OOji4jLXtYDoRiKRlJWV1dXV\ngQ8CjqdPnyIIEhAQwOPxoqOjraysZrGCr/HDDz+MjY2h29HR0RkZGbgTYC/Xcqipqbl9+za2u379\n+sTExGmVMDk5ee7cuebmZvCgl5fXe++9Z5oqLmIGBgbA/vbWrVt5PN4c1mcRQqFQzp8/j8l0EAQ5\nePAgeemeSCQ6c+YM7uC//uu/khcc1NbWXr16FduNj4/fvHkzum2mLndRUVFVVRW6zWAw/uVf/sX4\nMi2HycnJiYkJBoMx1xWBmJKcnJze3l5s99ChQ0wmcwbllJWVlZWVYbvbt29ftmyZCepHAtjaQyAQ\nCGTxIW0oLBHKTVmiO3czDyrqZ53Oyjv8V7ESTE58PGsm3TAIRCdyuRzs5xNAoVAoFIqVlRWVSqXT\n6Q4ODnM4KUoeML7ChJYTi43+/v7h4eGxsTEKheLg4LBkyZL5MuTv7++/cuUKaP8xLVQqVUVFxfPn\nzxMSEtatW2e8D8XsAJf0IBCI2RkbG7t//35HR8f+/fvnui6LERqNxuVyKysrsSMvXrwwUpak0Wiq\nq6uxXQqFEhsba0yBEAhkDunt7b1x44aXl9dbb70113WB4BkZGcnPz6+pqdFoNGTOF4vFYrG4rKws\nLS1tWq4eEMgM0KlJ8vX1/dWvfmVnZzdXtYJATAWFQgkKCqqpqcGOiMXiqKgokl9vbGzUPtjU1ERe\n6yAUCsHdkJAQkl+EaCMQCG7evLl582bjwzMgEAgEAoFAIMYhzDv2h/OmTCNBi/vPJJ4P3YQlWhD9\n/EoZm8eywF8nrcz+w+elP++wP7oUvwfKkiAmo7u7+9tvv53BFykUiqurK4vFCgkJYbPZVCrV5HUj\nCXFgDBhfwWKx9u7dO4tVm/f09vaWlpY2NDSAgWQoHh4eXC53xYoV9vb2c1I3g2g0mpKSkoKCAixn\n0YxRqVSFhYUNDQ3p6emenp4mqZ5ZgbIkCARiRjQaTVVVVX5+/tjYmJeX11xXZ/GyfPlyUJYkEAjG\nx8eNWS9sbW0Fc76EhIRAKywIZD6iUCiKiopKSkrUajVspS2QqqqqW7duzSCncFdX1+nTp9PS0pYv\nX26OikEgiB5NUkBAwO7du2H+VsiCITg42EJkSTY2NoGBgSS/CAEZHBy8ffv2y5cv57oiEAgEAoFA\nIBDItOivPPflka8KfT65Y5GyJAjEEtFoNBKJRCKRVFZWMpnMdevWrVixYvb9k2BgjJlQKpX5+fnl\n5eX6Tujt7b1///6jR4/Wr1//xhtvUCiU2ayeQVQq1bVr1168eGHCMtGFgF27doWGhpqwWHMAZUkQ\nCMSMXL16FcsCAJlD/Pz8PDw8MPG1SqWqq6szxhke92+FJvMQyDzl66+/BiWGEIuioKCgqKhI+7ir\nq6ufn9+SJUtsbW2pVOrExMTQ0FB7ezvO9FWtVl+7dm10dDQhIWG2qgxZROjUJLFYrN27d9NotLmq\nFQRicoKDg8HdtrY2kl8cGhrq6+vTPt7U1KTRaMjMiw0NDYHv6ICAgDmM8py/9Pb2njx5EvPGh0Ag\nEAgEAoFA5gWoIilfpEAQBKang0BmhlQqvXHjRm1tbWZm5qxF0MHAGPMxPj5+5syZri7DbntyufzW\nrVsikWjHjh2Wk+BMoVCcPXsWZ4ytjZWVlYeHh4ODg52dHeq5JZFIpFKpwZJ/8YtfxMTEmLLGpgbK\nkqbBrl273NzcZvZdR0dH01YGsvDw8PDYsWOHMSVY4CLQ8PDwXFcB8jPLly+/ffs2tltdXT1jLZFC\noairq8N2HRwcOByOsfWDQCBzAWylLZZ79+49fPgQdzAmJmbVqlX6UrMNDAw8evQI9MZDy3F3d4dx\nORDTolOTFBISkpmZCWUTkAWGi4uLi4vL4OAgutvV1aVQKMgMu8AHxNnZGRMYjY2NdXZ2kkmyKRKJ\nwF3LD3qzTMbHx6EmCQKBQCAQCMTCcGPHJcZ1KQjOkAora6ZOcGPHsQlX5mi8habcEeYd+zJfZPg8\nCARiEKFQeO7cuT179syCZxIMjDEfk5OTP/zwA06T5OnpGRYW5uzsrFarBwYGBALBwMAA9mldXd3V\nq1czMjJmvbI6UKvVFy5cINAkOTg4REVFRUZG+vr62tjgBTwymaypqam6uho3HwuWf/XqVTs7O0te\nroWypGng4uJiwsx8//AP/6DRaNBtS/MQg8wJNjY28yL1IwqNRvvTn/6E7c6+BSJkuixbtuzu3bsq\nlQrdFQqFQ0NDM8u8VldXB/arYmJiQLkxm80G7w3LUSJDIBDIfKG6uhqnSXJxcdm5cyfxMrarq+vW\nrVujoqJ+/PFHuVyOHb98+fKHH34IU21CTIVOTRKHw9m1axd86UMWJCEhIRUVFei2RqNpb2/HWSjp\nBMzgtnz58vLycplMhn00A1lSSEgIuAu73BAIBAKBQCCQeYtP2uFjaYRn8I+l7T3/au2ZFvXB8WNJ\nZq8VBAKxXIKCgt566y2CE9RqtUKhQH1lXr58iRtQi0Si4uLipKQk89YSBsaYk8LCwo6ODmzXzs5u\n69atS5cuBc958803Kysrb926NTk5iR6prq4OCwuLjo6e1brqIi8vD5wpArG3t09ISFi5ciVBtCeD\nwYiJiYmJient7X3w4AHoHIGh0WguXry4d+9eMpNOcwJUEswZ1tbWNq+Ac4iQ+YgNAJQlWT729vbh\n4eHgET6fP7Oinj9/Du7iXJcoFAp4b0DZJQQCgUyLkZGR3Nxc8Iivr+8HH3xAcjgRHBz83nvvgX1L\nhUJRUFBg4lpCFiuTk5Nnz57FaZIiIyOhJgmygMGJkMRiscGvqNXqlpYWbDcwMBAspKmpicx1wRA6\nBoPh5eUFfgq73BAIBAKBQCAQCAQCWSTQ6XRPQry9vQMDAzkcTnx8/K9//et3330X53P86NGj0dHR\nuao/xEiGhoYePXqE7dLp9L179+I0SQiCUCiUFStW7Nq1C5wkuX//vlqtnqWK6oHP5+NSHGBERER8\n+OGH8fHxJB3oPTw8du3alZWVxWAwtD9VKpUXL160WG0cVBJAIBDIYgGnH5qZLGloaAhcI2GxWDPO\nbgmBQCAQbfLz8xWKKSdzZ2fnrKwse3t78iX4+flt2rQJPPLixYuenh6TVRGyWEE1SaDYAkGQZcuW\nWVSadgjE5AQFBYHzWWRkSWKxGHOto1Kp/v7+oNdRe3v72NgYcQkymUwikWC7OKskCAQCgUAgEAgE\nAoFAIPqIiIjYtWsXeESpVD579myu6gMxkidPnmAZqBAESUlJIcg+xGazY2JisN2hoaHW1lbz1o8Q\nmUx28+ZNnR+tX7/+3Xff1SkwIobD4ezbtw8XwIYyODiYn58/7VrOClCWBIFAIIuF4OBgMIlPT09P\nd3f3dAupqqoCd2NjY01QMwgEAoEgCIIgvb29OM3otm3bZjAyWbVqlbu7O3gEDrwhRqJTk8Tj8dLT\n06FrJmRhY29v7+3tje22tbUZDLMD/ZACAgKsra1DQ0OxIxqNBmc5pg0YBoBAWRIEAoFAIBAIBAKB\nQCDTITQ0dNmyZeCRhoaGuaoMxEiqq6uxbSaTibNg0Gb58uXgLm4+c5bJz8/XGZyWmpqamJg442Id\nHR1//etf+/j4aH9UXl4OJryzHGzmugIQ06NQKFpbW4eHh2UymVKpdHBwcHBwCAgIgI4mEIyhoSGx\nWCyRSCYmJqhUqrOzM4vFwq1fQhYeFAolJiamsLAQO1JdXa1TTksAKEuytbWNjIw0VfVg2wUxKzKZ\nTCgU9vf3o+0eg8FYsmRJYGDgdB0+NBpNX19fR0fH8PCwXC63sbGxs7NzcHDw9fU1phWVSqVCoVAq\nlaJesg4ODo6OjkFBQQ4ODjMuE0EQpVJZV1fX19dHoVDc3NxCQ0NnIHCBzCZlZWXgbnh4eFBQ0AzK\nsbKyWrdu3eXLl7EjfD5/8+bNZOQjsDWGaKNUKs+dO4cbw69atWrLli3GpI6ytKbPVG8KDPg0LRiC\ng4M7OzvRbYVC0dPTAwqVtGlsbMS2UUESmoUNCwloamricrkEJYhEInDXVLKk8fFxsVjc09MzPj5O\noVAYDIavr29AQICROeAmJiba2trQYhEEcXR0dHNzCwoKMt5HzUytBBnGx8c7Ojp6enomJiaUSqWd\nnZ29vb2Li0tAQAAuFwAEMoc3KoIg3d3dbW1tw8PDSqXS1tbWxcXFz88PTu9AIBAIBAIg7+RX8oVd\nMoThzeJyuT7MWbuytLNBIBB2SmVSKUJn0hhuPiwWm2PmCsj7hQKBUCiRKKRyhM5keLM4bDbLnT7T\n0hpqaoSdEpkUQZhu3mw2j+Mzw6IgkFmHx+O9ePEC2+3s7FSr1TC4bt7R29srk8mw3aVLlxr8J+Im\nbUA76lmmv78f1FRhJCQkrFy50sjC6XT67t27T506NTQ0hPuosLBw9+7dRpZvcqAsac7429/+hknV\n/P399+7da3yZLS0tjx49EgqFKpVK+1NXV1cej7d69WobG/h/X7wIBIJHjx7hprlR/Pz8Nm/eHBAQ\nQKYchULxX//1X9ju2rVr169fj26PjY198cUX6DYYSdzd3f1v//Zv2O7bb79tUNAKMTkxMTFFRUWY\n2yGfz09JSSG/DiESiQYHB7FdLperne60sbHx/Pnz2O7u3bsNrqMY03Z1dXWdOnUK2123bl1SUhLB\ntXp6ek6cOIHtGmx+1Wr1l19+iWmZk5KS1q1bR/hrIHPJX//6197eXnQ7MzMzLCwMQZD29vYHDx6A\nvgUYdDo9IiIiMTHR1dXVYOGjo6MlJSXV1dUjIyM6T3BycuJwOKtXrya/3qxWq589e1ZRUdHV1aX9\nKYVC8fPzi4uLM6j/GxwcPH78OLptZWX1xz/+EUGQurq6vLw8MGe2lZVVZGRkYGDgrVu30COg9+mT\nJ0+ePn2K7X744Ydw4XyWmZycxI1SVq9ePePSli5devPmTQaDERgYGBAQEBgYaHDABnuSEJ3o1CSt\nWbMGlyuQPHPS9G3YsMHFxQUx85sCAz5NC4yQkJBHjx5hu2KxmECWJJPJQEdSzCcpNDQUlCVpNBqC\nTjjoluTl5aUtrZtul7u3t7eoqKi+vl77nnR2dk5OTgYdzsnT19dXWFios1g7O7uYmJjk5GQ6na5W\nq//jP/4D++iDDz4gDo0wvpW4desW2KvBuHDhAvZnZzKZv//977XPaWhoePLkSUtLC9hNwrC2tvb3\n94+JiVm2bBmczl7kmOp1RgbwlubxeG+//TaCII2NjXfv3tWZqNfLyys+Pj46OtpI0SEEAoFAIPML\naeHhrKOVCgRBEFrUR98dS3OXC3OPHj6WJ5haz6a5RW16/8BHWTx3BOnPPbj3qxoFepz9wYnjGTpM\nJwA6cw7sOyn4+Xz0AjrPk/dX5p05l5NfKpAotD+lubHjNmVkZabytPU9/ONZh/IkCILIpcAaeuWx\nHZu/+nmbselIzkHdqyr9/Nwz2ed1X5XBTkzL3PN+Gpe0dFnacCf75Jk8rdLAPyAEYuH4+flRKBRs\nZKdSqUZGRsCMIpaJQqFobm4eHBxEtTj29vYeHh4sFmvGETKjo6Po0t74+Lharba3t2cwGAF72nwY\nAAAgAElEQVQBAdOa6dKHyWP8tLGzs3v77be7u7t7e3t7enrIrGJbW1uD//rJyUlTVWa6gAuyGH5+\nftiSupEwGIz09PTs7GzcVQQCQUdHh6+vr0muYirgNOicMTk5ic3cGf88jIyMXL9+HQzK1GZgYODu\n3btPnz5NTU1F598hi4rx8fErV64QuBS2t7d/++23CQkJGzZsIFMgOPUMbms0Gp0LMLjTDOY+gJgD\nFxeXoKAgbGVxZGREKBSSt+LAZXDTKSxTq9Xk/9HGt11eXl4ODg6YTKSxsZFYltTU1ARWTywWKxQK\ngv5cW1ubVCrFdtlsNkHhkDlHpVJh/1+1Wq3RaAoKCh4+fKhzVQlBELlcXlVVVVNTk5qaSpyRsL6+\n/urVqxMTEwTnDA8Pl5eXV1RUoEpNg2sAYrH42rVr/f39+k7QaDRtbW1tbW0BAQHp6ekE4wQKhQL+\ncARBBALBhQsXcD9crVbz+XwnJyedrTSu9db3R4OYD5FIpFQqsV0Gg8FisWZcGpVKPXTokLZ4VCew\nJwnRh05NUmJi4owHz3PV9HG5XFSWZL43BQp8mhYkAQEBNjY22LC9ra3tjTfe0Hcy+N93dHT08PBA\nt0NDQzFtEypd0qdtGhsbw8RzCCBsAiHf5dZoNA8ePCguLtZ3kw8NDV25cqW2tjYjI0NfITqLLSws\nLC4u1nfp8fHx0tLSurq69PT0wMBA8n0Mk7QSuL8PeBzb1p6Hkcvlly5dEggEBNVTqVRCoVAoFD5+\n/Hjnzp2enp4EJ0MWMCZ8nZEBvKXRl9fdu3cfP36s7/zu7u7Lly9XVlbu3LmTyZw9SwgIBAKBQOYY\nqbTrlSWGTIEgnXcO7/u86HWPDIWkJu/MnbQMnjsdQRQy7HxEIjdYvEIqmTpfpkNxhCCIXJh79ODR\nPJHuT9EaCIrOHy3KyY776MiRLO5rL2qFVKLD1EMhk0heCavkOusp5ecc/exYvv6rygRF5z8vysne\n9MmRT9M4huyOOguPHf7sfI1M12cKSU3el/sK8zOPfPG+gWIgkLnG2tra1tYWtfVFwYaBjx49Kigo\nwI5v3ryZYJiP4/z589jA39XV9aOPPjImMAZEIpHcu3dPIBBoD1etra25XG5ycjJ5WRU6IVZWVobZ\nP+NwdXWNiYmJi4szKHianRg/fTCZzFWrVqHbGo2GzLKFVCoFT5sdI1ttxsfHa2trcQetrKzS09NN\nGObEYrFWrlxZXl6OO15RUWFpsiQY2rUQ6OnpOX36NPHcN8bQ0NDZs2crKyvNXSuIRSGTyU6dOmUw\nc6pGoykuLs7Pz5+dWkHmBJyWCDSxJEapVIJvUB8fH+LsFQYxSdtFoVBAqVBHRwfYy9SmubkZ3FWr\n1WAwujbgsoSzs/N0c95B5pa8vDyCRTiMycnJq1ev1tXV6TuBz+f/9NNPxJokDLVaXVxcfPXqVeLT\nampqsrOzCVYyQMRi8enTp9vb28mcjCCIVCq9cuWKzh/u4OBg5JMLMR+4UVxoaKiRAe4kNUmwJwnR\nh1KpPHv2LE6TtGHDhhlrkuaw6dOn/jHVmwIFPk0LFRsbG39/f2xXLBYTnAw25qCDUUBAANgsE9wn\nJszgplarL1y4oDM4D4dAIDh37hzJiCmNRpOTk1NYWGgw1GR4ePjvf/97a2sryQqbtZUgRqlUZmdn\nE2uSQPr6+v72t7/pNKqBLHjm8EZFuX37NoEmCUMkEp08eRI0PIZAIBAIZBEhF+V8frRIV94e701p\nPDPlIeu8c3jf50SapCkUXaVf7tt3nG9YDWXwooWf7dl3lECTNHVNUf7ne/ceKyHsxAhzD+49pEeT\nhCGrOX9o35elUsKTIBALQKF47cmwtbVFN7hcLir9RyG/TCaTyQQCAfZF1BsVLAo8GTxucLhdVFT0\n9ddf19XV6TxTpVJVVVV99dVXOjOCadPR0XH8+PHLly/r0yQhCDIwMFBQUPB///d/BstUAaBhEvfv\n3z99+rROTRLyKsbv66+/fv78OZnakodCoZAR9OAqNlfqnJcvX2pHTEVHR5s86XZiYqK2I7tOZ+u5\nBbolzXsGBwe//fZb3FppWFgYh8Nxd3enUqkymaytra2mpgbLLKjRaK5fv25tbT0zn3bIvEOlUp09\nexYns/f39+dyue7u7lZWVkNDQw0NDS9fvkRnq8lMbxFApVJXrFiBbgsEAszGxt7efunSpdhpS5Ys\nMeYqkBkTERFhb2+PZSWrr69PTU0lk0Okvr5eLp8aJy1fvtyYapiw7QoPD6+oqMDOaWlp0eeTPzk5\nqZ3BsLW1lcADCVyZiIiIIP37IHPP06dPwQU/f39/FovFZDKVSqVEIqmvr8cp2G7duhUWFqYt4xga\nGsrNzQUX8wICAsLDwz08PGxtbSkUyujoaEdHx4sXL8AMvlVVVeHh4frumbq6uosXL4JHqFRqZGRk\nSEiIo6MjhUIZGRlpamoCH7rR0dHs7Ox9+/aRaTzv3LmDPeM4uFyum5sb1kpjzw6CIJ6enuCaKzZI\ng8wauAwg4L/DfMCeJEQfqCYJJyZ488034+LiZlbg3DZ9OucsTPWmQIFP08ImODgYexyGh4eHhoZ0\nRihqNBpQBA8aHVlbWwcFBWF9y+bmZn2pgUHRPJVKJZllWyd37tzByemcnZ1jYmJ8fHxsbW1lMllL\nS0tNTQ163+rM9K2T/Px8Pp8PHnFyclq2bJmvr6+dnd3Y2JhQKOTz+Wg6xcnJyXPnzpEp1oStREBA\nACqZkslkL1++xI6HhISgxmmIVlfn3r174HStra0tl8v19/d3cnKi0WgKhWJwcBAcNSMIIpfLL1++\nvH//fpgna1Fh7teZQcBpFisrKx6Pt2zZsiVLlmg0mv7+/urq6oqKCkwyODIy8v333//jP/7jjDM+\nQCAQCAQyT+nPP3YckNagPToEQRAkcFMq10zXzD0KCKFobrzU9zM389iBPm7uTEQulXYJa0pyss/k\n1bw6RyE4c/T8pnN7OK++E5j2z59yFQiCSApPflX0apYocNM/74n72VWJxnp9HltaeeTAYVAIRfPm\npWZu3xzPZXu70RRSSaegND8nJ6foVSI7heD8oUNu353Yo9MzSV557OBrBlO0wMTMPRmbeGwfJl0u\n7RSU5uWcyykSKRBEIYLR7RBLZ2hoCJRlUCgUe3t7dNvJySk4OBgbv3d0dEgkEjc3N4Nl8vl8MD6H\njK82GfLy8nT6LeFQKpU5OTlUKpV4rerJkye3b98mmbJGJpPl5OT09fWRyf+A1RZcVtAHGuNHp9PB\npeFZQC6XFxcXY7vW1tazXAEMbaskBEH0zQUZA4PBiI2Nxd1C4+PjLS0tFmXTDmVJ8xuVSnXhwgVw\n7tvd3X3Hjh04I4Tw8PDk5OSHDx8WFhZiB/Py8vz8/EyuyINYIMXFxeAEK5VK3bp1a3R0NHhObGxs\nR0dHTk6ODpPQaUKj0dLS0tDt7OxsbL7M0dEROw6ZQ6ytraOjo8vKytDdiYmJhoYGfToeEDCDG5VK\n5XJnPn4zbdsVFBQEDCyRpqYmfT9HLBZrK80JorcHBwfBDBrh4eEGfxrEcsBWmgMCAt5++22c09WW\nLVvu379fWlqKHRkZGeHz+dp6u9LSUmxFgUKh/OIXv9AebHA4nHXr1uXm5oKPSXFxsc7hwdDQ0LVr\n18Aj4eHhqampuPQKXC43JSUlLy+vvr4ePaJUKi9evPjb3/6W2AJHo9FgK4VBQUGrVq1ydXUdHR0V\ni8UVFRUxMTHe3t5Ya1xZWYktrQUFBb311lsEJUPMDS7mfhbs2WBPEqIPnZqkt99+G/NMni5z3vTp\n/Jap3hQIfJoWASEhIffv38d2xWKxTllSe3s7pmajUCg4o6PQ0FBMliQWiycmJnSKgEF5EIvFIhM/\noBOhUIj1+VHWrl2bnJwMFhgZGZmUlHT9+nXyLkGtra0lJSXgkfj4+PXr14MPaURERHJy8u3bt9HI\nSDImTKZtJbhcLjpaEYlEoCxp5cqVOrtno6OjoOG5n59fVlYWzuadxWLFxsaKRKIff/wRE0F2d3cL\nBAIOh4NAFgfmfp2RAZtjcXJyevfdd318fLCP/P39/f39eTze2bNnsdMGBgby8/NTU1ONvC4EAoFA\nIPMLUQ3av3XjZf7zP7+fxHGnI/J+YWX+uUJmhpn6bg3ns0tfCaFogduPZx/mAT0EOpPO4iaxuElp\nacf2HTgv+HkqW3D+fEnmZ/E/S4TcuZvTuAiCIELJ+SlZkk9cWlqazqys0sKjhy9PaZJogamfHv9k\nsw8mOKLTfTjuGZz4jMzK44cOnvlZp6Wo+erwV7xzB7l4YZKc/9WR81ODEVpg6pHjnyRhxTGZHPcM\nTnxqZuHR16VQEIiFghvnent7g0FrsbGxYFjRixcvyLiDg75KLBYLnRmYQWAMiEgkAsOTAgICgoOD\nnZycVCrVwMDAy5cvBwYGwPNzc3ODgoL0Ffj06dObN2+CR6ysrNhsNpvNdnFxsbKyGhkZaWlpqa+v\nB2exUCvxjRs3GvwLmDbGz+SMjo5euHABDCCPi4tjMBizc3Uc2qa5Pj4+ZNRvM4DL5Wor29rb26Es\nab4iFouxUT1JHB0dzZoq5fHjx6DcxMfHZ8+ePXS6DpWzjY1NcnKyi4vLlStX0CNKpTIvL2/Pnj3m\nqx5kWoyOjoLLHtMlJCTEw8ND+/jY2Bg4a2xtbb179+6goCDtM319fffu3fvdd98Zr0yCWDjLly8H\nlyiqq6sNypLQngq2GxkZaYyTimnbLhsbm9DQUCwQHJemDUTnR93d3WNjY5hMHgTsttrb2xsTqg6Z\nK6KiojIyMrRNMqhU6ptvvqlWq588eYIdfPnypfZiM2gGsHLlSn0BEDY2Ntu2bRsaGsKGEJ2dnQMD\nA9rpk69fvw72+FesWJGamqozEIHBYOzatevatWuY2WlPT8/jx4+TkpL0/mCADRs2gNL7kJCQdevW\nWVtbk/kuZPZRqVRS6Wvm19io1XzAniREJzo1SQiCoMYnM8OSmz7j3xQIfJoWAT4+PnZ2dtjkWltb\nGy7MAwX0CUetg8BPQfMktVrd0tKiHbE3MTHR3d2N7RqTwe3evXvg7vr16xMTE7VPYzKZmZmZFy5c\nwPQTxNy5cwfcTUlJWbt2rfZptra227ZtYzAYDx8+JFPsrLUSOqmrq8MCSa2trXft2oXTJGEEBgbu\n3LnzzJkz2JHa2looS7Icjh8/PjPzKqVSSea0ub1RceXv2bNHe6yBIIiXl9fevXtPnTqF6ecqKiri\n4+N1ngyBQCAQyILGLfHT746lvZLw0t1Z8VmH4811sc7KSkzRw0g6cJCnU0iEIEzewU8zS3af+flk\nSWlhDRLPm8kV5fyTx/OnlnK0lFAA7rwDJ44je/ed+VkOJco5lpeZneHz2kn9+SdzpkRJbomfnvgs\nSUf4DN0n6bMTR5C9h/K6tD+EQCwGhUKBG43ixtcRERG2trZY9766utqgLKm3txd0u8ei4KYbGIMD\nCxv29fVNTU0FAw8QBElJSSktLb179y522ujoKJ/PX7lypXZRnZ2dOE1SYGDg1q1bcbFw0dHRKSkp\nt27dAtc+Hj586OfnZzA434QxfqZldHT0+fPnjx8/Bs3UAwICyKjNzMHg4CBOoYUgiPlmDwICAsA8\nOSgEKfzmBChLmga4J5kMUVFRO3fuNEdlEARRqVTgFLmtrW1WVpbOuW+MmJiY9vZ2TC7X2tra1dVl\nVuEUhDzDw8O3b9+e8dfT09N1ypIqKyvB5Klr167VqUlCYTKZGRkZp06dAtMVQRYenp6evr6+HR0d\n6G5jY+P4+Dhu1QTHixcvwLvCmD6EOdouDoeDyZKGh4f7+/t1Wg6AC0XOzs6oYlqj0QiFQp0ujg0N\nDdg2m80mk7MWYlE4Oztv27aN4B+3fv36Z8+eYYsQ2ur1iYkJcBk+ODiY4HIUCiUhIQGMbBCLxbjZ\n/+7ublAeh/bdCdZOKBRKWlpaZ2dnT08PeqS8vHzt2rUGjRPCwsK07UChJsmSwSV+srKy0rcgaipg\nTxKiE32aJARBioqKWCwWQU9SH5bc9Bn/pkDg07Q4oFAoLBYLE+6IxWKdp4Ehg6AICcXNzQ3rgiII\n0tTUpN0FFYvFYK97xrKktra2trY2bJfFYhH4hFtZWW3btq2jo8NgIFZzczM4Cctms3VqkjA2bNjQ\n1tYG9o50MmuthD5Aw8IlS5Y4OjoSnBwcHOzn54e1BuST30FmATDtuMmZ8xsVJDU1lUBm5Orq+uab\nb16+fBnd1Wg0paWlb7/9tvHXhUAgEAhkHkGLev9gmo/h80yEpGtKIcR0cyMaEHIyMqLOfCl08/bx\nZnmzWDQ5ghCdrgdpaXbuVE80MPMzvUooBEEQhM498Glm4Ss5lKLm3PmGjIPg+nhnfk4ptpDEiPvo\nk836LX3dkw5+sqn043wY3w6xUBQKxY8//giOcCkUCi7e2MbGBjSYGRwcFIvFxKHpYKoEGo1GJgkJ\necLDw9955x3tWSwrK6s1a9YoFArQeFsgEOiUJd24cQPM3cZms3ft2qVzAOLg4LBjxw5HR8fHjx9j\nB69fvx4aGkpmwGKSGD/jaW9vf/78uVwu7+/v7+npweWt43A4O3bsmKs1EWwYCILTnJkQCoXi7e2N\ns2YAs8FYAnCFdR7D5/NlsqnkuGvWrMG5Rutk3bp1YDMBtguQBQmodaXRaAkJCcTn+/r66gz8hSww\nwE6ASqXSmeIUBLSmdHd3DwwMnPGlzdF2sdlscDoYlB9hjI6OYqHnXl5ebPZUHm6di68KhQJcQSGj\naodYGitXriR2B7W1tfXz88N2R0dHcT1XXNg0LseWNiwWKyEhYevWrXv27Pn973+/bNky3Ak4V7yU\nlBSDcjdra2twHXF0dLSmpob4KwiCEK8RQiwQUEOMIMgsGNvCniREm8nJSX2aJARBNBrN5cuXZ+CZ\nZMlNn/FvCgQ+TYsGUCHU09ODk5MiCDI2NgYGomnLknCF6OyyghoXR0dHnZEnZACHgQiCrF+/nthC\nxtbWNjk52WCx4CQsgiCbN28mPp9CoWzZssVgsbPWSugDTDM3PDxsMOvc2rVrU1JSdu3atX///n/6\np3+a8XUh84s5v1ExgoKCDI5Ply1bBsbq1NTUqFQq4y8NgUAgEMg8gpu2afZESQjCpNGw7a7C3Eop\nwbk+WScqKgrv5J7LPn7ssyytZGqkkJbkYjnjEBov633DxXAyMqKwHVFh3mtDhs7S/KluiltS5ibi\nPOPM+PdTZ75CAIGYDblcXlVV9fXXX+P0GdHR0drJs3BCperqaoKSNRoNONBeunQpDXjqjcTZ2Tkj\nI4NAQLNmzRowgQkYL4TR2toKRtM5Ozvv2LGDWGOUkpICRmKPjo4+e/aMTG0NxviBs206Y/xMglgs\nrqio4PP5XV1d4Hydra1tenp6VlaWCf9H00XbKglBkCVLlpjvip6enrgjxjjfmwMoS5rH4CYxMbM4\nYhwdHUGxp75VB8jCYGRkBNRjLl26lMwyJ8l7CTKviYqKAm8G4v5WR0dHX18ftsvjzchV9hXmaLvs\n7e1BpZTONR6wGxoSEgIuMYL56cCD2LwtlUo1JoMGZK4gY4mJM9bCSUMYDAbYcX/8+DGYV0UbGxub\njRs38ni8oKAgZ2dn7fU/8OZ0c3MjmRkwPDwcrIbBd7eNjY2/vz+ZkiGWA86ncGb5R6YF7ElCtHn8\n+DH4P6VSqZs3bwZnGUZGRq5evTpdW01LbvqMf1Mg8GlaNIBTdRqNBnMexWhqasKeDjs7O19fX+1C\nQK3S8PCwduAaKIsntmkkBvRtcnZ2JhNUEBkZSTxfqdFowBzHgYGBOg1KcXh6ehp86menlSDA2dkZ\n2x4fH7958yZxQxcREbF27dqlS5d6e3sTW6NBFhJzfqNikAw1Bt9HY2Nj2q0WBAKBQCALmsCoKMOd\nVRPizeUwsJ2uywf3fZZT2a/XyNHoLqScX1o5NTZlJ8aR+bE+PN7UuKCrkg9k95HyS6a6+rSoJJ5h\nkdOmJKhLgswWvb29d/WTn5+fl5d36dKlv/zlL//93/995coVzKUYxcnJSWdQja+vLxgLVFtbSyDl\nb2lpAe2XcJImI4mLiyMW0NBoNBaLhe1KpVLtqmL5o1FSUlIMDldRh1fwSFlZmcHamiTGzyTg/tEY\nExMTDx48ePDggU5t0Oyg89LEWWuMBBSuoSiVSjP95WcGTOI2jwF94z08PIhtxkECAgKwuc6hoaHh\n4WEnJyeTVw8yXSgUijETmjp1qbjkAuBLi4CgoCAqlYrzCIEsMGxtbSMjI7FwZ5FINDg46OLiovNk\nMCra2tpa2wBmWpip7WKz2dinQqFwcnISt6wCypKCgoLARZT+/n6pVIozNgAzuIWGhs6CcwnEtNBo\nNDJLZbiOIK43T6FQgoKCsIW98fHxkydP8ni8qKgof3//6eb1GxgYAO00yGvdbGxsfHx8sGfHYK4Q\nHx8fmK9t3oFrZGbhLQx7khBtwDaQRqNlZWUFBQUplcqCggLsuEAgKC0tjY+PJ1mmJTd9JnlTIPBp\nWjTgUrCJRCLc/QxKFoKDg3X2E9Dj2KxQU1MTOAeqUCgM+i2RYXR0dGBgANslOQyk0+mBgYG4iFIQ\nnEcU+ZSOwcHB+tLeIbPYShDXENytrKxsb2+Pi4sLCwtjMBj6vgWxQJKSkmYWDtvQ0EB8C1nCjYpC\noVDIaGoRBMHpEUUiEUkpFQQCgUAgCwEai82a1QvS4zI2ueVffpXWTCbIO7ov75gbmxcXl5SUFMfj\n+hg21Z0GXQLBVNfEjcUhZwzFYrNoiOhnOZOwRiBHfH5ekuqsEU6pnFg8NomVKhaXw0BEMsMnQiBG\nMzAw8OjRo5l9l0qlvvPOOw4ODjo/jYmJyc/PR7fHxsYaGxvDw8N1ngkuk5EM/iGPvouCeHp6vnz5\nEtsdHx8Hh6u4OCIHBweSCUBcXV1DQ0OxCQ2JRDI0NASG7mhDMsYPDMlQKBTaohnjQadoqFSqra3t\n+Pg46Hw8NDRUWFj49OnTjIyMOTEd0Dm9b1b3Jp2Fm+kvPzOgLGkavP/++9M11zLfMrZUKh0eHsZ2\nnZycyDtx4abVuru74fS3JeDt7b1v3z7TlonLN+Tl5UXmWxQKxcPDAwbSLXhiY2PBjhSfzwft5TFU\nKhVoTRkeHq6vA0cG87VdERERWPdRqVSKxWLc6gJmiWRtbc1isahUKoPBwGaWW1tbwfSFGo0GDDEn\nOe0LsSiYTCYZvxncGrZ2ZHxcXBx4M6hUqvLy8vLycjs7u+Dg4JCQkJCQEOJuOgbOrZTBYJC//8G7\nfXBwcGJigqA3qW1IC7F8cNJklUqlLa80IbAnCSGGTqf/8pe/RBcv161b19zcDC6j3rt3LzAwUKcT\njDaW3PSZ5E0Bn6ZFRVBQEBZ9iNPZaDQaUNATFhamswQ0ZBD7bktLCyjya2trwxRLFAplxm5JoNEp\nosvHWx9eXl4EsiSct5O3tzfJYombi1lrJYhrGBAQAP5Pe3p6rl69iiCIt7d3aGhoaGiov78/lH1b\nPitWrCCTRlObkZERYsGQJdyoKK6uriRD2ry8vCgUCvbaMpiQGgKBQCCQBQXTzX2WTS3pvA8+2VR0\nKF8CHFNIBKV5gtK8MwhC82bzeHFJSZsS4zgmqFqnELA6khQeTksjtdatkE6JjxSdEukr3yZ5V+dU\nSiiatw+Z8TWdxfZB8gWGT4RA5g5XV9cdO3YQjEmXLVt27949bCReXV2tUyGkUCjq6+ux3ZiYGBNa\n3dva2pJZX8ANInDJxyUSCWjPExYWRn4Ay+FwwDgrkUhEUB9TxfiZhLVr16alpWFjwL6+vpqamrKy\nMiykanR09O9//3tmZiabzTZHBQjQKRKSy+XmM0ySy3U49M1hGjttoCxpGtjZ2c1sdsMcgEFaCII0\nNjb+z//8z8yKGhsbM0WNIJbI4OAguEty4RxBEHd3dyhLWvCwWCw3NzeJ5OeBkj5ZUkNDA9ibMTKD\nm/naLldXV3d3d2ymtampCVzI6e3txQw2/f39Uc0oi8Wqqfk5ZXZLSwsoS+rq6pJKf04ATj4aFWJR\nkJzrx40ftGVJISEhcXFxpaWluOPj4+O1tbW1tbUIgri7u7PZbA6HExAQQGChhLv/CwoKQAOSaTE+\nPk7wA+3t7WdWLGQOodFodnZ2YHs7MjLi6upqpsvBniSEAFtb21/96leY2TKFQtm+ffs333yDDW5V\nKtXFixf3799PpqW15KbPJG8K+DQtKoKDgzFZUnt7u1qtxt77XV1d4M1AoCgKCQnB5C9CoVClUmFz\nhaAqwtvbe8bBADgbc32WqNoQzy3iRpfkbYSILcRmrZUgJj09/dSpU9qPYVdXV1dX18OHD6lUanBw\nMNrls5ypIcisYSE3KoIg5AMmaTQaGjSM7upLcACBQCAQyMKEwZx900v3pE9PfIocPJovwqf+RhBE\n0fWzQukozY0dl5ialpWWxJpxr1IulYDXkEm6ZuBaJO2UIAg6AlBIZVPlMZlMUropBuwVQywYDw+P\nFStW8Hg84rBPBoMRFhaGpc5oaGjQGUVQW1sLmt+A6ZKNh6TrNk5mhEvOhQtPIh9HhGiFEmmnmwcx\nVTS4ScDZwS5ZsiQ5OXnFihU//vgjFliiVqsvXbp04MCBWR7I65QfjY+Pm0+WpD2hQaPRppvxw6xY\nUFUg0wL0TjeSOUysCDE3OGkkeVGkMenkIPOI5cuXY9u9vb1dXV3a5+CsKWcctI1i1rYLlLHj4rxB\nrTeWbwL8LaCfJPJ6BrfAwEAo8piPmNCwcPPmzQkJCQQduP7+/pKSku++++6LL764ceOGvo77rL27\nLceWEzItcF4vuNVf0wJ7khB92Nvb79mzB0wAjyCIs7PzW2+9BR4ZHBzMy8sjU6AlN30meVPAp2lR\nAfYelUol2HkGe5seHh4ExldgajalUtnW1obtYkn9ECMyuCFaw0DygzviM3HFkn/oiJYDe4wAACAA\nSURBVIu1kIfI1dX1vffeA3Pq4VAqlQ0NDbm5uceOHfvuu++eP39upnBPiGViITcqMs33Hfj06Yyd\nhUAgEAgEYlLorLQj5y79+Z9Ted76l2IUEkHR5S8P7diccfAcXzqzCykUiA7p07RLwbakCrCjQHIZ\niW5RLhyQBQ2VSnXRj6urq4eHh7+/f3h4+OrVq7dt2/a73/3uww8/fOONN8hY0cfGxmLbk5OToCsS\nxosXL7BtFotFPviHDCaZzMfC8lGm5SmOi4wl9oU1VTS4+WAymbjRvVwuv3///qxVAEVnpFlPT4/5\nrqhduDGpb8wBdEuar5hwzhpOTCxgQBM/Kysr8pZ9UJa0SIiJibl//z5oUInTUI+OjoLpq2JjY420\npjRr28XhcLAEw93d3VKpFJM/YxncEGA9CVxYGhoaAjPmgll4SabghSxgKBTKxo0bo6KiHj58WF9f\nT7AENTo6Wl5e/vTp05UrV6akpODG5iZczCB+d8MMI/MUT09PMD9IZ2enkXmvNRqNvkYb9iQhOnFw\ncHjvvfd0pv2NjY1tbGxELeJQ+Hx+cHAwKHHWyYJv+uDTtKhgMBienp7YRE9bWxsWUwjKkogVRb6+\nvqA9nlgsZrFYCIJMTk6CbwFjggHAIE5kOk8H8fQirgtEflxAPBE8a62EQby9vffv3//kyZOnT58O\nDAzoO02j0QiFQqFQ+PDhw9TUVCPDNiDzBcu5Uae1/Ac+/lBIB4FAIBDI7ED3ic/6LD7rk35+aX5+\nflFJCV8k0ykhUoiKvty3R/hF9uF4Iy08vHmbuNNOa47QvHnYdWkIuCBEXvFkAm0UBEKCkJCQzMxM\nMxXOZrMdHBwwLc6LFy9AoRKCIENDQ2AQEe5T4zGJnw1uwDKtRV7cycQzXSaMBjcfdDo9PT39xIkT\n2JGampq33nprNte+PT09tQ92dHSYacFRrVZ3d3fjDk7LNGsWgLKk+QpuXs/Ly4t8fi4c5P2fIfMO\n8D5Rq9VgggBiZlO4CplDGAwGm81++fIlusvn8zdt2gQuMFRXV2OiJQqFYnx/y6xtl7+/P9h9bG5u\nRr00VSoV1muk0WiYAwQqpcf8SFpbW9EfKJVKOzunknPDDG4QFC8vr507d46Pjzc0NLx8+bK5uVmh\n0D301mg05eXlvb29v/rVr8B7Hnf/BwcHzzimyNJ07hCTEBgYWFlZie1iKX5mTF1dXX5+PovFCgoK\nYrFYYHsLe5IQnaxatUqnJgklNTW1ra0NjL66efOmn58fgbkIsgiaPvg0LTZCQkIwWZJYLF69ejWC\nIBMTE6DpEbEsiUKhhISEYKmEscRtbW1tmGiARqPhrMinBW6WEAxWIQZnAo8DJ1oiL60gPtOiWglr\na+v4+Pj4+PiOjo76+vqGhgYC+3qJRPLDDz9kZmay2WwjrwuxfCznRiX/RCMIAg5Y5sX6AQQCgUAg\nc4eeaT4Q6XS0xXR3blIWNynrICLvb6isrCwtKq2srBRIXr+MQnT586Pxl44kTVOYRGPSaJgoiMZK\n/eRImlHSJiaDMVWeVCqVI4jhxXu5YoZeTxCIRWFtbR0dHV1aWoruCoXCkZERMLFadXU1tmZKpVKX\nLl06B7U0BG44P63RCupqgc1ITGvEYbH4+PiwWCxsZVCpVLa3txsZAzwtHB0dGQwGLht4XV3dxo0b\nzXG5lpYW7VgaKEuCmAbchGBUVFRCQsJcVQZiseCEn3K5nGQuKhMGAkIsnOXLl2OyJKlU2traCsb7\nghncwsLCCLJRkMSsbReFQmGz2c+fP0d3MVmSWCzGQsZZLBaoPQ8JCamoqEC3W1paUFkSGOzu5eVl\nWkNOyHzHzs4uJiYmJiZGpVK1tbW1tra2tLS0t7drL+MJhcLbt2+npqZiR3D3//r16/39/Wej0pB5\nApZiEqWlpUWhUBjjh93Y2Dg0NFRVVYU25m+88caWLVvQj2BPEqITYu8Te3v79PT0M2fOYEeUSuXF\nixc/+OADgpXOBd/0wadpsREUFFRSUoJuY1IkoVCI9QRsbGwCAwOJCwkNDcVkSW1tbai5HaZPQq9i\njAEY7t1BXj9EPAy0s7MjfzLItDIwWkgr4evr6+vru3HjxpGRkebmZrTLJ5Xi113UavVPP/104MCB\nGesRIfMFy7lR9YVG6AR8/GGiZwgEAoFAjEQqlRk+SQd0d078Zk785iwEkfc3lBbl5GTnlXZhb3RJ\n4fnC/qQ09+mV6ebjhiA/J5VWdAo7EcSoyFq6D1heV6cEQXwMfqlLKDHmmhCI5RAbG4vJkjQaTXV1\n9dq1a7FPwQxukZGRlpm9EFeraY0aVCoVaK26YOIZQkNDQZur7u7u2ZQlIQgSEBBQV1cHHpFIJJ2d\nnT4+hhvY6VJdXa2zAia/kDGYwBYMMifgxCVDQ0NzVROIJYOTU2CuMAYhTh0KWUiEhYVhmc6Q1ztY\n3d3doOmfwSwtZDB32xUeHo5tNzc3oxp2nRncUMBeSGtrK7qB6bRwBUIgINbW1iwWKzk5+Te/+c3/\n+3//b+fOneHh4bgV/crKSrA5he9uCDGOjo7gUGFychI3bpkWk5OTDQ0N4BE0SRAKvBshMyM4OBj1\nhsHo7e29desWwVcW/M224H8gBAeocR8ZGRkeHkYQBJznYrFYxDnLkNd7pHK5XCKRIIBtEvJ6H3UG\n4IaBBPnIcBAPA11dXcFdzDXKIH19fQSfWvhD5OjoGBsbu3379kOHDu3fvz8pKQmnQJqcnMSUapAF\njOXcqKBtITEymQxcjXBzm35uFwgEAoFAFg9yg1ZI0k6J0eZAdHdOUsbh4+dOZLKnFASKhlLBtHO8\nsqJYUyWIamr6jawZKwqokbCST+Kn9gsFUJYEWSB4enqCShE+n49td3R09PdPPWBoJLwFghuwTCtz\nNC7oyDJ1VzMA57NAHDFlDiIjI7UPFhcXm/xCg4OD4E2LwmQyDUbNzTJQljRfcXV1BeWKoGM8BIKB\ny6nR1dVF8ovkz4TMd6ysrMCO1MuXLzGHRlBdy2AwTJLLzNxtV0hICLYONDo6isqqwDUenCwpKCgI\n05FIpdK+vr7JyUlQxmSmPK+QBYatrW1UVFRmZuZvf/tb0EhArVZjcjdEq02G726INtHR0eBuSUnJ\njNOqVlVVjY2NYbtUKjUsLAzbhT1JyIxJSUnBtWaVlZWY74s2C77pg0/TYoNGo4EWKeh/HOxtEmdw\nQ3FycgJz9nV0dKjV6vb29mkVQgAuISAYaUAM8TAQ5w1DfszY0dFB8Ok8aiW8vb2Tk5M//vhjXG7r\n5ubmuaoSZNawnBu1u7ubZP8Q9+x7enqap0YQCAQCgcxX6ODSu0xiyApJWFmj332kv/Lcsc8OHtiT\nkZYUH3/gjgFRD5P7QSZv6uIyqWQaviaviogDEgnz84s6yXyr4XhWUtLmjKw9Bw4e/uz4HSFYXvxU\neYrKokqDuiRpZSF/2tWGQCwWcJTX3d2NRdeAU17Ozs5g2KdFgbM3Ju9SgSAIGiuFYXzWFJOjVqsH\nBwebm5vr6+vJfwtMnKK9OwtwOBxt66n6+nqTDyfv37+vnc0jMjKS2Bd/9oGypPmKlZWVn58fttvT\n00M+VKumpubGjRuPHz+uq6vr7OzEchtBFh44ISSYmoqA4eFhSwtRhZgV0AZpYmICvU80Gg2oro2J\niTHJO9vcbReVSgWDy5uamtCUsegug8HATcXa2dmB2VVbWlqEQiEWUers7Ozl5UWyepAFycjISEtL\ny5MnT/Ly8goKCgye7+vrm5ycDB4B73BfX1/QPkEgEJBXnBQWFt65c6e8vFwgEPT29s5YqgKxcKKj\no8ExZE9PT2Vl5QzKmZiYwAVeLFu2DBwFwZ4kZMbY2NhkZGTg0kvl5ubqm+9Y8E0ffJoWIaDMvbOz\nc2JiAhTokFQUgad1dXX19PSAXVAjTU0cHBxACUVLSwvox06AWCwm+NTOzg7sSzc0NJC5aVUqFfG8\n4Zy3EpOTk11dXdXV1Q8ePLhw4QIYCKsTa2vrtLQ0BoOBHYHD58XAnN+oGAqForOT1LpjY2MjuIvL\nFwyBQCAQCITpxpzq0kmEDYQvWHllbhGRN1BnaU5eUWmNqEumUPANi3poTOaULImm5U3y2r4C0eV6\n4hOfBOqIsrMrDXqjSAvP5AlkMolIUFNalJ9fI2MAH/okpk0ppWSF2bkG+huduedLoSoJsoDgcrng\nZBemRgLN7GNiYixN54GBW/kijg7CgQs6wjklzzmXLl3693//9//93//9/vvvL126RHJ+A0EQmew1\nuSk4ip8dqFQqLqgJ5erVq5g9hPHU19drWyVRKJSVK1ea6hKmAsqS5jG4CYWysjIy31Kr1ffv3y8v\nL8/Pz//pp59OnDiB2s5DFiQODg5gSGtDQwOuFdZJVVWVqSpgsW9oCIirqyso8Ub7WyKRCDSHN0kG\nNxRzt12gq1NTU1NbWxvWTcFZJaGAMqaWlhYw5xHM4Aa5ePHimTNnbt68+fTp08rKSjJLCDgpG/gV\na2trMEXX4OAgLseWPgYHBwsLC0tKSm7cuHH27NkffviB9C8wAGylLQ06nR4XFwceuXPnDvksORi3\nbt0CG0krK6uEhATcObAnCZkxXl5eGzZsAI9MTExcvHhR57yABTZ9Jgc+TYsNsEvZ1dXV1taGve6d\nnZ1xTkX6AGVJPT09oFWSkRncUMAu8ejoKJnnTiQSGUz3hotnIDNy5PP5xLnhzNpKkOnqiESiv/71\nrzk5OYWFhbW1taDVJUGdcd45kAWPRb3OyDx6KpUKnJt2d3eHSdwgEAgEAsHjw55K2oTU5OUL9Z4p\n5588lkekSnLnJbFBUU+O/rIQBEHkNSX8qYUaFpdDx58B6JLkUp3yH1ZqZtzUGnvX5SPHSgjFUNKS\n48fyp34DI277Jnfwc/dNmUlYb0FRc/Jzot/QmXv0JIF5FAQy/7CzswNTZ6DLZB0dHWAUisVmcEMQ\nxMXFxdHREdttbm7Wts/RB25oA0bfWQJ2dnbYb5mcnBQKhSS/CDpbI3Mkt0pISMDFdiII0t/fn5ub\na5LyJRLJ9evXtY9zuVx3d3ft43MLlCXNY5YvXw7eyk+fPiWzalVRUQFONXp7e1vgfQkxITweD9tW\nq9X5+fnE54+Ojj558sRUVwdvURNqPyEmB1TsCgQClUpVW1uLHWGxWCacwTR328XhcLDlh7a2NrBH\npVOWBB4UiUQCgQDbhbIkCKjYk8lk4O2hD1y4vLOzM7i7atUqcPfu3buYNQIBd+/eBeVNUVFRppIT\nwVbaAlm9ejV42ygUiu+//35ayqS7d+/iFqtWrFiBuxUR2JOEGEd8fDxOi9PR0XH//n2dJ1ta02dy\n4NO02PDz86PTf1426O7uBh2GyCuKAgMDMeeVvr4+k8uScEEF9+7dI3Y20mg0Dx48MFgsznvv3r17\nxEZBIyMjd+7cMVis+VoJ3PSfzt5OQEAA6Av77Nkzg5dGXu/yab9kIQsSy3mdPXv2zKCIsLi4GFQE\nmjDQCAKBQCCQhQOLx5uy0UcEJw8f0+ly1F9yfN+BMwLi975PYgYPEwkpak4e/KxQrwlnf8nRI5cx\ncxJaVOomFu4MJpMJVCy/UKirGPe0j/ZMaaEQ0eVDe44U6vE4kvKzDx2+DBiisDM+2Mx8/Rxm0kfv\nR01pqyqPHjiYK9RlwdR55/C+z0sNx79DIPMMUHXU398/MDAALgcEBga6uLgQlzC3M1fgTJ1UKiWz\nloEgyNDQUEtLC7bLZDJJRlvNGjiZFMkxu0wmA+1jaTTanCTgc3R0XLFihfbxqqqqu3fvGln4yMjI\nDz/8MDY2hjtuZWWVlJRkZOHmAMqS5jFMJnPZsmXY7uTk5E8//SSVEumhu7u7caqUNWvWmKt+EMsg\nOjoanCR98eIFQToYlUp19epV4mDWaQG6j46MjJAX50JmmcjISFtbW3RbLpfj1DmmncE0d9vFYDB8\nfX3RbZVKBd7wOl3rAwICsDWh8fFxbIHB3t4elwYRsgiJiooCd2/fvj0xMUFwvlqtBk0yrKyscHdd\neHg4KPLr7++/fPkyse/os2fPQJmgtbX1G2+8QbL+BgFbaejSYSHQ6fRt27aBR2Qy2cmTJ8vLyw2+\nRsfGxi5cuPDo0SPwoJubW0pKivbJsCcJMQYKhZKeno7LW//48WNcvhgUS2v6TA58mhYbVlZW2GTW\n2NgY6EdCMoMbgiBUKhVzXpFKpZhDD4VC0amkny6urq7R0dHYrkQiycvLI/B9fPjwIRmXIDs7u3Xr\n1mG7ExMT2dnZ+nI4Dg4OZmdna0+QaWO+VgIUUSF6ejtUKhWMRujs7Hz69ClxhV++fAmKQkzyL4NY\nPpbzOpucnLx06RKBKKqlpeXhw4fYroODg86pcAgEAoFAFj3c1E1TidAQheD8vh17Pjt3p1LY2d/f\n39nAL8nNPrxn89aPz9TIEASheQd66y0KJxJSiPIO7cg6nH2nUiidUvbI+xtKco7s2f1x3pSFh3fq\ngQwfBAfTx3uq16Go+XJPxr6Dhz87fPjggeNgrjZO5qcfRU05JilElw/tSDtwLLdE2P/qLPSS+3bs\n/apySkdEY7//6QdT9qoYPllHDvIAB6aiz7N2HDx+h98pf1UY/0724Ywdf8jv0v4yBDLvCQ0NBQ2H\nGhsbwWkundm4cJAJjDEfuDiK/Px8MonXb9y4Ac4VkPmZs0xERAS4ilFbW0smGhAXnRUREQFm5Z5N\nNmzYoDOW6dGjR9evX5/xunlPT8/p06d1TsgkJiZaplculCXNbzZs2ACqpiUSyalTp/RNJjY2NmZn\nZ4MPoZ+fH27BFTKHjI2NVRqNtnmdtbX1m2++CR65fv16cXGxdksnk8nOnz9PUj9LEnt7e2xboVDc\nuXMHvQM1Gg205bAoqFQql8vFdouKijB1jp2dXWRkpGkvZ+62C0xagX3R1dVV57vfxsYGdOPHYLPZ\nYNg0ZHHi6ekJrjMNDAx8//33+tbe5HL5xYsXOzunopIiIyNxGYspFMrWrVvBsIn6+vrvv/9eZ7iz\nWq1G+6bgwbi4OBNG5IOSgqamphcvXqCDEJVKBYWkc0hQUNDGjRvBI5OTkzdu3Dh+/Hh5eblO9fDg\n4GBBQcHx48fBpS8EQahU6s6dO8GRGwjsSUKMwcnJKTU1FXfwypUr2nIcS2v6zAF8mhYbYPcA6xhQ\nKBSdInh9gBomTC7j6+uLE/zNmPXr12OuTgiCVFVVXbhwQVskpFKp7t27p8/tTJu1a9d6enpiu4OD\ng998801xcTGYAFoqlT58+PCbb76RSIgyXWCYr5UAB6QIgpSVlXV0dKDb4DOIy6B648aNJ0+e6FNx\nNTc35+TkgJVfuXKlvp8GWUhY1Ouso6PjzJkzOgcmVVVVZ8+eBfVSGzZsAFsDCAQCgUAgGJw9B7e/\nJjWS1OR9+Yd9O7a++eabW3fv/fjzr/JrJKgS2C3uky9AcyJdhb0m6kFkgvyv/rBvR/KaFfFJSUlJ\nSfEr1ry5++Ojl2uATGpRH31xkKfjNc3mRYFTijJRZVF+Xn5+UWlhCagIonOyvjiSCdZK0VV6/vOP\nd7yJXvTVJSvBbrn3piN/PqCdNg5BEATxyfjiGFieoqvozB/2bl2zIh4tbO8fvsoXoX8QBi8zla2z\nEAhknkKhUMCos+rqamyqn0qlLl261GAJZAJjzIefnx+41CWRSK5du0Y8yV9UVAQuCtNoNAsc3tJo\nNNDISqPRXLlyhdi59smTJ8+fP8d2ra2tk5OTzVhFQuh0+i9+8QudH1VWVp4+fbqvr29aBWo0midP\nnpw6dUrnDebt7Q2Gk1kUc6MLg5gKBoORkZFx5swZbL5seHg4OzubxWItXbrUw8PD3t5eLpf39vbW\n1NTgpsXt7Ox27NhhsakQFiFDQ0M6E0BOi+joaG0buoiIiJUrV4IRn/fv36+uro6NjfX19bW1tZVK\npU1NTVVVVZgLiJ2d3fj4uJGVQRAEp8csKysrLy+3tbWVy+UJCQlz+BqAaLN8+XLsJgH1bdHR0SYX\nEZu77QoPD9deWSEIYg4ODgZtKlHARMKQxUxqauo333yDKSk7OjqOHz8eGRkZEhLi6upqa2s7OTk5\nPDzc1tb24sULmWwq7sjW1hanLEFhsVjJyckFBQXYEaFQiJYZFhbm4uJCp9PHxsba2tqqqqpwi3l+\nfn7r16834a9zd3fv7//ZUlqj0Vy+fPn69es0Gm18fHzPnj1z4msKQUlISJDL5WCYO4IgAwMDN27c\nuHnzppubm4eHh52dnUqlGh8f7+np0ZlDx9bWNisry9tbbywf7ElCjCQqKkogELx48QI7Mjo6mpOT\n8/777+PuDYtq+swBfJoWGzo7lv7+/tNSFIWGhmqn2Cbvt2QQFxeXrVu3Xrx4ETtSV1cnEoliYmJC\nQkIcHBwmJibEYvHz588xUQWZYaCVldW777777bffYhpEhUJx//79+/fvOzs7oyUMDw+Dmh5XV1dQ\nt6HzbjdTK8FgMGxtbbFxrlQqPXnyJJ1Op1AoCoXij3/8IxrMGhAQEBMTg6VA1Wg0N2/eLC8v53K5\nvr6+DAbDyspqfHy8r6+vvr6+ubkZvMTq1as9PDyI/2iQBYNFvc7a29u//vrr6OhoNpvt5OSkUCh6\ne3urqqrApJAIgkRFRfF4PBNeFwKBQCCQBQWTd/jEf8oOfP5Ka6MbmvemT45/muZdWEhcGivjzyeQ\nw4eOFXW9XppCJtMunha46eCRTzN064OYmw98cL7yyxqtTGldQqEcYQHfcY8/+N137M8PH8X/BJ0X\ndeN9dOQ/9/AIEogzeQdPnPD+7PBXr/8Ihey1qjCi3j/2RUbDgfP6C4JA5iOxsbHYfCzYr166dCkZ\nob92YExQUBCa3EOpVOJES+Zgy5Ytp0+fxtYy+Hz+2NjY1q1btaMj5HL53bt3cVbBycnJoF+U5bB+\n/fra2losWLerq+uHH37YsWOHk5MT7kylUllQUFBSUgIeTEhIMJiAz6wEBwcnJyc/ePBA+6OOjo6/\n/OUvK1asSEhIeC1/px4EAkFhYSEWcIXDwcHhnXfesVjDBShLmvcEBQVlZmbi3JuFQqG2aw6Ivb39\n7t275/YhhMwmW7ZsmZiYAPML9PX1aU+Co0RERDAYDIPG9WRgs9n5+fmgGletVqMRuthCOMRC8PHx\n8fLy6u7uxh03bQY3DLO2XR4eHrjFD4RQlhQSEnLv3j3wCJVKDQkJIb4KZJHg5ua2bdu2nJwcbHVN\npVJVV1dXV1cTfMvGxuadd97RFwydmJioVqsLgakMtVrN5/PBVlobHx+fzMxMnBOskURERLx8+RI8\nMjk5iY5b+vr6oCxpbtm4caObm1teXh7OX1Cj0fT39xt8jbq6ur7zzjsEmiQU2JOEGMmWLVtEIhEo\njGttbS0uLk5MTMSdaTlNn5mAT9OiwsPDg8lk4rzBptt79PT0dHR0BE2GEFOnA4uKihobG7tx4wZ2\nZHR09PHjx48fP9Y+2cXFZe3atbm5uQaLdXV1fe+9977//nvcX2BoaEhbJrt+/Xpra+u7d+9iR/TF\nPJiplQgPD8f0Rihy+c9JKAYGBpYsWYJub9mypb+/H5x37u/v1zlpCBIWFqYzUypkAWMJr7Pw8HC0\nD69UKlHnbH1nstns7du3m+SiEAgEAoEsWHw2HznH3XT+q+zzha+ckQAYgYkZBw58kMSiI4hc19df\nh87JOHYprvD8yfM5+ZVdeqROjMC4TVl79qTyfAhUDqysEyeYx45+lfd6pRRdwi4EYeEumnYkJy4z\n90z2+dwigZaSCUEQBKG5RSVl7vkgM4llWFnB5GYduxRfePL4ybwigZb9KS0wLvPAJx8k+dA7GwwW\nBYHMM9zc3AICAsRiMe44ydRmJANjzIe3t/eWLVtAC4zm5uavvvoKjaNwdna2trYeGRlpbW3l8/my\n19WGkZGROCNhy8HOzi49Pf3cuXPYcrNYLP7zn/8cExPDZrPRWTWZTNbS0lJVVYWbqYiKikpKSpr9\nOuNISkoaGhoCPZwwVCrVkydPKioqQkNDly5dGhAQ4OLiAgZ0KZXKrq6u5uZmPp9PYEptY2OTlZXl\n6upqlh9gCqAsaSHA4XB+85vfXLlyRVtPoJOAgIBt27ZZZlpBiJmwsrLKyMhYsmRJYWEhsWUfOmkF\nzhobg5ubW1JSEhhKiNHb22uSS0BMyPLly2/evAke8fX19fLyMtPlzNp2cTic0tJSbJc4p4a3t7e9\nvT2Y0iIkJGQWpOuQ+QKXy6XRaNeuXdOZPEsbV1fXjIwMPz8/gnOSk5OXLFly69YtXO9fHzExMW+/\n/ba+VFwzZtmyZdXV1bigfxTYSlsCsbGxfn5+d+/ebWiYxkyPlZXV6tWr169fT7Idgz1JiDHY2tqm\np6dnZ2eDzigPHjxgsViBgYG4ky2k6TMf8GlaVAQHB4NWYciMjI6Cg4NBxYytra2/v78JKgewatUq\nJyenq1evaqdvA3Fzc8vKyurp6SFZrIeHx0cffXT37t2Kigp95zg7O2/ZsoXD4eDM/wisWM3RSqSk\npLS0tODkXyh9fX2YLIlOp7/33nvXrl3DpUPVB4VCWb16dUpKyrzQTUJMy5y/zt55551r167hmiAc\nVlZW69atS0xMtNhIWQgEAoFACOAezK04OO1vMdOOV6TN6Hp0n6Q9R5L2yPsbKitrhF2dXRIFjebt\nw+bweFEsd0zHQ998rGQzudI+S9rzmbSTz+cLhV1CiUShQBCE5ubN8maxuFyuj2FDDARB6Jy0w9lp\nB/uFAlGnRKpAaEw3N28WS8+X3blpB4+lHZR3NlTyBdhFaTQ3HxaLxY0Cfwepi7OSDhxLOiAV8iv5\nfKGwS6JAaG4sFjsqjsd5VZJPVnZF1nQKhUDmA7GxsThZkrOzM/nwXZKBMeaDx+Mplcrbt29jM3VK\npbKqqgpXKxxcLjc9Pd2SnbzDwsK2b99++fJlbI17cnKyoqKCYFICQZCoqCjLR/LY9QAAIABJREFU\n+V1bt25Vq9X6xnEqlaqhoQFdBaDRaAwGg06nq1SqiYkJqVSqL8s8Bo1Ge/fdd4nXpOYcKEtaIHh5\nee3fv7+2trasrKy9vV3f3RkYGLhixQoul2shTyBkNqFQKImJiZGRkQ8ePKivr1epVLgTnJ2d16xZ\ns2rVKtNeNzEx0dHRsaCgADcRLJFI1Go1nCCzKKKjo/Pz80FbDjNZJWGYr+3CyZK8vLxw/pkgqGgJ\nXIEIDw8neSHIIoHD4Rw4cKCsrKyqqkpntiwUT0/PlStXLl++nMwCVVRUFIfDKSsre/bsGc7cC8Pa\n2jo8PHz16tVgWmgTQqFQdu/eXVBQ8OTJE6VSCX4EPe0shCVLlmRlZXV0dLx48aKurg4X7YHD2dl5\n2bJlK1asmK7dLuxJQoyBxWKtXbsWlB1oNJqcnJz9+/drv3wtoekzK/BpWjzgZEl2dnaoMfu0CA0N\nBWcGWSyWOcZHHA7n448/fvjw4bNnz7RztNna2sbExGzcuJFKpZKXJaFfTEtLS0hIqKura2xsHBoa\nkslkGo2GyWR6enouXbo0IiICFcjibP+IVbMmbyUYDMa+ffvy8vJevnyJeyT7+vrAXTqd/s477zQ3\nNz958qSxsVFfPA+VSo2MjFyzZg3M3baYmdvXmbW19fbt28PDwwsKCnC3MYIgNjY2S5cuTUpKgrJX\nCAQCgUCmCd2dE7+ZE2+q4pg+3HgfrrHF0d1ZXHcW+dN9OPE+JvwNLG4Si2uq0iCQ+UBkZOTNmzfB\nqfJly5aRn70hGRhjVlavXu3m5pabmzs8PGzwZBqNlpKSsnLlSsufoeJyuc7OzpcuXSJYoMGwsbHZ\nuHGjRfk/WVlZbd++3cnJqbi4mPhMhUKhb5ipEyaTuXv3boNpE+YcikF11XQBA0OhF/2cMD4+LhQK\nBwYGxsfHx8fHaTSanZ3dkiVL/Pz8yGQlhCwGxsbGhEJhd3f32NgYjUZjMpleXl4sFst8bx2NRtPX\n1zcwMKBQKFCZ55IlS8ikYoUsHmDbBZkXoPmzurq6BgYG5HK5QqGwtra2t7d3dXX19/efcc9ncHBQ\nJBJJpdKxsTGlUkmn0+3t7X18fHx8fGanqZycnOzu7h4ZGVGpVLa2to6Oju7u7jD639LQaDSDg4M9\nPT19fX0TExMTExPo/8vOzs7V1TUgIEBf3sBpAVtjyKwx502fuYFPE8TSmJycFIvF7e3tqMULk8l0\n///s3XlcVNX/x/E7MCAMq2wqmKICJWBSaSZYUon6dSlTyVwyrFxyA01MxW9quVCWu2RpCmVmmomZ\nlFF9wV+4oQUmqGA1qCCK6aBssv7+mBonlmFg7jAwvJ5/+Lj3zrnnfmZGhsu97znHycnDw0Pfo4Qe\nPnz46NGjymUTE5M333xTyz88xf2UKC4uvnbtmvK5y2Sytm3b2tvb11VJSUnJ1atXr127VlhYWFJS\nUllZ2aZNGzs7u3bt2nXs2FHDgE9ohZrg19mhQ4dOnjypWl22bJlqOTs7+/Lly/n5+eXl5TKZrEOH\nDu7u7hYWFqIcFwAAdWfPnlUtP/LIIwasBEZMfXZaX19fA1aCBlmyZIlqWf1ktdGysrK2b9+uWn3g\ngQfGjh2re7da2r9/v/o3iEJDQxs0MVZBQUGtX4x56qmn+vfvr1zevHmzarICd3f3SZMm1dvtiRMn\n1Gc7qbeq8vLykydPnjp1qq5pv+zt7f38/Pr06aPhK/2NrjYxMVF9Ip158+aJdSmstLT01KlTx48f\nryt0ZWlp+dBDDwUEBFhbW4tyRNGlpaUdOnRIy6k56uXl5fXMM8/o40rjrVu3VMuizKtDLAkAAAAA\nAAB6sW/fvjNnziiX7ezs5s6da9h6gBZHQywJAIAmQywJTYBYUgsleizJsA4ePKiaGqxz584vv/xy\nIzpp0Bdj9EqhUPz555937twpLCxUfse1bdu2rq6uzX9wHQ2qqqquXbuWlZWVn5+vzPdYW1tbW1t3\n6tTJ1dW1+Y/8VFhYGBcXp/6LtRFkMtnAgQMfeughsaqqRvRYEl/wAgAAAAAAQD2SkpJu3rzp6Ojo\n6Ojo4uKi5VfRsrOzVctMfAYAAAAAaLYqKirS09NVq43OfFhaWrq7u4tTk27s7e31l1wxFIlE0r59\ne1GyMgZhZWUVHBzcr1+/hISE8+fPN3R3mUzm7+/fp08fc3NzfZSnJ8SSAAAAAAAAUI/8/HzVd0at\nra3Dw8Pr3eXKlSvqI8a7ubnpqzgAAAAAAHRz4cKFoqIi5bK5ubmPj49h64ER69Chw9ixY2/evPnb\nb7+lpaVdu3ZNc3upVOrl5eXj43P//febmZk1TZEiIpYEAAAAAACAetjb26uWCwoK5HK55m9/VlZW\nHj58WH1L9+7d9VQbAAAAAAA6Un0VRxCEHj16tKzRaNASOTg49O/fv3///oWFhVevXs3Jyblz505J\nScndu3dNTEwsLCwsLS2dnJxcXV1dXFxMTU0NXW/jEUsCAAAAAABAPTw9PdVjRl9//fWkSZNsbGxq\nbVxeXh4bG3vp0iXVls6dO7fcIdYBAAAAAMbt0qVLv//+u2q1d+/eBiwGrY2VlZWHh4eHh4ehC9EX\nYkkAAAAAAACoh7Ozc9euXf/44w/l6l9//bV582Z/f39fX18HBwdVs/z8/IyMjKSkpFu3bqk2SqXS\nIUOGNHXFAAAAAABoIScnZ8+ePapVd3f3Dh06GLAewMgQSwIAAAAAAED9hg0btnXr1uLiYuVqcXHx\njz/++OOPP5qbm8tkMkEQSkpKSkpKqu0lkUhGjBjBUEkAAAAAgGbi4MGDZWVltra2ZWVl169f//PP\nP6uqqlSPBgYGGq40wAgRSwIAAAAAAED9HB0dQ0JCdu7ceefOHfXtpaWlpaWlte4ik8lGjhzp6enZ\nJAUCAAAAAFC/8vLy1NTUWh/y9fXt0qVLE9cDGDdiSQAAAAAAANBK+/btZ82alZiYeOrUqbt372po\naWZm9tBDDwUGBlpZWTVZeQAAAAAA1Mve3r7W7Y6OjsOGDWviYgCjRywJAAAAAAAA2mrTps3AgQOf\nfPLJCxcuXLp0KTc3986dO8qIkrm5ua2trbOzs7u7u6enp4WFhaGLBVq8hx9+2N3d3dBVAAAAAEbF\nzs6u5kZXV9cXXnjB0tKy6esBjBuxJAAAAAAAADSMmZmZr6+vr6+voQsBjFyHDh06dOhg6CoAAAAA\no9KlS5dHHnnkypUrBQUFUqnUxcXFx8enZ8+eJiYmhi4NMELEkgAAAAAAAAAAAAAAQKvQtm3bZ555\nxtBVAK0FcT8AAAAAAAAAAAAAAAAAIiOWBAAAAAAAAAAAAAAAAEBkxJIAAAAAAAAAAAAAAAAAiIxY\nEgAAAAAAAAAAAAAAAACREUsCAAAAAAAAAAAAAAAAIDJiSQAAAAAAAAAAAAAAAABERiwJAAAAAAAA\nAAAAAAAAgMiIJQEAAAAAAAAAAAAAAAAQmdTQBQAAAAAAAAAAAAAAgBZm2bJlhi4BQHPHaEkAAAAA\nAAAAAAAAAAAARMZoSQAAAAAAAAAAAABqZ2pqWlFRoVw+ffq0YYuB0TM1NTV0CQAAMTFaEgAAAAAA\nAAAAAIDamZubG7oEtCL8fwMAI0MsCQAAAAAAAAAAAEDtXFxcDF0CWhH+vwGAkSGWBAAAAAAAAAAA\nAKB2NjY2nTt3trS0NDHhxiL0xcTExNLSsnPnzjY2NoauBQAgJqmhCwAAAAAAAAAAAADQfNnY2BAW\nAQAAjUCoGQAAAAAAAAAAAAAAAIDIiCUBAAAAAAAAAAAAAAAAEBmxJAAAAAAAAAAAAAAAAAAiI5YE\nAAAAAAAAAAAAAAAAQGTEkgAAAAAAAAAAAAAAAACIjFgSAAAAAAAAAAAAAAAAAJERSwIAAAAAAAAA\nAAAAAAAgMmJJAAAAAAAAAAAAAAAAAERGLAkAAAAAAAAAAAAAAACAyIglAQAAAAAAAAAAAAAAABAZ\nsSQAAAAAAAAAAAAAAAAAIiOWBAAAAAAAAAAAAAAAAEBkxJIAAAAAAAAAAAAAAAAAiEz8WJKJyb0+\nq6qqRO8fAAAAAAAAAAAAAAAAgIjUQz7q4R9diB9LkkqlquXKykrR+wcAAAAAAAAAAAAAAAAgIvWQ\nj3r4Rxfix5LMzMxUy8XFxaL3DwAAAAAAAAAAAAAAAEBE6iEf9fCPLsSPJclkMtVyWVlZQUFBRUWF\n6EcBAAAAAAAAAAAAAAAAoKOKioqCgoKysjLlqkQiUQ//6EKiPjOcWAoLC+/cuSN6twAAAAAAAAAA\nAAAAAAD0x8bGxsrKSpSuxB8tSRAEKysrsSaZAwAAAAAAAAAAAAAAANA0xMokCXoaLUnpzp07hYWF\neuocAAAAAAAAAAAAAAAAgFisrKxsbGxE7FCPsSRBEMrKyoqLi8vKysrLy/V6IAAAAAAAAAAAAAAA\nAAANIpFIpFKpVCqVyWRmZmYid05aCAAAAAAAAAAAAAAAAIC4TAxdAAAAAAAAAAAAAAAAAABjQywJ\nAAAAAAAAAAAAAAAAgMiIJQEAAAAAAAAAAAAAAAAQGbEkAAAAAAAAAAAAAAAAACIjlgQAAAAAAAAA\nAAAAAABAZMSSAAAAAAAAAAAAAAAAAIiMWBIAAAAAAAAAAAAAAAAAkRFLAgAAAAAAAAAAAAAAACAy\nYkkAAAAAAAAAAAAAAAAAREYsCQAAAAAAAAAAAAAAAIDIiCUBAAAAAAAAAAAAAAAAEBmxJAAAAAAA\nAAAAAAAAAAAiI5YEAAAAAAAAAAAAAAAAQGTEkgAAAAAAAAAAAAAAAACIjFgSAAAAAAAAAAAAAAAA\nAJERSwIAAAAAAAAAAAAAAAAgMmJJAAAAAAAAAAAAAAAAAERGLAkAAAAAAAAAAAAAAACAyIglAQAA\nAAAAAAAAAAAAABCZVK+9FxYW3rhxo6SkpLi4uKKiQq/HMjKmpqaWlpYWFhZOTk5WVlai989boz3e\nCwCGwucPWjl+BACo6PsDAQCgP5x06Qm/HAEAAAAALYKkqqpKH/1WVVVlZ2dfu3ZNH523Nu3bt3d1\ndZVIJKL0xlujC94LAIbC5w9aOX4EAKjo/oHADXIARq+ZBFY46Woy4p4tAwAAAAAgIn3Fks6dO1dU\nVKSPnlsnmUzWvXt3UbrirdER7wUAQ+HzB60cPwIAVBr9gcANcgCtkAEDK5x0NSURz5YBAAAAABCR\niT46zc7O5qKDuIqKinJycnTvh7dGd7wXAAyFzx+0cvwIAFBp9AfC+fPnySQBaG1yc3PPnz/f9Mfl\npKuJiXW2DAAAAACAuKSi91hYWJibm6tatbOza9++vaWlpampqejHMmIVFRXFxcW5ubn5+fnKLVev\nXrW3t5fJZI3uk7emcXgvWq7Tp0+rlh955BEDVmLceJ31h8+fFocfB3HxI2Ao/E8WF6+nKET5QOAG\nOYBWSxlYcXV1bbIjctLVBPRxtgwAAAAAgOjEjyXl5eWplu3s7Dw8PEQ/RGtgampqbW3t4eGRmZl5\n+/Zt5ca8vLzOnTs3uk/emsZRvRcXL15UXejhvQDQBPhdgFaOHwEAKrqfk1e7QW5jY2NnZyeViv8X\nMQA0E+Xl5fn5+Xfu3FGuNnFghZOuJqCPs2UAAAAAAEQn/iRuJSUlquUOHTqI3n9ro/5VNvXXthF4\na3Sk/qLxXgBoSvwuQCvHjwAAlUafk6vfILexsXF0dCSTBMC4SaVSR0dHGxsb1Rb1T0J946SrKYl4\ntgwAAAAAgOjEvw5bXFysWrawsBC9/9ZG/TXU8cqC+ltjaWmpS1etk57eC35MANSL3wVo5fgRAKDS\n6A8E9cb29vYmJiYSiUQQBOW/AGBkqqqqlP/a29urBkxqysAK1z2akohnywAAAAAAiE78WFJlZaVq\nmQnjdaf+GpaXl+vSlfpbY2Ii/kBZRk9P7wU/JgDqxe8CtHL8CABQafQHgvoNcnNzc2UsSUnM+gCg\neaj6h/rGpgyscN2jKYl4tgwAAAAAgOgYtR4AAAAAYOSqpRJNTExMTU2JJQEwVspMUkVFhfpGAisA\nAAAAAKDpEUsCAAAAALQiykySqampctQ0kkkAjIxykCT1OCYAAAAAAIChEEsCAAAAALQiykySVCpl\nMkcARoxYEgAAAAAAaA64CAsAAAAAaEUkEolyHjdDFwIAeqT8oGNAOAAAAAAAYFhchwUAAAAAtCLc\npAfQevCJBwAAAAAADItYEgAAAACgdeE+PYDWgM86AAAAAABgcMSSAAAAAAAAAAAAAAAAAIiMWBIA\nAAAAAAAAAAAAAAAAkRFLAgAAAAAAAAAAAAAAACAyYkkAAAAAAAAAAAAAAAAAREYsCQAAAAAAAAAA\nAAAAAIDIiCUBAAAAAAAAAAAAAAAAEJnU0AUAQGt09+7dY8eOnT9//vbt21VVVZob29nZPfXUU15e\nXk1TWzNXUlLy9ddfZ2VlVVZW6ukQEomkQ4cOw4cPt7e319MhAAAAAAAAAAAAAMDoEUsCgCZVWVn5\n2WefRUdH5+fna79XdHT0mjVr/P399VZXy1BaWjpp0qTMzMwmONZnn322a9cuBweHJjgWAAAAAAAA\nAAAAABgfJnEDgKZTUlIye/bs9evXNyiTJAhCeXn5Rx99pKeqWpAffvihaTJJgiDcuHFj7969TXMs\nAAAAAAAAAAAAADA+jJYEAE2kpKQkLCzs1KlTjdv9ypUr4tbTEmVnZxvx4QAAAAAAAAAAAADAmLTs\nWFJ5eXl0dHRCQkJBQYGI3UokEkdHRz8/v6FDh3bp0kXEnlGr48ePx8TEXL16VX2jRCLp3LnztGnT\nHnjgAUMVBoiorkxSTEyMra2thh3feOONjIwMQRCqqqr0WF8LUVlZWXOjRCJZu3Zt586dG93tzZs3\nQ0NDa/4qqfVwQEt39+7dTz75JDExUf3/vLOz8/Dhw5955hkDFmZ8XnvttbFjxz7xxBON7uGvv/5a\ntWrVxYsXVVs8PDwiIiLatm0rRoHNwpdffvnll1+WlJQY5Ojm5ubDhg2bOHGiQY7eHFRVVWVmZv7y\nyy9yufzy5ct37twpKioyNTWVyWQuLi733Xdf9+7dH374YWP6LwcAAAAAAAAAaEotO5a0YcOGXbt2\n6aPny5cvp6SkxMTEDB8+fP78+RYWFvo4CgRBSEtLmz17dq33/i9fvvzrr7/u2bOnXbt2TV8YICIN\n4yS5ubnZ29tr2Nfc3FxvdRkJW1vbfv366dLDfffd5+7ufvbsWbFKApqt8vLyWbNm/fLLL9W2X7ly\n5ddff7148eLcuXMNUphRSk5O/vXXXyMjIwMDAxvXw5YtWxISEtS3XLlyxcHBYdGiRbqX1xxcuXIl\nMjLSsDVs2LChV69e3t7ehi2j6aWlpR08ePCHH35QKBT1Nvb19R00aNB//vMfzSctgiBUVVVJJBKR\nagQAAAAAAAAAtHgmhi5AJ3FxcXrtv6qq6uuvv54yZcqdO3f0eqDW7LvvvtMwHklhYWFiYmJT1gOI\nrmYmyc7OzoD1AC1IYmLi2LFjH3vssaFDh27btq2iosLQFbV433zzTc1MksquXbsyMzObsh6jV15e\nvmDBgmrRIu1VG0tSKScnR6eampPc3FxDlyAIxvWSaiMpKemVV1556aWXvvzyS20ySYIgnD179v33\n3x82bNi7775748aNWttkZWWNHj368ccf19P3RgAAAAAAAAAALVHLHi1JdRndwsLCyclJtbHeOd1c\nXFyqDUBy8+bNoqIi5bK5uXllZWV5eblyNT09fcaMGZs3b7axsRGzegiCIAi3bt3SsQEaoaKi4s6d\nOyUlJba2tjKZzNDlGLOamaSZM2devHjxu+++M2BVRub27dtJSUmdOnVqdA8KhUIul4tXEcSxf//+\nFStWKJevXbu2ZcuW8+fPR0ZGSqUt++zFsDRkkpROnz7t6enZNMW0Espkki5jJgFiycrKWr169fHj\nxxu3e0lJyZ49e77++utJkya99NJL6p/GWVlZU6dOVSaW1q9fP2rUqDZt2ohTNAAAAAAAAACgJTOS\nG3t+fn6bNm1SLr/zzjt79+7V0Lh///7vv/9+tY25ubnDhg1TLj/88MOrVq369NNPt2/frtxCMgnG\n4fbt2/v27Tty5Eh6erpq0BErKytfX9/evXv/5z//Yb48cZWUlISGhp4+fVq1ZebMmSEhIYsXLzZg\nVcanqqoqNDTU0FVAZOqZJJWEhISFCxeuWrWKZFKjlZSU6NgAjUAyCc3Bl19+uWbNmtLSUh37KSkp\n+eCDDxISElasWKHMBMvl8mnTpqlGUaqoqCguLiaWBAAAAAAAAAAQWvokbo3j4uJSc2P79u3VV21s\nbKZPn75gwQLVFmUyidnc0HJ9++23w4cP37x582+//aY+EVJhYeGJEyc2bdo0bNiwefPmMWaMWOrK\nJBmuIqDFqDWTpPS///1v4cKFqhENgZZCx9ncAF2Ul5cvXrw4MjJS90ySyrlz5yZOnHjixAm5XK4a\nJwkAAAAAAAAAgGpaYyxJe6NHjyaZBOMQHR393//+t7CwUEObqqqqhISEMWPGbNiwgVv+OiKTBDSa\nhkySEskktFAkk2AQynMSfcweW1BQMHv27FdeeeWvv/4SvXMAAAAAAAAAgHFgDpR6jB49WhCEyMhI\n5SqzuaEl+vnnn1WzHNaroqLik08+SU1NXbVqVa1DizVOaWlpUlKSpaXlo48+amJi5IHI4uLi0NDQ\nX375RbVFxExScXHxr7/+evXq1XozGSYmJp07d+7du7dEIhHl0EATqDeTpKRMJjGbG1ocZnNDE1P+\nlztx4kS9La2srLp27erm5iaTyYqKim7evJmXl/fnn39q3quioiI/P1+kYgEAaLyKioqTJ09mZ2er\nDw5tcBKJxMnJ6bHHHpPJZIauBQAAAAAAg+FmXv1Gjx4tkUhWrVqlXCWZhJalqqqqZibpkUceuf/+\n+83NzRUKxYULFy5cuFBZWaneIDU1dcqUKTt27Gjbtq3uNXz//fcbN268evWqIAju7u6vvPLKwIED\nTU1Nde+5GdJfJqm8vPy99947cOBAcXGx9ns98cQT77//PsmkxikpKTF0Ca2LlpkkJZJJaKFIJqEp\nrVmz5ueff9bQQCaTDR8+fNCgQT4+PjXPzW7evHns2LHDhw8fPXpUn2UCAKCT3NzcsLCwixcvGrqQ\n2jk4OLz33nsPPvigoQsBAAAAAMAwjHzMErGMGjVq4cKFqlVmc0MLcvHiRfVrcw4ODp9++umHH344\nd+7cmTNnLl68+NNPP42Li5syZUq1b+9duXJl7ty5d+/e1eXoZ86cCQkJWbRo0dWrVwcMGNC3b1+5\nXP7f//43ODj4f//7ny49N096HSepsLBw9+7dDcokCYJw5MiRxMREUQpohRISEiIjI6uF9qAnDcok\nKTGbG1ooZnND0/jxxx/37NlT16NSqXTMmDEHDhwIDw9/8MEHa82LOzg4DB06dMOGDTt27OjVq5c+\niwUAoPEWLVrUbDNJgiDcvHlz7ty5XEUEAAAAALRaxJK0NWrUqEWLFqlW09PTQ0NDy8rKDFgSoI0z\nZ86or86bN6979+7V2jg5OU2ZMmX//v2PP/64+vbffvttx44djTtudnb2ggULXn755bNnz/r6+m7f\nvj0yMnLjxo3R0dF9+/a9dOlSeHj4qVOnGtd581RZWRkeHq6nTJIumvP12ebvyy+/fOutt0gm6Vsj\nMklKJJPQQpFMgr7l5+erRnut6b777tu1a1d4eLiW42L26NFjy5Yts2fPNvqpeAEALU5WVla16x7N\nkEKhOHLkiKGrAAAAAADAMJj3pAFGjhwpCMLKlSuVq2fOnImOjp48ebJBiwLqUVRUpL7q5eVVV0tH\nR8e1a9euW7du586dqo07d+4cO3asnZ2d9kcsKCj4+OOPd+/eXVZW1qFDh5kzZw4aNEj1qK+v7/vv\nvx8aGpqcnJyRkWFM37z/4osvjh8/rlq1tLQ8depUrdEr3XNCvXr1mjhxooYGcrl8zZo1yuWKigod\nD2dM3N3d586dq6FBYWGh+vB4giB88803giC8+eab3IvVk0ZnkpSYzQ0tlDKZ9M477/Tv39/QtcAI\nRUVFKRSKWh/q06fPqlWrbG1tG9rnxIkTbW1tly9frnN1xqtUIU9Py5BnZmZm5xUWlRWWlgrm5lYy\ne2c3T09PTx8/HzcrQ5eoldLrcrmi9O8VKzevFlI2gNbpxo0bquXhw4cHBQUZsJhqMjMzN27cqFzO\ny8szbDEAAAAAABgKN/AaZuTIkRKJRHX39LPPPnvxxRctLCwMWxWggaWlpfpqZmamu7u7hvZhYWFy\nufznn39WrpaUlPzwww+jRo3S5ljl5eX79+//8MMPFQqFlZXV1KlTx40bZ25urt7m6tWr8+fPP3fu\nnKur68CBAxv2ZJqxioqK6Oho9S3FxcXqKaVamZiYVHuDqpHL5ZcuXaq53cnJyd/fX8OONjY2mg/d\nallbW2t+6Wq9iUsySX90zCQpkUxCC1VeXv7GG2+QTILosrOzY2Nja33I19d37dq11U7PtJSVlbVl\nyxbdSjNaioyE2AOHklKy8msfTjc1OVEQBEHWuXfg0ODgQPdmHvPJiVu9OO7v2+dm/vM+C3vUsPUA\nRmDp0qXp6ek6duLt7b106VIxyjEqVVVVquXOnTtr/nOviTXuFy4AAAAAAEaG26sN9txzzw0dOlS5\nXFBQkJSUZNh6AM28vb3VV3fu3FnvdFSzZs1SX/3111+1OdDPP//8wgsvvPPOO7dv3x45cuT+/ftD\nQkKqXYM7fvz4hAkTzp0716dPn08++cTJyUm7J9EC/PLLL3/99VdD9+rbt2+bNm3qelQul0+dOvX2\n7dvKVS5oNj0zMzPV8jfffMNsbqITJZOkxGxuaKGUyaTExERDFwKjEhMTU+tYiS4uLu+9916jM0lT\np05VH5ECSqXZSdFLJ89YHBWXXFcm6Z6irOS4qPkzwjcnyEvraQrAuAR5MQcyAAAgAElEQVQHBzeT\nTgAAAAAAAJpYa4wl/fnnn6Wl1a8Cnzt3Tvsenn32WdXyhQsXxCkL0I/u3bt37NhRtZqWlrZhwwbN\nu3Tr1k09MFTv/aeMjIzXXntNOcxS3759d+/evWjRIgcHB/U2VVVV27dvnzVrVn5+fkhIyMaNG+3t\n7Rv+bJqvjIyMBrW3tLR86qmnNHzVVZlJUkWdZDJZZGSkLhWiEZ5++ukRI0aoVkkmiUvETJJSK08m\nlZeXp6amHjt2rK5pm0Rx5cqVpKSkhn7iQTOSSRBXUVFRXFxcrQ+9+eabjQuFk0mqQ6n8+9Vz5q+P\nS683j/QvRVmJURHzN5/U48c1gObGx8en2leGGsrb29vHx0esegAAAAAAAJqMEc51IpFINDc4deqU\n5iGd6+3B2dlZtXznzh3ta2s9jhw5smHDBrlcrntXW7du3bp1q+Y2pqamXl5eb7zxhq+vr+5HNDIS\nieTll19+6623VFt27tx5+/bt+fPn1zX/YHl5eUlJiWpVw6RIN27ciIqKOnjwYFVVVbdu3ebMmfPY\nY4/VbFZQULBkyZLExEQrK6tly5YFBgY2/vk0VwUFBarlHTt29OjRQ5feamaSNm3a1KlTJ51KRKNE\nREQIgqCaCofZ3MQieiZJqdXO5paSkrJ48eLc3FxBEKRS6ZQpU15++WVxD1FaWvr2229/++23ylVf\nX9/IyMj27duLe5RWi9ncIKKffvpJ/UROpU+fPrWep9UrJyeHTFJtCtOil66My/p3IMnM2bN3b38/\nb3d3N2d7Kyszoayw8HqOXJ6WnJiQnKmWXirLSXwvQli0YoafUSX1AWgQHBy8bNkyXXYXsZjW4OWX\nXz5z5owgCF26dNm7d69yY3x8/MKFC5XLmzZtUv1mDAoKunXrliAITzzxxJo1a5Qbt2/fHhUVJQiC\niYnJ/v373dzcBEFQKBSDBw9Wfhdi/Pjxc+bMUTZetmzZwYMHBUGwsLBISEhobX+PAAAAAACggRHe\nVVXPDDWOi4uLKJW0WnK5fP78+aJkkrRUUVFx7ty5sLCw/Pz8JjtoCzJ8+PBqd6G+/vrr559//vDh\nw7VO8LFlyxb1kE2XLl1qtikpKdm2bduIESO+/vrrtm3bLly4cNeuXbXe67p48eKLL76YmJjYpUuX\nTz75xCgzSeKqNZP04IMPGraqVksikURERDBmkrj0lElSaoVjJv3yyy8zZ85UZpIEQSgvL4+Kilq/\nfr2IhygtLZ07d64qkyQIwtmzZydPnqw6KHTHmEkQy5EjR2rdXm2WXu3t2LGDTFINpfLYlf/OJJk5\new8JXbtj84qwkKGBj/q4u7nY21tZ2du7uHn5BQwcH7Zi60fLX/V3NVPrJC9x3brvs5u8dgAGosuA\nSQyV1Aiqyxrq1zcKCwtrNqi3cWVlZXFxsXL57t27qr81am1cUlJS65UWAAAAAABaLSOMJQ0dOtTG\nxqbRu0ul0tGjR4tYTyuUlJRkkPvBCoUiNTW16Y/b/EkkksjIyK5du6pvzMnJiYiIGDZs2OrVq7/9\n9ttTp06dPn06NjZ26tSp0dHR6i0PHDgQExOjek+rqqq++eab5557bsuWLZWVlSEhIfv37x81apSp\nqWnNQx8+fDgkJOTy5csDBgyIiYnp3Lmz3p6lkSCT1AyRTBKXXjNJSq0qmZSamhoaGlpzZJRPP/1U\nrGSSMpN0/PjxatuvXr06ZcoUkkkiIpkE3VVVVZ0+fbrmdl9f3wceeKBxfbZr165B7Z2cnOzs7Bp3\nrJaiNC1m9a5MtUySXc+XVry7NCTAzVzDXlZeA8NWLBnnKbu3qSg9Zuv31/VWJ4DmptEjHjFUEgAA\nAAAAaLmMcEhhFxeXTz/99LPPPsvOzm7QPWOJROLs7Pz88883+pI9lNS/LtZ6Dt3MWVtbb9iwYc6c\nOZmZmerb8/Lyvvjiiy+++KKuHW1tbUtKSjZu3Hjw4MHw8HCpVLp27drz588LgjBo0KBZs2bVNYNP\neXn5unXrdu/ebWpqGhYWNmHCBHGfkVEik9RsKZNJArO56awJMklKrWQ2t9zc3LCwMNVXt6v59NNP\nBUEIDQ3V5RB1ZZKUcnJywsLCdu7cadyvc1NiNjfoKDs7u9bRQ5988slG9/niiy8WFBT8/vvvVVVV\n9Ta2sbEJCQmpd1Lslq00Y1dUfN69dVnPV5dGDHTTal8rrxHh0+Xh7x39510qS9+7NyVwhp+mPBMA\no6EcMCk9Pb1BezFUUuMEBAQoR0Pv2LGjamOXLl369u1bVVUlkUjU50l/+umnFQqFIAgPPfSQamP3\n7t2VY0JLpVJHR0flRltb28cff7ysrEwQBP5aBwAAAABAG8Z5D6ljx45vvPGGoasAmpf27dvv2LFj\n1apVhw4d0nIXe3v7jz76qE2bNu+///6RI0dmzJih3N6zZ885c+b4+vrWteONGzcWLFiQkpLi4OCw\natWqRx55RIQnYOzIJDVzJJN012SZJKXWkEzavXv3nTt3NDTQMZmkOZOkdPHixSNHjjz11FONOwRq\nIpkEXWRlZdW6/eGHH250n23atAkLC2v07sbnesIu9VCSnf/0MC0zSUr2j04O6Z2yPrno7/X8o7EJ\n4/0G2otZI4DmKzg4eNmyZQ3dRU/FGLdaz4F79uy5cePGmtuXL19ec+OAAQMGDBhQbaOlpeXatWtF\nqRAAAAAAgFaCO6lAK2JhYbFs2bL169d369ZNm/YRERFdu3Z1c3Pr3bu3Mnjh5uYWGRn58ccfa8gk\npaSkTJgwISUlpUePHjt37iSTpA0ySS0Cs7npookzSUpGP5tbXfkDdY2ezU2bTJL2ZaBBmM0NjVbX\nvIpdunRp4kqMV0bcgfR707fJeo4PedSqgV1YBYwboTazcVlmYpJ2E7kVXpdnpJw8mZSUlHQyJS0j\nW1HawCPX3tvJlLSM7EKd+vq7R0V2RlqKWPUBRko5YJL27RkqCQAAAAAAtHRGO34AgLoEBAT07dv3\n2LFjBw8ePHbsWGFhYbUG3bp1c3JyOnHixMKFC1988cXhw4e///77VlZWr7zyytixY83MzDR0vnv3\n7nXr1pWXl48ePfr111/X3BhKubm5ZJJailrHTDIzM1NuRF0alEmaOXPmp59+WuskRCpz5sz58MMP\ni4qKNLRRMu4xk9q1a6dNs0aMmaR9JkkQBOXsGBCXMpnEa4uGqnleJwiCubm5tbV10xdjlErT4pPU\nh0oKGOHfmGGO3AKDvPduy5S5unt5env7+fXWmGwqzU6JjzuUcDI9K7+s2kNmdp39AoKGDAn0cdF6\nGrjC7KTYvXFHkzPz/tWbmbOn/5Bx44f6NPgJlSrSEmLj4pNSatYnc/b08x8yYkSAe0OzW4Axa9CA\nSQyVBAAAAAAAWjojvEUHoF4mJiYBAQEBAQGVlZV//PHHlStXFAqFqampo6Nj586d3dzcKisrP//8\n848++mjHjh1ffPGFIAiPP/74xIkTBUH4v//7v9TU1KFDh1b72n1JScnbb799+PDhNm3aLF68eNiw\nYYZ5bi1QRESEKpMkCIKHh8e333777bffVmtWWsoXzptaenr6O++8U3O7VCq1tLQsLi5Wru7fv79X\nr16DBg1q2upajKSkJO0zSbNmzXrppZeUMRoNHnzwwU2bNs2aNavWG/DV/O9//1u3bt28efO0rKEF\nGT169IEDB8rKqt8FrqlByaSGZpKefPJJbVqiocrLy3NycgxdBVqYWs8W2rRp0/SVGKvMoylqsVm7\nR/19tE4D/Yt9YPjmACv7erM6pdlJMVFb4zPryuGW5Wclx21Ljj/gPWRy2Hi/ehNF109Gr4+Kq7W7\nsrzMxJhlR+P7T1802bm+flQUabGbo/am5tXxm6goL/PogfVH42P7h8yYHOjeuBcLMDrKAZPS09Pr\nbclQSbr44osv5HJ5tY3+/v6PP/64cvmHH344ffq0IAiWlpazZs2SSCSCINy4cSM6OrqiokIQhKFD\nh6oGilb11qFDB+W1EUEQfv/993379lVVVQmCkJGRof/nBAAAAABAi0QsCeKzsLAw1KEtLS0NdegW\nysTExMPDw8PDo+b28ePHDxo0aP369er5mJMnT86ZM0cQhNjY2AMHDlhZ/X0v5fLly+Hh4RcvXnR1\ndV29evX999/fZE+hpTt69Ghqaqr6ljNnzpw5c0bzXvxX1x/1e7eXLl26dOmSNntt2bJl4MCBygvZ\nqGbr1q1atlRmkrRsrEwmzZw5U5tk0p49e1599VV7+8aMaNGceXh4rFy5UsuJ6uoNeyk1KJNkZ2e3\nfv16mUymTWM0lLW1tYuLyx9//GHoQtCS1HoeXlJS0vSVGKnslDS1VJLMr7dnY3syt7KvN6OjOLl1\n6fr4nPqzp0JZXvqBleGZ48LDR3jVGXUqzf5+9dJtqZpGIxSEspzE9RFFQV71H1PLDgVBEISirMSo\nCHlmeMTk+pNTQOug5YBJDJWki3379tU8jyotLVXFkr7//vuffvpJuTx16lTlX4JyuXz37t3Kje3a\ntVPFklS9OTs7q2JJv/322549e/T8PAAAAAAAaPGIJUF8vXr1MshxLSwsVBeMIAonJ6cZM2b8+eef\n58+fV27JzMxULigUiry8PGUsKTExccmSJQUFBYIgvPDCC2SSGqTmqEja6N27t+iVQMnS0tLX1/fs\n2bMN2uvy5ctpaWl8BNVKy1DF7NmzVdf3tdSjRw8tk0mVlZWXLl0yvliSIAhPPvnkypUrFy1apGUy\nqd7ocExMzN27d7U5tJ2d3QcffODp2eh78tDE2to6KioqKiqKWBIaRBUZV1dWVqZQKIzyM7CpFcrl\najO4mbn7eOpv+J/CtOqZJDNnb/+gwABvd2crM6FQkS1POZqYkJypmjgtP33XytVmK5YOdau1v5St\nK/8VITJz7hk4JNDf083eyqxQIc9MTohPSM0pEgQhPzk+uf4CrydUyyQpO+zt6e5qbyaUFeXJ044m\nxCek/vMUyrLiV6+QLVkx3osxkwDtBkxiqCQAAAAAAGAcTAxdAIyQj49PeHh4E88WYWdn9/bbbzs7\naz/hAOpRXl4eHR09evTo8+fPu7q6PvPMM4IgDBo0qGPHjoIgBAUFde7cubKyMioq6vXXXy8sLBw0\naJBUKl2zZk1kZKQ2MwpBKS0trUHtTU1NX3zxxYEDB+qpHgiC8NZbbzUiadHQt7L1cHFxqbdNaGho\nQzNJSj169Ni8ebO1tbUoZbRQTz311MqVK01NTbVpXO+gKVpmkmxtbaOiory8tBpPAw2lzCR5e3sb\nuhC0PK6urrVuv3jxYhNXYpzy5OqTldm7u9Y7CVtjFZ7cuk49kyTzfnbR5s1LZ4wI9PNyd3Nzc/Py\neXTg+LAVm98N7e9qpmpWlL5r9WcZtczkV5oSvTXxXqTKzLX/vLVrIyYPDfDxcndzc/PyCRgaErFu\n3aIhnlqOf5d9aP1WtUySzPvZJZs3R0weGuDn5ebi4uLi5u4TMHRyxLrNS571VnVZlnVgfUwa0xID\nSvWOhMRQSTqSSmv5Kqb6RtWyRCJRnUvX2kB9ua4GKuq9AQAAAAAAwVhHS0pJSdm2bVt2drZyfncd\nWVhY9O7de9q0abV++Ri1GjNmzKhRo3Jzc+t9C9atW5eYmKi5qxdeeEFzJ1KptF27diYmxOwa5tq1\na8eOHfvtt9+uXLmSn59vYmLi5OTUqVOnJ5980sHBITw8XC6Xm5ubv/rqq5MmTVLmzJycnPbt25ef\nn+/g4KBQKBYvXnz8+HFbW9sVK1b07dt3zJgxb7zxxpdffnn+/Pl3333XiEMAIrp9+7ZywcvL6513\n3tHcWCKRODs7N3HmrxXq1KnT559//tdffxUVFWlueeHChQULFiiX8/O1mMOkVRo7duyqVas0NAgL\nC5swYUKj+/f19VWOmaQcs61W/fv3b9++faMP0fw99dRTq1atWrhwYUVFRRMcztbW9oMPPmBsPD0h\nkwRduLu717r99OnThhrQ1Kgo8hRqa86uejvXzdgbc1Q98/PSikVD3WobZMjcLWDGCnurpSvjspQZ\nprKcuJj4oBVD/13a9fi9R++Fkpz7hy6d8Wgto2fZ+4UsWmS2dNmBrHq+YqBIiN6bqWqjoT7B3mf8\noqVWyyJ2/d08LyE6bsjqEbUO6AS0MpoHTGKoJN1FRUXduXOn2kZHR0fV8qJFi1577TVBENq0aaMK\nGPXs2TM2NlZ5Latdu3Y1e1O/Njh48GA/P79qF77UewMAAAAAAIJRxpL+/PPP1157TdzBWi5evJid\nnb1mzRoR+zR6UqlUOayOZpaWlpob2Nra3nfffSIVhb8dP358586dJ06cqHb5LCMj4+jRo7t371au\n9uvXb968ear38aeffvr444979OgxYMCAnJycBQsW5ObmPvDAA6tXr+7QoYMgCA8++ODOnTsXLlz4\nyy+/jB8/ftWqVdwAq5fqLTA3N+e/erPi6Oiofs26VgrFvbuTogRhjdKoUaN+//33PXv21Pqojpkk\nJc3JJE9PzzfffFPHQzR/TZZMIpOkV2SSoKN27do5Ozvn5eVV2/7jjz9OnTrVICUZk9LCQvU51ays\ntBxZqKEKT8Yl3HsLZb0nh9WR+VGy8gkJC86c/0/wpywz7kBG0GT1qdLk8fH3QkR2/i+F1JZJ+rsz\nr/EzhqTMP5ClqcDshEOpqui2rGeI5vrM3UdMD06av0uZdSrLOhSbNmSGDzO5AYIgBAcHL1u2rK6H\nmrgY42Nvb695AlNra+uao65KJJJar2XV2puWF74AAAAAAGjljHB0mfj4eH1MIHXkyJGa37ICWpwr\nV67MnDlz5syZx48frzdF0a1bN+UltqysrJkzZ86fP//ChQtffvnltGnTQkJCcnNzn3322Y8//liZ\nSVJydHSMiooaP378rVu3pk+fvnPnTv0+HwAtwfz582u9szJnzhzdM0lKvr6+tc7m5unp+cEHH9jZ\n2YlylGauQbO5NY5y7jYySXpCJgmi6N27d82Nf/zxR3JyctMXY2Sq/ZVpZqafaE1p2tGUe+M1ugYF\nB2i6qy4IgiC4DQnufe83Xd7JxEz1R+VJyTmqFeeAEY9qHgTYfcTQnmaaGsgTEu6llpwDRvjXX1/Q\nUG9Vl/kpCelM5AYIgvDPgEk1tzNUEgAAAAAAMCZGOFrSrVu3VMvt27fXceRkhUKhGnpBoVDY2Njo\nVBxgUD///PN///tf7QN2MTExpqamlZWVO3fuLC8v9/DwMDU1vXDhgvLRadOmvfrqqzX3kkqlc+bM\n8fX1feutt9atW3f27Nk333xTJtPTt8kBtAxvvPFGmzZtVFFFExOTefPmPf/88yIewsfH54MPPggN\nDb1586ZyS48ePdauXav5S9JG5umnn165cuWiRYv0MWaSMpP0wAMPiN4zBEGwtrbevHkzmSToLjAw\nMC4urub2DRs2fPLJJxKJpOlLMhpm/w7rlAmlgqCHZFJmappaKql3gLsW+5h7B/nZHU38e+K3/LQU\nueDzz36KjEy1VJKff739WfUO8DZLTa3rqz7X09Lv9Wfn7a/NwEdW3n7uQurfYan89JQcwa/eMoDW\nodYBkxgqSRQKhUI17ZqDg4NyY3l5eW5urlgj3To6OqqudRQUFCgvSLZp04YZ7QEAAAAAUGeEsSR1\nH3zwgY6TIr3zzjt79+4Vqx7AgGJjY5cvX17rQ/b29k5OThKJJCcnp7CwUP2h7du3C4JgZWU1e/bs\nMWPGSCSSQ4cORUVF5eXlbd++vaSkZNKkSVZWtXzjOigoqFu3buHh4T/88MPvv/++evVqd3d3PTwt\nAC1GWFjYoEGDkpOTpVJpv379OnXqJPohunfv/tVXX/34449//fWXh4dHv379TEyMcGBIzZ5++ukV\nK1ZERESIm0wik6RXykwS4yJAFI8//ridnV1+fn617efOnTt8+PDgwYMNUpVxMDf710lvaVGZPmJJ\nimz5vTfPzlPL+I65u5+7WeI/UaI8ubxQcP+7WnmmXNXMzNXbrf7OrDx9XIXUOuZxK5Wn3+tPcPPU\noj9BEFzcXe2EzL+fmCJbrTyglVMOmJSenq7awlBJYpk+fXpGRoYgCB06dDh48KBy43fffbd06VKx\nDjFq1KiFCxcql1euXPn9998LgiCRSI4dO6bjlyQBAAAAADAm/JEMtArHjx9ftWpVtY3t2rUbNWpU\nUFCQKr1XWVl55MiRVatW/fXXX6pmvXr1Wr58uZOTk3J1+PDhQUFBn3zyySeffBIdHX3gwIFp06aN\nGDGi5rRBXbt2jYmJWbp0aUJCwksvvbR06dInn3xSb08RQAvQvXv37t276/UQ1tbWzz77rF4P0fwN\nGDBAEAQRk0lkkvSKTBLEZWZm9txzz0VHR9d8KDIy8oEHHtA9Kf7VV1/Fx8cvWbKkffv2OnbVwtjb\n2wtC3t8rZQqFQhDEz9Zcz1HcW3Fxd9ZyNys3N3sh9e/iyvLu1aa4nndv8CV7F2dtKnZ2dTETsmof\nLkmRp1B7QH5gRXi8NvWVKe5VUZaXnaePlw5ooaoNmMRQSWIpLy+vtlBtWcRDqC9XVVVVVFQQSwIA\nAAAAQKXVDSEAtEI3btxYsGCB+s1pqVQ6bdq0r7766uWXX1YfUczExCQwMHDNmjXquzs5OakySUoW\nFhZTpkyJjY0dPny4QqFYtWrVuHHjjh07VvPQ1tbWq1evnjlzZnFxcXh4+KZNm/QxrxAAoJoBAwas\nWLGiZmC0EWxsbMgk6Q+ZJOjDuHHjLCwsam4vKCiYM2fO7du3den88OHDK1euTE5OnjZt2rVr13Tp\nquVxcVUPCSmyFXW21EGR4t7YpWYy7ScilTmrNS2710lhUaF6I63CQOZW9nVOwKzIU3/aRXlZ2snJ\nVwsz/asmoNVTDpikXGaoJAAAAAAAYHz47g5g/LZs2VJQUKBatbOzW79+va+vb13tfXx82rVrp7rP\ndOPGjVqbOTk5LVmy5IUXXli7du2pU6dmzZrVt2/fOXPmdO3aVb2ZRCIJCQnp3r17REREdHR0enr6\nypUr7bW/w9IC/fjjj+qD8Gt29+5dvRYDoNUSZcwkGxubDz74gEySnpBJgp44ODhMmDBh27ZtNR+6\nfPnyq6++umbNmo4dOzai52+++ebtt99WLl+5cmXq1KkfffSRi4uLTuW2IPbubs5C+j/DJeXL5dcF\nH9GffGmZWn7H3EzrWeLMzWrvpKxQfdQjM/VWdbOq+7hlZaXallSnstLaR2ICWi3VgEkMlSSiUaNG\nyeVyQRA6dOig2ujr6/v8889XVVWJcgh/f3/V8sCBAx0dHQVBsLS0NDcXf4pPAAAAAABaLmJJgJEr\nKCg4dOiQalUqla5bt05DJkkQhPLy8vz8fPVdNDS+//77t2zZcuTIkQ0bNhw7duzEiRPPPffctGnT\n2rZtq96sT58+O3funD9//smTJydMmPDuu++qvg9qHMzU7vHs3LnTgJUAgIqOySQySXpFJgl6FRIS\nEhcXl5OTU/OhP/7446WXXlq+fHnfvn2177C0tHTDhg27d+9W36hKJjk7azvVWAvn7u1uFp/3T6Qm\nJyWzcKhLI+ciU3y/IiK+zNPHz8/Pz9vb3UV1B9vczEwQ/jlEaVmpIGh3c/tfSR/zuuJHZdrlgTQk\nj8zU65G5evu4NfwVkHka81cUgEZQDZjEiYGIxowZU3Ojh4fH/Pnz9XG4AQMGKM+9AQAAAABANcSS\nACN36tSpMrXbDyNHjuzRo4fmXb7//vuSkhLVarXRj2r1xBNP+Pv779u3b+vWrfv27fvuu+8mTZo0\nbtw49e8Itm/fftu2be+++25sbOwrr7yyYMGCZ599tuFPqJni8jGA5qnRySQySXplbW29adMmfndA\nfywsLN56660pU6ZUVlbWfDQ/P3/WrFkBAQGzZs3y8PDQ3FVlZeVPP/20adOmK1eu1Hz08uXLr732\n2u7duzUH2Y2FuU9vT7Pk9L/Prcsyj6YVBjzaqFxSYUpyel5WWV5W+tG4XYKZ96ublw5URnVkVvcS\nRWVFhUXaxpKK1CdXk9mrqrK3VytQfYY4TcoK6wwmmcvUEk/2vUPCx7tr1SUAzRgnCQAAAAAAGCsT\nQxcAQL+q3UAaPHiw5vbXrl1bu3at+pYnnnhCmwNJpdIxY8bExsZOmDChtLR006ZNo0aNOnz4sHob\nc3PzxYsXL168WBCEt99++8SJE1o9h5agT58+48aNM3QVAFCLAQMGLF++3NTUVPtdyCTplTKTpHnk\nQkB3fn5+06dP19AgKSlp7NixoaGhcXFxNSftraioOHfu3NatW0eMGLFgwYJaM0lKt27dKi8vF6fo\nZs/ez9/zXiqnKC0+RbuYT3WK5IR0tXGLnP18VMMH2buqjSSkyLquZY+l2WqxJDO1GZNlzs73Klbk\n5WkzBVthnqKorsfsndXqy8u5rvuUbgAEQRB8fHzIKwMAAAAAAKPUGr7SCrRq1b4ib2FhoaGxXC4P\nDQ29deuWaounp2evXr20P5y1tXVYWFhwcPDGjRt/+OGHiIiIzz//fO7cuQ8++KCqjZ+fn7e3d2pq\n6p9//tmnTx/tO2/m5s6d+8ILL1y6dKnWYQnqsnDhwsLCxt3PAgBtBQUFCYIQERGhzQeUjY1NVFQU\nmSQ9IZOEphQSEpKTk/PVV1/V1aCqqiopKSkpKUkQBAcHB1dXV5lMVlpaeufOnUuXLpVpMeGXhYXF\n+vXrNZ9hGhX7gCDvmPTUv1+ZotTYWHlAw4cLkh+KVU8ldQ7s7aZacXFzlwlZf6eC8uSZ1wUvF226\nTJff69HezVU1RJK5u6e7cDRTuVImT5cLAV71dZadmVPne2/v7uYspOep9fdovf0BgB6pz6j+9ddf\nnzp1yoDFVHP79m3Vslld02sCAAAAAGDsiCXBwKytrXVsAM2cnJzUV2NjY+fPn1+zWWlp6e7duz/6\n6CP16dtMTExqbVwvNze3yMjI1NTUtWvXnj179uWXXw4KCpo1a0CgjXUAACAASURBVFZpaem2bdsO\nHz5cVVXVqVMn5W1yY+Lq6urq6tqgXVrHjCei4QMBaDQtk0nKTFL37t2bqq7WhUwSmt6CBQsqKioO\nHDhQb8ubN2/evHmzQZ1bWlq+//77rey/tFXvEYHOqfF/x3KErLithwJXDHXTuE812Ye2xuXcWzXr\nOTRQfX9PH0+zxH+CT/KjydeHDq0/l5RxNCVPtSJz93a/95CLj6ezkPn3o3kpR+WCl7ugkTw5La/u\nR917usvi8/7JTSUfzQjxqj+XpPh+RfjeHCsXZ2d7ZxdXn6DgQHft5qYDgPp069ZNKpUqx+27dOnS\npUuXDF1R7Qj9AwAAAABaLSZxg4EFBgZqeFQqlQYEBDRVLcbpkUceUV/ds2fP22+//ccffyhXy8vL\n09LSPvzwwxEjRmzYsEE9kyQIwrx58x566KFGH7pnz57R0dHLly9v3759fHz8qFGjgoODv/vuO0dH\nx9dff/3zzz93dHRsdOdonQICAghyAY0WFBS0fPlyE5M6T/+sra3JJOkPmSQYhImJyX//+99XX31V\n9J6dnJy2bt366KOPit5zM2fu8+yz3vdGvCjL3LV6awOmcivM+Gzdrky1sYhcg4L97dVbWPkF3Ou/\nLDPuQEa986QVJh1IuBckMvP091HP/LgH9r4Xm89Lij2pudrStPijORoeN/fp7yO711/C3iSFhtbK\nLjNi41Lz8/NyMtNTkxPjk7MFMkkARGNtbT1p0iRDV1GPfv36Vbs4AwAAAABA60EsCQb22GOPLVq0\nqH379jUfcnd3f/fdd93d3Zu8KKPSrl27gQMHqm85cODA888/37dv3/79+z/22GMvvfTS1q1br1+/\nXm3HSZMmPf/887oXMHjw4H379s2cObNt27YdO3Z8/fXXDxw4MHbs2DZt2ujeOVobPhYAHQ0cOLCu\nZBKZJL0ikwTDmjZt2oYNG+zt7etvqh1/f/+dO3e21oEfXAZOHuepFkzKiV89f11Cdr3hIUFQpESv\nXHkgSy2U5Nw/JNirWkbHvvfQ3naqtbyEqJg0jUEiRVJUdHKRatXOf2hvq381cB8y5F7QKf9oTLSG\nGFVpxq6tCRrGShIEwcpvSICzaq0oNXpzQvW/JP7dpTxua/y9oJOZZ1CQu8YDAEADTZ06NTw8vGPH\njhKJxNC1VOfg4DBhwoR33nnH0IUAAAAAAGAwRjLmxPHjx3v16lVz+3PPPSfiUWrtrRle8mhxRo4c\nOXLkSENXYczCwsJ+/fXXvLx/3V8oKysrKyurtb2FhcXixYsHDx4sVgFt2rQJCQkJCQkRq0O0Zk88\n8cQTTzzR0L2efvrp/Px8fdQDfTAzM9OxATRQZlUXL16sPpubMpPk7e1tuLqMGZkkNAf+/v779u3b\ntGlTbGxsVVVVo/txdHR87bXXRowYIWJtLY/b0NDJKfOjUv/JApXlHY2anxYfGDwuONDHvraRgEqv\np8Tv/WxvYlaR2kYz16DpIX5WNRpb+Y0L9k7elq48Vy/LiV+51Cw8IsSvllhZ6fWkqGVRyfdOcmQ9\nx4/3q16BS+C4oAOL4/6ZyC1x9VKrWvsrlR9auTIup/a/Ee4x9wkO7pmkevr5qVERq0sjQgfWNi9b\naXbC+tW71JJYzv7BQfVPSgcADTRmzJgxY8YYugoAAAAAAFCLlh1LcnJyunHjhmFrcHHhmiqaOxcX\nl40bN4aGhl67dq3exo899ti8efMYjQaAAXXv3v3//u//6npUJpPxGaWjgQMHymSyyMjI3NxcQRC6\nd+++ZMkSDw8PQ9dlnHTJJNUafzemTHwzeS7NpIwmYGdnFxERMXbs2O3bt3///ffq2URtODk5BQcH\njxs3ztLSUk8VtiAugWGLsleuPJCpihmV5WfGb1sWH+Ps6eft6enp7mwvMxPKihSK7Mz09PS0zLyi\nal3Y9Z68aLJPzVCSIAiCy8Dpk5Pv5Z7KsuJWhqX4jwge4u/n5aLcpTA7LTk+dm98ap5aisjOf/KM\nwFrSS+Ze40KHpCz7J3FUlhW3Miytf/D4EYF+blaCIAil19OOxu39LD49v75MkiAIgmAfOGNycvh6\nVRwqP3lbxIzEwBHPBgX4uf+dyyq8npYcH7s37l8FOvefHFIjNQUAAAAAAADAiLXsWNK4ceM2bNhg\nwAJsbGyGDBliwAIALXl4eOzatWvjxo2HDh2qdZAkqVTar1+/MWPG9O7du+nLAwB1s2fPPnv27K1b\nt2o+ZGpqOn/+fAsLi6avysj069fv4MGD2dnZbdq0cXZ2rn8HNIqO4yR169bt2LFj1TYaU4CsU6dO\nUqm0vLzcgDVIJJKuXbsasICm17Vr1+XLl4eFhcXFxcXHx58/f17z4EnW1taPPvrowIEDAwMDpdKW\n/fejqKy8xi9Z6rx+dUyyeuxGKMvLTE7MTE7UvLOZa//QRTMe1fANF5fAsEWKlSt3qXJPRTlHd60/\nuksQzMxkZkJRUc0zeruery6dHlDHTH3mXiGLJudF3BtYqSgrMWZlYoxgJpOZlf27O2f/IPe0+GSN\n40zaB4RGKFauiEn/p1VZfmZ8zHvxMYJgJpOZCWW1VCjzfnXR5FpGhwIAAAAAAABgxFr2ZeWJEye6\nuLgkJCQUFBQ08aFNTEzc3NzGjx/PaEloKezs7BYvXjx9+vTjx4+fPXv25s2bd+/etbW1dXZ29vX1\nfeihh+zs7AxdY6tWUFBw9OhRsXqTy+VidWVkeJ1bhC5dunz11Vd79uzJyMgoLCxUbjQzM+vUqdOz\nzz7b2gIE+iORSDp27GjoKozZc889N3LkyO7duze6hylTpgiC8PvvvytTIxKJpFu3bsqNxsHZ2fm9\n996LjY0tKSkxSAHm5ub/+c9/unTpYpCjG5aTk9PEiRMnTpx4+/btM2fOyOXyy5cv3759u7i4WCqV\nWllZtW3btkuXLh4eHg888ICpqamh622ezN0Hhr/rlRC9NToxs/pYSHUys/MOmjx93KMu9Y0ZZOU1\nYskK55h1W+P/NfObUFZWM/Bj5twzePqMET51ZJKUXALDV9tHr14X969iq+eH7Hq+umi6W+yM+Pqe\niLn70KUrnKPXR8VVe/K1JZIEWeegyeEvBdT7rAEAAAAAAAAYmZYdSxIEYfDgwYMHDzZ0FUCL4eDg\nMGTIEEb5aj5U9/nkcvns2bP1eojWjNe5xbGxsXnllVcMXQWgk4iICB17kMlkYWFhohTTbPXr169f\nv36GrqJVs7W15V3QhZV74IwV/sFpCXFxickpmXl1z4H2/+zdeXicZb038Jks06ZJ27RNui+hdKMt\nlH2XssgmIHgOoOACiLzuXuqr50VANgH1VY6K58jx8sUDiiCHVbBoRS27SFmLhW4ECl2TdEnTpNnn\n/SM4TCYzk8nkSSZJP5/Ly2vue+7neX6ZJE+HzPf63YWjZxx4zMkfOuf4BaWZZnMiU4657AcHnvz4\nvfcuefyV9UnCPqHQiMnzj/nQeWcfvyCjwE/pgRff+J9HP37XXfc+/nrXUkfMOPq8yy4+Y05paGWG\nBY4//OIbFxz/zEMPPfr48rUp9n8bMXnR8eecd97xc7RJAgAAAIC90aCPJQEMajNnzty+fXufXmIo\nbfeTNa8zANBnIuMXnHLxglMuDjXvfHvtmo0bq6urq3c2tLSEQqHCEeXl5eVTKipmz5mSXS6nuOL4\ni795/MXNVW+/vnbNxurq6p0toVBhYWl5RUXF7Nlzxvf0rMVzjr/s2uMv2vn26yvXvP129c6WllBh\n6eSK2QsOXBCrcMEXf/E/X8y4vmM+/tVjPt68c+PaNWs3btpYvbOloSVUOKK0vLx8ypzZ8yt0SAIA\nAACAvZlYEkAuffWrX/3CF76wa9euPjr/cccdt3jx4j46+SDidQYA+l6ktGLB4RUL+uTU4ysOHF9x\nYGCnK6048JiKA48J6nyhSOmUBYdP6ZMvHQAAAAAYxMSSAHJp3rx599133/PPP19bWxvsmfPy8mbM\nmHHYYYeFw+FgzzwYeZ0BAAAAAAAA+plYEkCOjR079rTTTst1FUOf1xkAAAAAAACgP+XlugAAAAAA\nAAAAAGCoEUsCAAAAAAAAAAACJpYEAAAAAAAAAAAETCwJAAAAAAAAAAAImFgSAAAAAAAAAAAQMLEk\nAAAAAAAAAAAgYGJJAAAAAAAAAABAwMSSAAAAAAAAAACAgIklAQAAAAAAAAAAARNLAgAAAAAAAAAA\nAiaWBAAAAAAAAAAABEwsCQAAAAAAAAAACJhYEgAAAAAAAAAAEDCxJAAAAAAAAAAAIGBiSQAAAAxx\nBQUFscdtbW05rASgP8Xf8eLvhAAAAAD9I/hYkr/2BivAvx/51vSS7wWQK+4/7OX8CgAxWd8QRowY\nEXvc0tISZE0AA1j8Ha+4uLjfrutNV38SPgMAAGAgCz6WFP/X3sbGxsDPv7eJfw17+fcj35pe8r0A\ncsX9h72cXwEgJusbQvyvf3V1dZA1AQxgW7dujT2OvxP2NW+6+lOA75YBAAAgcH0bS9q8eXPg59/b\nbNq0Kfa4l38/8q3pJd8LIFfcf9jL+RUAYrK+IZSVlYXD4Y7HtbW1lZWV9fX1GngAQ1Vra2t9fX1l\nZWVdXV3HTDgcLisr67cCvOnqTwG+WwYAAIDABd/Xt6ysbOvWrdFoNBQK1dbWrlu3btKkScOHD8/P\nzw/8WkNYa2trU1PT5s2bd+3a1THT+78f+dZkx/cCyBX3H/ZyfgWAmN7fEIYNGzZ58uSNGzd2DHft\n2hU7FcDeYMqUKZFIpN8u501XP+iLd8sAAAAQuHDHHwiCtWXLlthfewnK1KlTJ0yY0MuT+NYEwvcC\nyBX3H/ZyfgWAmOxuCKtWraqvr++LegAGsuLi4nnz5vXzRb3p6n+BvFsGAACAYAW/iVsoFJo4caKN\nzINVXFwcyJ8VfGt6z/cCyBX3H/ZyfgWAmKxvCHPnzvV5LbC3mThx4ty5c3NyXW+6+lNQ75YBAAAg\nWH3SLSkUCkWj0Y0bN27durUvTr63mThx4uTJk8PhcCBn863pDd8LIFfcf9jL+RUAYnp/Q6ivr6+p\nqWlsbNyzZ09bW1uAtQEMEPn5+UVFRcOHDy8rK8thNsibrn4T7LtlAAAACFBfxZI6+Gtv1vr670e+\nNZnzvQByxf2HvZxfASBmgHy+DkAWvOnqI/5xBAAAYFDo21gSAAAAAAAAAACwF8rLdQEAAAAAAAAA\nAMBQI5YEAAAAAAAAAAAETCwJAAAAAAAAAAAImFgSAAAAAAAAAAAQMLEkAAAAAAAAAAAgYGJJAAAA\nAAAAAABAwMSSAAAAAAAAAACAgIklAQAAAAAAAAAAARNLAgAAAAAAAAAAAiaWBAAAAAAAAAAABEws\nCQAAAAAAAAAACJhYEgAAAAAAAAAAEDCxJAAAAAAAAAAAIGBiSQAAAAAAAAAAQMDEkgAAAAAAAAAA\ngICJJQEAAAAAAAAAAAETSwIAAAAAAAAAAAImlgQAAAAAAAAAAARMLAkAAAAAAAAAAAhYwZtvvpnr\nGgAAAAAAAAAAgCFFtyQAAAAAAAAAACBgBXl5kkkAAAAAAAAAAECQZJIAAAAAAAAAAICAFYTD4VzX\nAAAAAAAAAAAADCliSQAAAAAAAAAAQMDEkgAAAAAAAAAAgIDl5boAAAAAAAAAAABgqNEtCQAAAAAA\nAAAACJhYEgAAAAAAAAAAEDCbuAEAAAAAAAAAAAHTLQkAAAAAAAAAAAiYWBIAAAAAAAAAABAwsSQA\nAAAAAAAAACBgYkkAAAAAAAAAAEDA8nJdAAAAAAAAAAAAMNTolgQAAAAAAAAAAARMLAkAAAAAAAAA\nAAiYTdwAAAAAAAAAAICAiSUBAAAAAAAAAAABs4kbAAAAAAAAAAAQMN2SAAAAAAAAAACAgIklAQAA\nAAAAAAAAAbOJGwAAAAAAAAAAEDDdkgAAAAAAAAAAgIDplgQAAAAAAAAAAARMtyQAAAAAAAAAACBg\nYkkAAAAAAAAAAEDAxJIAAAAAAAAAAICAiSUBAAAAAAAAAAABKwiHw7muAQAAAAAAAAAAGFJ0SwIA\nAAAAAAAAAAImlgQAAAAAAAAAAARMLAkAAAAAAAAAAAhYQTgcznUNAAAAAAAAAADAkKJbEgAAAAAA\nAAAAEDCxJAAAAAAAAAAAIGBiSQAAAAAAAAAAQMDEkgAAAAAAAAAAgICJJQEAAAAAAAAAAAETSwIA\nAAAAAAAAAAImlgQAAAAAAAAAAARMLAkAAAAAAAAAAAiYWBIAAAAAAAAAABAwsSQAAAAAAAAAACBg\nYkkAAAAAAAAAAEDACnJ7+Wg0mtsCAAAAAAAAAABgyAuHw/18xf6IJckeAQAAAAAAAABADqUJ8PRR\nYqlPYklySAAAAAAAAAAAMCgkRH2CSikFE0uSQwIAAAAAAAAAgCEgqJRSb2NJwQaSxJsAAAAAAAAA\nAKD3gmp61JHnyeJsWcaSssgPiRwBAAAAAAAAAED/yCSrk3nYKHa2zA/pcSwp83SRHBIAAAAAAAAA\nAAxYWezXlnnzpB7EkjKMGUkjAQAAAAAAAADAoJN5S6RMwkkZxZK6TRqJIgEAAAAAAAAAwNAQnwVK\nkz1KH07qPpaUPnIUSCBJqgkAAAAAAAAAAPpCJhuupdFtY6RoNJr02W5iSWkCQ1lkicSPAAAAAAAA\nAACgP6VK7PQorpQ+nJQ0mZQulpSqph6li/qh2RIAAAAAAAAAAJBG19hQhju1dT0k6eKuyaTksaRe\nBpKSLpNAAgAAAAAAAACAnEga3YkFiXoUUUoVTkqYTxJL6k0mqesaaSQAAAAAAAAAABiAYsGe+IxR\n+v3a4pelb5uUGEvKLpOUdRpJaAkAAAAAAAAAAPpa+phR13xS0sRS16PSJJOSb+KW6sLdPtttzKiX\n28Oll+EudwAAAAAAAAAAMCj0MlSTdJu2UOqYTdJ8UhbJpFBCt6SeNj3KJJBkWzcAAAAAAAAAAMiJ\npEGdcDjcbUopfiu39Nu6JX02Go0WJKzotqyuTyVd1qMWSlmsBAAAAAAAAACAIS/rOE36FkcJK1Nt\n2dajcFLCUwVJL5ZebHHWgaQ+3coNAAAAAAAAAACGhsDjNFk0RkpYkCbwFK8glEG6KOl8mu5KmZxQ\nAgkAAAAAAAAAAPpIJtu3xQeM4hsmpQonpU8mJcwXdF2RqqzsAkmZ7+YmqAQAAAAAAAAAAPF6k6hJ\n1Rgp9mzSvdtimaSu4aQ0T8UWxCYL0geJuk6mWp/5fNLzyCQBAAAAAAAAAECC3oRqurY1StoeKc2z\nHQmkHrVNik0mdkvqUUOjpFml7JoqdbvnXCYvsWwTAAAAAAAAAAB7j55GbuKDRGkiSrGnOtYnbZuU\n5tIdzybfxC1pfUkzSZlPxj/oGqFK36IJAAAAAAAAAABIkLApW9I1XYM6qRYk7ZCUqm1SLLGU6rqd\nYklpskHdxo/SdE7qmkZKeiAAAAAAAAAAAJCdVCGchORQ0gBPqLsOSUlDSGmSSdFotJtuSRkGldLP\ndP1i0kSRpJQAAAAAAAAAAKA3uu2QFEqRT+qYTNU2KU0IqetkQfzTqQrNPIEUShZISpNG0jYJAAAA\nAAAAAACCldBLKJS6SVKoS8InfqbbZFKmm7glrS+QTFK3272lryFDqb5IAAAAAAAAAAAYjDIMzySN\nzSQkdmJrkrZE6niQEDzKPJnUNZ9U0KMvoGu5SYfpA0npeyb1tB4AAAAAAAAAABiqMkzRxJZ1zSel\n6pOUpklSmmEobYekeCm7JaXpcpRqGB+hCnXpipTq8J6+dgAAAAAAAAAAsJdIn5npGg9K2h4oaZ+k\n2Hws7RNbk9CcqOt5EoZJGyYVpKom6UyqpFH6TFLmO7hlPgkAAAAAAAAAAENe+uRM1/BQTEKEKOmz\nXRsjxdJFXbdNS7+5W+xCsZmU3ZK6FpQ+kxS7ZJpl3Z4TAAAAAAAAAADokTSdgJL2SYrpGk5KuoNb\nmmRS/OUSIkrpYklpSk/aDCnN44STJI0opbpW5mSbAAAAAAAAAAAgfnu12IPYlm2hzjGbbtNIoc7J\npPgLdZ2JSRJLyrytUcLebd3mk7o9OQAAAAAAAAAA0EsJqaNUk5mkkRJ2cwvFRZGSNkyKTRZ0GwlK\nFSpKaN8UG06dOrUnLwIAAAAAAAAAADCAbNiwIdQ5mRTqnDqKDySlapiUlzDudmO1hMfxTZxSHQ4A\nAAAAAAAAAAwWmQeE0mSNEmNJCQekihml2ppNLAkAAAAAAAAAAAa1WAooISCUJkqU8CCUKpaU/nox\n8du3ySQBAAAAAAAAAMDQkBAKStimLZOkUPexpK6nSHoxAAAAAAAAAABgqIpvYBQvVT4pr+uipF2V\nUp00oVWShkkAAAAAAAAAADCodU0EpQkOxR8Sf2w33ZLStEqKP5d93AAAAAAAAAAAYGhIGgeKRYYy\nbJjU/SZu6SvozeEAAAAAAAAAAMDAl0VMKDGWlPQU6c+rVRIAAAAAAAAAAAwl8Q2T0i9LNZmXflHC\ns/E7uGVyYQAAAAAAAAAAYFDLLjiUchO3HuWNpJQAAAAAAAAAAGBoyG7ztITFKWNJXZcmXSCHBAAA\nAAAAAAAAQ1gmGaGuC9LFkroek9CIKYsKAAAAAAAAAACAgSx9OqgjPhQ/mfQk3ceSQnF9mXpUBwAA\nAAAAAAAAMHilyQWlDxSFMowlpblwmiEAAAAAAAAAADAY9T4X1CmWFDs+kxPJJAEAAAAAAAAAwFCV\nRTooPn2UTbckgSQAAAAAAAAAANgbZJ0UyuvpAemvJKIEAAAAAAAAAACDWiABoZTdkroeH41Gw+Fw\n5usBAAAAAAAAAIBBKk0cKBwOJw0XxQ8z3cSt2xMBAAAAAAAAAABDVU/jQ93EkqLRaCbxIxElAAAA\nAAAAAAAYYjIMDiVdlmm3pEwuKZwEAAAAAAAAAABDQO/TQVnGkgAAAAAAAAAAAFLpbSxJhyQAAAAA\nAAAAABjCsgsI6ZYEAAAAAAAAAAAErMexJO2RAAAAAAAAAABgr5VhfKhX3ZJElAAAAAAAAAAAYMjL\nIiYUzCZu8kkAAAAAAAAAADDE9CYUFEwsCQAAAAAAAAAAIKZnsaSkASitkgAAAAAAAAAAYEjKOi+k\nWxIAAAAAAAAAABAwsSQAAAAAAAAAACBgYkkAAAAAAAAAAEDAxJIAAAAAAAAAAICAiSUBAAAAAAAA\nAAABE0sCAAAAAAAAAAACJpYEAAAAAAAAAAAETCwJAAAAAAAAAAAImFgSAAAAAAAAAAAQMLEkAAAA\nAAAAAAAgYGJJAAAAAAAAAABAwMSSAAAAAAAAAACAgIklAQAAAAAAAAAAARNLAgAAAAAAAAAAAiaW\nBAAAAAAAAAAABEwsCQAAAAAAAAAACJhYEgAAAAAAAAAAEDCxJAAAAAAAAAAAIGBiSQAAAAAAAAAA\nQMDEkgAAAAAAAAAAgICJJQEAAAAAAAAAAAETSwIAAAAAAAAAAAImlgQAAAAAAAAAAARMLAkAAAAA\nAAAAAAiYWBIAAAAAAAAAABAwsSQAAAAAAAAAACBgYkkAAAAAAAAAAEDAxJIAAAAAAAAAAICAiSUB\nAAAAAAAAAAABE0sCAAAAAAAAAAACVpDrAgaEk+5qyPrYz0ceDbASAAAAAAAAAAAGo0gkMmrUqFGj\nRlVUVIwdOzbX5eSeWBIAAAAAAAAAAPRWc3NzTU1NTU1NZWXlvHnz5s+fn5e3V+9jtld/8QAAAAAA\nAAAAELhVq1YtW7Ys11XkmFgSAAAAAAAAAAAEbMeOHStXrsx1FblkE7feOvfcc3NdAgAAAAAAAAAA\nOdbS0rJr16433nhjy5YtHTNvvPHG5MmTx4wZk9vCckW3JAAAAAAAAAAA6K3CwsJx48Yde+yxEydO\njE1WVlbmsKTcEksCAAAAAAAAAIDAzJ8/P/a4rq4uh5XkllgSAAAAAAAAAAAEpqSkJPZYLAkAAAAA\nAAAAAAhAJBKJPW5qasphJbkllgQAAAAAAAAAAARMLAkAAAAAAAAAAAiYWBIAAAAAAAAAABAwsSQA\nAAAAAAAAACBgYkkAAAAAAAAAAEDAxJIAAAAAAAAAAICAiSUBAAAAAAAAAAABE0sCAAAAAAAAAAAC\nJpYEAAAAAAAAAAAETCwJAAAAAAAAAAAImFgSAAAAAAAAAAAQMLEkAAAAAAAAAAAgYGJJAAAAAAAA\nAABAwMSSAAAAAAAAAACAgIklAQAAAAAAAAAAASvIdQEADE319fXbt29vbGxsbGxsa2vLdTkAAAAA\nAAAAyRUUFBQVFY0YMaK8vLygQJYmMF5KAAIWjUY3b95cVVWV60IAAAAAAAAAutfa2lpXV1dXV1dV\nVVVaWjp9+vRwOJzrooYCsSQAArZ27dqGhoZcVwEAAAAAAADQM9FodMeOHU1NTXPmzMl1LUNBXq4L\nAGBI2bx5s0wSAAAAAAAAMHg1NDRs2bIl11UMBbolARCYhoaGrVu3xobFxcVlZWXDhg3Ly5OCBQAA\nAAAAAAao9vb2pqammpqa+vr6jpktW7aMHj26qKgot4UNdj4nBiAwNTU1scclJSXTpk0rKiqSSQIA\nAAAAAAAGsry8vKKiomnTphUXF8cm4z/9JDs+KgYgMI2NjbHHZWVlOawEAAAAAAAAoKfKy8tjj5ua\nmnJYydAglgRAYOJjSZFIJIeVAAAAAAAAAPRUYWFh7HH8p59kRywJgMC0t7fHHtu7DQAAAAAAABhc\n8vPzY49bW1tzWMnQ4DNjAAAAAAAAAAAgYGJJAAAAAAAAAABAwMSSAAAAAAAAAACAgIklAQAAAAAA\nAAAAARNLAgAAAAAAAAAAAiaWBAAAAAAAAAAABEwsCQAAAAAAAAAACJhYEgAAAAAAAAAAEDCxJAAA\nAAAAAAAAIGBiSQAAAAAAAAAAQMDEkgAAAAAAAAAAgICJJQEAAAAAAAAAAAETSwIAAAAAAAAAAAIm\nlgQAAAAAAAAAAARMLAkAAAAAAAAAAAiYWBIAAAAAAAAAYy6dcQAAIABJREFUABAwsSQAAAAAAAAA\nACBgYkkAAAAAAAAAAEDAxJIAAAAAAAAAAICAiSUBAAAAAAAAAAABE0sCAAAAAAAAAAACJpYEAAAA\nAAAAAAAETCwJAAAAAAAAAAAImFgSAAAAAAAAAAAQMLEkAAAAAAAAAAAgYGJJAAAAAAAAAABAwApy\nXQBASrff/dr2HY1pFkydMvL8s+f1Wz099fRzG55/aXP6NV/8zMHDIvn9Uw+Dwm9f/+0rW16JDc/b\n77xDJh2Sw3oGl6VLly5fvrzj8YQJEy677LLc1jMkNW3Z8tqnP93tsrxhww5+8MGsr1Lz2GNv/+hH\n3S4bfeihs6+/PuursHfqn5/hrO15663N994bGxZNmzbpggv6v4ycu/XWW7dt29bx+KijjjrppJNy\nWw8AAAAAANkRSwIGroceXbv+3V1pFhyyaMJAjiW9+OrWX//PyvRrLvvUIrEk4i1Zu+S+VffFhgvK\nF4glZaiqquriiy/euXNnx/CnP/1pbusZqqJtbXvefrvbZeFIpDdXadu9O5OrDJ8ypTdXYe/UPz/D\nWWvcsGHj7bfHhqMPPXTvjCW1tLTceOONHY/LyspWrFgxZsyY3JYEAAAAAEAWxJKgr/zrxQ/18gxH\nHTb5G188PJBiSKWxqe2NNTUrVlavWFm9fkNtNPr+U0ccPOnfvnJE7koDeuaKK66IZZLmzp17ySWX\nZHeeuhUr1lx1VWw46WMfm3zhhfELVn3zm/WrV3c8zotEDrrvvlB3Es4ZCoVmXX316EMPzbCkd3/+\n86olS2LDDC8K7OVe+/Snm2tqYsMxH/jAzG9+s/enffHDH449Hrlw4Zybbop/duMdd2y5//7YcN4P\nflA8d24WV/nc5z73s5/9bP369aFQqKam5pprrrnllluyLRkAAAAAgJwRS4K+Uvn2zl6eYZ/powOp\nhAQbN+9esbJqxevVK1ZWrVm3vbUtmnTZ9Ckj+7kwGAK27dn2xPonYsOxRWOPn3F8P1z3ueeeu+uu\nu2LD66+/Pj8/yz5k7Y2NDevWxYYt27cnLGh6993Yggz7qSScMxQKtdbVZV5Sc3V1/OG5auICDC57\n3nqraevW2HDErFmBnDb+dlRYWprwbHNNTfyCtj17srtKJBK55pprPv3P7fZuu+22Sy655KCDDsru\nbAAAAAAA5IpYEjBofOkzB08cXxw/M25sUY/O0NYWPeXce7bvaAy0rpROO2mfWfskflx37fefThWE\ngiFg9bbVH//dx2PDgyce/MxFz/TDda+44oroP9udLVy48KyzzuqHi+6dhk2ceMQTT3Sdb6uvf+FD\nHwrqKuWnnz7m2GO7zu94+uk1V14Z1FXYO/XPzzC9d/75599www2VlZWhUKi9vf2qq65aEtc3DgAA\nAACAQUEsCRg0jj1y6txZY3tzhmgo1G+ZpFAoNHfW2K4FX/eDZ0JiSRCoRx999G9/+1ts+I1vfCMc\nDuewnqEtnJ8fKS/vOt86bFiAV8kbPjwyfHjX+fyR+tjRW/3zM0zv5efnf+1rX/vyl7/cMfzrX//6\nxBNPLF68OLdVAQAAAADQI2JJ0FdmViS2yelQu6tp2/ZO+1nMmDYqPz+v68qJE4q7TgJD29RRU+eX\nzY8NS4cnv5MQE41Gr7vuutiwoqLi3HPPzWE9AATlk5/85I033rhly5aO4dVXX/1Esk5XAAAAAAAM\nWGJJ0Ffuv/2cpPO/uff1H/7n8/EzP//30yaUj+iXokhUWJg3f864RQvHH7Bg/H/99yvr3tqR64rY\n2333hO9+94Tv5rqKweTRRx9dsWJFbHjZZZfl5+fnsB4AgjJs2LCLLrro+9//fsfw+eeff/zxx48/\n/vicFgUAAAAAQA+IJQF7nfKyEYsWlB+wYPyiheP3mz2usPC9VlW33/1abgsDsnDLLbfEHkcikU98\n4hM5LAaAYF1yySU/+MEP2tvbO4Y/+clPxJIAAAAAAAYRsSRgL1KQH370t+dOmliS60KAYLz88stP\nPvlkbHjWWWeNHz8+h/UAEKwZM2acdNJJjz32WMdw6dKlq1evnjt3bm6rAgAAAAAgQ3m5LgCgX8kk\nwVDyi1/8In740Y9+NFeVANBH4u/t0Wj0tttuy2ExAAAAAAD0iG5JMJQ1NbdVvr1za3VDc3Pb6FHD\nystG7DN9dDic67Kgb7xd+/aabWt2Ne+K5EUmlkycXza/JNLnKbRoKFq5o7JyZ+Wupl2R/EjZiLKF\n5QtHRkb29XV7rz3avm7Husodlbtbdo+MjBw/YvyC8gWR/Eiu6+qBxsbGBx54IDYsKSk5+eSTc1jP\nwNe8bVvjO++0bN/e3txcMHp0ZNy4YZMnF4wcBD+u/a9tz54969c3b9nStmdPKBwuGDVq+OTJRdOn\nh/Jk+pOItrU1vvNO46ZNrXV1oWg0f8SIYRMnFlVU5A0b1i+Xj+55553Gd99t2707XFhYOGZM8Zw5\n+SUDNIUcbW6ur6xs2rSpvbExr6ho+JQpI2bODBf4j7J0zjjjjMLCwpaWlo7hPffcc9NNNxV40QAA\nAAAABgN/zIVB7J4HV61cVR0b/uuH5y1aUN7x+MVXtvzmvtefeX5jc3Nb/CHlZSNOXlxx2acWlY7u\nl08KITj3rbpv6ZtLY8OzZp/14TkfDoVCdc11t7546+0rbn9r51vx6wvzCo+dduxnDvzMR+Z9JBzK\nJo73/Kbnf/Hy+814Dhh/wJcP+3JsuGb7mp+9+LP7V91f01ATf1ReOO+QSYdcuODCiw64qKigKNXJ\nH17z8CNrH+m2hksWXXL01KOzKH7Z+mV3/eOu2PAD0z/wqf0/1fG4cmflj5//8YOrH0yofGRk5Mn7\nnHzlsVfOL5vf0/PHVDdUxw/X166/bMll6U/1rWO+NbN0ZrdX7OqRRx6pra2NDU877bThw4dncZ4h\nb/cbb1Q9+OC2J55ofPfdhKfC+fmjDjpo3IknTjzvvPzi4pyUN6C01ddvfeih6kcfrXvttWhra8Kz\nBSNHlh599ISzzx67eHEo1yHfnc8+u/WR9+8hYz/wgfIPfaj3p337xz9u2ro1Ntznf//vSFlZytXt\n7TV//nPVww/v/Pvf2+rrE54MRyKjFi0qP+OMCR/+cF62v5u7Xn11829/GxuWzJs35aKLYsM9b721\n8c47a/74x5YdOzpfOzxy//3Hn3XWxH/916wvHbhdL7208de/3vHUU20NDfHzBaNHl5922tRLLx0+\ndWquahvgSktLjz/++Ng+blVVVY899tjpp5+e26oAAAAAAMiEWBIMYstf3vyXJ9fHhkccMnnRgvLd\n9S03/vuzf/zLW0kPqa5puOv+15c89ub3rl585KGT+6tS+snu+pZoNJowObJkMPW/SeOFTS/c+Y87\nY8MZo2d8eM6H/77x7598+JPv7koMW4RCoZb2lmXrly1bv+zIF468/azbZ4ye0dMrrq9dH3/F0/c9\nvSOW1NreevUTV//0hZ+2tiemFkKhUHu0ffmm5cs3Lb/5uZsfPO/BheULk558RdWK+JOnctz047KL\nJa2qWRV//oK8gk/t/6loKPqDv/3ghqdvaGlv6XpIXXPdA6sfeHjtw9cdd93Xj/h6j86fyrY927pd\n9pkDP5NdLOn++++PH5566qlZnGRoa3z33Te/+93tjz+eakG0ra32hRdqX3hhw3//d8VXvzrhIx/p\nx+oGnK0PPPDWzTcnBlzitNbV1SxdWrN0acn8+bOvu65kwYL+LC9BXiRS9bvfxYYt1dW9jyW1NzVt\n+OUvY3ms/JKSuTfemGrxrpdfXnvNNQ3r1qVaEG1url2+vHb58nf+4z9mXn55duU1bdwY/2W27tzZ\nEUuKtra+9aMfbfrVr6JtbUkOi0brVqyoW7Hi3dtuW3jrrcVz52Zx6QC11tWtu+666kcfTf5sbe3m\ne+7Z+tBDM7/1rUnnn9/PtQ0Wp5xySiyWFAqF7rvvPrEkAAAAAIBBQSwJhpRddc2f/fofV63dnn5Z\n7a6mr135l1t/eOqB+4/vn8LoH+d/+qHNWxP7VSz/y0UF+UNz675nNzx75j1n7mndk37ZcxufO/ZX\nxz5y/iMHTjiw9xdtbG38l/v+Zdn6Zd2u3FC3Yc22NaliSTnx+T98/o4Vd6Rf09reeuXjVxbkFXzl\nsK/0T1XZaWlp+etf/xo/c9xxx+WqmIGp+ve/X3P11e2NjZksbq6uXnPllXUrVsz69rf3wn3Koi0t\na7797aqHH85w/e7XX3/lwgvnXH/9+LPP7tPC0ig54IBwJBJtbu4Y1r32Wiga7WUPp/o33ojvETVq\n0aJUPwyb77573Y03htrbMzltc03Nqm98o/bFF2ddeWUgP13tTU0rP//5nc891/2lt2xpeOut3MaS\nmqqq/nHppQ1vvpl+WXtT07prr22vrx8xa1b/FDa4LF68OH745z//ORqNhnPdtAwAAAAAgG7tdR87\nwdB2xQ1PdJtJ6tDY1HbN955uacnoA0UYgLbt2XbBQxckZJKKC4uHFyTZr6emoebse89O2lSppy5d\ncmkmmaQB6Oa/39xtJinmqsevWrt9bZ/W00vPPvtsXV1dbFhRUTF9+vQc1jPQbLzjjlX/9m9JM0nh\ngoKCUaOS5lc233PP6iuu6PvqBpw1V12VKpOUX1wcjiTpORdtaVn9rW+l6n/TD/IikZL57++32FpX\nt+ftt3t5zl2vvho/HHXIIUmXbbnvvnXf+U7STFJeJJI/YkTSozbfffe673ynlxV2WH355ZlkkgaC\ntoaGlZ/9bNJMUjg/v2DkyITJyh/+sPall/qltEFm4cKFZXH7CVZVVb344os5rAcAAAAAgAzplgRD\nx5LH3vzb8k0dj485YsqZp8w6YEH52NLhDXta31q/8w9/eevBJWva29/f4eudjbvuf2T1x/5lvxzV\nC73yy1d/2dz2XpuQRRMWffnQL5++7+lji8aGQqEtu7c8tOahHz//4/W17+9yWFVf9aWlX/rdeb9L\nfrrM3L3y7gdWPRAbjhk+5sSKEw+ffHj5iPJRw0btbNy5oW7DU+889fS7Tze1NaU/1QULLjh88uFd\n53/43A+fevep3hSZVOXOyrtX3t3xeEH5gksXXXpCxQmTSya3R9vX167/w5t/+Mnyn+xs3Blb39Le\ncs2T19x1zl2pTnjm7DP3HbNv1/k3tr1x+V8vjw1njZl18wdvTl/bvLJ5PftiQqFQKLRsWadw2OGH\nJ3kx91rb/vrXyu9/P2Fy1AEHTPzYx0qPOmrYhAmhUCja1tZQWbl92bKNv/pVy/b386xVDz88+tBD\nJ557br9WnFNVDz9c9cgjCZPjTjpp4rnnjj7ssI6QTXN19fbHH9905531azvF9dZec82ogw4aNmlS\n/5UbZ/TBB9e98kpsWLdiRdE++/TmhHUrViScv+uaPW+//eYNNyRMluy33+SPf3zM4sWRceNCoVBr\nXV3t8uVb7r13+xNPxC/bfM89pcccU/bBD/amyKqHH65ZujQ2LBg1qvSoo0YtWlQ4dmz+yJFtu3Y1\nbd6884UXal94IdZKKofevuWW+tWr42fyi4unXnxx+RlnFE2fHsrLa9uzp/b55zfdddeOp54KhUKh\naHTDL3+Zm1oHtnA4fNhhh/3hD3+IzSxbtuzQQw/NYUkAAAAAAGRCLAmGjo5MUmFh3o1XHnfy8RWx\n+eHDC8aOmXjIgRNPPbHiK5f/ubGpLfbU75e+KZbEIBXLJH3mwM/c/MGbI/nvtzOZWDLxcwd/7oIF\nF3zq4U/9qfJPsfk/Vf7p92t/f+bsM7O7Ymt767VPXtvxeFzRuG8d/a3/dfD/KswrTFj2f476P1vr\nt/7nC/95y/Jb0pxt3zH7Jo31/Pq1X2dXXnpPvvNkx4NvHPmNaz5wTUHe+28ASoeXLpqw6JP7f/LU\nu099c8f7LT2WrFuys3Fn6fDSpCecNmratFHTus6XRErih6OGjTpl5ikBfAFdJPTJWLgwsM3yimbO\nnPfDH8aGXTdUmvGVr7Ts/GeEa+Dtd9a0Zcvaq66Kn8mLRGZde+2Ec86Jnwzn5xfPnl08e/akCy5Y\n9Y1vvBeJCIVCoVDl978/5uijh02e3E8V51TL9u0JEa5wYeHc732v/PTT4ycj5eUTzztvwtlnV/7f\n/7vprvfjem319euuv37Brbf2U7mdjTrkkFBchGXXihW93FQuvltSuKBg5AEHJK6IRtdec01757jP\nlIsv3ufrXw8XvH9XKRg5ctyJJ4478cStDz209tvfjra9/8aj8oYbSo84omuXoAxFW1vfvuW9W2th\naem0z39+8sc+Fi5MvA9PC4Waa2o2/frXG+7ItEVcX6hfs2bzb34TP1NUUbHwv/5reFxrt/yiorGL\nF49dvHjjnXdW3nRTKBSKtrT0d6E9FH+HLBw7NuHZ8WeeWbLf++8ti2bMCOq6CxcujI8l6ZYEAAAA\nADAoiCXBUPPdby8+6bjknwAddtCkz11y0I//64XYzMrVNZu31k+aUNxf1UHATtv3tJ+c8pO8cJJo\nyOhho+88+87jfnXcqm2rYpNXP3l11rGkJ995sqMH0qwxs5Z8bMn0USm3DJtQPOH6xddfsOCCWHZq\ngPjCIV/4zuLkmyhNGTnl9rNuP+5Xx0VD7/VUa25rfvTNRy9ccGE/FtgDL3Xe5yjAWFKkrKz8Qx9K\ns6D06KN7f5W2urrm6upMF+/Z0/2if1p33XXvp6ZCoXBh4f7/7/+NSt1TpGDkyAX/8R8rLr5418sv\nv3e5+vqNv/rVzMsvT3XIULLh9ttbduyIn5l97bUJmaSYcCSy75VXNm/fXvPHP8Ymtz/xxK4XX0y1\n31mfGnXQQfHDus5bsPVUc01N06ZNseHI+fPzhifuibnjmWdqly+Pnxl/9tkz/+3fUp1zwjnntO/Z\nE793W1NV1abf/Gb65z6XXZE7ly/v6IFUNGPG/rfdliY8Fykrq/ja18afdVZ77lI+62+5JT6SlV9S\nsuBnPxueYrvJKZ/4RMu2be/+/Of9VV320t8hi+fOLZ47ty+uu//++8cPX3jhhVQrAQAAAAAYOMSS\nYEg56bgZqTJJHT76kf1+fscre/a0xmZWrdkmlsQgVZhXeMsptyTNJHUYGRn5vRO/d8697zeJeaPm\njZe2vHTwxCQ7E3WrI5M0rmjcny7806SS7vds2q9sYLUimzZqWqpMUodDJx26eMbix9c/Hpt5ecvL\nAzOWtGHDhu1x+46FQqE5c+bkqpjsrO6b0E/96tUJ22bte/nlaTJJHcKFhXNuuumFM84Itbd3zGx9\n8MEZX/lKx/5lQ1i0ra364YfjZ0qPOmrCRz6S7phweNbVV+94+um23btjc1seeCAnsaTC0tIR++7b\n8OZ7Tc7qV69ub2zsmiXKUN1rr8UPRybbwW3L/ffHDwtGj973iivSn3bSBRdULVmyKy5HuPWBB6Z/\n9rOhcDiLIjsySYWlpfvfccew8eO7Xd+121m/adm+ffuTT8bPTPv0p4sqKtIcMuMLX6h65JH4cBjx\n5nZOO23cuHHbtm3jxo3LVT0AAAAAAGRiwO08AvTGRR/rpl/I8GH5Rx7aqbXAurd2pFoMA9wFCy5I\nuo9YvFNnnrr/+E79FX77+m97c9EfnfyjTDJJA9BnD/7siMJuUiZnzurUSmpl9cq+rCh769evT5iZ\nvHfsONatDbffHj8snj170kc/msmBRTNmjDvhhNiwta5u+7JlwdY2AO145pmmqqr4mRlf/GK3RxWW\nlk6+sFNcr2bp0raGhoCLy8youPBQtK1t9+uvZ32quhUrUp25Q2tt7bbOPxVTL7ook+3Ypn/hC/HD\nxg0banvX52bfq67KJJOUW1WPPhptfT8Fnl9UNOnjH09/SLiwcNqllwZYQ/zOeqFQKC8SSbVyUJgy\nZUrCTNd/CwAAAAAAGGjEkmDomDyxZP/55d0um73PmPjh5q27U62EAe4jc9M2Nfmns2afFT/8U+Wf\nsr7i7LGzz9vvvKwPz61MKl84vlO08Z1d7/RZOb2S8FH02LFji4qKclXMwBFtbq75wx/iZ6ZcfHEo\nL9M3e+Wnnho/3PXKK4FVNlDtfO65+OGwCRMStkVLpey00+KHbQ0NCZmefjO6c5emVGWsueKK17/0\npY7/bf6f/0m6JjGW1OWlqH3ppY5mRTEJr0MqpUccUTim03uPnX/7WyYHJlVUUZF+E7EBorbz11h6\n5JGZRLjGnXxygDUkXDGTAgaycePGDe/cDEwsCQAAAABg4LOJGwwdC/cry2TZxAkl8cP6hpa+KYcc\n+PcbTmpuaUuYLMjPZqOcgS+SH1k8Y3EmKz+4zwdveuam2HDd9nV7WvcUFWSTYrlk0SVZHDUQjC8e\nP33U9G6XJXSf2t08QGOLmzpvcjR+wPdN6R91//hHe1xqJJyfP+7EEzM/fOSBB8YP94ZYUkJvoTEf\n+ECGO4uVzJsXmTCheevW2Ez9G2+UHnlkwPVlIKGn0a5XX03sJxMK7Vm/futDD8WGjRs3Tjr//MRF\n0ejuf/wjNiqqqIh02Rur/o034ofDp09PvyVZTDg/v/SYY6p///vYzO7Op+qRieeem/Wx/Snhp6v0\n6KMzOSpSVlayYMHulcF0qsvvnEPKH+SxpFAoNH78+HfeeT8vu8mGdwAAAAAAA55YEgwd+3Zug5TK\niKJOv/gNDa2pVjLozJs9Ntcl9J+ZpTMzjBbtN26/+GFbtG1l9cpDJx2axUVPnNGDkMeAMr9sfibL\niguL44d1zXV9U05v7d7dKS81YkQ3m9MNQONOOGH41KkZLt75/PP1q1d3u6z2xRfjh8Vz5hSMHp15\nScMnTw7l5YXa2zuGDevWZX7sIJWQsxkxZ07mxxbPmRMfS6oLKEfSU8OnTh02fnxsK7q6117rumbH\n00/HD+tXr26qqkrYBK2hsrK17v3f9647uIW65GxK5s7NvM6SuXM7xZJ6sdlc6VFHZX1sv2netq0p\n7scjFAoVz56d4bEjZs0KKpaU2C2ppCTVysEi4W5fX1+fq0oAAAAAAMiQWBIMHaNKIpksixTmxw9b\nWhOb68CgMHtsph/xlg4vLRtRVtNQE5tZt2NdFrGk4QXDF5Qv6OlRA8SY4RnFFoflD4sfNrc1p1qZ\nWw0NDfHDhG19BoUJ55477oQTMlz85g03ZBJLSuhAUzRzZrS1NRQKhaLR2P9HO56Ln4m+NxeKRgtH\nj27ZsaNj1N7U1N7cnBfJ6F+Wwai1tjY+iBMKhUbMnJn54UX77LPjqadiw6YNGwKrrIdGHnRQ09Kl\n75WxaVNzTU2krFP3xJ3PPptwyM5nn51wzjnxMwk7uI1OFktq3Lgxfli0zz6ZF5mwuLm6ur2pKW/Y\nsFTrU8mLRDLP9+RQY5efh+EzZmR47IievLDp5XfOIeUP/lhSwn6dYkkAAAAAAAOfWBIMHcUjCrM4\nKvZ5NAwuE0smZr54/Ijx8bGk2sbaLK64T+k+BXmD9d/Nkkg2n0ZHB+oNorm5U16qsDCbu9/Q07pz\nZ/ywesmS6iVLenXC2tpIeXnvihq4Wncn7lGYkOZJb1jnV6alLmetxUYdfHDNP2NJoVCobsWK+M37\noi0tO//+94RDdjz1VPpYUtJuSQkprh79bBR2eW1b6+oiPY8lDZ82LVwwCO7Dbb346erRz2F6id2S\nBv8mbpHOQcmmpqZcVQIAAAAAQIbycl0AEJi8vHCuS4D+M6KgB/t2FUc67U22q3lXFlccFRmVxVED\nRH44v/tFg8ewzmkGn0x3aK3NJm+XRtuQ7kTS2iVIlN+T3QDzOvfoas/da5XQ2SghYLTr5Zfb/tld\nrPif267t/NvfYrv1vXfUq6/GHkfKyooqKrpeqK3zK5ZflNE2mqkWdw3uZHSeQdLvJ+GnKxyJhPMz\nvQn36Oewm1MNuU3cEu72g7FVHgAAAADA3kYsCYBBaURhDz64LSro9Il4XdP/Z+/Ow6uq7v0Bn8yB\nkABhEkQFlUFmgaqIaB1QxOvUOlSqIvaqV722t7XV2nq1t/a2P69atLa1ta1znUpbtQURHEBBEERB\nURQEUcQwRCAThJDh90fa083JwMnJJieB9318fPZaZ629vmezBR/zca1E9jXJy2rDsaR9TPvdf2xf\nXl6erEpalcriRPJ2jajZPbmyj6ne/SjASJ2kUePScnYLO9bde6nF5AwcGCwmGDCKRCJb58+vvUjL\nyTnkm9+svd61bVvx8uXRMVU7dpStWhVt5h15ZL0LVe3+xFKbEktK3/1xRRJ9Ym0lWFO9Y0ewmdaU\nV6tJ72HjMnaPJbWVUFcjYk7wzKnzXgEAAAAA0Nq0gUMQAKCuiqqKPQ9qYHBiZ7G13RPc9j15ebtF\nxMr26U194pe6+yZS6Xl5TdrPpp4btoXTshJW9yywml274p9evftJgqm7ny3VklLS0nKHD9/2+uu1\nzZLlyyPV1ZHUf/y/B9FYUudjj+08dmxqdnZ1eXkkEtk2b17esGG1H5W9915NVVX0hrkNxJJSMjKC\nw5rzuCKJPrE2cYJbpM4/jDWVlfHPrW7Kg21c2j4XS4r53b5D2/9GAAAAAAD7vLbxX/YBIMb2ytid\nThqxo3K3jSs6ZncMuxxaVO/evYPNDRs2JKuSViW9424vdt/vfveA885LVjGtX/ruiY1IJFLdlG23\nYrYOSm7go+PIkdFYUlVZWdnq1Tn9+kUikYovvih9//3a/s7jxqVmZnYeM+aLV16JRCJb5s07+Jpr\naj8qeffdmLvVu0p6hw4VgUdUtfuGQI2rqrM3Vd3nvy+JeR+a9KyqmzK4cVk9egTP44v5LaLNqamp\n2bRpU7An5s8CAAAAAABaIbEkANqkovKihAfnZu7LPw7fHxx88MHBZklJSUlJSe4+nXKIR0anTsFm\nVUkihxXuP+oGiXYVF8e/u1TV7meQJTdkk7d7kKjknXdqY0nRrFIkEuk8blzt32tjSSXvvFNZXJye\nlxeJRIrfeSc6LK1duw6DBtW7SlqHDpHCwmizSS+KV5JYAAAgAElEQVRYVZ0j2/aBnXsaEXvYXE1N\nVWlpnF+5Mrx/cjuPGzd63Liw7pZ0Gzdu3LX7VlKHHHJIsooBAAAAACBOqckuAAASsXrr6jhHVlZX\nflbyWbCnW/tue6EiWk7fvn1jej777LN6R+5Xsnr2DDZ37r6tyF6XktIii4S2SkbHjtGTzmqVf/JJ\n/NN3rF0bbKZ37hxKVYnJHT48JS0t2iz5Z8woeoJbh4EDs3r0iEQi+Sec8I9B1dVb/xlaKl627F+3\nGjasoYPSMvLzg80dTXlc23d/XCmZmbHBndYgvLcrs3v3mJ4dcf8eVf7pp2GVsY9Zv359TI9YEgAA\nAABA6yeWBECb9NHWj+IcubZobWV1ZbBnaPehe6EiIpFQUyON6N69e8/dIzgffPBBC6zbyuUdeWSw\nWbx0aUuunpaVFWzWVFREampCXyV191WqKyoSvlVKZmb73fNt29esiX96TCwpZ8CAhCtpvpgtjqKx\npOhuSZ2PP772Iqtnz9qNlCKRyLb58yORyM5NmyoCxyDmNXCCW6TOdyxbHW82NBKJ7Pj442CzQ//+\nLZNja5IQ3+HsAw+M2UAr5oVpxPa4R+5v3v/niYS1Dj300I5t/Fg6AAAAAID9gVgSAG3SFzu+eL/w\n/T2Pi0Tmr5sfbHbK7tSnY5+9UhORSGZqZrC5s2rnXlpo5O7hieXLl++lhdqQmEBJ6fvvVxYXt9jq\nKZmZqZm7/epX1jm3q/nSdo96NPOgug6DBweb2xYtinPirm3bSndPwuU2cPBZi8kNhNLKVq2q2r69\n9IMPKv555lr+P2NJkUBEacu8eZFAhqlW3qhRDS0Rc7hb6fvvV5WVxVle0RtvBJs5RxwR58SWFOY7\nnJLSvn//YEfxkiXxzKuprCxp2UBhG/Luu+8Gm6MaflcBAAAAAGg9xJIA9h1zX18386WPY/7aC/uV\ntBYzV8+MZ9isNbOCzVEH+EHmXtQxe7e9K7aVb9tLC40ePTrYFEuKRCJZPXu2P+ywaLNm164NTz/d\nkgVkdO0abG5vym46ccqMWWLt2kh1dcJ3yx2628ZpJcuWRXM8jdv66qsx63YYMiThMkLRMRhKq64u\nff/9bf88wS29Y8fc4cOjH0bPcavYuLFs1ardYkmpqXmBkTFiHldNRcXWefPiqW1nQUFsimtoK92y\nLsR3OG/EiGBzy2uvxTOraMmSyuaF7fZhMb/Px/wpAAAAAABA6ySWBLDvuP2ehTfdNjfmr6rqfTaX\n9Pulv485na2uz0s+n/7R9GDP+UecvzeL2t91adcl2Fxfsn7Lji17Y6GTTjop2Fy4cOHeWKXN6XXJ\nJcHm+kceiTNnE4qYHYO2LVgQ+hLZBx6YHji2qbq8vPittxK+W5fx4yOpgX8Zrqn5/PHH45n4+WOP\nBZsdBg9ud8ghCZcRipi9skreeSeaGep87LEpaWn/GjliRPR8sW3z5pUsWxb9qMPAgWk5OQ0tkdO/\nfzD3FolE1j/6aDy1rX/kkWAzJSOjy8knxzOx5YX4Dnc744xgs/zTT6Nn6jWiIL43cD9UWVm5ePHi\nYE/MnwIAAAAAALROYkkAtFUfb/v4wWUPNj7m9gW3B88Ra5fe7twB5+7luvZrnbM7H5h7YLDnuVXP\n7Y2FRo8e3TWwr8mmTZtWrFixNxZqW3qcfXZml38lwyoKCz+88caayj2k92JVVxe+8EICq+cFzhGL\nRCIFTz9dXV6ewH2atEqcyZh6ZXXvnj9uXLDn80cf3VlQ0PiszdOnl+y+a0uPc5P/u0pm167BaNS2\nBQuK/hnYim6PVCslPb3TscfWXm959dXS996LftRx92xTXQd85SvBZvFbbxW++GLjU8rXrSt48slg\nT5eTTsro3LnxWckS4jvcYeDAnH79gj1r7723pqqqkSnF77xTOHt2YsvV682JE18fNSr614c33RTi\nzVvYkiVLSgNn6h144IFDkr1FGQAAAAAA8RBLAqANu+HlG94seLOhT6d9MO3+t+8P9lw67NK8rLy9\nX9d+7egDjw42f/zajz8r+Sz0VVJTU8ePHx/sefXVV0Nfpc1Jzco65L/+K9izbcGC5VdcsWtbXKfp\nVZeXb5g27c0zzlhx/fUJrN71jDOCu/JUbNz44Q9+UFNRkcCtGtH9rLOCzcLZs5uTTOp18cXBZlVZ\n2fvXXlsVSD/EKH3vvVW33BLsyejUqfu//VvCBYQouGHS1vnza3btikQikZSUTmPHxozs8uUv115s\ne+ONqu3bo/25e4oldTvrrLQOHYI9K3/wg7JVqxoaX1lc/N4111Tv3Bns7PX1rze+ShKF+w4feNll\nwWbJsmUf//znDQ2u2Lx5xe7/8DZf9Y4dVYG/Yn4h2pa5c+cGmxMmTEhWJQAAAAAANEl6sguAfdaN\n/zOn3v5P1hXH9Pxs6oKsrLS6I4cN6v718wfV7ac53n5345N/qX9LlXXrS4LN9z78oqFfxO9cc1SP\nbu1Dr40ElFeWT3hiwv+d/H+XDr00PfVff6jtqNxx96K7/3fe/wYHd2nX5ZbjbqlzD0I2afCkv3zw\nl2izoLTgmAePuWbUNaf0PeXwzofnZuWmRFKC44O/cE1ywQUXPPHEE9Hm888/f9VVVyV2q33JAV/9\natGiRZv+9rdoz7Y33ljyb//We8qUA847L3gCWlRVWVnRkiWbZ8z44sUX/xFSSU0kuZ7VvXvXCRM2\nT//XsYmFM2cu+eCDA847r13fvmlZWcHBaR065A4blsAqXU8+OatXr52ffx7tWfOzn2155ZWuEyZk\n9+wZzJREIpGsAw9s/Hi1zmPHdp0woXDmzGhP6QcfvHXeef1//OOORx0VHFlTUVEwbdrHd94Zs33O\noTfemJ7XKsKOeSNHbvzrX2M6c4cODW6gVavTccdFUlIiNbFHfObtKZaU2aVL3+9856Mf/zjaU1Va\numzSpENvvLHH2WenZGQEB299/fVVt9wS/JWKRCI9zj234+jR8XydpAj3He5xzjkFTz1V8s470Z71\nDz5YsXnzYd//fkZ+fnDk1vnzV918c8XGjSF9j33QjBkzgs3zz3ceKwAAAABA2yCWBHvLrFfWxjly\n7uvr6u2vqqoRSwrd5wWlcf7SbC7c3tDIKy4dLpaUdEf3OvqNz9+IRCJlu8qunXntj1/78Sl9T+md\n27uqpuqTok9mrZlVtLMoZsrPTvxZfrv8+m7Wor770nenrZjW0KcxZX/3pe/+99z/bmjw1PFTW+GZ\ndKcfdvqw7sPe2fSvn8R/seOL2+bddtu82+odP+fiOTEbLMVp/PjxPXr02PjPH+S/8sorRUVFHeuL\n3exvDr/11u0ffVQaONVu15YtH99118c//3nukCE5Awakd+qU1q7drqKiyq1by1auLFu1KlJdHcrS\nh95447bXX9+1dWu0Z8fatR/feWfdkXnDhg3f/WyvOKVkZPT/yU/evfzyYOe2hQu3LVxYd3Dvb3yj\n7552fjrsBz8oXry44osvoj3ln376zmWXtevTp+Po0ZndulXv3LmzoGDr/PmVxbHB4s7jxnU/++wE\nvsXe0HHUqLqdMafU1crs0iV36NBgXCYSiWT37p3VvfseV+l54YWbZ84sWrQo2lNVVrbqllvWTp3a\n6dhjs3r2TE1P37lpU9GiReWfxW6TltW9+6E33BDXl0meMN/hlJTDb7ll6aRJwf2WNv/974UzZ3Ye\nO7Zdnz5pOTkVmzYVvfnmjrVr/3XbUaOKlyxp/hfZl3z++eeLAq/cQQcddPzxxyexHgAAAAAA4ieW\nBECbdErfU4Z0H/KHpX+obW4s2/jH5X9sZPx1o6+7ZOglLVLaHhSVF20si3dLjOKdxcU7Y5MQUeWV\n5Q19lESpKamPnf3Ylx/78pYdW/bqQmlpaRdeeOEvfvGL2mZFRcX06dMnTZq0VxdtE9Latx/64IPv\nX3dd0eLFu31QU1Py7rsl776795bO7Np10L33vnf11ZUlJXsenahOxxxz6A9+sOanPw3lbplduw66\n777l//7vMamjHWvXBsMideUOGzawvrRKsrTr0yezS5dgvioSiXSuL5YUiUTyx42LiSXtcaukf0hJ\nGXTPPe9cdlnZhx8Gu3dt3RrcZKiujPz8wb/9bb37dbUq4b7DHQYNGvCTn3xw443BvalqKiu3zJ0b\n2f1Uslp5o0b1vvzy98WSdvfss8/WBB7gRRddlJKS0sh4AAAAAABaj0RO6ACA1mDq+KnnDTxvj8NS\nU1JvPu7m/zv5/1qgJGr1y+/3xmVvnHboaXt7oauuuio1cNxY8Ey3/Vx6Xt7QBx7o881vpu5+7FQ8\n0jp0OOArX0l46byRI4c9+mju8OEJ3yEeB1588RH33JN5wAGh3C13yJARTzyRM2BA/FO6n3nm0Acf\nTM/NDaWAsOQdeWSwWbsrUr0jO9fZbKbezZbqld6x4/BHH+16WhP+AU/gCSdRuO9wt3/7tyN+/vO0\n9nveZDF3xIjBv/xlarr/byRW8Pf2tLS0b3zjG0ksBgAAAACAJvFfvQFoqzJSMx45+5ETDjnhtnm3\nbSrbVO+YYw485mcn/uyYA49p4drondf7mfOf+WjrR3/54C9vbXjr/cL3t5ZvLd5ZXFFVsefJcTv0\n0EPPPPPMZ599trb50ksvrV27tk+fPiEu0XalpKUd9B//0f2ccz5/7LFNzz1XUVjY+PjMLl06HnNM\nl5NO6nLSSQmEmYJy+vcf8cQTW1599YuXXip+662KwsLKothDFZuv6/jx+ccfv3nGjC1z55auWLFr\ny5aqsrKE79aub98jn3664E9/Wv/ww+Xr6j9ctVbHL33p4P/4j05jxiS81t6TN3Jk4YsvRpudxo6N\nNLCpTO6QIZlduwbfinh3S4pEIpFIWocOR0yduuXVV9fdf3/xW281MrJdnz69p0zp8ZWvpKSlxX//\npAv3He562mkdBg/++K67CmfPrvfAxLT27Q+87LKDr7wyJTOzGVXvm959993FgY3fzj333IMPPjiJ\n9QAAAAAA0CQphYWFkUikdlf86N74NTU10Z66F9FmUPSjww47LDlfpRlOfnx7wnNfmrTn//UZSMw5\nl/zlk3X/OlLnyd+fNeDw/CTWE4qjxj+ya9e/fiT56t8n5XbYd34GuXTp0uj1wIEDw73591/+/j2L\n74k2fzj2hzcfd3PtdXll+fOrn39t3Wsrv1hZUlGSkZrRs0PP4T2Gn3boaUO7179TCPuMBQsWnHTS\nSdHm9773vR//+MdJrKeVqq4ufued4qVLd6xZs3PDhsrS0pTq6tQOHdJzc7MPPDCnf/+cAQNy+vdv\nKMKyvyl+553ixYvLVq2q2LixeseOmpSU9Ly87AMP7DBoUOdjj83q1SvZBbYu5Z9+uvX118s++KB8\n/frK0tJITU1a+/aZPXp06N+/41FHdRg8ONkFtiI7Cwq+eOWV0uXLyz//vLq8PDU7u91BB+WNGtXl\npJPS8/KSXV0r9e1vf/s3v/lNtPnqq69+6UtfSmI9AAAAAMD+4IMPPohejxgxIuH7TJs2LXp93nl7\nPgSmtVm9enUkEklJSan9e4yYj+q9iNgtCYB9QHZ69rkDzj13wLnJLoQkGDNmzAknnDB37tza5kMP\nPXTTTTe1a9cuuVW1OqmpeSNG5DXj35v3K3nDhuUNG5bsKtqM7IMP7mn3mvhk9ezZa9KkZFfRlhQV\nFT3++OPR5sknnyyTBAAAAADQtqQmuwAAgGb5n//5n+j15s2bH3rooeTVAkBo7r///uLif22cGfzd\nHgAAAACANsFuSUCb8fif38/vtNsOKL17dfjqmQOSVc8ezX9j/ZtLN8R0VlXVJKUY2IcdffTREydO\nnDFjRm3z7rvvvuKKK9LT/UsOQBtWXl7+q1/9Kto855xzRo0alcR6AAAAAABIgJ/YAW3Gc89/FNMz\naniP1hxLenPphoeeeDfZVcB+4bbbbps1a1ZlZWUkEvn000//+Mc/Tp48OdlFAZC4P/zhDxs3bqy9\nzszMtFUSAAAAAEBb5BA3AKDNGzRo0DXXXBNt3nbbbeXl5UmsB4DmKCkpuf3226PNb37zm/37909i\nPQAAAAAAJEYsCQDYF9x88809e/asvV6/fn3w6B8A2papU6du3ry59rp379433XRTcusBAAAAACAx\nDnEDWq9rvzGypLSikQHdurRvsWIScMoJhxx0YG7jY7Kz/D4M4cjNzX366affffcfJyd27NgxufUA\nkLAjjjji17/+de31iBEj2rdv1f/KBwAAAABAQ/w4HGi9xn+5T7JLaJbBA7sOHtg12VXAfmT06NGj\nR49OdhUANNf555+f7BIAAAAAAAiBQ9wAAAAAAAAAAICQiSUBAAAAAAAAAAAhc4gbAG3DiANGnDfw\nvGhzUNdBSSwGAAAAAAAAgMaJJQHQNnxt0Ne+Nuhrya4CAAAAAAAAgLg4xA0AAAAAAAAAAAiZWBIA\nAAAAAAAAABAysSQAAAAAAAAAACBkYkkAAAAAAAAAAEDIxJIAAAAAAAAAAICQiSUBAAAAAAAAAAAh\nE0sCAAAAAAAAAABCJpYEAAAAAAAAAACETCwJAAAAAAAAAAAImVgSAAAAAAAAAAAQMrEkAAAAAAAA\nAAAgZGJJAAAAAAAAAABAyMSSAAAAAAAAAACAkIklAQAAAAAAAAAAIRNLAgAAAAAAAAAAQiaWBAAA\nAAAAAAAAhEwsCQAAAAAAAAAACJlYEgAAAAAAAAAAEDKxJAAAAAAAAAAAIGRiSQAAAAAAAAAAQMjE\nkgAITXp6evS6qqoqiZUAAAAAAAAANFXwp5zBn36SGLEkAELTrl276HVFRUUSKwEAAAAAAABoquBP\nOdu3b5/ESvYNYkkAhCYYS/riiy+SWAkAAAAAAABAU23evDl6HfzpJ4kRSwIgNF27dk1JSam9Li0t\nXbdu3Y4dO6qrq5NbFQAAAAAAAEAjqqurd+zYsW7duu3bt9f2pKSkdOnSJblV7QMcgwdAaDIzMw84\n4ICCgoLaZllZWVlZWXJLAgAAAAAAAGiqnj17ZmZmJruKNs9uSQCEqUePHs5YBQAAAAAAANqu9u3b\nd+/ePdlV7AvEkgAIWb9+/fwhDQAAAAAAALQ5KSkpnTt3Pvzww5NdyD7CIW4AhCwlJaVXr14dO3bc\nsmVLeXl5eXl5VVVVsosCAAAAAAAAqF96enq7du3at2/frVu39HRZmtB4lADsFTk5OTk5OcmuAgAA\nAAAAAIDkcIgbAAAAAAAAAAAQMrEkAAAAAAAAAAAgZGJJAAAAAAAAAABAyMSSAAAAAAAAAACAkIkl\nAQAAAAAAAAAAIRNLAgAAAAAAAAAAQiaWBAAAAAAAAAAAhEwsCQAAAAAAAAAACJlYEgAAAAAAAAAA\nEDKxJAAAAAAAAAAAIGRiSQAAAAAAAAAAQMjEkgAAAAAAAAAAgJCJJQEAAAAAAAAAACETSwIAAAAA\nAAAAAEImlgQAAAAAAAAAAIRMLAkAAAAAAAAAAAiZWBIAAAAAAAAAABAysSQAAAAAAAAAACBkYkkA\nAAAAAAAAAEDIxJIAAAAAAAAAAICQiSUBAAAAAAAAAAAhE0sCAAAAAAAAAABCJpYEAAAAAAAAAACE\nTCwJAAAAAAAAAAAImVgSAAAAAAAAAAAQMrEkAAAAAAAAAAAgZGJJAAAAAAAAAABAyMSSAAAAAAAA\nAACAkIklAQAAAAAAAAAAIRNLAgAAAAAAAAAAQpae7AIAYB+3fv36k08+eY/DsrKyli1blvAqf/3r\nX2+66aY9Dhs3btzvfve7hFdh/9Qy73DCPvzww+Bbfdhhh1199dUtXwYAAAAAAAAxxJIAYO/atWvX\nhx9+uMdhWVlZzVmlqKgonlX69OnTnFXYP7XMO5ywjz/++K677oo2TzjhBLEkAAAAAACA1kAsCYBW\nasiQIcHmlClTrr/++jjnzp49+9vf/naw5/HHHx82bFhoxQH7olNOOWXDhg3R5umnn37HHXcksR4A\nAAAAAIA2TSwJgFbqvffeCzYLCgrin1tUVBQzffv27eGUBey7Pvjgg/Xr10ebMeFIAAAAAAAAmkQs\nCQD2roMOOqjeTFVxcfGAAQPCWuXCCy+cMGFC3f6ZM2dOmTIlrFXYP7XMOwwAAAAAAMA+RiwJAPau\ntLS0Aw44oG5/dnZ2iKu0a9euXbt2dfs7deoU4irsn1rmHQYAAAAAAGAfk5rsAgAAAAAAAAAAgH2N\nWBIAAAAAAAAAABAysSQAAAAAAAAAACBkYkkAAAAAAAAAAEDIxJIAAAAAAAAAAICQpSe7AABovTZv\n3rxq1arNmzeXl5fn5+f36NHjkEMO6dixY7Lrao22b9++atWqzz77rLS0NC0trWPHjn369DnssMNS\nU2Wg61FVVfXRRx998sknxcXFVVVVubm5Bx10UL9+/bKzs1tg9ZqamtWrV69evbqoqCgrK6tr167D\nhg3Lzc1tgaUTUFFRsWLFik8++WT79u05OTl9+/YdOHBgerp/iQUAAAAAAGjt/EQHAGItXbr0wQcf\nnD59+urVq2M+Sk9PHzt27FlnnXXllVd26NAhKeW1KqWlpQ8//PATTzyxaNGiXbt2xXzaqVOnU045\n5bLLLps4cWJKSkpSKox68cUXH3vssWhzwoQJX/va15p/2x/+8Ifr16+PNm+//fYePXo0NLi6uvqZ\nZ5555JFHXn755ZKSkphPs7KyxowZc9FFF11yySXt2rVLrJ433njjvvvuizZHjBjxX//1X9Hmhx9+\n+Itf/OLpp58uLCwMzkpNTR09evSll156+eWXJ7x06ObPn3/PPfc8//zzpaWlwf78/PwLLrjghhtu\n6Nu3b7JqAwAAAAAAYI/EkgDgX9asWfOtb33r73//e0MDKisr586dO3fu3DvvvPOnP/3pZZdd1oLV\ntToPPvjgDTfcEBNwCdq2bdu0adOmTZs2cuTI3/3udyNHjmzJ8mJkZWU9/PDD0WZBQUHzY0nl5eV3\n3HFHNI+Vl5f3wAMPNDT49ddfv/LKK997772GBuzcuXPOnDlz5sy59dZbp06dmlh5H3/8cfBrFhYW\n1saSKisrf/CDH0ydOrWysrLurOrq6kWLFi1atOj222+fPn360KFDE1g6REVFRVdfffUTTzxR76db\ntmz5zW9+8/DDD999991XXnllC9cGAAAAAABAnJyrAgD/8Pjjjw8dOrSRTFJQQUHBlClTrr766urq\n6r1dWCu0a9euyZMnX3755Y1kkoLeeuutMWPGPPLII3u7sEYcddRRWVlZ0eaiRYtqamqaec+33347\nuEfUmDFjGjq07r777jv++OMbySQFbdiw4aKLLrr22mvDervKy8snTJhwxx131JtJClq3bt2HH34Y\nyqIJKygoOPbYYxvKJEXt2LHjqquuuvPOO1umKgAAAAAAAJpKLAkAIpFI5O677/7617++ffv2uh9l\nZGR07ty53rjJb37zm/1zw6TLL7+8oYxRbm5uMP0TVVFRcdlllz355JN7ubQGZWVljRo1Ktrctm3b\nypUrm3nPN954I9g87rjj6h32+9///pprrqmqqqr7UXZ2dkOnAf7617++9tprm1lhrUsuueSll14K\n5VZ7W1lZ2emnn/7+++/X/Sg9Pb1jx44xnTfeeOO8efNapDQAAAAAAACaRiwJACLPPffct7/97ZjO\no48++qGHHlq/fn1FRcWWLVsqKiqWL1/+05/+tFu3bsFhjz766B/+8IcWLDb5Hn300cceeyym85xz\nzpk+fXppaWlxcXF5eXlBQcH9998/ZMiQ4Jiamporr7xy3bp1LVjsbmJiQzGhogTEE0tatWrVdddd\nF9N55JFHPvDAA5s2bdqxY0dJSUlRUdGzzz57xhlnxAz7zW9+88wzzzSzyMcee2zatGnRZufOnS+4\n4IK77rrr0Ucffe655x5++OGf/OQn48ePrzdM1vL++7//e9myZcGe3NzcH/3oRytXrty5c+e2bdvK\nysqmT59++umn135aXV19xx13JKNSAAAAAAAA9kAsCYD93fr16y+//PJgT3Z29kMPPbRw4cLJkyf3\n6tWrtjMtLW3w4ME33XTTRx99FI1E1Pr2t7/96aeftlzFSVVYWPid73wn2JOZmfnkk0/+9a9/nThx\nYk5OTm3nAQcccMUVVyxZsiRmv5+SkpKrr7665crdXeixpIULF0avMzIyjj766JgBtUms8vLyYOf1\n11+/aNGiKVOmRCNueXl5Z5111t///veHHnooPT09OPjaa68tKipKuMLKysqbb7659rpLly733HPP\nxo0bn3rqqe985zsXX3zxmWeeeemll/7whz+cNWvWJ598ctNNNyU3nLR8+fJ777032DNgwIC33377\n1ltv7devX+2OZe3bt584ceKMGTN+8Ytf1I6pqKhIQq0AAAAAAADsSfqehwBAK7B9+/YNGzbEOXjb\ntm3x3/mqq6764osvos3MzMxZs2aNGzeuofF5eXnPPvvsiSeeOH/+/NqekpKSqVOnTp06Nf5F2667\n7rqrsLAw2PPb3/72wgsvrHdwZmbmvffeW1hY+NRTT0U7p0+fPm/evIbOO9urxo4dm5KSUlNTU9sM\nhooSsGnTprVr10abI0eObNeuXcyYWbNmzZkzJ9gzefLkO++8s6F7Tp48efv27ddcc0205/PPP7/3\n3nuj0aKmmjNnzs6dOyORSL9+/WbPnn3IIYc0NLJHjx4//elPL7744iSmfG6++ebKyspoMy8v77nn\nnjvssMPqHXzddddt3Ljxf//3f1uqOgAAAAAAAJrGbkkAtA333Xdfz7hdccUVcd723XffnT59erDn\n7rvvbiSTVCsjI+Ohhx5KS0uL9jz00ENlZWVN/VJtTlVV1SOPPBLsOeWUUy677LJGpqSkpPz617/O\ny8sLdj7wwAN7o7w9ys/PP+KII6LNd955Z8eOHQnfLZ4T3GK+aX5+fnSPn4ZcffXVMbd68MEHo1Gq\npqrNJHXp0mXu3LmNZJKiBg0aNGLEiMTWaifRpMUAAB6jSURBVKbCwsIZM2YEe2644Yb+/fs3MuXW\nW2/t06fP3i0LAAAAAACARIklAbBfu+uuu4LNIUOGXHXVVfFMPPzww88888xoc9u2bc8991zIxbU+\ns2bN+vzzz4M9P/rRj/Y4Kz8//z//8z+DPX/605+SleIKJn4qKyvfeuuthG+1x1jS1q1bn3322WDP\nd77znZiEVr1uueWWYHPNmjWvvvpqomVGIpHIL3/5y549ezbnDi3giSee2LVrV7SZk5Nz3XXXNT4l\nIyPjhhtuCLGGzMzMYDO5R9oBAAAAAAC0dWJJAOy/KioqgoeLRSKR66+/PjU13j8czz///GDz9ddf\nD62y1uqll14KNg888MBjjz02nokXXHBBsFlaWhqT6WkxMeGhhsqYMmXKOf90//331zsmZu7YsWNj\nBsyfP792s6KomOfQkJNOOqlr167Bnpgn3yT9+/f/2te+lvD0FjN79uxg8+STT44nwvWVr3wlJSUl\nrBo6duzYSBMAAAAAAIAmEUsCYP+1ePHi8vLyaDM9Pf3ss8+Of/qYMWOCzQULFoRWWWsVs7fQ6aef\nHmciZPjw4b17927kVi0mnljSRx999NBDDz37T7/+9a/rjqmpqVm8eHG0OWDAgG7dusWMifmOhx9+\neL9+/eIpMi0t7bTTTmvkVk3y7//+7wnPbUkx3/HUU0+NZ1aPHj1GjhwZVg2dOnUKNsWSAAAAAAAA\nmiM92QUAQFxGjhw5bty4OAd/9NFH06dP3+Ow1157LdgcOnRo586d4y/pkEMOSUtLq6qqqm2+//77\n8c9to95+++1gc9iwYfHPHTp06GeffRZtJiuW1Ldv3169ekWPoqs3lvTCCy8Em8uWLSsoKIg5BO2D\nDz4oKiqKNutulRSp8x2b9LiGDRv2xz/+saFbNcn48eMTnttiNm/evH79+mDP4MGD45w7ZMiQJUuW\nhFJGTA4pnu2aAAAAAAAAaIhYEgBtw4knnnjnnXfGOXjatGnxxJKWLl0abB5xxBGVlZWRSKSmpmaP\nf6+96Ny5c2FhYW1zx44dO3fuzMrKirPINmfr1q3btm0L9gwcODD+6QMHDnz++eejzTVr1oRWWRON\nHTv2T3/6U+31J598snHjxh49egQHxMSSIpHIrFmzJk+eHOyJyTPFbMJU6+OPPw42m/q4gs2CgoLy\n8vLs7Oz471ArOzt7yJAhTZ3V8uq+D/37949z7oABA8IqwyFuAAAAAAAAIXKIGwD7r2iiqNbjjz+e\nkZGRkZGRmZmZmZmZlZWVlZWVnZ2dnZ3drl27du3atW/fvn379jn/1KFDh5g7bN26tWW/QYsKbg5U\nK2YDocYdcMABjd+txTR+jtuuXbteeeWVmCkzZ86M6YknlhTzHZvzuOreLU6HHnpoenobiKHX/XYx\nWbFG1H1WCRNLAgAAAAAACJFYEgD7ry1btoR7w+Li4nBv2KrUDY7k5OTEPz1mcBKfVeOxpPnz55eW\nltZeDx8+vPZi9uzZ1dXVwWELFy6MXvfo0aNfv351F4p5Ys15XJFEn1hbCdbEfLusrKy0tLQ45zbp\nwTZOLAkAAAAAACBEYkkA7L9ijiRrvpjkyj4mGtaJat++ffzTO3ToEGwmMZY0fPjw3NzcaDMYMIpE\nIrNmzaq9yM3Nve2222qvv/jiizfffDM6Zvv27cuXL482x44dW+9CMU+sOY8rkugTy8vLS2BWy2vO\ns9p7saS28vQAAAAAAABapzZwqAcA7CXZ2dnBZufOnZsUhqgrIyOjeRW1apmZmTE9u3btin/6zp07\ng82srKwQakpIWlraMcccM3v27Nrm4sWLq6urU1P/kdV+4YUXai/Gjx9/6qmntm/ffvv27ZFIZObM\nmUcddVTtR0uWLKmsrIzesN4T3CKRSGZmZnBYcx5XJNEn1iZOcIvU+YexSc+qoqIirDI6deoUbNot\nCQAAAAAAoDnaxk+qAGBvyM/PDzbvuOOOb3zjG8kqpvWru3NMWVlZ/NNjBic38HHcccdFY0klJSUr\nVqwYPHhwJBLZvHnz22+/Xds/ceLErKysk08++W9/+1skEnnhhRduueWW2o9izn1rKJaUl5dXG2mq\n1ZzHFUn2E9vbYr5d8LntUZMebON69+49YMCAaDPmtwgAAAAAAACaxCFuAOy/YjIHW7duTVYlbULd\nWEyTTsErKipq/G4tKSZIFI0ZzZo1q6ampvb69NNPj0QiEydOjI6Jft9gLCknJ+fII4+sd5WY79ic\nx1X3bvuYmNBbdXV1SUlJnHPrPquETZgw4YOAnj17hnVnAAAAAACA/ZBYEgD7r4MPPjjYLCgoaMnV\nU1JS2tYq+fn5aWlpwZ5Vq1bFP33lypXBZteuXcMpKyHHHHNM8HSzaMwoeoLbiBEjevXqFYlEzjjj\njNqeqqqq6AZLwVjS0Ucf3dBBad26dQs2m/O4srKycnNz45/eMkJ8u2qfdtCaNWvinNukBwsAAAAA\nAECLEUsCYP81duzYYHPBggUtuXq7du2CzYqKiug+PSHKzs4ONnfu3JnwrTIzM4PnW0UikRUrVsQ/\n/cMPPww2hw8fnnAlzde+ffvgFkfRmFE0eBTdJOmggw4aMmRI7XVtaKmgoGDdunXRuQ2d4BaJRIYN\nGxZsNudxDR06tGVybE0S4jvcp0+fmO2gYoJZjYh/JAAAAAAAAC1JLAmA/de4ceOCzSVLljTpmK1m\nyszMDGaGampqiouLQ1+lU6dOwWYzv+CoUaOCzTlz5sQ5ccuWLcuWLQv2jBw5sjmVNF8wTrR8+fKy\nsrJly5Zt2LChticaS4oENkyqjSUFt0qKNBpLinlcS5YsKS0tjbO8l19+OdhM+uOqV4jvcEpKSkyK\n67XXXotnYmVl5euvv57YogAAAAAAAOxVYkkA7L969+49aNCgaLOiouK3v/1tSxbQo0ePYLNJu+kk\ntsTKlSurq6sTvttRRx0VbC5cuHDTpk3xTJw+fXpVVVWw50tf+lLCZYQiGCeqqqpasmRJ9AS3/Pz8\nY445JvppNKL02Wefvffee8FYUlpa2pgxYxpaIuZx7dy5M7pE49atW7d06dJgT9IfV0NCfIePPfbY\nYPP555+PZ9Zrr71WVFSU8KIAAAAAAADsPWJJAOzXvvWtbwWbU6dOjTNnE4qYLXCiJ4iFqE+fPvn5\n+dHm9u3b58+fn/DdvvrVr6alpUWb1dXV9957bzwTf/GLXwSbo0aNOvzwwxMuIxQxuxy98cYb0czQ\nqaeeGvyaxx57bHTTqZkzZy5cuDD60fDhwzt06NDQEkOGDAnm3iKRyN133x1PbTHDMjMzzz333Hgm\ntrwQ3+GLLroo2Pzoo49efPHFPc765S9/mfCKAAAAAAAA7FViSQDs1y699NLu3btHmxs3bvz6179e\nWVnZpJtUV1f/+c9/TmD1sWPHBpv333//jh07ErhP42I2oYkzGVOvnj17TpgwIdhzzz33rFu3rvFZ\nTzzxxJtvvhnsufzyyxOuISzdu3fv169ftPnSSy/Nmzev9jp4glskEklPTz/11FNrr2fMmBH8Lo2c\n4FZrypQpwea8efOeeeaZxqesWbPmvvvuC/acffbZXbp0aXxWsoT4Dg8fPnzIkCHBnltuuSVmk60Y\nixYt+utf/5rYcvUaMGBAh4DLLrssxJsDAAAAAADsb8SSANivZWdn/+xnPwv2vPjii6eddtqWLVvi\nmb5jx47f//73AwcOvPDCCxNYfdKkSenp6dHmZ599NmXKlIqKigRu1YhLL7002PzLX/4Ss3dRk3zz\nm98MNktKSs4666ySkpKGxr/11ltXXHFFsKdLly6TJk1KuIAQBUNFL7zwQu2TT01NjYleRSKRM844\no/bi5ZdfLi0trfcO9Zo8eXJeXl5Mz3vvvdfQ+G3btp155pkxyZ7//M//bHyVJAr3Hb7++uuDzQUL\nFnz/+99vaPCGDRvOO++8mpqaxNaqV9nuysvLQ7w5AAAAAADA/iZ9z0MAYJ92+eWXv/LKK4899li0\n5+WXXx44cOB3v/vdK664onPnznWnlJaWvvbaa08++eRf/vKX2pBK8Myv+PXs2fOCCy54/PHHoz1P\nPfXU0qVLv/GNbwwcOLBdu3bBwR07dvzSl76UwCrnnHNOnz591q5dG+351re+9dxzz11wwQUHH3xw\nMFMSiUT69OnT+PFqp5566oUXXvjUU09Fe5YuXTpy5Mjf/e53X/7yl4MjKyoqfv/733/ve9/bvn17\nsP/nP/959Ey05DruuOMefPDBmM7Ro0d369YtpvP0009PTU2trq6ue4fGl+jWrdvtt99+9dVXR3uK\ni4vHjBnz85//fPLkyRkZGcHBs2fPvuKKKz755JNg55QpU44//vh4vk5ShPsOT548+be//W3wmLw7\n77yzoKDg7rvv7tq1a3DkrFmzLr/88vXr14f0PQAAAAAAAAhfSmFhYSQSqf0fzaP/u3lNTU20p+5F\ntBkU/eiwww5LzldphpMf377nQQ14aVL7ECsBIColJSXYvP766++88844506bNu38888P9ixYsOCY\nY45paHxZWdm4cePefvvtmP7U1NRRo0YNHz68a9eu7du337p16+bNm999993ly5fHnC2VlpbW1KPf\nam3atGnw4MG1fxw37uijjw7GNZrk5ZdfPuWUU+LZV+bGG2/8f//v/zU+ZtOmTUOHDt20aVNMf//+\n/Y8//vhevXqVl5d/+umnL7zwwtatW2PGnH766TNmzGhS8XvPypUrBwwYENP5ox/96NZbb607+Oij\nj160aFGw59BDD129evUeV6mpqTn55JNfeeWVmP6uXbueeuqpBx98cEZGxvr16+fMmbNmzZqYMb16\n9Vq+fHm92biGPPnkkxdddFG0ecYZZ/z973+Pf3oCwn2H33777TFjxuzcuTPYmZGRceqppw4YMCA3\nN/fzzz+fO3fuypUro5+OGzfutddeizZPOOGEOXPmNO07/FPv3r2DUacLL7zwySefTOxWAAAAAADA\nfm7atGnR6/POOy+JlSSm9gdhtT+0Takj5qN6LyJ2SwKASCSSk5Pz8ssvn3vuuTFphurq6sWLFy9e\nvHjvLd29e/dnnnnmjDPOKCoq2nurnHTSSffcc8+3vvWtUE686t69+4wZM8aPHx+TOlq5cmUwLFLX\nUUcd1apCHv379+/evXtMvmrixIn1Dp44cWJMLGmPWyXVSklJ+fOf/3ziiScuW7Ys2F9YWBjcZKiu\nbt26zZw5s0mZpKQI9x0+8sgjH3jggUsuuSS4N9WuXbumT58+ffr0uuPHjRv3ve99LxhLAgAAAAAA\noJVITXYBANAqdOrU6cUXX/zJT34Sc+xUPPLy8qZMmZLw0mPHjp03b96YMWMSvkM8rrvuuj//+c8H\nHXRQKHcbNWrUggULhg8fHv+Uiy+++JVXXsnLywulgLCMHTs22Ozevfvo0aPrHXnGGWfE9MQZS4pE\nIp07d37ttddidvBq3OjRoxcuXDh06ND4pyRRuO/wpEmTnn766Q4dOuxx5LHHHvvss8/GnIUHAAAA\nAABAKyGWBAD/kJaW9sMf/nDVqlU33HDDAQccsMfx3bt3nzRp0pNPPrlx48bf/e53zVl6yJAhr7/+\n+owZM6688spBgwbl5+fHnGEXinPPPXflypUPPvjgV7/61cMOOyw3N7c5dxswYMDixYt/9atfNX5+\na0pKype//OUXX3zx0Ucfbd++1Z18GhMtmjBhQkNPftSoUTFvRfyxpEgkkpub+/TTT8+YMWOPs/r3\n73///fcvXLjw0EMPjf/+SRfuO/zVr371nXfeueCCC9LS0uod0KFDh1tvvfWVV15p/btJAQAAAAAA\n7LdSCgsLI5FI7ZEu0YNdampqoj11L6LNoOhHjf9ssnU6+fHtCc99aVKr+wkrAM1XXV29aNGiBQsW\nrFixYt26dcXFxVVVVXl5eZ06derbt++QIUNGjBgxZMiQvREeaosWLVo0Z86c995777PPPisrK0tN\nTe3UqVOfPn1Gjhw5fvz4Qw45JNkFti6rV6+ePXv20qVL165dW1xcXFNTk5OT07t376FDh5544okj\nR45MdoGtyLp16/72t78tXrz4k08+KSsry8nJOfTQQ8eNG3f22Wd36tQp2dUBAAAAAAA0aNq0adHr\n8847L4mVJGb16tWRSKT256EpdcR8VO9FRCypllgSAAAAAAAAAABhEUuKOMQNAAAAAAAAAAAInVgS\nAAAAAAAAAAAQMrEkAAAAAAAAAAAgZGJJAAAAAAAAAABAyMSSAAAAAAAAAACAkIklAQAAAAAAAAAA\nIRNLAgAAAAAAAAAAQiaWBAAAAAAAAAAAhEwsCQAAAAAAAAAACJlYEgAAAAAAAAAAEDKxJAAAAAAA\nAAAAIGRiSQAAAAAAAAAAQMjEkgAAAAAAAAAAgJCJJQEAAAAAAAAAACETSwIAAAAAAAAAAEImlgQA\nAAAAAAAAAIRMLAkAAAAAAAAAAAiZWBIAAAAAAAAAABAysSQAAAAAAAAAACBkYkkAAAAAAAAAAEDI\nxJIAAAAAAAAAAICQiSUBAAAAAAAAAAAhE0sCAAAAAAAAAABCJpYEAAAAAAAAAACETCwJAAAAAAAA\nAAAImVgSAAAAAAAAAAAQMrEkAAAAAAAAAAAgZGJJAAAAAAAAAABAyMSSAAAAAAAAAACAkIklAQAA\nAAAAAAAAIRNLAgAAAAAAAAAAQiaWBAAAAAAAAAAAhEwsCQAAAAAAAAAACJlYEgAAAAAAAAAAEDKx\nJAAAAAAAAAAAIGRiSQAAAAAAAAAAQMjEkgAAAAAAAAAAgJCJJQEAAAAAAAAAACETSwIAAAAAAAAA\nAEImlgQAAAAAAAAAAIRMLAkAAAAAAAAAAAiZWBIAAAAAAAAAABAysSQAAAAAAAAAACBkYkkAAAAA\nAAAAAEDIxJIAAAAAAAAAAICQiSUBAAAAAAAAAAAhE0sCAAAAAAAAAABCJpYEAAAAAAAAAACETCwJ\nAAAAAAAAAAAImVgSAAAAAAAAAAAQMrEkAAAAAAAAAAAgZGJJAAAAAAAAAABAyMSSAAAAAAAAAACA\nkIklAQAAAAAAAABAaCoqKqLXWVlZSawkucSSAAAAAAAAAAAgNCUlJdHrzp07J7GS5BJLAgAAAAAA\nAACA0KxYsSJ6vT/HktKTXQAAAAAAAAAAALR5FRUVJSUlK1as2LBhQ21Pampqnz59klpUMoklNde0\nadOSXQIAAAAAAAAAAK3OkCFDcnJykl1F0jjEDQAAAAAAAAAAQpafn9+/f/9kV5FMdksCAAAAAAAA\nAIAwDRgwYPDgwcmuIsnEkgAAAAAAAAAAoLkyMzPz8vLy8vL69OmTn5+f7HKSTywpEolEXprUvhmz\nzwutDgAAAAAAAAAA2CekJrsAAAAAAAAAAABgXyOWBAAAAAAAAAAAhEwsCQAAAAAAAAAACJlYEgAA\nAAAAAAAAEDKxJAAAAAAAAAAAIGRiSQAAAAAAAAAAQMjEkgAAAAAAAAAAgJCJJQEAAAAAAAAAACET\nSwIAAAAAAAAAAEImlgQAAAAAAAAAAIRMLAkAAAAAAAAAAAiZWBIAAAAAAAAAABAysSQAAAAAAAAA\nACBkYkkAAAAAAAAAAEDIxJIAAAAAAAAAAICQiSUBAAAAAAAAAAAhE0sCAAAAAAAAAABCJpYEAAAA\nAAAAAACETCwJAAAAAAAAAAAImVgSAAAAAAAAAAAQMrEkAAAAAAAAAAAgZGJJAAAAAAAAAABAyMSS\nAAAAAAAAAACAkIklAQAAAAAAAAD8//buJLlxHAigKFSh+9/UZ2AvGI2GMSTAQdWW/N7KAkmQVesf\nCeBmsiQAAAAAAAAAAOBmsiQAAAAAAAAAAOBmsiQAAAAAAAAAAOBmsiQAAAAAAAAAAOBmsiQAAAAA\nAAAAAOBmsiQAAAAAAAAAAOBmx7Kkx+OxuAgAAAAAAAAAALy7072QaUkAAAAAAAAAAMDN7smSDEwC\nAAAAAAAAAIAPcyUKupQlqZEAAAAAAAAAAODjnciEDmdJUiQAAAAAAAAAAPi1FvOhew5xAwAAAAAA\nAAAAyK5mSYYnAQAAAAAAAADABzsXCJmWBAAAAAAAAAAA3OxkltRtoExOAgAAAAAAAACAD3C9Dppk\nSY/HY2U7QRIAAAAAAAAAAHyYxXCoe9vqtKT2YSkSAAAAAAAAAAD8EkfzoWGW1N1o27b1+wEAAAAA\nAAAAgDcV5EDbtk0rpT/TXeLn458AAAAAAAAAAMB7uSUQWj3E7fqbAAAAAAAAAACA93K6FPqWJeXH\nVp4XJwEAAAAAAAAAwKc6UQeV9dGZaUlX3g0AAAAAAAAAAPxw17ugpSxp33e0++PxECQBAAAAAAAA\nAMCHCbqgOChKK1lS+fDj8di2bfQ+fRIAAAAAAAAAALy7uA7a86FysbtJlCVNGyMdEgAAAAAAAAAA\nfLaVRqi9YZglHeqN8rtVSgAAAAAAAAAA8NZyCHS0ICp//hldCF5WnuOmQwIAAAAAAAAAgA92Lhyq\npyWNjoVbfPHRjwYAAAAAAAAAAH6axfYoaI2Gh7gtvv7K4wAAAAAAAAAAwM93IhOaZEntjuU4pnIl\nGZgEAAAAAAAAAADvr5sDVSe4Vfe3m/xp7yj3al8Wf4EsCQAAAAAAAAAA3lpbBAXhUPlI+ez8ELdg\nYNKFjwcAAAAAAAAAAN7GoVFJaXqIW7VFtUv5Mie4AQAAAAAAAADAZ6iioGqA0Uop1M+Suue4BVsr\nkwAAAAAAAAAA4DOUTVK72L2/+iO1WVL34e45cPvf+8Ck+HEAAAAAAAAAAOBdrAdCQWv0+Pr6qoYs\n7T/LxW3b8s/yal7fX1/e0/27u3n7EwAAAAAAAAAAuEVVDsVjkNq/cx1UPti9v7r67H7KnjiVtVD5\njry+b7GHR/nvcr38iOpnKmqk7iIAAAAAAAAAAHBCNMRoUBGlhSap2jwOnjpZUvebqlqofGua1Uht\ndZQ/ohrC1H7uIY6QAwAAAAAAAADgk1wc8bOYEE37pO4m3ZUsypLigUlBmZS+10jtnKR2sdykYn4S\nAAAAAAAAAACMBLORRovBIW7peyYUpEvx656pyY+ClWmZlBerS2kQJ6Xv1VHw37ESJ5mWBAAAAAAA\nAADA77FYyxydmbTYJMXDk4bTkqq6KDWtUvszFWVSXs8/8/3tnKQ2OWpXVv4TZUkAAAAAAAAAAPxm\nK+estVFRudI2Sd19Ro9nz3xt8ay0KlTa/5gORgrOcWvX260WyZIAAAAAAAAAAPiFDk38mQZJ7c3t\nI1PDaUlpPDApWCl/7n/klTSbk9QtkJRGAAAAAAAAAAD8WlfimbglqsKjQ03SdFRSKrOkYGDS0TIp\nP9gdkpQGc5LKfyEAAAAAAAAAAHBOEDO1M5O6QdKhla5oWlIatEpBmZTGJ7iNvqPa33gkAAAAAAAA\nAAC4UTckqpKe7j0rU5FGi8/qjpUIqbuYm6R2MRsNSRpNSDI5CQAAAAAAAAAAVoyGAU0DnuqGbn60\nvpgvTaYl5fuCMqn63O5itWE3fuq+N3gEAAAAAAAAAAB+s+m5ZNu2jY4ya58NhiS19wdN0q7OkoLZ\nRe3VQxOSqq+s3nJLdeQAOAAAAAAAAAAAPkkc1UyTm25LNLptFCoFAVOw27MthIKj3LpXuxOSuq8P\nrsY51CJZEgAAAAAAAAAA7FbiodGdR4cqtVf7h7iNyqT072yk1GuM4jgpX80/R990miwJAAAAAAAA\nAABGVoYnnQ6SqvVnmo1HGq13xyal7/nRaDxSlSiV690vBgAAAAAAAAAA1q2UQ6P1o7lSd/2ZV9eT\noLJMSk1LVC52bwg+7iLTkgAAAAAAAAAAIB0JadaDpEPb/neIW3f60ahVmrZHo7Pb2ju7T50jSwIA\nAAAAAAAAgFhwOluwHpc57dVndTkYfTTa7tBgJMe3AQAAAAAAAADA33H0KLfuDUeDpH3x2a5274tH\nHOWr5ZCkle9oHwQAAAAAAAAAAHZ3RTWL+6wPUpperbOkUYE0LZP2P9b7pOmXAQAAAAAAAAAAf8HR\nGim+Z1/vTEs6VyaVm5a3LfZJAAAAAAAAAADA3zQ6f+30s+V6/xC3ti6K14O3xse0aZUAAAAAAAAA\nAODVTp/Ftn5ztd7PkvKto7FJabko6iZK068EAAAAAAAAAABe50S3EzzSXoqypBQe3HYoToq/zMwk\nAAAAAAAAAAB4hVvGBp0YtjTJklJYJqVTcdLilwEAAAAAAAAAAP+vadgzumGeJaWF9ig+qQ0AAAAA\nAAAAAHgXizOG4tuWsqRyo2l1lN+nTwIAAAAAAAAAgHexfuLZyp0HsqRy05XkqHq9SgkAAAAAAAAA\nAH6O9Q7pxCOHs6TqBeux0co3SZcAAAAAAAAAAOC6E8nRvbudzJKqV96VE9373wEAAAAAAAAAAFxx\nuue5miV1X2/oEQAAAAAAAAAAvKO75grdkyVVVEoAAAAAAAAAAPAWXnS+2UuypErw6YolAAAAAAAA\nAAB4tRe1R4F/AJS+y8l/vvhNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "Screenshot of a Jupyter notebook" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -40,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -49,7 +39,7 @@ "4" ] }, - "execution_count": 2, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -60,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -69,7 +59,7 @@ "12" ] }, - "execution_count": 3, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -80,14 +70,24 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "my_notebook.ipynb\n" + "1-numpy_tutorial_EN.ipynb\texample.png\r\n", + "1-numpy_tutorial.ipynb\t\tmatplotlib_ani.ipynb\r\n", + "2-matplotlib_tutorial_EN.ipynb\tmatplotlib_full.ipynb\r\n", + "2-matplotlib_tutorial.ipynb\trandom-matrix.csv\r\n", + "3-ipython_notebook_EN.ipynb\trandom-matrix.npy\r\n", + "3-ipython_notebook.ipynb\tREADME.md\r\n", + "4-scipy_tutorial_EN.ipynb\tstockholm_td_adj.dat\r\n", + "4-scipy_tutorial.ipynb\t\tutils_git_advanced.ipynb\r\n", + "5-sympy_tutorial_EN.ipynb\tutils_git.ipynb\r\n", + "5-sympy_tutorial.ipynb\t\tutils_shell.ipynb\r\n", + "bokeh_tutorial.ipynb\r\n" ] } ], @@ -97,14 +97,144 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { + "application/json": { + "cell": { + "!": "OSMagics", + "HTML": "Other", + "SVG": "Other", + "bash": "Other", + "capture": "ExecutionMagics", + "debug": "ExecutionMagics", + "file": "Other", + "html": "DisplayMagics", + "javascript": "DisplayMagics", + "js": "DisplayMagics", + "latex": "DisplayMagics", + "markdown": "DisplayMagics", + "perl": "Other", + "prun": "ExecutionMagics", + "pypy": "Other", + "python": "Other", + "python2": "Other", + "python3": "Other", + "ruby": "Other", + "script": "ScriptMagics", + "sh": "Other", + "svg": "DisplayMagics", + "sx": "OSMagics", + "system": "OSMagics", + "time": "ExecutionMagics", + "timeit": "ExecutionMagics", + "writefile": "OSMagics" + }, + "line": { + "alias": "OSMagics", + "alias_magic": "BasicMagics", + "autoawait": "AsyncMagics", + "autocall": "AutoMagics", + "automagic": "AutoMagics", + "autosave": "KernelMagics", + "bookmark": "OSMagics", + "cat": "Other", + "cd": "OSMagics", + "clear": "KernelMagics", + "colors": "BasicMagics", + "conda": "PackagingMagics", + "config": "ConfigMagics", + "connect_info": "KernelMagics", + "cp": "Other", + "debug": "ExecutionMagics", + "dhist": "OSMagics", + "dirs": "OSMagics", + "doctest_mode": "BasicMagics", + "ed": "Other", + "edit": "KernelMagics", + "env": "OSMagics", + "gui": "BasicMagics", + "hist": "Other", + "history": "HistoryMagics", + "killbgscripts": "ScriptMagics", + "ldir": "Other", + "less": "KernelMagics", + "lf": "Other", + "lk": "Other", + "ll": "Other", + "load": "CodeMagics", + "load_ext": "ExtensionMagics", + "loadpy": "CodeMagics", + "logoff": "LoggingMagics", + "logon": "LoggingMagics", + "logstart": "LoggingMagics", + "logstate": "LoggingMagics", + "logstop": "LoggingMagics", + "ls": "Other", + "lsmagic": "BasicMagics", + "lx": "Other", + "macro": "ExecutionMagics", + "magic": "BasicMagics", + "man": "KernelMagics", + "matplotlib": "PylabMagics", + "mkdir": "Other", + "more": "KernelMagics", + "mv": "Other", + "notebook": "BasicMagics", + "page": "BasicMagics", + "pastebin": "CodeMagics", + "pdb": "ExecutionMagics", + "pdef": "NamespaceMagics", + "pdoc": "NamespaceMagics", + "pfile": "NamespaceMagics", + "pinfo": "NamespaceMagics", + "pinfo2": "NamespaceMagics", + "pip": "PackagingMagics", + "popd": "OSMagics", + "pprint": "BasicMagics", + "precision": "BasicMagics", + "prun": "ExecutionMagics", + "psearch": "NamespaceMagics", + "psource": "NamespaceMagics", + "pushd": "OSMagics", + "pwd": "OSMagics", + "pycat": "OSMagics", + "pylab": "PylabMagics", + "qtconsole": "KernelMagics", + "quickref": "BasicMagics", + "recall": "HistoryMagics", + "rehashx": "OSMagics", + "reload_ext": "ExtensionMagics", + "rep": "Other", + "rerun": "HistoryMagics", + "reset": "NamespaceMagics", + "reset_selective": "NamespaceMagics", + "rm": "Other", + "rmdir": "Other", + "run": "ExecutionMagics", + "save": "CodeMagics", + "sc": "OSMagics", + "set_env": "OSMagics", + "store": "StoreMagics", + "sx": "OSMagics", + "system": "OSMagics", + "tb": "ExecutionMagics", + "time": "ExecutionMagics", + "timeit": "ExecutionMagics", + "unalias": "OSMagics", + "unload_ext": "ExtensionMagics", + "who": "NamespaceMagics", + "who_ls": "NamespaceMagics", + "whos": "NamespaceMagics", + "xdel": "NamespaceMagics", + "xmode": "BasicMagics" + } + }, "text/plain": [ "Available line magics:\n", - "%alias %alias_magic %autocall %automagic %autosave %bookmark %cat %cd %clear %colors %config %connect_info %cp %debug %dhist %dirs %doctest_mode %ed %edit %env %gui %hist %history %killbgscripts %ldir %less %lf %lk %ll %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %lx %macro %magic %man %matplotlib %mkdir %more %mv %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %popd %pprint %precision %profile %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx %reload_ext %rep %rerun %reset %reset_selective %rm %rmdir %run %save %sc %set_env %store %sx %system %tb %time %timeit %unalias %unload_ext %who %who_ls %whos %xdel %xmode\n", + "%alias %alias_magic %autoawait %autocall %automagic %autosave %bookmark %cat %cd %clear %colors %conda %config %connect_info %cp %debug %dhist %dirs %doctest_mode %ed %edit %env %gui %hist %history %killbgscripts %ldir %less %lf %lk %ll %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %lx %macro %magic %man %matplotlib %mkdir %more %mv %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %pip %popd %pprint %precision %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx %reload_ext %rep %rerun %reset %reset_selective %rm %rmdir %run %save %sc %set_env %store %sx %system %tb %time %timeit %unalias %unload_ext %who %who_ls %whos %xdel %xmode\n", "\n", "Available cell magics:\n", "%%! %%HTML %%SVG %%bash %%capture %%debug %%file %%html %%javascript %%js %%latex %%markdown %%perl %%prun %%pypy %%python %%python2 %%python3 %%ruby %%script %%sh %%svg %%sx %%system %%time %%timeit %%writefile\n", @@ -112,7 +242,7 @@ "Automagic is ON, % prefix IS NOT needed for line magics." ] }, - "execution_count": 5, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -123,7 +253,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -141,14 +271,15 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Hello world!\n" + "Hello world!\n", + "\n" ] } ], @@ -160,31 +291,20 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": { "podoc": { "output_text": "Screenshot of the pager" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADhoAAAO4CAIAAAARYlrnAAAAA3NCSVQICAjb4U/gAAAAGXRFWHRT\nb2Z0d2FyZQBnbm9tZS1zY3JlZW5zaG907wO/PgAAIABJREFUeJzs3XmcXeddH/5zzt1m5s4uaaTR\naKTRZsm7HW8JJjuOTUICZIEEfm0JWaAN0B+F5Ffa0kKBtoEm0C0kFNMWXjQJgRBnIYuzQeLEdrzb\n2h3t6+z7nbud8/vjOlejfWSPZiTP+/3KH+d5zvc853uvriL/8Xk9T1goFAIAAAAAAAAAAAAAlqpo\nsRsAAAAAAAAAAAAAYDGJkwIAAAAAAAAAAAAsaenFbgAAAAAA4MJ27ty52C1cqbZu3brYLQAAAAAA\nlzu7kwIAAAAAAAAAAAAsaeKkAAAAAAAAAAAAAEuaOCkAAAAAAAAAAADAkhYWCoXF7gEAAAAAAAAA\nAACARWN3UgAAAAAAAAAAAIAlTZwUAAAAAAAAAAAAYEkTJwUAAAAAAAAAAABY0sRJAQAAAAAAAAAA\nAJY0cVIAAAAAAAAAAACAJU2cFAAAAAAAAAAAAGBJEycFAAAAAAAAAAAAWNLESQEAAAAAAAAAAACW\ntPTOnTsXuwcAAAAAAAAAAAAAFo3dSQEAAAAAAAAAAACWNHFSAAAAAAAAAAAAgCVNnBQAAAAAAAAA\nAABgSQuTJFnsHgAAAAAAAAAAAABYNHYnBQAAAAAAAAAAAFjSxEkBAAAAAAAAAAAAljRxUgAAAAAA\nAAAAAIAlTZwUAAAAAAAAAAAAYEkTJwUAAAAAAAAAAABY0sRJAQAAAAAAAAAAAJY0cVIAAAAAAAAA\nAACAJU2cFAAAAAAAAAAAAGBJEycFAAAAAAAAAAAAWNLESQEAAAAAAAAAAACWNHFSAAAAAAAAAAAA\ngCVNnBQAAAAAAAAAAABgSRMnBQAAAAAAAAAAAFjSxEkBAAAAAAAAAAAAljRxUgAAAAAAAAAAAIAl\nTZwUAAAAAAAAAAAAYEkTJwUAAAAAAAAAAABY0sRJAQAAAAAAAAAAAJY0cVIAAAAAAAAAAACAJU2c\nFAAAAAAAAAAAAGBJEycFAAAAAAAAAAAAWNLSi90AAAAAAAAAAAAAwPMRx3GpVJqZmSmVStVqtT4f\nhuFplVEUZbPZhoaGbDYbRfbiPJ04KQAAAAAAAAAAAHBFKpVKx48fP3To0IkTJwqFQm0yDMMwDKMo\nql3UJhsbG1esWNHT09PV1dXQ0LB4LV+mxEkBAAAAAAAAAACAK9LMzMzhw4cfeeSR7du3Dw8PB7Oy\npDX1OGlbW9s111xTuxAnPZM4KQAAAAAAAAAAAHBFKpfLIyMjBw4cePrppwcGBmqTSZIkSRLHce2i\nNtnV1RWG4Zo1azZt2rQwvdVeXW+mNlnfM7Wec51dX287+EEu9lzF806cFAAAAAAAAAAAALgiRVGU\nzWbz+XxHR0ccx2EYJklSKpXGx8fHx8cnJibqQcxqtTo8PFwoFKrV6gI0Vq1WK5VKqVSamZmZmpqa\nmpoql8vpdLqlpaW1tbWpqSmTyURRVCtOkqRarRaLxYmJifHx8UKhEIZhQ0NDc3NzY2NjLpfLZDLp\ndPqShkrFSQEAAAAAAAAAAIArUi6XW7Vq1Q033NDc3Dw9PR1FURzHY2Nj3//+93fu3DkxMVGvLJfL\n1Wq1vlnppVapVKampsbHx0dGRo4cOXLs2LHx8fF8Pt/b27tx48ZVq1ZFUVSPkwZBUCqVxsbGDhw4\nsHfv3v7+/lQqtWLFip6enq6urvb29ubm5iiKUqnUpWtYnBQAAAAAAAAAAAC4IuVyuTVr1uTz+c2b\nN1cqlTAMS6XS8ePHW1tbp6enh4eHJycna5XZbDadTs9OcF46tR1SJyYmTpw4ceTIkR07duzatWtw\ncLC9vf26667LZDK5XK526n2tn1KpNDk5eeLEiT179jzyyCN79+5Np9N9fX3XXHNNqVSqVqupVCqb\nzYqTAgAAAAAAAAAAAEtFHMe1Y+JLpVIcx0EQzN5VNAzDWiIzl8ul0+nOzs729vZKpVIul2dmZiYm\nJuI4Xrly5erVqwcHB/v7+4vFYrFYTKVSl/Sw+NmSJJmZmRkeHj5y5Mizzz67a9eubdu29ff3d3Z2\nZjKZjo6ObDZbLpdrF3EcT01N9ff3HzhwYM+ePTt27NizZ086nS4UCplMprYpaWNjYz6fz2azl65n\ncVIAAAAAAAAAAADgMlIqlfr7+48cOdLf318oFOI4juO4niiNoqizs7Onp6enp2fZsmVBEKRSqVQq\nValUBgYGDhw4cPjw4fHx8RUrVtxwww0DAwPHjx8/fvx4FEW1dRag/yRJpqenjx49umPHjp07dz77\n7LPHjh0bHR0tl8t79+7N5/MzMzOjo6M9PT2tra3lcrmWJd27d+/OnTsPHz48ODiYSqUymUwqlSqV\nSmEYtrS01D7ppSNOCgAAAAAAAAAAAFxGisXikSNHHnvsse3bt4+MjMRxXK1WkySpJUozmUxfX98t\nt9ySz+c7Ojrq59f39/c//fTTjz322PHjx/P5fE9Pz8aNGwcHB5966qnp6elqtVpbZAH6T5Jkamrq\n6NGjtX1JBwYGJiYmyuXy1NTUkSNHarHXoaGhiYmJrq6umZmZ/fv3b9++fd++fSdOnBgeHi6Xy+Vy\neWBgoFqtlsvl5ubm3t7eSqVySXsWJwUAAAAAAAAAAAAuI7XdSbdv3/7ggw8ODAxEURRFUf2o+kwm\nUyqVenp6pqeny+VyJpOJ43hkZOTAgQPbt29/8sknR0dHr7rqqpUrV27evHlwcHB0dHT//v3j4+ML\nuTtpqVQaHx8fHBzs7++fmpqqVqtRFJXL5cHBwfHx8aGhoVKplCTJxMTE9PT0rl27nn766QMHDszM\nzJRKpSAIwjAsFovDw8MNDQ3Dw8O1OOwl7VmcFAAAAAAAAAAAALiMVKvV6enpoaGh48ePj4yMtLW1\ndXR0NDU11RKlmUymra2tqakpnU5XKpXx8fGRkZGjR48+++yzw8PDURS1t7evWrWqu7u7t7c3lUrl\n8/lUKlXb4jSO44XZoDSdTufz+fb29vr+qbVIaKFQKBQKpVIpn883NjZOTU3Vdic9cuTIwMBA7QMm\nSZLL5fL5fHNzc2dnZ2tray6Xq2/CeqkavqSrAwAAAAAAAAAAAFyUJEkqlUqpVIrjuKmpae3atVu2\nbOnu7k6lUkEQpFKpnp6eq666qqOjo1wuHz58ePv27Xv27KkdE79x48bOzs6tW7f29va2trYODAwE\nQVA7Nb5SqSzM7qRRFLW0tKxdu/b666/PZDKHDh2q7Txaf/vMzMzg4GA2mx0ZGSmVSidOnJiYmJi9\nQmNj4+rVq3t7ezds2LBly5aurq5sNntJexYnBQAAAAAAAAAAAC4vYRiGYZjL5dra2rZu3fryl798\n69at6XQ6CIIoivL5fGdnZ1NT09jY2P79+x999NHt27enUqmNGzfecMMNmzZt6unp6ezszOVytb1I\noyhKp9OpVOpS7/FZb761tXXDhg3pdLq9vb2lpWVmZmZkZGR2ZnR8fLxarZ44cSKO49p+pfVbtQ1W\n+/r6brrppi1btqxfv37VqlXipAAAAAAAAAAAAMASUjvzPQzDVCrV3Nzc3d29devWm2++OZPJ1Apq\ne5eOj48fOXLk8OHDx44dGx0drZ0sv2nTpmuuuaazszOKonK5nM1mW1tbu7q6MplMLYFa2+L0Uvff\n1NS0cuXKXC6XzWZnZmZOnDgxODiYJEltk9TaqfczMzP10+3jOK5lXtPpdENDw8qVK/v6+rZs2XL1\n1Vd3dXW1tLTUorSXjjgpAAAAAAAAAAAAcBlJfiAMwyiKstlsPp/P5/P1gmKxeOjQob179x48ePDQ\noUPZbHb9+vXd3d2bN2/u7u7u6OiohS/T6XRra+v69esnJycnJib6+vpWrlx5qbf5DIIgDMNMJpPP\n51OpVLlcHh0dHRoaKpVKLS0tw8PDo6Ojk5OTtQ84+6lat52dncuWLduyZcumTZt6e3tXrlzZ2tqa\nyWQudQpWnBQAAAAAAAAAAAC4fMVxHMfx7JmhoaFt27Y98sgjR48eTafTq1at6u3t7e3tXbt27bJl\ny+obeUZR1NHRcfXVV3d0dJRKpfb29jVr1jQ0NCxAz2EY1vYZbW9vX7169ZYtW5IkaWpq2r9/f6lU\nmp6ePu0TBUGQyWQ6OjrWrVvX19e3efPm9evXd3V1NTc3Z7PZKIpq+5heOuKkAAAAAAAAAAAAwGWq\ndhB8pVKpVCq1nGilUhkdHT106NDu3bsHBgbWrVvX29t722239fb2tra25nK5+rNhGLa0tKxfv76n\npyeO40wmUzt9fgHarqU/U6lULpdra2vr6uqamJiYnp4eGRnJ5XJnzYam0+mmpqZly5b19PSsXr26\ns7OzqakpnU5f6iDpc29fgHcAAAAAAAAAAAAAXKz6cfCnHQ2fTqcbGxvb2tqSJOnu7l6zZk1vb293\nd3cURaetkMlkMpnMwnV8qloWtlwuz8zMTE9Pz8zMlMvlarV61uJaarZYLBYKhenp6VKpVKlUZn/q\nS0qcFAAAAAAAAAAAALhiRFHU1ta2efPmIAgKhUJ3d3dfX19bW9uZWdJFVA+STk5O9vf379u3b9eu\nXQcOHBgYGCgUCmeedB8EQaVSGR8fP3LkSO3ZWl62tbU1lUqlUqngBzueXiLipAAAAAAAAAAAAMAV\nIwzDjo6Oa665ZvXq1ZVKJZ/Pd3R0zD7j/nJQrVZLpdLk5OTAwMDBgwd37NjxzDPPHDt2bGpqqlAo\nnHXP0XK5PDIyUiqVhoeHS6VSU1NTR0dHS0tLGIYNDQ2ZTEacFAAAAAAAAAAAAFhy6gHK2UnKMAyb\nm5ubmpq6u7trw5ramfKlUimO40wmk8vlcrncomxZmiRJsVgcGxvr7+8/cODAvn379u/ff/DgwcHB\nwSRJkiQJwzCdTmcymVQqlSRJpVIpl8vVanV6erpQKIyNjeVyuRUrVqxYsaKxsbFarXZ2dra0tFzS\nzyJOCgAAAAAAAAAAAFymwjCMoqgWvpw9H0XRafHKQqFw8ODBY8eOFYvFtra23t7eVatWNTQ0LGy/\nQRAESZJMTEwcOHBgz549u3bt2rNnz9GjR8fHx+tn3CdJks/nOzs78/l8pVIZGxsbGhqqVCq1WzMz\nM4ODg3v37s1ms9PT0xMTE5s3b87lcqd9A/NLnBQAAAAAAAAAAAC4fJ2ZHD2rsbGxXbt2PfHEExMT\nE+vWrQuCoL29fVHipHEcj4+P79u379FHH922bVt/f//g4GC5XK4XpFKpjo6Ovr6+5cuXF4vFgwcP\nTk9Pz8zM1AsmJydrk0NDQ+VyuaWlpaurK5/PX7qexUkBAAAAAAAAAACAy0j9/PokSeI4LpVKU1NT\nU1NTs7fnDMNw9iOlUuno0aM7dux4+OGHx8bGJicne3t7t2zZsuC9B0EQJElSKBROnDixd+/ePXv2\nTE1NzczMJEkSBEEURWEYtre3d3d3b9y4saenZ3p6OgzDiYmJmZmZcrlc28G0VCoNDQ1NTk6Wy+Wu\nrq6tW7fW9i69dMRJAQAAAAAAAAAAgMtILXmZJEm1Wp2cnDx27NjOnTuDIEinzxl6rFQqO3bs2Llz\n5969ewuFwqpVq6anp6vV6sI1faowDFOpVCqVqvUcx3GSJNlstrm5ubW1taura/PmzZs3b+7u7i4U\nCkmSFIvFdDo9NjY2Pj5eKBRq9bXHU6nUXDZnfYHESQEAAAAAAAAAAIDLS5IktZDl5OTkzp07kyTZ\ns2dPKpU6V321Wj1y5Mj27duPHz+eTqcrlUotkbmQPdeFYdjY2NjV1bV+/frp6enDhw8fP358cnIy\nl8t1d3evX7++r69v8+bN69ev7+zsLJVKDQ0NjY2Ny5cv379///e///2ZmZkoilpbW1evXr1hw4Y1\na9a0tbWdJ0o7L8RJAQAAAAAAAAAAgMtIGIbpdDqbzUZRND09ffDgwYmJiaamptMOuJ8tSZKpqanh\n4eFyuZzP55uammqPL2TbdVEU5fP5np6ea665Jp1OZzKZcrmcJElbW9vatWtvuummrVu3rl27dsWK\nFU1NTdVqtb29vaOjY8WKFblcbnJycnJyMp1Or169+uqrr96yZcumTZuWL1+eyWQuac/ipAAAAAAA\nAAAAAMBlJJVKNTU1LVu2bNWqVbWj3mdmZorF4vmfSpKksbExl8utWLFixYoV+Xz+PLuZXlL13UmL\nxWIYhuVyuVQqNTU1dXR0bNy4cevWrVu3bl25cmVLS0s6nU6SpKWlJZ/PNzQ0TE9PDw0NlcvlTCaz\nYcOGq666avPmzT09PXYnBQAAAAAAAAAAAJaWbDbb1dV17bXXBkEwMjISx3G1Wk2S5DyH14dhGIZh\nLXva0dFx7bXXdnV1ZbPZBez6FLlcrq2trVKppFKpMAzz+fzIyEhLS8uWLVv6+vpWrlzZ3t6ey+Vq\n+61mMpkwDOM4npqaKpVKXV1dqVRqzZo1mzZtWrNmzfLlyxcgGitOCgAAAAAAAAAAAFxGcrlcT09P\nEAQ9PT2FQiGO4ziOz5MlrQnDMIqiKIpqO4P29PTkcrkF6fcsnWQymebm5lozLS0tvb29hUIhl8st\nX7581apVLS0ttQhprb5W1tnZuWnTpubm5rGxsSiK2traOjs729vbm5qaGhoaLnWcNLzg98uLVbVa\nPXHixNTU1PT0dKVSWex2AAAAAAAAAAAAuEyl0+mmpqZ8Pr9q1aooii716+I4LpVKMzMzpVIpjuMg\nCOaYdawFNKMoymazDQ0N2Wx2Abo9qyRJapuqViqVcrlcLpfjOI6iKJPJ5HK5dDpd27W0XpwkSa2y\nWCxWKpUwDNPpdCaTqVXWdl29pA2Lky5RY2Nj+/fvlyIFAAAAAAAAAABg7jKZTF9fX2tr62I3wjwT\nJ12KxsfH9+zZs9hdAAAAAAAAAAAAcEXatGlTW1vbYnfBfFqcTVxZRNVqdd++fYvdBQAAAAAAAAAA\nAFeq/fv3V6vVxe6C+ZRe7AZYaENDQ/Uz7lOp1KpVq5qbm9NpvwQAAAAAAAAAAADOrlKpTE5OHj9+\nvJYirVQqw8PDK1asWOy+mDd2J11yJicn69erV69ub2+XJQUAAAAAAAAAAOA80ul0e3v76tWr6zOz\no2i8CIiTLjmz/w43NzcvYicAAAAAAAAAAABcQZqamurXExMTi9gJ806cdMkpl8v16yjyAwAAAAAA\nAAAAAGBOZh+FPTuKxouANCEAAAAAAAAAAADAkiZOCgAAAAAAAAAAALCkiZMCAAAAAAAAAAAALGni\npAAAAAAAAAAAAABLmjgpAAAAAAAAAAAAwJImTgoAAAAAAAAAAACwpImTAgAAAAAAAAAAACxp4qQA\nAAAAAAAAAAAAS5o4KQAAAAAAAAAAAMCSJk4KAAAAAAAAAAAAsKSJkwIAAAAAAAAAAAAsaeKkAAAA\nAAAAAAAAAEuaOCkAAAAAAAAAAADAkiZOCgAAAAAAAAAAALCkiZMCAAAAAAAAAAAALGnipAAAAAAA\nAAAAAABLmjgpAAAAAAAAAAAAwJImTgoAAAAAAAAAAACwpImTAgAAAAAAAAAAACxp4qQAAAAAAAAA\nAAAAS5o4KQAAAAAAAAAAAMCSJk4KAAAAAAAAAAAAsKSJkwIAAAAAAAAAAAAsaenFbgBYQqp7dtev\nw66VUVvbIjYDAAAAAAAAAABAjTgpsFCq1Ynf/4/1UdM//rnsy1+5iO0AAAAAAAAAAABQI07KCzLz\nt39TObD/tMkwDINMNshmo/b2aPmK1Nq16XV9QSq1GA0CAAAAAAAAAAAAFyBOygtSObC/su2ZC5aF\nDY3p667PverV6S1bF6CrF73yU0/Gw8O162j58sx11y9uPwAAAAAAAAAAAFzRxElZCMlMofzIw+VH\nHk5tvqrpHT+b6l272B1d2Ypf/2o9xZu56WZxUgAAAAAAAAAAAF6IaLEbYGmp7tk98R9+p/Ttby12\nIwAAAAAAAAAAAMBz7E7KfMq/+71he0eQJPHUVDA9HY+OVPbsru79flIsniyqVKb/z58lpVLuNa9d\nvE5ZDFGUf88v1kep9RsWsRcAAAAAAAAAAADqxEmZT6n1G6KulafPlkrFf/hm8ctfikdH6nOFT/xl\navXq9NarF7Q/FlcYZm6/Y7GbAAAAAAAAAAAA4HQOu+fSy2ZzP/K6ln/32+nZu1EmyfT/+bOgXF68\ntgAAAAAAAAAAAIAgECdlwYTNLfl/8f5oVXd9Jh4cLH7ja4vYEgAAAAAAAAAAABA47J6FFDY0NL39\nZyb/6EP1mZmv3p+76+4gDOe+SPXY0XhwMJmYSEqlsKU51doW9a4NGxrmq8l4fCw+fjyeGE8mJ8Mw\nCpqaUt2rU93dQfQ8s9fx8FD18OFkaiopFIJ0Kso1hB0dUVdX1N4xXz0vgGR6unrwQDw0mBRLYWNj\n1NWVXrsuyGQWu69ZSqXKgf1xf39SLEbN+WjZ8tT6Dc/7Ty0pFKoHDySjI/H0dNSUj7q7U71rL+qH\nCgAAAAAAAAAAcAURJ2VBpa+9LtXdXT12rDZMRoYru3amt159wQfjkeHil75YeuKxZHj49HupVHrL\n1uwPvyJ72+3Pu7F4dKT4ta9Wtj1TPXTwzLthLpe+4cbsS38oc/0Nc8wUxgMDxW98rfy9h+LR0bMW\nhO0d6S1bMy+5JXvDjUH6nH8Tpz7y3+IzPnJ84kT9urJ718Tv/va5Hk9ftaXxp94+l4anP/o/qoOD\ntevsS27Jvf7Hnlt/7/eLX/hc+Zmngzg+pf9cLnPLbQ2v/7Fo5cqzd/7f/8u5PntNwxvemLn5JXPp\n7eSaH/vjeKD/uSbveGnurruDIIiHhmY+d1/5kYeTYvGUDvP53Ctf3fCGNwbZ7NxfUT10qPiFz5We\neiIol09Zrb0j97q7G157VxBFpUe+V/7uA8/dyObyv/BPL+pTAAAAAAAAAAAAXG7ESVlomVtuq37+\ns/Vh+cnHLxgnLX7p7wqfuy8olc5+u1qtbN9W2b6t+I2v5X/u56Ous6cbzyUpFmc++5niN752Wnzw\ntJry9x4uf+/h1Jrepne+K7V23QUa/sqXCp/59HkWDIIgGR0pP/Td8kPfLV21pfn9//JcZdXDh+KB\ngfOtMz1dPbD/XHejjrnugVo5fDg+cbx2Ha/rC4IgiOPCX/9V8f4vn/29xWLpO98uPfTd1v/wwahz\n2Vk6P3QoHh46X+eTE3PsrS4+eqR69Mhz15s3B0FQevR7hf/9Z8nMzFnWn5qa+bvPl596svnXPhA2\nN89l/eLffb7w2c8E1epZVhsdmfmrT1SefCL/vl9JBvrLTz1Zmw8bGy/2U5QffrA6NjZ7Jnvr7XP/\nkwIAAAAAAAAAAJh34qQstPTV1wSz4qSV3bvPV50khY//ZfEbX5vLytU9uyf/4D/lf/XXU6t75thM\nPDo6/T/+a2X/vjnWVw8fqh7Yf/44aeFvPlX80t/NccEgCIJK5SKKF9D0//lfpe98+wJF1eoi9l9+\n8onpj/1xkCTnqakePjT1kf/W/IHfuOBqM5/59MwXPnf+msqundP/86PpzVddXKOnvegrXz4tAZzp\nWx+IkwIAAAAAAAAAAItHnJSFllrTO3tYPXwoqFaDVOqsxTNf+NxpWdJo2fLMbbenVnUHuVwyOlrZ\nsW32Oezx6OjUH/7nlt/63TCfv2An8fj45H/83dN20AzbO7I33Bj1rAlbWsIkjscnqkcPl7c9k5xx\n4vxZVXbuOC1Lmt6wMX39DdGq7iifD4IgmZqM+/sre/dWdu04656ap8m85NZkfPz0t+zYHo+OPNdw\nR2fm3Nu7XnAj1XMpfevvZ2dJw4aGqHdtqrU1CaNkcqJ68EAyPX2Bzm+5NZmcPHUuKX33O8+vnzPF\nExPTf/antSxptGJF5sabo2XLkiRJBgbKjz9W/36CIKjs2V3+3sOZ224/z2qlB79zWpY0bO/I3n5H\nanVPkM0mw0OlRx+p7tsbBEH56afiuf0YAAAAAAAAAAAArhTipCy0sKkpammJJ35w0HkcV/tPpLpX\nn1lZPXbstIRfw4+9qeHH3jQ7e5r7kbuqBw9M/clHTx7UPjpa+NQnmn7uXRfoI0mm/+x/zs6SRi0t\nDT/51uwPvzwIwzPLy48/NvPZz1QPHzr/qjOfu+/kIJ1uevd7s7fcdmZZLgiCUqn8xOPnOkq+rvGt\nP3Xm5OQffagel0yvW9f08+8+/yIXKy4WS5/+6+fWX78h96afyFx9zSmR3ySp7Nld/MqXy08+fq5F\nGn/q7adPVavzGCctP/xQkCRBKtX4jp/NveJVs//UGt7ytsJf/vnsdxW/+fXzxEmT6amZv/rE7Jnc\na+9qfMvbgkzm5MzdP1r6zgPTf/6/gmq1euTwfH0KAAAAAAAAAACAy4E4KYsg7OwM6nHSIEiGh4Oz\nxUln/vavZx+k3vDGH29400+cWZZau67lX7x/4j/8+3hsrDZTeuDbubvuTvWsOU8PxW9+vbLtmZMt\ntXc0//r/F61cea76zM0vydxwY+Gv/yoIzhI2fe6DTE5W9uw+2fDdP3rWLOlzstnM7Xdkbr+jevDA\nefpcFJUnHkuKxSAIcve8vvHNbz1LvjYM01dtSV+1pfzE40E2twgtBkFtX9Km9/zCmV9ymMs1vfPd\n1SNH6t9tZc/ueHwsam0760ozX/y7eNYPMvuKVza+/WfOLMv+0J1BpTL9F/97XtoHAAAAAAAAAAC4\nfESL3QBLUdh0ykn08RmHuQdBEI+PlZ98oj5MdXc3vPHHz7lgZ2fDW07ZxbP07W+dr4M4Ln75S7Oe\nD/Pv++XzZEl/0ESq8affkb3jpee6X+0/Ucs41qRvuPECC9ZWfb7n0V86z2VJX/Xqxre87ax7tdZl\nbro5am9fqL5Ol73l1nMGdsOw4XX3nBwmSfXgwbNXxnH5uw/UR1Fra+NPveOcb3zFK9MbNj6vZgEA\nAAAAAAAAAC5f4qQsgqixcfYwKRTOrCk//FAQx/Vh7p43nD/XmH3py6LOZfVh6cHvzk52nr74Y4/E\nQ4MnF3/1a9N96+fSeRAEQTZ7rjvZNijOAAAgAElEQVTJ5OTsYdjQMNc1Lz9hR2fDW396sbu4gOxr\n7zrP3fR1188exkePnLWsvH1bfV/bIAiyr35tmDvffqu5u153MT0CAAAAAAAAAABcARx2zyJIotQp\n42rlzJrKs3tODsIwc8GdPsMwc/NLil+7/7lXTE5Ujx9PdXeftbb85JOzh7lXv+aCPc/FafnR+NDB\n1OqeeVl54eVe9erzpyoXXZjPpzdtPn9B1NZWj4rOzozOVtmze/Yw85Jbzv/e9LXXB6lUUK1eTLOn\niFauCuJTH7+8v2oAAAAAAAAAAOBFT5yUxRCdus/orF1I66oHD9SvU2t6w+bmC66a3rKlHicNgiA+\neOBccdLZCcJUb2+06uxlFytatWr2sPC5+1JXXxu1ts7L4gsse8fLFruFC0it6T3/hrVBEITNzUE9\nRTozc9aa6oH9J+ub8hdMAIeNjameNbN/nxcr/55feN7PAgAAAAAAAAAAXAoOu2cRhNVT86OpM2LN\n5XI8MFAfnRbTPJfTUqGVI4fPWhaPj80+6T4192PuL9hAa1tqw8aTLzpxYuLf/qvCp/+6evBAkCTz\n9ZYFELW1RcuWLXYXFxB1dF6wJsyd3C82KZXOWlM9cuTkmufIH5/+6q6VcykDAAAAAAAAAAC4Utid\nlEWQlIqzh2ceqh5PTc4eRsuWz2XZ1Gll09Nnf/vY+CmLr1o9l8XnqPEn3jz5h/+5Hh5NpqaKX/xC\n8YtfiFpaUhs2pdavT61dl1q3Lmptm8eXzruoZ81it3BhYWPjRdUnyVk2wQ2CICic/J1EHR1zWSrq\naL+oVwMAAAAAAAAAAFzmxElZBPHU1Oxh2NJyWkFSOOVc8jPzpmeXzQZhWI9yxoVzxEmnT3l7lM/P\nafG5SV99TePbf6bwif972nak8cRE/OTj5Scfrw1T3d2Zl9yafeWr5rLF5sILm+bzO7lUUvOxuXIc\nJ8WT4eY5/tJmb3oKAAAAAAAAAADwIuCwexZBPDoyexi2n77XY1J8XnHSIAiz2ZODmZmz1iSn7Vra\nMNfF5yj3mh9pfv+/TK/fcJ6a6rFjM1/43Pi/+Y3iV++f37fPi7BxqcQlk1Jp9jDMZOb0WFoQHwAA\nAAAAAAAAeFERimLBVSrJyClx0tTKVaeVhJnsKeNyeY5rJ5XKycE5ooGnh1PnvPjcpTdf1fyvfrOy\nf1/50Ucqe3ZX9+8LqtWz1JVKhU/+32R6quFNPzHvPbwQYbhUguan/RiSYulclaeUleZUBgAAAAAA\nAAAAcKUQJ2WhVY8cmX0QfNS5LGxsPK0mOnVm9nHk51OpzE5tnrnsc5qaTll8ujCnxS9eum99um99\nrbHKoYOVPXuqu3aUt28LZmdeg2Dmc/dlrr0utXHTJWqD8wnDsKExmfnBb6B49h1tTzfHHyQAAAAA\nAAAAAMAVQpyUhVbZs2v2MLV581mKTk2CxmOjc1k5HhubPTxXnDRqaT3lqYH+uSz+gqTT6fUb0us3\nBK+7O5mcKH7tqzNf/uLsXVGLX/lS0z/9pUveBmcTtrbU46TVwcG5PBLPrQwAAAAAAAAAAOBKsVSO\ntObyUX7yidnDzHXXn1kTNjZGrW31YfX48bmsXD12dPYw6lp11rKoszPM5+vDyv59c1l8voTNLQ0/\n/pPNv/7/BZlMfbK8ffvsHVtZSOnedfXr6vFjc/mDqB4/dik7AgAAAAAAAAAAWGjipCyo+Pixyq6d\nJ8eZTOamm89amVq79uRThw/N3svzXKr79p5rhVOEYXrTyS1Rq/v2xuPjF1x8fqU3bMy99q76MJkp\nxBMTc388TKVODuJ4Hhtbgk75nZRK1e8/e/76eGQkPjGnfDMAAAAAAAAAAMCVQpyUBVX41Cdn7/6Y\nu/OHw4azH0mf6ltfv06KxfKO7RdcvPzk47OeT6V7zxEnDYL01mtODqrV8ncfuODi8y69dt0p48qF\n87InNTTUL+OpqXnqaIlKX3vK/rilRx85f3358cde4Bure3aXn3xi9v8Sf4gAAAAAAAAAAMCiSi92\nAywZSVL45MfLTz15ciaTyd3zhnOVZ269bebzn60Pi1//auaGG8+zfHXP7uqBA/Vh9qaXzD5N/jTZ\nH7pz5r5PJzMzteHM330hc8dLo/aOOXyMeVMdHZk9jFrb5v5s1NJav46PHQuSJAjDeetsiUmtW5fq\n6akeOVIbFv/hm7m7fzRqbz97dbVavP9LL/CN05/8ePXA/tkzLR/4jdTmq17gsgAAAAAAAAAAAM+b\n3UlZCNWjR6b++38pfu3+2ZONb/qJaNmycz2S6lmTnrVBaWXbM+UnHj9XcVAuF/7qE7MnMnf+8Hn6\nCZuasi9/RX2YTE9N/+mfJMXieR55ro3du87TRvXwoXhw8IKLBEEQJEnl4Yfqo1R3d5C+iGx3qrf3\n5ErTU6eEdLl42Ve95uSgVJr+s/8ZVKtnrSz8zafm+kcMAAAAAAAAAABw5RAn5dIoleKRkcr3ny1+\n5UtT//UPJ37rN0+LPGZuviV394+ef43cj71x9nD63j+p7Np5ZllSLE7f+yeV/fvqM+m+9Znrrj+z\ncraGH/vxaPmK+rCya+fkh/8gPnH8XPXJ9PTM3/7N5Id+P5kYP1dN5dlnx//VB6b+5I8ru3YGSXLO\nd8dx4RP/d3bDmZtvOX+3p0lv2Tp7WPjLP5+9Ghcr94pXpdacTOhWdmyf/KMPJcPDpxRVKoVPfbJ4\n/5eDIAhSqYVtEAAAAAAAAAAA4NJy2D3zafzf/usgDIMkOdfmjjXZl9zS9J5fvOD57Jkbb87ccmv5\n0Udqw2RmZvJDv5996Q9lX/qyqLs7zOXi0dHytmdK3/haPDBw8rFUqvEfv/OCi4dNTU2/8E8n/9Pv\n1Vut7v3++L/7N5lbb8/ceFN67dqwpSWpxsnkZPXo4er27aVHvpdMT13wGwiSpPy9h8vfezhq78jc\ndFNqw6ZUX1/U2hY2NQWVSnVwsLJrZ+mbX68eOXyyk+aW3F13X3jlWaLlKzLXXV9+5unaMB4Zmfy9\nf5/uW59auy5oagqjkzHx1OqezB0vvajFX7jy44/FI8NnuRGfErEt79yZlMtnXSH7Q3eGDY2Xorez\ni6LGf/RPJv/zB4Mf9FPZuWPsN96fvvqa1OqesKEhHh4qP/lkMjkRBEGQTmdfdmfpW3+/cO0BAAAA\nAAAAAABcYuKkzKvzpkiDIAhzuYY3/UTurrsvGPesafpHPzc1NHRy680kKX33gdJ3Hzj3C8Kmf/LO\n2WfBn0e6b33zr/zq1Ef/R1IoPDdVrZYf+m75oe/O5fHzi0dHit/8RvDNb1ygLpVqeue7wubmi12/\n8R3/T+V3fiuZKdRnKvv3nblHaeammxc+Tlr8+lcrO3dcsKz88IPlhx88663MDTctaJw0CNIbNuZ/\n4Z9NfeS/BXH83FQcV7Y9U9n2zGmVjT/19mBmZiF7AwAAAAAAAAAAuNQcds8CCfP53Ovuafnd/5h7\n3T1zzJLWnsr/i/enr7l2TsUNDU3v+cXsy+6ce1fpa65t/o1/k1q3bq4PpFJhW/vc1z+/qK2t+Zf/\n38wNNz6fZ7u6mj/wG6nVPfPVDJkbb2r+tQ9Ey1ecsyKKGn/q7blXv/aUyZRQPgAAAAAAAAAAcMUT\nhOLSSKfDXC5qb4+Wd6XWrk1ftSW9+aoglXoeK4WNjc2/+uulR79X/Ox91aNHzl6UzWZf+rKGH//J\nqLXtYtdPda9u+df/rvTYo6WvfKmyb2+QJGcti1rbMrff0XDX3WFn57mWyt35w1FnZ+XJJ8o7tsUD\nA+d5adTennnpDzX86OvDpvzFNnyy897elt/6ncr2beUnHq8ePBAPDcaFQlAqPe8FSV+1peW3fqf0\nwLdLD323OuvHEObzmRtuzL3untSa3iAIknK5/kjY2LA4vQIAAAAAAAAAAMyfMDlHeI4Xq0cffbR+\nfe21c9r18/IR9/eXn3k6HhpMJiaScilqbglbW1PrN2S2bA0ymRe+fjI5Udm5o3rkSDI5GU9OBlEY\nNeWjlSvT6zek1m8IoovYzTceHanu3x/3n4gHBuLCdFipBNls2JSPulam1q1LX+RqLIJqNR4bTQoz\nYVNT1NEx+07hrz5evP8rtet03/rmf/1vF6M/AAAAAAAAAABYBNu2batf33LLLYvYCfPL7qRcSaKu\nrtxrXnvhuucrbG7J3Hp75tZ5WCpq74hu6rhwHZetVCrqXHbWO/HgYP06WrZ8oRoCAAAAAAAAAAC4\nVOyPCHBxqgcO1K9TGzYsYicAAAAAAAAAAADzQpwU4CJU9n4/Hh6qD1MbNy1iMwAAAAAAAAAAAPNC\nnBQgCJIkiOO5FM7c97f169TqnrQ4KQAAAAAAAAAAcOUTJwUIksL02L98f/GLX4jHxs5dlBQ++fHK\n9m31idyP3LUQzQEAAAAAAAAAAFxi6cVuAOCykIwMFz7914W//Zv0VVsyN96U3rAx7FoZNTcnpVIy\nOlLetbP09a9Wjxyp16evvib7w69YxIYBAAAAAAAAAADmizgpwCxJUtm1s7Jr5/mropUrm37+3UEY\nLkxTAAAAAAAAAAAAl5Q4KcDFSV99Tf4X/lmYzy92IwAAAAAAAAAAAPNDnBQgCBsam37u58tPP1Xd\nsyceHzt7URSlN1+Vu+f1meuuX9juAAAAAAAAAAAALi1xUoAgiKLsnS/P3vnyIAji4aHq0aPx0GAy\nORmUSmEuFzQ3R53L0ps2hw0Ni90oAAAAAAAAAADA/BMnBThF1Lks6ly22F0AAAAAAAAAAAAsnGix\nGwAAAAAAAAAAAABgMYmTAgAAAAAAAAAAACxp4qQAAAAAAAAAAAAAS5o4KQAAAAAAAAAAAMCSJk4K\nAAAAAAAAAAAAsKSJkwIAAAAAAAAAAAAsaeKkAAAAAAAAAAAAAEuaOCkAAAAAAAAAAADAkiZOCgAA\nAAAAAAAAALCkpRe7AWDRPPHEE9PT07Xr1atX9/X1LWo78JzDhw8fPHiwdp1Kpe64447F7edc4jg+\nfPjwyMjI9PR0kiT1+b6+vtWrV1/UUocOHTp06FDtOpvN3nrrrXN/dmBg4N577z1/zU//9E+vX7/+\nolp6kXkh3/CLzHe+85369caNG1euXHlJX/fggw/GcVy7fh5/NViyhoaGdu3aVR/ecccdqVRqEfsB\nAAAAAAAAWArESWHpete73rV9+/ba9S/90i/9wR/8weL2AzWf+MQnfvM3f7N23dbWdvz48cXt50xf\n/vKXP/axjz3wwAPj4+Nn3v393//9X/7lX76oBe+9994PfvCDteuenp5nn3127s/29/f/9m//9vlr\nXvKSlyzxOOkL+YZfTCqVymtf+9r68CMf+cg73/nOS/rGe+65p1gs1q6fx18Nlqy///u//9mf/dn6\n8NixY+3t7YvYDwAAAAAAAMBSIE7KC/Kxj33sC1/4wrnuptPplpaW9vb2NWvW3HzzzbfccktHR8dC\ntgcwv6ampt773vd++tOfXuxGgMW0b9++f/7P//nze/bVr371r/7qr57r7gc+8IGdO3ee624URfl8\nvr29ffny5TfddNOtt97a29v7/NoAAAAAAAAAgNOIk/KC7Ny58/77759jcTqdfsMb3vDe9773Na95\nzSXt6kXvS1/6Uv3U5r6+vrvuumtx+4Gl433ve9/lliVNpVL5fP60ySRJpqenF6UfWArGx8fn/t8/\np1m2bNl57j700EMPP/zw3Fe79dZb3/Oe97zjHe/IZDLPr5/51d/ff99999WHb37zm8//eQEAAAAA\nAAC4fIiTsnAqlcp999133333ve1tb/vDP/xD8YLn7SMf+Ug9xfLGN75RnBQWxre+9a1PfvKT9WE2\nm73nnnuuv/761tbWMAzr8y9/+csXsqutW7cODg6eNnn48OHNmzcvZBvAonjkkUceeeSRP/7jP773\n3nuvueaaxW4n2Ldv36/8yq/Uh7fffrv/3gMAAAAAAAC4UoiTsgg+9alPPfPMM/fff7+EAXAF+dM/\n/dP6dUtLy9e//vXrrrtuEfsBqHniiSde+cpXfuUrX7n55psXuxcAAAAAAAAArlTipMyn3/u937v1\n1lvrw2q1Ojo6unfv3n/4h3/46le/Gsdx/daOHTve+ta3fv3rX5+9pR/A5ezb3/52/fpd73rXPGZJ\n3/rWt1577bW168bGxvlaljrfcE0qlfrzP//z+nD2P9lclHXr1s3+Jus+/OEPP/HEE/XhBz/4we7u\n7tNq1q5dO/cXfeYzn5n9i02SZGxs7NChQw888MDnP//5crlcvzU5OfmTP/mTDz300MqVK+e+PgAA\nAAAAAADUiZMyn6677rpXvOIVZ87/2q/92u7du9/97nd/73vfq08++OCDH//4x3/mZ35mARsEeJ6G\nh4ePHj1aH77sZS+bx8Wvu+46G51eUr7hmjAM3/a2ty12Fy8G7e3tZ/0mP/7xj8+Ok959991btmx5\nIS+68847m5ubz5x/3/ved/jw4V/8xV/82te+Vp88ceLEBz/4wQ9/+MMv5I0AAAAAAAAALFnRYjfA\nUnHVVVd98YtfvOmmm2ZPfuhDH1qsfgAuyujo6Ozh8uXLF6sTgCAI1qxZ89nPfvb1r3/97Ml77713\neHh4sVoCAAAAAAAA4IomTsrCyefzf/RHfzR7Zvv27YcOHVqsfgDmbnJycvYwlUotVicANVEUffSj\nH83n8/WZUqn0jW98YxFbAgAAAAAAAODK5bB7FtQdd9yxadOmZ599tj7z4IMP9vb2LmJLp9m3b9+T\nTz45MDCQTqdXrFhxyy23dHd3L3ZTi6BQKDz22GN79+6dmprq7Oxcu3btbbfd9gLzc8ePH9+9e3d/\nf//w8HBbW1tXV9f1119/+W/xOI8/iUqlsnfv3j179oyMjExOTra0tCxbtmzFihXXX399Npt93h0e\nPnz4oYceGhsb6+3tvfPOO5uammbf3b1791NPPTU6Orp69epXvOIVZz00+fyq1epTTz11/Pjx/v7+\narXa1dW1Zs2aG2+8MQzD593z1NTU448/fuzYsaGhoba2tquvvvoFLrgAkiRZ7BYuF5fiJ3FFm/d/\nOA4dOrRt27bh4eHx8fFMJtPc3NzT07Nx48bL89+jPXv2PPvss8eOHUuSpKen57bbblu2bNl8LX6F\n/sOxkFasWPHmN7/5L/7iL+oz3/72t9/ylrcsYksLYN7/0u3cufPAgQMDAwOFQmH58uUrV6684YYb\nnse/mAvW8KUwNDS0a9euI0eOjI+Px3G8bNmy5cuXb9iwYc2aNS988Svo/9Yu0X+tLYAkSZ5++unt\n27ePjv7/7N13WBTXw//9ARQFRIqKCpZERVCDSkSJscSuiIk99t7iTaIxGlusMUG5Y49+iSZRYwmW\nRCNgQQyKotiwIZbYiYiFjhSR8vyxz2/u+e6yywBbwH2//uCaM3v2zGGZMztc+9lzUuzt7R0dHd3d\n3aVxcy0e6M6dOzExMYmJiYpTumXLlsX9h04Xgy4tLe3q1atPnz5NTU21tbV1dXVt3ry5Tm9OUlNT\nr1y5Ehsbm5mZWbVq1YYNG7Zo0aJy5coyn66LQZefnx8REXHv3j1ra+v33nuvSZMm0kezs7MjIiJi\nY2MtLS2bNWvm5uZW4gMBAAAAAAAAAIC3FXFS6Ju7u7s0Tvr8+XN1NSdPnvzo0SPFdv/+/adOnaq5\n5enTp9+6dUux3bVr1zlz5hRa7eTJk998841YDAkJqVKlSkFBQUBAwOrVq2NiYqSVTUxMPvjgg+XL\nl3t6emo+uo4MGTLkyZMnSjulL+Dp06fbtWun7ukdOnRYsWJFsY4YGxvr6+v7xx9/ZGRkSPfb29tP\nmjRpzpw5FhYWxWowNTXV398/KCjoypUrSoE8U1NTT0/PCRMmDB8+3IBBNF2fEhcvXjx8+PCpU6cu\nXbqUk5OjWqFKlSqdOnX69NNPBw0apPl1CAoKEv+gH3/88cyZM7/++utff/01NzdXsbNatWrLly8f\nNWqUIAgvX76cNGlSSEiI+HQrK6tFixZNmzZNZs/Dw8N//fXX48ePJycnKz1Us2bNPn36zJkzp7jp\ngZiYmOXLlx85ciQzM1O638nJ6auvvpo6dWpZiCQqnRIKWVlZ0uKUKVPURTSmT5/+6aefqmv88OHD\n33//vYajOzg4HDhwQHZn9UoXp4TW6eIV1s8bx8OHDzdt2rR37974+PhCKzg5OXXs2LFv375eXl5y\nUk2DBg1S15TC3LlzP/7442J1UpSbm/uf//xn27Zt4juvgpmZmbe393fffefs7FyyloXy8MZRprRr\n104aJ1X6o4eEhHz77bdi0c/Pr3379jJbjo6O/uyzz8Si0sVNqWUFpZuHcePGabht2LZtW7HOE60P\nuri4uNWrVwcFBalOlm9ubt6hQ4dx48bJzOaWr9tLUUpKSnBwcFhY2KlTp+Li4gqt06RJk549e/r4\n+JQg4qb1y5ruaPFuTde6desm3pNMnTp15MiRgiBs3rx55cqVSmeypaVl7969582b17Rp02Id4vjx\n44sXLxaLgYGBiu8JZGZmbtiw4ZdfflEdMs2bN58yZcqYMWM0f/1Mi4NOKjo6esWKFYcPH87Ozpbu\nd3Jymj59+v/8z/+YmZnt379/586div1WVlbSy6YGw4cPf/z4sWK7X79+X3/9tWL7woULfn5+x44d\nE2/CxZYHDBgwe/bsRo0aFdqgdgdd//79X7x4odg+cODAgwcPxo8f//DhQ7FC9+7dt2zZovgaxvbt\n2xcsWPDy5UvxUU9Pz23btr3zzjuajwIAAAAAAAAAAIwKcVLom729vbSYlJSkrmZUVNTNmzcV2y1a\ntCiy5atXr164cEGx7eTkpK5aUlLS5cuXxWJubm56evqIESNCQ0NVKxcUFERGRnbu3HnDhg3jx48v\nsg9ad+PGjQcPHmiokJKSIv11lGh4HQp14MCBKVOmpKenqz6UlJTk5+d3+PDho0ePKv0RNdi8efOy\nZcsSEhIKfTQ/Pz8yMjIyMvKnn37aunWruo9ddU13p8S5c+fGjRsnpqLVefXqVXBwcHBw8IYNG9as\nWfP++++rq5mQkCB2tXnz5qNHj/7rr7+kFRITE6dMmVK5cuVevXp17dr17t270kczMjLmzJlTsWLF\nIsPZDx8+nDVr1uHDh9VVeP78+a+//vr777/Pnz9/1qxZmlsT+fn5+fr6FprSiIuLmzlzZmho6JYt\nW2S2pjtKp0Sh7ty5o+4hDSl5QRASExM1N17cYasfOjoldEEXr7Ae3jjWrl27dOlSpRyMkri4uICA\ngICAgA4dOhw7dqzINqOjo2NjYzVUUHdxLtI///wzZsyYq1evqj6Ul5cXGBh44sSJn376acCAASVo\nvFy8cZQptWrVkhaVXroPP/zwzp07Ysrzl19+kR8n3b59u3jmm5mZKT1RzqVSKW2sROl7BZppfdCt\nWrXK19dXXR9ycnL+/vvvv//+29/ff9OmTQ0bNtTcWvm6vVSYPHnynj17Cn1Tlrp169atW7c2bdo0\nY8aMuXPnVqxYUWb7uris6YLW79Z07erVq+KIfvbsWVpa2sSJE4OCglRrZmZm/vHHH4GBgYsWLZo5\nc6b8QyQnJ0vP5zdv3giCcO3ataFDh6p7oa5fv+7j43P16tX169era1a7g070ww8/fPfdd+puL2fP\nnh0cHLxv374HDx4cOXJEsd/GxkZm4zExMf/8849iW/FHz8vL++abb9atW1do/YyMjB07duzevfvm\nzZuqYVCtD7ro6GgxkxoZGTlmzJjXr19LK4SGhvbu3TsiImL79u1ffPGF0tPPnz/v5eV1/vz5qlWr\nau4SAAAAAAAAAAAwHqaG7gCMzqtXr6RFXazAWCxv3rzp169foR/2iwoKCj7//PMTJ07orVcGcfjw\n4VGjRhWaJRVFR0cPGTJETmu5ubmfffbZ9OnT5cSVLl261K1bt+joaLl91SUtnhIPHz4sMp0gdeHC\nhR49epw9e1ZO5cOHDytlScW+zZs3b/78+UpZUtHChQtTUlI0tHzx4sWPPvpIQ3BQlJWVtXDhwhkz\nZshZCH7hwoVLlizR/An60aNHx40bx7LyZY2OTonyS+tvHAsWLJg3b57m0JWUUlhEzx4+fOjl5VVo\nllSUnp4+evToyMjIYrVcft84DCs/P19aNDX9r9t7a2vrQYMGicXAwMDU1FQ5zb5582bPnj1isWfP\nno6OjqXraclpd9AVFBTMmDFjwYIFcvKsZ86c6d69u+ZcrKpycXt55syZImNtoqysLF9f3zFjxijN\nxahOObqs6fRuTQ/Gjx9faJZUlJOTs2DBAs3zdhfp+vXrPXv2LPKFUvd/hO4G3dKlSxctWqT5TD51\n6tSYMWPktCbH1KlT1WVJRW/evCn0lNbpoJs2bVqhB42Ojl6yZMm8efMKfdajR49Wr14ts0sAAAAA\nAAAAAMAYMDsp9E1prs0SrJupXStWrFB8HlypUqVu3bq1bt3a1tY2OTk5IiIiLCxMTEQVFBTMmjXr\n4sWLSikNXevXr5+4gqEoLCzs6dOniu06dep06tRJ3dNbtmwp80AJCQkTJ07My8sTBKFBgwbe3t71\n6tUrKCh48OBBYGCgeDhBECIiIv744w9pNqVQY8aM2b9/v3SPi4uLt7e3q6urtbV1cnLylStXgoKC\nnj17pnj0+fPnffv2vXTpkvypT3VEd6dEgwYNPDw8WrRoUa1aNVtb25ycnOfPn1+9evXQoUNivjMj\nI6Nfv34nT54sclnSFy9eVKxYcdasWe3atUtKStqwYYM4O29cXNwvv/wiCIKXl9fo0aOrVKly5MgR\nf39/ReczMjIOHTo0YsSIQpu9cOFC7969pasVK+Y6bd++fa1atfLy8v7999+///775MmT4kvx008/\nOTo6iqt/Fuq3335buXKldE/jxo0HDx7cqFEjU1PTe/fu/fHHH4rcQEhIyL179zT/7rpWv359xdKx\nUsnJyYcOHRKLvXr1UqwcquXRR30AACAASURBVKpJkyYaGm/YsKFq49euXSuzqTgdnRK6o4dXWLtX\nifDw8FWrVkn3tGnTxsvLq3HjxnZ2doIgJCUlPXjw4MKFC+Hh4ZoT/0r69++fmJgo3VNQULBr1y75\nLajKzs7u27ev9E2hUqVKffr0+eijj6pXr56QkHDmzJnAwMCsrKy8vLyxY8cq3lZkKr9vHIYl/XMI\ngqB6aRo3btxvv/2m2M7Kytq3b9/EiROLbPbIkSPSNZHHjh2rVKFBgwaqYy0hIeHo0aNi0dvbW3Ea\nF0r+H067g87Pz++nn36S7qlfv/6gQYNcXFysrKzi4+P//vvv0NBQMcIVHx/v7e0dFRWl4XfRaYf1\nwMrKyt3d3cPDo379+vb29pUqVUpLS7t79254eLh4dyEIwoEDB3x8fDZt2qS5Nd1d1vRAu3drurZt\n27b79+8rtps2bTpo0KCGDRvm5+ffu3dv79690m8Wfffdd4pbrxIcJTs7e8SIEdIkuqura7169ezs\n7F69evX48eOYmBjNXyPR0aALCAhYsWKFdI+Tk9PgwYObNm1qaWkZGxv7119/KU7go0ePPnnypLi/\nuKqtW7fu2LFDLFpbWzdv3tzBwcHMzCwhIeHq1auav7Ilpd1BJwjCixcvPDw8pk2bZm9vf+bMmVWr\nVonR1TVr1giCYGdnN2fOHDc3t/j4eD8/P/H02LNnz5IlS2R2GwAAAAAAAAAAvPWIk0KvEhMTo6Ki\npHvatm1rqM4oKD6ca9++/c8///zOO+9IHzp79uygQYOSk5MVxZs3b0ZERHTs2FGf3St0JqFPPvlE\nzI64u7v//PPPpT/Qvn378vLyzM3NV61aNWHCBBMTE2kfpk2bJk0gbd68WXOcdOPGjdJIUNWqVdet\nWzdkyBBps+PGjVuxYsW3334rTvATHx//5Zdfbt++vfS/Tmlo/ZSoU6fOqFGjhgwZ4uLiUmiFzMzM\nRYsWbdy4UVFMT0+fMWNGSEhIkV319fX9/PPPFdu9e/d2d3f/999/xUe7dOki/hW6deuWk5OjyJgK\nghAREVFonDQtLW3MmDHS4ODHH3+8evVqpdj3zJkzL168OGrUqMePHyv2fPfdd15eXu+9916h/UxM\nTPzmm2+kexYvXjx79mxpembevHnr1q375ptv8vPzxWCEobRq1Up1WF27dk0aJ507d66np2cJGv/w\nww8//PBDpZ1Lliwpm3FSHZ0SOqWHV1i7Vwnpdb5SpUpbt27t379/oTWzsrKCg4M1rCOsRClkIwhC\nbm5uKeOkK1eulOaTmjRpEhAQIL24TZo06f79+8OHD79+/XpsbKz8lsv1G4dhhYeHS4tOTk5KFTw9\nPZs1axYTE6Mo7tixQ06cVHqq1KxZ08vLS7VZ1cvg+fPnpXHShQsXtmjRoshjFUmLg+7OnTtKQ2P+\n/Pnz5s2rUOH//i3y8fG5du3a6NGjxUWu4+Pj586dKyfRpfUO65Spqam3t/eQIUO8vb0rV65caJ3I\nyMixY8eKw3n79u0jRoww1GVNd3R3t6ZTilsmU1PT5cuXf/HFF9IL5vz58319faV/i7lz53p5eVWp\nUqW4R9m4caPiqz4WFhbTp0+fMGGC0m1AYmLib7/9pu7vqKNBl5KSMmfOHOkeHx+f77//vlKlSuKe\nGTNm7Ny508fHJycn58aNG3J/YTUyMjIWLlyo2G7duvXChQs7deokXYk+Pz//7Nmz69atCw4OVteI\njgadIAhOTk5Hjx5VLP3RtWvXGjVqfPXVV9IKf/zxh3iD1KFDBzc3N0Xe9NGjR0+ePDH4lzwBAAAA\nAAAAAEAZwWL30KsVK1ZIF/jr2LFjvXr1DNgfQRDy8vJat2598OBBpQ/7BUH48MMP/f39pXsOHDig\nv57pl2ICuW3btk2cOFH6UbQgCJaWlps3b5ZOdHrmzBnVOVNF9+/fl2YH7ezsTpw4MXToUKVmFS2v\nWLFC+knwvn37rl+/XsrfpZS0eErUrFnzxx9/jImJWbRokbp0giAIlpaWK1euHD16tLjn1KlT4qfp\n6piamkqnhbOysurXr5+0wvjx46XFTz/9VNxW94H67NmzpcuYTpo0ac+ePYV+uty6deuwsLAaNWoo\nijk5OcuWLVPX1R9++EE6ReKsWbPmzp2rNBObiYnJl19+uWjRInWNwCB0dEqUd1q8SiQlJUlXTJ4x\nY4a60JUgCBYWFoMHDz59+rSholcJCQnSGQdr1KgRGBioenFr2LBhYGCgaqhRg/L+xmFAT548CQwM\nlO5p3769ajXp3KIXLly4ffu25mYTEhKOHDkiFkeMGCENfumfFgfdokWLpOtBf/PNNwsXLlT97Vq0\naHHo0KFatWqJe7Zv3y5GcvXZYd0ZMGBAVFTU3r17Bw4cqC7WJghC27Ztg4KCpBXEb6cUqnxd1gQd\n363px7Jly6ZNm6Z0wTQ1NV2wYMEXX3wh7nn69OmGDRtK0P7WrVsFQahbt+65c+cWL16sehtQrVq1\nr7766vLly3369FF9uo4G3cqVK6UzKE+YMGHlypXSLKnCyJEjFXNzll5gYKDihnbWrFnh4eHdu3eX\nZkkFQTA1NW3fvv2+ffv27duniHUq0dGgUxg4cKD0oMOGDZOeEq6urtIv29SrV++DDz4Qi6XP2gIA\nAAAAAAAAgLcGcVLoSUFBwZo1a6QfYZqZmS1dutSAXVIwNTXduHGjpaVloY/27dvX2dlZLF6+fFlf\n/TKA/v37q/u839TU9MsvvxSL+fn5V69eVdfO2rVrpZ8Zb9myRfNKoAsWLGjcuLFYlD/1l45o8ZTo\n0qXLxIkTzc3N5Rx38eLFZmZmYlE6u1uh6tata2trK92jtMZ68+bNpUVpQkKcQlLqyZMn0rnoPD09\nV69erZrlEjk6Okrnmjp06JB0blRRbm7u7t27xaKTk5M4sZOqr7/+WkOSA3qmo1PiLaDFq8S9e/ek\ny8H37t1bTge0Mt1jCezduzc7O1ssLliwQN1kZjVr1vzuu+/kt1ze3zgMJScnZ+zYsdKXrnLlyh99\n9JFqzeHDh0tTVkXO57p79+43b96IRdWV7vVMW4PuxYsXhw8fFouurq7z589XV7lOnTpKk8T/9ttv\neu6wTi1btszV1VVOzcaNG0tjlCEhIRpWNi9flzVBx3dretC0adMZM2aoe3Tp0qU1a9YUizt37izB\nITIyMqpUqXL06FHphVeVvb39wIEDlXbqaNDl5eVJb1EcHBz8/PzUNTt+/Pg2bdpo6LlMisnaJ0+e\nvGzZMg23Q4Ig9OnTR5qLFelo0Cm4ublJi7a2to6OjmJR6f8CQRCkPSn0XwMAAAAAAAAAAGCciJNC\nmzIyMlIkkpOTnzx5cv78+fXr17dp00bps8PvvvtOOieKoXTs2FHpszclPXv2FLdv3bql+x4ZjI+P\nj4ZHe/ToIS2qeykSExOlH+5269atV69emo9boUKFKVOmiMU///wzPz+/6O7qjKFOCUdHR+kHvUXO\nElS3bl2lPbVr19ZQoUaNGmIAIiEhQRr1UPD398/NzRWLfn5+Rc5FN3jwYDGjkJeXV+j8amFhYc+f\nPxeLU6dO1ZDYMDU1nT59uuaDQm90dEq8BbR4lUhKSpIWS7AGsT7t2bNH3La1tR0zZoyGyp9++qnq\nZapQb8Ebh0HExMR069btzJkz0p1TpkxR+qaBgr29fd++fcViQECAdHSrkv5F2rVrJ80+GoS2Bt3e\nvXulv/jMmTOVpspWMnToUOk8+gEBATLPtLfv9lJ6H5iWlqbh2wLl67JWXMW9W9ODL7/8UkO00cLC\nYtKkSWLx/v37Fy5cKMFRlixZ0qBBgxI8UUeDLiws7NmzZ2Jx6tSphc4GKpo2bVoxOq1enTp1fH19\ntdJUkeQPOgXN/xqoLgkiDbxK79UBAAAAAAAAAICRI04KbRo+fHhtCUdHR2dn506dOs2ZM0f6aau1\ntbW/v790tksD8vb21lxBOldienq6Ylqat4+9vb10AURVdnZ20g8dpZ/gSoWGhmZlZYlF6QfYGkg/\nLk1NTS1yEV6dMuApIf2c/unTp5or29nZKe2RRogsLCyU1tA0MTGpWrWqYrugoCAlJUXp6QcPHhS3\nmzdv7unpWWSHK1as2KlTJ7F4/vx51TrSFW8FGbOUeXt7a57wCXqjo1PiLaDFq4RS/OXatWul7Jvu\nZGdnS+dQ7NKli+qawlKmpqYyZyV8C944dCcoKGi/xJ9//vnbb78tW7asR48erVu3vnjxorSyk5PT\n119/ra6p8ePHi9vPnj07duyYupo3btyQzkE+bty40v0SWqCtQRcZGSlum5mZFXmKmpqafvzxx2Ix\nISHh7t27RXf3bby9bNiwobSo4S6lHF3WSqZYd2u6Zmpq6uXlpbmOUgWlGzM5bGxsSnwd0NGgi4iI\nkBalcflCqS5MXzKTJk3SnFvVIvmDTkH1uwQ2Njbituo/DuL/BYIgqP5fAAAAAAAAAAAAjBZxUuiP\niYmJi4vL/Pnzr127ZvBVU0UtW7bUXKFatWrSYnp6ui67YzBubm5FZvikL8WrV68KrSP9iNrc3Lx7\n9+5yjt6oUSNra2uxGBUVJedZOmLAU0L6MXBaWprmyqofZltYWIjb0tdTJF11NzMzU/rQ8+fP79+/\nLxZlhsAEQXB3dxe3L126pFpBmkmys7Nr0qSJ5gYdHBxY774s0N0p8RbQ4lVC6Wz39fV9+fJlafqm\nO9HR0dIZ5jR/A0GhQ4cOclp+C944dGf8+PEjJEaOHPnZZ5/5+vqePn1aaeFjW1vbgwcPKp17Uh07\ndpSGk3bs2KGupvShqlWr9u/fv3S/hBZoa9BJ35Lee+89e3v7Ig/dsWNHdS1o8PbdXkpzaYIgpKam\nqqtZji5rJVOsuzVdc3V1rV69uuY67u7u0jvA69evF/con3zyibSFYtHRoLty5Yq4Lef2smrVqs2a\nNSvy0EUaOnRo6RuRSf6gU1CdCVj6V9P8aNlPtAMAAAAAAAAAAL0pYtVaQItatmz51VdfDRw4sExN\nPejk5KS5glJoTzqD2tukyNdB+O+XQimMKJJORujs7CwNOGrm4OAgZinUTX2qHzo6JdLT048ePXrl\nypUbN248f/48LS0tIyNDaflO6Ue5RTaruuy4dBH5Qmdgkj4lJydH+pDSLJLShVw1E1c2F9T84W7e\nvCluy1wu2dnZ+W2daLAc0d0p8RbQ4lXCwcHB09NTfLXv3r3bsmXLCRMmDBw4sHnz5mXq7VJpPW45\nw7lRo0ZyWn4L3jgMrm3btr/++uu7776roY6JicnYsWMXLlyoKB46dCghIUE1iJabm7tnzx6x+Omn\nn5Y4RqZFWhl02dnZDx8+FIuNGzeWc2ilajExMXKeVe5uL69cuXLq1Kno6Oi7d++mpqa+evUqOztb\nWkEpvvx2XNZUaf1uTdfkXIpNTEwaNmwYHR2tKMo8h6XatGlT7J4JgqDLQSe9vZT5NaRGjRrJjIOr\nU6tWLdUl40tMi4NOQfVfA+m/A6r/Gkj3KP1fAAAAAAAAAAAAjBlxUmiTnZ2dNNCWmZkpnWzpypUr\no0aN2rlz55YtW+TMTKMfhU7iqIHSJ8pvDelyh3Koex3i4+PF7bi4uC5dugj/79NQ6U/VndInJicn\nF6sz2qX1UyI2Nnbx4sUHDx4sVuZAOgtgoVQ/MzY1/b8Jp83MzFSfIt2Zl5cnfUj6+guCsHz58h9/\n/FEQhIKCAqU/nCD5qxUUFEgXx8zJycnMzFQKHkn/mnXq1NH8Sylo8aN6lJjuTom3gHavEosXL+7T\np49YJykp6Ycffvjhhx9q1Kjh6enp4eHRsmVLd3d3BweHkvdYG5SuzHKGs8yx/Ba8cRiKiYlJ586d\nJ06c2LdvX+lbgDojR45cunSp4v3lzZs3u3fv/vzzz5XqhISEPH/+XCyWkenktTLokpOTpRcumedn\n/fr1pUWZS0KXl9vLgoKC7du3r127trjf4lC6i1BSXi5rUjq6W9M1madx3bp1xThpYmJicY/y3nvv\nFfcpCrobdNKdcr4UJwiCo6OjnGoaaGV+Ux0NOqGwm3/p+4LqPw4a/i8AAAAAAAAAAADGjDgptGnb\ntm09evSQ7klMTDx27Njy5cvv3r2r2BMSEvLJJ58cP368cuXKhuijMtWP1oyTtl4HaaAnJSUlMjKy\nBI0YduVQ7Z4SW7ZsmTVrVgkmr9J1skRpxiOlJJaYOSiu1NRUaXYwPz9fOomX0mRs6sisBp3S0Snx\ndtDuVaJz584rV66cNWuW0qh/+fJlcHBwcHCwoujq6tqvX7+JEyfKzM1ondIyu6rL5qqSU0d4K944\ndGfQoEHS883ExKRKlSpVq1atUaNGixYt3n///WJ9G6RWrVq9e/cODAxUFHfs2KEaJ921a5e47ebm\n1qpVq1J0X2u0MuiUThKZ56eFhYWpqak4PItcb1qhXNxevnz58tNPPz137lwJnqv5LqW8XNZEZfZu\nrUgyb5mkb8QluFra2dkV9ymFHktbgy4vL88gt5clfh1Euht0paT0fwEAAAAAAAAAADBm5eCTTpRr\n1apVGzZsWL9+/QYNGhQWFqbYGRUVtXjxYj8/P8P2DVqXkZGhlVma3poJcn7++edp06Yp7axbt+57\n773n5ORkZWWlFDc5fvz4tWvX9NjB/yMzH1Mkpb9dZmam9PNpmWtYv33pw/JIR6cECjV16tTmzZvP\nmzfv4sWL6urcvn17xYoV69ev//bbb318fPTZPYXMzExpUc53QipWrFihQgXN7wu8cWjm7+8vM4Al\n07hx48Q46fXr169evdqyZUvx0aSkpEOHDonFMjI1qba8evVKWpT/XmNpaSk+V6mR8ispKalXr17S\nFcMFQahcubKbm5uzs7ONjY3S65OZmenv7y+//XJxWVMoR3drqmTeWUmrvXr1qqCgwMTERP5RSnwV\n0tGgUwr+yvyOYqVKlWQeXZ3izjqsRNeDDgAAAAAAAAAAQCuIk0IfLCwsdu3a5enpGRsbq9izYcOG\nESNGNG/e3LAdg3ZZWFiYmJiI8UEXFxc3N7cStOPh4aHVfhnGw4cPZ8+eLd0zbNiwGTNmaHhNkpOT\nDRVQUPoAe8CAAXLWTS6yHaWUw+vXr+U0IrMadEpHpwTUadeu3alTpy5fvnzgwIGIiIjLly/n5OSo\nVsvMzJw1a1ZycvKCBQv03EOl4Vxo95Tk5+cXGRXljUPPevTo4eTkFBcXpyju3LlTGifds2eP+Jet\nVKnS0KFDDdBFnSnZW5JSzTIyuX7pLViwQBprq1u37oIFCwYMGKAuOPj06dPiJtvK/mVNKG93a6pK\ncGdlbm5erCypUNgq6jLpaNBZWVlJ3ziUvu2gjsxqGpT4dVDQw6ADAAAAAAAAAAAoPeKk0BNbW9t1\n69b1799fUczPz58zZ86RI0e0eAiDLzcJU1NTGxublJQURbFLly6rV682bJcMyNfXNzs7Wyz+/PPP\nI0eO1PwUbc0HWQJKy3euX7++WrVqpW/WzMzM0tJS/Pxe5gf50gVMYSg6OiWg2fvvv//+++8LgpCT\nk3P9+vWzZ8+ePHkyLCxMKYLj6+vbvXt3T09PffZNaVF1OcNZzljmjUPPTE1Nx4wZ4+vrqyju3r3b\n19fX3NxcUZSudP/JJ5/Y29sboIs6o3QOy3yvycnJefPmjbpGyqmHDx9u27ZNLL7//vtBQUGa/9wl\nWCFdbLzMXtaE8na3pkrmnZV0Ok8bGxuddUeZjgadiYmJtbW1eE7KnDPYsLeX+hx0AAAAAAAAAAAA\npVGSmcaAkunVq1fPnj3F4smTJ0+ePKmhfnEnzuEjt7JAGjhLSkoyYE8MKy8v7/Dhw2Jx2LBhRaYT\nBIO+YtWrV5cWk5OTtdWyNJX4/PlzOU+RWQ06pbtTAnKYm5t7eHhMmzZt//799+/fnz9/vnR6toKC\ngrVr1+q5S7a2ttKinHEqcyzzxqFnY8aMEScbTkxMFFe3v3nzZlRUlFht3LhxBuicLimF0uLj4+U8\n69mzZxoaKaeCgoLEmR1NTU23bdtWZHS49GOzDF7Wyt3dmiql81Md6dVYn+ew7gZdjRo1xO1Hjx7J\nafbx48dyqumIQQYdAAAAAAAAAABACRAnhV4tXLhQWly6dKmGypUqVRK35ayNmJCQUOKOQVuka+bG\nxMQYsCeGdffuXelnwKNGjZLzrOjoaJ31qAjSP5wgCDdu3NBWy40bNxa379+/L+cpd+/e1dbRjVaF\nCv81+3gJJm/W3SmB4qpWrdrChQtDQkKkqwaHhYXpeU5uFxcXafHevXtFPuWff/6R0zJvHHpWr169\nrl27isUdO3YobQiC8M4773Tq1EnPHdO1qlWr1qxZUyzKPD/v3LkjLTZq1EjL3TKECxcuiNsffPCB\ns7NzkU/R7vLuZeSyVu7u1lTJuRQrVdPnOay7QdeiRQtps3LOHJlH1xGDDzoAAAAAAAAAAACZiJNC\nr1q1aiWdoPTcuXNhYWHqKltZWYnbRS4r+fTpU+OZwaVixYridm5urgF7oqpdu3bi9s2bNxMTEw3Y\nGQN68eKFtCjnk/vbt28bMBLt6uoqnY0yIiJCWy03b95c3I6LiytyGq3MzMybN29q6+hGS2kp2/T0\n9OK2oLtTAiXTpk0bHx8fsZiWlqbnC6ybm5t01vArV64U+ZRLly7JaZk3Dv2Tzjx67Nix+Pj4vLy8\nPXv2iDvHjBlT3EniFaS3KELZu0uRRtCio6PlfFvp4sWL0qJS1L6ckt6lyAwXnjlzRuvdMPhlrdzd\nramKiYmRLmRfqMePH0v/S5KOAj3Q0aCT7szMzDx//rzmNp8+fWrYOGkZGXQAAAAAAAAAAABFIk4K\nfZs9e7a0+P3336urKV39tsipdzTEUt8+VapUEbdTUlIM2BNVXbp0Ebfz8/O3bt1qwM4YkNJH++Lq\nlhps27ZNV72RRzoRXUBAQGZmplaabdOmjbQYGhqquf6JEyeys7O1cmhjZmFhIU3ky5y9TImOTgmU\nmFIGSE4oR4usra2bNGkiFkNCQop8ytGjR+W0zBuH/vXp08fBwUGxnZeXFxAQEBoaKq5DbWZmJnOa\nRlXW1tbSYpFfB9KzVq1aidsZGRknTpwo8inBwcHitrm5uZubm056pl/S91k5tyiJiYnS10GLDHtZ\nK493a0qysrLCw8M111G6XEtHgR7oaNB1795dWjxw4IDmNgMDA4s8rk6VnUFXSi9evDj836QTrwIA\nAAAAAAAAgLcAcVLo24cffvjhhx+KxbNnz6r7WFG6RnZ0dHRycrKGZo0qfVKjRg1x+/bt23peGFQz\nFxcX6RK669evf/78uQH7YyjSMLQgCLdu3dJc/8mTJwY/h6UzhCUlJa1atUorzfbq1UsagP7ll180\n1//pp5+0clxIMzolC9zr6JRAiYlpPwUxDqg3gwYNErdjY2OPHTumofL58+flzGAq8MZhCBUrVhwx\nYoRY3L59u3Sl++7duzs5OZWsZemsxoIg3Lhxo2Tt6MjAgQOlxf/85z+a6589e1Z6Gvfp06dy5co6\n6Zl+Se9Sbt++XWR9Pz8/HQU9DXtZK493a6o2bdqkucKvv/4qbtvY2CgFMXVNR4OuZcuWzZo1E4u/\n/vqrhvnvc3Nz161bJ7fHulF2Bl0pXbp0aeB/W7JkiaE7BQAAAAAAAAAAtIk4KQzg66+/lhbVTVAq\nXSP7zZs3GmYD2r1799mzZ7XUu3JA+sokJyfLnP5Nb7766itx++XLl6NGjZI/qeHZs2eli+2WXy4u\nLtIFf7dv366hck5OzuTJk9PS0nTfL00++OCDtm3bisUVK1YcOnRI5nNTU1N/+OGHQn8FS0vLvn37\nisULFy78+eef6toJCQk5fvy47C5Dk44dO4rbERERJbhI6uiUgNSNGzceP34sp2Z+fr708ujq6mpu\nbq6zfhVu6NCh0gXQFy9erC7skpubO2/ePPkt88ahf9L17u/cufPXX3+JxdGjR5e4WTs7u7p164rF\nffv2yZmHT2+aNWvm4eEhFkNDQzXM//f69es5c+ZI95TmlSlTpDm8S5cuaU79/v333xs3bpTfeDm6\nrJXHuzVVR48e1fClkd9///369eticcCAAXqOROtu0E2ePFnczszMnDBhQm5ubqE1FyxY8OjRI/l9\n1gWdDjoAAAAAAAAAAAAtIk4KA+jVq5c0EHnmzJmTJ0+qVuvWrZv0Q2VfX9/z58+rVgsODp46daoO\null2dezYURromTZtWlRUlAH7o6RLly7Dhg0Ti6dPn+7atevNmzc1PCUjI2PPnj1dunTp2rXruXPn\ndN9HnbO2tpbOwrt///7NmzcXWjMhIWHw4MFylv7Ug/Xr11tYWCi28/PzhwwZsmrVqpycHA1PuXHj\nxrx581xcXBYtWqSu5pw5c6RjeerUqZGRkarVLl68KI03oZRGjx4tvVAMHz68BKeZjk4JiCIjI5s1\nazZ69OhTp05pmGo6Ly/v66+/ll7qpSltvXn33XelU1pevXp18uTJ0gV8FXJycnx8fAod5uqUuzeO\nvLy8lMIohZnS09NV68hPyuqUs7Nz+/btxaJ4+lWrVs3b27s0LXfq1EncvnTp0tdff616khjQ3Llz\npcXx48efOnVKtVpGRsa4ceMuXbok7vHw8NDztI6606tXL3G7oKBg7NixL1++LLTm/v37Bw8eXKyJ\n8MvRZa2c3q2pGj169OXLl1X3nz59+osvvhCLlSpVmjVrlh779f/T0aCbMGGCm5ubWAwLC/vkk0+e\nPHkirZOTkzNv3jzF1KTS6LD+6XTQAQAAAAAAAAAAaFEFQ3cARmrWrFnSyWa+//57afhAwcbGpk+f\nPvv371cUX7161b1793Hjxnl7e9epUycrK+vu3bv79u07fPiwIAj16tWzsbGJjo7W129gSO+88073\n7t3FVYbj4uLat2/v4eHRsmVLW1tbMzMzsWaTJk2GDBmi/x7++OOPly9fvnPnjqJ49epVDw+Pjz/+\n2MvLq3Xr1jVq1LCwCZc9hwAAIABJREFUsEhKSoqPj7948eK5c+dCQkIyMjL030+dmjlzZnh4uFic\nPn16WFjYxIkTW7VqZWtrm5qaeu/eveDg4M2bNycnJwuCYGVl9cEHH/z999+G67Lw3nvvrV69Wsxn\n5+XlLViwwN/ff+TIkZ06dXr33Xft7e2zsrISExNv37597ty5sLAwOQsZOzs7T5s2beXKlYpienp6\njx49xo8fP2zYsIYNGwqC8ODBg7179/78889v3rwRBMHa2jo9PV1nv6XBxMfHS+f/k5KmQDIyMvz9\n/Qut5urq2rlzZ5mHe/fdd8eOHSsuy/v8+fPevXvXq1evfv36FSr837t/y5YtfX191TWio1NCR/T8\nCmtLXl7evn379u3b5+jo2KdPH09Pz/fff79mzZq2travX79+/PjxqVOnNm/eLH1hq1evPm3aNA1t\nBgUFKUVqFJTiKeHh4epyfiNHjrS2tlbd/9133wUFBaWmpiqKe/fuvXHjxhdffNGxY8fq1asnJCSc\nOXNmw4YNisnwLC0ts7OzZWZiytcbx40bNz744IMiq3Xo0EF159ChQ8vIetnjx4+PiIhQ2jl06NBS\nzhA5ceLEHTt2iMWNGzfu3r27Y8eOderUsbS0lNb87LPPatWqVZpjlYC3t/eAAQPE28v09HQvL6/h\nw4cPGzbMxcXFysoqPj7++PHjP/3004MHD8RnVaxY8T//+Y+p6VvyTbz27dt7enqKX9OKiYlp06bN\njBkzvLy86tevLwjCixcvIiIiduzYIU57+cknnwQGBspsXxeXNR0pj3drUlWqVHn16lViYmLnzp0n\nT548aNCgBg0aCIJw7969gICALVu25OXliZVnzJiheFTPdDTozMzMNm7c2KNHD/GN7MSJE02aNOnc\nuXPTpk2rVKny77//Hj58OCEhQRCESpUqjRgxYsuWLbr8RTXR9aADAAAAAAAAAADQFuKkMIwBAwYs\nWbJE/MgwIiIiPDz8o48+Uqr27bffBgcHi/PbvXnzZvPmzarzBpmZmW3evHnRokW67nbZsWbNmrZt\n20oX3Lx06ZJ0Oh+Fjz/+2CBxUisrq8OHDw8ePFiMcBUUFAQGBhrVZ6Ldu3cfMWLErl27xD0HDx48\nePBgoZVNTEw2btyoGuvRv7Fjx75+/XrmzJli/iAuLs7Pz8/Pz680zS5cuPDq1aviQva5ubmFjmVB\nEFxcXPr3779ixYrSHK5sevjwoXRFb3VSUlLUVRs5cmSxwo5+fn4XL16U5nViY2NjY2PltyDo7JTQ\nBf2/wtr19OlTdeNCytzc/Oeff7a3t9dQx9/fX84senv27FG3THzv3r0LjZPWrFlz165dAwYMEN+a\nb968qW6O8NWrV0+fPv3169dF9kTgjcMQ+vfv/9VXX6WkpEh3SiegLZk2bdpMmTJl06ZN4p7ExMQD\nBw4U2gH9x0kFQdiwYUNsbKx415Sfn79z586dO3eqq29mZubv7y+dB/Et8OOPP3bp0uXVq1eK4rNn\nz+bMmaO0zrjI3d19+fLlJRiMWrys6Ug5vVsT+fj4/PHHH/fv38/JydmwYcOGDRvU1ezRo8f8+fP1\n2TcpHQ261q1b79q1a8iQIeLM0Lm5uaGhoaGhoUo1/fz8DP5VJf0MOgAAAAAAAAAAgFJ6S6bYQblj\nZmamlOb5/vvvVas1bNhw06ZNmueCMjc337p1q2oU9e3WoEGD48ePN23a1NAdUcvR0TE0NHTUqFHF\nmsqrUqVKjRo10l2v9Ow///lP//79i6xWsWJFf39/gwR/CzVlypS//vqrbt26xXqWs7NzpUqV1D1q\nbm6+e/fuIpcJrlevXkBAgJWVVbEODXWsra2PHTvWs2fPUraji1MCJVOrVq0///xTumau/nXt2nX7\n9u2Fhk2lvvzyyzFjxhSrZd449Kxy5crDhg2T7mnWrJm7u3vpW165cuWcOXOkEyGXKXZ2docOHera\ntaucytbW1r/99lvpU7ZljZub2549e+zs7Iqs6enpefDgQaWZZbXI4Je1cnq3plClSpXff//dyclJ\nc7UePXoEBAQYcLV33Q263r17Hzly5N1331VXoUKFCn5+flOmTJHuNMhLUXYGHQAAAAAAAAAAgAbE\nSWEwI0eOdHR0FIunT58+deqUarWhQ4f+9ddf6lZmbN++/alTpwYPHqyrXpZhbm5uly5dCgoKmjJl\nSps2bWrVqlXWPnS0tLTcvHnzxYsXBw0apDkgaGVl1bNnzw0bNjx69MjHx0dvPdQ1c3Pz33//fePG\njfXq1Su0gomJSY8ePc6ePVvc0JWudevW7caNG2vWrHFxcdFcs3Hjxj4+PidPnrx+/brmeJmVlVVg\nYOCGDRtq165daIV+/fqdPXu2SZMmJe83VNjZ2f31119HjhwZO3ass7NzkRFAdXRxSkAQhFGjRh04\ncGDixIlFLkBcu3btWbNmXblypVu3bvrpmwZ9+/aNiorq06ePmZmZ6qM1a9bcsWPH8uXLS9Aybxx6\n1rdvX2lx9OjRWmm2QoUKS5YsuXv37vLlyz/55JMGDRrY2tqWqXRp1apVg4ODf//9dw3fzLG0tJww\nYcKNGzcGDhyoz77pTZcuXSIjIwcOHFjoQBYEwcHB4fvvvw8NDa1Ro4b8ZsvdZa383q0pNG/e/MyZ\nM15eXoU+Wrt27Y0bN5aFbKLuBl379u0vXry4Zs0aT09P6bcR7O3tR4wYERkZOW3aNEEQsrOzpZ0p\n0S9RWjoadAAAAAAAAAAAAFpkUlBQYOg+QK+ioqLE7WbNmhmwJ8WSm5sbERFx8uTJp0+fZmRkVK1a\ntUmTJl27di1Hv4KRy8nJOXfu3IULF168eJGYmJidnV2lShV7e/vGjRs3bdrU3d3d3Nzc0H3Uodzc\n3MjIyDNnzsTGxqamplaoUKFmzZpNmzbt2rVrcWd81L8nT56EhYU9ePAgMTExKSmpYsWKNjY2derU\ncXV1dXd3r1OnTnEbzM/PP336dERExNOnT1NSUqytrZs2bdq7d2/mFywvtH5KQCE+Pj4qKurevXuP\nHj1KTU19/fq1paWlra1to0aN3N3dPTw81KVPDOjZs2dBQUH37t179uxZfn5+3bp127Zt271798qV\nK5e+cSN/49CPpUuXrlixQrFdsWLFe/fuOTg4GLZL+vfgwYNjx449fvw4ISEhKyurevXqDg4OHh4e\nH330kZFMsRwXF3fixIlr164lJCTk5ORYW1u/++67bdq0adeuXSlHWfm6rJWXu7Xq1atnZGQotpct\nWzZr1izF9u3bt0NCQm7dupWenm5ra+vo6Ni+ffsOHToUa75n/dDdoMvNzX327FlaWpriFZA+NGfO\nnPXr1yu2W7VqFRERUZoDlZLuBh0AAAAAAAAAAHoTExMjbrdq1cqAPYF2ESc1OuU0TgoAAAAtys/P\nd3FxefLkiaLYt2/f3bt3G7ZLAIqkLk4KzYYMGRIYGKjYHjBgwK5duwzbHwAAAAAAAAAAyjvipG+r\nMjdVCQAAAABdCwwMFLOkgiCMHTvWcH0BAN26evWquN26dWsD9gQAAAAAAAAAAKAsI04KAAAAGJ21\na9eK2/Xq1evRo4cBOwMAunPx4sXY2Fix2LZtWwN2BgAAAAAAAAAAoCwjTgoAAAAYl7/++uv8+fNi\ncdKkSaam/F8AoDzJz8/Py8uTU/Pbb78Vt5s2berp6amzTgEAAAAAAAAAAJRvfGwMAAAAGJGoqKjP\nP/9cLFpZWY0fP96A/QGAEkhLS3N1dV25cuXz58/V1cnPz589e/bx48fFPdKrHwAAAAAAAAAAAJRU\nMHQHAAAAAOhQSEjIlStXBEHIysq6fv36sWPH8vPzxUdnzpxpb29vuN4BQAk9efJk4cKFS5Ysad++\nfe/evdu0adOoUSN7e/vs7Oy4uLhTp075+/vHxMSI9bt06TJ27FjD9RcAAAAAAAAAAKCsI04KAAAA\nvM2Cg4N/+eWXQh/q2LHj7Nmz9dwfANCivLy88PDw8PBwzdWcnZ1/+eUXExMT/fQKAAAAAAAAAACg\nPGKxewAAAMAY9ezZMyAgwMzMzNAdAQDd6tKlS3h4eO3atQ3dEQAAAAAAAAAAgDKNOCkAAABgRExM\nTNq2bfvzzz8fOHCAZe4BlFPW1tabNm0aMGBAzZo11dWpUKFCx44dDx48eOjQITs7O312DwAAAAAA\nAAAAoDwyKSgoMHQfoFdRUVHidrNmzQzYEwAAAOjBkydPEhMTBUEwMTGxsbFxdHSsWLGioTsFoCRu\n3LiRl5en2K5du7aDg4Nh+1NG/Pvvv7du3YqNjU1MTMzKyrKysrK3t69Xr17btm2rVKli6N4BAAAA\nAAAAAPAWiomJEbdbtWplwJ5AuyoYugMAAAAAdKhOnTp16tQxdC8AaMF7771n6C6URXXr1q1bt66h\newEAAAAAAAAAAFDusdg9AAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAA\nAAAAAAAAAAAAABg14qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAA\nAAAAAAAAAAAAYNSIkwIAAAAAAAAAAAAAAAAAABg14qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAA\nAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAAAAAAAAAAAAAAABg14qQAAAAAAAAA\nAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAAAAAA\nAAAAAAAAABg14qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAA\nAAAAAAAAYNSIkwIAAAAAAAAAAAAAAAAAABg14qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAA\nAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAAAAAAAAAAAAAAABg14qQAAAAAAAAAAAAA\nAAAAAABGjTgpAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAAAAAAAAAA\nAAAAABg14qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAA\nAAAAYNSIkwIAAAAAAAAAAAAAAAAAABg14qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAA\nAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAAAAAAAAAAAAAAABg14qQAAAAAAAAAAAAAAAAA\nAABGjTgpAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAAAAAAAAAAAAAA\nABg14qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAA\nYNSIkwIAAAAAAAAAAAAAAAAAABg14qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAAAACA\nUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAAAAAAAAAAAAAAABg14qQAAAAAAAAAAAAAAAAAAABG\njTgpAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAAAAAAAAAAAAAAABg1\n4qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSI\nkwIAAAAAAAAAAAAAAAAAABg14qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAAAACAUSNO\nCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAAAAAAAAAAAAAAABg14qQAAAAAAAAAAAAAAAAAAABGjTgp\nAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIAAAAAAAAAAAAAAAAAABg14qQA\nAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAAAACAUSNOCgAAAAAAAAAAAAAAAAAAYNSIkwIA\nAAAAAAAAAAAAAAAAABg14qQAAAAAAAAAAAAAAAAAAABGjTgpAAAAAAAAAAAAAAAAAACAUSNOCgAA\nAAAAAAAAAAAAAAAAYNQqGLoDKN/27t27c+dOsTh9+vSuXbsW+ayJEye+ePFCsW1hYbFnzx5d9Q8A\nAAAAAAAAAAAAAAAAABSFOClK5cGDB6GhoWJx8ODBcp51+vTp2NhYxbaVlZVOegYAAAAAAAAAAAAA\nAAAAAORhsXsAAAAAAAAAAAAAAAAAAACjRpwUAAAAAAAAAAAAAAAAAADAqBEnBQAAAAAAAAAAAAAA\nAAAAMGrESQEAAAAAAAAAAAAAAAAAAIwacVIAAAAAAAAAAAAAAAAAAACjRpwUAAAAAAAAAAAAAAAA\nAADAqFUwdAeA4vn3339jYmKSkpLS0tIqVqxYpUoVJyenhg0b1q5du8RtJiYm3rlzJy4uLi0tLT8/\nv1q1atWrV2/QoEGdOnVK2dubN28+ePAgPj7ezMysTp06Hh4e9vb2pWxT9OzZs3/++efFixdJSUk2\nNjYODg5ubm7Vq1fXVvsAAAAAAAAAAAAAAAAAACNBnBTlw8OHDzdt2rR37974+PhCKzg5OXXs2LFv\n375eXl7m5uZFNpiSkhIcHBwWFnbq1Km4uLhC6zRp0qRnz54+Pj7FzZXm5uZu3Lhxy5Yt//zzj3S/\nmZmZl5fXt99+26RJE0EQhg4dmpOTo3ho/Pjxffr0kdN4amqqv79/UFDQlStXCgoKpA+Zmpp6enpO\nmDBh+PDhJiYmxeozAAAAAAAAAAAAAAAAAMBoESdFObB27dqlS5dmZ2drqBMXFxcQEBAQENChQ4dj\nx45pbnDy5Ml79uwRo5zq3Lp169atW5s2bZoxY8bcuXMrVqwop7d3794dPXr01atXVR/Ky8sLDg4O\nDQ399ddfBw4cePTo0devXyse6ty5s5zGN2/evGzZsoSEhEIfzc/Pj4yMjIyM/Omnn7Zu3dqoUSM5\nbSrZu3fv8+fPpXsGDhzo6OhYgqakHj16FBQUJN1Tt27dfv36lbJZAAAAAAAAAAAAAAAAAEDpESdF\nWbdgwYJVq1bJry8GNDU4c+ZMkVlSUVZWlq+v761bt7Zv316hQhFDJjY21svLS910p2IPx40bV9yA\nZm5u7ueff/7bb7/JqXzp0qVu3boFBQW5ubkV6yiCIKxbt+7y5cvSPa1atSp9nPTmzZuzZ8+W7unc\nuTNxUgAAAAAAAAAAAAAAAAAoC4iTokwLDw9XypK2adPGy8urcePGdnZ2giAkJSU9ePDgwoUL4eHh\n6enpJTiElZWVu7u7h4dH/fr17e3tK1WqlJaWdvfu3fDw8AsXLojVDhw44OPjs2nTJg1N5eTk9OvX\nT5olNTMz69q1a/fu3R0dHdPS0i5fvrx3797U1NQ3b9589tln+fn58vs5ZsyY/fv3S/e4uLh4e3u7\nurpaW1snJydfuXIlKCjo2bNnikefP3/et2/fS5cu2dvbyz8KAAAAAAAAAAAAAAAAAMAIESdFmfb9\n99+L25UqVdq6dWv//v0LrZmVlRUcHLx+/XqZLZuamnp7ew8ZMsTb27ty5cqF1omMjBw7dmxsbKyi\nuH379hEjRnTs2FFdm2vWrLl165ZYrFu37s6dO9u0aSPuGTt27DfffDNq1KjTp0//888/MrsqCMLG\njRulWdKqVauuW7duyJAhJiYm4s5x48atWLHi22+/XbdunWJPfHz8l19+uX37dvkHAgAAAAAAAAAA\nAAAAAAAYIVNDdwBQKykp6ezZs2JxxowZ6rKkgiBYWFgMHjz49OnTchKlAwYMiIqK2rt378CBA9Vl\nSQVBaNu2bVBQkLTCL7/8oqG3//u//ysWbWxsgoKCpFlShZo1a/75558uLi5FdlJ0//79b775Riza\n2dmdOHFi6NCh0iypgqWl5YoVK+bMmSPu2bdv3/Xr1+UfCwAAAAAAAAAAAAAAAABghIiTouy6d+9e\nXl6eWOzdu7ecZ7Vo0aLIOsuWLXN1dZXTWuPGjUePHi0WQ0JCCgoKCq25d+/ezMxMsTh37lx1mVFr\na2s/Pz85R1dYu3bt69evxeKWLVuaNm2qof6CBQsaN24sFjdt2iT/WAAAAAAAAAAAAAAAAAAAI0Sc\nFGVXUlKStFilShWDdKNHjx7idlpa2r///ltotYCAAHHb2tp6ypQpGtrs2bNnkyZN5Bw9MTFx165d\nYrFbt269evXS/JQKFSpIj/7nn3/m5+fLORYAAAAAAAAAAAAAAAAAwDhVMHQHALWsrKykxWvXrsmM\nYGpXw4YNpcWnT5/Wq1dPqU5WVtbly5fFYvfu3S0sLDQ327t371u3bhV59NDQ0KysLLE4adKkonv8\n3xHY1NTU27dva57QVMrZ2Tk3N1e6R+kPUTI2NjbNmzeX7lF6YQEAAAAAAAAAAAAAAAAAhkKcFGWX\n0mLxvr6+Xbt2rVGjhp67YWNjIy2mpqaq1rl+/bo0gvnhhx8W2ewHH3wg5+hnz54Vt83Nzbt37y7n\nWY0aNbK2tk5PT1cUo6Ki5MdJt23bJrNmsbRr1+78+fO6aBkAAAAAAAAAAAAAAAAAUErESVF2OTg4\neHp6ihnEu3fvtmzZcsKECQMHDmzevLmJiYlWjnLlypVTp05FR0ffvXs3NTX11atX2dnZ0goFBQXS\nonSuUJHSPKOurq5FHtfZ2VlO96QRTGdn5yInPRU5ODiIcdJnz57JfBYAAAAAAAAAAAAAAAAAwAgR\nJ0WZtnjx4j59+uTn5yuKSUlJP/zwww8//FCjRg1PT08PD4+WLVu6u7s7ODgUt+WCgoLt27evXbv2\n9u3bxXpiXl6e6s6UlBRp0cnJqch2HB0d5RwuPj5e3I6Li+vSpYvw/xKu0p+qO6VPTE5OlnMsAAAA\nAAAAAAAAAAAAAIBxIk6KMq1z584rV66cNWuWmChVePnyZXBwcHBwsKLo6urar1+/iRMnyslxKp7+\n6aefnjt3rgRdUuqJQmpqqrRoZWVVZDty6gj/nQRNSUmJjIyU8ywlaWlpJXgWAAAAAADA/8fencfZ\nXC/+A//MjH1vCKHNEiVJWUqbaCGpSOn6piKuXDeVRAu320LN43Z1dVspI1qIi9RVWqhI2QujnZJ9\n34Ywy++P83ice37DjMHMHOY8n3+935/z/rzPa05nzsw8vPp8AAAAAACIEeqkHJX4+Pj83qFXr17n\nnHPOQw89NG/evOzWfP/9908//fRzzz33+OOP9+7dO+cNt2zZ0rp162XLlkUeLFGiRIMGDerUqVO+\nfPlSpUpFPrR79+6XXnop5z337NkTOS1evHjO64MgiI+PL1KkSFpaWg5rUlNTc16QSwe9oioAAAAA\nAAAAAACEqJNyVBISEo5yhyJFDv0mvOiii7744ouFCxdOmjRp1qxZCxcu3Ldv34HLdu/e3a9fv61b\ntw4cODCH3QYOHBjZJT355JMHDhzYoUOHMmXKHHT9mjVrDlknzXJulnbpQaWlpR2yKlqyZMm4uLjw\n7ezr1q3boEGDQ+58oMaNGx/BWQAAAAAAAAAAAMQIdVKOStGiRY9yh9zUSUPOO++88847LwiCffv2\nLV68ePbs2Z999tn06dP37t0buWzIkCFXXnlls2bNDrrJihUrRo0aFbnne++9l5iYmMPz5uZO8eXK\nlYuc7ty585Cn5GZNfHx8+fLlt23bFpq2bNly6NChhzwLAAAAAAAAAAAADsvR3qmcGJflvvDh62jm\nLCMjIzwuXbr04T5psWLFGjdu3KdPn4kTJ/7yyy8PP/xwiRIlIjP861//yu7c9957LxwyPj5+1KhR\nOXdJgyDYsmXLISNVrlw5cvrrr78e8pTffvvtkGuCIKhYseJhJQEAAAAAAAAAAIDDpU7KUalQoULk\n9KD3oD9Q5E3ey5cvfzQBKlasOGjQoGnTppUsWTJ8cPr06ZGN1Uhz584Njy+44II6deoc8im+/fbb\nQ64555xzIqc//PDDIU/56aefDrkmCIJzzz03PE5JScnNKQAAAAAAAAAAAHBY1Ek5KlWqVImcpqam\n5uasyPu8Z9nhyDRt2rR3797h6Y4dOzZv3nzQlRs2bAiPa9eunZvNv/zyy0OuqVu3buSFWqdPn37I\nUz7//PPcPPtFF10UHi9btiy7rwsAAAAAAAAAAACOWJFoB+D4dtppp0VOV65cechTtmzZEtk6zbLD\nEWvYsGHkdO/evQdd9scff4TH4bve52Dz5s3vv//+IZclJCS0bNkyvHLmzJkbN2488cQTs1u/f//+\nDz744JDbBkHQsmXL8DgjIyM5Oblfv365OfGIzZ49e9u2bZFHLrzwwhNOOOEot92wYcP8+fMjj1Sq\nVKlp06ZHuS0AAAAAAAAAAABHT52Uo3LyySdXqlRp06ZNoWlursqZZU3kzdyPxtq1ayOnlStXPuiy\nihUrhsfff//9IbdNSkrKrpmaRefOncN10v379z/zzDNJSUnZLX7zzTfXrFmTm23r1q3bqlWrTz/9\nNDR97rnnunTpkieXdM3OAw88sHDhwsgjn376afPmzY9y2/nz5994442RRy6//PKpU6ce5bYAAAAA\nAAAAAAAcPTe752hdd9114fH333//r3/9K4fFmzZteuihh8LTokWLXn311dktXrp06W+//ZabDBkZ\nGePGjQtP69WrV6xYsYOurF+/fng8f/78pUuX5rDtp59++sILL+QmQBAEbdu2rV69enj64osvZleu\nXbly5cCBA3O5bRAEffv2DY83btzYpUuX3bt35/Lc2bNnR74yAAAAAAAAAAAAcCB1Uo7WX//618jp\noEGDhg4dmpGRceDK77///tprr121alX4yI033litWrXsdv7qq6/q169/2223ffHFFwfdMCQ9Pf2B\nBx5YsGBB+MhWWFtIAAAgAElEQVT111+f3eLWrVuHx5mZmXfcccfGjRsPunLixIk33XRTDs+bRbFi\nxSIvR5qWltapU6dRo0ZlZmZGLluwYEHr1q03b96ckJAQFxeXm51btmz5pz/9KTydOXNmq1atli1b\nlsMpqamp48aNa9myZatWrb7++utcfgkAAAAAAAAAAADEJje752ideeaZPXr0GDFiRGialpb2yCOP\nvPrqqzfeeGODBg1OPPHE1NTUNWvWTJs27ZNPPtm3b1/4xBNOOOGQF+lMT08fP378+PHjq1Wrdu21\n1zZr1uy8886rUqVKhQoV9u7d+9tvv33xxRfDhw+PvMhopUqV+vTpk92GF198cbNmzebMmROapqSk\nNG3a9L777mvTps2pp54aBMGGDRtmzZo1ZsyY8LVFr7vuuilTpuTmpbjxxhsnTJgwefLk0HTXrl29\nevUaPHjwlVdeWa1atV27di1YsGDWrFmhR2+77ba33npr7969udn53//+98KFC3/44YfQ9Jtvvmnc\nuHG7du3atGnTpEmTE088sWTJklu2bFm7du28efO+/vrradOmpaam5mZnAAAAAAAAAAAAUCclD/zz\nn//86aefPvvss/CRFStWPPPMMzmcUrRo0TfeeKNWrVq5fIo1a9YMHz58+PDhOS8rVqzYiBEjEhMT\nc1jz73//u2XLlrt27QpN161bN2DAgAEDBhx0caNGjZ566qlc1kmDIEhOTt6yZcsXX3wRPrJq1ark\n5OQsy2rVqvXUU0+99dZbudy2dOnSU6dOvemmmxYuXBg6kpmZOWXKlNwHAwAAAAAAAAAAgOy42T15\noGjRopMnT+7Vq1cu15966qmffPJJy5Yt8zZG1apV//Of/0Tezv6gGjRoMG7cuBNOOOGQGzZr1uzd\nd98tVapU7jOUKFFi0qRJvXr1yuFG9uecc86HH35Yvnz5yINFixbNeedq1ap9/PHHXbp0iY8/jG/b\n4sWL165dO/frAQAAAAAAAAAAiEHqpOSN4sWLDx06dMaMGddee20OTcrq1asPHjx43rx5TZs2PeSe\nXbp0mTRpUvfu3WvWrJnzypNOOqlfv36LFi264oorcpO2ZcuWX3311Y033piQkHDQBZUrVx48ePDH\nH3984okn5mbDSKVKlRo6dOgXX3xx5513VqpUKXw8Pj7+vPPOe/bZZ2fOnFmjRo3MzMx9+/aFH83S\nLs1u5+HDh8+bN69jx46lS5fOYWXp0qWvvvrq559//tdff+3du/fhfgkAAAAAAAAAAADElLjMzMxo\nZ6BALViwIDyuX79+fjzFpk2bvvzyy0WLFm3cuHHbtm0lSpRITEw87bTTmjdvfs4552TX4MzZ2rVr\nFyxY8PPPP//666/bt2/fu3dvqVKlKlSoULt27UaNGjVu3PjItl29evWMGTO+/fbbTZs27du3r2zZ\nsqeffnrTpk0vuuiiYsWKHcGGB9q+ffu6desSEhKqVasWeaHTnTt3Vq5cOTydOHFimzZtcr/tvn37\nvv7667lz527YsGHz5s1//PFHmTJlEhMTzzjjjLPOOqtRo0Z5lR8AAAAAAAAAACAsJSUlPD7//POj\nmIS8pU4acwqgTkpuLF68uFmzZuHpggULzjrrrCjmAQAAAAAAAAAAOCR10sLKze4hOr755pvwuGzZ\nsvXq1YtiGAAAAAAAAAAAAGKZOilEx8SJE8PjCy64ID7eNyMAAAAAAAAAAADRocEGeWn//v25WfbV\nV1999NFH4ekdd9yRX4EAAAAAAAAAAADgUNRJIS8NGjSoU6dOM2bMyMjIyG7NsmXLunTpkpmZGZqe\ncsop1113XUEFBAAAAAAAAAAAgKyKRDsAFCrp6elTpkyZMmXKSSeddN11111yySWNGjWqWrVqiRIl\ntmzZsmTJknfffTc5OXnfvn2h9fHx8SNGjChSxHciAAAAAAAAAAAAUaPEBvli7dq1r7zyyiuvvJLD\nmri4uCFDhlx66aUFlgoAAAAAAAAAAAAOpE4K0VGmTJkXXnjh5ptvjnYQAAAAAAAAAAAAYp06KeSl\nrl27lixZcvr06YsXL96/f/9B15x00kmdO3e+9957K1WqVMDxAAAAAAAAAAAA4EBxmZmZ0c5AgVqw\nYEF4XL9+/SgmKdz++OOPpUuXrlixYs2aNTt37szMzKxQoUKlSpUaNWpUr169aKcDAAAAAAAAAAA4\nEikpKeHx+eefH8Uk5C1XJ4V8UaJEicaNGzdu3DjaQQAAAAAAAAAAAOAQ4qMdAAAAAAAAAAAAAIBo\nUicFAAAAAAAAAAAAiGnqpAAAAAAAAAAAAAAxTZ0UAAAAAAAAAAAAIKapkwIAAAAAAAAAAADENHVS\nAAAAAAAAAAAAgJimTgoAAAAAAAAAAAAQ09RJAQAAAAAAAAAAAGKaOikAAAAAAAAAAABATFMnBQAA\nAAAAAAAAAIhp6qQAAAAAAAAAAAAAMU2dFAAAAAAAAAAAACCmqZMCAAAAAAAAAAAAxDR1UgAAAAAA\nAAAAAICYpk4KAAAAAAAAAAAAENPUSQEAAAAAAAAAAABimjopAAAAAAAAAAAAQExTJwUAAAAAAAAA\nAACIaeqkAAAAAAAAAAAAADFNnRQAAAAAAAAAAAAgpqmTAgAAAAAAAAAAAMQ0dVIAAAAAAAAAAACA\nmKZOCgAAAAAAAAAAABDT1EkBAAAAAAAAAAAAYpo6KQAAAAAAAAAAAEBMUycFAAAAAAAAAAAAiGnq\npAAAAAAAAAAAAAAxTZ0UAAAAAAAAAAAAIKapkwIAAAAAAAAAAADENHVSAAAAAAAAAAAAgJimTgoA\nAAAAAAAAAAAQ09RJAQAAAAAAAAAAAGKaOikAAAAAAAAAAABATFMnBQAAAAAAAAAAAIhp6qQAAAAA\nAAAAAAAAMU2dFAAAAAAAAAAAACCmqZMCAAAAAAAAAAAAxDR1UgAAAAAAAAAAAICYpk4KAAAAAAAA\nAAAAENPUSQEAAAAAAAAAAABimjopAAAAAAAAAAAAQExTJwUAAAAAAAAAAACIaeqkAAAAAAAAAAAA\nADFNnRQAAAAAAAAAAAAgpqmTAgAAAAAAAAAAAMQ0dVIAAAAAAAAAAACAmKZOCgAAAAAAAAAAABDT\n1EkBAAAAAAAAAAAAYpo6KQAAAAAAAAAAAEBMUycFAAAAAAAAAAAAiGnqpAAAAAAAAAAAAAAxTZ0U\nAAAAAAAAAAAAIKapkwIAAAAAAAAAAADENHVSAAAAAAAAAAAAgJimTgoAAAAAAAAAAAAQ09RJAQAA\nAAAAAAAAAGKaOikAAAAAAAAAAABATFMnBQAAAAAAAAAAAIhp6qQAAAAAAAAAAAAAMU2dFAAAAAAA\nAAAAACCmqZMCAAAAAAAAAAAAxDR1UgAAAAAAAAAAAICYpk4KAAAAAAAAAAAAENPUSQEAAAAAAAAA\nAABimjopAAAAAAAAAAAAQExTJwUAAAAAAAAAAACIaeqkAAAAAAAAAAAAADFNnRQAAAAAAAAAAAAg\nphWJdgCAI7d27doVK1Zk92iFChXOOuusgszD4Zo9e3Z4XKtWrSpVqkQxDIXJzp07lyxZkt2jRYoU\nadq0aUHmAQAAAAAAAAA4xqmTAsexyZMn9+3bN7tHr7zyyilTphRkHg5LWlpaq1atwtMXX3yxa9eu\nUczDsWDPnj0//fTT77//vmvXrqJFiyYmJp5++umnnnrq4e6zbNmyyHdXFhUrVly1atXRJQUAAAAA\nAAAAKFTUSQGAKNu1a9fYsWPfeeedOXPm7Nu3L8uj1apVu+KKK7p169asWbOoxAMAAAAAAAAAKPTi\nox0AoiM1NXXJkiVffvnlDz/8kJ6eHu04ALHrtddeq1+//t133z1z5swDu6RBEKxZs2b06NEtWrS4\n7LLL5s2bV/AJAQAAAAAAAAAKPVcnJeYsWLBgyJAhn3766d69e0NHEhMTO3bs2L9//+rVq0c3G0cj\nISHhyy+/jDxSrly5aIUBciM1NbVr167vvfdeLtfPnTv3sssuW7hwYb169XJe2aBBg6+//jryyKhR\no15++eUjDAoAAAAAAAAAUNipkxJb/vGPfzz66KOZmZmRB7ds2TJ8+PC333575MiR1157bbSycfQa\nNmwY7QhAbu3evbtt27Zz5szJcvyUU04588wzq1WrlpaWtm7dupSUlDVr1oQfzczMDP/PADkoVapU\nlg+EKlWq5ElsAAAAAAAAAIBCSZ2UGDJ06NC//e1v2T26c+fOW265ZfLkyVdccUVBpoKYlZCQMHr0\n6PC0cePGUQxDwbvzzjuzdEnbtWvXt2/fCy64IPJgZmbmvHnzRo8ePWrUqPT09ILNCAAAAAAAAAAQ\nK9RJiRVLly4dNGhQaFy+fPlBgwZ16NChSpUqK1euHD169DPPPLN///709PSuXbumpKS4SToUgLi4\nuJtuuinaKYiOCRMmTJ48OTxNSEj497//3bVr1wNXxsXFNW3atGnTpn/961/vvvvuWbNmFWBMAAAA\nAAAAAIBYER/tAFBAkpKSMjIygiAoX778p59+2rt375NOOik+Pv60007729/+Nn78+ISEhCAINm3a\n9Morr0Q7LEBhtn379v79+0ceeeqppw7aJY1Ur169Dz74oGfPnnFxcfmZDgAAAAAAAAAgFqmTEhPS\n0tKmTZsWGj/88MP169fPsuDqq68ON5kmTpxYoOEAYsywYcPWrl0bnrZu3fruu+/OzYlFihT517/+\ndeBnOAAAAAAAAAAAR8nN7okJq1ev3rlzZ2jcvn37g65p3779q6++GgTB0qVLMzIy4uPzsWy9ffv2\nRYsWrVy5cvfu3eXKlatVq1bDhg1LlCiRf894uPbs2bNw4cLly5enpqYmJiaecsopTZo0CV3AlTzh\nFSYsPT198eLF69at27BhQ3p6euXKlWvUqNGwYcPCeg3OjIyMMWPGRB4ZNGjQYe3gOwUAAAAAAAAA\nIM+pkxITduzYER5XqlTpoGtOPPHE0CAtLS01NbVs2bJH84ydO3f+7bffQuMbbrjhgQceCI3nzp2b\nlJT00UcfpaWlRa4vXbp0hw4d+vfvX7t27SxbzZw584knnghPJ06cWKZMmRyeet68eY888kh4mpyc\nXL169YOu7NKly/Lly0PjTp069enTJwiClStXDhkyZMKECampqZGLExMTe/ToMWDAgJIlS+bw7ETy\nCkfq2LFj5AUpD/Tggw+2a9euwPIcCz7//PPXXnvtk08+2bp1a5aHqlSpcu211w4YMODkk0+OSrb8\nM3369FWrVoWnl1566XnnnRfFPAAAAAAAAAAABOqkxIjExMTweOXKlXXr1j1wzYoVK0KDYsWKHWWX\nNAiClJSUH3/8MTQONaXS09MfeeSRYcOGHXR9amrqmDFjxo4du2zZsho1akQ+tHHjxpkzZ4anWXqo\nB9q6dWvk+j/++CO7lcuWLVu2bFlo3Lx58yAIJk2a1LNnz/CVXCNt2bIlKSlp6tSpH374YeTrSQ68\nwpGWLFmycuXKHBZs2rSpwMJE3YoVK/r16zd16tTsFqxfv/6111576623Hn744X79+hVktvw2YcKE\nyGnbtm2jlQQAAAAAAAAAgLB8vJ03HDuqVatWtWrV0PiNN9446JpRo0aFBueff35+ZOjVq1d2XdKw\n/fv37927Nz+ePTemTp3apUuXgzYdw5YsWdKpU6cCi1TIeIUJmTdv3mWXXZZDlzRsz549gwYNuu++\n+zIzMwsgWMGYP39+5PTqq6+OVhIAAAAAAAAAAMJcnZSYEBcX16FDhxdffDEIgmHDhl100UWtW7eO\nXJCUlPTBBx+ExjfffHPOu82ZM6dhw4YlSpTIfYDk5OQxY8aEp2XLlj3nnHMqV66ckJCwadOmb775\nZtu2bbnfLT9s2rSpe/fu6enpQRDUrFmzbdu2p5xySmZm5vLly6dMmbJmzZrwylmzZk2YMKFjx47R\nC3tc8gq3b99+8+bNkUcyMzPffPPNaOWJlrlz515zzTWpqanhIyVKlGjduvXFF19ctWrV9PT033//\n/dNPP/3ss8/CFdKXX365WrVqDzzwQJQi56U9e/Z8//334WmpUqXOOOOMKOYBAAAAAAAAACBEnZRY\n0a9fvzfeeGPHjh379+/v2LFj586dr7vuuhNPPHHlypWvv/76p59+GlpWu3btbt26HXSHbdu2vf32\n26+99lpKSsrw4cO7dOmSy6dOTU0dNGhQaNykSZNBgwa1aNGiaNGi4QUZGRmzZ88eNmzY+++/fxRf\n4lEZP358enp6sWLF/vnPf955551xcXHhhwYPHtynT5/I2t/w4cMLX9kxv3mFn3766SxH0tLSYq1O\numPHjttvvz2yS9quXbuhQ4fWqFEjctn9998/b968Ll26/Pbbb6EjTz75ZJs2bc4+++wCjZsPFi9e\nHCpVh9SuXTvyewEAAAAAAAAAgGhxs3tixUknnTRq1KiEhIQgCNLT08eMGXPTTTe1aNHitttuC3dJ\nK1SoMH78+GLFimU5d86cOT179qxVq1bfvn1TUlKCIHj11Vdz/9RTpkwJXZSxX79+n3/++ZVXXhnZ\nJQ2CID4+/uKLLx4/fvz48eNLly59NF/mEQsVvEaNGtW9e/cs7a5SpUoNHz783HPPDR/58ssvN2zY\nUNARj3NeYYIg6N+//6+//hqe9ujRY9y4cVm6pCFNmjSZPn36iSeeGJru27fviSeeKJiQ+Sryyw+C\noHbt2lEKAgAAAAAAAADA/0edlBjSpk2bd999t1KlSgd9tG7dup999lm9evXCR7Zv3/7KK680bdq0\nRYsWo0eP3r17dxAEtWvXHjx48IQJE3L/vKErEf75z39+4okncr4O37XXXlu1atXc75y32rdv3759\n+4M+FB8ff++994anGRkZ33zzTUHlKjy8wjFu1apVkVdjbdas2dChQ3P4TKhWrVrkJV3/+9///v77\n7/kbMf9t3749cpqYmBitJAAAAAAAAAAARFInJba0atUqJSXl8ccfb9KkSZkyZYIgqFChQosWLV54\n4YX58+fXrVs3tGzevHl33XVXzZo177333iVLlgRBUKxYsRtvvHHq1KmLFy/u27dv+JKBuVSjRo0h\nQ4bk+ZeTt3r37p3Do1dddVXk9LvvvsvnOIWQVzjGvfTSS2lpaeFpUlJSkSJFcj7lpptuqlKlSmic\nnp4+adKkfMxXIHbu3Bk5LVWqVLSSAAAAAAAAAAAQ6RBFFih8ypUr98ADDzzwwANBEGRkZMTH/69U\nvWPHjrFjx44cOfLbb78NH6xTp07Xrl1vvfXWw62QRurRo0e07mKfS4mJic2bN89hwQknnFC1atV1\n69aFpuEBueQV5t133w2PzznnnGbNmh3ylKJFi7Zo0WLcuHGh6Zw5c/IrXEHJcnXSHD4Yf/vttwUL\nFmT36LnnnluzZs28TAYAAAAAAAAAENvUSYlp4S7p/PnzR44c+c4774RuTB8EQfHixa+77ro777zz\nsssuO/onuuWWW45+k3zVoEGDHG66HVKxYsVwx3HXrl35H6pQ8QrHuPXr1//yyy/h6TXXXJPLExs1\nahSuk86fPz/vkxWs/fv3R04TEhKyWzl9+vS//OUv2T06dOjQXr165WUyAAAAAAAAAIDYpk5KTNu5\nc+e4ceNee+21b775JnzwjDPO6Nat26233lqxYsU8eZaqVauecsopebJV/qlevfoh10ReR3D37t35\nGacQ8grHuCwXFj3nnHNyeWL4ZvdBobhmbbly5SKn3ucAAAAAAAAAAMcIdVJi1MKFC1977bV33nkn\nfA3I4sWL33DDDXfeeecll1wSXrZq1arff/89CIKTTz65Ro0aR/Zc9evXP/rA+S1Lx+uQMjIy8ilJ\ndH377bcLFy7MeU18fPztt99+uDsfd6/w66+/fsgM5513XsOGDQsmT7Tk1Vti7dq1kdOnnnrq3//+\ndxAEmZmZmZmZoUH40fCRzMzMbdu2hY/v27dv9+7dpUqVOswvIm/kyVuibNmykdM9e/bkQTIAAAAA\nAAAAAI6aOimxZdeuXePGjRs5cmRkP6xevXpdu3b9v//7v/DlSNPS0l577bUXXnjhp59+Ci8788wz\n//KXv9xxxx1FihzeN84JJ5yQJ+Hz1eF+UYXVBx988Nhjj+W8JiEh4QjqpMfdK9y7d+/09PSc1zz6\n6KOFvk6aV2+JrVu3Rk6XLFlyZHm2b98erTppnrwlypcvHzkNF/oPVKtWrVtuuSU83bp167Rp03KX\nFAAAAAAAAACAw3ac1ZvgaDz88MMjRowIt5dKlCgRuhzpxRdfHLls48aNt9xyy+zZs7Oc/t133919\n991vvvnm2LFjI28/fUhZrsYHxKDt27fnyT6HLHQe4ypXrhw5XblyZXYrL7300ksvvTQ8XbBggTop\nAAAAAAAAAED+USclhmzbti3UJT3zzDO7du166623Hnjd0D179lx//fWLFi0KHylSpEhcXNz+/ftD\n06+//rpdu3YzZswoXbp0Lp83ISEhL+IDx7EslxTt0KFDfHz80e9z3GnQoEHk9Oeff45WEgAAAAAA\nAAAAIqmTEkO6dOmyd+/eO++8s3nz5tmteeyxx8Jd0ssvv/zRRx9t2rRpEAQLFix47LHHPvnkkyAI\nlixZMnDgwGeffbZgYh+ujIyMaEc4jjVr1uyee+7JeU2M9IPvueeeQ14Is1mzZgUTJory6i2Rpbz+\n3HPPVaxY8aiSFbg8eUtUq1atatWq69atC03XrFmza9euMmXK5E1EAAAAAAAAAACOlDopMeTCCy+8\n8MILc1iwdevWV155JTS+4YYb3nzzzfDlAxs3bvzuu+/eeeedY8eODYLgtddeu//++2vUqJHfmYMg\niIuLO6z1O3fuzKckseDyyy+//PLLo53imDB48OBoRzgm5NVbolKlSpHTrVu3Hnd10rx6S5x77rkf\nfvhhaJyZmTlz5sw2bdrkyc4AAAAAAAAAAByxI7nTLhRWn3zyyR9//BEEQfHixYcNG5blVtTx8fHD\nhg2rUKFCEAT79++fNGlSwaQqXrx45HTv3r05r9+4cWN+xgGOxLnnnhs5Xbp0abSSRN1VV10VOf3o\no4+ilQQAAAAAAAAAgDB1UvifH374ITRo2rRp5cqVD1xQrly5li1bhsaLFy8umFRZbgO9Y8eOnNen\npKTkZxzgSNSrVy/yAqWzZs2KYpjouvnmm4sVKxaeTp48OdTjBwAAAAAAAAAgitRJ4X/CTc0cbkId\nLoRt27atIDIFQWJiYuT0p59+ynn99OnT8zMOcIRatGgRHr/99tu7d++OXpZoqlixYuTd7detWzdy\n5Mgo5gEAAAAAAAAAIFAnhUjhFumvv/6a3Zrly5dnWZzfateunZCQEJ5+8cUXOSyeMWNGDuGBKOrd\nu3d4vGXLln/+859RDBNd9913X1xcXHialJS0atWqKOYBAAAAAAAAAECdFP7n3HPPDQ2+/fbbb775\n5sAFv/zyy+effx4aN2nSpGBSlShRok6dOuHp2LFjd+3addCVf/zxR//+/QsmFXC4LrjgggsvvDA8\nffrpp//73//m8tzt27f/4x//CF9B+XjXrFmzO+64IzzdsGFDx44dt2/fHr1EAAAAAAAAAACxTp0U\n/ueyyy478cQTgyDIzMy8/fbbV69eHfnohg0b/vSnP+3fvz8IglKlSrVr167Agl1zzTXh8fr163v1\n6pWWlpZlzfbt22+55ZalS5cWWCrgcD333HMlS5YMjTMyMjp16vTPf/5z3759OZyydOnShx56qG7d\nun/7299yXnl8efLJJytXrhyefvvtt02aNJk+ffpBF6empo4cObKgogEAAAAAAAAAxKIi0Q4Ax5AS\nJUo89NBDffv2DYLgxx9/bNq0ac+ePS+44IL4+Pi5c+e+/PLLGzduDK28//77I4tQ+a1z587PPvts\nZmZmaDphwoTvvvuuZ8+ejRo1Kl269IYNGz7//PPk5OR169YFQdC2bdvcX/IQCsB777130FuZZ2Rk\nRE4///zzP/7446A73HrrrWXLls2XcAXr7LPPHjp0aK9evULT9PT0gQMHvvTSS7feemuLFi1OP/30\nxMTEPXv2bN68+fvvv//666+nT59eWDviiYmJ48aNa9OmTfg/+u+//962bdt69ep16NChVq1aVatW\nzcjIWL9+/bx588aPH79ly5boBgYAAAAAAAAAKNzUSeH/06tXr6+++mr8+PFBEGzZsuWpp546cE3b\ntm0ffPDBgkxVv379Ll26jB49OnwkJSWlT58+B65s1apV9+7d1Uk5prz00kszZsw45LJx48aNGzfu\noA9dc801haNOGgTBHXfcsXfv3vvvvz89PT10ZPXq1UlJSUlJSdENVvAuuOCCSZMm3XzzzTt37gwf\n/P7774cMGZLziZdeemn79u3zOR0AAAAAAAAAQGxxs3vIKjk5uU+fPvHxB/nuiIuL69mz59tvv33Q\nR/PVP/7xj8aNG+e8pnnz5m+++WbBZwMOS8+ePSdPnnzyyScf1ll16tQpXrx4PkWKlhYtWsyePbtp\n06a5XF+qVKlHHnlk6tSpVatWzddgAAAAAAAAAACxRu0MskpISEhKSpo7d27Pnj3POOOM0qVLlypV\nqnbt2t27d//qq6/+9a9/FS1atOBTlStX7v333+/Ro8dB26Lly5d/9NFHp02bVr58+YLPBhyuK664\nYunSpc8++2zdunVzXnnGGWf07t37s88+W7x4caG5RGuk2rVrf/bZZ2+88caFF16Yw7LKlSvfd999\n33333cCBAxMSEgosHgAAAAAAAABAjIjLzMyMdgYK1IIFC8Lj+vXrRzEJR2b16tVTp0797rvvNmzY\nkJCQUL169SZNmlx11VWlS5eOdrQoeOmll/r27RsaJyQk7Nq1K7p54AisWrVq+vTpy5cv37x585Yt\nW4oWLVq+fPkaNWrUq1evUaNGNWrUiHbAgrN69eqZM2d+9913a9asSU1NLVWq1IknnlitWrVLLrmk\nYcOGcdp29pEAACAASURBVHFxR7P5008//dhjj4XGFStWXLVqVV5EBgAAAAAAAICYk5KSEh6ff/75\nUUxC3ioS7QDA4alevXqPHj2inQLIMzVq1LjtttuineKYUL169VtuuSXaKQAAAAAAAAAAYpGb3QMA\nAAAAAAAAAADENFcnBQqJ9PT0ChUqRB654oorJkyYEK08QBTNmzfvyiuvjDySnp4erTAAAAAAAAAA\nAMc+dVKg8Ni7d2/kdN++fdFKAkRXRkZGlg8EAAAAAAAAAABy4Gb3AAAAAAAAAAAAADHN1UmB41jz\n5s2feuqp7B499dRTCzIMcOw45ZRTcvhwKFmyZEGGAQAAAAAAAAA49sVlZmZGOwMFasGCBeFx/fr1\no5gEAAAAAAAAAACA40tKSkp4fP7550cxCXnLze4BAAAAAAAAAAAAYpo6KQAAAAAAAAAAAEBMUycF\nAAAAAAAAAAAAiGnqpAAAAAAAAAAAAAAxTZ0UAAAAAAAAAAAAIKapkwIAAAAAAAAAAADENHVSAAAA\nAAAAAAAAgJimTgoAAAAAAAAAAAAQ09RJAQAAAAAAAAAAAGKaOikAAAAAAAAAAABATFMnBQAAAAAA\nAAAAAIhp6qQAAAAAAAAAAAAAMU2dFAAAAAAAAAAAACCmFYl2AIAjt3bt2hUrVmT3aIUKFc4666y8\neq4VK1bs2LEjND7rrLOKFi2aVzuThwryLcGxbOfOnUuWLMnu0SJFijRt2rQg8xyusWPHbty4MTRu\n167daaedFtU4x5xVq1atXLkyNE5ISGjWrFl084TMnTs3LS0tu0cbNGhQtmzZgswTacOGDT///HN4\n2rx582gliQXLli3btm1bdo+efvrpJ510UkHmOSzLly//73//GxpXqVLl5ptvjm4ecsMvP1Gxbdu2\n9evXb9u2LT09PXzwyH4kzZ49OzyuVatWlSpVcn/upEmTfvjhhxwWVK9evUuXLocbiULp999///33\n30PjYsWKNW7cOLp5CoHj7i+O/fv3L1u2LDQuV67c6aefnlc7H9e//AAAAAAAWaiTAsexyZMn9+3b\nN7tHr7zyyilTpuTJE61atapJkyapqalBEDRu3PiLL77Ik23JcwX2luAYt2zZslatWmX3aMWKFVet\nWlWQeQ7Xs88+u3jx4tC4Vq1a6qRZjB07dtCgQaFx+fLl161bF908IR06dNi8eXN2j3722WdRrL1O\nmzbtz3/+c3i6c+fOIkX8FZBfHnzwwY8//ji7R4cOHdqrV6+CzHNYli5d2r9//9D4vPPOUyc9Lvjl\npyCtX7/+pZdemjx58o8//piZmZnl0SP4kZSWlhb5G8uLL77YtWvX3J8+fvz4SZMm5bCgadOm6qSE\nvPbaa0lJSaFx9erVI/8/E47McfcXR5EiRXr37r1gwYIgCEqXLv3NN9/UqFEjT3Y+rn/5AQAAAACy\n8A/JAIfWv3//UJc0CILBgwfHxcVFNw/HnZUrV/71r3+NPBIXF5ecnJyYmJjzie3btw9f9eqiiy4a\nMGBAfkX8/x13gYFCIykp6csvv4w8cvXVV/fu3Tvns95555033ngjPH3++edPOeWUfMkHxKqPP/74\n9ttv37p1a7SDAByJuLi4wYMHt27dOgiC1NTUAQMGvPnmm9EOBQAAAAAcc9RJAQ5h+vTp4av+XHXV\nVZdeeml08xSYDRs2vPvuu+Fphw4dKlasGMU8x7WdO3ceeL2WMWPG3HPPPTmf+PHHH4fbmWXKlMmX\ncAdz3AUGCo1vv/02y+fPokWLunfvXrx48RzOWr58eeRZO3fuzK98QExasmTJzTff/Mcff0Q7yP+n\nRIkSpUuXznJw7969aWlpUcnD0fjwww/DN6M/7bTTrrzyyujmoVC67LLLrrrqqo8++igIgokTJ86Y\nMePyyy+PdigAAAAA4NiiTgoUEgkJCVkuZlauXLmj3zYzM3PgwIHh6YMPPnj0ex4vVqxY0adPn/C0\nadOmx1edNJ/eEnloxIgRffr0OY4udnscBW7QoMHXX38deWTUqFEvv/xytPIQa+6666477rgj8kid\nOnWilKUw2LRp08SJE//0pz9FO0iuDBs2bMeOHZFHLrroonDPHvLVsf/Lz/GrX79+kV3S2rVrX331\n1dWqVStatGj4YM6t9/wwcuTIAw/26tVr1KhRBZyEo/fiiy+G/7+Idu3aqZMe+47TvzgGDBgQqpMG\nQTBw4MBZs2Yd/d93fvkBAAAAgMJEnRQoPBo2bJjne06cOHHRokWh8UUXXXThhRfm+VOQf/LjLZGH\nfvnll+nTp7dq1SraQXLrOApcqlSpLP/1q1SpEq0wxKAqVaoc458/x53hw4cfL3XS008/PdoRiGk+\nfPLDjz/++MUXX4Snt99++4svvhgfHx/FSEDUHad/cTRv3rx58+azZ88OgmDhwoWTJ09u3779Ue7p\nlx8AAAAAKEzUSQGylZmZ+eSTT4an9957bxTDUCiNGDHiuGhnhh13gYHC4euvv16yZEmDBg2iHQSI\nRbNmzQqPixYt+tRTT+VVlzQhIWH06NHhaePGjfNkWzhQx44d69evHxqXLFkyumGIrnvvvTdUJw2C\n4IknnrjhhhuOixtQAAAAAAAFQ50UIFtTp079/vvvQ+Pq1au3adMmunkofN5///3Vq1dXr1492kFy\n67gLDBQaI0aMeO6556KdAohFKSkp4fGZZ555wgkn5NXOcXFxN910U17tBjk4++yzzz777Gin4Jhw\nzTXXVK9effXq1UEQfPfdd9OmTWvdunW0QwEAAAAAxwp3ZwPI1rBhw8Lj22+/PSEhIYphKExKlCgR\nGqSnpycnJ0c3TG4cd4GBwiEuLq5YsWKh8dtvv71z587o5gFi09atW8PjihUrRjEJwNFLSEjo0qVL\neOp/1wEAAAAAIqmTAhzcsmXLZs6cGZ527tw5imEoZDp06BC+n2BycnJaWlp08xzScRcYKBzi4+Pb\nt28fGu/atevtt9+Obh4gNqWmpobHRYq4xwtw3Pu///u/8HjGjBk//PBDFMMAAAAAAMcU/xACcHBv\nvPFGeHzOOefUqlUrimEoZOrUqdOiRYsZM2YEQbBmzZr333//hhtuiGKe1NTU7du3V6tWLbsFeRX4\np59+qlOnzpEHJWakpqYuWrRo7dq1mzdvLl++/JlnntmwYcNwp5k8tG3btvnz569cuTIjI6Nq1aqn\nn356/fr1CzLAIT8W/vznP48bNy40HjFixJ///OcjeJY1a9aUL1++dOnSRxKRmJSZmblkyZJly5Zt\n27YtMTGxWrVqjRo1is230JYtW+bNm7dq1aq4uLiqVavWrl37jDPOyI8n2r59+6JFi1auXLl79+5y\n5crVqlWrYcOG4euj58bOnTsXL168fv36zZs3lyxZsnLlyqeddlqepM3MzDz6TQqHdevW/fjjjxs2\nbNiyZUv58uUrV67coEGDSpUqRTvXweXfWyLwKREEQT6/wkEQ7NmzZ+HChcuXL09NTU1MTDzllFOa\nNGlyNPcM2bNnz5IlS37//fcdO3bs3bu3dOnSFSpUqFWrVs2aNQ/r06YQqF27dv369VNSUkLTN998\n8/HHH49uJAAAAADgGKFOCnAQGRkZ4fJKEATRrfoVgGnTph34r0eR12EKgqBr164lS5bMbodRo0ap\nCR6WHj16hNqZQRCMGDEiWu+xRYsWjRw5cty4cUlJSV27ds1hZZ4EbtOmzUknndS1a9ebb765TJky\nR5KYwi4lJeWpp5764IMPdu/eHXm8evXqffv27dWrl1JpXvn1118HDhw4ZcqU/fv3Rx6vWbPmrbfe\net999+Vrr2LXrl3vvPNOcnLy2rVrf/755xxWNm/e/Oyzz166dGkQBEuXLv3qq68uvPDCw326adOm\nDRgwoFOnTt26dWvUqNGR56bQueKKK/bs2RMa9+rV69Zbbw2CYPjw4c8888zvv/8eubJUqVLXXHPN\nQw89dNZZZ0UhaD57++23n3/++dC4WLFioZ/4y5cvHzhw4HvvvZflquRnnXXWHXfc8Ze//OVwS12d\nO3f+7bffQuMbbrjhgQceCI3nzp2blJT00UcfZXmi0qVLd+jQoX///rVr18555/HjxycnJ8+aNSvL\nB1oQBKeeemq7du369u170kkn5SZkly5dli9fnuVg5JE5c+ZcdNFFBz23TJky06ZNy2Hzjh07rl27\nNocFDz74YLt27XKTs4Bt3779pZdeeu+99xYtWpSlXBsfH9+sWbM777yzc+fOx87P6Dx8S+THp0Sn\nTp1WrVqV5WDkT8OZM2dm9zYLguCSSy55+umnc9h/6tSpgwcPzmFB5cqVJ02alHPInOXTN12nTp36\n9OkTBMHKlSuHDBkyYcKELH+TJiYm9ujRY8CAATn8ZXqgjIyMCRMmjBo1aubMmQe9zUKxYsUaN258\nxRVXdOrUqWbNmrnf+bh2ww03hOukb7/99mOPPXbsfAsDAAAAAFGkTgpwEHPnzl2zZk142rJlyyiG\nKQBbtmxZuHBhzmu+++67HB7NUvzikNq1a1etWrXQ22zGjBk///zzIasSeWjHjh3jxo1LTk5etGhR\nLk/Jq8Dz58+fP3/+gAEDbrrppm7dujVu3PgINqGwSkpKGjJkyL59+w58aPXq1ffff//HH388cuTI\ngg9W+Hz44YfdunXbunXrgQ8tX7788ccfHzt27Ouvv37uuefm+VPPnz9/5MiR48eP37VrVxAE1atX\nP+Qp3bt3v/fee0Pj4cOHH0GdNAiCnTt3vvrqq6+++mqjRo26du3aqVOncuXKHcE+FDLffPNNuKu0\nbt26HTt2dO/e/b333jtw5e7duydMmDBlypS//e1v999/f8HGzHfr168P/ypYvHjxIAjef//97t27\nb9++/cDFy5Yt69+//7hx415//fXDun5/SkrKjz/+GBqfd955QRCkp6c/8sgjw4YNO+j61NTUMWPG\njB07dtmyZTVq1Djomp9++qlHjx5z5szJ7kl/++23559/ftSoUQMHDrznnnsOGXLZsmXLli3LYcGO\nHTuy+7W5fPnyOW++ZMmSlStX5rBg06ZNh0xY8IYPH/7EE09kly0jI+Orr7766quvXn755eTk5IL8\nhfag8vwtkR+fEkuXLj2wtRxp27ZtOfx1dsgfnZs3b875j7vc/PDNTr5+0zVv3jwIgkmTJvXs2XPn\nzp0HLt6yZUtSUtLUqVM//PDDxMTE3AT+5ZdfunXrNnfu3BzW7Nu3b/bs2bNnz3788cc//PDDyy67\nLDc7H+9atWoVrh2vWrVqwYIF/jQDAAAAAIIgiI92AIBjUeSFhcqUKXP++edHMQyFUpEiRe64447Q\nODMzc8SIEQXzvHPmzLnrrrtq1qzZp0+f3HdJg7wOvGvXruTk5EsuuaRZs2Yvv/zyQdsqxJpBgwb9\n/e9/P2iXNOzDDz/s2rWrmw4fpUWLFnXq1OmgXdKwH3/8sW3btjl3qg7L9u3bX3755WbNml1yySXJ\nycmhLmkude7cOXw940mTJh1l3WrRokV9+vSpWbPmXXfdlUMbhtjUrVu3g7bEwvbt2zdw4MCcL/tX\nCMyZM+dPf/pTzj+dFyxY0Lp16wOvsHhYevXqlV2XNGz//v179+496ENLly694oorcvONvGvXrgcf\nfDB8PVRyKS0t7a677rrnnnty88E7f/78K664YsmSJQUQLDsF8JaI8U+JAniFp06d2qVLl4N2ScOW\nLFnSqVOn3Oy2YsWKq666KucuaRbZfeAUPo0bNy5dunR4mvPFlQEAAACA2OHqpAAH8cknn4THzZo1\nK1KkkH9ahm5tnOXgpk2bPvzww/C0bdu2J5xwQnY75PLaMETq1q1bUlJSenp6EARvvPHGY489ln+3\nlt66detbb72VnJwcvqHhEciPwIsXL77vvvsefvjhG2+8sVu3bkd20UEKgddff/2ZZ56JPHLGGWfc\ndNNNtWvXjo+P//nnnydMmBC6RvK0adNyvjc6h3THHXeEarvFixe/9tprL7vsskqVKm3atGn27Nnv\nvvtu+Ja+W7Zsue666xYtWlS2bNmjebqvvvpq5MiR//nPf8I7H66yZcvecsstr776ahAEe/fuHT16\ndN++fY8mUhAEqampr7/++uuvv16/fv2uXbt27tw5h59xxIhRo0b98ssvofFZZ53VsWPHWrVqZWRk\n/Pzzz++8885PP/0UXvnkk0+GPqOilDR/paen33777aH7QZcsWfL6669v3rx56FPi888/f//998Nd\nq1WrVrVv33727NlFixY9gidKTk4eM2ZMeFq2bNlzzjmncuXKCQkJmzZt+uabb7Zt25bD6Zs3b772\n2ms3bNgQPlK0aNErr7yyVatWVatW3bVr1w8//DBhwoTIq4E+//zzVapU6devXw7btmvXLnTl1Eif\nffZZuDhbrVq17G5cUKpUqRx2DoKgffv2mzdvjjySmZn55ptv5nxWFN1+++0TJ06MPFK3bt22bdvW\nq1evbNmyW7duXbRo0Xvvvbdu3brQo+vXr7/++uvnz58flT8N8uktESmvPiVuuOGGyJwh06dPD98f\no0aNGi1atMguxiGvHV6rVq0D/7j79ttvj7LsWwCv8KZNm7p37x76c6NmzZpt27Y95ZRTMjMzly9f\nPmXKlMj7h8yaNWvChAkdO3bMecOePXtGnlW+fPkbbrihSZMmJ598csmSJXfs2LFx48ZFixbNnj17\n6dKluQxZaBQtWrRp06YzZswITT/66KNHHnkkupEAAAAAgGNBIS9IARyBvXv3fvvtt+FpgwYNohim\nYDRr1qxZs2ZZDs6ZMyeyTjpo0KCGDRsWbK5Crnr16m3btp0yZUoQBFu2bJkwYcKB/+579GbNmjVy\n5MhJkyb98ccfBz6akJDQqlWr22677dprry2AwB988MGYMWPeeuut1atXRx7fs2fPG2+88cYbb5x5\n5pmhXlfFihUPa2eOa5s3b87yr9ePPvpo//794+P/dx39hx56aNiwYY888khGRka4ycGRCd1gt379\n+m+99dYZZ5wRPt6jR49ffvmlc+fOixcvDh1ZvXr1k08+mZSUdATPsnnz5lCLPdQDPlD16tU7d+7c\npUuX3OzWo0ePUJ00CIJXX331vvvui4uLy32Yzp07lytXbvTo0Z9++mmopBKWkpLSr1+/gQMHtm/f\nvlu3bhdffHHut6WQCX22xMfHP/XUU3fffXfke+zhhx8eMmRI5OUGH3zwwTZt2oSvm1uYpKWl/fbb\nb0EQNGrU6M033zz99NPDD/Xo0eO777675ZZbwvesX7p06UsvvdSnT5/DfZbU1NRBgwaFxk2aNBk0\naFCLFi0ia6kZGRmzZ88eNmzY+++/f9Ad+vfvv379+vC0Xr16o0ePzvJ7+2OPPZblQ2zw4MHXX399\nnTp1sgv297///cCDN998c7hOWr9+/SO+RvvTTz+d5UhaWtoxWyd94YUXIruk5cqVGzZsWKdOnSK/\nNbp27fr0008//vjj4avMrl279t577x09enRBx823t8T/Y+/e42LM///xX8100FGRzjl0oEQ5RO/N\nKRIqdpNsDjmLbdu1G5FTjhv62I2l1WIdQ2h1xuZQRNicIpGiiIpSEp2mmvn9Mb/v9b7eU00z08xc\nNfO4/+H2el3zul7X03TNazo85/miEtcq0WLt0q+//ppMfBw8eHB7tgJwdHTk7hpPtWnTpnamk0rh\nGY6Ojm5qalJWVv7tt98WLVpEfYZDQkKWLVtGfb0cOHCAfzppWlrajRs3yO748eOPHz/e/NMj3B0Y\nnj17dvToUfKbDTkxcOBAMp00MzOTxWIpKyvTGxIAAAAAAAAAAADQDpvdAwDwevToUUNDA9mVh3RS\noIuvry/ZFu9+92VlZb///rudnZ2Li0tUVFTzXNJ+/fr98ssvubm58fHx06ZNU1FRkULAlpaWW7Zs\nyc3NTUhI8PLyal7c9NmzZ6tWrTI3N583b97169exp7mc2LlzJ7VaW2Bg4OrVq6m5pARBKCgo/Pzz\nzxs2bJB6dLLJwMAgPj6emkvKZW5uHhcXZ2hoSB7Zt2+fUJtZczic69evz5s3z9zcfNWqVc1zSbt0\n6eLl5ZWQkJCbm7tlyxYB80tsbW3Jjz0UFBRcvnxZ8JAIglBRUZk2bVp8fHxubu4vv/zSr18/ngF1\ndXVRUVEuLi52dna///67INs6g6zaunXrsmXLePKVGQzG+vXrf/zxR/JIcXFxeHi41KOTHlNT0/j4\neGouKZe1tXV8fDy19uS2bduqq6uFnT8hIYG78gcGBl6/ft3FxYWnxCmDwRg5cmR0dHR0dDR1O2au\nx48fnzp1iuwaGRklJSU1/6ZdUVFx06ZNQUFB5JG6urqNGzcKG60cevnyJfWTHjo6OqmpqTNmzGie\nyq+mprZjxw7qkxwdHU1+LEFqpHlLyOcqIZ1nmPuRj6NHjy5evJjnGVZTUztw4AC1Mmt6enrzIq9U\n1GR0TU3NyMhIPpXIra2tQ0NDnz17NmDAAAGjlQHUryCLxZL+KxcAAAAAAAAAAAA6IKSTAgDw4qna\n0jzbBkBcnJ2dzc3Nue2MjIzMzMx2TsjhcFJSUnx8fCwsLFavXk0WDyN17dp10aJF165dy8zMXLFi\nhZGRkfQDZjAYLi4ukZGRBQUFe/bsGTZsGM+A+vr6s2fPTpo0ydbWNiwsjP/fiaGza2xsPH36NNk1\nNjYm69U1t3LlyuaJgCCCTZs2GRsbt/iQoaEhNe2jsbExKipKkDlLS0vDwsJsbW0nTZp09uxZcjts\n0rBhw/bs2VNQUBAZGeni4sKTMdymJUuWkG2R8++NjIxWrFiRmZl57dq1RYsWde3alWdAbm7u6tWr\nudsEp6SkIKld3vTv3z8gIKC1Rzdv3qyvr092T5w4IZWg6LF9+/YePXq0+FDv3r2puWKfPn3iVi4X\nCjcDdcmSJVu3buVfbHjy5MkGBgY8B48dO8YTbWtrGkEQwcHB1Mz1pKSksrIyYQOWN7t376Yu44cP\nH+7fvz+f8evXr6f+0LR//34JBtcSqd0ScrtKSO0Znjp16tSpU1t8iMFg/Pzzz2SXzWbz/2Hk+fPn\nZNvR0VFbW7vNq+vp6Qn781GnxvO7jnbWrwUAAAAAAAAAAADZgHRSAABer169onbl6u9JIGUKCgqL\nFy8mu+0pUFpSUrJz504bGxt3d/dz586xWCzqowwGw9nZ+ejRo69evQoPDyeL/NEYMEEQ2travr6+\naWlpDx8+DAgIoBZE5Hrx4sW6dessLCxmzZp15coVNpvdnstBx5SSkkLdONXPz4/PJpsMBuOnn36S\nSlyyTF9ff/bs2XwGzJ49W09Pj+xS832bY7PZV65cmTVrloWFxbp16168eMEzwNDQMCAg4OHDh2lp\nab6+voIkc7Ro2rRp3bt357YvXrwoVM3U5hwcHMLDw1+9enX06FFnZ2ee3FYWi3Xu3Dl3d3cbG5ud\nO3e+e/euPdeCTuTnn3/mk9qoqqpKrdL98uXLjIwMqcQlbb179/b09OQzYPHixdSKofxXidaYmJhs\n27ZNhBPZbPaZM2fIbp8+ffhveM1kMlesWEF2GxoaoqOjRbiu/CgvL6duKT5+/PhJkybxP0VRUXHp\n0qVk99y5c9L8tk2at4R8rhLSfIb9/f35PDphwgRqt3kRdKqKigqy3bzIMRAEwZMTzPObEAAAAAAA\nAAAAAJBPSCcFAOBVWFhItplMZvN6SABiNGfOHHLP9zNnznz69Emo09lsdnJy8owZM/r27bthw4aC\nggKeARYWFps2bXr+/HlSUpK3t3fz/eWlHHCLrKystm3blpeXFxMT4+npqaKiQn20oaEhNjZ2ypQp\n/fv337FjR1FRUfuvCB3HrVu3qF03Nzf+493d3fnXsYM2TZw4UVFRkc8ARUVFarrG06dPKysrmw8r\nKirasWNH//79p0yZEhsb29DQQH1URUXF09MzJiYmLy9v27ZtVlZW7QxbRUVlzpw53HZTU9OhQ4fa\nOSFBEF26dPH29k5KSnr+/PmmTZssLCx4BhQUFGzYsMHS0nLGjBnJyclIapdtDAbD1dWV/xieATwr\nmMxwc3Pjv9KqqamNGTOG7N6+fVuEUr6+vr6iJXg9f/68vLyc7E6ePLnNasfu7u5MJpPs3r59W4Tr\nyo/Lly/X1taSXWp+JB/UN45Pnz7l5OSIP7JWSO2WkNtVQmrPcLdu3RwdHfkM0NHRof54zv/zHmpq\namQb27i3yMDAgPplov4mBAAAAAAAAAAAAOQW0kkBAHhR/1SmpaUl7G68AELp3r07WQCsurr61KlT\ngp8bFhbWr18/Dw+P+Pj4xsZG6kNaWlrz58+/evVqVlZWUFCQiYlJRwiYPyaT6erqevLkyfz8/LCw\nsCFDhvAMeP369ebNm/v16zd9+nRp5iiARFF3KdXR0bG2tuY/Xk9PD/vdt9PIkSPbHDNixAhqlycJ\nIycnZ/r06f369du8efPr1695zh0yZEhYWFh+fv7JkyddXV2paQrt5OvrS6a4HT16lCeBtT1MTEyC\ngoKysrKuXr06f/58LS0t6qONjY3x8fEeHh5WVlZhYWHiuih0NFZWVrq6uvzHDB48WB7yk3hWgDbH\nfP78ufkHWto0Y8YMYU/h4tneetSoUW2eoqura2Nj09oMwIOaAamsrOzi4iLIWRYWFpqammT3/v37\n4o+sFVK7JeR2lZDaMzxw4MA2PzVElionCOLLly98RlI/yvLixYvw8HBBYpArTCaT+rKl/iYEAAAA\nAAAAAAAA5BZypAAAeFVXV5NtVVVVGiMBObFkyRKyLdT28fv27ePZ7llBQcHJyenQoUMFBQURERH8\nq/uITOSABdStWzc/P7/09PR79+4tW7ZMX1+f+mhTU1NSUhLqismMp0+fkm1LS0tBThFwGLRGkCeQ\np05ndnY2tXv79u2kpKSmpibqQX19/WXLlt27dy89Pd3Pz69bt25iiZbKzMzM2dmZ23737l1CQoLY\nr4Q/JgAAIABJREFUL+Ho6BgREVFQUHDo0CEnJyeepJY3b97s27dP7BeFDkKQl4aCgoK5uTnZ5Xlp\nyAxBngrq80AQxJMnT4S6hIGBQc+ePYUL6/+hvnEQBCHgZwyo/6mXL1/W19eLdnV58O+//5JtS0tL\nwX8g0tPTI9v8y0aKl9RuCbldJaT2DPPsvd4ialXjmpoaPiOnTJlC7a5cudLNzS06OrrFmutyi/oC\np/4mBAAAAAAAAAAAAOQWv20uAQDkE/UPXcrKyjRG0qZHjx49ePCA/xgGgzFv3jzpxCN7pPMMOzg4\n2NracmsXPXv27ObNm4LUDmzO09Nz+/btIidnCE5cAbfJxsYmNDQ0JCQkJiYmICCgoqJCElcB0Rw7\ndqzNjb+HDBliZ2fHf8zHjx/JtoBldKVwk3cE4nqGmzM1NRV2DPXL1Fy3bt127drl6empqCjxHy58\nfX2vXLnCbR88eHDatGmSuIqamtqsWbNmzZpVWFi4Zs2amJgYSVwFRCO5t2YB1xZTU9OsrCxuW1YL\nuQnyVPCsEsI+FdSyhcLiWZEE/ML16tWLbHM4nMrKSp7PqwCppKSEbBcVFY0bN44gCA6Hw/Nv84PU\nE/m/cYiX1G4JuV0lpPYM81QHbxP/75TGjx8/atSoGzdukEdSU1NTU1OZTKadnZ29vf3QoUPt7Oxs\nbGyk8A1Mh6WiokK26+rqaIwEAAAAAAAAAAAAOgj5/YUpAEBrlJSUyLYYN9KVhIsXL27evJn/GCaT\niXRSkUntGfb19f3xxx+57QMHDoiWnRkTE5Ofn+/j4+Pt7d3mRpztJJaA28ThcNLT0yMjI2NiYvjv\nZQnS5+/vz1OcsrmNGzfyT3Zks9nUMkjUclN8CDissxPLM9wiDQ2NNsdQN+olCKKqqorP4IqKCn9/\n/6tXr86ZM2fEiBFtblPbHu7u7sbGxkVFRQRBXL9+/fnz5wLWSBPWhw8fzpw5c+LECWyK3dFI7q1Z\nwLWF+urg/9LovAR5KnjGfP78WahL6OjoCBcTxadPn8g2k8ns0qWLIGfxLH1VVVVIJ20NNXewsrJS\ntJLw0nx1SO2WkNtVQmrPsNjTOiMjI6dMmUJm93I1NTU9ePCA/GSCpqbmmDFj5s2b5+7uLtHvYTom\n6m88qL8JAQAAAAAAAAAAALmFze4BAHhR//6H+hwgHTNmzCCL8cTHx5eWlgpyVvPKXpmZmYGBgWZm\nZt7e3omJiZLLhxYtYMG9evUqJCTExsbGxcXl+PHjPLmkXbt2FaS8InR8NTU1ZIUz4n932+SDJ9MR\nhCXI88zzJPNsfmpqatq1a1fqkS9fvhw/ftzFxcXGxiYkJOTVq1fiiLQFTCZz4cKFZPevv/4S7/wN\nDQ2JiYne3t5mZmaBgYHNc0nbU1IROjgBlyDqsC9fvlAXMdmgpKQkSEYXz9MlbDqppqamcGFRUFck\nwd8ReEYKG7D8qK6ubmxsbP88bX4iQoykdkvI7SrReV90+vr6qampK1eu5BP258+fk5KSpk+f7uzs\n/ObNG2mG1xHU1taSbTn5yBYAAAAAAAAAAADwh+qkAAC8qNWS8JdmkA4NDY2ZM2fu37+fIAgWi3Xs\n2LGVK1e2eVZ8fPyTJ0+OHDkSFRVFrSPV0NCQkJCQkJDQo0cPb29vHx8fEeoXSiLgNn358iU2NjYy\nMvLmzZst/un9P//5z8KFC728vAT8cz50cDxfx/r6ekHOEnAYtKa+vl5ZWbnNMdQuTxLG+PHj8/Pz\nz507d/jw4Tt37lAfKigo+OWXX0JCQkaOHDlnzpypU6cKUgxVKAsWLNi+fTs32+nEiRObN28WS4bx\no0ePTpw4cebMmbKysuaP6ujozJw5c8GCBQMGDGj/taBjEmEJUlZWlr1Sdg0NDRwOp83/F8/TRd0u\nWRBMJlPoyP4f6nuH4O8IPB8SwzcSrVFVVVVQUCC/DevXr9/AgQNFmMfe3l6scfEjtVtCbleJTv2i\nU1dX37Jly8qVK+Pi4i5fvnzr1i1ujfPmbt++7eTklJaWZmxsLOUg6cLhcKgf29PW1qYxGAAAAAAA\nAAAAAOggkE4KAMDLxMSEbLNYrA8fPkh633CROTg4/PTTT/zHtOev9SDNZ9jX15ebnUkQxF9//bVi\nxQoGo+0i4gMGDPjtt99CQkJiYmIOHz6cnp5OfbSsrCw8PDw8PHzgwIE+Pj4zZszQ09MTS7QiB9wi\nDoeTlpYWGRkZFxfHUwSRq3v37rNmzVqwYIG1tbXoEYNY/fTTT20WHnNwcOA/gMlkqqmp1dTUcLtk\ng78WbxLZI5ZnuEU1NTVt1gXk+VqQ1YhJampqc+bMmTNnzrNnz44cOXLq1Kny8nLyUQ6Hc+PGjRs3\nbgQEBHh4eMyZM2f06NHiyqcxNDScMmVKbGwsQRCVlZXR0dEibGtOKi0tPX369IkTJ3h2wiWNGDFi\n4cKFnp6eAu7tC5ImubdmAZcgaiE3njK9MqOmpqbNGnVtrhKSQ13BWCxWY2OjIOVUed472lMeVbYx\nGIyuXbtWVlZyu+PGjQsLC6M3pDZJ7ZaQ21VCBl50mpqa3O9bCIIoLi7OyMhIT0+/cOFCfn4+dVhx\ncfH3338fHx9PU5jSVlZWxmKxyC71NyEAAAAAAAAAAAAgt5BOCgDAq1evXtRucXFxh00nHTt27Nix\nY+mOQpZJ8xm2sbFxdHS8desWQRCFhYXJycmurq4CntulS5dZs2bNmjUrNzf30KFDp06d+vDhA3VA\nVlZWUFDQunXrJk6c6OPj4+bm1mZtQokGTMrPzz9x4sTJkycLCwubP6qgoDBq1KiFCxd6eHgIW/YM\nJC0kJEQs8+jo6JDJGe/fvxfkFAGHdXbieoabe/funb6+Pv8xPE8yn2wYa2vr//u//9u6dWtcXNzh\nw4fT0tKoj1ZXV588efLkyZM9e/acPXu2j4+PmZlZe4Ln8vX15aaTEgRx8OBBEdJJWSzWhQsXTpw4\nkZyc3OK2zrq6urNmzVq0aFHfvn3bGy6IleTemt+9eyfIMOqrQ5o5lNL07t07c3Nz/mNKS0upXWnm\nzPE87SUlJaampm2exfP1lY0kPwnp3r07mU5aUVFBbzCCkNotIberhIy96IyMjDw8PDw8PHbu3Hnt\n2rUNGzbcvXuXfPTSpUtZWVmiFeXtdIqLi6ldnt+EAAAAAAAAAAAAgHwSsYoYAIAM4yl/+PLlS7oi\nAXmzZMkSsn3w4EERZujbt29oaOjLly8jIyPHjh3LUwuwsbHx/PnzM2fONDMzW758+YMHD+gKuKqq\n6ujRo87OzjY2Ntu3b2+eS6qnpxcQEPD48ePk5GRvb2/kksowaq6egOttXl6exMKRCy9evBB2jJWV\nFf/xKioq3t7eycnJWVlZAQEBzQshFxYWbt++3cbGxtnZ+ejRo1VVVcKGTeXk5GRpaclt379///79\n+4Kf++DBg+XLl5uZmc2cOfP8+fM8uaQKCgpjx46NjIx8+fJlaGgocknliiAvDZ5hFhYWEguHToIs\nszxj2kw/FSOepz03N1eQs54/f0629fX1Zbg6KbVsJJvNFmGGQYMGke3s7GwxxCRhUrsl5HaVkOEX\nnZOTU0pKyrRp06gHU1JS6IpHyniKs2IjCAAAAAAAAAAAACCQTgoA0NyQIUOoSXid4m+okqCkpETt\ntli8DcRr6tSpPXr04LaTk5Nfv34t2jzKyspeXl4XLlx48uRJYGCggYEBz4Dy8vKIiIgRI0bY29vv\n3r1bwEpL7Q+YzWanpKQsWLCgd+/efn5+3MqmVAoKCuPHjz958uSLFy+2bdsmG3+AB/5sbW3JdlFR\nUZt3Y01NzdOnTyUclIyjluBqDU+6OfXLxJ+FhcW2bdtevHhx8uTJ8ePHN9/g/tatW35+fn369Fmw\nYEFKSopoqU4KCgqLFy8mu4Kks79792737t1Dhw4dMWJEREREeXk5zwADA4PAwMAnT55cuHDBy8ur\n/SWcodPJzs6mblHdotevX1OLNdrZ2Uk4KHrcu3evzTEPHz4k20wmc8CAAZKM6H9Qkx0Jwda0urq6\nJ0+etDaDjKEWkhQtd3/EiBFk++nTp80XzI5GareERFcJ6g9fHe0nL9l+0SkqKoaHh3fp0oU8UlBQ\nQGM80pSVlUW2FRQUBg8eTGMwAAAAAAAAAAAA0EEgnRQAgJe2tja1wBL1z2Byhad+zKdPn+iKRH4o\nKyvPnTuX22az2YcOHWrnhGZmZlu3bs3Lyzt9+vSECRMYDN73/ezs7DVr1lhYWMTFxUkh4BEjRri7\nu58+fbr5X+KNjIyCgoKePXuWmJjo6enJk80MMmz48OHU7uXLl/mPT01Nraurk2REsi85OVmoMb16\n9WpebZQ/JSUlT0/PxMTEZ8+eBQUFGRkZ8Qyoqak5ffq0u7s7NWlJKHPmzFFVVeW2z549S+7L3KK4\nuDgLC4s1a9Y0z0VmMBgTJkw4ffp0Xl7e1q1bzczMRIsHZEBtbe3169f5j+F5+QwdOlSSEdGmzVWC\nw+FcuXKF7A4YMICaiSVptra21ITv8+fPt3nK1atXa2pqyK6sfuG4yI/6EATx+vVrERITx40bR7bZ\nbPaRI0fEE5nESO2WkOgqoaGhQbb5v6lJn8y/6LS1tan7vNfX19MYjDRRf9dhaWmpra1NYzAAAAAA\nAAAAAADQQSCdFACgBdS/od65c4fGSGikq6tL7cptWq2ULV68mEz6PHbsGIfDaf+cioqK33zzTXx8\nfE5Oztq1a42NjXkGNDU1ffz4UbTJhQq4rKyM5wiTyXR1dY2Ojs7Nzd20aRP177ggJyZNmkTNn/jr\nr7/4j//zzz8lHJHsy8nJ4Z8Nk5aWRt2g9ttvvxX5Wr169dq0aVNubm50dLSrqyuTyeQZ0HxZEJCO\njo6Xlxe3XVtbe/bsWT6DP3782NTUxHPQ2Nh47dq1OTk58fHx33zzDXV7aJBb+/fv5z+A+sGJrl27\nuri4SDgiety7d49/gdKEhARqMWnyxSgdXbp0cXd3J7v37t37999/+Z8SHh5O7fJsbC1jqOUw6+vr\n09PThZ2hX79+zs7OZHfPnj3v378XT3CSIc1bQnKrBDUPOCcnR7Tq3RIi8y86NptdWlpKdoX9FE0n\nxeFwqL/roP4OBAAAAAAAAAAAAOQZ0kkBAFowceJEsv3+/fucnBwag6GLjo6Oqakp2Y2OjhZLaiPw\n17t3b/KvzqWlpeL9Q7KpqWlwcPDz58/PnTs3efLk5nldIhA54J49ewYHB+fk5MTExIgrGOiM1NTU\nvvnmG7KbkZFx7ty51gYnJydT6+GByNavX89isVp8qKGhITg4mHpk5syZ7bwck8mcPHlyTExMTk5O\ncHAw9c2lPXx9fcl2SUmJUMGcO3fu+fPnYgwGZMM///yTkpLS2qOnTp16/Pgx2fX09JRmSU4pW7t2\nbfMkbK7a2totW7aQXQaDMWPGDGnF9f8ji6NzrVq1qrU1jSCIuLi4a9eukd1hw4b1799fcrHRzt7e\nnizeTBDEzp07Rfgefvny5WS7rKxszpw51EqT/N26devMmTPCXrGdpHZLSG6VsLW1JdsfP378559/\nBDxROjrji+6ff/5pbR3jcfHiReqH66hfCxmWnZ394cMHskv9HQgAAAAAAAAAAADIM6STAgC0wMnJ\nSV1dnexS/xgmV5ycnMj2vXv3Vq5ciT2mpYCaICUJTCbTzc2NLAjau3fvdk4oVMDcUqlxcXHPnj1b\nu3atiYlJO68OMiAoKIi6g6qfn9/t27ebD7t79+6CBQukGJcsu3fv3tKlS5vv5cpisfz9/TMyMsgj\nXl5e1tbW4rquiYkJtyBoXFxc+wuCDhs2bPDgwYKP7927N1kq1c3NDVns0KK5c+c+ePCg+fEbN278\n+OOPZFdFRSUwMFCKcUnbjRs3li1b1tDQwHO8rq5u8eLFT58+JY/MnTtX+u/mEyZMsLe3J7sZGRkL\nFy5sMd8xNTV18eLF1CNBQUESj49Wmpqa1EqQV69e9fPz+/Tpk1CTjBs3jvpZghs3bjg7O1O/7s1V\nV1efOXNm3Lhxzs7O0t/eQZq3hIRWidGjRysoKJDdZcuW3b9/X6jAJKozvui+++67AQMG7N27l395\n3aysrB9++IHsqqqqTpgwQfLR0Y/6Ww4NDY0xY8bQFwsAAAAAAAAAAAB0INjSEQCgBdxqeadOneJ2\nExISvvvuO3pDosXixYsjIyPJ7h9//HH69OnRo0ebmJioqalRR3733XcGBgZSD1A2ubq6mpqavnnz\nRtIXMjIyCgoKWrVq1dWrV7t27SryPIIHvGbNGnd3d9wqwMPS0nLZsmW//vort/v58+cJEyYsXLhw\n5syZ5ubmBEHk5+efPXv24MGD3MQmTU3Nz58/0xlxJ8d9Ak+fPv348eMffvhh9OjRPXr0KC8vT09P\n37t3L7Wsmrq6+vbt28UeAIPBmDhx4sSJE9+9e3f+/Pn2TOXr6/v999+3OWzAgAGJiYnOzs7UTB0A\nHhoaGl++fCkvLx87duySJUu8vLzMzMwIgnjx4kVUVNThw4epVe4CAgK4j8oeBoOhoqJSW1t7+PDh\nBw8e+Pv7Ozo66urqfvjw4fr163v37n327Bk5WEdHh1qpVJpB7tu3z9HRsbGxkXvk3LlzmZmZfn5+\nzs7OhoaGnz9/fv78eVRU1KlTp6i1OadNm0bds1tqEhMT37592/w4T1n369evt/bZLR8fH01NTQEv\nFxQUFBMTQ6b6HTt27MyZMwMGDOCZYefOnTY2Nq1Nsnfv3gcPHjx//pzbzczMtLe3nzJliqur67Bh\nw3r06KGqqlpRUVFSUnL37t07d+4kJydXV1cLGKHYSeeWkOgqwS35f+nSJW63qKho5MiR9vb2gwYN\n0tbWpn4Ewtra2tvbu8VJSkpK4uLiWnyImgJbXV0dERHR4jArK6uxY8c2P97pXnRcr169WrVq1Zo1\na8aMGePk5OTg4GBubq6rq6ukpFRRUZGVlRUbG3vs2DFqpdXAwEDBX2udWkJCAtn28PCgVjUGAAAA\nAAAAAAAAeYZ0UgCAlvn4+JDppGlpaR8+fNDV1aU3JOkbPnz40qVL9+/fTx4pLy+PjY1tPnLq1KnI\nERQXBoOxaNGiTZs2SedyCgoK48ePb88Mgge8aNGi9lwIZFhwcHBmZia5kX1jY+OBAwcOHDjQfGS/\nfv2mTp26Y8cO6QYoU/bs2cOt8/r06VM+uZiKiorHjx+XaNFBAwODdi4L3t7ea9asabPq3rBhw9pz\nFZAT/v7+f//998uXL1ksVnh4eHh4eGsjJ0yYsHbtWmnGJk1KSkqhoaHLli0jCCIzM5NPDXIVFZUT\nJ0706NFDitH918CBA//888+lS5eSCXwvX77kXwzS3t5+7969UomOV0RERGpqapvDzpw509o28W5u\nboKnuFlYWOzateu7774js/rq6uru3bvHM4z/4qmurn7hwoXp06eTaYgcDichIYGagtahSOGWkPQq\nsWvXrq+++qqqqoo8cu/eveZfuClTprSWTlpQULB8+fI2L1RZWdnaMB8fnxbTSYnO9qKjampqSklJ\nSUlJaXPk2LFjV6xYIYWQaFdaWpqenk52Z8+eTWMwAAAAAAAAAAAA0KFgs3sAgJY5OTlZWFhw201N\nTS3mUMqDX3/9NSgoqJ37EYOw5s+fr6SkRHcUQuh0AUNHo6ysfPr0aRcXF/7DevbsGRUVpa6uLp2o\nZJWXl9e6dev41+lUV1c/cuSIm5ub1KISjZqaGhIgQFw0NDROnTplbGzMf9iECROioqJk+13P19fX\nz8+P/xhNTc3IyMhx48ZJJ6QWzZ49+9ixYwImWY4fP/78+fM6OjqSjqqDmDt37tGjR9v5/zUyMrp8\n+fKcOXMYDCF+d6SiokL+GCVlkr4lJL1KmJmZXblypX///sKeKDWy/aLz9vY+d+6ciooK3YFIw99/\n/01WR7awsMBO9wAAAAAAAAAAAEBCOikAQMsUFBR+/PFHsnv48GEag6GRoqLipk2b8vLytm/f/vXX\nX5uZmWlrayO7VNL09fW//vpruqMQQqcLGDogdXX1hISE8PBwQ0PDFgd4eHjcunXL2tpayoHJpPXr\n1585c6bFhBjuTvR379718vKSfmAi4FM6EUBYtra26enprq6uLT5qaGj4xx9/xMfHq6mpSTkw6QsL\nCzt48GCLtfmZTOaUKVPu378/ZcoU6QfGY9q0aVlZWQsXLuTzRbGxsYmKikpMTNTS0pJmbLT79ttv\ns7OzQ0JCRo0aZWBgINo38GpqagcOHOC+KfD/OIe6uvrEiRPDw8NfvXrl7+8vatTtJelbQtKrxMCB\nA+/du5eYmLh06dLhw4cbGBh0tAWnE73oUlJSQkNDx44dy/85ZDAYzs7OiYmJR48elZ8N348cOUK2\nf/jhB/6fMgIAAAAAAAAAAAC5okDufQZy4v79+2TbxsaGxkgA2i8iIoLcpI/JZH758kW889fW1lpa\nWpaXl3O7N27csLe3F+8lQLwkfUtA57Vjx47Nmzdz2927d3/79i298fDn4ODw+PFjbvvcuXMdv0Kk\neLHZ7Bs3bty8ebO4uLiyslJTU7N///5ubm50lToTkImJCfl+sXHjxtWrV9MbjyBYLNaVK1fS09Pf\nvn3L4XAMDAzMzc2nTJliZGREd2gyRUNDg9wXOCwsrM2ijzRKSEggN1AeMmQIdRtcWaWrq1tdXc1t\nb926ldy1OScnJzk5+dmzZ58/f9bW1jYyMho5cuSoUaOEqtEoHWL55mf37t1r1qzhtlVUVCorK7nt\nmpqaS5cu3blzp6ioiMFgGBgYWFhYTJkyxcDAQCzBi1FdXd3169fv3btXWlpaXl6uqqrao0eP3r17\nu7i49OnTh+7oZASLxbpz505GRgb3Sa6rq9PQ0OjWrVvfvn379+8/ePBgZWVlumP8L3HdEjKwSkhI\nJ3rRNTQ0ZGZmPn369OXLl6WlpZ8/f2YwGFpaWnp6enZ2dg4ODq19lklYneUnjoyMDLIcabdu3fLy\n8sSetdyJvvkBAAAAAAAAAACRZWdnk+2hQ4fSGAmIF8rLAQC0SlVVNSAgYP369dxueHj40aNHaY0I\nAED2MRiMMWPGYM9NKVBWVnZzc5O3fGUAQVhZWVlZWdEdBf3U1NQ8PDw8PDzoDqRtXbp0mThx4sSJ\nE+kORJYpKyuPHj169OjRdAciEEnfElglOtGLTklJadiwYcOGDaM7kI5i7969ZDsgIKCjVcAFAAAA\nAAAAAAAAeslL1QQAANH4+fmRpUr+/vvvV69e0RoOAAAAAAAAAIAo8vPzY2NjuW0DA4Pvv/+e3ngA\nAAAAAAAAAACgo0E6KQDIiKamJu3/5eXl1f5p1dTUyA2Lm5qadu3a1f45QTokdEtAp3D37l2er35I\nSAjdQYEcCQkJ4bkD7969S3dQICVeXl48X31ys1cAScM3PwAAUtNJf+LYtWsX+Z3J6tWrxVKaFN/8\nAAAAAAAAAAAAyBJsdg8AsqO+vp7aZbFYYpl20aJFhw4devz4MUEQR48e/fnnn/v06SOWmUHSJHRL\nQMfHZrN5vvoA0tTY2NjY2Eg9wmaz6QoGpIzFYmH9ARrhmx8AAOnojD9x5OfnHzt2jNu2tbVdvHix\nWKbFNz8AAAAAAAAAAACyBNVJAQDawGQyd+/eraCgQBAEi8XauHEj3REBAAAAAAAAAAhhw4YNDQ0N\nBEEoKCjs3r2byWTSHREAAAAAAAAAAAB0OKhOCgCdmKOj4/bt21t7tFevXuK60FdffXX48OF3794R\nBMFgMFgslrKysrgmBzGS2i0BHVzPnj353AmqqqrSDAbkRHBwcG1tbWuP9uzZU5rBAI0WLFgwbty4\n1h51dHSUZjAgD/DNDwAALTrdTxwsFmv48OH29vYEQRgYGHz11Vfimhnf/AAAAAAAAAAAAMgSpJMC\nQCdmZ2dnZ2cnnWvNmDFDOheC9pDmLQEdmaGh4c8//0x3FCBfli5dSncI0CFMnTqV7hBAvuCbHwAA\nWnS6nziUlZWXLVsmiZnxzQ8AAAAAAAAAAIAswWb3AAAAAAAAAAAAAAAAAAAAAAAAAAByDemkAAAA\nAAAAAAAAAAAAAAAAAAAAAAByDZvdAwAAAAAAgDy6du1aU1MTt21oaEhvMDSaPXv22LFjuW0GAx86\nBfgvrBIAAAAAAAAAAAAAIFeQTgoAAADQscyYMWP06NHcdp8+fegNBgDkh5mZ2Q8//MBtm5qa0huM\ndAwYMIDuEDqEHj169OjRg+4oADoirBIAAAAAAAAAAAAAIFcUOBwO3TGAVN2/f59s29jY0BgJAAAA\nAAAAAAAAAAAAAAAAAAAAdC7Z2dlke+jQoTRGAuKFbewAAAAAAAAAAAAAAAAAAAAAAAAAAOQa0kkB\nAAAAAAAAAAAAAAAAAAAAAAAAAOQa0kkBAAAAAAAAAAAAAAAAAAAAAAAAAOQa0kkBAAAAAAAAAAAA\nAAAAAAAAAAAAAOQa0kkBAAAAAAAAAAAAAAAAAAAAAAAAAOQa0kkBAAAAAAAAAAAAAAAAAAAAAAAA\nAOQa0kkBAAAAAAAAAAAAAAAAAAAAAAAAAOQa0kkBAAAAAAAAAAAAAAAAAAAAAAAAAOSaIt0BAACI\nU01NTV5eHrfdvXt3ExMTeuMBefD27dvCwkJum8lkOjg40BsPKT8///z589y2vr7+t99+S288wmKz\n2W/fvv348WNNTQ2HwyGP9+7d28jISKip3rx58+bNG25bWVnZ3t5e8HPLysoOHTrEf4y3t3efPn2E\nCqmza2hoePr0KbetpaXVif77JSUlBQUFrT2qra3dv39/acYDbXr69GllZWVrj/bp08fQ0FCa8QAA\nAAAAAAAAAAAAAAAAyCqkkwKATAkODt63bx+3HRMTg3RSkILTp08HBwdz2127dn337h298ZCePHmy\natUqbnvIkCGdKJ00OTl5//796enpVVVVzR/9v//7vx9//FGoCQ8dOhQaGsptGxsbv3jxQvAp6rV+\nAAAgAElEQVRzS0tLN2/ezH/MkCFDOlE+pVgoKir6+/vfv3+fIAh1dfXMzMzOst7GxcUtX768tUdd\nXFwSEhKkGQ+0afXq1ZcvX27t0bCwMD8/P2nGAwAAAAAAAAAAAAAAAAAgq7DZPQDIjsePH+/fv5/b\nHjVqlKurK73xAICwqqurZ8+e7eHhcfHixRZzSaGDUFBQCAkJ4barq6uDgoLojQcAAAAAAAAAAAAA\nAAAAAADaCemkACA7AgICmpqauO1ffvmF3mAAQAT+/v4xMTF0R/E/mEymejNqamp0x0W/MWPGTJgw\ngduOiYlJTU2lNx4AAAAAAAAAAAAAAAAAAABoD2x2DwAyIjEx8datW9z2uHHjhg8fTm88ACCsGzdu\nnDlzhuwqKytPmjRp4MCBWlpaCgoK5PFRo0ZJMyorK6sPHz7wHHz79q2lpaU0w+iYgoKCLl26xG2v\nX7/+5s2b1K9Ux8dkMtPT06lHtLS06AoGWvP777/z1CoeMWIE+ekRAAAAAAAAAAAAAAAAAAAQF6ST\nAoAsYLPZW7ZsIbsrV66kMRgAEM1ff/1FtjU1NVNSUgYMGEBjPNAmR0dHR0dHbir/gwcP4uLipk6d\nSndQwrGzs6M7BGhDnz596A4BAAAAAAAAAAAAAAAAAEAuIJ0UAGTBuXPnnjx5wm0PGjTIycmJ1nAA\nQBQ3b94k24sWLRJjLqmXl5eNjQ23raqqKq5pgSCIn3/+mawMvXXrVg8Pj85VoBQAAAAAAAAAAAAA\nAAAAAAC4kE4KALJg9+7dZHvRokU0RgIAoqmoqCguLia7X331lRgnHzBgAAqdSoibm5uxsXFRURFB\nEM+ePUtOTp40aRLdQQEAAAAAAAAAAAAAAAAAAIDQGHQHAADQXmlpaQ8ePOC2NTQ0vL296Y0HAERQ\nWVlJ7erq6tIVCQiFyWTOmTOH7O7Zs4fGYAAAAAAAAAAAAAAAAAAAAEBkSCcFgE5v//79ZHvy5Mma\nmpo0BgMAovny5Qu1y2Qy6YoEhDV79myynZqa+vz5cxqDAQAAAAAAAAAAAAAAAAAAANFgs3sA6Nw+\nfvx4/vx5sjt16lQag6HF27dv//3330+fPpmamo4YMUJNTY36aG5u7uPHjysrK42MjEaPHq2hoUFX\nnCRJB5yTk/P69euysrLa2lpdXV19fX1bW9t2/serq6sfPnxYUlJSXl7etWtXa2trOzs7BQWF9swJ\nPDgcDt0hdBRNTU2PHz9+9+5daWlpU1OTnp6eiYlJR77lLCwsbGxssrOzud2TJ09u2bKF3pCkr7y8\n/Pnz50VFRVVVVWw2u3v37rq6umZmZiYmJhK64qdPnx4+fFhYWFhTU6OlpWVubm5nZ9elSxcBT6+q\nqsrMzCwuLv706ZO2traVlZWtra247rE3b95kZ2dXVFRUVVUpKSlpaGgYGxubm5sbGhqKZX4AAAAA\nAAAAAAAAAAAAAJAEpJMCQOf2999/19fXc9vq6uoTJkygNx6JSkxM3LFjB7c9ZcqUFStWrFy58tCh\nQ42NjdyD3bt33759O3fj6bKyMl9f3+TkZPJ0dXX1DRs2LFu2TCYDLioqCgsLS0xMfPPmDc9DysrK\no0aNWrBgwbRp04T9L2RnZ2/fvv3ixYs1NTXU48bGxsuXL/fz8+uwGX4d2bVr19atW8dzsLa2ltpd\nunSpurp6i6f/9NNP3377bWuTX7hwISQkhM/V9fT0YmNjBQ5Wqq5fv37o0KErV658/PiR5yF9ff3J\nkycHBQWZmprSEht/Hh4eZDppVFTU5s2b5eGlUVlZmZSUlJKSkpaWVlRU1OIYa2vriRMn+vv7i5BX\nOmvWrNevX3PbHh4eK1eu5LYzMjJCQ0MvXbpErqVc6urqnp6eq1atsrCw4DNtVlbWjh07Lly4UFdX\nRz1ubGz8008/ff/990wmMyYm5sSJE+S0kZGRggRcUFCwf//+s2fPlpSUtDjA2Nh49OjR33zzjaur\nq7KysiBzAgAAAAAAAAAAAAAAAACA1CCdFAA6t/j4eLLt6OgoeGG2zujDhw8PHjzgtm1tbefOnRsX\nF0cdUF5evnTp0i5dukyaNMnZ2TkvL4/6aHV1dVBQkJKSkp+fn4wF/Ntvv23bto0n45PEYrGuXr16\n9erViIiI/fv3m5ubCxh/aGjotm3bWCxW84eKiopWrFhx+fLlw4cPCzgbkCoqKsgbozV8Nkx///49\nnxPLy8v5T25sbMz/0rQoKCgIDAy8cOFCawPev39/6NChU6dOrV27NjAwUJqxCcLZ2ZnM4n379u39\n+/ft7e3pDUnSlixZcubMmRbXB6pnz549e/Zs//79AQEBq1evVlJSEvwS2dnZubm53PaQIUMIgmhq\nalq3bt3vv//e4vjq6urIyMjTp08/ffq0tezVnTt3/vLLL60ta6tWrUpKSoqOjs7Pz7948SL3eNeu\nXQWJdvfu3Zs3b+ZJUW1+iaioqKioqFGjRl26dEmQaQEAAAAAAAAAAAAAAAAAQGoYdAcAACC6mpqa\nmzdvkt0xY8bQGIyUXbhwgSc1k4vD4axZs2bt2rU8qZmk4ODgyspKCUfXAgkFzOFwAgIC1q9f31ou\nKVV6erqLi8uzZ88ECTg4OHjTpk38c8X++eefBQsWYJd2aKe7d++OGTOGTy4pqba2Njg4OCAgoKPd\ndfb29tRqstQyw7IqPT29zVxSUm1t7bZt2+bNm8dTT1RYfn5+reWSkhoaGsii3Tw2b968YcMG/mGn\npaXNmzdP2MDWr1+/Zs0a/rmkVK1FCAAAAAAAAAAAAAAAAAAANEJ1UgDoxNLS0qgpKSNGjKAxGCkr\nLS1VUlIKDAwcMWJERUVFeHh4RkYG96GioqK//vqLIAhXV9e5c+dqaGhcvHgxIiKCm39WXV19/vz5\n2bNny0bAoaGhf/75J/VIr169vLy8+vXrp66uXlJScvXq1cuXL5MpXCUlJe7u7vfv39fR0eET7bFj\nx3799Vfqkb59+06fPt3CwoLBYLx48eLvv//mpqUmJye/ePFCxCdFXvXq1cvHx4fn4MePH8+fP092\nJ02apKur2+Lp1tbWfCY3NzdvPvmjR4+ysrJEClbiMjIy3NzcqqurySPcer0jR440MDBoamp68+bN\n1atXr127RqaQ/vnnn0ZGRuTW5x2BkpLS8OHDU1NTud1Lly6tW7eO3pCkSV1dffDgwfb29r169erW\nrZuKikpVVVVeXt7169fJhY4giNjYWH9///3794t2lSNHjlA3ndfU1LS1tdXT02MymR8+fMjMzOT/\nUYGoqKgdO3ZQjxgbG0+fPr1///5qamqFhYVxcXHcaP/555+3b98KHtj169d/++036pHhw4e7urr2\n7duXu9JWVFTk5+dnZGRcv3798+fPgs8MAAAAAAAAAAAAAAAAAADShHRSAOjE/v33X7KtoKAwYMAA\nGoORvm3btv3www/ctpub2+DBg9+8eUM+Om7cuJiYGG57/PjxLBaLm7JJEMTNmzeln05KSCDg58+f\n82RHrV27ds2aNYqK/3138/f3f/To0dy5c8k9o0tKSlavXs0no6u8vJwnE27jxo2rVq1iMP5b0nvN\nmjW///77unXr2Gz2y5cvBfjfw38NHTr04MGDPAcfPXpETSddvXq1g4ODCJM7Ojo6OjryHNy0aVPH\nTCetqqqaN28eNZd0ypQpYWFhPDuVr1ix4u7du3PmzHn9+jX3yC+//OLq6tqhFr2BAweS6aSZmZks\nFktZWZnekCSNwWC4u7t7e3u7u7t36dKlxTG3b9+eP39+YWEht3v8+PHZs2ePHj1a2GtVV1cHBwdz\n28OGDQsODnZyclJSUiIHsNnsW7du/f7770lJSc1Pr6ysDAoKoh7x9/cPCQlRUVEhjwQEBJw4ccLf\n35/FYj158kTw2EJCQsi2iorKkSNHpk6d2uLI2trapKSkPXv2CD45AAAAAAAAAAAAAAAAAABIDTa7\nB4BO7MGDB2S7d+/eGhoaNAYjZQwGg1qCUV1d3cPDgzpg4cKF1O63335LtoXKExIXSQS8YcMGanna\ndevWBQcHU3NJuezs7M6fP29gYEAeOX78eHZ2dmuh7ty5s7y8nOwGBgauXr2amktKEISCgsLPP/+8\nYcOG1iYBEMSqVatevXpFdn19fc+cOcOTS8o1bNiwlJSUHj16cLssFmvr1q3SCVJAAwcOJNssFuvx\n48c0BiMFnp6e9+/fP3v27LRp01rLJSUI4quvvkpMTKQOIBPlhZKQkMBdlwIDA69fv+7i4kLNJSUI\ngsFgjBw5Mjo6Ojo6Wl1dnef0X3/9taysjOwuWrTo119/peaScvn4+OzatUuowCoqKm7dukV2AwIC\nWsslJQhCVVV1+vTpN27cQEYpAAAAAAAAAAAAAAAAAEAHhHRSAOjEqOUG+/XrR2Mk0mdqaqqtrU09\nwrMDuK2tLbVLfX7IAofSJPaAS0tLL1y4QHatrKzWrl3b2tVNTEyo9fMIgjh27FiLIxsbG0+fPk12\njY2NyYqAza1cuVLebjwQo7dv3548eZLsOjg4hIWFKSgotDbeyMiIWo73/Pnz1Pq+tOvbty+12zHL\nwYrR1q1braysBBnZt2/fuXPnkt3k5GQOhyPs5bglbJcsWbJ161Y+NwlBEJMnT6ZmzxME0dTURL3T\n9PT0QkNDWzt94cKFw4cPFzywFy9eNDU1kV03NzdBzrKzsxP8EgAAAAAAAAAAAAAAAAAAIB1IJwWA\nzqq+vv7du3dk18jIiMZgpM/U1JTniKGhIZ8BPXr0YDKZ3PaHDx+o2T/SIfaAz54929jYSHZXrFjB\nU0CUx4wZM3r27El2o6Ki2Gx282EpKSnv378nu35+fnw27GYwGD/99BOfiwLwERERQb2HQ0NDm9fW\n5TF9+nR9fX1uu6mpKTY2VoLxCcnY2JjapVZdhQkTJpDtqqoq0fKATUxMtm3bJsKJKSkp1LdLPz+/\n5uVLqZYtWyb45BUVFdSuXJUJBwAAAAAAAAAAAAAAAACQMUgnBYDOqrCwkFrgjSeTSebp6OjwHKHW\n/lRVVeXZfFlBQUFLS4vb5nA4lZWVko6Qh9gDvn37NtlmMpltlsRjMBhTpkwhux8+fMjLy2s+jLpr\nMyFApT13d3f+lQIBWhMfH0+2bW1tHRwc2jxFSUnJycmJ7P7777+SCEw0BgYGZAo4QRCFhYU0BtPR\nmJubU7vFxcUiTOLr68s/DbQ1N2/epHa/+eYb/uNdXFyUlJQEnJwnpEePHgkVGwAAAAAAAAAAAAAA\nAAAAdBxIJwWAzqq8vJza7dq1K12R0KJ5UpGqqirZ1tTUbH6Kmpoa2a6pqZFQYK0Re8CZmZlke8CA\nAd26dWszhtGjR7c2Q4sHdXR0rK2t+c+pp6eH/e5BBO/fv3/58iXZFXCLcIIgBg8eTLbv3bsn5rDa\ngclkUl/IPEu0nON5h/r06ZMIk8yYMUO0qz98+JBsC7KsaWlp2djYCDg5zwK4bdu2srIyYSMEAAAA\nAAAAAAAAAAAAAICOoI09VQEAOqzq6mpql5qbKA+ab4pN3ZO9xcJy1FNYLJaEAmuNeAOuq6srKCgg\nu3379hUkBp5h2dnZzcc8ffqUbFtaWgoyraWlZU5OjiAjAUg8hUVtbW0FPJHc7J4gCOoO5h2Bqqoq\nWUiYZ4mWbQ8fPkxLS8vKysrLy/v06dOXL1/q6uqoA6i1tAmCqK2tFfYSBgYGPXv2FC086rImYPq7\nhYVFiwn3zenp6Tk4OJD3c15e3qBBgxYtWjRt2jRbW1sUbwYAAAAAAAAAAAAAAAAA6ESQTgoAnRVP\nso6KigpdkQji2LFjbDab/5ghQ4bY2dkJOGHz7EwG478Fp6lbTrd4sKmpScALiYt4A/748SM1PUvA\nLKtevXpRu2TeG8/MZNvExESQaUXO8QJ5VlJSQu1u37597969BEFwOBzuvU29w8kjHA6Het+yWKya\nmhpqHV96UddhniVaJnE4nOPHj+/evVvYhHIRVmDBy4U2R71njI2NBTnFyMhI8Pk3btw4efJk8j2u\noqJi586dO3fu7NGjh4ODg729/aBBgwYPHqynpydU2AAAAAAAAAAAAAAAAAAAIGVIJwWAzopa25Ig\niIaGBroiEYS/v3+b+UMbN24UPJ20nXhK5XV8PAFXVVVRuxoaGoJMoqqqymAwyJyn5vtNs9lsaklF\ndXV1QaYVcBgAFTVxmSCIrKws0eb59OlTx0knpa7DLZYcliVlZWXffvvtnTt3RDi3zU8XNKejoyPC\nhQiCaGpqkvSyNnbs2F9//TUwMJDn/1VWVpaUlJSUlMTtWllZeXh4LF68WMCUVgAAAAAAAAAAAAAA\nAAAAkDKkkwJAZ8WTQSXC3sHQeX358oXaFTydTk1NjTyXZxKCIGpqaqh5q6qqqgLOKeDVAUjNs5lF\nI/1Kw3xQ12HZTrOuqKiYNGkSdRN5giC6dOkycOBAS0vLrl278iwLNTU1ERER7bmipqamaCfyvDl2\n6dJFkLOELfjt5+dna2u7Zs2au3fvtjYmJydnx44de/bs2bJli7+/v1DzAwAAAAAAAAAAAAAAAACA\nFCCdFAA6K21tbWq3eWogyDCeRM/6+noBT6SObJ5WJdq0gl8dgMSTbujp6clgMNo/D404HA51HeZZ\nomXM+vXrqbmkpqam69ev9/T0bK1ScnFxcTvTSZlMpmgnqqurKygokInyNTU1gpwl4DCqESNGpKWl\nPXjwIDY29ubNmw8ePGCxWC3OHBgY+PHjx/Xr1wt7CQAAAAAAAAAAAAAAAAAAkCikkwJAZ2Vqakrt\nFhcX0xWJIH766ac2iwg6ODhIJxgZoKWlRe1St3Lmg8ViUTfj5pmEIAgmk6mmpkbmUQmYUCXg1QGo\nePYu37NnT/fu3ekKRizKysqo6YMmJiY0BiNRBQUFR48eJbtDhgxJTEzs1q0bn1OqqqokHlYrFBQU\nNDU1yQAE/OiFyMvakCFDhgwZQhAEi8V6/PjxrVu3rl27lpKSwpN2v23bNhcXF7zrAQAAAAAAAAAA\nAAAAAAB0KEgnBYDOSktLS0dH5+PHj9xuB08nDQkJoTsEmcKTCVpSUiLIWe/eveMzCZeOjg6ZRfr+\n/XtBphVwGACVrq4utfvx48fOnk7Kswj36tWLrkgkLTExkSz2yWAwjh49yj+XlCCIiooKycfVqh49\nepDppK9evRLklNevX7fzosrKyvb29vb29suWLSsvL9+3b19YWFhdXR33UQ6Hs3v37qioqHZeBQAA\nAAAAAAAAAAAAAAAAxEiUbVUBADoIKysrsv3y5UsaIwEp09LS0tfXJ7u5ubmCnPX8+XNq18LCovmY\nvn37km0Bb6q8vDxBhoEsUVT8nw/ksNlsYWcYNGgQtfvkyZP2xkS3/Px8atfa2pquSCQtIyODbP/n\nP/+xtLRs85RHjx5JMqI22NnZke3c3FxBblcBF1UBde/ePTg4ODk5WVVVlTyYkpIiwgsHAAAAAAAA\nAAAAAAAAAAAkB+mkANCJDR06lGzn5uZS9zEHmUdNkMrKyuLZSblFd+/epXZ58vm4bG1tyXZRURFP\nQdPmampqnj592ualQcZ07dqV2v38+bOwM1hZWVELlN68eVMMYdEqKyuLbCsoKAwePJjGYCSqtLSU\nbLeYld5cenq6xMJpG3Wtq6mp+ffff/mPLy4uFm86Kdfw4cP9/f3JblVVVXl5udivAgAAAAAAAAAA\nAAAAAAAAIkM6KQB0Yvb29mS7oaEhJyeHxmBAyqjJxNXV1ampqW2ekpSURLaVlZUHDhzYfMzw4cOp\n3cuXL/OfMzU1ldy+GeSHqqqquro62X3x4oUIkzg5OZHtqKiompqa9gdGI2qBVUtLS21tbRqDkSjq\nS57c9Z6P8vJy6uIjfS4uLtRubGws//EJCQkSioT6MQCCIAT5GAAAAAAAAAAAAAAAAAAAAEgN0kkB\noBNzcnJSUFAgu7dv36YxGJCyadOmUbv79u3jP/7WrVsPHz4ku5MnT+7SpUvzYZMmTdLQ0CC7f/31\nF/9p//zzz7ZjBVlETYxLSUkRYQZqpcaKiorffvtNDGHRhMPh3Llzh+yOGzeOxmAkrXv37mRbkI8x\nhIaG0ps3OWjQIBsbG7J76NAhPnWXGxsbf//9dwlFUlJSQu3q6elJ6EIAAAAAAAAAAAAAAAAAACAC\npJMCQCemr69P3U85LS2NxmBAymxsbKjlaS9fvsyn/l99fX1QUBD1yNy5c1scqaam9s0335DdjIyM\nc+fOtTZtcnLylStXhAgaZMjo0aPJ9s2bN2/duiXsDP/5z3+++uorsrtjx47z588LeO6nT5927txZ\nVVUl7EUlJDs7+8OHD2R34sSJNAYjadTUzHv37lHLsjZ39erVP/74Q/JBtWHJkiVku6amZtGiRY2N\njS2OXL9+/atXrwSf+cmTJ69fvxZkJJvNPnPmDNm1srJSVlYW/EIAAAAAAAAAAAAAAAAAACBpSCcF\ngM7N3d2dbN+4cYPNZtMYDEjZ6tWrqd2FCxe2mFJcXV29YMGCe/fukUfs7e15dn+mCgoKoiY5+fn5\ntVj49u7duwsWLBAlbpAJc+fOpVZHnjVrVmpqqrCT7NmzR1VVldtms9ne3t6//fYbi8Xic8qTJ0/W\nrFnTr1+/DRs28B8pTdeuXSPbGhoaY8aMoS8WiZs0aRLZ5nA48+fPLysra3FkTEzM9OnTO8Ib06JF\niwYOHEh2U1JSvv7667dv31LHsFisNWvWcEuTKikpCTjz7du3bWxs5s6dm5aWxud/2tTUtHLlyvv3\n75NHqIn7AAAAAAAAAAAAAAAAAADQESjSHQAAQLvMnDlz69at3HZpaemdO3ccHR3pDQmkxt3d3dPT\nMyYmhtv9/Pmzq6vrrFmzZs6c2a9fP3V19ZKSkitXrvz555/5+fnkWUpKSvv27WMwWv1AhaWl5bJl\ny3799Vdy2gkTJixcuHDmzJnm5uYEQeTn5589e/bgwYMNDQ0EQWhqan7+/FmC/08QTElJSVxcXIsP\nPXjwgGxXV1dHRES0OMzKymrs2LECXq5Pnz7z588/cuQIt/v+/Xs3N7eePXv26tVLUfG/318NGjRo\n27ZtrU0yYMCAsLAwPz8/brepqWn9+vURERE+Pj5OTk59+vTp1q1bbW1teXl5Tk7OnTt3UlJS+NfC\npEtCQgLZ9vDwIHNkZdLIkSMdHBz+/fdfbjc7O3v48OEBAQGurq69evUiCKK0tPTmzZuRkZEpKSnc\nMV9//TX1KZI+JpP5xx9/TJgwoa6ujnskNTXV2tp67Nix/fv319DQePPmzYULF7glZlVUVGbPnn34\n8GEBJ29qaoqOjo6OjjYyMpo8ebKDg8OQIUP09fW1tbXr6+tfv36dlpZ24MAB6q2rq6u7bNkysf83\nAQAAAAAAAAAAAAAAAACgPZBOCgCdW58+fRwdHcltpmNjY5FOKlfCw8MLCwvJyqNsNvvEiRMnTpxo\nbTyTyYyIiKBW6WtRcHBwZmYmuZF9Y2PjgQMHDhw40Hxkv379pk6dumPHDlH/ByA2BQUFy5cvb3NY\nZWVla8N8fHwETyclCCI0NPTu3bvUJLnCwsLCwkLBZyAIYv78+fX19StWrGhqauIeKSoqCg0NDQ0N\nFWoeGpWWlqanp5Pd2bNn0xiMdOzdu3fcuHFfvnzhdt+9excUFBQUFNTi4MGDB2/fvp3edFKCIIYN\nG3by5Elvb29ym/vGxsbLly9fvnyZZ2RoaKhoKfLFxcWtLZVUysrKBw8e7NatmwiXAAAAAAAAAAAA\nAAAAAAAAycFm9wDQ6S1evJhsx8TEkClZIA90dHTOnz/v7OwsyGBNTc1jx44JkuumrKx8+vRpFxcX\n/sN69uwZFRWlrq4uUKwgczQ1NS9dujRx4sR2zrN06dK4uDhTU1OhzrK0tFRRUWnnpcXi77//Jnc5\nt7CwkO2d7rkGDhx45swZHR2dNkc6ODjEx8erqalJIao2ubm5Xbx4sU+fPq0NUFRUDA0NXbp0KfWg\n4BvfC8LAwODcuXOTJk0S45wAAAAAAAAAAAAAAAAAACAWSCcFgE7Py8vL2NiY2y4uLr548SK98YCU\naWlpJSUlnTp1qn///q2NUVNTW7Ro0ZMnT6ZNmybgtOrq6gkJCeHh4YaGhi0O8PDwuHXrlrW1tShB\ng6zQ0dGJi4u7ePHi/PnzLS0tNTU1RZtn/PjxT5482bVrV79+/fiP7Nu3r7+//7Vr1x4/fizy5cTr\nyJEjZPuHH35QUFCgMRipGTdu3O3bt6dNm8ZkMlscoKenFxIScvny5R49ekg5Nj5Gjhx59+7dXbt2\nOTg4MBj//UGgW7dus2fPvn37NncP+rq6OvIhLS0tPhPOmTMnNjZ28eLFZmZm/C9taGgYGBj48OHD\n8ePHt+8/AQAAAAAAAAAAAAAAAAAAEqHA4XDojgGk6v79+2TbxsaGxkgAxCgsLGzdunXc9qRJk2Jj\nY+mNB+iSn59/6dKl169ff/jwoba2VldXV09Pz97efsyYMSLXcWSz2Tdu3Lh582ZxcXFlZaWmpmb/\n/v3d3NwsLCzEG7zYJSQkeHt7c9tDhgyhbkcOHdnbt29TUlLy8/PLy8srKiqUlJS6du1qYmJiZWU1\nePBgExMTugP8HxkZGWQ50m7duuXl5XWQSpytiYiIWL58ObfNZDLJDetFVlRUlJqa+ujRow8fPrBY\nLE1NzT59+gwfPnzEiBHKysrtjleCGhsb3717V1VVpa2tbWRkRH0oKChoz5493PbQoUNv3rwpyIQl\nJSX3799/8eLFq1evPn36VF9fr6ampq2tbWFhMXjwYHt7+9ZSb4WloaFBViIPCwvz8/MTy7QAAAAA\nAAAAAAAAAAAAIKDs7GyyPXToUBojAfFSpDsAAAAxWLJkye7du8vKygiCuHTpUm5ubt++fekOCmhg\nZmb23XffiXdOBoMxZswYedi/GzoIExOTuXPn0h2FoPbu3Uu2AwICOnguqSQYGxv7+Er8kcQAACAA\nSURBVPj4+PjQHYjQFBUVW8tOfvXqFdnu1auXgBMaGhpOnjy5/YEBAAAAAAAAAAAAAAAAAAAtsNk9\nAMgCDQ2NwMBAbpvNZoeFhdEbDwCAPMjPzyerQRsYGHz//ff0xgPikpmZSbaHDRtGYyQAAAAAAAAA\nAAAAAAAAACA1SCcFABmxdOlSU1NTbjsqKurt27f0xgMAIPN27dpF7jm+evXqTleatKmpSft/eXl5\n0R0U/e7evVtYWEh2v/rqKxqDIQjCy8uL58tE3nUAAAAAAAAAAAAAAAAAACBGSCcFABmhoqKyY8cO\nbpvFYoWEhNAbDwCAbMvPzz927Bi3bWtru3jxYnrjEU39/2KxWHRHJClsNlvALMwtW7aQ7f79+zs4\nOEgsKIGwWCyeLxO98QAAAAAAAAAAAAAAAAAAyCqkkwKA7PD09HR2dua2IyMj/z/27jsuiuN//PgC\nAgIioKJGRI0NjGJFiRpLsBdiwdgSsMTGR6Mx9lg/Gls0amKLmij2XrFrULH3ij2iRkWkiQUQKb8/\n7vfY737u4FiO2zuOez3/2llm9+aW2dnZ3ffN3Llzx7jlAYB8bNKkSR8/fhQEwcLCYsGCBVZWVsYu\nEbR58+aNp6fn3Llzo6KissqTnp4+evToo0ePimuGDBlikNIBAAAAAAAAAAAAAIyvgLELAAD6tGjR\nol27dqmWY2JijFsYAMivUlJS6tWr5+3tLQhCyZIljT4funwNGjSYOXNmVn8tW7asIQtjYM+ePZs4\nceKUKVO++OKLtm3b1qtXr2LFikWKFElOTn7+/HlYWNjSpUvDw8PF/L6+vr179zZeef+/Pn36+Pr6\nZvXXBg0aGLIwAAAAAAAAAAAAAJCPWWRkZBi7DDCoy5cvi8tVq1Y1YkkAAIras2dPt27dVMu1a9c+\nffq0ccsDwIhev379ySefyM9fqVKlQ4cO5WgTAAAAAAAAAAAAAGZCOk5NnTp1jFgS6BeT3QMAAAD4\nP76+vidOnCCWFAAAAAAAAAAAAADMCuGkAAAAQD7n6Oi4bNmyzp07lyhRIqs8BQoUaNy48e7du/ft\n2+fi4mLI4gEAAAAAAAAAAAAAjK6AsQsAAAAAQFlWVlaBgYGBgYGCIPz777937tx5+vRpbGxsUlKS\ng4NDkSJFypQpU79+/UKFChm7pAAAAAAAAAAAAAAA4yCcFACA/Kl8+fJDhgxRLbu7uxu3MADyDnd3\nd9oEAAAAAAAAAAAAAIAawkkBAMifqlWrNmfOHGOXAgAAAAAAAAAAAAAAACbA0tgFAAAAAAAAAAAA\nAAAAAAAAgDERTgoAAAAAAAAAAAAAAAAAAGDWCCcFAAAAAAAAAAAAAAAAAAAwa4STAgAAAAAAAAAA\nAAAAAAAAmDXCSQEAAAAAAAAAAAAAAAAAAMwa4aQAAAAAAAAAAAAAAAAAAABmjXBSAAAAAAAAAAAA\nAAAAAAAAs0Y4KQAAAAAAAAAAAAAAAAAAgFkjnBQAAAAAAAAAAAAAAAAAAMCsEU4KAAAAAAAAAAAA\nAAAAAABg1ggnBQAAAAAAAAAAAAAAAAAAMGuEkwIAAAAAAAAAAAAAAAAAAJg1wkkBAAAAAAAAAAAA\nAAAAAADMGuGkAAAAAAAAAAAAAAAAAAAAZo1wUgAAAAAAAAAAAAAAAAAAALNGOCkAAAAAAAAAAAAA\nAAAAAIBZI5wUAAAAAAAAAAAAAAAAAADArBFOCgAAAAAAAAAAAAAAAAAAYNYIJwUAAAAAAAAAAAAA\nAAAAADBrhJMCAAAAAAAAAAAAAAAAAACYNcJJAQAAAAAAAAAAAAAAAAAAzBrhpAAAAAAAAAAAAAAA\nAAAAAGaNcFIAAAAAAAAAAAAAAAAAAACzRjgpAAAAAAAAAAAAAAAAAACAWSOcFAAAAAAAAAAAAAAA\nAAAAwKwRTgoAAAAAAAAAAAAAAAAAAGDWCCcFAAAAAAAAAAAAAAAAAAAwa4STAgAAAAAAAAAAAAAA\nAAAAmDXCSQEAAAAAAAAAAAAAAAAAAMwa4aQAAAAAAAAAAAAAAAAAAABmjXBSAAAAAAAAAAAAAAAA\nAAAAs0Y4KQAAAAAAAAAAAAAAAAAAgFkjnBQAAAAAAAAAAAAAAAAAAMCsEU4KAAAAAAAAAAAAAAAA\nAABg1ggnBQAAAAAAAAAAAAAAAAAAMGuEkwIAAAAAAAAAAAAAAAAAAJg1wkkBAAAAAAAAAAAAAAAA\nAADMGuGkAAAAAAAAAAAAAAAAAAAAZo1wUgAAAAAAAAAAAAAAAAAAALNGOCkAAAAAAAAAAAAAAAAA\nAIBZI5wUAAAAAAAAAAAAAAAAAADArBFOCgAAAAAAAAAAAAAAAAAAYNYIJwUAAAAAAAAAAAAAAAAA\nADBrhJMCAAAAAAAAAAAAAAAAAACYNcJJAQAAAAAAAAAAAAAAAAAAzBrhpAAAAAAAAAAAAAAAAAAA\nAGaNcFIAAAAAAAAAAAAAAAAAAACzRjgpAAAAAAAAAAAAAAAAAACAWSOcFAAAAAAAAAAAAAAAAAAA\nwKwRTgoAAAAAAAAAAAAAAAAAAGDWCCcFAAAAAAAAAAAAAAAAAAAwa4STAgAAAAAAAAAAAAAAAAAA\nmDXCSQEAAAAAAAAAAAAAAAAAAMwa4aQAAAAAAAAAAAAAAAAAAABmjXBSAAAAAAAAAAAAAAAAAAAA\ns0Y4KQAAAAAAAAAAAAAAAAAAgFkjnBQAAAAAAAAAAAAAAAAAAMCsEU4KAAAAAAAAAAAAAAAAAABg\n1ggnBQAAAAAAAAAAAAAAAAAAMGuEkwIAAAAAAAAAAAAAAAAAAJg1wkkBAAAAAAAAAAAAAAAAAADM\nGuGkAAAAAAAAAAAAAAAAAAAAZo1wUgAAAAAAAAAAAAAAAAAAALNGOCkAAAAAAAAAAAAAAAAAAIBZ\nI5wUAAAAAAAAAAAAAAAAAADArBFOCgAAAAAAAAAAAAAAAAAAYNYIJwUAAAAAAAAAAAAAAAAAADBr\nBYxdAAAABEEQ0tPTnz17Fh8fn5iYmJGRIa4vV65cqVKljFgw6F1sbOy9e/fEpI+Pj5WVlRHLk/e9\nfv06Kirq9evXaWlp4korKysfH5+c7urMmTPicoUKFUqUKCF/2507d0r/cZrc3NwCAgJyWiQAgHLO\nnTuXnp6uWqZPBZiuZ8+ePX36VLWsWycwN6Kjo//66y/tebp16/bpp5/q8UP//ffff//9V7VsY2Pj\n7e2tx50DAAAAAAAAALJCOCkAwMgOHTq0bNmy06dPv3nzRvOvv/zyy/fff2/4UkE5J06c+Oabb8Rk\nZGSks7OzEcuTZ0VFRS1dunTXrl3379+XxlirODk5vXz5Mkc7TE1NbdasmZhcsmRJnz595G++devW\nnTt3aslQr149wkkBIE9p3br1hw8fVMv0qQDTtWnTpokTJ6qWdegE5tKrV6/++9//as9Tu3Zt/YaT\n/vXXX7Nnz1Ytu7m5PXz4UI87BwAAAAAAAABkhXBS5NaVK1emTJmiJYOtrW3hwoWdnZ3Lly/v7e1d\no0aNggULGqp0APK09+/fDxgwYMeOHcYuCJDnHDlypFevXvHx8cYuCAAAAAAAAAAAAAAAMAuEkyK3\nYmJijhw5Ij+/o6Njjx49goKCPD09lSsV8pSDBw+Ks9SVK1euRYsWxi0P8o7BgwfrMZb01atXu3fv\nFpOdO3cuWrSovnYOgSNsQDdv3uzatWtycrKxC/I/ChYs6ODgoLbyw4cPqampRikPAAAADMDKykqz\nE5iRkZGYmGiU8gAwCdevX79w4YJq2dbWNjAw0LjlMaJVq1aJd83169evVq2accsDAAAAAACgHeGk\nMLS3b98uX7581apV48ePHzlypJWVlbFLBMUtWbJEjDn28/MjnBQqJ0+e3Lx5s5i0sbFp3bq1l5dX\n4cKFLSwsxPWNGjWSucOIiIihQ4eKyXr16hHsqF8cYYMZOXKkNJa0YsWKrVq1KlWqlLW1tbjS1tbW\nwKVauXKl5sqgoKDg4GADlwQAAAAG4+npGRMTo7by2bNnlSpVMkp5AJiEI0eOTJw4UbXs5ORkzuGk\nw4cP//Dhg2r5l19+IZwUAAAAAADkcYSTwjg+fvw4ZcqUu3fvrly5Uho3BsB8/Pnnn+Kyo6NjaGgo\nj9QBQRDu378fFhYmJnv16rVkyRJLS0sjFgkAAAAAAAAAAAAAAOR7hJNCz/z9/QcMGCBdk5KSEhsb\ne+3atb179z58+FD6p02bNlWsWHH8+PGGLSOAPOHUqVPi8nfffUcsKaAiPTWsra1nzpypr1hSKyur\nNWvWiElvb2+97BYAAADQry5dulStWlW1bGdnZ9zCAAAAAAAAAID5IJwUela6dOnGjRtrru/Wrdv0\n6dPXrVv3448/vn//Xlw/d+7cXr16lS5d2oBlBGB8cXFxL168EJP169c3YmGAPCU8PFxcrlKliouL\ni772bGFh8fXXX+trbwAAAIBCqlWrxg8OAQAAAAAAAMDwmDgVhmNpaRkYGLh7924bGxtxZXJy8qJF\ni4xYKgBG8fr1a2myWLFixioJkNfEx8eLy0WLFjViSQAAAAAAAAAAAAAAgPkgnBSG1rBhw8GDB0vX\nHD582FiFAWAs7969kyatrKyMVRIgr5GO4V2gAAPJAwAAAAAAAAAAAAAAQyBGAUYwaNCg+fPni8k7\nd+7ExMRkOzZhamrqo0ePHjx4EB8f/+7dO0dHx6JFi7q6unp5eUmHO9WjjIyMe/fuhYeHx8bGFihQ\nwNXVtWbNmu7u7jI3V6jAz549O3/+fEJCgru7e8OGDe3t7aV/vX///o0bN16/fl2qVKnGjRsXKlQo\np/tPS0u7cePGy5cvX716lZaWVrx48dKlS9eoUcPCwkLnMivKkAXOZZVQ+ffff8PDw+Pi4t68eWNt\nbV2oUCE3N7cKFSp88sknei9wLil60mVkZOilkIb08uXL+/fvv3r1Ki4uzsnJqXjx4l5eXgqNq5qQ\nkHD16tWnT58mJiYWLly4QoUKNWrUKFiwoBKflddERERcv349OjpadZbVqVMnl2eHyTVrpnh2KETR\nky4pKenKlSuPHj16//59kSJFypQpU7duXZ1D22NjY+/du/f8+fM3b96kp6cXLVq0WLFi5cuXL126\ntM4lTE9PP3Xq1MOHDx0dHatVq1alShXpX5OTk0+dOvX06VN7e/uqVat6eXnp8BGGbNZySYkjrJ1e\n2mETOsKiuLi4ixcvPnv2zMLComTJkhUrVqxcubLOe1O0L5GUlHTz5s1///33zZs3Hz58cHBwcHZ2\nrlChQvny5XN5xVSut6ZElXjw4MHDhw8jIyMzMjLc3Nzq1q2bl0e2NtEqobRXr17du3cvJiYmNjbW\n0tLS2dnZ09PTw8ND56vS3bt3nzx5Eh0dnZSUVKxYsRIlSlSvXl2He0ORQjehil7pDHDh0G9f4v37\n91evXo2MjIyNjXVycqpSpUpe7q+aOnO+4zC5Z2uCINy+ffvRo0eRkZFWVlalS5f29vYuUqSIEkXN\nPVPvwOu3WVNUfHz8jRs3oqKiEhISMjIyChUq5OrqWrFixbJly1pamtHwGampqdeuXYuMjIyOjraw\nsHB1df3kk09q1qyZN/9rAAAAAADAVBBOCiMoU6ZM6dKlnz17Jq6JjIzM6tHnxYsX9+/fHxYWdunS\npZSUFM0MhQoVatq0adeuXbt06ZLTJ/VHjx6dPHmymNyzZ4/q5WtiYuKiRYv+/PPPf//9V22T6tWr\nDxw4sFevXlk9mNNjgUNCQmbNmqVa9vPzGzFixKhRo/7666/U1FTVyqJFi86cOTMgIEAQhOjo6P79\n+x86dEjc3MHBYdKkSUOHDs32OKicOHHir7/+Onr0qHSeZZUSJUq0b99+zJgx2T7x79atm/Q/q/Lw\n4UNx+eTJkw0bNsxq80aNGolf2TAFVqNElVCJiIhYtmzZli1bIiMjM83g5ubWuHHjDh06tGnTRqG3\nODLp/aQ7fvz4+PHj1VYmJSVJkwMHDnRwcMh082HDhnXt2lVt5aFDh6ZOnaq2UjqmoyAIffr0sbOz\ny6pUwcHBlSpV0l5ylYSEhKVLl4aEhFy9elUtzs/S0tLHx+e7777r2bNnTtufnj17PnnyRLXcsWPH\nUaNGqZYvXLgwe/bsw4cPi2e6ioODQ+fOnUePHl2xYsUcfZBuDHmEVTIyMjZu3Dhv3rzw8HDpegsL\ni88//3zmzJk+Pj7y96aiRCuhXwEBAY8ePVJbKV1z/vz5rNrMQoUKSdt8TV26dMmqwVEZO3asn5+f\n7MIajh5POukR7tatm+qa+PTp0xkzZmzbtk2tShcpUqR///5jxozRUrGlXr9+vXfv3tDQ0LCwsOfP\nn2eap0qVKq1atRo8eHC2wSudOnV69eqVannnzp2PHj3q27dvRESEmKFFixYrV65U9ZfWrFkzYcKE\n6Oho8a8+Pj7BwcHlypWTU3KFmjW90+8R1qRcO5z3j/DGjRsXLVqkWraxsTl27JggCI8ePZowYUJI\nSIjaF//ss8969+79n//8R/5raUU78Onp6du2bQsODj558qRaUcVv5O3t3bx5827dupUvX17+npXr\nrSlRJVJTU5csWRIcHHznzh3peisrq3bt2v388885ugorzUSrhNIiIyOXLFly5MiRGzduaP6YpFCh\nQm3atOnZs2erVq1kHpPnz5/PmzcvJCRE857FxsamUaNGffr08ff3174T5W5CDXClU+LCoWhfQiU8\nPHzmzJkHDhxITEyUrndzc/vxxx+DgoKMfkVW2v79+6dPn64lQ/HixXfu3JmjfardhB46dKhQoULm\necehYnLP1gRBSE1NXbx48cqVK+/fvy9db2Vl1aZNm6lTp6qCNbt37y5+o759+7Zv3z7TvZ08eXLa\ntGlicseOHdpj3y9evCitQqtWrXJzc1PLY6IdeCWatVmzZoWEhKitjIqKEpffvXun5WFgtve2ojdv\n3qxatWrt2rVqZ7HIycmpYcOGrVu39vf3N3zY8atXrzp16qS5XnrS/f7775s2bcpqD5k+AcvUhQsX\nfv/996NHjyYkJKj9ycXFpXnz5j/88EPt2rXlFRwAAAAAAOB/WDAClrm5fPmyuFy1atXc7/Dw4cMd\nOnQQk8OGDZMTDti4ceOLFy+KyQMHDjRt2lQtz7lz5/r06fP48WOZJalXr978+fNz9KRs69atgYGB\nYjIiIqJkyZLXr1/v3r279s/t37//77//rnSBV61a9Z///Ee13Lt379evX+/atUstj4WFxerVq1u3\nbt2wYcMHDx5o7mTevHlBQUHaSxIRETFy5Mj9+/drz2ZnZ/fTTz+NHDlSS56qVatqhkbJ5+fnt2XL\nlmyz6bHAavRbJUQLFiz473//m5ycLKcMjRo1Onz4sOwi65NCJ92OHTu++eYbnUv1yy+/fP/992or\nN27c2LdvX533KQjCuXPnatSokW225cuXT5s2LSYmRns2b2/vVatW5SjQs0aNGuJbsX79+i1cuDAt\nLW38+PG//fablq2sra1v376t3Gh8IkWPsFqVUA0z88033xw5ciSrvVlYWCxatEh+kZRrJfSrTp06\nt2/f1m1bJyenly9fasng4eHx9OlTLRmWLFnSp08f3T5dFBQUFBwcrFquV6/eiRMncrlD/Z500iM8\nZMiQOXPm7Ny5c+DAgW/fvs1qEy8vr4MHD2b76nHAgAGbN2/O9GW8Jjs7u+HDh48dO9ba2jqrPBUr\nVhQDXzZt2tSrV68PHz5olu3UqVNr1qzRbBUFQShXrtz58+cLFy6svTDKNWv6pfcjrEmhdtgkjvCC\nBQvGjRunWra1tVUFYPXr10/zbbSoTp06q1evrlChgvY9K92B/+eff/r27XvhwgWZ+Q8ePNikSRM5\nOZXrrSlRJe7fv9+rV69r165llcHR0fGPP/7o3Lmzs7Oz2Jhk2qdSmulWCUUlJiZOmzZt2bJlar+w\nypSXl9eKFSuy7bj++uuvM2bMUItH1NSwYcNly5ZpOZeVuwlV+kqn0IVDub6EyuzZs2fMmKGl2K1b\nt165cuVff/01ceJE1ZpsO4GG8ezZM2nY+u7du1u2bKnbrtauXTtgwAAtGdzc3KQ/UpWDOw6RyT1b\nU3nw4EFgYKCWK52tre1ff/3l7+8v80qnWSWcnZ21lE3taeetW7c0W04T7cAr0axJ7wp1ILNZO3Lk\nSFBQUFa/FlBjY2MTHR1t4F9rqzWMOpDTW3v37t0PP/ywYcMG7a91LCwsAgIC5s+frzamOAAAAAAA\neiT9wWedOnWMWBLolxlN/oI8JT09XZrMdB6iiIgI+c+7BUG4cOFCy5Ytz5w5k5uC3bhxo1WrVtl+\nbqbPWBUt8P79+zVf4wmCkJGRMW7cuJ9++inT13iCIEycOPH169da9nzx4sUmTZpk+wpEEISkpKSJ\nEycOHz7cuGHoBi5wbqqEyoQJE8aNGyczOkEQBM3XDwZjlJMuz0pNTR00aNCwYcOyfWcjCMKlS5ea\nN29+8+bN3HxiUFCQ9hgmQRA+fvxoxBqikI8fP3bs2FHLm11BEDIyMoYMGaIaPy9bJtesQcUAJ93+\n/fsDAgK0tNiCINy8ebNbt27Z7ur06dMyA1YEQUhKSpoxY0avXr0yHTZP09ChQzM902/evDllyhQx\nClDN48eP582bp2W3hm/WckPRI5yVXLbDpnWEpc6fP9+jRw8tsaSCIFy+fLl169aag9CrUbQvERER\n0bJlS/mBg4LsbpVCvTWFqkRERESbNm20RNgIgvD27dvAwMCzZ8/KKaeiTLRKKOrly5ctW7ZcsGCB\nnFhSQRBu3rx55coVLRkyMjKGDx8+YcKEbGNJBUE4ffp0ixYt1Aa1zYpyN6FKXOkMc+HQY19CEISJ\nEydOmTJFe7EPHjzYp08fOqu5ZM53HCb3bE0QhKdPn2Z7pfvw4UOfPn3ywpVOxXQ78Ppt1pSzb98+\nf39/mbGkgiCkpKSoPXzOHxISEtq3b79+/fpsm5SMjIw1a9Z89dVX2v+5AAAAAAAAmpjsHsahNoOk\nahos7cqXL+/t7V2jRo2iRYs6OzunpKRERUVdu3Zt37594puq9+/fd+zY8fjx45999pkOpUpOTv7m\nm2+kr9I9PT3LlCnj4uLy7t27J0+ehIeHy38BoN8Cv3r1ytraeuTIkQ0bNoyLi1u0aJH43vT58+d/\n/vmnIAht2rQJDAwsVKjQgQMHli5dqirq+/fv9+3bl9XYkBcuXGjbtq10KquCBQu2bt36iy++KFmy\nZFpa2r///vv3338fP35c/OJ//PFHqVKlxAlh1XTs2FGc6ksUGhr64sUL1XLp0qU1R6IV1axZU/tx\n0HuBtct9lThx4sSvv/4qXVOvXr02bdpUrlzZxcVFEIS4uLhHjx5duHDhxIkTee0Jr77qcNmyZb/9\n9lu1lfHx8fv27ROTrVu3Vk0Ap0k1gZ1m2TT3GRMTc/DgQTHZrl071UHOVLbDBfXq1WvHjh3SNR4e\nHu3atfP09HR0dIyPj7969WpISIg4hEZUVFSHDh0uXbqk23xqqvnaxKSjo2P16tWLFy9uZWUVExNz\n7do17a/k9c4AR1g0a9Ys1dtKW1vb5s2b161b19nZOT4+/tSpU6GhoeIplpGRMXLkyIsXL2b6CwSR\ngVuJXPLz89Mc+Of48eNiwFapUqV8fX0z3TbbIUY6deoUGxsrXZORkbF+/XpdC6s4pU+6mJiYfv36\npaWlCYJQvnz5du3alSlTJiMj49GjR3v27BGvU4IgnDp1atu2bV26dJFZcgcHh1q1anl7e5ctW7ZI\nkSK2trZv3rx58ODBiRMnpEFOO3fuHDx48LJly7Ld4atXr7y9vYcOHVqkSJHTp0//+uuvYqDJ/Pnz\nBUFwcXEZM2aMl5dXZGTk7NmzxWiezZs3T5kyJavdGrhZ0yO9H+FM5b4dNtEjnJaWJgZU2dnZdejQ\noUGDBsWKFYuJiTlx4sTevXvF2Ihnz5516tTpzJkz8keB1W9/eODAgdJT1cnJqWPHjnXr1nV3d7ez\ns3vz5k10dPTVq1fPnDlz69Yt+UdAud6aElUiOTm5Q4cO0uNga2vbvn37Jk2aqP5rp0+f3rNnT1JS\nUlpaWu/evVWNXt5hElVCUdHR0U2aNFEbPtzNza1NmzZVq1Z1dXVNS0uLjo4ODw8/evSo5vTQmZo9\ne/Yff/whXVO2bNkuXbp4eHg4ODhERkb+/fffR44cEeMmIyMj27Vrd/nyZS0dORWFbkIFxa50IoUu\nHPrtS6xevXru3LnSNZUrV/76668rVqxoaWn58OHDbdu2qQJ/Dx06lNOxOU1LhQoVNG89rl+/rscf\nXZjzHYeavP9sLSUlpWPHjtKoQSsrq2bNmrVo0aJUqVJv3ry5cuXKli1bEhISPn78OGjQoDwSMmii\nHXh9NWv169fXjM4PDw+/evWqatna2lpLQGq297axsbEDBgz4+PGjuKZcuXIdOnSoUaOGq6urtbV1\nfHz8ixcvLl68ePLkSfkhp3rn4OCg2ZoJgrBhwwaxonp7e3t6ema1h0yfgEn17Nnz/Pnz0jV169b1\n8/MrW7ZsRkbGkydP9uzZI52a7PTp099+++3u3btz8DUAAAAAAIDZI5wURnD//n3pE0kLC4tSpUpl\nlbl06dIBAQHdunXz8PDINENiYuKkSZMWL16sSr59+3b48OGHDh3SoWCLFy9WvaSxs7MbNmzYd999\npzaTaWxs7OrVq7XMaa5ogWfMmDFkyBDVctu2bWvVqiV9v+jr6ys+Ym7evHlKSorq9Z4gCKdOncr0\nTd6bN2969eolfQXi5+c3b948tW89YsSIixcvBgQEPHnyRLXm559/btOmTbVq1TT3OX36dM2VX331\nlfgfr1Wr1ooVK7L9splSosDa5b5KSA+Ira3tqlWrOnXqlGnOpKSkvXv3aq9dhqH3OlynTh3Nf/r1\n69el4aRjx4718fGRX0gfHx/N/OfPn5cGO06cOFHOdPaZWrx4sfSdTeHChX/7khV3NwAAIABJREFU\n7bdu3bpZWFiIK/v06TNr1qypU6eKQ9lFRkb+8MMPa9asyenHvX//Xpy8sm7duhMnTmzatKk0WCc9\nPf3MmTO//fbb3r17dftGOaX0EZZSvcL/4osvVqxYUa5cOemfzpw506VLl/j4eFXy9u3bp06daty4\ncVa7MnwrkUuZvjjs2rWrGE5atWpVndvMWbNmqa1JTU3Ns+GkBjjptm7dmpaWZmNj8+uvv3733XfS\nPU+fPn3o0KHSg7N8+fJsw0ktLS3btWvXrVu3du3aFSxYMNM8Z8+e7d27txg2tGbNmm+++UZLHVZx\nc3M7ePCgg4ODIAjNmjVzdXX98ccfpRm2bdvWoEED1XKjRo28vLxUr6sfP3787NmzTOdhN3CzphfK\nHWFNuW+HTfEIq6Smpqoaw1q1aq1fv/7TTz8V/9S/f/87d+507979/v37qjW3bt1aunTp0KFDte9T\nif5wWFjYyZMnxWTz5s3XrFmjGQzXu3dvQRDu3LkTHBwsdoa1U6i3plCVmDt3rnQ8yCpVqmzcuFF6\nnPv37//PP//07Nnzxo0bajGLRmRaVUI5GRkZ3333nfT/4urqOnXq1MDAwExj10JCQqZNm6Y9ou7e\nvXtqV/yffvpp3LhxBQr839OewYMHX79+PTAwUDyXIyMjx44dKyeMUu83oSpKXOkE5S8ceuxLxMbG\njh8/Xrpm8uTJo0ePltaEcePG/fbbb+PHj09PT//nn3/klNBENWjQQPx3i6ZMmaLHcFJzvuNQMaFn\na/Pnz5eOoOzu7r5u3bp69eqJa3r37j1+/PiAgICTJ0+KzZrRmWgHXl/NWmBgYGBgoNrKuXPniuGk\n9vb2Ot/YCoKwdOnSuLg4MTlq1KhJkyZJr3Si9PT0kydPLl++fOfOnTp/nM5cXFwy/Zpbt24Vf6DV\ntWvXbKezz8rq1atDQ0PFpJOT05IlSzp37izNM3r06O3btwcFBYk/gjp8+PD69eu1XJQBAAAAAADU\nMNk9jEB8PK1SrVq1TIdFKVGixMKFC8PDwydNmpTV825BEOzt7efOnSt9ahkWFqbbA+VVq1YJguDu\n7n7u3LnJkydrPswtWrTojz/+eOXKlfbt2xu4wJaWltIfuDs4OHTs2FGaoW/fvtJk165dxeWsBuMZ\nPXq0dOqx/v37b968OdNH2HXr1g0NDXV1dVUlU1JSpk2bpr3ASjB8gXNZJeLi4qQzxA0fPjyr6ARB\nEOzs7L7++uuTJ08aMaLU8Cdd3vTPP/9IX+66uLgcO3ase/fu0jcrKvb29rNmzRozZoy4ZuvWrTdu\n3MjpJ+7Zs0c1iuTIkSNPnDjRokULtYHfLC0tv/jii61bt27dulX1gio/SUtLq1u37u7du9Xe7AqC\n0KBBg6VLl0rXaH8nZHLNGlQMc9KpBt0JDg7u16+f2p7t7e2XL18uHSH79OnTmoNtS3Xu3Pny5ctb\ntmzx9/fPKmBFEIT69euHhIRIM8gJZvL395ee6T169JAW2NPTUxpyUaZMmc8//1xMZnrRN3yzlnuK\nHmFNuWyHTfEIq3F3d9+9e7c0llSlSpUqu3fvlg5wNWPGDGkMjRrl+hLSQF5HR8e1a9dqGVixSpUq\ns2fPvnPnTrZROwr11hSqEjExMdKBVF1dXffs2aN5nCtUqLBnzx43NzfthTQMk6sSilq+fLl0rm03\nN7fQ0NDevXtnNQ6in5/fmTNnvv/+e82aI5o0aZJ0euXx48dPnDhRM8KmRo0a+/btK1mypLhmzZo1\n4eHh2gusxE2oit6vdIJBLhx67EvMmTNHOor8yJEjx44dq1YTLCwsfvjhh0mTJsksHrQw5zsO03q2\nFhcX98svv4hJJyenkJAQaSyp+KW2b9+u5esYnol24PV7i6Qc6UW/QYMGU6dOzTSWVBAES0vLJk2a\nrF+//sKFC/IH1DcJHz9+lF4RChQosGHDBrVYUhV/f/9169ZZWVmJayZMmKA5fCwAAAAAAEBWCCeF\noR04cEDtbU2rVq0yzenr69uvXz8bGxs5u508ebL0MZl0/Dz53r9/X6hQoYMHD1auXFlLtiJFivj7\n+2uuV7TA7u7uzs7O0jVq8x9Vr15dmpQ+VRcHw5B69uyZdIwBHx+fefPmaXlPWapUKemwN/v27ZM5\n96K+GKXAuawSDx8+lE4w2rZtWzkfqpfhHnVj+JMub1qwYIH0rfzKlSu1z/E3YcIEaQ3RYZ5lVVzO\ngAEDpk2bpqVWC4LQvn17aRxA/mBpabl48eKsprfr0KFDpUqVxOSVK1ey2o/JNWsQGeyk69SpU1aB\nYpaWlj/88IOYTE9Pv3btmpZdTZs2TcschVKVK1eWvpg/dOiQlsk9Vby8vKRJZ2dn6Tjuald8QRCk\nJcn0om/4Zi33FD3CmnLZDpviEVYzc+ZMMd5FTbly5aQBCgkJCXv27MlqP8r1Je7duycuN2jQQK1j\nnKnixYtrmQNBRaHemkJVYsuWLcnJydKtshqjsUSJEj///LP2QhqGyVUJ5aSlpanmO1axsrLavHlz\nxYoVtW9VoECBX375JasJgl+9erV//34x6enp+dNPP2W1q9KlS6tNJbF69Wrtn673m1CR3q90gqEu\nHHrpS6Smpm7atElMurm5iSNkaxo1alSeipkzUeZ8x2Faz9a2bNmSmJgoJseOHZtV/Xd0dJw9e7YO\nxVOI6Xbg9XiLpBzpRb9du3ZyNqlWrZq0MucD+/btk4bz9urVy9fXN6vMLVu2lP4g5OXLlwcOHFC2\nfAAAAAAAIB8hnBSG8+HDhwULFnTv3j09PV1c6eDgIM6dlxulSpWSPpzVPhSKFlOmTClfvnzuy5Ot\nnBbY3d1dbc0nn3yiJYOrq6v42DQmJkb6mlxl6dKl0h+mz549O6tf9ou+/vrrEiVKqJbT0tIMPG+U\nsQqcmyohnYpLEIRChQrptp+8SV8nXV4TGxsrfUHYvHnz1q1ba9+kQIECAwcOFJPbt2+XtnIylS5d\nesaMGTndKn9o3Lix2rs3NdJfHUjnPVRjcs0aVAx50g0ePFjLX1u2bClNaqlsOSXd85s3b7INI9B+\n0S9TpozaX6XRjVFRUWp/NVazZkg5PcKZ0rkdzgdHuFy5cpmObCTq16+fdMAtaRRUbuSoLyHtVulx\noG4lemvKVYnNmzeLy87Ozr169dKyz65du2o2JnlcXqgSytm1a5c0YGjgwIF16tSRua2dnV2m67ds\n2SLt/IwYMSKrgU5VunfvLr2IbNy4UXvjo/ebUJl7zumVTgc6Xzj00pcIDQ2VfougoCAtoX6WlpbD\nhg2TWTxkhTsOmYz+bG3jxo3isqOjo/TiqKlVq1ZqMe5GZLodeGPdIsmXmJgo/TmNSVz0lSA9OwRB\nGDVqlPb8o0ePliY3bNig/zIBAAAAAIB8inBS6NnDhw93/K/NmzcvWbJk4MCBHh4e48aNS0lJkeb/\n6aefxAfruSR9VP3ixQsd9uDk5NSnTx+9FEaOHBVYc+pG6TgxdnZ2atP5WVhYFC5cWLWckZHx+vVr\ntc13794tLlevXt3HxyfbAltbWzdt2lRMnj9/PttN9MgoBc5llVB7xn39+nWdd5U35f6ky4OOHDmS\nlJQkJvv37y9nK+krloSEhLt37+b0c/v372+2L0WyHVxEOiDN27dvs5pk2eSaNagY7KQrUqSIdIpJ\nTS4uLtLXui9fvpRTEjkqVKggTWbbYGqOsefk5CQua3YJxCu+IAiaV3xjNWuGlNMjnCmd2+F8cITb\ntm2rfUxWe3v7Jk2aiMmzZ8/qMARspuT3JaRDysmcv1UOJXprClWJ5ORk6YB5vr6+tra2WnZoaWkp\nc7DVPMXoVUI50mFEBUHQHiMl09mzZ8VlKyurbP/jlpaWfn5+YjImJubBgwda8uv9JjTT/ajk5kqn\nA90uHPrqS5w5c0aazPYf165dO+2tNLLFHYd8Rny2lpSUJL3StWjRIqtgelHeudKZaAfeiLdI8tnZ\n2UnHGc1/z9ZkOnfunLhcs2bNsmXLas9fvnx5aRi9tM8AAAAAAACgHeGk0LN9+/Z987969+49YsSI\nNWvWaP7avk+fPj/++KO+Plr66PbNmzc67OGrr77Kau4zJeSowJrxDdKn6o6OjpqbSL+LdLIwQRCi\noqL++ecfMSn/+XutWrXE5UuXLsncKveMVeBcVgm1SdlmzJgRHR2t897yoNyfdHmQ9OWujY1NixYt\n5GxVsWJF6Wl4+fLlnH5u9+7dc7pJvlGzZk3tGYoWLSpNvn37VjOPyTVrEBnspPPy8so2FENa2d69\neyenJHJI3yULgpCQkKA9v+b4iNKLkfa/akY/GKtZM6ScHuFM6dwO54Mj3LBhwxzlefv2bUREhF4+\nWn5fQjon7MOHDxctWqSXAijRW1OoSty8eVM6JJ724A+VRo0ayfnoPMXoVUI5p0+fFperV6+ufQ5o\nmaSTDlerVq1IkSLZbtK4ceOs9qBJvzehUvq90ulAtwuHvvoS0sPu4uKS7fCKxYsXZ777XOKOQz4j\nPlu7ceNGTq90n3/+uQ4fpAQT7cAb8RZJPgsLi0qVKonJjRs3XrhwwfDFMK5nz55JZ7qX2ceT/h4s\nKioq3/wOHAAAAAAAKC2bKZkAhdjZ2U2dOlX7hEpSb9++PXjw4NWrV2/duhUVFfXmzZv379+rTdsk\nffwq/RG/fPXq1dNhq0zpvcCaE6hJp8OztrbWvonaoLBq42FI5zLTTjqUrCHHJDBWgXNZJYoXL+7j\n4yMW/sGDBzVr1vzuu+/8/f2rV6+exweYMcxJlwdJK1ulSpWyHQ1FVLx4cfGlY04rW8mSJTUnvzMf\nbm5u2jOohTJkWtlMrlmDyGAnXbY1TfjfyqYlCEbN1atXw8LCbt68+eDBg4SEhHfv3klnYxQEQW0c\nRx0u+tILveZFX7pG7YovGKlZ0y+9H2FNuWmH88ERlr6hz4raSH63bt3KdhJb/fYl/Pz8li9fLiZH\njRq1f//+Pn36tGjRQnM8MPmU6K0pVCXUppeV81+rWLGizI82DJOoEgp59eqVdKZ7+dPca5GcnCwN\n7JYZn6qWLTw8XEtm/d6Eat9zbq50mhS6cOirL3H79m1xWc65rMqWx0cKz+O441DJ48/W1K500p8N\nZEXmGWQAJtqBV+4WSb/8/PzENjA5OblZs2Y9evTo0aNHw4YNpRemfEzt7JB50Vc7QW7fvl2qVCl9\nFgsAAAAAAORThJPC0EqUKBEQENC/f3+Z7+yfPn06efLk3bt35+gptnQ8A/mqVaumw1ZqFCqw5oNp\nS8v/G11YOutTpivT0tKkf4qMjJQmZ86cuXDhQkEQMjIyVO/VpG/XxDVq8xWmpKQkJiYaZjxXYxU4\n91Vi8uTJ7du3F1/PxMXFzZkzZ86cOa6urj4+Pt7e3jVr1qxVq1bx4sVz+UF6ZMiTLg+SVrbnz5/7\n+voKkkolSCqb2krphvHx8Tn60KpVq+a23KYs06GttFB736lics0aRAY76aQTSsqRaU2TysjIWLNm\nzYIFC3Ia3qF2UdakeVmXXvQ1uwRarviCkZo1vVDuCGvKTTtsukdYJKdb7u7uLk3GxsZqyaxEX6J5\n8+aNGjU6efKkuObYsWPHjh2zsrKqUaOGt7d3nTp1atSoUbVqVc1zRDu999YUqhJqa0qXLp1tSfLO\nj1VMq0ooQW2mDjkxUtmKj4+Xdm9k/rvV5sbVPnG8fm9Cs8qmueecXulESl849NWXkJ7Ocs5lQdfT\nefXq1dn2Z2rXrl2jRg0ddm5auOMwiWdrai2SnEjHvBMbZ6IdeL3fIilkyJAhwcHB4hDyqampa9eu\nXbt2rb29vbe3t7e3d+3atWvVqpXtj51Ml9p/U4mLPgAAAAAAgMj4r1WQz3h6eqpNImZjY+Pk5FS4\ncOHy5cvXqVOncuXK8of5Wbly5ciRI3UYDkG355suLi46bCVl4ALLpzb4itpTyJs3b+q224SEBMO8\nBTFWgXNfJb788su5c+eOHDlS7V8cHR29d+/evXv3qpKenp4dO3bs16+fnPclisqzddhgpJXt9evX\nZ8+e1WEnOZ0TMPc1zaTpJcjD5Jo1iAx20uk3nCg6Orpr167nzp3TYVtFG0y1K75gpGYt9wx8hHPT\nDpvoEZbSnM862zyZzgKsolxfYu3atX5+fmotfFpa2pUrV65cuaJKOjo6NmnSpFevXu3atZN506H3\n3ppCVUJtMm7NaXM1ycljACZXJZSg1lHRS99PrZLI/Hfb2dlZWlqKx1bmJO+60bwkKbpbA1w49NKX\nSE9Pl47+KKcFlp9NzeDBg7ONlJ08ebI5hJOa+R2HqTxbU2uRdOifmCgjduDzwi8u5ChevPjmzZv9\n/f3VTsPExMSwsLCwsDBV8pNPPmndunX//v1r1apljGIqSId+oGY2RS/6AAAAAAAgPzGNZ0YwIa1a\ntZo1a5ZedrVixYqhQ4eqrXR3d69WrZqbm5uDg4PaQ8+jR49ev349N5+Yyxeuhi+wzvT1AFGH0b90\nY6wC6+UdfFBQUPXq1ceNG3fx4sWs8ty9e3fWrFm///771KlTBw8enPsP1Y0J1WGFvH//Xi/DrOa0\npuV0sBxoMrlmDSrGOulyKS4urnXr1tKZagVBKFiwoJeXV6VKlZycnNRCBBITE5cuXWrIEoo4wjLp\n3A6b6BGWsra2lhNJoDbLalbhpIr2JUqUKHHs2LHZs2cvXrw4q7lW3759q4oBrV+//urVq9UGVc2K\nHntrylUJta9csGDBbHei+ucadwh5E60SeqdbFIh27969kyblR6fZ29uL26rtxHSZ0KU5MTFRGjom\ncw5rfu+UF5joHYcJPVtTC3i1tbXNdhNLS0ujX+n0Lh90L5VQv379c+fOjR8/fseOHVkFOkdGRq5a\ntSo4OLhXr17z58+X01kyFdLfIQiyrx1q2fLNRR8AAAAAACiNcFLkUREREaNHj5au6dGjx/Dhw728\nvLLaJD4+PpePvDOdrU8moxRYZ2rvojp37iydhEvn/SjHWAXOTZWQatiwYVhY2JUrV3bu3Hnq1Kkr\nV66kpKRoZktMTBw5cmR8fPyECRP08rk5Ylp1WCF2dnYWFhbi+10PDw8tX18Lb2/vHOXXV00zZybX\nrEHFWCddLk2YMEEasOLu7j5hwoTOnTtn9e78xYsXxopZ4QjLpHM7bKJHWOrjx48ZGRnZjtr44cMH\naTLTCA8D9CUcHBymTp06atSoXbt2HTly5MyZM8+fP88059mzZ5s2bRoWFiZz6Hd99daUqxJqAQGZ\nFk9Nenq6cSNsTLpK6JdaByM5OTn3+1SrEmonqRbSnPkm1Ma0Ls3SpMx/nPz/L5RjinccpvVsTe2E\nlTOcampqaj6LJRXyRfdSIWXKlFm7du3MmTO3bt16/Pjx8+fPZxrknZGRERwc/Pjx47179+abhy1q\n12s5/UBB49qRby76AAAAAABAaYSTIo+aMWOG9B3bihUrvv32W+2bGHfKHtMqsNrUY7///nvRokWN\nVRg5TK7Amapdu3bt2rUFQUhJSblx48aZM2eOHz8eGhqq9nh3xowZLVq08PHxMXDxTKsOK8TS0tLJ\nyen169eqpK+v77x584xbJMiUP1oJM2SKJ11ERERwcLCYrF27dkhISJEiRbRsYsR5zDnCSjPFI6wp\nMTEx27li1YZ+LFy4sGYeg/UlHB0dAwICAgICBEF48eLFhQsXTp8+vX///kePHkmzvXjx4j//+c/u\n3bvl7zn3vTXlqoTaMc9qME4ptYGsDC8fVAl9Ueuo6KUXrVYlZP67U1JSPn78mNVOTJRpXTisrKzs\n7e3FU1jOuSzoejoPGzYs2+EJDX/jabpM8Y7DtG7z1VqkrIZCz2ke3WQ1/qUB5I/upXJKly49fPjw\n4cOHZ2RkPHjw4Ny5c2FhYQcOHIiLi5NmO378+IIFC0aMGGGscuqXbhd9tWz546IPAAAAAAAMgHBS\n5EVpaWn79+8Xkz169Mj2ebcgCGrPDQ3J5ApcrFgxaTI+Pj6PvwUxuQJrZ2Nj4+3t7e3tPXTo0NjY\n2CVLlsybN098x5ORkbFgwYKNGzcaskgmV4eVU7RoUfG1Tb78gvlVPmslzIrJnXQhISHiWEGWlpbB\nwcHaA1YEY38vjrDSTO4Ia3r58mWFChW053n16pU06eTkpJbBWH2JUqVKdezYsWPHjnPmzDl+/Pik\nSZOkE9YfPnz45s2bOozplZvemkJVwtnZWZqMioqqXLmy9k2ioqL09ek6yGdVIpfUOipqca66UQsK\niYyMlLPVy5cvtezERJnchcPFxUWMIpV5nup2Ok+fPl2HrZAVk7vjMLnb/OLFi0uTjx8/rlatmvZN\nnjx5InPn2Q7Erka5QFU58kH30gAsLCwqV65cuXLlwMDAlJSUzZs3T5ky5cWLF2KG33777Ycffsgf\nA5Ry0QcAAAAAAIaky6xMgNIePHggfVqqGmYmWzdv3lSsRNkwuQLXrFlTmrx165axSiKTyRVYvqJF\ni06cOPHQoUPSSQ9DQ0MNPBKGydVh5UgrW3h4uBFLghzJx61EHlegwP/9Nkm3hsvkTroLFy6Iy59/\n/nmlSpWy3SSXE4bmEkdYaSZ3hDU9ePAgp3k0w0/zQl+iadOmoaGh/v7+0pWhoaG53G1Oe2sKVQkP\nDw9p8uHDh9lucv/+fX19ug7ycZXQgbu7uzTA8fLly7nfZ+HChUuUKCEmZf677927J01WrFgx9yUx\nOpO7cEhjwf/55x85m8hpqA1M2gkUjDqUo8GY3B1HXmiHc6R69erSpFp7lSn5p4atra00qTbuuKbo\n6GiZe1ZCPuheGpiNjU1AQMDZs2el/aXo6GjjtvZ6pHa9NueLPgAAAAAAMADCSZEXqY1+JOdp1927\nd2NiYhQrUTZMrsCenp7ScTVOnTql6MdZW1uLy6mpqTrswcAFNrx69eoNHjxYTL558yY2NtaQBTC5\nOpwpaU0TdK1sDRs2FJdv375t4H9EHqeXI6yQfN9K5FnSAU50mzfW5E46aYMp84Xc6dOnFStO9jjC\nSjO5I6zp0qVL2ea5evWquGxlZaU5Wlge6UsUKFBg0aJFBQsWFNdEREToZc/ye2sKVQkvLy/pyGrS\n/0hW5PxnlZPvq0SOWFhY1K9fX0xeunRJL4FKNWrUEJdv3ryZbXSUIAjSsVoFjfA4E2VyFw5pzNzz\n58/VRo/TlJiYePv2bYULlWNqw1QbdyhHwzC5O4480g7L5+HhYW9vLyblRP+fOHFC5s4LFSokTWZ7\n52LcIM580L0U9PEwMKeKFy8+Z84c6RqjXPQ1SQ9FWlqaDnuoXLmyg4ODmFS7mmdFmq1QoUJyfm4B\nAAAAAAAgEE6KvCkpKUmaFOet0yI4OFip0shgcgUWBKFp06bi8saNG8W59pQgfWovTteVU4YssFFI\nXwYLMobK0C9TrMOaHB0dpcmEhAQdduLr6ysup6enr1q1KrfFykf0coSVk+9bibzJ1dVVXH7y5IkO\nrwlN7qQTZ7sW5LWWsbGxe/fuVbJE2eAIK83kjrCmQ4cOac+QkZFx9OhRMVmtWjVpcJ5K3ulLODs7\nly1bVkzqsU8ls7emUJVwdHSsUqWKmMz2vyYIwsGDB/Xy0boxhyqRI19++aW4nJKSsm7dutzvs06d\nOuLy+/fvjx07lu0m0gbTxsbGy8sr98UwOpO7cNSrV0+aPHLkiPb8x44dk37HPMLOzk4a2yRnyOR8\nwLTuOPJOOyyTlZWV9Bp68uRJ7ZH3Hz9+PHDggMydS4eIFmQMa2qUoaxF+aB7Kfzvw8DExMSPHz8a\n4EPVxrhNSUkxwIdmS/osRbfnopaWltJfgJw6dSrbBzLx8fHS307UrFnT0pI3QQAAAAAAQBYeIiAv\nKlq0qDR5584d7fmfPXtm3EerJldgQRCkoyvFxcX9+uuvyn2WNNjo7t27us2CZ8gCG0VkZKQ0Wbx4\ncUN+uinWYU3SoWIEXScf9PDwaNasmZj8/fffo6Kicluy/EIvR1g5+b6VyJukwVUfPnzQYawvkzvp\npA3m3bt3s80/e/ZsY4UuqXCElWZyR1jTpUuXtA9juWfPHungeV26dNHMk3f6Eunp6dLx2PTYp5LZ\nW1OuSkiP/NOnTw8fPqwl8/nz5+WMYKocc6gSOfLtt99Ko0nmzJmjVqN04O/vL00uWbJEe/4zZ85I\na0X79u01Q8NNkcldOFq3bi2Nsvrzzz+15//jjz8ULpGOpP1A48beGYxp3XHknXZYvp49e4rLHz9+\nnDt3rpbM69evf/Hihcw9V6xY0crKSkyGhYVpyXzs2LHHjx/L3LMS8kH3UvjfBwgZGRmGGfBVbbxn\nY1301UgPhc7HQXrR//jx44oVK7Tn/+OPP6S/9lTrMwAAAAAAAGhBOCnyIg8PD+k0QGvWrNGSOSUl\nZcCAAbpNsKsvJldgQRA+//xz6XyLs2bN2rdvn8xtExIS5syZI/8rSMcGiI+P122cJEMWWF9u3br1\n5MkTOTnT09M3b94sJj09PW1sbBQrVyZMsQ5rcnFxcXd3F5Nbt26VM/6Kph9//FFcjo6ODggIkD/q\nzJkzZ6T/ynxGX0dYIabYSuQD3t7ednZ2YnLOnDk61ArTOumqVq0qLl+6dEl7XPXff/+9ePFi5QuV\nDY6w0kzrCGfqp59+ymrmzaSkpKlTp4pJS0vL7t27a2ZTui9x8OBBmXODHjhwID4+XkyqDVKlRqHe\nmkJVonv37tL57idPnpxVSFxqauq4ceNkfqJCTLRKKMfJyalPnz5iMj4+vnfv3nIqxsmTJ7MaSrNq\n1are3t5i8siRI1oG3fzw4cOYMWOkawIDA7MvtykwuQuHvb19hw4dxOSFCxe2b9+eVeZDhw5Jx4fO\nUxo3biwunzp16syZM0YsjGGY1h2HKd7mt2vXzs3NTUwuWbIkq0jlp0+fTpgwQf6eCxYsKJ3pe9Om\nTe/evcs0Z3Jy8ujRo+XvWSH5oHupNqz7pk2bdNtPbGzsuXPnZGbesGGebhAkAAAgAElEQVSDuGxh\nYfHZZ5/p9qH6Je17/P3339qH3c1K9+7dbW1txeS8efOePn2aVeaIiIjffvtNTNra2nbr1k2HDwUA\nAAAAAOaJcFLkRY6Ojg0aNBCTO3bsWL58eaY5Y2Jivv76azmT+inK5Aqs8vvvv4sxQOnp6d26dfv1\n11+1zwN169atcePGeXh4TJo0Sf6MUY0bN5a++R46dOjly5fzcoH15ezZs1WrVg0MDAwLC9MyJmta\nWtqoUaOkx0T6ctEwTLQOa5JOPnjp0qVRo0bpMC+kr69vjx49xOTJkyebNWt2+/ZtLZu8f/9+8+bN\nvr6+zZo1k/+ewxTp5Qgrx+RaiXzA0dFROszJ33//HRQUlO28e2pM66Rr3bq1uJyRkdG7d++sXgfu\n2LHj66+/1m1Mbv3iCCvNtI5wpk6ePDl06FDNSUiTk5P79esn/S6BgYGlS5fW3IPSfYlBgwZVq1Zt\n4cKF2kfnunnz5pAhQ8SknZ1dy5YtteRXqLemUJX49NNPv/nmGzF57dq1AQMGaF6IU1JSBg8efPbs\nWS0fZwAmWiUU9dNPP3366adiMiwsrG3btlomXE5ISJgyZUrbtm21xJ2MHTtWmuzbt2+mQ+69f/++\nT58+0nGIvb29W7RokbMvkFeZ4oVjzJgx0pD0oKCgTM/ZixcvSqOQ85rAwEDpnX7Pnj3z7H2iHpnQ\nHYcp3ubb2NjMnj1bTKampnbr1i04OFjtF2uXL19u3bp1bGyslZWVtBJq17ZtW3E5KioqKChIOnaj\nSkJCQvfu3fPCRBz5oHtZrly5smXLisnFixdv3LhRhx8fxsTEfPnll76+vtu2bdMeU7tlyxbpQN2f\nf/75J598ktOPU4L0QUpSUlLPnj3VRlGVw8XFZeDAgWIyPj6+U6dOmUaUPn78uHPnztK78kGDBrm4\nuOT0EwEAAAAAgNkqYOwCAJkbMWLEiRMnxOSwYcNCQ0P79etXp04dZ2fnhISEhw8f7t27d/ny5aqR\nZhwcHD7//PO///6bAstXrVq1efPmBQUFqZJpaWkTJkxYunTpt99+27Rp008//bRIkSJJSUmxsbF3\n7949d+5caGiobo/Uy5Ur16JFC3E6zufPn3/xxRfe3t41a9Z0dnaWTjdWpUoVLT+XN1iB9SgtLW3r\n1q1bt24tVapU+/btfXx8ateuXaJECWdn5w8fPjx58iQsLGz58uXSchYrVmzo0KGGL6op1mFN/fr1\nW7t2rZhcvHjxpk2bGjduXLp0aXt7e2nOQYMGlSxZMqv9LFy48MqVK/fu3VMlr1275u3t7efn16ZN\nm7p167q6utrZ2cXFxUVGRl68ePHcuXOHDh16//69Ql8qT9HXEVaIKbYSSggJCXn27JnmerXgiRMn\nTmQVDaw2Ia92Y8aM2bFjh/hib/Xq1Zs3b65WrZraHubMmSMdPEyNCZ10X3zxhY+Pz/nz51XJ8PDw\nevXqDR8+vE2bNqrXpa9evTp16tTatWvFsZS++uqrPXv2GKW0Io6w0kzoCKuxtLS0tbVNSkpauXLl\nlStXBg8e3KBBg2LFisXExJw4cWLhwoXSuXFdXFykI5WqUbov8fjx49GjR48bN65JkyZNmzb18fGp\nUKFCsWLFrK2t4+Libt68uXPnztWrV0sjdUaOHJlta6ZQb02hKvHzzz+HhISI8QFbtmy5devW999/\n37hxY9V/7fTp04sWLbpx44YgCPb29snJyUaMnDPRKqEcJyentWvX+vr6ikU6f/58nTp1unTp0q5d\nu+rVq7u6uqampsbGxt6+fTs0NHT79u3ScVUz1a5du86dO+/YsUOVfPv2bZs2bXr27NmjRw8PDw8H\nB4fIyMijR4/+8ccfjx49EreytrZesmSJpWU++YGxKV44KlWqNHToUHEi77dv37Zs2bJv3749evSo\nUKGCIAiPHj3asmXLihUrVIH+jo6Ob9++NWKBM/Xpp5/27t1bnB49Kiqqbdu2ZcqUKVu2bIEC//e8\nsWbNmjNmzMh0D5GRkbt27cr0T1euXBGX379/v3Tp0kyzeXp6fvnllzp+AZ2Y1h2HKd7m+/v7b9u2\nTawY7969CwoKmj59eosWLUqVKvXu3bvLly+fOnVK9dfAwMANGzZkNVa3mp49e86fP18MZ9y2bdud\nO3cGDhxYq1YtBweHV69enThxYtWqVao4v3bt2skfelYhptu9FPXv318cRDY1NbVv377Tpk1r0KBB\n8eLFpSH1dnZ2auNnazp79uzZs2cLFSrUunXrhg0b1q1b193dvWjRounp6S9fvrx48eK6desOHDgg\n3eS///2v3r+Rbvz9/ceMGRMXF6dKnjp1ysPDo1GjRp6eng4ODtKQ6DZt2vj4+GS1n8mTJ+/Zs+fx\n48eq5O3bt+vWrTto0KCvvvqqbNmyGRkZT5482b1797Jly6SXjHLlyk2aNEmRLwYAAAAAAPIpwkmR\nR7Vo0eKbb75Zv369uGb37t27d+/ONLOFhcXixYvFp8lGYXIFVundu/eHDx9GjBghzhT5/Pnz2bNn\nS0eD0Iv58+fXr19fOm/apUuXpKPjqPj5+WmffclgBda7Fy9eLF++PKuxQEQ2NjYrVqwoUqSIYUol\nZaJ1WE29evUGDhy4bNkycU1sbOzOnTs1c3bq1ElLsKODg8P+/fu//vpr8S1mRkbGnj17jB6uZHT6\nOsLKMd1WQo+WLl0qZ2yhzZs3ZzUHYtu2beVH21SsWHH+/PmDBg0SX80mJydrtvDahyw1rZNu4cKF\nvr6+4vyYL1++HDNmTFZvQGvVqjVz5kyjfxGOsNJM6whLWVtbz549WxUcee3atf79+2eV09bWdt26\nda6urlllMExfIi0tLTQ0NKupb6W+/PLLESNGyN+zfntrClWJEiVKrF+/vnPnzmI84u3bt8WoJjXz\n5s0bNmyYzCAbJZh6lVBCnTp1du7c2bNnT/Gy+PHjx40bN27cuFHnfS5atOjp06filTc9PX3dunXr\n1q3LKr+VldXSpUu9vLx0/sQ8yBQvHBMnTrx27Zo4kX1qampWTZCHh0enTp1mzZpl2ALKMnv27IsX\nL0rDJZ8+fapl/mU1ERER0hm9s/L69eussn377bcGDicVTOqOw0Rv81etWhUXFycda/nZs2di4LKo\nQoUKM2fOlE5url3VqlUDAgLWrFkjrgkPD8/09yHNmjXr16+f0cNJTbd7KRoyZMj27duvXr0qromI\niIiIiFDL5uTklG04qcq7d++2bdu2bdu2bHOOHTu2UaNGOSqtcuzs7BYuXCgdYz4lJeXvv//WDN0u\nWrSolnBSe3v7TZs2tW/fPiYmRrXmzZs3v/zyyy+//JLVJsWKFdu0aZPar38BAAAAAAC0yydjUSBf\nWrJkSadOnbLNZm1tvXTpUu0xiIZhcgVWGThw4K5du9zd3XO0VaVKlWxtbeXnL1++/NGjRz/77LMc\nli4ThimwUZQsWXL79u3SuRoNzETrsJq5c+eOGTNGOhyObkqVKnXkyJGAgIAcjdtka2tbsWLFXH50\nHqevI6ycfNxK5FmBgYHBwcG5nD7PhE46Ly+vzZs3y/m+Pj4+u3fvziNv7zjCSjOhI6ymf//+WcUj\nihwdHVWjKmrPlnf6Et26ddu+fbveG/Yc9dYUqhLNmjVbs2ZNtkH/P/zwQ69eveR/rkLyfZXQga+v\n7/Hjx2vVqiUzv42Njfa5el1cXPbt29esWTM5e3N0dFy9erU0oiV/MMULh42NzaZNm1q0aKE9W5ky\nZTZu3Ojg4GCYUuWUo6Pj4cOHW7VqZeyCGJoJ3XHknXZYvoIFC+7cuTMoKEjLRPbVq1c/ePCgk5OT\ndKW1tbX2Pc+ZM8fb21t7ngYNGqxfvz6PjN9sut1LFVtb25CQkK+++srAHzpjxozJkycb8kOz1blz\n53Xr1uX+1+M1atQ4dOjQp59+Kidz+fLlDx8+XKNGjVx+KAAAAAAAMDd54tEYkCkbG5sNGzYsXry4\nTJkymWawsLBo2bLlmTNn8sKLUsEECyxq3rz5rVu35s+f7+HhoT1n5cqVBw8efPz48Rs3buR0mkgv\nL69Lly6FhIQMHDiwXr16JUuW1PkdnmEKnHsBAQE7d+7s169f+fLltef85JNPRo4cefXq1ebNmxum\nbJky3TosVaBAgSlTpjx48GDmzJlfffVV+fLlnZ2ddYt9tLe3X758+cWLF7t06aL9Da6Dg0OrVq0W\nLVr0+PHjwYMH61p206DHI6wcU2kl8pOuXbuGh4dPnz69UaNGJUuWzPcnna+v79mzZ/39/a2srDLN\nULx48enTpx85ckTLUI6GxxFWmgkdYTXz5s1bsWJFsWLFNP9kZWXl5+d3+fJlPz+/bPejXF8iNDR0\n9uzZX375pfYOpKWlZbNmzUJCQoKDg+3s7LLdrdK9NYWqRIcOHS5fvty+fftMT5ASJUqsXbt25syZ\n8supHJOrEobh6el5+vTpjRs31qtXT0uEUIkSJb7//vvw8PBsI5gLFy68d+/eDRs2aPn9nr29/Xff\nfXfr1i1/f3/di56HmeKFw8HBYc+ePYsWLcoqYrhjx45nzpypUqWKgQuWIy4uLrt27Tpw4EDv3r0r\nVfp/7N13XFPX/wf+S1iyERCQodaJICgaRHGioiLuhYpbrPqhH611VYvaVkX5ah2t1FW3dWGxAm5F\nZSqCIktx4GQIBGQjEPL7I7/f/Z1PQgbZgdfzDx/3JCc3x8vNybk57/s+XVrOiFpdrjjU9DJfX19/\n9+7d0dHRixYtIscnDAajd+/ee/bsiYmJsbOz43A4dLpuiqJ4okv5cXvLxYsXN9r3mpiYbN68+ebN\nmyL3o0jqO7zkMjc3v3DhwuPHj9esWTNs2DA7OzsjIyMhgcL8unbt+uDBg3Xr1rm6ugrq4bn09fVn\nzZqVmJi4cuVKqRsue1OmTHn16tVff/01a9asHj16WFhY6OjoSLAfR0fHp0+fbtmyxcrKSlAdKyur\nrVu3PnnyRMW/QQAAAAAAAABANWnQy5JCC5GcnExvOzk5KbEl4quvr09ISIiLi/vw4UNpaamWlpaV\nlZWjo+Pw4cObmgpCMdSuwaRPnz5FRUVlZ2ezWKzi4mJtbW0TExM7OzsHBwdXV1c7OztlN5CXujQ4\nLy8vOTn59evX7969Ky0t/fr1q76+vqmpaefOnV1dXZlMpvDfxBVMrc9hOamtrX348GFiYmJBQQGL\nxaqpqTE0NDQzM+vataujo6Orq6tk0wCgAOrSSwAPdfnQ5eTk3Lt379mzZ0VFRbW1tUZGRt98803f\nvn0HDBigIi0UBEdY3lT5CO/du3f9+vXcbV1d3S9fvnC3q6qqbt269fDhw5ycHAaDYW1t3blz53Hj\nxllbWzf1LeQ3lqirq0tJScnMzHzz5k1BQUF5eTmDwTA2Nra0tOzZs6e7u7vwPI5CyHu0Jo9TIj8/\nPyIi4vXr1/n5+Q0NDfb29v379/fy8mrVqpU0TZUHdTwlFIPFYt2/fz8zM5PFYrFYLAaD0bp1686d\nOzOZTDc3NwnOuuzs7Fu3br1//76oqKi6utrCwsLS0pLJZA4ZMkQVkrMqgDp+cTQ0NMTExMTGxubm\n5n758sXIyMjR0XHMmDEqkl8QRFKLKw61vswvLS3Nz8/X1NS0sbEh7yIoLy+3tLSki2FhYd7e3uLs\nMCcn59q1a8+fPy8oKNDU1LS1tXVzcxs5cqTKZgLmUuXhpWKUl5cnJSVlZWVlZ2cXFxdXVVXp6OiY\nmJjY29u7urr27du35US0UxTF4XCSkpJiYmLy8vIKCwspimrTpk3btm0HDx7cp0+fJsXsAgAAAAAA\nAEgmIyOD3u7Tp48SWwKyhXDSFkcdw0kBAAAAAEBWBIWTAgAAAKiR1NRUd3d3upicnCwkSTMAAAAA\nAAAAAMgWwkmbKyx2DwAAAAAAAAAAAADqJCUlhd42MjJycHBQYmMAAAAAAAAAAACaB4STAgAAAAAA\nAAAAAIA6CQsLo7f79evHYOCHbgAAAAAAAAAAAGnhVzYAAAAAAAAAAAAAUL66ujpxqiUkJNy6dYsu\nzp8/X14NAgAAAAAAAAAAaEkQTgoAAAAAAAAAAAAAyrdx40ZfX9979+41NDQIqpOZmTlnzhwOh8Mt\ntmvXbvz48YpqIAAAAAAAAAAAQHOmpewGAAAAAAAAAAAAAABQbDY7PDw8PDy8bdu248ePHzRokKur\nq7W1datWrYqLi9PS0q5cuXL8+PHa2lpufQaDceTIES0t/MoNAAAAAAAAAAAgA/ihDQAAAAAAAAAA\nAABUSF5e3qFDhw4dOiSkjoaGRlBQ0ODBgxXWKgAAAAAAAAAAgOYN4aQAAAAAAAAAAAAAoE4MDQ1D\nQkKmT5+u7IYAAAAAAAAAAAA0HwgnBQAAAAAAAAAAAADlW7BggZ6eXlRUVGpqal1dXaN12rZtO2vW\nrO+//97CwkLBzQMAAAAAAAAAAGjeNDgcjrLbAAqVnJxMbzs5OSmxJQAAAAAAoHiFhYW5ubncbQaD\n4ezsrNz2AAAAAPCrqalJT09/+/Ztbm5ueXk5h8MxNTW1sLBwdXV1cHBQdusAAAAAAAAAAFq6jIwM\nertPnz5KbAnIFrKTAgAAAAAAtCBt2rRp06aNslsBAAAAIEyrVq2YTCaTyVR2QwAAAAAAAAAAAFoQ\nhrIbAAAAAAAAAAAAAAAAAAAAAAAAAAAAyoRwUgAAAAAAAAAAAAAAAAAAAAAAAACAFg3hpAAAAAAA\nAAAAAAAAAAAAAAAAAAAALRrCSQEAAAAAAAAAAAAAAAAAAAAAAAAAWjSEkwIAAAAAAAAAAAAAAAAA\nAAAAAAAAtGgIJwUAAAAAAAAAAAAAAAAAAAAAAAAAaNEQTgoAAAAAAAAAAAAAAAAAAAAAAAAA0KIh\nnBQAAAAAAAAAAAAAAAAAAAAAAAAAoEVDOCkAAAAAAAAAAAAAAAAAAAAAAAAAQIumpewGAAiUkpJS\nVVXF3baxsenQoYNSmwMA8vX27duysjLutqOjo7a2tnLbA0J8/Pjx48eP3G0dHR0mk6nc9gCA+D59\n+sRisbjbXbp00dfXV257mgcWi5WVlUUX3d3dNTU1ldgeAJDM5cuXyc8yP1tb2zlz5iisPQAAICsY\nrQEAAAAAAAAAAIgJ4aSguhYtWpSZmcnd/u6773bu3Knc9gCA/Hz69MnNza2yspKiKCaTGR0drewW\ngTBHjx4NDg7mbtva2r5+/Vq57QEA8aWmpk6ZMoW7HRAQsGvXLuW2p3l48OCBn58fXczLyzM1NVVi\newBAMqGhoZcvXxZSoW/fvggnBQBQRxitAQAAAAAAAAAAiAnhpAAAoHxr167lxpJSFLVt2zYNDQ3l\ntgcAoLkaM2bMwIEDY2NjKYo6ePDgvHnznJ2dld0o+bp79+6+fftkuENLS8u//vpLhjsEAACAFu7t\n27crVqyQ7LWenp4rV64U9OzatWtfvHgh6FkGg2FgYGBqamphYdGrVy8mk2lvby9ZM0DdLVmyJC8v\nj7u9ceNGNzc35bYHAAAAAAAAAACUBeGkIHs3btygF0Hu0KGDl5eXctsDACouKiqKTgQ1cuTIwYMH\nK7c9ClNQUHDlyhW6OHnyZHNzcyW2BwBaiG3btg0ZMoSiKDabvXLlyjt37ii7RfKVm5t7+/ZtGe6w\nXbt2MtwbgGpqmdd0rVq1MjAw4Hnw69ev9fX1SmlPS4DxMPBosadEWVmZxMMV4Yfo0aNHiYmJ4u+N\nyWQuXrx45syZ2trakrVHtlrsKaF4sbGx2dnZ3O2lS5cqtzEAAAAAAAAAAKBECCcF2fvzzz/pH8HH\njRvXQqYeAUAyHA4nMDCQLv74449KbIyCvX37dvny5XSxb9++mBgDAAXo27evp6fnvXv3KIqKi4u7\nevWqj4+PshsFAKqlZV7THTt2jP/BZcuWnThxQuFtaSkwHgYeOCWULikpKSkp6cCBA0ePHnV0dFR2\nc3BKAAAAAAAAAAAAKBpD2Q0AAIAWLSws7OnTp9ztAQMG9O/fX7ntAQBoCdasWUNv//LLLxwOR4mN\nAQAAAACVkpKSMmTIEPpSHQAAAAAAAAAAAFoOZCcFAACl4XA4W7dupYvff/+9EhsD4ps6daqTkxN3\nW09PT7mNAQAJeHp69uzZ89mzZxRFpaWlhYWFTZkyRdmNkpdBgwadOnVKSIW8vLx169bRxV69ev3w\nww9C6uvr68uscQAAAAAU1b59+0aHK7t3705JSaGLwcHBbdu25anTrl078d/o33//Ja/gOBxOaWnp\nx48f4+LiIiMj6+rq6KcqKiomTZr06NEjKysr8fcPAAAAAAAAAAAA6g7hpAAAoDTXrl178eIFd9vW\n1tbb21u57QEx9ejRo0ePHspuBQBIZeHChStWrOBu7927txmHk3bo0KFDhw5CKmRlZZHhpG3btp02\nbZrcmwUAAADw/zE1NW10+HHu3DkynHTUqFHdunWT5o0GDBhgaGjI/3hAQMCnT5+WLl169+5d+sHP\nnz8HBwfv3r1bmncEAAAAAAAAAAAA9YLF7gEAQGn27dtHb8+bN09TU1OJjQEAaFFmzJhhYGDA3U5K\nSoqPj1duewAAAABAiezs7MLDw8eMGUM+ePTo0eLiYmU1CQAAAAAAAAAAABQP4aQAAKAcmZmZMTEx\ndHHWrFlKbAwAQEtjbGzs4+NDFw8ePKjExgAAAACA0jEYjIMHD9J3HFEUVVtbe+/ePSU2CQAAAAAA\nAAAAABQMi92DWqqurn7y5El2dnZlZaWZmVm7du3c3NykzGuYn5//8uXLgoKC4uJiExMTS0tLZ2dn\nCwsLWbVZHoqLix8/fvzp0ycNDQ1ra+vOnTt37dpVHm9UWlr69OnTDx8+VFVVGRsbd+rUqWfPnq1a\ntRJ/D+Xl5ampqZ8/f2axWHp6epaWlh06dJC+tZmZmdnZ2Xl5eZqamnZ2dkwm08zMTMp9CsHhcLKy\nsjIyMlgslpaWVps2bXr16mVvby/my+vr67Ozs1+9elVSUlJRUWFkZGRubt6mTRtnZ2cdHR2JW/Xp\n06dHjx6Vlpba29sPGDBAX1+ffPbly5epqalfvnyxsbEZPHhwo6vaKcuZM2fobRcXl06dOslqzxwO\nJy0tLTMz88uXL2ZmZjY2Nq6uruSUGKiyt2/fPnv2rLCwkPsp69OnT9u2bZXdqEZUV1enpaV9/Pix\nrKzs69evBgYGpqamnTp16tixY5O6R4VRrwazWKysrKycnJyysrKGhgZzc3MLC4uOHTva2dnJ6R2l\n/KYrKytLSUnJzc0tLS01NTV1cHBwcXHR0NCQU2tlZeLEiRcvXuRuR0RElJaWmpiYKLdJzZLMuzU2\nm52ampqfn19QUMBmsy0tLe3s7Hr27CmrU05d+mF5Y7PZ6enp+fn5LBarrKzM2NjY2tq6V69eEo82\n5TQepsnjEkmRVPaKo9mQ/ghT6nnVrDAyOcJcMu+HP378mJGRUVxcXFZWpq2tbWhoaGtr26lTp5bW\nvaOXEEebNm0mT558+vRp+pHY2NgpU6YosUkKIPMP3YsXL96/f19YWFhdXW1hYWFlZeXi4iLDH2TU\nZbTW0NCQlZX18uXLsrKyiooKPT09IyOj9u3bd+nSBdcdAAAAAAAAAAAqC+GkIBVfX99Pnz7xPPj6\n9Wt6OyYmZsCAAYJePmjQoB07djTpHT98+BAUFHTp0qXKykrycTMzs8WLF69bt05PT69JOywtLT1w\n4EBERMTTp085HA75FIPBcHd3X7Ro0axZs5QYEXLu3Ln9+/dzt3V0dLhpIbKzswMDAyMiIurr68nK\njo6O8+fP/89//tPUmeNZs2a9f/+euz1x4sQ1a9ZwtxMTE4ODg2/dusXzRgYGBpMnT167dm3nzp2F\n7zk0NPT48eOxsbF1dXU8T7Vv337cuHE//PBDU3/1rq+vDwkJOXbs2MuXL8nHNTU1vb29f/311+7d\nu1MUNWPGjNraWu5TCxcuHDt2rMg937lzZ/PmzXQxPDzc3Nycoqiqqqr9+/f/9ddfHz9+5HmJi4vL\nkiVLhCzU/vjx42vXrkVHRyclJdHtIRkaGg4dOnT69OlTp04VfqZFRETQH5lx48atWrVqzZo1R48e\npf865ubm27dvnzNnDkVRhYWFixcvvnnzJv1yAwODTZs2LV++XORxUICGhoYLFy7QxYkTJ0qwkxEj\nRlRXV3O3ly1bNnv2bIqiDh8+vGvXLp6/lL6+/pgxY9avX+/o6ChytzExMVu2bKGLYWFhwmd9Hj9+\n/NNPP9HF48eP29ra8tS5efPmr7/+yvMgTz+2YMECIT3YiRMnunTpIrLxMnft2rVt27YJqWBpaXn5\n8uUm7fP+/fvkEbt586ahoSGHwzl37tzu3bszMjLIyhoaGv369du+fbu7u3uT3kVOGhoaLl26dOLE\niZiYGJ6OkUtHR4fJZI4YMcLX17djx46C9kN+gXbt2vX48ePit2HlypWJiYncbRMTk8jISAZDYL55\nWTVYAb58+RIZGRkVFRUdHZ2Tk9None7du48aNSogIECCuFI5fdOlpaXt2LHj2rVrNTU15OO2trYr\nVqzgfiOHhYXRAfQGBgbk9DxXfX29t7d3VVUVtzh+/Ph169aJ+f8qKCiYPHkyPYahO0NxjBo1Sk9P\nj9uR1tTUhIWFLViwQMzXgkjy6NYePHhw9OjRO3fulJSU8DxlZWU1duzYdevWiXOji1r3w/LG4XDC\nw8PPnz9///79L1++8Ffo0aPH1KlT586dK/4IVobj4Tlz5mRnZ3O3fX19ueM6KS+RFHZNp15XHOpI\nfkdYJlfNch0Py2MAz0+GR1gx/fDbt28PHTp08eLFvLy8RivY2toOHjx4woQJ3t7e0tziKBlFXiKh\nl2iSAQMGkONVnvOH5w8XHBw8cOBAMfeclpa2dOlSurhixYrp06cL2jOXXK+aZf6hy8nJ2b17d0RE\nBP9vRzo6OoMGDVqwYIGYsbnqPlpLSEg4fPhwREQEz1+QS0NDw2wvoB8AACAASURBVNHRcejQoVOn\nTu3Xr5/imwcAAAAAAAAAAEIgnBSkkp6eTk9nNurLly9PnjwR9Kw4Ezaky5cvL1mypLy8nP+p4uLi\n4ODga9eu3bhxQ/yMQYcPH96yZUtRUVGjzzY0NCQkJCQkJBw8ePD48eMi59jk5PPnz/Qx1NXVpSgq\nMjLS39+/tLSUv3JmZubatWsvXLhw8uTJJuV6zMjIoEMze/fuTVEUm83+6aef9u3b12j9ysrK06dP\nnz9/PjMzU1BMz6tXrxYvXvzo0SNBb/r+/fv9+/efOHEiMDBwxYoVYjb11atXc+fOTUlJ4X+KzWZH\nRkbevn376NGjU6ZMuXHjxtevX7lPeXp6irPzkpIS8ozlTjU9e/ZsxowZ7969a/QlqampAQEBKSkp\nv//+O89TDx8+XLBggaAX0ioqKiIjIyMjI/fv379nzx7u8W9UUVER3TwXF5e5c+f++++/ZAUWi7Vk\nyZJWrVqNHj16+PDhr169Ip+trKxct26dtrb2smXLhDdJARITE3Nzc+nisGHDJNhJSkoKPTORn59f\nVlbm7+8fERHBX7OqqurSpUvh4eGbNm1atWqV8N0WFhbGxMTQxUYj8EglJSVkfZ6QMq7i4mIhnSHX\n8+fPhTxLx5kpGIvFEt7ypvbkFN/RqK+vLy8v9/Pzu337Nn9lDoeTkJDg6em5f//+hQsXNvW9ZOvN\nmzcLFy6kQzkbVVtbGx8fHx8f/+uvv964cWPIkCGNVnNycgoPD+duP3nyZMOGDWJOfBYWFh49epSe\nCP/222+FxJLKsMHy9u233164cKHRmHvS8+fPnz9/fujQoZUrV/7444/a2triv4U8vul27ty5devW\nRpudk5Ozdu3ayMjI0NDQ7Ozs69evcx9vNA2PlpaWjY0NnSg0Nzd3zZo1Qv6ypLCwsOTkZLrYpClk\nfX39/v37R0VFcYvh4eEIJ5UVmXdrb9++Xb169bVr1wRV+Pz589GjR8+ePbthw4bVq1cL35v69sPy\nFhMTs27duqdPnwqpk56enp6evmPHjmXLlgUFBQnfoczHw5mZmZmZmdxtDw8PShaXSAq7plOjKw41\nJY8jTMnuqlmu42F5DOD5yfAIK6Af3rt37y+//CL8v5aTk3Pu3Llz584NGjTo1q1bYu5ZVhRziYRe\nQgLW1tZkkefj7+HhkZWVRV+J//XXX+KHk546dYr+o2tqavK8UMFXzTL/0P32229BQUGC2lBbW3v3\n7t27d+8eOHDg0KFDIn+yU9/RWmVl5YoVK/7++28hdTgcTkZGRkZGRkhIyE8//RQYGKiw5gEAAAAA\nAAAAgEhizVIDqIJr167NmTOn0YlSWlpamq+vrzh7q6+vX7p06YoVKwTNipGSkpJGjBiRlpYmblvl\n6dGjRzNnzmw0lpSWnJw8evRo/iRDTbJs2TJBs2K0uro6Ol6TR3p6+ogRI4TM2dAqKip+/PFHOrOL\ncB8+fPD29m40lpT29evXBQsWJCQkiLNDkVJTU0eNGiUyJLTRM/Pt27ciX0hKTEwcOXJkfHy8OJWv\nXbvGE0vKxeFw1q9fv2HDBp5YUtrGjRsbTbWlYGTaVENDwz59+ki/z4ULFzYaS0qrra0NDAwUnmsT\nFK+urm7ixImNzorROBzOd999x03PrCxv374dOXKk8NBMHoJ6SIqi5s+fTwYL8qerFOT8+fNkUqV5\n8+YJqinbBstbXFycyFhSWnV1dVBQ0Lx580QGiwgn5TfdL7/8smnTJuHNjo6OFvI3Is2YMYPezs/P\nj46OFudVFEXRQagURTGZzKamMSYDiB88eCBmPA0IJ/Nu7fHjx0OGDBESS0qrrq7euHHjypUredIH\nCqcu/bC8HTlyZMyYMcJjSWk1NTXkp69RchoPk2R7iaR4qnnF0ZxIeYTV96pZYaQ8wmQd2fbDgYGB\n69evF/9rXYmDQLlCLyGZhoYGsshzj5ORkdHUqVPpYnh4uPBfqGh1dXXkEiWjRo2ysbGRrqWSk+2H\njsPhrFy5MjAwUJx41ri4OC8vL+FxsfzUZbRWU1MzefJk4bGk/C+RX3sAAAAAAAAAAEACyE4KUpk4\ncWJBQQHPg1FRUXTSQTs7u6FDhwp6ea9evcR8o6KiIn9/fzabTVFUx44dfXx82rVrx+FwsrOzw8PD\nyRyHsbGxly5dIn/abtS8efPCwsLIR7p16+bj4+Pg4GBkZFRSUvL06dOIiIj8/Hzus58/f54wYUJS\nUpL4qU/lgc1m09Ezenp6EyZM8PDwsLCwKCoqevDgQWRkJD0J9OnTp0mTJsXHxzcpcxvt+PHjZGyT\nkZGRi4uLpaWlpqZmUVFRSkqK8HhEFos1duxY8tzQ1tb28vIaPny4tbV1RUVFVlbWpUuXPnz4QFfY\nv3+/lZWV8GRatbW1EydOJFdA1tTUHD58uJeXl42NTVlZ2ZMnTy5evFhaWlpXV7d06VKeKRAJ1NTU\n+Pn5kVMjDg4O7dq1a926dUVFxfv37zMyMsQP1+jYsSOTyezZs6e5ubmpqWltbe3nz59TUlKuXr1K\nH8/KysqJEyfev39f5JrsBQUF2traq1evHjBgQHFx8f79++mgsZycnL/++ouiKG9v77lz5xoaGl6/\nfv3AgQPcplZWVl69etXPz6+pR0O27ty5Q2+7u7traUn7fXTixIk3b95wtx0dHadOndqpU6eGhobX\nr19fvHiRDK7dunVr165dp02bJuU7NknHjh35l58uKiq6ceMGXfTx8WndurWgPSir8+nUqRN/y589\neybDWIEdO3Zwo6h1dXVHjBjh5uZmampaUlISGxsbFRVFf8Q4HM7q1asfP34sZspGmVuyZAn5dWNi\nYjJx4kQ3Nzd7e3s9Pb2ysrLCwsKnT5/Gx8enp6eL3Fu7du2GDx9OTweePXv2559/Fue/Rq+ZTlGU\ni4uLkHzGsm2wIhkYGLi6ujKZzPbt25uZmenq6paVlb169erBgwdkdOzly5cDAgIOHTok2btI+U13\n7tw5nsWdbW1tp02b5ujoqK+v/+HDh3///Zfb2hs3bohzg4eXlxf3C51bvHjxopARFO3jx48PHz6k\nixJEjJFJoaqrq2NiYry8vJq6E+Ah224tMTFxzJgx5Dqh3DTkAwcOtLa2ZrPZHz9+vHv37v379+k9\nHzx40MbGRvyYGHXph+Vq9+7d5JKyFEVpa2t7eHh4enra2NgYGxuXlJTk5uZGR0cnJCSIE/4up/Ew\nSVaXSAq7puOhmlcczYmUR5iS9VWz+o6HBZH+CNNk2w8/ePDgt99+Ix/p27evt7d3165duYe3uLg4\nOzs7MTHxwYMHwuPR5UrepwR6CYmR3yAURVlYWPBUWLBgwcmTJ7nb1dXVoaGh/v7+Ind7/fr1wsJC\nujh//nyeCorsJWT7oQsODj548CD5SPv27adOndqtWzcDA4O8vLy7d+/evn2bvhcuLy/Px8cnOTlZ\nyP9Frg2Wn507d5L3xWlqanp7ew8ePLhjx45GRkbV1dUlJSXp6emPHj1KSEjgjmEAAAAAAAAAAEDV\nIJwUpNJokr/x48fTPz27uroeOXJE+jcKDQ1ls9k6Ojq//fbbokWLNDQ0yDYsX76cvPH98OHDwsNJ\nQ0JCyFkxY2Pjffv2+fr6krtdsGDBjh07fv31VzrXSF5e3vfff3/q1Cnp/zsSq6+vf//+PUVRrq6u\nf//99zfffEM/tXjx4ufPn8+YMYNefS89Pf3AgQPLly9v6rtUVlZu3LiRu+3m5rZx48ahQ4eSYakN\nDQ3x8fH79u2LjIxsdA9r1679/PkzXXRwcDh16pSzszNZ55dfftm6dWtwcDD9yLZt2yZMmCAkrdqe\nPXvI/A329vZnzpzp27cv/cj8+fN/+umnOXPmxMTE0MdBGiEhIa9fv6YoSk9Pb8WKFYsWLeJZo5DF\nYp08eZJ/mXuSnZ3dnDlzfH19u3Xr1miFqqqqTZs2hYSEcIvl5eUrV64kk3cKEhQU9N1333G3x4wZ\n4+rq+vHjR/rZYcOG0ef5iBEjamtruTGmFEXFxsYqN5z069evz549o4s854ZkuLGkDAZj+/bt//3v\nf8mP84YNG4KCgsj+6scff/T29jY0NJT+fcXk7u7OvwL1o0ePyImxjRs39uzZU2FNEpOHhwd3LV3S\nzz//LMNwUm444MCBA48cOdKhQwfyqfj4+KlTp5aUlHCLmZmZsbGxgwcPltVbiy86OppcEXXEiBGn\nTp3in/zjzok+f/78xIkT9CdOkPnz59PhpDk5OXfu3Bk5cqTwl6SlpaWmpvK8ncIaLG8MBsPHx8fX\n19fHx6dVq1aN1klISJg/fz4963/q1Ck/Pz8JTgkpv+m+fPmybt068pGAgIBt27bp6urSj6xcufLM\nmTMBAQG1tbXiBOxqaWlNmTKFjo69cuXKvn37RN4TEhoaSk8ea2pqirydhp+zs7OGhga9k8TERIST\nSk+G3VpZWdm8efPIWNJx48bt3r2bZ0CyatWqx48fz5kzhztQpChq69at3t7ePXr0UHCD1VRsbOym\nTZvIRyZMmLBjxw6eo0FR1IYNGz5//rxr1y6R1zhyGg+TZHWJpLBrOpLKXnE0G9IfYZlfNavveLhR\n0h9hkmz7YfJDraure/z48UmTJjVas7q6OjIyUvj1rPzI+5RALyGxBw8ekEVbW1ueCu7u7k5OThkZ\nGdzi6dOnxQknJb+VrKysvL29+XersF5Chh+6rKwsntvMNmzYsH79evKm2YCAgGfPns2dO5f+qSov\nL+/HH38U/9Y4BYzW5s6dS9/bRv7eKL6qqqq9e/fSxfbt24eFhQm6Wfrz588XLlxQVv8DAAAAAAAA\nAABCNMO8MtAscW9YP3HihL+/Pzl9RVGUvr7+4cOHyaQ4cXFx/Pl1aG/evCEzD7Vu3frevXszZszg\n2S13zzt27CDjRUJDQ8k4HmWxt7e/cuUK/2+73bt3v3LlCpmMISgoiIw/EFN4eDiLxaIoavXq1Q8e\nPPDy8uIJZ2EwGAMHDgwNDQ0NDTUwMOB5eWpq6tmzZ+mijY1NZGQkf7yglpbWzz//TB7empqazZs3\nC2pVcXHx//3f/9FFExOTiIgIMpaUy8rK6p9//hEUuNlUx48fpyjK3t7+4cOHmzdv5gndoCjK3Nz8\nhx9+ePLkydixY/lfbmVl9ccff2RkZGzatElIk/T19Xft2jV37lz6kejoaJHhsAwGg8zbYWBgMHHi\nRLLCwoULyeL06dPpbaVnInz27Bm5WrdMwkm5tmzZsnz5cp6PM4PBCAwM/O9//0s/kpubu3//flm9\nKUiJzWa7ublduXKFP2rHw8PjwIED5COXL19WXMsIZByAkZHR6dOnhSSS6d69e3Bw8PPnz4UHco0b\nN87S0pIuinO7ApkBq1WrVuTy6AposFxNnjw5OTn54sWLU6ZMERRLSlFU//79IyIiyAqSRcFK+U23\na9cuMrXSokWLdu3aRcaScs2ePXvPnj3it4r8gxYXFwtfy5IrNDSU3vb09LS2thb/7biMjIzatWtH\nF5OSkpq6B+Anw25t7dq17969o4uLFy++cOEC/4CEoig3N7eoqKg2bdpwi7W1tVu2bFF8g9XR169f\n58+fT+bH+uGHH86fP89/NLisrKx27twZFRUlqAIlt/EwDxleIimeal5xNCdSHuFmcNUsb1IeYR4y\n7IeLi4u5KQy5Vq5cKSiWlKIoPT29adOmxcTENL+ILvQSEvv06VN4eDj5CJnMnkbe2JaYmPjixQvh\nuy0qKrp+/Tpd9PPzk36JEmnI8EO3adMmeqUgiqJ++umnjRs38v/vevbsefXqVXK4furUKTokV5EN\nFmTdunU7/z/du3eXYA93796tqqqiiwcOHBCy8I6VldXy5cszMjL4U9ICAAAAAAAAAIByIZwU1Mak\nSZMEzYIwGIzvv/+eLjY0NKSkpAjaz969e8nfeY8dOyZ8VfHAwMCuXbvSRYkX1ZWh7du307ECPDp0\n6EBOhJSWlvJMA4iDG4H67bffbtmyhX++kDR27Fj+yBV6yTO6tfypLGgbN24k035ERkaSATqkixcv\nkr9K//jjj4ICNI2MjMjkItKorKw0NDS8ceMGeQ7wMzMzmzJlCv/jw4YN8/f319HREee9Nm/erKmp\nSRfJ9BuNsre3NzU1JR/h+bnfxcWFLJKHi05dpiw8iS2FH17xOTo6rly5UtCzv/zyi5WVFV0kVwwH\n5WIwGCEhIfr6+o0+y5Mc6MmTJ4pq1//Iysqitz08PHg+fY2ytLS0sbERUkFbW3vWrFl0MTIyks4o\n06j6+voLFy7QxQkTJgiJEJVHg+Vqy5YtDg4O4tTs2rUrGX9/8+ZNOrOm+KT5pmOz2WRqJUtLSyFf\nOgsXLuS/80GQfv36kdPDZKhoo16+fEkOeISEFwtHfkHIMPFwSyarbu3Tp0/kyebu7r57924hZ6yN\njQ2ZHOvq1atk2nIFNFhNnT17Nicnhy6OHTu20WydPHr37h0RESHoWTmNh/nJ6hJJ8VTziqM5kfII\nN4OrZnmT8gjzkGE//Pr1azI+fsyYMcLfmktdksKKD72EZGpra+fPn09+/Fu1ajVkyBD+mrNmzSJv\nphJ5a9z58+fJe0qFLLOgGLL60BUUFFy7do0uOjg4bNiwQVBlOzs7njEGz4mqgAbLFXlftIGBwdCh\nQ0W+RFdXV8zLQAAAAAAAAAAAUBiEk4LaCAgIEPIszwLB5JLoJBaLRc7KjxgxYvTo0cLfV0tLa8mS\nJXTxn3/+aWhoEN1cuenQocPkyZOFVPD39ydzn5w/f16Cd7GzswsKCpLghQ0NDWS00zfffCN84V1N\nTc1Vq1bRxbq6OkHRM+fOnaO3jYyMyD8Kv1GjRkmWSoHfzz//3LFjR5nsSjgbGxsyAFRkAlF7e3ue\nR9q2bSukQps2behw1aKiInKKUfHIRGsURckqgu37778XMpWrp6e3ePFiuvjmzZvExESZvC9IafDg\nwcIz1I4aNYreFtS9y1txcTG9LTK/lPgWLFhAb3/9+pXsP/nduHGDTCwnfApWTg1WEeSXfllZmZgB\nczwk/qaLiorKz8+ni8uWLRN+hJcvXy7+zn19fentyMjI6upqIZUvXrxIb+vp6Y0fP178NyKR0RW5\nubm1tbWS7QdosurWDhw4UF9fTxeDg4NF5vGaNm0afe8Em80WMzeVWvTD8kPm5NPV1aXX7BZJT0+v\n0cflNx7mJ5NLJGVRwSuOZkbiI9wMrpoVQ+IjzE+G/TA5CKQoytDQUMq2qSP0EpLJyMgYMWJEXFwc\n+eCSJUsavTPNzMxswoQJdPHcuXPkoIUf2asMGDCAjH1UCll96C5evEj+x1etWsVgCPuxfcaMGeTK\nAOfOnROzt1SL0Ro3ZzOXvr6+8FB7AAAAAAAAAABQWQgnBfVgZmbm4eEhpELr1q3JhB9knAfp9u3b\nZGQGGVsmBDkRW1paKnINL7kaM2aM8B9k9fX1ydQRCQkJEqRtW7x4sWThR1lZWeTPx2PHjhX+SzpF\nUT4+PmRWzoSEBP461dXVZHIFLy8vQfP3NDGzsAhnYmJCBnvJGxm3mpubK7wyf1ZCco5HT0+PZ7Vo\nDQ0NY2Nj7jaHw/ny5YtUbZXOhw8f6G1NTU0JVmfmx2AwvL29hdfhqUCuAglK5OPjI7wCmTqxvLyc\nmwtKwcg0MDJcv7Vr167k2pHkWvb8yJS633zzTaNZgmhyarCK6NSpE1kU2WE2SuJvutjYWLJIzqM3\nin/1WyHIDKMVFRVkriN+ZKCDj4+PkZGRmO/Cg4zp53A4koXnAklW3dqVK1fobRcXF3d3d5Fvra2t\nTSaCevTokciXUGrSD8vJ27dvybH9+PHjpb/LRU7jYX6yukRSFlW74mh+JD7CzeCqWTEkPsL8ZNgP\n8zTp2bNnUrZNHaGXECIiIiKM8M8//5w8eXLLli0jR450c3N7/PgxWdnW1nbNmjWCdrVw4UJ6Oz8/\n/9atW4JqpqenkxmyFfkziyCy+tCRp4qmpqbIX6IYDMa4cePoYlFR0atXr0Q3V01Ga2T/U1hY+OnT\nJ8W3AQAAAAAAAAAApIdwUlAPzs7OIm9qNzc3p7crKioarUNGj+no6Hh5eYnz7p07dyZDNJKTk8V5\nlZwMGDCgSXXKy8vfvn3b1HeReMFcnjU0Bw0aJPIlFhYWTk5OgvbAlZqaSuZ7ED5xztWvXz+RdUQa\nP368oKXE5IGMBy0rKxNemX/mkgyxbTSoiPy/VFVVSdJEGSHn9oyNjUXO7YnDwcHBwsJCeB1XV9fm\nHWOnpnr16iW8Atm9UxRVXl4uz+Y0jlyA7/Xr1/v375fVnsnJ1CdPngjKTMxisa5fv04X582bJ/xr\nUX4NVgUmJiZksbS0VIKdSPxN9/TpU3q7devWIpNhGxsbk19zwjk4OLi6utLFS5cuCaqZkpJCriY5\nc+ZMMd+CH0/GqaKiIol3BVwy6dY+f/785s0buij+fTLkKZSUlCTOS9SiH5YTnhxswtPXiUlO42F+\nsrpEUhZVu+JofiQ+ws3gqlkxJD7C/GTYD5MhZRRFBQUFtcB129FLCLFw4UI/wuzZs5cuXRoUFBQT\nE8NzK7KpqemVK1d4zj3S4MGDybu8hNwaRz5lbGw8adIk6f4TMiCrDx15qvTo0cPMzEzkWw8ePFjQ\nHoRQi9Eaz7L169atE56zFgAAAAAAAAAAVBPCSUE9kMuwCkJG1wkKlSNTNHXp0kVkhkuapaUlva3c\nvD7irAjGk7ZN5LLpPKytrcm1t5okMzOTLPJMZQlC/qfevHnz9etXngo8C3Xx/EItcp8S69u3r/Q7\n4SovLw8NDd2wYcP48ePd3d27d+/erl07u/9Frv4mfIFjiqL4l7vV0dGhtxvNhEe+RLlrGZN5MsT/\nGAonzl9cQ0OD/HRkZGTI5K1BSiJ7eJ7gaZGfDnkgU8hQFLVmzZoxY8aEhoZKn+h30qRJZDDfqVOn\nGq124cIF+mOrqak5e/Zs4buVX4MV4OnTp/v27fP39x8yZEivXr06d+7M01symUyyvgSnhKy+6cT8\nmuvcubP4+ydjU27cuCHo7gJypXtzc3MxY30axdMPK/d+g+ZBJt0aT2JRFxcXMd+dXuyeEnvUqhb9\nsJzwpGHr06eP9PuU03iYn6wukZRCBa84mhlpjnAzuGpWAGmOMD8Z9sOWlpZkNutXr1716tVr06ZN\nz549k2DdEjWFXkJ6/fv3j4+PF35PlIaGxvz58+ni1atXG70rqb6+/sKFC3Rx+vTpirxrVxCZfOhq\namrI+7e7du0qzlvzVBPzdwm1GK0NGzaM/OOGhYUxmcyQkBCsfgAAAAAAAAAAoF54o5EAVBO9SLeY\nGhoaGn08Ly+P3s7JyRk2bBhFUdw5FfJf/gfJF5aUlDSpMbIlzpSVvb09WSQzQYpD/CRq/HgOjpgT\nbO3bt6e3ueuwk5EQFEXxxD+JM3cu/UKlFEX16NFD+p18+PBh8+bNV65cadKv+SJTOPCHk5I5Psl1\n+hp9kM1mi98YmSNn5sgoWGmIebLZ29unpaVxt5v60QA5aeoK3YJ6eLkaMWLEoEGDYmJi6Efu3bt3\n7949TU3Nnj17MpnMPn369OzZ08nJif+zKZyent6MGTMOHjzILZ4/f37btm38EeHkSvcjR44U2Q3K\nr8Hyw+FwTp06tXfv3qYujytBhybNNx35lSTO9xHVxK+kqVOnrl+/nnue19TURERE+Pn58dThcDhk\n4tIpU6Y0eheBmFq1akUWm1OkoLLIpFsjB58URW3fvv2PP/6gKIrD4fCMWiliyModR9GP19bWVlVV\niQzaUIt+WE4+f/5MbxsbG4v5oRZOTuNhfrK6RFIKFbziaGakOcLN4KpZAaQ5wvxk2w9v3rx57Nix\ndJ3i4uKdO3fu3LmzTZs27u7uTCazV69erq6uZPhvM4NeQmIaGhqenp7+/v4TJkwQZxWR2bNn//LL\nL9yfL+rq6s6fP//dd9/x1Ll58yb5bUtGoCqRTD50JSUl5HhMgjON4vu9SxC1GK21bt36+++/DwoK\noh/JyspavXr16tWrO3Xq5ObmxmQyXV1de/bsyb/eDgAAAAAAAAAAqA5VCSAAEE5WwS7kpMKXL18S\nEhIk2InIVcjlSpyfXHnqNHWJq9atWzetTQRyxWFNTU2eCBVBDA0NyWJZWRnPtA3PQsYSHATJSHMo\nuI4dO7Z69WoJQnPk/dO/cjPTkGFPdXV1MtmnmH9xMqRGuZ9loKlOOKNwp0+fHjduHB2OzMVms588\nefLkyRNu0cjIaMiQIfPmzfPx8RG5ADFtwYIFdDhpYWHh9evXx48fT1bIyMggF1ifN2+echssD4WF\nhdOnT3/48KEEr5Wgw5S4e2ez2WR+ZTF7niZ9JdnY2AwZMuTevXvc4sWLF/nDSRMSEsgcP1IutsuT\nr1pWUf4tmUy6NZ5QGJ7PsvhKS0tFhpOqSz8sD8XFxfQ2mStaGnIaD/NT6z+cCl5xNDPSHOFmcNWs\nANJfKpJk+3H29PTctWvX6tWrecZIhYWFkZGRkZGR3KKDg8PEiRP9/f1lEkmvUtBLCDF16lTyfNPQ\n0DA0NDQ2Nm7Tpk3Pnj179+7dpHsVrK2tx4wZEx4ezi2ePn2aP5yUXIbF2dlZJonApSeTDx1PR8dz\nCgmip6fHYDDojyfP712CqMuX/oYNG16/fk0upMD15s2bN2/enD9/nqIoLS0tJpM5c+bM2bNnq0Kq\nWgAAAAAAAAAA4KEeP0UByERlZaXIjI/iUGJaR21tbXF+QeZZjrCp4aRNzXlAIoNsxP9RmKcmf4N5\nwjF1dXVF7pPBYGhpaUn5FxdzMkCQI0eOLF++nOdBe3v7Hj162NraGhgY8Pw179y58+zZM2neUV2Q\nf/GamhqZ7FPMVTjJahUVFRwOR7khdKBGrKys7t27FxwcHBISImi94PLycu4kff/+/U+ePMmTK1oQ\nFxcXJpOZlJTELZ4+fZonnPT06dP0tqWl5ZgxY5TbYJkrYyoH9QAAIABJREFULi4ePXo0z7KkrVq1\ncnZ27tKli4mJCc/XRFVV1YEDB6R5R4m/6Xi+j8SMThDna4s0Y8YMOpw0KiqKxWKZm5uTFcgJ2vbt\n2/fr169J++fB859CriAVIWZsgUjKzUeu+shAEGnGwCQ5jYebGRW84mhmJD7CzeCqWTFk1WPIybJl\ny1xcXNavX//48WNBdV68eLFjx47ff//9119/DQgIUGTz5A29hBAHDhyQ8ocOHgsWLKDDSVNTU1NS\nUnr16kU/W1xcfPXqVbqoIqlJZaWiooIsNulko1/LsxN1p6mpefLkyWHDhm3ZsiUnJ6fROvX19Q8f\nPnz48OGuXbuOHDkyZMgQBTcSAAAAAAAAAACEQzgptCB6enoaGhp0UsZu3bo5OztLsB8mkynTdjVB\nXV2dONFv5EriVNOjWBpdJ11MZKweTzOE4Ako5I8L5JntECfZZ319vfTzoNIcirdv365du5Z8ZObM\nmStXrhRy1pWUlLSQcFIyl4+sZunEPN/Iajo6OoglhSYxMDD49ddf16xZ8++//96+fTs+Pl7QDFlC\nQsLQoUOjo6PFzPY0f/58Opz0xo0bBQUF9PKjbDb7woULdE0/Pz/xlzWXX4NlKzAwkIwltbe3DwwM\nnDx5sqCp7tzcXCnDSSXu3g0MDMixhKA4XR5iVqNNnDhxxYoV3C/H+vr6y5cv+/v708+y2ezLly/T\nRV9fXym7Mp45bBMTE2n2BrLCE5EwefJkcdacFbkf4EEOOyVIJy9ynzIcDzczKnjF0cxIfISbwVWz\nYkhzDivGgAEDoqOjnzx5cvny5djY2CdPnvDkI+eqqqpavXp1SUlJYGCg4hspJ+glFGnkyJG2trb0\nVcaZM2fIcNILFy7QJ56urq6UOfVVDc9JIv7JRtYU8/409TJv3jw/P787d+5cvXo1Li7uxYsXja6Q\n8/Hjx/Hjx1+6dMnLy0vxjQQAAAAAAAAAAEEQTgotCIPBMDEx+fLlC7c4bNiw3bt3K7dJEqiqqhKZ\nNownbKVJS5VJiczRUltbW19fL046VTJ3CNVYohee/4I4AYhKTyUSFBRETkcdOXJk9uzZwl8iqzxk\nqs/Ozo7erq2tLSoqsrCwkHKfYkZrkZEisgqZkmChbVBrRkZGc+bMmTNnDkVRubm5iYmJcXFx165d\ny87OJqvl5ub+5z//uXLlijj7nD59+rp167idYX19/fnz5+ncxrdu3crPz6drSpDRRx4NlqG3b9+e\nOHGCLvbu3TsiIsLMzEzIS5S4fq6GhoaRkRHdADGTCfF8zYlkbGw8ZsyYsLAwbvHixYtkOOm9e/cK\nCgroovSz8jxBxspKUgs8eJZR/v3333mS1IJMkL2NrPoWOY2HgYYjLFfN46pZpJYzgO/du3fv3r0p\niqqtrU1NTY2Pj79//35UVBRP3FtQUJCXl5e7u7tyWilr6CUUicFgzJs3LygoiFs8f/58UFCQjo4O\nt0iudD9+/Hjhg3y1w/NTlZhj/tra2rq6OkE7aTa0tLRGjx49evRoiqLKysqSk5Pj4uJu3bqVlJRE\nhpbW1tYuWrQoIyMDnzgAAAAAAAAAANUhSYYbAPVFTsMXFxcrsSUSI4OKBCGjTCjFphnj+R08Ly9P\nnFfx/Kf4G0xn6eN69+6dyH2+f/9enLeWEzabfe3aNbo4c+ZMkbGklNqekxJo3749WczNzZV+n+J8\nNCiK+vz5M70taNqmqXn+lB67DEpkY2MzceLEnTt3ZmRkXL9+3c3NjXz21q1baWlp4uzHyMho6tSp\ndPHUqVP09pkzZ+htDw+Prl27qkKDZSgiIoKeUGQwGCdOnBA5zazc3rJNmzb0tjjfR5REX0m+vr70\ndlxcHNlPkivd9+zZs3v37k3dOQ9y52ZmZpjKVRE8N1qUlJQoqyXNG3l1wGKx6BA6achpPAw0HGF5\nU8erZgzgRdLR0WEymcuXLw8LC3vz5s2GDRvInIgcDmfv3r1KbJ5soZdQsHnz5tE51FksFr26fWZm\nZnJyMl1twYIFSmicPMnkTGuu4aQkY2NjT0/PwMDA6OjolJQUntvhCgsLT58+ray2AQAAAAAAAAAA\nP4STQstCLrmVkZGhxJZI7NWrV02t06lTJ7k1h1fnzp3J4suXL8V5VVZWFr1tZWXFH8ji4uIiqL4g\n4hwo+Xn16hU588pNCiiS4qO4lIUn+OnNmzfS7/P169dNrcZzutJ0dXXJosgV6woLC8V5a2j2hg4d\nGhUVNWXKFPLBqKgoMV9OTq9mZGRwZ15LSkro6VhKotSkQkjZYFlJTEykt/v169elSxeRL3n27Jk8\nWyRCz5496e2XL1+Kk95MzG9D0ujRo+nklA0NDZcuXeJuf/36NTw8nK4mkwVDyTy1Dg4O0u8QZIIc\ntVIUlZ6erqyWNG/kIJPD4Tx9+lT6fcppPAw0BR9hMqlhC0lpqY5XzRjAN4m5ufnGjRtv3rxJLtUd\nFRXVbM5w9MMK1q5du+HDh9NFOjSQjBHs0KHD0KFDFdwweTM2NraysqKLEpxplODfJZqrrl27Hj9+\n/LfffiMfvHv3rrLaAwAAAAAAAAAA/BBOCrKnra1Nb9fX1yuxJfwGDBhAb2dmZrJYLCU2RjJJSUki\n65AT4Zqamj169JBni/4HT+jD48ePRb6kpqaGjJDg2QNXt27d9PX16aI40U4PHjwQWUd+eBLEijM9\n8OLFi6KiIrm1SLX07t2bTCAkk1nqjIwMciH7Rr1//54M8yVjwkiGhoZkUeTStxK3n+wtKdXrMEEC\nWlpa+/fvJ1M9vX37VszXuru7Ozk50UXu5OvFixfpeAhjY2Oe0E/pSdNgWSE7TDEnU+Pi4uTWHNHI\n76mqqqpHjx4Jr5+bmytBOKmOjs6kSZPoIh1OevPmzdLSUu42g8Egk9pK5uvXr2Tz+vTpI+UOQVYc\nHBzIBKWxsbFKbEwzRl4dUBR1/fp16fcpp/GwgqnyNZ2CjzCZN07ksLB5UORVs6zGwwobwDcnffv2\nDQgIoItlZWWq8AuJTE6J5tEPqxfy1rhbt27l5eWx2ewLFy7QD86bN6+pWYS5VPyqmfxVIS0tTWQs\nO8V3QrbMk+0///lP37596aLiL0IBAAAAAAAAAEAIhJOC7JETOTJZL1KGhg0bRm83NDQcP35ciY2R\nzM2bN4VX4HA4d+7coYs9evQg44TkzcXFRUdHhy6SSfUEuXv3blVVFV1sNJBFU1OT/NvFxMQITydT\nV1cnk2gAifHENdLrOAtx4sQJebVG9ZiampJJc2WSca26ulpkDDHPx0dQ1BTPQtsiM91KnM2RJ+EN\nHSIGas3U1LR9+/Z0UZwJRRqZfJQbSEqudD99+nQysF5WpGkwV3x8/LX/1aRVuWtqauhtcXpLFosV\nGRnZ1EbKkJeXF1m8fPmy8PpkMtEmITOPPn78mDvJSq50P2jQIDs7O8l2Tnv+/Dk5K+/m5iblDimp\nTwmgkUm8zp07R46X1MuHDx+i/xeZE1e5XFxcyLDds2fPkp2SxPuUx3hYwVT5mk7BR7hNmzb09vv3\n71UtkkkeFHnVLKvxsMIG8M0Mz/11EowDZU4mp0Tz6IfVy9ixYy0tLbnbbDb73Llzt2/fphd/19TU\nFHPNFn4qftVMniqVlZX37t0T+RLyWkZHR8fZ2VkuLVN5ZP+jCp0PAAAAAAAAAADQEE4KskfOt714\n8UKllkvr1q0buQLX77///vnzZyW2RwJJSUnCE5SGh4fn5+fTRenzljVJq1atfHx86GJSUpLItG37\n9+8ni4Jy782aNYverqur27Vrl5B9/v3337m5uaKbKzfm5uZk8fnz58Lrf/r0SR2Dm6VBzlI/fPhQ\nJvs8dOiQ8ApHjx6lt01MTHhiwmidO3fW1NSki9HR0UL2ee/evXfv3jWhlQQyfoXCQsbNRUNDA5lu\nk55VFcesWbPopVpLSkr+7//+j+zw582bJ6tGkqRpMNeaNWum/C+RnR6J7DBfvHghsn5wcLBypxt7\n9epF5pE9evQo+bXLo76+ft++fZK90cCBA8lo0dDQ0IqKCvJmCZmsdB8fH09va2hoDBkyRPp9SnlK\nAI1MGldcXMyzKqgaOXv27Kj/dfjwYWU36v+lqam5ePFiushisbZu3SrlPuU3HlYkVb6mU/AR5ol3\nUW6GbMVQ5FWzrMbDChvANzN0tB+XBONAmZPJKdE8+mH1oq2t7efnRxdPnTpFrnTv5eVla2sr2Z5V\n/KqZ51T5888/hdePj48nFxQaO3asIu8AVynkNZQqdD4AAAAAAAAAAEBDOCnInouLC71dUlJy48YN\nJTaG3w8//EBvFxYWzpkzR/xUT/Hx8eRaXcqyYcMGNpvd6FPV1dW//vorXWQwGDKJNWmSuXPnksW1\na9fW1tYKqvzvv//ev3+fLrq5uTk6OjZa08fHh5x++PPPPwVllPnw4UNgYGCT2ixz3bp1I1dkO3Xq\nlJDKtbW13377bQtZOpM2atQoevvz58/ixJCJdOPGDSF5hs6ePZuamkoXJ0+eLGjaplWrVl26dKGL\n58+fr6ioaLRmTU3N2rVrJW0v1bp1a3t7e7oYGhoqTmpGUIobN24I6nh5XL9+nUzESH4nimRmZjZh\nwgS6uGPHDnrbycmJyWSKvyvFNFgmyNDMpKQk4TPEd+/eDQkJkX+jRPj222/p7aqqqkWLFglKVhcY\nGChxwIqGhsb06dPpYmhoaGRkJD1o0dXVnThxomR7JsXExNDbffr0wVSuSunXr1///v3p4o4dO8TJ\nr8ZVWlq6c+fOlja6kMzSpUvJIcHevXvFSYFcU1OzefNmQc/KaTysSCp+TafII8xkMvX09Ojizp07\nW8KATWFXzbIaDytsAK/60tPT379/L07NhoYG8i/l4OBAZvRUFlmdEs2gH1Y75Hr3WVlZ//77L13k\n+XM0iYpfNfNcpt2+fVvIKOLr16/r1q0jH5HmyKigmJgYMQef+fn55K83ir8IBQAAAAAAAAAAIRBO\nCrI3ePBgDQ0Nurh8+fLk5GQltofHsGHDZs6cSRdjYmKGDx+emZkp5CWVlZUXLlwYNmzY8OHDZZVG\nURoxMTHLly+vq6vjebympsbf35/8v8ydO1f6ZXCbauTIkeSP6YmJiQsXLmx09vHevXv+/v7kIzw/\nrJN0dHSCg4PpYn19va+v74kTJ3gmEpKTk0ePHs1isTQ1NcnzUMGMjIw8PDzoYlhYmKAsXEVFRdOm\nTRNnQbRmZujQoQYGBnSRnL2Txty5c588ecL/eExMzH//+1+6qKuru3r1aiH7GTNmDL39+fPnZcuW\n8ceKlZaWzpgxQ8rkKORCxklJSWvWrJF+jV2Qh6VLl/bo0eOPP/4Qnp0rLS3tu+++o4t6enojR45s\n0hstXLiQ3iZTwTV1olFhDZbe6NGj6W0OhzN//vzCwsJGa4aFhU2bNk0VMuQtWrSIXJUyKipq/Pjx\nnz59IuvU1tauX7+em5qUvMGgSch7QtLT08nvQW9vb1NTU8l2S2Oz2WQ4Kdn1gYr4/fff6Ti2hoYG\nX1/f3377TUhADEVR6enp69ev79at26ZNm4TXBC5LS0syIymbzZ45c2ZISIiQoPzo6OihQ4f+/fff\ngirIaTysSCp+TafII2xkZEQmn7t79+6yZctUbbVlmVPkVbOsxsMKG8CruISEBCcnp7lz50ZHRwsZ\nNbHZ7DVr1pCfa/KmJuWSySmhdv0wm83+0hie07i8vJy/jvjR3nLVpUuXgQMH0kX69DM3NyeTxUpA\nxa+af/zxR7K4cOHCRhMkV1ZWLliwgFx9gslkCloyRU0dPny4S5cu69evF37DcElJiZ+fX2VlJf2I\n6vQ/AAAAAAAAAABAUZSWshsAzVCHDh28vLxu3brFLebk5AwcOJDJZPbq1cvU1JRcga579+6+vr6K\nb+Eff/zx5MmTrKwsbjElJYXJZI4bN87b29vNza1NmzZ6enrFxcV5eXmPHz9++PDhzZs3yV85lYjB\nYOjq6lZXVx87duzJkycBAQEeHh4WFhZFRUUPHjz4448/yMVkW7duTWYqVWQj//zzTw8PD3ra459/\n/klJSVm2bNnw4cPbtm1bXl6elZV17ty5s2fPksGgU6ZMET7HMGXKlEuXLtEpLioqKpYtW7Zt2zYv\nLy8bG5uKiork5OTY2Fjus3Pnzj179qwSF0RetWrVgwcP6OKKFSuioqL8/f379OljampaWlr6+vXr\nyMjIw4cPc/MCGhgY9OvX7+7du8pqsILp6+tPmDDh7Nmz3GJ4ePjSpUul2aGhoWFFRQWLxfL09Pz2\n22+nTp3asWNHiqJev3597ty5Y8eOkUEhK1eu5D4ryKxZs/bs2UOfn5cuXXr+/PmSJUtcXV0NDAwK\nCgoePHhw/Phx7upsPj4+4qeL4+Hv708uAhgSEnL+/PnBgwfb2dnp6+uTNZcuXWptbS3Zu0gmLy+P\nzChDImN2KysrDxw40Gg1BwcHT09PuTROGd69e7d27dr169cPGTJk6NCh7u7unTp1srCw0NbWLi4u\nTktLu3z58smTJ8ngrdWrVxsZGTXpXQYPHtypU6c3b96QD2ppaUmQaloxDZbewIED3d3d6RVIMzIy\n+vbtu3LlSm9v7/bt21MUVVBQEBsbe/r0aTqBzfjx48PDwxXcTpKmpmZISMjIkSPpmex79+51797d\n09PT0dHR0NDw48eP165dKyoqoihKV1fXz8/v2LFjEryRs7Ozk5NTRkYGt0jOy8pkBBUXF8disbjb\nGhoais9oDiL16NFj9+7dy5Yt4xbZbHZgYOCBAwdmz549dOjQb775xszMrLq6msVivXjx4uHDh1FR\nUc07TEpOAgICYmNj6W+9+vr61atX//XXXzNmzPD09LS1tTU2Nv7y5Utubm5cXNzVq1fj4+MpihKy\nbq/8xsMKo+LXdAo+wuvWrQsLC6MDtk6ePHnhwoUePXrwfGnu3LmTTLmt7hR21Syr8bDCBvCqj81m\nh4aGhoaG2tjYjB071t3dvXfv3lZWVqampl+/fn3//n10dPThw4fJ7wsLC4vly5crsc0kmZwSatcP\np6en9+vXT2S1QYMG8T84Y8aM48ePy6FRTbZw4UL6NxnajBkzpEx8q8pXzRRF+fj4TJ48OSwsjFss\nLy/39vaeNWvWzJkzu3XrZmBgkJeXd+fOnYMHD2ZnZ9Ov0tbW/vPPPxmM5pbooaysbO/evXv37nV2\ndh41alTfvn2dnZ0tLCwMDAwqKipevnx58+bNgwcPkjcQDhkyZNiwYUpsMwAAAAAAAAAA8EA4KcjF\nnj17+vfvT65wlJSURN6CzzVu3DilhJMaGBhcu3Zt2rRpdEQUh8MJDw9XbmyKOLS1tYODg7nTPCkp\nKYsXLxZUU1dX98yZM23atFFg6/5/zs7OBw8eXLJkCR3A9+bNG+HJIJlM5h9//CFyz8ePHy8uLiYz\nPXz69Il/4qRTp07bt2+nQxWVwsvLy8/Pj0xbdeXKlStXrjRaWUNDIyQkhH/epXmbPXs2/TeKjo4u\nKiqysLCQeG8BAQGXLl168+ZNbW3t/v379+/fL6jmyJEjN2zYIHxvTk5Oc+bMOXXqFP1IRkZGozOs\nw4cP9/f3l3g2um/fvkuWLDl06BD9CIvFunz5Mn/NSZMmKXhi7O3bt+Q6p4J8+fJFULXZs2c3p3BS\nLjabHRUVRS7MJ4inp+eqVauaun8NDY358+dv3LiRfHDUqFESL0Eu7wbLxB9//DFs2DB6Udr8/Px1\n69YJygvl6uq6fft2pX9lu7m5/f33376+vnSMQn19/e3bt2/fvs1TMzg4uLy8XOI3mjFjBs/5QFGU\niYmJt7e3xPukkb2Nh4fHN998I/0+Qebmz5//9evXVatW0cOqnJyc4OBgMlutiuNPj6cK6ynzOHbs\nGIPBoGNBKIp68eLFzz///PPPP0u2Q/mNhxVGxa/pFHmEO3fuvGfPnqVLl9IxZzU1NfyHopmlLFXY\nVbOsxsMKG8Crkdzc3MOHDwtaKIOmo6Nz5MgRMzMzxbRKJFmdEs2gH1Y7kyZN+uGHH758+UI+6Ofn\nJ+VuVfmqmWv//v0fPnygvxcaGhrOnDlz5swZQfU1NTUPHDhALnfQ/KSlpaWlpYmsZmdnR/5lAQAA\nAAAAAABAFTS3e6BBRXTs2PHOnTuOjo7KbohANjY2t2/fnjNnTpMyAejq6nbu3Fl+rRLH4sWL6QxV\nghgZGZ0+fVq5N/f7+fmdPHlSzCx3I0aMuHr1auvWrUXWbNWq1eXLl5ctWyZkIXsXF5cbN26YmJiQ\nD0q80LA0/vzzz0mTJomspq2tfeDAAaVMwyvX0KFD6Q8Um81udDZIfIaGhmfPnhWSJ4xr5MiR586d\nE+d82LlzJ7k8YqM8PDz+/vtvKROK7Nq1a926dVpauMGjWfH19f3nn390dXUleO3s2bN5zgfpp2BF\nkqbB0nN2dr5w4YI43wLu7u5XrlzhyUKkLGPGjLl+/bqQEEwtLa3g4OAlS5aQDzb1+8jX15f/K2/S\npEnS/7Hq6+vJDMSLFi2ScocgP0uWLPn333/t7e2b9KouXboo60PN4+nTp2RRU1Nzzpw5ymqMIHp6\nemfOnNm4caOenp6YL+nQoYPwCnIaDyuM6l/TKfIIz50798SJEyr1B1IAhV01y2o8rLABfHNibW39\nzz//jB49WtkN+R+yOiXUvR9WO61atZo5cyb5iJOTk6urq/R7VvGr5tatW1+9enX48OHiVDYyMjp5\n8qQCLvFUX+/evW/dusVdkgIAAAAAAAAAAFQHfkAHeXF2dk5KSoqIiFiyZEnfvn2tra1VJPiDpq+v\nf/jw4cePH0+dOtXAwEBITQMDg1GjRu3fv//du3cBAQEKa6Egu3fvPnLkSKN5HDU1NceNG5ecnDxu\n3DjFN4zHlClT0tLSFi5cKORP7+TkdO7cuYiICGNjYzF3q6+vv3v37ujo6EWLFpEHgcFg9O7de8+e\nPTExMXZ2dhwOh1zBmSe6VDF0dHTOnj0bEhLSrl27RitoaGiMHDkyPj5+3rx5Cm6bKtDQ0Pjvf/9L\nFyVbCZrk4uISFxcnKGNf27ZtQ0JCxA9EMzY2joyMXLx4caOTzSYmJps3b75586b0p5aWltbPP//8\n6tWr7du3jx8/vmPHjqampio7T9ZiRUVFBQcHe3p6Cj9/GAzG8OHDIyIiTpw4IX5AEg9ra2typUtz\nc3MJFtxUZINlYtiwYQkJCVOmTCEXUCZZWlpu27bt9u3bykq83aiBAwc+fvx4z5497u7uZF9hZmbm\n5+eXkJDATYpWU1NDPyX+9x2Xvb29h4cHz4MyWZU+MjKSu+AvRVG2trZTp06Vfp8gPyNGjEhPT9+z\nZ0+3bt2E1+zatWtAQMD9+/dTU1PFDKCRKzabHRMTQz7i5+fXpUsXZbVHCA0NjQ0bNqSnpy9btszc\n3FxQNQaDMXjw4DNnzvBnI+Ynp/Gwwqj+NZ0ij/D06dMzMjK2bds2aNAga2vrFjJaU8xVs6zGwwob\nwKuyOXPmXL582d/fv2PHjsJrtm3bdvXq1U+fPh0xYoRi2iY+GV4iqXs/rHYmTJhAFufOnSuT3ar+\nVTO3/zl79qyQ2zD09fUXLVqUnp4+ZcoURbZNYfbu3fvXX39NnjxZ5MozPXr02LdvX3R0NJZHAAAA\nAAAAAABQQRr0Ym3QQiQnJ9PbTk5OSmyJSqmtrX348GFiYmJBQQGLxaqpqTE0NDQzM+vataujo6Or\nq6sSV+Tcu3fv+vXrudu6urr0qmFVVVW3bt16+PBhTk4Og8Gwtrbu3LnzuHHjlLKwl3A1NTUPHjxI\nSkriHl49Pb02bdp06NDBy8tL+h+OS0tL8/PzNTU1bWxsyPmh8vJycm3osLAwmawLLJn6+vqEhIS4\nuLgPHz6UlpZqaWlZWVk5OjoOHz68qZnGmpnq6uouXbqwWCxuMSYmRmQ+IZKFhUVlZSV3e8uWLfTC\nhS9evLh58+bz58/Ly8tNTU1tbGwGDhw4aNAgybIQ5eTkXLt27fnz5wUFBZqamra2tm5ubiNHjhQ+\noQ7NVV1dXUpKSmZm5ps3bwoKCsrLyxkMhrGxsaWlZc+ePd3d3du2bSvlW5SXl3fo0KGqqopbDAgI\n2LVrlyo3WLZycnLu3bv37NmzoqKi2tpaIyOjb775pm/fvgMGDFDB1bFJ9fX1+fn5ZWVl3G6HfGrd\nunW///47d7tPnz6xsbHKaCCvCRMm3Lp1i7u9devWVatWKbc9IL5Pnz5FRUVlZ2ezWKzi4mJtbW0T\nExM7OzsHBwdXV1c7OztlN/B/PH78ePDgwXRRW1s7LS1N9dNQNTQ0PH36NC4uLi8vj8ViVVZWGhoa\nWllZ9ezZ08PDQ4KeU67jYaBwhBVCla+aeWAAz5WXl5ecnPz69et3796VlpZ+/fpVX1/f1NS0c+fO\nrq6uTCZT0G08zRJ6CcX45ZdfduzYwd3W1tZ+/fo1+ctMC5GdnX3r1q33798XFRVVV1dbWFhYWloy\nmcwhQ4aoSOZ4BcjKykpNTX39+nVOTk5ZWRmbzTYyMmrdurWTkxOTyXRwcFB2AwEAAAAAAABABjIy\nMujtPn36KLElIFsIJ21xEE6qdgSFk4Jwqamp7u7udDE5OVmVV+psyX777bfAwEDutq+v74kTJ8R/\nraBwUgC1duzYMTKn16NHj1xcXJTYHvh/2LvvOKmqu3H8l11679JFiqKIyAOCQUFDswBSRCE2BEGD\nGoy9gaJGkNgj1hhB1KBCRIoG1IgIgigo0gwioAgiVYp02P39Md/fPPPswrDsTmGZ9/sPXufcOXPu\nZy8z956585lz8q5nz54TJ04Mlbt37/7GG28kN54gCP773//+z//8T+iDQMWKFZcsWXI0TGPJMemx\nxx4bPHhwuNq/f/9wdjUAcCzJyMg46aSTVq9eHap26dLlzTffTG5IAAAAAMSPdNJjlcXugWPT/Pnz\nw+VSpUqZ+eCoNWDAgPAUX+PGjfvhhx+SGg4k3wsNzx3tAAAgAElEQVQvvBAuN2vWTC7pMSDyknTG\nGWckMZKwxx9/PPyjsttvv10uKfEzbdq0cLlo0aJ33nlnEoMBAOJn4sSJ4VzSIAiuvvrq5MUCAAAA\nAOSSdFLg2PTOO++Ey2eeeWbuVjknAYoXL37XXXeFygcOHHjyySeTGw8k10cffbRw4cJw9Zprrkli\nMMTEl19+uWrVqnD1d7/7XRKDCfnpp5/eeuutULlGjRrXXnttcuPhGLZnz57Zs2eHq/37969evXoS\n4wEA4uepp54Kl2vVqtWhQ4ckBgMAAAAA5I78KiA/2bdvX06azZ49+4MPPghXTYlxlLvmmmvC8y+O\nGjVq5cqVyY0HkmX//v2RS0KXK1fu0ksvTWI8RJGRkXHgwIGctHzwwQfD5VNOOaVFixZxCyqnHnro\nofD1dPjw4UWLFk1uPBzD5syZs2vXrlC5RIkSt912W3LjAQDi5N13350zZ0642r9/fz/rBQAAAID8\nyH09ID8ZPHhwz549p02blpGRcag2S5YsufLKK8Nr+NaqVeuiiy5KVIDkRnp6+lNPPVWgQIEgCPbu\n3Xv//fcnOyJIgn379g0cODByVfR+/foVL148iSERxbZt2xo0aPDYY4+tW7fuUG0yMjLuuOOOjz76\nKLzlxhtvTEh00SxZsuSNN94Ildu2bdu9e/fkxsOx7ZNPPgmXBwwYULly5eTFAgDEy7x58yIHuiVK\nlOjbt28S4wEAAAAAcq1gsgMAOAIHDhyYOHHixIkTq1atetFFF7Vq1apJkyZVqlQpWrTo5s2bFy5c\nOGHChJEjR+7duzfUPi0t7e9//3vBgs51R7vf/e53r7zyyi+//BIEQVpa2t69ewsXLpzsoCC+duzY\n8cwzzwRBkJGRsW7dun//+98//fRT+NHKlSsPHDgwedFxeKtXrx48ePCQIUPOPvvsCy+8sHnz5vXq\n1Stfvvzu3bvXrFnz6aefPv/884sXLw63b9OmzdEwW/amTZsefvjhULlr167JDYZj3sqVK+vUqRME\nQdGiRW+++eZkhwMAxMbUqVO//vrrIAh27dq1YMGCDz74IPJHv7feemv58uWTFx0AAAAAkHtSrIB8\nae3atS+++OKLL74YpU2BAgWGDh3aunXrhEVFXvTq1SvZIUBCbd++/YEHHjjoQ2lpaSNHjqxYsWKC\nQyIXDhw4MH369OnTp0dvVr9+/Zdffjk0DXNytWrVqlWrVsmOglQxcuTIZIcAAMTe5MmTX3755YM+\n1Lp16zvuuCPB8QAAAAAAsWKxe+DYVLJkyVGjRt10003JDgTgyJQsWXL06NFt2rRJdiDETJs2baZP\nn161atVkBwIAAHF03nnnjRkzJj09PdmBAAAAAAC5ZHZSID/p06dPsWLFPv744wULFuzbt++gbapW\nrXrZZZf9+c9/NrEfkL9UqFDh0ksvveGGG+rWrZvsWDiMUqVKvfjii1OnTv3ss8/WrVt30DYFCxZs\n2bLlrbfe2qFDhwSHBwAACVOgQIEzzzyzb9++l19++dEwHz8AAAAAkGsFMjMzkx0DCTVv3rxwuWHD\nhkmMhBzasGHDzz//HCqnpaU1atQoufEcJXbv3r1o0aKVK1f+/PPP27dvz8zMLFu2bMWKFZs0adKg\nQYNkR0eCLFq06MCBA6Fy1apVK1eunNx44Ijs379/8eLFoXKhQoWqVKlSvnz55IZE7vz000/ffvvt\nqlWrNm3atGvXrhIlSpQvX75WrVq/+93vSpYsmezoAAAgxlavXr1p06YgCAoUKFCmTJlq1aoVKlQo\n2UEBAAAAkFDhL7uDIGjatGkSIyG2pJOmHOmkAAAAAAAAAAAA5I500mNVWrIDAAAAAAAAAAAAACCZ\npJMCAAAAAAAAAAAApDTppAAAAAAAAAAAAAApTTopAAAAAAAAAAAAQEqTTgoAAAAAAAAAAACQ0qST\nAgAAAAAAAAAAAKQ06aQAAAAAAAAAAAAAKU06KQAAAAAAAAAAAEBKk04KAAAAAAAAAAAAkNKkkwIA\nAAAAAAAAAACkNOmkAAAAAAAAAAAAAClNOikAAAAAAAAAAABASiuY7ACAo8X69esnTJgQrnbv3r1C\nhQpJjAcAAAAAAAAAAIDEkE4K/D8rV64cOHBguNq8eXPppAAAAAAAAAAAAKnAYvcAAAAAAAAAAAAA\nKU06KQAAAAAAAAAAAEBKk04KAAAAAAAAAAAAkNKkkwIAAAAAAAAAAACkNOmkAAAAAAAAAAAAACmt\nYLID4Fi2efPmL7/8cvXq1QUKFKhSpUq9evVOPPHEeOxo69atX3/99apVq3bu3Fm6dOm6des2bty4\naNGiOe9h+/btCxYsWLdu3aZNm4oVK1a5cuXatWvnJdqMjIyZM2d+//33pUqVOvXUU08++eTIR3fv\n3j1z5sxVq1YVL168YcOGjRo1yt1eEnaEAQAAAAAAAAAAOIZJJyWvxowZM2LEiFC5cOHC06ZNC4Jg\nxYoVgwYNmjRp0v79+yMbn3LKKVdfffX111+fnp5+RHu57LLLfvzxx1C5a9eut99+e6j8xRdfDB8+\n/IMPPsiyoxIlSnTv3v2OO+6oV69e9J7Hjh07cuTImTNn7tu3L8tDxx9/fOfOnW+55ZaqVatG76Rb\nt27r168PlcePH79ixYq+ffuuXLky3KB9+/avvPJKxYoVgyAYPXr0oEGDNmzYEH60RYsWo0aNql27\n9kE7j8cRnjp16oMPPphl444dOyKrffr0KVas2KF6GDVqVP369aPsAgAAAAAAAAAAgPyiQGZmZrJj\nIKHmzZsXLjds2DDvHT711FN33313qFykSJEtW7ZMnjy5X79+W7duPdRTmjZt+uqrr9atWzfne2nc\nuPF3330XKvfr1++ZZ545cODAvffe+/TTT0d5VqFChZYsWVKjRo2DPrps2bL+/fvPmTMn+q5Lliw5\naNCgm266KUqbevXqrVmzJlR+8803e/fuvWfPnixtGjVqNHPmzNGjR//pT3/K3kPt2rXnzJlTunTp\n7A/F4wiPGTOmb9++Uf6iw/r8888bN26clx4AAAAAAAAAAIB8Z/HixeFy06ZNkxgJsZWW7AA41syZ\nM+cPf/hDlEzHIAjmzZt3/vnnr169Oi87GjBgQPRc0iAI9u3blz2tM2TRokXt2rU7bC5pEAS//fbb\nXXfdFZ4P9bAGDhx40J0uXLhwyJAh4cTQLH744YcnnngiJ/0n7AgDAAAAAAAAAACQIix2TywdOHCg\nd+/eoeXXixUr1qVLl5YtW1asWHHjxo3Tp0+fPHlyOM9y9erV3bp1mzVrVqFChXKxo5EjR7722mvh\naqlSpU477bTKlSunp6dv3Lhx/vz5W7ZsifL0TZs2derUKbw8fRAEhQoVat++fdu2batUqfLbb78t\nXbp03Lhxq1atCjcYMWLEcccdd9tttx02tvXr1zdr1mzgwIHly5f/7LPPHn/88b1794YeevLJJ4Mg\nKFeu3J133tmoUaO1a9cOHz582bJloUffeuutIUOGRO88Vke4Tp06V1xxRZaNGzdunDJlSrjasWPH\ncuXKHSqS8uXLRw8VAAAAAAAAAACA/EI6KbG0f//+H3/8MQiCJk2avPHGGyeccEL4of79+3/77be9\nevUKr1m/aNGi559/fuDAgUe6lx07dgwePDhUPuOMMwYPHnzuuedGJk1mZGTMmjXr6aefnjx58kF7\nuOOOO9atWxeuNmjQYPTo0Y0aNYps88ADD/zlL38ZPnx4eMvDDz/cpUuX+vXrRw+vevXqU6ZMKVGi\nRBAEbdu2rVSp0i233BLZYNy4cS1btgyVW7Vq1ahRo1C+6Q8//LB69eoaNWpE6TxWR7hFixYtWrTI\nsnHOnDmR6aSDBw+2nD0AAAAAAAAAAEAqsNg9sVezZs0JEyZEZjqGnHzyyRMmTIic1XLo0KE7duw4\n0v4nTpy4adOmIAhuu+226dOnt2/fPssEnGlpaWefffbYsWPHjh0bSuuMtGDBgn/+85/harVq1SZP\nnpwllzQIgoIFCw4ZMuTOO+8Mb9m9e/f9999/2PAuvvjiyJ3+4Q9/KFCgQLjaoEGDcC5pEAS1atU6\n88wzw9VFixYdtv8g/kcYAAAAAAAAAACAlCKdlNgbNmxYpUqVDvpQ7dq1IxM0t27dOnHixCPtP5Qf\nee211z700EORmZrZderUqUqVKlk2vvrqq1mirV69+qF6GDx4cOR0pJMnT96wYUP08LJkppYtW7Za\ntWrh6mmnnZalfYMGDcLl0MyjhxXvIwwAAAAAAAAAAEBKkU5KjNWuXbt79+5RGvTr1y9y8s4333wz\nF3upUaPG0KFDc/HEjIyMt956K1w94YQTevToEaV9enr6rbfeGq7u27dv7Nix0XdRs2bNLFuqVq0a\nLteqVSvLo5EJr+vWrYveeZCoIwwAAAAAAAAAAEDqkE5KjF144YXRZwwtXrz4OeecE67Onj07MzPz\nSPfSv3//7KvY58TSpUs3bdoUrnbq1Ckt7TDvgo4dO6anp4ers2fPjt6+bNmyWbaUKVMmXC5XrlyW\nR0uXLh0ub9myJXrnQaKOMAAAAAAAAAAAAKlDOikxdtZZZx1Rm+3bt69cufJI99KrV68jfUrI/Pnz\nI6utWrU67FMqVqzYsGHDQ/WQXcmSJbNsKV68eA4f3bFjx2HjScwRBgAAAAAAAAAAIHVIJyXG6tev\nf9g2devWjawuWrToiHZRpUqV7EvG59CSJUsiqyeddFJOnhX5Ry1fvnzPnj1RGhcsWDDLlkKFCh20\nnH3L3r17jyiYQ8njEQYAAAAAAAAAACClSCclxnKS6FmzZs3IauTq8zkROVfokfr1118jqzlMSz3+\n+OPD5czMzOhL0qenp2fZkpb2v2+07Mmmke0PHDhw2GAScIQBAAAAAAAAAABIKdJJibESJUocaZvt\n27cf0S7KlSt3ZDFF2Lp1a7icnp5etGjRnDwrywr127Zty3UA0WVmZh62TQKOMAAAAAAAAAAAAClF\nOimxVKhQoeyzb2ZXrFixyOqRJjuWKlXqyMKKsGPHjnC5ePHiOXxWlpZJzM5MzBEGAAAAAAAAAAAg\npUgnJZb27duXk/k19+zZE1ktUqTIEe0l+2ryOReZZ5kljCh27959qE4SLDFHGAAAAAAAAAAAgJQi\nnZQY27lz55G2KV26dNzCySpyZtO9e/fu378/J8+KnNM0yNv0qHl3lB9hAAAAAAAAAAAA8h3ppMTY\nL7/8ctg269evj6yWKVMmbuFklSWxcu3atTl5VpY/KpEBZ3eUH2EAAAAAAAAAAADyHemkxNiyZcuO\ntE3dunXjFk5W9erVi6x+9913OXnW0qVLw+XjjjsuubOTHuVHGAAAAAAAAAAAgHxHOikxNnfu3MO2\n+frrr8Pl9PT0U089NZ4R/R+nn356ZPXLL7887FN27969aNGiQ/WQePE7woUKFYqs7t+//0hjAwAA\nAAAAAAAAID+STkqMTZ06NXqDzMzMjz76KFw99dRTixYtGueg/tdpp51WuHDhcPW999477FP+85//\n7Ny5M1xt2rRpXCLLsfgd4Syzrm7dujUX4R3K+vXr3/+/vvjiixj2DwAAAAAAAAAAQK4VTHYAHGvm\nzp07d+7cZs2aHarBxIkTf/nll3C1R48eCYnr/ylatGjHjh3Hjx8fqs6dO3fOnDktWrSI8pQRI0ZE\nVi+++OI4xpcD8TvCFStWjKwuWrSoTZs2uQsyu7lz52Y5dL///e/ff//9WPUPAAAAAAAAAABArpmd\nlNi75557Dhw4cNCHdu3a9eCDD4araWlpvXr1SlRc/89VV10VWb3jjjv27t17qMbvvvvuJ598Eq6e\nccYZp5xySvxiy6E4HeFy5crVrFkzXB07dmxmZmZe4gQAAAAAAAAAACBfkE5K7M2YMWPgwIH79u3L\nsn337t39+vVbsmRJeMtVV11Vo0aNxEYXdOjQIXJqzy+++KJv376Ry9mHTZs2rV+/fpFb7rzzzrjH\nlwPxO8LnnntuuDx37tzbb7999+7deQsWAAAAAAAAAACAo53F7omltLS0IkWK7Nq165VXXvnqq69u\nuOGGli1bVqxYcePGjdOnT3/mmWe+/fbbcONy5cpFzqOZyCCfe+65li1b7t+/P7TlX//61/z58wcM\nGNC2bduqVatu37596dKlY8aM+ec//xk5PefFF1/csWPHxAccKd5HuF+/fq+99lq4+uyzz7755put\nW7euUaNG8eLFI1v+8Y9/rFKlSh7/HAAAAAAAAAAAAI4G0kmJpUKFCg0fPnzgwIFBEMyfP79///6H\nalmkSJHXX3+9UqVKCYzufzVq1OiFF1647rrrwkvGL1++/LbbbovylGbNmj3zzDMJiS6aeB/h5s2b\nX3fddS+++GJ4y6ZNm8aPH5+9Zbdu3aSTAgAAAAAAAAAAHBssdk+M9e/ff8CAAdHblCpV6rXXXmvT\npk1iQjqoyy+//NVXXy1VqlROGrdr1+69994rV65cvKPKiXgf4ccee+zOO+8sWFCuOQAAAAAAAAAA\nQKqQTkrsPfHEE3//+98rVqyY/aH09PTOnTvPmzevc+fOiQ8si4svvnjhwoV9+/bNsox7pIYNG44Z\nM2bSpEmlS5dOZGzRxfUIFyxYcMiQIcuWLRs2bNhFF11Up06dsmXLyi4FAAAAAAAAAAA4hhXIzMxM\ndgwk1Lx588Llhg0b5r3Dp5566u677w6VixQpsmXLllB5586dH3zwweeff75mzZq0tLQqVarUq1ev\nc+fOR+EK6bt3754+ffrcuXPXr1+/adOmYsWKVapUqXbt2u3btz/hhBOSHd2xcIQBAAAAAAAAAIBj\nw+LFi8Plpk2bJjESYsuMg8RL8eLFu3bt2rVr12QHcnhFixY977zzzjvvvGQHcmTy0REGAAAAAAAA\nAADgaGaxewAAAAAAAAAAAICUJp0UAAAAAAAAAAAAIKVJJwUAAAAAAAAAAABIadJJAQAAAAAAAAAA\nAFKadFIAAAAAAAAAAACAlCadFAAAAAAAAAAAACClSScFAAAAAAAAAAAASGnSSQEAAAAAAAAAAABS\nWsFkB0C+d/nll//+978PldPSJCjHniMMAAAAAAAAAABAXEknJa8qVapUqVKlZEdxLHOEAQAAAAAA\nAAAAiCszHQIAAAAAAAAAAACkNOmkAAAAAAAAAAAAAClNOikAAAAAAAAAAABASpNOCgAAAAAAAAAA\nAJDSpJMCAAAAAAAAAAAApDTppAAAAAAAAAAAAAApTTopAAAAAAAAAAAAQEqTTgoAAAAAAAAAAACQ\n0qSTAgAAAAAAAAAAAKQ06aQAAAAAAAAAAAAAKU06KQAAAAAAAAAAAEBKk04KAAAAAAAAAAAAkNKk\nkwIAAAAAAAAAAACkNOmkAAAAAAAAAAAAAClNOikAAAAAAAAAAABASpNOCgAAAAAAAAAAAJDSpJMC\nAAAAAAAAAAAApDTppAAAAAAAAAAAAAApTTopAAAAAAAAAAAAQEqTTgoAAAAAAAAAAACQ0qSTAgAA\nAAAAAAAAAKQ06aQAAAAAAAAAAAAAKU06KQAAAAAAAAAAAEBKk04KAAAAAAAAAAAAkNKkkwIAAAAA\nAAAAAACkNOmkAAAAAAAAAAAAAClNOikAAAAAAAAAAABASpNOCgAAAAAAAAAAAJDSpJMCAAAAAAAA\nAAAApDTppAAAAAAAAAAAAAApTTopAAAAAAAAAAAAQEqTTgoAAAAAAAAAAACQ0qSTAgAAAAAAAAAA\nAKQ06aQAAAAAAAAAAAAAKU06KQAAAAAAAAAAAEBKk04KAAAAAAAAAAAAkNKkkwIAAAAAAAAAAACk\nNOmkAAAAAAAAAAAAAClNOikAAAAAAAAAAABASpNOCgAAAAAAAAAAAJDSpJMCAAAAAAAAAAAApDTp\npAAAAAAAAAAAAAApTTopAAAAAAAAAAAAQEqTTgoAAAAAAAAAAACQ0qSTAgAAAAAAAAAAAKQ06aQA\nAAAAAAAAAAAAKU06KQAAAAAAAAAAAEBKk04KAAAAAAAAAAAAkNKkkwIAAAAAAAAAAACkNOmkAAAA\nAAAAAAAAAClNOikAAAAAAAAAAABASpNOCgAAAAAAAAAAAJDSpJMCAAAAAAAAAAAApDTppAAAAAAA\nAAAAAAApTTopAAAAAAAAAAAAQEqTTgoAAAAAAAAAAACQ0qSTAgAAAAAAAAAAAKQ06aQAAAAAAAAA\nAAAAKU06KQAAAAAAAAAAAEBKk04KAAAAAAAAAAAAkNKkkwIAAAAAAAAAAACkNOmkAAAAAAAAAAAA\nAClNOikAAAAAAAAAAABASpNOCgAAAAAAAAAAAJDSpJMCAAAAAAAAAAAApDTppAAAAAAAAAAAAAAp\nrWCyAwAAAADg6LJjx47vv/8+XK1atWrlypVj0vOKFSu2b98eKqelpTVq1Cgm3QKQdAsWLMjMzAyV\nS5cufcIJJ8Sk23Xr1v3yyy/hav369YsXLx6TngEAAADIQjopAAAAAP9HkSJFBg8e/OGHH4aqderU\nmT17dunSpfPe86pVqy666KJ9+/aFqk8++eQf//jHvHcLQNK9//77DzzwQKhcpEiRadOmNWnSJO/d\nZmRk9OjRY/Xq1aFq9+7d33jjjbx3CwAAAEB2BcI/FyZFzJs3L1xu2LBhEiM5rPnz5+/cuTNUrlat\nWu3ateO9x1mzZoXLdevWPe644+K9x6PTTz/99NNPP4XKhQsXbtasWXLjOfbkuyOcl4A3bNjwj3/8\nI3qbnj17xmq+CiAp8t1pDQDIie3bt7dt23bhwoWhagzTd15//fX+/fuHyjHMNyLxN1I4qC1btqxb\nt27Lli0HDhwIb0xPT2/RosWRdpWXW1Xjx49funRplAbVq1e/8sorjzQkiO66664bPXp0qBzDnyIs\nWrSobdu227ZtC1X9FAEAAACSbvHixeFy06ZNkxgJsSWdNOXko3TSpk2bLlmyJFS+8cYbH3300bju\nbv/+/aVKlQpXn3vuuT59+sR1j0etIUOGDB8+PFSuXr165PqGxES+O8J5CXjx4sWHTSybMGFChw4d\nch8fkGz57rQGAOTQ6tWrzznnnJ9//jlUfeqpp6677rqY9PzQQw8NHTo0VI5hvlGKS/CNFLJYt27d\n888//+6773733XfZ77iWKVMmcrXunMjjrarLLrts/PjxURo0b958+vTpRxQSHNa+ffu6dOkybdq0\nUDWGP0X46KOPunXrtn///iAIihQp8sknn5x++ukx6RkAAADIBemkxyqL3ZNL/fr1W79+fQw7vOmm\nm9q2bRvDDgEAAIC8qFGjxjvvvNOuXbvffvstCII777yzRYsWMUnfGTx48MqVK8eMGRMEwYoVK66/\n/vrXX389791Csnz44Ye9e/f+9ddfkx0IJFmhQoXGjBnTpk2bUHb7O++88+KLL8bkpwjt2rX729/+\ndv311wdBsGfPniuuuGLWrFl+igAAAAAQW9JJyaUZM2asWrUqhh1ecsklMewNOEqkp6eXKFEiy8bM\nzMzwCozEw5QpU8Irj9euXbt9+/bJjQc42jhLkBjr16+fMGFCuNq9e/cKFSokMR44euSv83Djxo1f\ne+21Hj16HDhwIJS+M3v27MgZE3PthRdeWL169YwZM4Ig+Ne//tW6detrr702793mR/nrJUF2Cxcu\nvPTSS3fv3p3sQP6PokWLZv88vmfPntDkjhA/ZcqUGT9+/DnnnBOakTeGP0Xo06fPihUrHnvssSAI\nli9f7qcIAAAAADEnnRSAOGrQoMHGjRuzbFy9enX9+vWTEk+KeO655z788MNQuXPnzr6NBrJwliAx\nVq5cOXDgwHC1efPm0kkhJN+dh88///wnnnjipptuCv7/9J3XXnst790WLlz4rbfe+v3vf7906dIg\nCO64444WLVo0btw47z3nO/nuJUEWt912W2Quab169c4777xq1aoVKlQovLFIkSIJjuqVV17JvnHA\ngAGjRo1KcCSkoFq1ao0bN65Dhw47d+6M7U8RHnzwwR9++GHcuHFByv8UAQAAACAepJMCAAAAEM21\n1167YsWKp59+OgiCcePGtW7dun///nnvtly5cqEZ7DZs2LBnz57LL788VvlGkDDffffdp59+Gq72\n7t37ueeeS0tLS2JIcDRo2rTpq6++2rNnz4yMjBj+FKFAgQIvv/zymjVrZs+eHaT2TxEAAAAA4kE6\nKbn0xBNPRF+r+tlnn50zZ064+sADD5xwwglR2p9xxhkxCy5X0tPTR48eHa42a9YsicEkV48ePRo2\nbBgqFytWLLnBHJPy3RHOdwEDCeYsAQCpYNiwYatWrRo/fnwQBHfccUfz5s1jkr5zwgknjB079oIL\nLti1a9fy5ctvuOGGyM/mcPSbOXNmuFyoUKFhw4bFKpfUrSryu06dOg0fPvz2228PYvpThCJFiowd\nO/acc85Zvnx5aOrTWbNm+SkCAAAAQExIJyWXOnbsGL3BxIkTI9NJ27Zt27Rp0zgHlScFChS45JJL\nkh3FUeHUU0899dRTkx3FsSzfHeF8FzCQYM4SAJAKChQo8I9//GPfvn2rVq0KguCvf/3r6NGj09PT\n895zixYtXnnllWHDhgVBsHTp0v/85z9t27bNe7eQGIsXLw6XTz755HLlysWqZ7eqOAbceOON69ev\nnzp1ahAEr7/+eqdOnapWrZr3bitUqPDuu+/27dt3z549QRC88MILoaRVAAAAAPJIOikAAAAAh1es\nWLGxY8fGo+euXbt27do1Hj1DvP3666/hcoUKFZIYCRydHnzwwQcffDDm3darV+/TTz+NebcAAAAA\nKS42Sy8BAAAAAKSaHTt2hMsFC/rpPgAAAACQj7nFSb60a9eur776asWKFTt27ChfvnytWrXOOOOM\nmCyxF3M//fTT4sWLN2/evG3btkKFCpUsWbJ69ep169aNybpO+ciuXbsWLlz4008/bdu2bc+ePSVK\nlChbtmzdunXr1KlTtGjRZEd3EPko4NWrV0HLVcMAACAASURBVM+ZM2fr1q01a9Y866yzihcvHvno\nd999t2DBgi1btlSrVq1169YlS5ZMVpwJsH///hUrVixbtuzXX3/97bffSpUqVaFChUqVKjVq1Khw\n4cLx2GNmZubSpUsXL168adOmggULVqpU6fTTT69Zs2Y89nX0+O9///vjjz9u2LBh165dFStWPO64\n40477bR899LaunXr119/vWrVqp07d5YuXbpu3bqNGzc+qt7d8bvSrVy58ptvvtmwYUPoRdu0adOj\n/JIU24CXLFmyYsWKtWvXpqen16hRo1mzZuXLl49htLGV+NPaUWvTpk1Lly5ds2bNtm3bMjIyKlSo\nULFixTp16tSoUSPZoR1SPhpLhOS7gIMg+OWXX7777rv169dv3ry5TJkylStXbtSoUcWKFXPXW0ZG\nxsyZM7///vtSpUqdeuqpJ598cuSju3fvnjlz5qpVq4oXL96wYcNGjRrF4i+ImczMzIULFy5ZsmTL\nli3ly5evVq1akyZNSpQoEY8d5X3wE/OxRALGwwk7wsTc5s2bv/zyy9WrVxcoUKBKlSr16tU78cQT\nkx1UcsR8eLl9+/YFCxasW7du06ZNxYoVq1y5cu3atWN4ePPRnZ/MzMxkh3C0iO2lOa4SP7zM44fQ\nbdu2zZ8//+eff966dWvZsmUbNGhw2mmnFShQICaxuXsJAAAAQJh0UvKZVatWDR06dNy4cZFzPwRB\nUL58+f79+995553FihXLST89evRYu3ZtlAZ33XVX586dcx3nypUrX3zxxbfffvtQe6levXrr1q27\ndOlywQUXJDEj5P3333/44YejNKhcufL48eNz3X9GRsa4ceNGjRo1Y8aM/fv3Z29QuHDhZs2atWvX\nrmfPnnXq1Mn1jmIl5gHH9ghPmjTpkUceCZU7d+5866233n777f/4xz/CoVaoUGHYsGFXXnllEAQb\nNmzo37//1KlTw08vUaLEfffdN3DgwIQFnBhffvnl+++//+mnn86dO3fv3r3ZG5QsWfLcc8+99NJL\ne/TocaTftXz00Uf3339/uDpx4sTQ2oU7d+4cMWLEyy+//NNPP2V5ymmnnXbdddf17t07Md909uzZ\nc/Xq1Vk2fv/99+HyjBkzzjrrrEM9vVWrVuEXVXRr1qx54oknJk2alP1PLly4cKtWrfr06XPxxRfn\nOPC4u+yyy3788cdQuWvXrrfffnuo/MUXXwwfPvyDDz7I8h4vUaJE9+7d77jjjnr16mXpasaMGQ89\n9FC4+s4770TPRPnyyy/vvffecHXkyJHVq1c/aMsrr7xyxYoVoXLPnj1Db8+8X+k++eSTyACmTp1a\nsmTJzMzMMWPGPPHEE4sXL45sXKBAgTPPPHPYsGEtWrSI3m1IPM4ScQ04ZP/+/c8+++wrr7zy3Xff\nRW5PT0+/4IILHnzwwVDeWK9evcKnkb59+3bq1OmI/pBYie1pLWFniZjbsmXL5MmTP/74408//XTN\nmjUHbXPyySefd955N9xww9GTVxqrsUTkf9yJJ544cuTInMdw8803f/HFF6FymTJlJk+enJZ2yFUp\nYhXw1KlTs69hmuU81qdPnyhnsFGjRtWvX/9Qj0baunXr888/P2nSpK+//jpLBk9aWlqLFi2uueaa\nyy67LPq7o1u3buvXrw+Vx48fv2LFir59+65cuTLcoH379q+88kooA2b06NGDBg3asGFD+NEWLVqM\nGjWqdu3aOQk4htq1a7dr165QecCAAVdccUUQBC+99NJjjz2W5QJdvHjxCy+88O677z7llFOOaBfx\nG/zEZCwR7/FwPI5w/j0P5yNjxowZMWJEqFy4cOFp06YFQbBixYpBgwZNmjQpy8ntlFNOufrqq6+/\n/vror9j4nYcT/5KI1Y2UsLFjx44cOXLmzJn79u3L8tDxxx/fuXPnW265JYdZaHEaD8dPZMBhkVvm\nzJlzqP++kiVLRp6Rsov3rar4icmlOQHiPbyM4YfQSAsXLnzkkUfef//93bt3R26vXr36TTfdFDqb\nvfPOO6+//nq429deey0nAeeXu5cAAAAAJFIBP6BPNfPmzQuXGzZsGL8dXXnllePGjQtXZ86c2bRp\n0yPqoWnTpkuWLAmVb7zxxkcffXT8+PHXXXfd9u3bD/WURo0aTZkyJSfTjJ100kmrVq2K0uC5557r\n06fPEQUc9tRTTz3wwANZbvIeSqtWrT744IPc7SjvXnvttWuvvTZKg+rVq0d+rXVEli9f3rdv3/C3\naIc1ZcqUc845J3f7iol4BBzbIzxy5Mjrr78+VL766qu3bNny7rvvZmlToECBV1999fzzzz/rrLOW\nLVuWvZMnnnhiwIABiQn4UFavXh2ZLzJhwoQOHTrkop/PP/+8T58+P/zwQw7bN2/e/Mknn/yf//mf\nnO9i7NixV111Vbi6cuXKKlWqfPPNN7169Yq+3/79+//tb3/L+Y5yrWHDhtm/zsy5zp07v/3224dt\n9vjjjw8dOnTnzp3Rm5111lkvvvhi3bp1cx1PDDVu3DicONivX79nnnnmwIED995779NPPx3lWYUK\nFVqyZEmWLw7feeedyy+/PFxdu3Zt2bJlo3TywQcfdOnSJVxdtGjRoY5JnK502QNOT0+//PLLP/zw\nw0M9pUCBAiNGjOjbt2+UbkPicZaIa8BBECxbtuyqq66aP3/+oRoUKVLkH//4x8UXX1y2bNk9e/aE\nNv71r3/905/+lOM/IjbicVpLzFki5q699tq33nrroNm02RUrVuzmm2++6667ChUqFO/AoovhWOLB\nBx8cNmxYuLpgwYIcplpu2LChbt264fyea6+9Nsp5L4YBjxkzJodvyUP5/PPPGzdufNhmL7300kMP\nPbRx48bozZo1azZy5MgoyRn16tUL55G8+eabvXv3Dr/9wxo1ajRz5szRo0cf9GxQu3btOXPmlC5d\n+rAxx1DFihXDyVUPPfTQtdde269fv0mTJh2qfeHChe+7775bb70157uI0+AnVmOJeI+H43GE8+l5\nOH956qmn7r777lC5SJEioYyxfv36bd269VBPadq06auvvhrlxRa/83BcXxJxvZESBMGyZcv69+8/\nZ86c6M1Kliw5aNCgm2666bAdxjvgmIsM+EiVKVPml19+idIgrreqwgYMGDBq1KhQuXnz5tOnT89j\nh7G6NMdbAoaXMfwQGvboo4/+5S9/iRJ269atx44d+9JLLw0ePDi05bCvtJB8dPcSAAAAODpFzgp0\npClhHM0OOUsNHG3ef//9K6+8Mso3CkEQLFy4sGfPngkL6aAGDRp099135/BubBAE2b+3PjasXLmy\nQ4cOOc9OCJJ9KPJdwO+//372786DIMjMzLz77rvvueeeg353HgTB4MGDt2zZEufoEmTlypU5T7oK\nguCLL77o0KHDrFmz8rLTBQsWnHfeeYfdb/STVT6SmZl58803Dxo06LD5H0EQfPbZZ+3bt//2228T\nEFguDBgwIPrXeEEQ7Nu3L4lv7Thd6fbt29e1a9coqZlBEGRmZt54442hqbySLrYBr1q16oILLoiS\nSxoEwZ49e/r06TN79uwjjjXWknJaOzp99tlnOfyyPwiCXbt2DR06tHfv3gedXDNhYjuWuPrqqyOn\nssvhFFNBELz55puRc8X17t37UC3z3eBn//79f/zjH2+66abDJqwEQTB37tx27dotXLgwJz0PHDjw\noH/awoULhwwZEs5Ry+KHH3544oknctJ//PTt2zdKpmMQBHv37h00aFD0WaUPK4+Dn/iNJRIwHk7M\nESbm5syZ84c//CFKLmkQBPPmzTv//POzzxIaloDzcALEdni5aNGidu3aHTaXNAiC33777a677gpP\nzZhz+eXODyHxuzTHQ1KGl3n8EPrAAw/cd9990cP+9NNPc3GecfcSAAAAgEOx2D35w8aNG/v163fg\nwIEgCOrUqdOxY8datWplZmauWLFi4sSJP//8c7jlzJkzx40b16NHj+gdduvWbdOmTZFbMjMz33jj\njTzGOX369McffzxyS/PmzS+44IITTzyxXLlyQRBs3rx5xYoVX3zxxfTp04+GbLO6deuGFnCM9M03\n3+T9/v51110X+f9SpkyZrl27nnHGGTVr1ixWrNi2bds2bNjw9ddfz5o1a9GiRXncV0zEKeD4HeH1\n69cXKlTotttuO+usszZv3jxixIhwOsiaNWtefvnlIAguuOCCq666qmTJkv/+97+ff/750HTUO3bs\neO+99yInAkxMwAlQp06dZs2aNW7cuEKFCmXLlt27d++6devmz5//3nvvhTMGduzY0bVr108++eRI\nF34N2b179+WXXx75zXSDBg1q1apVrly533777ccff1y8eHGCp/3u2rVreK3esI8//jj8eq5Ro8a5\n5557qKeffvrp0fsfPnz4Cy+8ELnl+OOP79Gjx0knnVSiRIm1a9f+5z//+fDDD8Pfsa1du7Zjx47z\n5s0LnfSOHiNHjoxMAihVqtRpp51WuXLl9PT0jRs3zp8/P+lp1jG/0oU98sgjoXTDIkWKtGvX7owz\nzihbtuyvv/46c+bMjz/+OPyKzczMvO2227788ssoi2IHCTlLxDDgvXv3du3aNXIhy/T09LZt27Zv\n375atWrbtm376quv3n777a1bt+7bt++Pf/xjRkZGrP6KmIjJaS3eZ4kEKFGiRJMmTZo1a3b88ceX\nL1++SJEi27ZtW7Zs2fTp0yNTIcePH3/DDTe8+OKLyYoztmOJWrVqtW3bNpxX/c9//nPIkCHR354h\n4XVOgyA47bTTokxeG9uA69Spk/3ksHHjxilTpoSrHTt2jHJ1OOw8c717937nnXcit5x00kkdO3Zs\n0KBBqVKlfv3116+//nrSpEnh6bjWrVvXpUuXuXPnHrbn9evXN2vWbODAgeXLl//ss88ef/zxcN7G\nk08+GQRBuXLl7rzzzkaNGq1du3b48OHhJMW33npryJAh0TuPn1GjRi1fvjxUPuWUU3r06FG3bt2M\njIzvv//+7bffjsyk/Mtf/nLiiSdecskludhL3gc/8RtLxGk8HBarI3wMnIfzlwMHDoQzwIoVK9al\nS5eWLVtWrFhx48aN06dPnzx5cjgpavXq1d26dZs1a9ZBZx+M33k4YS+J2A4vN23a1KlTp8jICxUq\n1L59+7Zt21apUuW3335bunTpuHHjIifXHDFixHHHHXfbbbclJeA46dy5c/b/008++SScmlytWrU2\nbdoc9LnFixeP3nmcblXFT/wuzfGWmOFlHj+Ejhkz5pFHHoncUr169UsuueSUU04pXrz4qlWr3n33\n3VC0U6ZMiZIcn12+u3sJAAAAQCJJJyV/GDt27IEDBwoXLvz4449fc801BQoUCD/08MMPDxw4MPL2\n+ksvvXTYLxWy3JANgmD//v15v0cfOS1NkSJFRo4c2a1bt4O23LVr1+TJkxOzFnYULVu2bNmyZZaN\nQ4YMyWNW0KeffjpjxoxwtV27dqNHj87+ffDVV18dBMG33347atSo0Ne9yRK/gON0hEOGDh164403\nhsoXXnhhkyZNfvrpp/Cjbdq0CX+v065du71794Zjnjlz5qG+Po9rwHFSo0aNK6+8smfPnieddNJB\nG+zcufO+++579tlnQ9Xt27fffPPNU6dOzcW+nn322dAq3sWKFbvpppuuueaaLAvSbdq06dVXX03k\nW/ugs2FddNFF4W9bmzRp8ve//z13nS9dujTL2fKee+65++67Cxb83/HDDTfc8M0331x11VXhRf3W\nrl171113JTGjK7sdO3aEF/4744wzBg8efO6550bmDWRkZMyaNevpp5+ePHlykmKM/ZUuLPR/cfbZ\nZ//973+vXbt25EOzZs3q0aPHr7/+GqouWbJk5syZrVu3jtJbAs4SMQz4ySefjJzirmbNmq+//nrz\n5s3DW66++up77733yiuvnDFjRvg1nHSxPa3F9SwRV2lpaR07duzZs2fHjh2LFi160DazZ8+++uqr\nw5kro0ePvvzyy6O/huMkHmOJq6++OpzGtGbNmo8++qhDhw7Rn7Jw4cIFCxZk2V1iAm7RokWLFi2y\nbJwzZ05kOungwYNzspz9QT377LORCSulS5d++umne/bsGXm27NOnzyOPPPLggw+GpwFbu3btn//8\n59GjR0fvvHr16lOmTClRokQQBG3btq1UqdItt9wS2WDcuHHhU1+rVq0aNWoUyjf94YcfVq9efajV\naeMtlOmYlpY2bNiwP/3pT5GH4p577hk6dGjk2/+uu+664IILSpYseaR7yePgJ95jiXiMh8NidYTz\n73k4n9q/f/+PP/4YBEGTJk3eeOONE044IfxQ//79v/322169eoVfbIsWLXr++ecHDhx40K7idB5O\n2EsitsPLO+64Y926deFqgwYNRo8e3ahRo8g2DzzwwF/+8pfhw4dH7qhLly7169dPfMBxctBfEVx6\n6aXhZL6GDRvm+r8vTreq4iSul+Y4SeTwMo8fQrds2XLnnXdGbrnhhhsefvjhIkWKhLfcfPPNr7/+\n+g033LB3794j+uVzvrt7CQAAAEAiWeye/CE0O8WoUaP69esXeWM6CILixYu/9NJLkfNzfPbZZ9mn\n+kiAzZs3R642e/PNNx/qbmwQBMWKFbvkkktmzJhxTN6TjbwVXqpUqddeey3K3EInn3zy8OHDv/32\n21NPPTUh0R1Evgs4CIK0tLTIOcBKlCjRtWvXyAZ9+/aNrF566aXh8lEyI2zeHXfccc8888zixYvv\nu+++QyVdBUFQvHjxxx577Kqrrgpv+fTTT3OXNzZy5MggCGrWrPn555/ff//92dNHKlSocMstt3z1\n1VedOnXKRf9Hm/vuuy9ySbt777138ODBkfkfIY0bN37vvfeqVKkS3jJ69OjFixcnKMocmDhxYmia\nn9tuu2369Ont27fPMgdVWlra2WefPXbs2LFjx4bSiRIvfle6AwcOnHHGGRMmTMiSmhkEQcuWLZ9/\n/vnILePHj89F8LEVq4A3b97817/+NVwtU6bMpEmTInNJQ4477rh//etfUc4hiZT409pRq3v37vPm\nzXv77bcvvvjiQ33ZHwTB7373u0mTJkU2SNYPVOIxlujcuXPlypXD1ZwkXkTOgFW0aNFevXolMuD4\nWb58+b333huulitXbtq0ab169cpytgyCoHjx4o888khk+sXYsWMjU7sO6uKLL448+f/hD3+I7LlB\ngwaRafS1atU688wzw9WkD6seeuihgQMHZjkUaWlpgwYN+tOf/hTe8vPPP48YMSIX/edx8BPXsURi\nxsPxPsLESc2aNSdMmBCZSxpy8sknT5gwIXJmxKFDh+7YseOgncT1PJwAMRxeLliw4J///Ge4Wq1a\ntcmTJ2fJJQ2CoGDBgkOGDIk8Ce/evfv+++9PfMDEW7wvzfGQ4OFlHj+EPvbYYxs2bAhXr7nmmsce\neywylzTkiiuuCM2knnPuXgIAAAAQnXRS8o1u3bod6v5mWlran//853A1IyNj/vz5iYrrf33//feh\nLz9CLrzwwpw8K9dTNB3Nli5dGi63bNmybNmyh31K5cqVq1WrFs+gosl3AQdBULNmzSxxnnzyyZHV\n0047LbIamZYUmq3nGNCmTZt+/foVLlw4J43vv//+9PT0cDVysrSc27FjR8mSJadMmXLiiSdGaVa+\nfPmLL744F/0fVdavX//++++Hqw0aNLjnnnsO1bhGjRpZpll69dVX4xjcEQqlCFx77bUPPfRQ9i84\nI3Xq1CkylyXB4nSlS0tLe/bZZw+1tmaW+aK++uqrHMcbL7EK+O233965c2e4etdddx0qQbNUqVKR\n02glUeJPa0ethx56qEGDBjlpeeKJJ0Zm1k6dOjX6uttxEo+xRKFChS677LJwdfLkyeGpeQ9q//79\nb731VrjapUuXKBmi+Wvw89RTT0WmJL7yyiunnHJKlPaDBg2KvFIfdpLLLBlRZcuWjfxLs4ypgiCI\nfHEmd1h1yimn3HzzzYd69IEHHjjuuOPC1cgFuHMuL4OfeI8lEjAeTsARJk6GDRtWqVKlgz5Uu3bt\nyMy2rVu3Tpw48aAt43oeToxYDS+zvB+HDRtWvXr1QzUePHhw5Ght8uTJkVlxiQmYeIv3pTkeEjy8\nzMuH0AMHDkTOSlu5cuUon1b69u2b/SdzUbh7CQAAAEB00knJN2644YYoj2ZZci5yZduE2bx5c2Q1\nF0tJHjMiD0Wy5vk7Ivku4CAIatasmWVL1apVozSoVKlSOOto48aNkV8epIhq1apFphTkei6xIUOG\n1KlTJ0ZBHdXefvvt/fv3h6u33nprWlq0YUOvXr1q1aoVro4ZMyYjIyOO8R2hGjVqDB06NNlRHEac\nrnStW7fOPndUpPPOOy8X3cZPrAIeM2ZMuFyqVKnrrrsuep9ZkpCOfrE6rR0DIt8d27Zti1zqOmHi\nNJbo06dPuLxnz57ILKXspkyZEjlPW5SV7oN8NfjZtGlTZEZFu3btzj///OhPKViwYORb/l//+lf0\nS1L0YVXk1S0kMucjcunnxPvzn/8cJUOlWLFi/fv3D1eXL1/+xRdf5GIvuR78xHsskYDxcGKOMDFX\nu3bt7t27R2nQr1+/yFPfm2++eaiW8TsPJ0ZMhpcZGRmRf/gJJ5wQfZX59PT0W2+9NVzdt2/f2LFj\ncxRufrjzQ5CQS3PSxWR4mesPoR9//PEvv/wSrg4YMCD6aG3gwIE579zdSwAAAACik05K/lC+fPnI\nJSazK1euXOTXupF3XRMmy73db775JvExHCUip5RLyhJmRyrfBRwEQfZ5biInZypWrFiWtdsKFChQ\nunTpUDkzM3PLli3xjvAoFJkJ8fPPP+eihzJlykR+o3xsmz17dricnp5+2DlL0tLSOnfuHK5u3Lhx\n2bJl8QruyPXv3/8oz5eK35WuY8eO0RtEzta2ffv2Q633mjAxCXjXrl2RE5e2b9++WLFi0bvN4cQ8\nR5W8n9aODXXr1o2sJuVQxGksceKJJ5599tnhauQaytlFzox4wgknnHPOOVEa56PBz4cffrhr165w\nNTJ7L4rILJCtW7f+97//jdI4++SsZcqUCZezD7rCY6ogCJI4pkpLS7vggguit8nSIHJx2xzKy+An\n3mOJeI+HE3OEiYcLL7ww+lyAxYsXjzxJzp49+1BTD8bvPJwAsRpeLl26NLRmd0inTp2ip4YHQdCx\nY8fIOdQjzwYJCJh4S8ClOeliMrzM9YfQmTNnRla7dOkSvX379u0LFSqUw87dvQQAAAAgOumk5A+N\nGjWK/m1QEAQVKlQIl3/77bc4R3QQWZbQHTp0aM4XdDvGRC4f9v33348YMSKJweREvgs4ONhEYpGZ\nUqVKlcr+lMjEkcgFoFNHZIbBtm3bctHDRRdddKgFuI89kWtHnnrqqeXLlz/sU1q3bn2oHpKuV69e\nyQ7hMOJ3pTv99NNz3m0QBNu3b89hz3ESk4AXLFgQOSVe9NSEkDPPPDNnAR5F8n5aOzZEZv4FQbB1\n69bExxC/sURkJt9XX311qGloN23a9O9//ztc7d27d/RTSj4a/ETm5xUuXLh9+/Y5eVa9evUih0Pz\n5s2L0jj7vFyRl/vojyYxBb9BgwYVK1aM3qZJkyZ5TB3Oy+An3mOJeI+HE3OEiYezzjrriNps3759\n5cqVh2oZp/NwAsRqeJnlndiqVavD7rpixYoNGzY8VA+Hki/u/BAk5NKcdDEZXub6Q+jXX38dLpcr\nV+6wqyiULl068h0XnbuXAAAAAEQnnZT8oXr16odtE/ltYlJS5SpXrtyiRYtwddmyZaeffvp99933\nzTffHGqmk2NV5KxCQRDcfvvtF1544dixY4/aGTHzXcBBEBQsWDDLlsKFC4fLB52XIvIpe/fujVNg\nybJ9+/axY8fec889F110UYsWLU4++eRatWrV+L8i1+OLnEwl55o3bx67kI9qu3fvjvxO/cQTT8zJ\ns7I0W7x4cYzDyq0qVapkX6r4aBO/K91he86SjpO7d0cMxSTgLIufRmbOHUr9+vVzEF3iJOa0li98\n/fXXTz/9dL9+/c4555zTTz+9Xr16WY5Ds2bNItsn5VDEbyzRrVu3yLzh0aNHH7TZW2+9Fb64p6en\nX3HFFdG7zUeDnzlz5oTL9evXP+xMw2GVK1cOl6PPYJd9WBU5lMo+rIrcksQxVU7OWgUKFIicXy0X\nl+ZcD34SMJaI93g4MUeYeMjJ/12WqQcPlSQaxO08nACxGl4uWbIkspolF+1QIv8Xli9fvmfPnsM+\nJV/c+SFIyKU53hIwvMzLh9DIN10O33H16tXLYefuXgIAAAAQXdZvX+DoFLmgZE5kZGTEKZLo7r//\n/k6dOoX3vnnz5kcfffTRRx+tVKlSixYtmjVrdvrppzdp0iTyBvoxqV27dq1atZoxY0Z4y7Rp06ZN\nm5aent64ceNmzZo1bdq0cePGDRs2zP4dcFLku4CDg319HrngYOTCggfdeODAgTgFlnirVq26//77\nJ0yYcERf8EROW5hzp556ai6elR/9+uuvkd8k5fBrsOOPPz6yevTkJOV8ppYkit+V7qDTs8Wk5ziJ\nScBZXn45yU6oVq3aEe03fhJ5WjuaZWZmjh49+qmnnjrStVCTco2L31iiWLFivXr1euGFF0LVN998\n8+GHH86eJxe5wnKHDh0O+5rPR4OftWvXhstr1qxp06ZNEAShi1Tkv9k3Rj7x119/jbKL7AOnyGFV\n9iNwlIypcnh1rlmz5sKFC0PlyOWqcyjXg58EjCXiPR5OzBEmHnLyf1ezZs3IapT/uzidhxMgVsPL\nLKfQXLydMzMzt2zZctxxx0V/Sn6580MCLs1xksjhZV4+hEZe/nJ4MjmizzLuXgIAAAAQxdGSFwXR\nJf1r7Bz6/e9///+1d58BUVzt//CHpTdBQKoVG4pgA1FiiQUsiA0Vo4JYCTe5NcbeojHRhGg0iVjQ\nqFiiokYFESmKAopGBBFELAg2REFAKHEiBwAAIABJREFUOlKfF/v85n/uhd0dYGe28P28mjN7dvZi\ndubM2ZmLc3bu3Lly5UqBpxp5eXmhoaGhoaH8opWV1ZQpUxYtWiQLT5hYcuLECVdXV/rBKl9tbW1S\nUlJSUhK/qKurO2LEiHnz5rm4uEh9HkC5C7iFFGbMiSNHjqxcubIZI4U079Fj27Ztm/EueSQwa3bD\neX4bpampyePx6H0rlfmmGyUXXxx7Vzp5uYbSJBKwwOHXcELkhpjU4QDHzZrMysvLmzlz5t27d5vx\nXmntCvb6EvPnz6fTmPLy8q5evTpp0iSyQlpaGjkp6rx586QbsGSR6SafPn26c+dOMzYicF2TICn2\nqRi2WuRU7M3YD82+hsp+X0Lsd8fNHgY2NOO6X1JSIqIyS+0w2yTVCSTPRGVlZQ0NDSbvEjjri4uL\nxaaTyl2vtdWS8UuzMBx3L5t9Aa2trS0rK6OLDC9GTfotg7uXAAAAAAAAAAAgAm7UAkiYj4+Pra3t\nunXrEhIShNV58uTJL7/88ueff27dutXX15fL8DhjYmJy48YNPz+/vXv3CpuBrqSkhH+fesiQIceO\nHRMYHoZjchcwUBR16NChpUuXCqzs0KFDnz59LCwstLW1BZ5HXrt27eHDhy35RIaZEAqgtLSULJJ5\nEqJpaWnR7xXYiBQ1dbRLUAAC6Zjq6upi38Lj8VRUVKQ7xif3zZpsKigoGDdunMDUuhoaGjY2Nt27\nd9fT0xNolMrLy/fv389tjI1gry9ha2trZ2d3//59fvHEiRMCaUwnTpygl42NjSdMmCDdgCWorKxM\nImelIo3LTmM4uTBZrbS0tL6+vkmZwc3u/ChAX4KbPQwSp6qqyiQrUeD7FZ1OylI7LC/IzLYmnctk\nUfQeBjkip5dm7ruXzf4RKvBDhmECN5PfOyTcvQQAAAAAAAAAAGGQTgogeV988UVsbGxSUtLFixdv\n3bqVlJRUVVXVsFp5efnKlSsLCws3btzIfZAc0NbW3rp166pVqy5duhQVFRUfH5+dnd1ozTt37nz5\n5ZexsbHSHfBA7gJu5bKyslavXk2u+eqrr5YvX25jYyPsLYWFhS3Mu2p01lSFJPB8/fPnzwzfSNZk\n+NyLA63niwOaQP4Tk8E+a2pqpJtLKpVmTTZt3LiRfNjfoUOHjRs3Tps2TVha27t372QhnZRisy/h\n5eVFpzGFh4fn5ubS04/W1tYGBQXRNefMmdNwCmbuA5YUTU1NJSUlehTJnj17ijgjRLCzs5NoXDKB\n4dWZrKamptbUTMdmX0MVoC/BzR4GiauurmaS1Cvw/YrNxGKpHZYL5OnM/FyurKwUthGQa3J6aea+\ne9nsC6i2tja5h4X9z48AhtVIuHsJAAAAAAAAAACNQjopAFsGDBgwYMAAiqKqqqpSUlLi4+Nv3rwZ\nHR0t8PRl+/btTk5ODg4O0omSfbq6uh4eHh4eHhRFvXv37t69e7dv3w4LC8vMzCSrvXv37j//+U9w\ncLCUwvx/5C7gVmv79u3kE8pDhw7NnTtX9FtkZ+512demTRuySI5IJEJVVVV1dbWwjbQeCjbnuJwS\nOPyYDIgl9UGz0KzxZWVlBQYG0sUBAwZcvnzZwMBAxFtkbXZpNvoSM2fOXLNmDb81rqmpOXPmDD2Q\nbWRk5Pv37+maXl5eshCwpPB4PD09vU+fPvGLo0aN2rVrF5cByDKGiSNkPr2enh5r4QhSgL6EjO9h\nEKG8vFzsvM8C36/Yg43VdljGkYMsVlVV1dTUMBn/VeCsx3QBCkMeL83y1b1UUlLS1dWlA2A4UDfD\n62xDuHsJAAAAAAAAAAACeNIOAEDxqamp2dnZLV269MKFCy9evFi/fj05yk59ff3vv/8uxfC4ZG5u\nPmXKlB07dqSlpV29etXe3p58NTIyMjU1VVqxNUruAm49amtrw8LC6OJXX30lNumKoqiCggI2g1Io\nAg/Uc3JymLyLfI7ecCPyq6nDjEk9KxEoiqIHDON7+fKl2Le8evWKrWgYQLNGu3z5Mj0aE4/HCwwM\nFP2wn5Lt/SCpvoSuru706dPp4vHjx+nlkydP0suOjo49evSQhYAlyNDQkF6W5e+aewKXXWE+fPhA\nL3N5aVaAvoSM72EQgcl3l5ubSxbFpgJz1g7LIImczki2ViRyd2mWu+5lu3bt6GUmP2QoSfyWwd1L\nAAAAAAAAAADgQzopAKcMDQ03bdoUERFBTvQWHR3dCoey+/LLL6Ojo93c3MiV0dHR0opHLLkLWJYJ\nDGbTjOP/+fPn5NMd/oBqYiH9l7k2bdqYmJjQxWfPnjF519OnT8lit27dJByWlAhMfip2is+8vDw2\nwwFGbG1tyaLAwdmo58+fsxaOeGjWaPfu3aOXBw8e3L17d7FvefjwIZsRSUwL+xLz58+nl9PS0hIT\nEymKKiwsvHLlCr1eskPiyUjnp1+/fvRyWloax58uyzIyMppajctLswL0JWR8D4MITK7pAnW6du0q\n9i3ct8MyQuDAbsbpbGJigtFJZQf5e7x5N6Pk7tIsd93Lvn370svPnj1j8jUxPDEZwt1LAAAAAAAA\nAIDWDOmkAFIwaNAgX19fulhcXJyfny/FeKRFRUXF39+fHO0gKytLivGIJXcByyyBkWmaMZSjwGBC\nTJ7cP3ny5OPHj039IDmlqqpKL9fU1DRvI+QTrNTUVLE5lBRFJSQkkEXyKaNc09HRIYti5z2Ui0eq\nCq9nz55aWlp0kUkCXExMDJsRicFxsyaRVoIl5K5gmJh1+/Zt1sKRsJb0JRwcHKytreniiRMnKIo6\ne/Ys3T63adNGIPWz5VrY+SGPNKq5B9sXX3xBLz9+/Lh1dpsblZaWRk6z3qhXr16RqerkxZ0D8t6X\nYHUPy3I7rADu378vts6DBw/oZWVl5T59+oh9C6vtsCwfEgJnosB52qjKyspHjx4J2wJIFzncbPOm\ndJe7S7PcdS/JU6a8vPzff/8VXf/du3eSTSflw91LAAAAAAAAAIDWCemkANIh8KCRybNVhaSvr9+p\nUye6KPv7Qe4Clk2ampra2tp0keHITySBR/v0vHUiBAYGNvVT5BeZ/vjp06fmbWTgwIH0cllZ2Y0b\nN8S+JTQ0lF5WU1OzsbFp3kfLGoGZEMWOd4Vxi2WBsrLyqFGj6GJcXJzoUWOrq6uvXr3KflxCcdys\nSaSVYEllZSW9zGQ/5Ofnk42P7GtJX4Ic9I6fwETOsDxz5kwyi1pSWhKwwFh0RUVFzQiAPJfr6uqO\nHj3ajI0opIqKCrF58BEREWSRvLhzQN77EqzuYVluhxWAwPfSUH19/bVr1+hinz59yLx5Edhrh2X5\nkLC1tVVTU6OL5Giswly/fr28vJwuctz4gGjkROqvXr1qRvqy3F2a5a576eTkRBYvXrwoun5ISAhL\nkbTCu5cpKSmx/wtJtAAAAAAAAADQ2iCdFEA6cnJyyKKxsbG0IpGuuro6cpQI2d8PchewzCKfSTQj\n987Q0JAspqeni67/9u1b2X/EJUHkA8InT540b0I6gaGV9u3bJ7p+fHw8OcjTxIkTGT6Vl33dunVT\nVlami7GxsSIq37hx4+XLl6zHBAzMnj2bXq6urt65c6eIyn///fe7d+/YD0oojps1ibQSLCF3xZMn\nT8TW9/Pzk68H2y3pS8yePVtdXZ2/XFhY+Ouvv5Ij8M2bN09SQZJaErCRkRFZJEeqY65nz56jR4+m\ni3/++eeHDx+asR2FFBAQILrC4cOH6WU9PT2B9BS2KUBfgr09LMvtsAK4f/++6AFKQ0JC3r9/Txen\nT5/OcMvstcOyfEhoaGi4uLjQxfv374sdK9Hf358sSnzwbGgJ8sf458+fmzEMp9xdmuWue9mvXz9y\nLOTDhw+TTZaAmpqaP/74g6VIWuHdy7Vr1479X2JbPAAAAAAAAAAABYN0UgCJefTo0atXr5jUrKur\nCwoKootWVlbkUB8KIDw8vLa2lknNq1evFhYW0kVbW1vWghJF7gJWAMOHD6eXb926FR8f36S39+zZ\nk5wO8vjx4yIqV1VVLVmypHmz+Mkp8sgsLCwMDw9vxkasra3t7OzoYlRUlIgBWj5//rxmzRpyjaen\nZzM+VDZpaGh0796dLp45c6a0tLTRmpWVlatXr+YqLhDDxcXFwsKCLu7bt09Y8vrr1683btzIVVyN\n47hZk0grwRLy2fn9+/dFJyBev35979697AclHjd9CQMDg8mTJ9PFX375hV4WaLTF4ibgtm3bdujQ\ngS6eO3eOyZBgDX333Xf0cl5enoeHBznonWjx8fFkx1vBhIeHi/i3nFOnTqWkpNDFadOmcZydqQB9\nCfb2sCy3w4ph/fr1wlq5ioqKrVu30kUejzdr1iyGm5VgOyxAxg8JgfNx9erVVVVVwipfunTp5s2b\ndNHe3r53797sxQZNZWdnp6mpSRd37NjRjKuzfF2a5bF7uWTJEnq5vLx84cKFwsaR3bhxY5P+oRF3\nLwEAAAAAAAAAQDSkkwJIzJ07d6ytrT09PWNjY0UMJVJbW7tq1arExER6Dfk4SjF8/fXXffr02bNn\nj+gBKlJTU7/55hu6qKmp6ezszH50jZC7gBWAp6enkpISXZw9ezaT+U9purq6jo6OdPHChQsHDx5s\ntObHjx9nzJjRpI0rgOHDh5O7d+nSpWSbw9zatWvJ4oIFCxodmLOsrGz+/PnkyEx2dnYcj3/GtgkT\nJtDLHz588PHxafgwr6ioaNasWc0bew/YoKam5ufnRxdramrc3d0DAwMFnpcnJiaOGzcuPz9fWVmZ\nPHE4xnGzJqlWgg3jxo2jl+vr6728vPLy8hqteeHChRkzZsjI+G2c9SUWLFhAL5N/e1MT7zgL+Msv\nv6SX79+/v2rVKnLCWYZGjRr11Vdf0cW4uLjRo0c/fvxYxFvKysqCgoJGjRo1evTou3fvNvUT5Yin\np2dSUlLD9XFxcf/973/porq6+sqVKzmM6/+nAH0JlvawLLfDiiEuLm7p0qXV1dUC6ysrKxctWkQ2\nIJ6enu3bt2e+ZUm1wwJk/JBwdnYmk2Xv3bu3YMGCRtMHb9y4sWjRInKNQKY4SJ2uri45Xuz169d9\nfHyKioqatBH5ujTLY/dy4cKFNjY2dDE6OnrSpElv374l61RVVa1bt44/NCn5n2mi4e4lAAAAAAAA\nAACIpiLtAAC4dvnyZYHbr3wCt1BjYmKEPeqeO3eurq5uoy/V1taeO3fu3Llz5ubmEydOdHBwGDBg\ngImJib6+/ufPn1+9ehUbG3vw4EEy2cjIyGjp0qUt+IOaKScn59KlS42+RD4uLSsr279/f6PVrKys\nRo4cKWz7L1++XL169bp160aMGPHll186ODh07drVyMhIVVW1oKAgNTX14sWLx44dI0c0WblypbAd\nywGJB8z2HpY4jgPu0qWLl5cXPVPzhw8fJkyY0LFjx06dOqmo/L9rU79+/bZv397oFlasWBETE0MX\nly1bFh0dvWjRooEDB+rr6xcVFWVkZISGhh48eJA/ppq2tvbgwYOvX7/OMEK51rlzZycnp8jISH4x\nOzt76NChdnZ2/fr109fXJ+dt79Wrl7u7u7DtuLi4TJs27cKFC/xiSUnJ+PHjZ8+e/dVXX/Xs2VNb\nWzsnJ+fatWsHDhzIzMyk36Wqqrpv3z4eT6H+ZWX27Nm7d++m0xDPnz+fnp7u7e3dv39/bW3t3Nzc\nmJiYo0eP8qcgdHFxuXLlilTjZYXcNWsURbm5uZ0/f54Ou7S01MfHZ9u2bU5OTubm5qWlpYmJibdu\n3eK/6unpeerUKSnOa8llsyapVoINQ4cOdXBwoOeUTEtLGzRo0PLly8ePH9+pUyeKonJzc2/dunXi\nxAl6yMBJkyaFhIRwGWSjuOn8DB8+vGvXri9evCBXqqioMB9aj+OAFy1adOLECbq4d+/eM2fODB8+\nvH379lpaWmTNr7/+2tTUVNh29uzZk5SU9PTpU34xOTnZzs7O1dV1/Pjx9vb27dq109TULCgoyMnJ\nSUhIuHv3bkRERFlZWZNClTs6OjqlpaX5+fkjR45csmTJ9OnTLS0tKYrKyMg4ffr0kSNHyKEZly9f\nzn+VY3Ldl2B1D8tyOyzveDyeurp6RUXFkSNHkpKSfH19HR0djYyMPn78GBMTs2fPnvT0dLpy27Zt\nyZFKmZBgO0yS8UOCx+Pt27fP0dGR/peqf/75Jzk52cfHZ/To0WZmZiUlJU+fPj19+vSpU6fIf91x\nc3NzcXHhOFp5xOqtqobWrFlz4cIFOiH42LFjQUFBffr0EdjCjh07yHE9BcjRpVkeu5fKysp79+51\ndnamv/EbN2706tVr5MiRvXv31tHRefPmTVhY2MePHymKUldXnzNnzpEjRxhuXI7uXgIAAAAAAAAA\nAPeQTgqtzv79+5kM6BUUFCRs7q0JEyaIvUf/7t27gwcPChtXjKampnbo0CEDAwOx8UhcVlYWOTeZ\nMJ8+fRJWbe7cuWKzgmpra6Ojo0VMEEkbOXLkihUrxFZjmwQD5mYPSxD3Afv5+SUkJJDPJ16/fv36\n9WuGb3dycpozZ87ff/9NrwkODg4ODm60spKS0t69e+mksdZg9+7dQ4YMIefCvn//PjnoF5+rq6vo\np9H+/v6vX7+m31hXV3fy5MmTJ08Kq6+srLx//35yGBXFYG1t7eHhQc4/npaW1ujjtNGjRy9atEgh\n00nlrlnjO3r0aEFBATkY3tu3b+lcdlrXrl1//vnnU6dOcRvd/+C4WZNUK8GGPXv2jBo1qrS0lF98\n//79mjVrhI1t1r9//59//lkW0kn52O78KCkpeXl5bdq0iVw5duxYY2Pjpm6Kj+2ABw0a5O3tHRAQ\nQK/Jz8+/ePFiw5pTp04VkU6qra0dFhY2Y8YMOn+9vr4+JCREdr567vn6+p4/f/7FixdVVVX+/v7+\n/v7Cajo7O69fv57L2Ejy25dgew/Lcjss11RVVf38/Pj9tOTk5MWLFwurqa6ufvLkyXbt2jVp+xJv\nh2kyfkjY2NgcOHDA29ubTqR+8eKF6EF57ezs9uzZw0l0co+bW1W0bt267d69++uvv6ZzfysrKxse\nbKKHLJWvS7M8di/t7e3//vtvd3d3Oo27pqYmKioqKipKoKafn19JSUkzPkL2715yr+GIrWpqalKJ\nBAAAAAAAAABAWhRq5DAA+WJqavrPP/+QU261Wu7u7v/884+6urq0A2FK7gKWTbq6upGRkWPHjm32\nFvbt2zd16lSx1VRVVffv39/aHsNbWlpeu3atd+/eLdxO27Ztr1y5Mnr0aCaVdXV1jx07NmfOnBZ+\nqGzasWMHOcVnoxwdHf/++2+pj6YGJA0NjYsXL/r4+IiYyN7W1jY8PFxPT49cyXy+SAnislmTVCvB\nBhsbm6CgoLZt24qt6eDgEBwcLDDIpVxoSV9i7ty55EjeFEVx0PC2JOCdO3euWbNGIOZmMDc3j4qK\n8vDwaFIzq66u3q1btxZ+tGzS0dE5deqUhYWF6GrOzs6nT5+WSpvGJ799Cbb3sCy3w/Ju8eLFPj4+\nouvo6uqeOHFi1KhRzdg+S+2w7B8Sc+bMOXbsGMOcxTFjxly5coXJ1RykwtPTMzAwsIVfkBxdmuW0\nezlhwoSrV6926dJFWAUVFRU/Pz9vb29ypWQv+q3q7mVdXV1KSgq5pkuXLiNGjJBWPAAAAAAAAAAA\nUoF0BwCJ8fDwuHjx4qJFi8TOcmhmZrZy5coHDx6MGTOGm9g4Fh0d7efnN3LkSNH333k83ujRoy9f\nvhwYGKipqclZeA3JXcAKo23btpcuXbp69aqXl1f37t2bOn+umpraqVOn9u7d27Fjx0YrKCkpOTs7\nx8fHz5s3TxLxyhkbG5v79+9fvnzZ29t70KBBpqamzXsk1qZNm9DQ0FOnTol4tq2lpbVw4cJHjx65\nubm1IGSZxt8PixcvbvRZqZ6e3ubNmyMiIgRSEkEWaGlp7dq1KzY2duHChUZGRvR6Ho83YMCA3bt3\nx8XFtW/fvr6+npzUWypfJcfNmqRaCTaMGjXqzp07bm5u5PS+JGNj423btkVFRTV1VDmWcNmXMDU1\nHTx4MF00NDRsxjzCXAasoqKyZcuW58+f//zzz5MmTbK0tNTX129edqmWltbBgwcTEhKmT5+ura0t\noqa2tvbYsWP9/f1fvnzp6+vbvMhln62t7e3bt8ePH9/oq2ZmZnv37pWFnBj57UuwvYdluR2Wd7t2\n7Tp06BB53acpKyu7uromJia6uro2b+MSaYcbJfuHhJubW2pq6oIFC0QEZm1tffr06cuXL7dp04bL\n2KCpZs6cmZaWtm3btmHDhpmamir8pVnuupd8Q4cOTUhI2L17t4ODA/lT1MDAYM6cOXfu3OEPxlxZ\nWUm/JPrUw91LER48eFBYWEiu2bBhgxT/JwcAAAAAAAAAQCqU6FmNoJVITEykl62traUYiWLLyclJ\nTEzMyMh4+fJlUVHR58+ftbS09PX1u3Xr1r9/fzs7O2E3rxVMdXV1cnLy48ePX7x4kZubW1JSwuPx\n2rRpY2xs3LdvXwcHBzMzM2nH+D/kLmDgq6mpuXPnzu3bt1+/fl1UVKSiomJiYtK7d+/Ro0d36NBB\n2tEplMzMzMjIyFevXn38+LGiosLIyMjY2NjOzm7EiBGtZ7ze7OzssLCw9PT03NxcZWVlCwsLe3t7\nZ2dn0U9PQXYUFRW9f/9eWVnZ3NyczIQoKSkhp6m9cOGCsPwhDqBZo2VnZ9+4cePhw4cfP36sqqrS\n1dXt0qXLoEGDvvjiC9mcd5KDvkRJSUnnzp3Ly8v5RV9f3507d8pywCypqqq6e/fuvXv3cnNz8/Pz\nKysrdXR0DAwMevTo0bt37/79+8vmEdJCRkZGZWVl/OUff/yRnmb6yZMnERER6enpJSUl+vr65ubm\nQ4cOHTZsmAwOmC3jfQkF2MOt0++//75u3Tr+srq6+qdPn/jL5eXlkZGRd+/ezc7O5vF4pqam3bp1\nc3V1NTU1bcnHSbYdllOVlZUxMTH379/nN8Kamprt2rXr3Lmzk5OTiJEUQbHJy6VZ7rqXtJqamvfv\n3xcXF/OvRORLa9as+fPPP/nLAwcOvHXrFpMN4u6lgF27dm3YsIEu9uzZMzExsbXtBAAAAAAAAADm\n0tLS6OWBAwdKMRKQLKSTtjpIJwUAAABoKCUlxcHBgS4mJibK8myz0JodOXKEHNPr33//tbW1lWI8\nwCVhyY4gKdjDckpYOilL0A4DgKxxd3cPCQnhL0+bNu3vv/+WbjxyatKkSVFRUXTxxIkT06dPl2I8\nAAAAAAAAADIO6aSKCgNpAAAAAABQycnJ9LKurq6VlZUUgwEQ4cCBA/SynZ0dcpgAADiGdhgAZA35\nW8be3l6Kkciv6urq+Ph4umhjY+Pm5ibFeAAAAAAAAAAApAXppAAAAAAA1IULF+jlwYMHY/5ikE3X\nrl1LTU2liwsXLpRiMAAArRDaYQCQNQkJCa9fv6aLQ4YMkWIw8uvevXv0COUURW3atElJSUmK8QAA\nAAAAAAAASAsekwMAAACAwqqurmZS7c6dO5GRkXTRy8uLrYAAWqCmpmbTpk10sW3btjNnzpRiPAAA\nrQ3aYQDgTF1dXW1tLZOaW7dupZd79+7t4ODAWlCK7MaNG/SynZ2dq6urFIMBAAAAAAAAAJAipJMC\nAAAAgMLatGmTu7v7jRs36urqhNV5/Pixh4dHfX09v9ixY8dJkyZxFSAAU9XV1UuXLiVnMl20aJGW\nlpYUQwIAaFXQDgMAl4qLi62srHbu3Pnhwwdhderq6lavXn3t2jV6zTfffMNJdAro5s2b9PL3338v\nvUAAAAAAAAAAAKRMRdoBAAAAAACwpba2NiQkJCQkxMzMbNKkScOGDevfv7+pqamGhkZBQUFqampw\ncPDRo0erqqr49Xk83qFDh1RU0EkG6SsrK9uzZw9FUXV1dR8+fLh69eqbN2/oV42NjZcuXSq96AAA\nFB/aYQCQrrdv327atGnLli1Dhw6dMGHCoEGDunXrZmBgUFlZmZ2dHRsbu3///rS0NLr+qFGjMM1C\n81RXVxcUFFhaWlIU1adPHycnJ2lHBAAAAAAAAAAgNXhSDgAAAACKLycnJyAgICAgQEQdJSWl7du3\nDx8+nLOoAEQoKSn54YcfGn2Jx+MdPXrUyMiI45AAAFoVtMMAIAtqa2tjYmJiYmJEV+vevftff/2l\npKTETVQKRlVVNSkpSdpRAAAAAAAAAADIBEx2DwAAAABA6ejoBAYGLlu2TNqBAIiho6Nz/PjxUaNG\nSTsQAIBWCu0wAMiaUaNGxcTEmJmZSTsQAAAAAAAAAACQexidFAAAAAAU1vz58zU1NaOjo1NSUqqr\nqxutY2ZmNnv27G+//RZjjIGMMzQ0nDlzpq+vb9euXaUdCwBAa4R2GAA4o6urGxAQEBERcfv27Q8f\nPjRaR0VFxdHRccWKFc7OzhyHBwAAAAAAAAAAikqpvr5e2jEApxITE+lla2trKUYCAAAAwJnKyspH\njx5lZWW9e/eupKSkvr5eX1/fyMiof//+VlZW0o4OoBE1NTVpaWn8ZVVVVVNTUwMDA+mGBFL36NGj\n2tpa/rKZmZmxsbF041E82MNyKi8v7927d/xlHo9nY2Mjkc2iHQYAGfHmzZv09PTXr1/n5+dXVFRo\na2sbGBh07NhxyJAhOjo60o4OAAAAAAAAAFop+vYpRVEDBw6UYiQgWUgnbXWQTgoAAAAAAAAAAAAA\nAAAAAAAAAADNg3RSRcWTdgAAAAAAAAAAAAAAAAAAAAAAAAAAACBNSCcFAAAAAAAAAAAAAAAAAAAA\nAAAAAGjVkE4KAAAAAAAAAAAAAAAAAAAAAAAAANCqIZ0UAAAAAAAAAAAAAAAAAAAAAAAAAKBVQzop\nAAAAAAAAAAAAAAAAAAAAAAAAAECrhnRSAAAAAAAAAAAAAAAAAAAAAAAAAIBWDemkAAAAAAAAAAAA\nAAAAAAAAAAAAAACtGtJJAQBeToVrAAAgAElEQVQAAAAAAAAAAAAAAAAAAAAAAABaNaSTAgAAAAAA\nAAAAAAAAAAAAAAAAAAC0airSDgDkXm5ubkZGBl10dHSUYjAgEW/evHnz5g1/WU1Nzc7OTrrx0JKT\nk8vLy/nL5ubmnTt3lmo4UpOfn//06VO66ODgoKysLMV44O3bt69fv+YvKysrOzg4SDceAEVVV1f3\n9u3bwsLC8vLy+vp6en3nzp3Nzc2lGBgHZPbSLIzcBQwALEEHHkAx4M4PKSkpqbKykr9sYGBgZWUl\n3XhAvty9e7euro6/3Bp+yDT0/v37/Pz8kpISej9QOJUAAAAAAAAAAGQJ0kmhpSIiIpYsWUIXS0pK\nVFRwXMm3w4cP+/n58ZctLCzIh0bStXDhwsePH/OXv/nmmx07dkg3HmmJiYmZM2cOXczJydHX15di\nPHDmzJlNmzbxl/X09N6/fy/deAAUT0REREBAwO3bt4uLixu++uuvv/73v//lPiouyeylWRi5CxgA\nWIIOPIBiwJ0fkoeHR2ZmJn/Z1dX17Nmz0o0H5Mu4ceM+f/7MX24NP2Rojx492rNnT1RUVE5OTsNX\ncSoBAAAAAAAAAMiO1nvzFwAAAABkXFlZ2ZIlSy5cuCDtQABAMW3fvv3u3bvNe29AQICZmVmjLyUl\nJW3ZskXEe9XV1du0aaOvr29paWlnZ9e3b18NDY3mhQFy7ebNm7t27eIvd+/e/bfffpNuPAAAAGzY\nuXPn5s2byeFIAQAAAAAAAABAZiGdFIAKDw+n52Pt3Lmzk5OTdONRPNjDfLm5ucHBwXRx2rRphoaG\nUowHQHaglQBhfH19kUsKAOxJTk6Oiopq3nvpOdwb+vjxY5M2q6ur+9VXX/n4+MjONK+4NHMjJyeH\nPlTy8/OlG4xU4CcSAIDCO3z4MD2jCwAAAAAAAAAAyD6kkwJQ+/bto5/hubq64lmpxGEP82VlZS1d\nupQuDho0CM9KAfjQSkCj4uLigoKC6KKamtq4ceNsbGzatGmjpKRErx82bJg0ogMAkJiSkpKDBw8e\nPXp0w4YNK1euVFZWlnZEuDQDR/ATCQBAsZWUlKxfv55c4+jo6OjoaGRkxOPx6JWWlpachwYAAAAA\nAAAAAI1DOikAAAAAyKK//vqLXtbV1Y2Oju7Tp48U4wEAYFV1dfWWLVuePHly5MgRMmkeAAAAQE6d\nPXu2uLiYLh46dGju3LlSjAcAAAAAAAAAAMRCOikACJo+fbq1tTV/WVNTU7rBAABAq3Xr1i16eeHC\nha05l1TuLs1yFzC0Wt9+++2MGTMEVmZlZW3evJkuOjg4+Pr6NnyviYkJw09xc3NbsmQJuaaqqio/\nPz85OTk0NDQjI4N86cyZM926dduwYQPDjQMAAADIrLi4OHp54MCByCUFAAAAAAAAAJB9SCcFAEF9\n+vRpzSk7AAAgCwoKCt69e0cXhwwZIsVgpE7uLs1yFzC0Wo6Ojg1XJiYmkumkHTp0aJhy2iTt27cf\nPnx4w/Xu7u7btm07efLkd999V1ZWRq/fuXPnvHnz2rdv35IPBQAAAJC6tLQ0ermV/6YDAAAAAAAA\nAJAXPGkHAAAAAAAg6NOnT2TRyMhIWpEAALCHx+N5enoGBwerqanRKysrK/39/aUYFQAAAIBEFBYW\n0suGhoZSjAQAAAAAAAAAABhCOikAAAAAyJzS0lKyqKysLK1IAADY9sUXX/j6+pJrIiMjpRUMAAAA\ngKSQ46+rqGCeNAAAAAAAAAAAOYCbOMCiT58+3b9///Xr13V1daampl26dLG2tpZ2UKCYKioqkpKS\nMjMzy8rKDAwMOnbsaG9v3zpzj7Kysh4+fJiXl6eiotKuXbuBAweamZm1ZIO1tbUpKSnv37/Pzc2t\nra01NjZu37593759lZSUJBWzpNTU1GRmZj5//rywsLC0tFRXV9fQ0LBdu3Y2NjbkiF/NUFZW9uDB\ng5ycnPz8fD09vV69esnmHqDl5+c/ffo0Ozu7uLi4rq7O0NDQyMjI0tJSgtPmysVJx94hUVxcnJyc\n/O7du6KiIn19fSsrK1tbW0kdEnJ00vE9efLk1atXeXl5FRUVRkZGJiYmtra2Ojo6LdxsfX29RMLj\nBquHBAiQ7JXu8ePHmZmZOTk5ysrK7du3t7OzMzAwkGC0cqSkpCQlJeXDhw/5+fmamprGxsadO3fu\n0aOHtONqLb7++uvdu3fTxfT09I8fPyr2wMwS70uwfQzLReeH782bN2lpaQUFBcXFxaqqqjo6OhYW\nFl27dm3h7wLFUF9f//Tp07S0tPz8fP51pF+/fh06dGD4dva6l6Tc3NynT59+/PgxPz+fx+PxuxY9\ne/Zs9vHGavdSsnd+5HQPs6SioiI1NfXNmzfFxcWfP3/W1tbW19fv2rWrpaWlhoaGtKPjCDeHhGS7\nl8+fP8/IyMjJyamvr7ewsLC3t5f9UTlZ+k1HydvPOgAAAAAAAAAAoJBOCix5+fLlxo0bQ0JCqqur\nyfWWlpZz585dvnw5kxvfS5YsefnyJX956tSpPj4+ousvW7YsPT2dvzx69Og1a9Y0rOPu7v727VuB\nlRkZGfRyXFzcF198Iewjhg0b9ssvv4iNvOVcXV0LCgr4y0uXLnV3d2/2ppydnemRAFatWjVlyhTy\n1bCwsG3btol4u7Gx8cWLF5l/HPd7+PXr19u3bz9//jw54AFFUQYGBosXL16zZo2mpmaTNigRERER\nW7duFVgpEOH8+fNFxBYYGNi9e3fmn1hfX3/69Oldu3alpaWR65WUlAYPHvzzzz87ODgw3xpfTEzM\n4cOHr127Rs5NxmdiYjJx4sQ1a9Ywf/LKnoSEhLCwsNjY2Pv371dVVTWsoKOj8+WXX86cOXP69OlN\nfWKalpb2888/X716tby8nFxvYWHx3Xff+fj4MNlgTU3N+PHj6S1MmjSp0QaqUbm5udOmTaMfwPj4\n+MydO7fRmp8+fQoNDY2Ojo6Njc3Ozm60Tq9evcaOHevr68swr9TDwyMzM5O/7O7uvnTpUqrFJx0H\nrQSrh0Rqauovv/wSFhZWWVlJrrewsFi2bNl//vMfZWXlCxcunDx5kr9eW1v7xIkTDDcuLycdX3Z2\n9q5duy5fvvzmzRuBl9TU1IYNGzZ//nw3Nzcmm7p58+aGDRsEVlZUVJBFb29vbW3tRt++bNmymTNn\nMg5cwiR+SEj20nzy5Mn9+/fzl5WUlC5evNiuXTuG7/Xz8wsJCeEva2lpXb16tdHxhCTel6AaHBIR\nERE6OjqSvdLV1NTs3bv3yJEjz549I9crKyuPHz9+69atvXr1oihq1qxZdDOyYMGCiRMnNukPaQmy\ntezRo8fRo0eZv3f58uX37t3jL+vp6YWGhvJ4omalOHfu3NGjR2/duiXQdacoqlOnTq6urt999x3D\npAo2OvCtRMeOHdu3b09eInNycsh0UvYOCQXowEvwGGaj88OZrKysgICAs2fP5uTkNFrBwsJi+PDh\nkydPHj9+vATTsBji7CfStWvXNm/eTBdDQkL4iVzl5eX+/v5//fVXw66Lra2tt7f3vHnzhGUTstq9\npOXk5Ozbty8qKiolJaVhApaOjs748eNnz549duxY5h/BavdSInd++OR3D4v15MmT//znP58/f+YX\n1dTU9uzZ06dPHxFvqaurO3/+fGBgYFxcXE1NTcMKampqdnZ2Y8aMcXd3t7S0lFSoMkXihwQ33ct9\n+/YFBgbSfRs+ZWVlFxeXn376qUk3ebghwd90RUVFEyZMaLienHTiwIEDwn4XcHbHFQAAAAAAAAAA\nxEI6KUheeHj4ggULGj6roCgqMzNz69atZ86cOXbsWL9+/URvJzEx8fHjx/zlvn37iv3c5ORk+imp\nhYVFo3UePXpEPx1s1KdPn5KSkoS9KmyzEqempkaHERkZ2ex00szMzLi4OLrYqVMngQr5+fki/l6q\n6X8yx3v44sWL3t7eJSUlDV8qKCjw8/MLCwsLDw/nfpixgoIC0TuWoiiBBwwCBJIXRSspKZkzZ05U\nVFTDl+rr6+/cuTNy5Eh/f/8FCxYw3GBWVtbKlSvDwsKEVfjw4cPhw4dPnTq1fv36lStXMg9Vsu7e\nvTt//nw6bUWY0tLS0NDQ0NBQf3//3bt3DxgwgOH2/fz8tm/f3uizq+zs7BUrVkRFRR05ckTsdlRU\nVMzNzc+ePcsvvnv3btWqVaIze2gXLlxITEyki8KeZi1ZsiQoKKjRUEnp6enp6ekBAQHLly9fu3at\nqqqq6PqPHz+m22FHR0dKEicdq60E24fEjh07fvrpJ2GHxOrVq0NDQ8+dO5eZmXn16lX+ej09PSZb\nlpeTjvbbb79t375dWEtVVVV1/fr169ev79+/PyAgoGvXrqK3xqTNfPr0qbCXPnz4IDZglrBxSEj2\n0uzg4LB48WK6eOHCBW9vbyZvrK2t3b9/P71v3d3dhc1NKfG+BNXgkKipqZHsle758+eenp7JyckN\nX6qtrQ0NDY2Kijp8+LCbm1t4eDid/zFy5Mim/iEtYW1tTafzJiUlrV+/nmEKQl5e3uHDh+nMniVL\nloi44jx//nzx4sX//vuvsAqvXr3y9/cPDAzcuHHjsmXLxH46Gx341sPMzIxM68zPzydfZe+QkOsO\nvMSPYTY6P9z4/ffff/jhB4H/bRCQnZ19+vTp06dPDxs2LDIykrPY+Dj7iVRYWEh+EP/gf/jw4axZ\ns4T1ElNSUnx9fZOTk//880+Bl9juXvKVl5f/+OOPAQEBAv9OI/AR586dO3funI2NzaFDh8S2sWx3\nLyV150d+9zATKSkpEydOzMvL4xc1NDTOnDkjOpf0xYsXCxYsoC+OjaqqqoqPj4+Pj9+6dWt4ePiI\nESNaHqrsYOmQYLt7+ezZs3nz5gnrXoaEhNy4cePAgQPTpk1jsjVuSPY3XXV1tdhGPjs7W9j/vqIf\nCAAAAAAAAAAgOxjlsgAw9+DBA3d390afKNCePXvm4uJCP6WDhvhPLvkSEhKavR3yvbq6ura2ti0K\nS8aEhYV5eHg0+mSXlpqa2pKxXeVCdXX1lClTGn0EQquvr//mm29u3LjBZIMJCQkjRowQ8dyRVlFR\nsWnTpuXLl0tr8rKsrCyxD5lI9+7dc3Z2jo+PZ1J506ZNW7ZsEZ2gGR4ePn/+fCZ//qxZs+jl9+/f\nx8bGMomBoig6CZWiKDs7O2GJI7dv3xabS0qrqKjYvn37vHnzGh3qRgTZP+lYPSR++OGH77//XvR+\njo2NnTdvHvMA+OTopKMoqr6+fvny5Rs3bmSS0nH79m0nJyfRqSHyi71DQoK6d+8+cOBAunju3DmG\nb4yJiSHzdMlGjHuSvdK9fv16/PjxjT7sp33+/Hn+/Pl37txpcqyS4+XlReb8MR/n+MyZM+QocSKO\nwEePHo0ZM0ZEHh6ttLR07dq1q1atYhgDNE9dXR1ZFEj65OCQ4IBk+xIcHMOy3/nh27hx47p160Tn\nkpLoRPlWIiUlZezYsWJ7iY1+0ax2L/nev3/v7Oz8+++/i8h0JKWmporN2WK7eynBOz9yuoeZuH//\n/rhx4+hcUh0dnUuXLo0dO1bEW7KyspydnUXnkgpQvNOZg0OCknT3MisrS2z3sqSkxNPTU7rdSxp+\n0wEAAAAAAAAAgAgYnRQkzMvLi59Xoa6uPnHixBEjRhgZGX38+DE+Pj44OJi+d19QUDBp0qQHDx7o\n6upyGd6UKVNyc3MFVkZHR797946/3L59+y+//FLY28WOqyEpZDppRkZGYWFh27Ztm7EdMp100KBB\nDWfu69q1a8OJsx8+fJiamtqMj6M43MMfP35ctGhRbW0tRVGWlpYuLi4dO3asr6/PzMwMCQmhP46i\nqFu3bp0/f3769OlN+kNaiD+7X8OYw8PD6aKLi4uIr5X5+Ea//PIL/8GJurr6mDFj7O3t9fX1CwsL\nb926FR0dTT8UrK+vX7lyZUJCguhBMe/duzdhwgRy0kkNDY1x48YNHTrU1NS0trb2zZs3169fv3nz\nJr3lAwcOmJuby0KKiaWlpZ2dXd++fQ0NDfX19auqqj58+JCcnHzlypVPnz7x65SVlU2ZMuXmzZu9\ne/cWsaljx47t3LmTXNOjR48ZM2Z069aNx+NlZGScP3+e/zQlIiKCnA1WGCcnJ35jyC+ePXtWxIlA\ne/Pmzd27d+kiw0wFbW3t/v3729nZderUycDAQF1dvbi4+Pnz5zExMeSDyYsXL/r6+gYEBDDZJiW5\nk47LdliCh8Tp06cFpt6zsLCYMWNG7969tbS0Xr9+fenSJf7uDQ8PbzhlsAhyd9L5+fkdOHCAXNOp\nU6fp06f37NlTW1s7Jyfn+vXrUVFRdLJyTk6Oi4tLYmKiiBavU6dODdvMwsLCK1eu0MVx48aRkz6T\n+JOSc4y9Q0Lil2Z3d3d6kOP4+Pi3b9+2b99e7LvIXHYjI6MxY8YIqynxgBuS4JWuqqpqypQp5KhI\nysrKo0ePdnJyMjc3Ly4uTkpKOnv2bFFRUXV19ddffy2Q3seljh07jh49ms5yOHXq1JYtW5iMbH3y\n5El62dbWVthgXfn5+RMnTiQbZFVVVScnp9GjR5uampaWlj59+vT8+fOvX7+mK/j7+5uYmMjCAMmK\nSmCCcv703DT2Dgk57cBzcAzL+C8OWkxMzG+//UauGTRo0Pjx43v06MG/+BYUFGRmZt67dy8mJkZ0\naiyruPyJRKqsrJwzZ05RURG9xsrKqmPHjm3bti0tLX316lVaWhrzTEoJdi/58vLyRowYQR6oFEVZ\nWFiMHz/e2tq6Xbt2tbW1eXl5aWlp165dazgbdaM46F6yd+dHLvYwE3fu3JkyZUpxcTG/qKenFxwc\nLHbmdG9vb7Jt0dPTmzJlir29fYcOHTQ1NYuLi/Py8h48eBAfH//o0SNJhSrjJH5I8Emwe1lZWTl5\n8mTyixM4L27fvh0SElJRUVFbW+vl5cW/rEgXG7/pNDQ0GjbyFEUFBQXR/9bSv39/a2vrRt/O2R1X\nAAAAAAAAAAAQC+mkIGH8eRKtra1PnTrVo0cPev3ixYtfvHgxe/bslJQU/prs7OyffvrJz8+Py/C2\nbdvWcOWkSZPo2779+/c/dOgQlyE1auDAgRoaGvzRZerr6xMSEpydnZuxHTJ1jExRJVc2XL9ly5Zm\np4BwtofPnTtXW1urpqb222+/LVy4UElJiYxh6dKlf//9N73m4MGDHD/cdXBwaPig6N9//yWflW7a\ntEki0+fx0wGHDh166NChzp07ky/Fx8dPnz6dHjPm8ePHt27dGj58uLBNFRcXz5s3j3zu6OrqumvX\nLoHEoxUrViQkJHh4eLx69Yq/5qeffho/frzoOfvY0759ew8PD3d39549ezZaoby8/Pvvv9+7dy+/\nWFJSsnz58oiICGEbzM/P37BhA7lm8+bNq1evJh8grVu37o8//tiwYUNdXd2LFy/EBqmiouLm5kbn\nbgYHB//xxx9i55o/d+4c/RxLWVlZ9GHM4/FcXFzc3d1dXFw0NDQarXPnzh0vLy/6Yerx48fnzJkj\n4pAQCEYiJx0HrYTED4lPnz6tWbOGXOPr67tt2zZ1dXV6zfLly0+ePOnr61tVVcX84a7cnXRPnz4V\nyKFcv379unXryGnQfX19Hz586Onp+ezZM/6anJyctWvXishdHjhwYMMv/eHDh2Q66dq1a8U+gOcM\ne4cExcKlecaMGevWreM/t66vr//nn3/ETvdcVVUVHBxMF6dPny5spns2Am5Igle63bt3k0MrdejQ\n4eTJk4MGDaLXeHl5bdiwwcPDIy4ujj6GpcXLy4vOHczOzr527ZrYDmFqaird2eZvQVjN1atXkwPQ\nWllZHT9+3MbGhqzzww8/CHTXt23bNnnyZIZzrEOTPHv2jMxEUVJSMjc3F6jD0iEhpx14Do5hDn5x\n9OzZ85tvvuEvd+jQoalvp4Ohl9XV1Y8ePTp16tRGa1ZUVISGhjacz50bXP5EIu3du5f/31+amprL\nli1buHChQEcrPz//2LFjoneLxLuXfPX19QsXLiQzHdu1a7d161ZPT89Gc9cuX778448/ir7CctO9\nlPidHznaw0zcvHlz+vTp9LdgaGh4+fLl/v37i35XbGxsXFwcXRwzZszx48cbZu/xW/L09PTAwMC/\n/vqrhaHKLJYOCZoEu5c7d+58/vw5XezVq9fp06fJsMnzQiCzWSpY+k2no6PTaG/h8uXLdEL/tGnT\n8I9JAAAAAAAAAACyD5Pdg+SZmpoGBweTTxT4unbteunSJTMzM3rNvn37mjReV+uhpqZGjhvUvPnu\nq6qqHj58SBcbTSeVX/y0mMDAwEWLFpFPdimK0tLSOnjwIDmwwe3btxsOuaQwamtr7e3tg4ODBR6B\nUBTl6Oi4f/9+cs3FixdFbGr16tXkpHKLFy8OCgpqdBA7e3v76Ojodu3a8YtVVVU//vhjs8JvERMT\nkz179qSlpX3//ffCHjJRFKWlpbVz505PT096TWxsrIgkoR07duTn59PFlStXrl27VuBxo5KS0rff\nfvv9998zj5acKrqgoED0tHp85LTUI0eONDU1FVZz2rRpiYmJZ8+edXNzE5ZLSlHUkCFDLl++TFZg\n/gBSLk46lg6JnTt30pNUUhS1cOHCnTt3komDfHPnzt29e3eTApa7k+77778n59PcsGHDpk2bGiYa\n9u3b98qVK+QRe/z48bS0NI6iZB97hwQbTE1NyWEFyWFHhYmMjKRHe6KkPdM9JbkrXUFBwa+//koX\n9fT0Ll++TOaS8pmYmPzzzz8i2hDOuLq6Ghsb08Xjx4+LfQs5AbqGhoaw7y4lJeXUqVN00dzcPDQ0\nVCAPj6IoFRWVLVu2kMnTlZWVmzdvZhg/NAmdEMPXp0+fhilE7B0S3JBgX4KbY5iDzs+AAQN2/J+l\nS5c29e0URRUUFJBTPC9fvlxYLilFUZqamjNmzIiLi5NWRqlUHD16lKKoDh063L17d/PmzQ07WoaG\nht99911SUtLEiRMbvp2l7iXfwYMHyR8FFhYW0dHRXl5ewsZBdHV1jY+P/+9//ytwQJI4615K6s6P\n3O1hsSIiIqZOnUrnkpqamkZGRorNJaUoKjQ0lF7W1dU9ceKEiJEge/Xq5efnl56eLq3/6mQPq4cE\nTVLdy48fP5LjQ7dr1y4kJKRh2F27dg0JCbGwsGAYHqvwmw4AAAAAAAAAAERDOilI3pYtW4TdITUz\nMyOf3tXU1Jw+fZqruOTMkCFD6OXmpZMmJyfzp5+jKEpFRcXe3l4ykcmMqVOnCntWyuPxvv32W7pY\nV1eXnJzMVVxc4/F4e/fu1dLSavRVgeGXkpKShG3n7du35ABLDg4Ou3btEvEUzdzcnBzQ4sqVKxKc\nGZChUaNGLVq0SE1NjUnlzZs3Kysr00VyGCRSTU3NmTNn6KKFhcWmTZuEbXPVqlXM840GDx5MPqki\nU0Ub9ezZM/K4FZ3/8eOPP1pZWTEJo0ePHuQjt4iICOaTe8r+ScfGIVFbW0ueGsbGxiJGV1qwYEHD\n1DRh5O6ky83NDQsLo4tWVlbr168XVrl9+/YCw90dO3aMxeA4xN4hwR6yAUlKShI7pjKZctqlSxep\njwsrqSvd2bNny8vL6eLatWuFteG6urocj6DfKFVV1dmzZ9PF0NBQeqCsRtXU1AQFBdHFyZMnC0tD\nETgff/75ZxH5DZs2bSL3cGhoKJlODRJx9epVgX/wGDt2bMNq7B0SnJFUX4KzY1j2Oz8ZGRnkvMkT\nJkxg8i6JjwAqy8rKynR0dMLDwxsmPpIMDAzc3Nwarmeje8lXW1tL/tuJsrJyUFBQt27dRH+EiorK\nr7/+6u7u3uirXHYvJXXnR772sFjBwcEzZ87kTzVDUVT79u2joqIYzsD+9OlTetnR0VFfX1/sW4yN\njRsOZS3v2DskSBLsXtJfN0VRGzdubDR7m6IoExOTn376iWF47MFvOgAAAAAAAAAAEAvppCBhJiYm\nc+bMEVFhzpw55Jg6ZNoWkMjBRO/fv9+MLZBJqH379tXW1pZAWLLE19dXxKsCU3+SM9sqmOHDhzcc\niolEpiOI2A/79++vqamhi35+fiKmNuabMWOGiYkJf7m2tlb00KdSZ25ubmtrSxeFzT0dHR1NTpzq\n4+Mj4jkWj8cTO2c0iXwqGRoaWlFRIaIymc6lqak5adIk5h8kGnl2FBcXM39mrGAnHfND4v3793TR\nx8dHdHPKfGgxuTvpzp49Swa8YsUKYQM78c2aNatjx4508fTp03V1dSzGxxX2Dgn2TJ48WVNTky6K\nTmcvKysjnzE3O51CgiR1pSNzWXR1db29vUVvs1evXk0JkxXz58+nlz9//kymBjYUHh5ODo4obKb7\nuro6cjtdunQRPUO3srLyihUr6GJ1dbXY/4gA5j5//vz777/PmjWLbCG1tbXpCdAFsHFIcEkifQku\nj2HZ7/wUFBSQRR0dHe5jkH1btmyxtLTk4IMYdi/5Ll26RE80T1GUt7f3wIEDGX4QeVkncda9lNad\nH6nvYdHOnj07d+5c+t96LS0tr1+/LjaBlUaezop3A4clTTokSJLqXpLXI319/Xnz5onY5syZMzt0\n6MAwQpbgNx0AAAAAAAAAAIiFdFKQsLFjx4p+XKGiokI+dXv8+DE5myrQhgwZQg8ikp+f33AgscjI\nSP3/02ieGZlOqmAz3VMUZWBgIPqPatu2LTknF5n6o2BcXFxEVyCHXispKaEn3RMQHBxML9va2jIZ\ni05VVZWcQPnff/8V+xbpIp8iv3v3rtE65GyhFIMRnlxcXJjPhEgOEFhaWkombDVEJjq4uLjo6uoy\n/BSxunbtShaF7QoBCnnSMTkkbt26RRYnT54septOTk6qqqpMPl3uTro7d+7Qy8rKymLPDh6P5+rq\nShc/fvz4/PlztoLjEHuHBHt0dXXJ70v0fPdXrlwhrxRSn+mektCVrqKighxZysnJSWymCMNB/ljV\no0ePoUOH0kVy4vKGTo/VeTsAAASPSURBVJ48SS936dJlxIgRjVZ7+vRpfn4+XZw4caLoNAKKolxc\nXMihv8jWAJjIyMi48L+CgoL27dvn7e3ds2fPdevW0blHfOvXr6ezuwSwcUhwRlJ9Cc6OYbno/Ajk\nnD18+JD7GGScnp4emYfNNibdSz6B3wKi/8mBIc66l1K88yPdPSzC8ePH58+fTyfqWVlZRUVFkXl4\nYpEjZaakpEg4PsXF/JAgSaR7WVlZSXYvR40apa6uLmKbPB5P6t1L/KYDAAAAAAAAAACxkE4KEkY+\n3RTmiy++IIu4S96otm3bkmNiNZzvPioq6vP/iYmJaXhrm3zLkCFD2AtVKmxsbMTm8BkaGtLLpaWl\nLEckNf369RNdgdwPFEWVlJQ0rPPhwwcyZZn5E47+/fvTy80bRpdL5HSBxcXFjdYhZykVOA0bZWxs\nzHy+eysrK3KPnT9/XljN5OTkZ8+e0cWvvvqK4UcwoaenRxaLioqYvEshTzomh8SDBw/oZSaHRJs2\nbaytrcV+tDyedOTZ0adPHwMDA7FvGT58uLAtyC+WDgm2kc1Ienq6iKGbyFz2AQMGMG/i2CORK11K\nSgo5FBOT/7QZPHgwswDZRWZBJSUlCfvu8vPzr169ShfnzZsnrNEWOBOHDRsmNgYjIyPyMFaMc5lL\nV65cmfO/vLy8VqxYcfz4cXJMdL758+d/9913IrYm8UOCM5LqS3B2DMtF50egld6+fXteXh73Yciy\nSZMmCZvPmg1Mupd8t2/fppdtbW179OjRwo/msnspxTs/UtzDIgQEBHz99df0qI19+/aNjIxs6jT0\nVlZW9HJGRoa/v78kQ1RczA8JkkS6l6mpqU3tXjK5ZrEKv+kAAAAAAAAAAEAsMZNeATRV9+7dxdYR\nmOorLS1N4NYk8Dk6Oj5+/Ji/nJCQIDA8WFRUFL1cVVUVExNDPi7Kz8/PzMwkN8VysFyzsLAQW4cc\nqqe8vJzNcKRJ7K4QGLKo0QnWBQahIWeLE40cOku6o1GWlJSEh4c/ePDg0aNHHz58KC4uLisrE5iF\njcy6FjbRPH3SUcwaNH61J0+eMIxz1qxZdC5aeHh4cXFxmzZtGlYjxw40NDR0cnJiuH2Koh48eBAb\nG5uamvr8+fOioqLS0tLKykqyQn19PVkUtisEyN1Jx8YhwTCvrlu3bmKfscndSVdZWZmVlUUXGT6P\nF6iWlpYm4bCkgaVDgm3Ozs6Ghob0eH5nz57t06dPw2qfPn2KjIyki7Iw0z0loSudwCylZMaGMAyv\nAmybOnXqihUr6EHdjh8//uuvvzasFhQURI9wqaysPHfuXGEbJI9hivFh3L17dzoT6MWLF58/fxY9\n/hY0g6am5tatW0XPrk6xcEhwRlJ9Cc6OYbno/BgbGzs4OND9iufPn/fr12/hwoVubm62trZSzyGW\nBYMGDZLUpiTVvaQoKjc3l5yHnfkk7CJw2b1k6c6PjO9hYX7//fd169aRa3744Yd27do1dTuurq4H\nDx6ki6tWrQoLC5s/f76TkxOZMdmqSPCQEMBG97IZ5wXH8JsOAAAAAAAAAACY+P8AWGTPHRhnQ7QA\nAAAASUVORK5CYII=\n", - "text/plain": [ - "Screenshot of the pager" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "%run?" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -193,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": { "podoc": { "output_text": "" @@ -202,13 +322,19 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAFfEAAAAAALMymBAAAJJGlDQ1BpY2MAAHjalZVnUJNZF8fv\n8zzphUASQodQQ5EqJYCUEFoo0quoQOidUEVsiLgCK4qINEUQUUDBVSmyVkSxsCgoYkE3yCKgrBtX\nERWUF/Sd0Xnf2Q/7n7n3/OY/Z+4995wPFwCCOFgSvLQnJqULvJ3smIFBwUzwg8L4aSkcT0838I96\nPwyg5XhvBfj3IkREpvGX4sLSyuWnCNIBgLKXWDMrPWWZDy8xPTz+K59dZsFSgUt8Y5mjv/Ho15xv\nLPqa4+vNXXoVCgAcKfoHDv+B/3vvslQ4gvTYqMhspk9yVHpWmCCSmbbcCR6Xy/QUJEfFJkT+UPC/\nSv4HpUdmpy9HbnLKBkFsdEw68/8ONTIwNATfZ/HW62uPIUb//85nWd+95HoA2LMAIHu+e+GVAHTu\nAED68XdPbamvlHwAOu7wMwSZ3zzU8oYGBEABdCADFIEq0AS6wAiYAUtgCxyAC/AAviAIrAN8EAMS\ngQBkgVywDRSAIrAH7AdVoBY0gCbQCk6DTnAeXAHXwW1wFwyDJ0AIJsArIALvwTwEQViIDNEgGUgJ\nUod0ICOIDVlDDpAb5A0FQaFQNJQEZUC50HaoCCqFqqA6qAn6BToHXYFuQoPQI2gMmob+hj7BCEyC\n6bACrAHrw2yYA7vCvvBaOBpOhXPgfHg3XAHXwyfgDvgKfBsehoXwK3gWAQgRYSDKiC7CRriIBxKM\nRCECZDNSiJQj9Ugr0o30IfcQITKDfERhUDQUE6WLskQ5o/xQfFQqajOqGFWFOo7qQPWi7qHGUCLU\nFzQZLY/WQVugeehAdDQ6C12ALkc3otvR19DD6An0ewwGw8CwMGYYZ0wQJg6zEVOMOYhpw1zGDGLG\nMbNYLFYGq4O1wnpgw7Dp2AJsJfYE9hJ2CDuB/YAj4pRwRjhHXDAuCZeHK8c14y7ihnCTuHm8OF4d\nb4H3wEfgN+BL8A34bvwd/AR+niBBYBGsCL6EOMI2QgWhlXCNMEp4SyQSVYjmRC9iLHErsYJ4iniD\nOEb8SKKStElcUggpg7SbdIx0mfSI9JZMJmuQbcnB5HTybnIT+Sr5GfmDGE1MT4wnFiG2RaxarENs\nSOw1BU9Rp3Ao6yg5lHLKGcodyow4XlxDnCseJr5ZvFr8nPiI+KwETcJQwkMiUaJYolnipsQUFUvV\noDpQI6j51CPUq9RxGkJTpXFpfNp2WgPtGm2CjqGz6Dx6HL2IfpI+QBdJUiWNJf0lsyWrJS9IChkI\nQ4PBYyQwShinGQ8Yn6QUpDhSkVK7pFqlhqTmpOWkbaUjpQul26SHpT/JMGUcZOJl9sp0yjyVRclq\ny3rJZskekr0mOyNHl7OU48sVyp2WeywPy2vLe8tvlD8i3y8/q6Co4KSQolCpcFVhRpGhaKsYp1im\neFFxWommZK0Uq1SmdEnpJVOSyWEmMCuYvUyRsryys3KGcp3ygPK8CkvFTyVPpU3lqSpBla0apVqm\n2qMqUlNSc1fLVWtRe6yOV2erx6gfUO9Tn9NgaQRo7NTo1JhiSbN4rBxWC2tUk6xpo5mqWa95Xwuj\nxdaK1zqodVcb1jbRjtGu1r6jA+uY6sTqHNQZXIFeYb4iaUX9ihFdki5HN1O3RXdMj6Hnppen16n3\nWl9NP1h/r36f/hcDE4MEgwaDJ4ZUQxfDPMNuw7+NtI34RtVG91eSVzqu3LKya+UbYx3jSONDxg9N\naCbuJjtNekw+m5qZCkxbTafN1MxCzWrMRth0tie7mH3DHG1uZ77F/Lz5RwtTi3SL0xZ/Wepaxls2\nW06tYq2KXNWwatxKxSrMqs5KaM20DrU+bC20UbYJs6m3eW6rahth22g7ydHixHFOcF7bGdgJ7Nrt\n5rgW3E3cy/aIvZN9of2AA9XBz6HK4ZmjimO0Y4ujyMnEaaPTZWe0s6vzXucRngKPz2viiVzMXDa5\n9LqSXH1cq1yfu2m7Cdy63WF3F/d97qOr1Vcnre70AB48j30eTz1Znqmev3phvDy9qr1eeBt653r3\n+dB81vs0+7z3tfMt8X3ip+mX4dfjT/EP8W/ynwuwDygNEAbqB24KvB0kGxQb1BWMDfYPbgyeXeOw\nZv+aiRCTkIKQB2tZa7PX3lwnuy5h3YX1lPVh68+EokMDQptDF8I8wurDZsN54TXhIj6Xf4D/KsI2\noixiOtIqsjRyMsoqqjRqKtoqel/0dIxNTHnMTCw3tir2TZxzXG3cXLxH/LH4xYSAhLZEXGJo4rkk\nalJ8Um+yYnJ28mCKTkpBijDVInV/qkjgKmhMg9LWpnWl05c+xf4MzYwdGWOZ1pnVmR+y/LPOZEtk\nJ2X3b9DesGvDZI5jztGNqI38jT25yrnbcsc2cTbVbYY2h2/u2aK6JX/LxFanrce3EbbFb/stzyCv\nNO/d9oDt3fkK+Vvzx3c47WgpECsQFIzstNxZ+xPqp9ifBnat3FW560thROGtIoOi8qKFYn7xrZ8N\nf674eXF31O6BEtOSQ3swe5L2PNhrs/d4qURpTun4Pvd9HWXMssKyd/vX779Zblxee4BwIOOAsMKt\noqtSrXJP5UJVTNVwtV11W418za6auYMRB4cO2R5qrVWoLar9dDj28MM6p7qOeo368iOYI5lHXjT4\nN/QdZR9tapRtLGr8fCzpmPC49/HeJrOmpmb55pIWuCWjZfpEyIm7J+1PdrXqtta1MdqKToFTGade\n/hL6y4PTrqd7zrDPtJ5VP1vTTmsv7IA6NnSIOmM6hV1BXYPnXM71dFt2t/+q9+ux88rnqy9IXii5\nSLiYf3HxUs6l2cspl2euRF8Z71nf8+Rq4NX7vV69A9dcr9247nj9ah+n79INqxvnb1rcPHeLfavz\ntuntjn6T/vbfTH5rHzAd6Lhjdqfrrvnd7sFVgxeHbIau3LO/d/0+7/7t4dXDgw/8HjwcCRkRPox4\nOPUo4dGbx5mP559sHUWPFj4Vf1r+TP5Z/e9av7cJTYUXxuzH+p/7PH8yzh9/9UfaHwsT+S/IL8on\nlSabpoymzk87Tt99ueblxKuUV/MzBX9K/FnzWvP12b9s/+oXBYom3gjeLP5d/Fbm7bF3xu96Zj1n\nn71PfD8/V/hB5sPxj+yPfZ8CPk3OZy1gFyo+a33u/uL6ZXQxcXHxPy6ikLxyKdSVAAAAIGNIUk0A\nAHomAACAhAAA+gAAAIDoAAB1MAAA6mAAADqYAAAXcJy6UTwAAAACYktHRP//FKsxzQAAAAlvRkZz\nAAAEGwAAAHYAPhG+9QAAAAlwSFlzAAABLAAAASwAc4jpUgAAAAd0SU1FB+EIBBAdIpj0MJkAAAAJ\ndnBBZwAACdcAAA3cAKokzQ0AAB5ESURBVHja7ZwrjyNJFoXrJ9iaP9A2XmIVmKaWDAZbKmnAIEtb\nvE1MhpmUBq5R0XUPKdaSmbXMYIGhaUGvtKTYaHaX7Hbodmy+bOeNyBuZJ2vOV6S7yjcz4sQ98cpI\n3/2XEBLFXdcFIKSv0DyERELzEBIJzUNIJDQPIZHQPIREQvMQEgnNQ0gkNA8hkdA8hERC8xASCc1D\nSCQ0DyGR0DyERELzEBIJzUNIJDQPIZHQPIREQvMQEonaPD/99N03PnyYgfH9912XoMgPP3RdgjJU\nqI7v/s/nz+bm+fjxjij58KHrEqCDrNAvv9A8HYKcGhggK0TzdApyamCArBDN0ynIqYEBskIJzPPj\nj/7iv5Ea/vFz1yVAB1Ehn9/brbl5ViuaR8vvH7suATqICvn83u9png5BTA0sEBWieSBATA0sEBWi\neSBATA0sEBWieSBATA0sEBWieSBATA0sEBWieSBATA0sEBWieSBATA0sEBWieSBATA0sEBWieSBA\nTA0sEBWieSBATA0sEBWieSBATA0sEBWieSBATA0sEBWieSBATA0sEBWieSBATA0sEBWieSBATA0s\nEBWieSBATA0sEBWCMs/ptFiMRi5iMlkuz+cUESGcz8vlZOKuPhotFqdTSOx6vVzqP61NjfD67nbz\nuUS4Oux2XSsU22LpFMo4HJbLkFYDMs/hMBjc5ZhM6qoeHhHC+Sxp4RkMDgdt7HYbNuLqUiO0vufz\nfH5XYrHoUqHttliD0UiraRqFLtVGX38Y85xOUu3lcrfbbqdTqbptRBgi5Xy+3e52i4Ukh2708U2o\nv5cmNcLrK9YZjdbr3VeWSx/flUKiy2AgNZDSDQa69E6jUJ7lMnSRAWMeET+bVsj/NxvLiBA2m2Ki\nyf81/XbW++nvpkmN0PruduW+93yWCY1+BLVVSNI5u7vUQGfmFArlkblCL81zOlWFdw09GtlFhFG9\nljRF3dizXmeTBv3d6lMjvL7SsxfLW074NhWq1uB8lpGxK4XyJcmme3oFQMwjKbfd5n8nw+i1XjI8\nIoTDoZpk0jet19ejdjuZyEwmobPn+tQIr69Lh+qkxUVMp10oJMYtblnIWNSVQsVyTKf60mRaAphH\n+qzi7Pd2U4RHhCANXWwI6Sfn89tN4BLqfA5thvrUCK+vS4Zqaa3ME6PQ4bDZFGvgdBoMulLI42zn\n1l49Nc+lYsuc/doUIzwiBOmxyhu7dYnn0lVi7M1jU19JJosdtziFyrjRUVeadArJGtV1Az01jyt+\nVfRbTREeEYKsFzTNkyeb7dubx6a+Uq7ieNGmQkWcAbU7mOkUclNsGS17ap7LVbxV8fCIEC7LqBfX\n3jwW9ZVVgc12fhOFnF0OB2c/y+c8cQo5A49GMtmjeWieK8gqxWqjuolCviTyzMfqOU+MQjKt85PP\nHpunOjOtM09YRAiY5mlSX5+wVs/BmiiU387XjoQpFJIN6iyG5qF5LmBtneYKuYmb7I/pSpVCITdx\nzD9E7ql5ij1AvnDXNj7DI0K4vhzWbaym2TCIra8/eGJnneYK5Uumsb+9QjL+5SexPTWPK3a5ivVb\n1WERIUijlveB9ONamq3qmPr6w6Ehx1rbUMijPQVor5A8RF7mkMNL7l+6bgbEPG4AL4suzySuVSM8\nIoRLT8PlEaDuqUSah6Th9fUnhfW7Wm0pFKqUvUJ3N9B1ACDmkSG0uO+iOZ4TEhFC3PGcDHvzxNTX\nW8f2VY1YhdybP9UpnSuh5vSZvULvxjxyqC8vu+yE1B0MDYkII/ZgqGBvnpj6Sinmc3vrxCgkiVwc\nBS4d5mxToUt66RUAMY8sQPPz8vrj5OERIUg/ljWr/pWEmGbQHLgPra8kq+UbTs0UkuT2DyQdfmTU\ndEgpFCrTW/PIi0z+RalLLzKVr1Uf0Yy6V71u1S2FecIU8ofsF4tlBauXsUMVEjtLDUJfzrNXqEpv\nzeN2Rm6/Qlu9Vl1EM06n2y8Zt22eMIWyp/hVrN4lDVfIb5pnaM/A2ytUpcfmqfvyhkvX6vILQNo3\nT4hC1TS1N0+MQm6Myr6QRP+lKvYKVem1eepwCWF1LazyWH2xEhVqr0Q9M890mm75G4P7UiebK1ml\nBhWqw1KhHpnHzeLtJhzNcU86rMpjkxpUqA5bhXpjHrd7ZPmdY81x741arbIsUoMK1WGtUG/M46pu\nV20Lwr5B9DY2/SoVqsNWoR6Z5z2D+E3MWCAqRPNAgJgaWCAqRPNAgJgaWCAqRPNAgJgaWCAqRPNA\ngJgaWCAqRPNAgJgaWCAqRPNAgJgaWCAqRPNAgJgaWCAqRPNAgJgaWCAqRPNAgJgaWCAqRPNAgJga\nWCAqRPNAgJgaWCAqRPNAgJgaWCAqRPNAgJgaWCAqRPNAgJgaWCAqlNA8nz59+Mav6/98Bvv5tfMS\nFH9+77wEVCjw5y9/9vn95UvCkWc208YQ0hfu7lqZttE85P1B8xASCc1DSCQ0DyGR0DyERELzEBIJ\nzUNIJDQPIZHQPIREQvMQEgnNQ0gkNA8hkdA8hERC8xASCc1DSCQ0DyGRgJrn7W21en7WfPL19fFx\nPHb3uL9frd7eUgn19LRapY5Io9B+//AgCo3Hj4/6Zk6lUFstplco43hcrfStBmqex0ddzPE4HN7l\nuL9P0xgvL+7qaSNSKPT29vBwV+LxsUuFXl6KLTYeH49dKlRU6/4+pNUgzfP0pIt5fZWGWK32+5eX\n2UzsE3InHd6iKSPC0Cok1hmPn572X1mtvF5dKSSfGw6lxaR0w2GKDk+rUB6fr9rPA5rH9Ri6GPlk\nVnD5f+hQXUc2uqWLCEOr0H5fHo3f3mTCZNvb6+srHVx2d6mJvZn1OZQhY2ePzfP6KvJqYl5fq5MQ\nlxrjsV6weqQHCxE1PCKEEIWkZ399zf/u+dk6XfX1rbbY25uMjF0plC9JNp3UxgCZxy3wpALSb9TF\nSKO9vFTvaNWv7vcyB76/186FwyNCCFXIfbY6jY1Zg9rUV4xbTDRJ9K4UKpZjNgsrDZB5ZJIxHD49\n6RpY5CnOl2XodVewQKR0O0JaUcMjQghVyCXDw0P5t5bmCa3v8fj8XGwxFzccdqWQx3XEbu3Va/M8\nPoq0utSoVlTEs5qUuOQTWfTmCY0IIVShS0j3YrXj1ry+bpyw2/+LU0jWbG4O01vzvL1ls3PtpKT6\nGct+NSuPVtTwiBBCFbqElKs42W1ToSIuQ4bD4qqsfYXclFNG6N6ap1ysupjLn7E0T0Z4aqQwT/N6\nyjoxxXZ+WH1dih+PbkMj3XMerUIuS8djGa1oHprnCrJgt96ojqmvL4k880nzYFunkEz0ffL/ocxT\nXd3QPNfwCWv9HCymvvnt7TQjoU4h2aDOsojmoXkukNY6cfU9Hv3DzBSl0ijkJo75h8h/GPMU+4x8\nZHV7til9N49viVTWia+vlCzFqfv668r4l5/E/mHM4ypatontVnXxXn01jz8cOhymWpo3q2+qU4D1\nCslD5FUOObzk/qXpZnpsnkunZuUphn3/2l/z+JPC6Xa1mtY3lVL1Ct3dQKNtj80jg25xp8b2eE5G\nX83jrZPqVY2w+q5W9/fV0wSuhLan27QK/YHNI8cM80dxZO8kRUP01TxSioeH1NbRmqc6L7h0vLdN\nhcJrUbxDT80jeyX5mXyaVxIc/TSP6J9mIzimvmIU/0DS4UdGuzMGYQrF1KJ4h96YR66V/V9ehvOv\nVqV7Ge6aqOXy1EfYUa+QP2T/+LiqYP8ytk4hyQhpsZQv5+kU0tbi1h16ax63u9bOa9h9NE/2FL9K\nW/uRVYWynPBYnYEPV0hbi1t36LF52vo6iT6ap5qmCOZxHZ5vMfeFJCkmbFqFtLW4dQdA89y6os2V\n3md58EqEVh7LEvXMPLNZO8tfLe5LnbouQxEqVIedQr0yj5vFp/wutFCOR6zyUKF6LBXqkXnc7lGa\n7xyLxb1Hmf4Jih4qVIetQj0yj6u6VbVtSLfYjYUK1WGpUK/MQwgSNA8hkdA8hERC8xASCc1DSCQ0\nDyGR0DyERELzEBIJzUNIJDQPIZHQPIREQvMQEgnNQ0gkNA8hkdA8hESS1DyfPn34xt9//tdfwX7+\n2XkJCj//XnddAioU+vO3P/n8/vLF3DzZyPMbqeH3j12XAB1EhVqZtnVdSXwQUwMLRIVoHggQUwML\nRIVoHggQUwMLRIVoHggQUwMLRIVoHggQUwMLRIVoHggQUwMLRIVoHggQUwMLRIVoHggQUwMLRIVo\nHggQUwMLRIVoHggQUwMLRIVoHggQUwMLRIVoHggQUwMLRIVoHggQUwMLRIVoHggQUwMLRIVoHggQ\nUwMLRIVoHggQUwMLRIWgzLPbzeejkYsYjRaL3a4+4nRaLCRiMlkuz2dbcU6n5XIykTpMp5tNSOx6\nvVzqP61NjXCFwiPSKhTbYukUyjgclsuQVoMxz/k8n9+VWCzqKjsY5D8/mVjaZ7MpXj3k+ttt2Iir\nSY1whWI0TavQdluMGI0Ohy4VKkZLN6CvP4x5pNqj0Xq9+8pyKSLf6gdOJ/+Z3W67nU6l8fRVv81u\n58V35dlsfG+pifWm1t9NkxrhCoVHpFVIdBkMpMWkdIOBrkNKo1Ce5TJ0kQFiHmmIfL91PktjXO+Z\nFgv392xglv+HTa6uI2bM312aZr2ui8zGQ/3d6lMjXKEYTdMqVI6QFtMldwqF8shcoZfmEdlPp/zv\nNptb0p5O1UHZSTUa6St/ncOhevXzWTP2rNfZlEF/v/rUCFcoPCKtQtUWk8/rWiyFQvmSZNNJvQYg\n5nFFr4ruYqfTyxGSpNtt/ncy8Fr0q3L18nJTes7rUbudzJonk9DZc31qhCsUHpFWIUnkYkSdomkV\nKpZjOtWXJrs2gHlcwefzkIrLkF+cL8vQWz+xqmezmU6ri986ceXvbg8ptBnqUyNcofCI1AodDptN\nMcJ9fjDoSiGP6wjc2qun5rmEWOHabsmlisqs12pBXKZ+kuGaT3pWe/OEK2QTYatQGTda6EqTTiFZ\no7o5zDsyj1SlODEryl7tUaz61UvIpPD2/l+x7Pprx6XGbYVsImwVqn5+MCiuUtpXyE2xZcR6N+aR\nOfX15fllm6Qzj99m1TV1G+apU8giIo1C7hOHg1vg2z7niamvM/BoJJPJd2IeWVzeWvy3ax6/G6Nd\nT6U3T71CzSNSKeRLIs987J7zhNdXJvp+E+NdmMdX+9Yzm8sThDTm8c+e9WuF1ObRKNQ0Ip1C+e18\n7UiYQiExfJZF78A8umZuzzz+oWfIMjutedCsE6OQi5IdU12pUijkJo75HcPem8cfkqgTtNhn5KtT\n3a5sQlxipDSPVqEmEekVypdM093ZKyTjX35S12vz+IN9g0H9vNxVtGwT+61q34OFJkYq84QoFBvR\njkIe7SlAe4Xkoeoyhxzmcf/SdTNA5vHzZt0OjBvyyz2W7Orb9a/xk5005glTKC6iLYVClbJX6O4G\nuqk/jHl8tbXH/mXQLX7W7niOo0lipDBPqEIxESkVcm/+VE8TuBJqHqvaK/SOzCPpNp9rm1mOGeY3\nRmXvxOZgqB/FYic7KcwTqlBMREqFpGsrGu3S8d42FboUr/88iHlE2LDHd25um286y1cS/FOL2Dcv\n7c0TrlCMpikVEqP4B5JyDRkpNA+eUyhUppfm8Q2xWCwrZI1Tvpa8DOdfrbJ9GU4aYjRaXuBaeZo0\nQ11qhCuki2hXIYmRFgt9Wc1eoeatBmGe7IlzlVvJutuleg1b9l0uo2kIa/OEK6SLaFshv4mcoT2z\nYa9Q81aDME9VUm3FU30ByN0NNA1hbZ5whXQR7Su02/kWc1/QoTspmEah5q0GYR4tTiCra2GVx+qL\nlahQeyXqmXnc61dW17LAfcmRzZWsUoMK1WGpUI/M42a1qV50i8G9xW9VHpvUoEJ12CrUG/O43ZRU\nb0DG4d4btVplWaQGFarDWqHemMdV3a7aFugXu/XY9KtUqA5bhXpknvcM4jcxY4GoEM0DAWJqYIGo\nEM0DAWJqYIGoEM0DAWJqYIGoEM0DAWJqYIGoEM0DAWJqYIGoEM0DAWJqYIGoEM0DAWJqYIGoEM0D\nAWJqYIGoEM0DAWJqYIGoEM0DAWJqYIGoEM0DAWJqYIGoEM0DAWJqYIGoEM0DAWJqYIGoEM0DAWJq\nYIGoUELzfPr04Ru/rv/zGezn185LUPz5vfMSUKHAn7/82ef3ly8JR57ZTBtDSF+4u2tl2kbzkPcH\nzUNIJDQPIZHQPIREQvMQEgnNQ0gkNA8hkdA8hERC8xASCc1DSCQ0DyGR0DyERELzEBIJzUNIJDQP\nIZHQPIREAmael5eHB/f54fDh4flZE/H6+vg4HruY+/vV6u3NVp4mV396Wq1sSxOn0H7/8CB1GI8f\nH/XNnEqhtC0Wo1DG8bha6VsNyjyPj3cFZrM6aY/H4TAfcX9v2RgvL8Wrj8fHoz7WRdiVJU6htzdJ\npDyPj10q1ETTFAoV1bq/D2k1IPPIp+/vn5/3++dn6Ztux72+SkOsVvv9y8tsJvGhcl9DjDkcytV9\nb6ZrCm9qq7LEKiSlHo+fnvZfWa28Xl0p1ETTNApVo3tonv2+OHL4XuDl5XqM9DJZweX/oUP1NcSM\nWb8oV9ckXjYe2pQkVqFyhIuRhLLp7cMVitc0jUJ5ZK7QS/OIjK+v5cpcn2S8vlb/7lJjPNaW7xbV\nq7+9SS9eF/n0lIlqUZJ4haRnz0f897/Pz1bpGq5QvKapFMqXJJtOau8HYx6X9uUp1+1ISdJiryJ3\ntOhXJcmKoki/eStqv5e+7v4+bPasIVwhlw7VaWzYVMZSoThNUypULMdsFlYaGPO8vblZcLVwDw/X\nIqSfKc6Xpad5etKW8BbH4/Nz8epO2uHwVoyI7/aQLJMiViGXDNW/WpknRqEYTVMq5HEdsVt79dQ8\nVcQI11cwlyoqs94UW8QO15PfngK4dBUh7c0TrtD1GMsdtzCFmkfYKyRrVGe7d2IeWezdinMVrv7d\nrl+9VJvhsLiCKJP9Nb156hW6hJRLt4ROoVDTiBQKuU/J6NR787y+vr3JNuPtR2iXr2tvHte0x6Nb\nfIc8k0hpHq1CVWSdaLedH6tQnKZpFHJZOh7Lp3pvHtlMlV2YWz1kW+aRZa7DPZ/QJmtK82gVulYT\n63QNVyhO0xQKyUTfJ3/vzVN8An19/XL5r/bmyW8963vtlObRKlTEJ6zVc7AmCsVpaq+QbFBnf++9\neYSXF9nsLT+nKBa9DfMIx6M/+KFLvvRrnnqF8qSzTqxCMRHWCrmJY/4h8jsxT1aVa/1Gsc/IV6h+\nazIOqY+uLm3sttUpVC55SuuEKxQbYaeQjH/5Sew7Ms/xeCvWVbRsk7Rb1X46oPlkO+a5rZDgD4cO\nhymW5vEKxUdYKSQPkVc5ZK3k/qXpZqDNc3sS5ob88t9innyEoLdEO+apn6b6811pdrUs6p1aqesK\n3d1Ak7Eg5jkeZzO371L8rZx8uvYITQbd4k6N3fGc1er+vvrk2yWi7iSWdUrEKJRZx/ZVjViFmmpq\nrdA7MY8UpCyh2OPaOCLHDPNHcWTvxOaYoZS9eO9LR1GvYd+fhivkS/HwYG+dGIWaappCoUt6hdwP\nwjyy75IXUQ5N3LKCm8vnZ/KWryRIo/qHZw7fi+ueh9ubJ1wh/3aLZSmaKNRUU3uFyvTUPP5I+Gzm\nXmR6eREhiotcuVb2f3kZzr9aZf0ynJRern75RbJyefKkOBgappD//OPjqoLNy9jhCtVHtKlQlZ6a\nx/USflfeU94fqlZ8v0/5GnZWfk/xvHa75glVKHuKX8UqXcMVqotoU6EqvTWP4/lZiu8inp7KRrhU\n8bRfJ7Hf+6u7L88oTy7aNk+YQtU0tTdPjEK3I9pUqEqvzaO5os2V3md58EqEVh7LEvXMPLNZquVv\nHO5LnbouQxEqVIedQr0yj5vFpzs9EI57eo1UHipUj6VCPTKP20tJ985hDO690RRPUGKhQnXYKtQj\n87iqW1XbhlRvQMZDheqwVKhX5iEECZqHkEhoHkIioXkIiYTmISQSmoeQSGgeQiKheQiJhOYhJBKa\nh5BIaB5CIqF5CImE5iEkEpqHkEhoHkIiSWqeT58+fOPvP//rr2A//+y8BIWff6+7LgEVCv352598\nfn/5Ym6ebOT5jdTw+8euS4AOokKtTNu6riQ+iKmBBaJCNA8EiKmBBaJCNA8EiKmBBaJCNA8EiKmB\nBaJCNA8EiKmBBaJCNA8EiKmBBaJCNA8EiKmBBaJCNA8EiKmBBaJCNA8EiKmBBaJCNA8EiKmBBaJC\nNA8EiKmBBaJCNA8EiKmBBaJCNA8EiKmBBaJCNA8EiKmBBaJCNA8EiKmBBaJCNA8EiKmBBaJCoOY5\nHJZfqf/c6bRYjEbuHpPJcnk+pxNqu10uNxv959drTfk94amhVWi3m89FodFosdjtulYotsXSKRQf\nAWme83ky0cQdDoPBXY7JJJV9Dgd3/elU+/ntNqzeoamhU+h8ns/vSiwWXSq03RZbbDQ6HLpUqFkE\npHmWS03c6SQNsVzudtvtdCr2Cb2XTlbpK7Xm8abW3yE0NXQKiXVGo/V695Xl0uvVlUKiy2AgLSal\nGwx0HV4ahZpFAJpHeu36uMXCfSabiMj/Q6ZWWuTKWvNk46H+DmGpoVNotyuPxj7Ftb29tULSwWV3\nlyidmVMo1CwC0Dznczaw3/rc6VSdhLjUGI1C7qZhs/Hl0Zhnvc4mJfp7hKSGViHp2U+nal2sxx6d\nQtUWO59lZOxKoSYRDjjzuN5pOpU+6tbnJEm32/zvZOC17Vdlcih3qzPPbiez5skkdPYckhpahVy5\nq9PYsLWbpUJiseKWRX0tUirUJMIBZh7XBG4WXF8NGfKL82UZetdr/f3qcTZwKaFJOim120MKbQZ9\naugVcskwn5d/a28evUKHw2ZTbDFXi8GgK4XiIwQo88hqwY0mmtSofkJm+ZaTEjeWyZJWZ57pVHrW\nVOYJUegS0r1Y7riFKVTG1UZXmnQKxWsKZR7Xh0lfqZuUVJvKtl8VM8rUUHPlbH2RyjwhCl1CooqT\n3TYVKiLGK67K2lcoXlMg8zgpRyMZ1uurcbmpLM0ji0g/joVdOY15whSqIusSu+38WIWcXQ4Ht6Fh\n/ZwnXKEmmsKYR/owv5xEMI8rQ7bR2715QhUq4/fE7DZUYhXKdufcMx+75zzhCjXTFMQ8xT5Ma57q\n6sbOPLKIzBKta/OEK1TEJ6zdc7B4hfLb+dqRMIVCTTUFMY8bwvOP87o2jxw2ye/bdW2ecIXy2Fun\nqULuCv7RqqZUKRRqpimIeaQnyk8ndBsGl81T3Z4NRU45Fa/TrXliFMrwB0/srNNcoXzJNFH2CjXT\n1Ne4c/PI47xlDjlG4v51rcFdRcs2sdqqFlmXBdxvRiP3L83ukLV5YhQS/OHQ/ASrOc0VytdMo5S9\nQvGaeiDMc3eDa72SG/LLf5OnGM37V99TX0ZzrN/aPDEKOfxJYf2uVlsKhSplr1CsptUr9M480vcV\nd2qsjue8F/N469i/qhGj0HI5mVRPE7gSak630Txq6pNPjhnmF6yyd2J/MDQTquvnPKF3kM/M5ylf\nEtQrJIYrzgsuHe9tU6FmEb01j+yV5Gfy6V5J8EL1yzySrGnecIpRSIziH0g6/MioWSPRPI2qUb6W\nnOb1r1alfBnO372YGrfq1o158iXyh+wXi2WFNC9j1yskdpYWC305z14hXURdjXtqHre71tZr2P0z\nT/YUv0qKd0l1ClXXStoz8DSPecXb+wKQvpnn1pK+O/O4Ds+3mPtCEv2mNs3TEJcQVtfCKo/VFytR\nofZK1DPzTKftLX81uC91srmSVWpQoTosFeqRedwsPs2EIw53usuqPDapQYXqsFWoN+Zxu0epvnMs\nDvfeqNUqyyI1qFAd1gr1xjyu6nbVtiDkBFcdNv0qFarDVqEemec9g/hNzFggKkTzQICYGlggKkTz\nQICYGlggKkTzQICYGlggKkTzQICYGlggKkTzQICYGlggKkTzQICYGlggKkTzQICYGlggKkTzQICY\nGlggKkTzQICYGlggKkTzQICYGlggKkTzQICYGlggKkTzQICYGlggKkTzQICYGlggKkTzQICYGlgg\nKpTQPD/+SPNo+cfPXZcAHUSFfH5vt+bm+fjxjij58KHrEqCDrNAvv9A8HYKcGhggK0TzdApyamCA\nrBDN0ynIqYEBskIJzPPTT99948OHGRjff991CYr88EPXJShDher47v98/mxuHkJIEZqHkEhoHkIi\noXkIiYTmISQSmoeQSGgeQiKheQiJhOYhJBKah5BIaB5CIqF5CImE5iEkEpqHkEhoHkIioXkIiYTm\nISQSmoeQSGgeQiKheQiJ5H9Njt2nj08MSAAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAxNy0wOC0wNFQx\nODoyOTozNCswMjowMHGMe+YAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMTctMDgtMDRUMTg6Mjk6MzQr\nMDI6MDAA0cNaAAAAIHRFWHRwZGY6SGlSZXNCb3VuZGluZ0JveAA1OTV4ODQyKzArMDsfVVwAAAAf\ndEVYdHBkZjpWZXJzaW9uAFBERi0xLjQgMSAwIG9iaiA8PCCeMHjFAAAAAElFTkSuQmCC\n", + "text/html": [ + "\n", + "\n", + "\n", + "
0,00,10,20,30,4
1,01,11,21,31,4
2,02,12,22,32,4
3,03,13,23,33,4
4,04,14,24,34,4
\n" + ], "text/plain": [ "" ] }, + "execution_count": 12, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -226,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": { "podoc": { "output_text": "" @@ -235,13 +361,26 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAABQEAYAAACVOtfbAAAABGdBTUEAALGPC/xhBQAAACBjSFJN\nAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0T///////8JWPfcAAAA\nCXBIWXMAAABaAAAAWgBwI7h9AAAAB3RJTUUH4QgEEB4yrm5zPgAAKMRJREFUeNrt3Xl8TPe7B/An\nQSyxZUGbhaolCS4R1L4FVUUXkijRantvfySK+hWt2Fr8LBVLk0v19r7aqn27thBuidZSSqKiioja\nExKiiDXE9/7x3KenZybTkGRyjszn/c+nTmbOfM93JmnOk+/ipP4fAQAAAAAAAAAAmJCz0Q0AAAAA\nAAAAAAD4O6WNbgCwhw8fPnz4kCgxMTExMZFoz549e/bsIUpJSUlJSdHy4sWLFy9eJLp+/fr169eJ\nbt26devWLSInJycnJyciV1dXV1dXIjc3Nzc3NyJvb29vb28iPz8/Pz8/In9/f39/f6J27dq1a9eO\nqFmzZs2aNSMqXbp06dL4NAAAAAAAAACACTlhCmHxysnJycnJIdq8efPmzZuJFi9evHjxYqLt27dv\n376dKDs7Ozs7u/jaU7ly5cqVKxN17dq1a9euRG+++eabb75J9PLLL7/88stELi4uLi4uRvcaAAAA\nAAAAADgyFLDs7OrVq1evXiWaN2/evHnziBYuXLhw4UKirKysrKws68f7+3N26sTZpAln/fqcNWty\nenhwurrqn3/7Nqec+9w5zpMnOZOTOX/4gTMlJe92e3h4eHh4EEVERERERBCNGDFixIgRRJ6enp6e\nnkb3KgAAAAAAAAA4EhSwitjt27dv375NNHXq1KlTpxLFxsbGxsZqx0VgIOdbb3GGhXF6exdvey9e\n5Fy1ivO77zil0CVkauLw4cOHDx9ONG7cuHHjxmnHS7qzZ8+ePXuWaOfOnTt37tSmep48efLkyZNE\nZ86cOXPmDNG1a9euXbumTe0UFStWrFixIpG7u7u7uztR7dq1a9euTVS/fv369esTtWjRokWLFkSd\nO3fu3LkzUa1atWrVqmX0VQMAAAAAAACYAwpYRWT9+vXr16/XCjwXLly4cOECkZMTf71XL86oKM5W\nrYxu8d/76SfOadM4t2zhlE+KFFhiYmJiYmKIXnnllVdeecXoVheeFKJkaufSpUuXLl2qFaqKi6xZ\nFh4eHh4erk3tfO6555577jmjewkAAAAAAACgeKGAVUB37969e/cu0ciRI0eOHEn05Zdffvnll9rX\nW7TgXLCAs3lzo1tcOAcOcEZGciYl6b8uUw3nzJkzZ84conLlypUrV87oVufv0KFDhw4dIpo2bdq0\nadOI1q1bt27dOqJHjx49evRIe5xM2ezQgbNdO86AAM66dTllemXFivrXkdFYV65w/v4757FjnHv3\ncv74I+e1a/rnOzs7Ozs7E/Xp06dPnz5EUVFRUVFRRE2bNm3atKnRvQgAAAAAAABgXyhgPSHZBbBX\nr169evUiSk5OTk5OJipXjncBnDWLe1MKPc7ORre4aOXmcs6fz/nRR5z37nFKQSUuLi4uLo7Iy8vL\ny8vL6FZrLl++fPnyZaLRo0ePHj1aG2El3wVSdAsN5ZQpnsHBnPZ+P6VotmMH5+LFnKtXc0o/y66T\nAwcOHDhwINGsWbNmzZpFVKNGjRo1ahjdywUnUy937dq1a9cuLX/77bfffvuNKDU1NTU1lSgzMzMz\nM9P2VE3ph3r16tWrV4+oYcOGDRs2JOrQoUOHDh2I2rdv3759e+3xAAAAAAAAYG4oYD2mEydOnDhx\ngqh79+7du3cnOn/+/Pnz57XF1WUNKVl03VH88gtnv36cqamcMtVt69atW7du1abEGWX58uXLly8n\nioyMjIyMJLp+/fr169eJKlTgrw8dyvnPf3I+84xxbc3LpUucs2dzysi+u3c53dzc3NzciL744osv\nvviCqF+/fv3kPTEj+amzZcuWLVu2EH377bfffvst0aZNmzZt2kR0//79+/fv2+/1ZYRg7969e/fu\nTfT222+//fbbRD169OjRo4dWIAQAAAAAAABzQAErH1K4kpEbV65cuXLlClHbtvz1TZs43dyMbqmx\nZMpb796csoZW9erVq1evro2kKa5ClhRAhg0bNmzYMKKvvvrqq6++0r4ua5LFxHDWrm10Dz6Z06c5\nhw/n3LxZ//UhQ4YMGTKE6PPPP//888+JXFxcXFxcjG410apVq1atWkU0ZcqUKVOmEB09evTo0aPa\n10uV4nzhBc7OnTmbNeOUgrFsdmBrF860NE7ZZVOmvO7cySlTYv86TZSIqHHjxo0bNyaaMGHChAkT\niEJCQkJCQozuNQAAAAAAAEABywaZKti2bdu2bdtqI6569OCvr13LWb680S01lzt3OPv25dy6lVMW\nfd+7d+/evXuJvL29ve2x46Ls9ti3b9++ffsSbdu2bdu2bdrUwBkzOEeMMLqnipbsHhkRwSOH7tzh\n7+rg4ODg4GBtba/KlStXrly5+Noli99LQU12cRQ1a3LKCLiBAzntPe1UClxLlnDKlNgLF/SP69q1\na9euXbWRbXXr1q0r652Z0eHDhw8fPkyUkJCQkJBAtH///v379xOlpKSkpKRom0vYmnpZs2bNmjVr\nartjtm7dunXr1trnqEmTJk0cbZQpAAAAAACYhAIdXpxdqcDAwMDAQCnsKcWLdivFBRql+CtIW8kj\nYZRq04ZT+pHXyNL6uajcvHnz5s2bSrVs2bJly5ba6z37LCdPdTS+X+ydPNJIKZ4CqfVDq1atWrVq\npVR2dnZ2dnbR9bstvIujUlwY0dpRrRrnf/0XJ08TNL7fpB0LF3LyYvxauytVqlSpUiWlli1btmzZ\nMvv3X37k885rnynl7+/v7++vtddeGRAQEBAQoFR0dHR0dLTWDgAAAAAAAHtDAcvC4MGDBw8erN2w\n8XQ3pf74wxw32k9bZmVx1qunvxHmtagK/37du3fv3r17SvFIGe38zz/Pybv9Gd8PxZ1y3dIP0i/d\nunXr1q2bUjzFsvD9L3jXRqXGjh07duxY68JHeLj+82B0/+SXV69yvvFG3oWc8ePHjx8/Xrtue8vJ\nycnJydEKR7zmmXW7pGD77rucixZxJiZy8i6YSuXkcErhTo4fPKh/npzHsiAq6e7u7u7urtTcuXPn\nzp2r1IMHDx48eGD//gAAAAAAAMeDAtb/4ylW2o0ZTw1UKjnZHDfUT3seOsTJU/m0ft64cePGjRsL\n/r6999577733nvUNvKMWrizz1Km8CxBSqC0sKeDwFEHt/GXKcPK6Y8b3Q2FTRmbJdcl1RkRERERE\n2K+QdezYsWPHjinFU/esC0idOnHGxXE+fGif63/wgJPX/FOqQwd9OyRlhCWvHVj0/fG4pLAdHx8f\nHx+vfT5btGjRokULpapVq1atWjWlypQpU6ZMGS3luDxO3l85j5wXAAAAAACKn8MXsGRKla+vr6+v\nr3YjFhtrjhvnkpbz5ulveHltLKV47arHf9+WLl26dOlS64Kjo0wVfNKUqYWWBcQVK1asWLGi4N8/\nH3/88ccff6ydj3d1VGrLFnNcd1EnL5avXadc97hx48aNG1fwfrS0fv369evXK+Xq6urq6qq9Dq+/\npRSvLWee/rAc6SdTRwtboH5caWlpaWlpWqFKpnxKe4oqeQ057XXS09PT09Ptf30AAAAAAIAClvro\no48++ugj7QalRQvO3Fxz3CCWtJQRIkFBBSsAXL58+fLly0pVrVq1atWq2vO//NIc12f2/OILfb/L\nVLSMjIyMjIzH/75Zvnz58uXLtfPIyKSSWriyzO+/5+SdHbV+kLW/CmrRokWLFi1SqnTp0qVLl9bO\ny4vbK5WdbY7rt8ybNzkHDND3h1xHYfvFkqyhJz83KlSoUKFCBe11nZw4efdKpSZP5ty9m/PyZU6Z\nSikpx+Vxn36a988rSSkw8q6VRb+2HwAAAAAAaBy2gJWZmZmZmandgMgNz4ED5rghLOm5b5/+RlNG\nbFy9evXq1au237fw8PDw8HDtBrJnT3Ncz9OWL7+svxEfNGjQoEGD8v++4d3srBdnl0XZjb6u4k6Z\nWij9ICN/UlNTU1NT8+9PISOuLAtXn3xijut80pw4Ud8vcl2FHZElI55eeOGFF154wbpgFRbGmZJi\nn+s6cYIzNFT/utIO2SzB3iOzZGrp9OnTp0+frhTvEqmUn5+fn5+f9v81STnepUuXLl26KDVjxowZ\nM2Yodfz48ePHj9uvnQAAAAAARclhC1jyl3u58ejd2xw3fo6WPXrobwAnTpw4ceJE6/crKSkpKSlJ\nKScnJycnJ23K4OnT5riOpy1lbSyZUij9evjw4cOHD1v3v6zx1Llz586dO2vvlyzObvT1GJ2Wi73L\nYvn5OXny5MmTJ5WqZFEQlJE/Rl9XUReypPD5pIUT+Vx6e3t7e3tr55MplUb94WH/fk7LKZQ+Pj4+\nPj5KJScnJycnP/512nLgwIEDBw5Yf/8VVbZp06ZNmzZK7dmzZ8+ePYVvLwAAAACAPThcAUt2X/Pw\n8PDw8NB+gZcRQUbf8Dla7tmjv5Hy9PT09PS03iUvJCQkJCREe9yoUeZo/9OeI0fq+z8sLCwsLMz6\n+2blypUrV67UHletGufTsqugvVN2LfTw0Pfn2rVr165da92fsluf5eLsb75pjusp6uzfX98vQUFB\nQUFB+e9aeOnSpUuXLmkFIXl+u3acmZnmuD75PggO1l+nl5eXl5eXUhcvXrx48aJ6bLLrpCwiLwVm\nOa+7O6fsErlhA6eMELt1S59yfP16/fPc3PTtldcZOnTo0KFDtXYAAAAAAJiBwxWw5IZSfmFv2tQc\nN0COno0b62+kNmzYsGHDBqVOnz59+vRppZydnZ2dnbURQ+np5mj3055paZzSr9LPZ86cOXPmjDby\nqlGjRo0aNdLeH0edMphfLlig/xxLgcpyl8Lo6Ojo6GjtcTKSSAoORl9HUaeskVW7tr5/5s2bN2/e\nPGXlzp07d+7csZ4q2Lkzp6xZZfR1Web9+5yyO6S0W6YW5rdGVlZWVlZWllKdOnXq1KmT9nwZcTpu\nHOeNG0XT3uvXOaOi9K+j9TeP+Lp27dq1a9fUE5M/REgBvH///v37989/qqM8Tp5n+QcNAAAAAHBM\nDlfAev31119//XXtF/Q5c8xx4+PoGR2tv3EKDQ0NDQ1V6tNPP/3000+14yV1hIrRKYuESz9PmTJl\nypQpSsXFxcXFxWnHa9bU36gb3W6z5b17nD4++v6Mj4+Pj49X6saNGzdu3NAWz9e+bo722zvj4vT9\nIiNhZTdYYTnFWwp8MtLN6OvIL69c4bScWmhrirSMdLKcIujlxVlcUyRlF1f5Ppd2tG/fvn379o9f\nSFqzZs2aNWuUev75559//nntPAXNOnXq1KlTx/aIRgAAAABwDA5TwJKpKrINuvxifPGiOW54HD3P\nndPfsMgug/Xr169fv752XHZ/M7q9JS23bdP3f0BAQEBAgPXUzZkzzdFes+f06fr+7NevX79+/ZSa\nNWvWrFmztOMdO5qjvcWd7dvr+2f27NmzZ89WKi0tLS0tTdtV8GnfXMPWZhUyNVLIVEHpDymAGvX/\nJ3ldb2/9+yRTCy3l5ubm5uYqNWrUqFGjRlkXoP7t3zjnzeP87TdOy6mOR4/qH9eokf48kqNHjx49\nerT2ugAAAADgGBymgLVv3759+/ZpvwD7+5vjBgepz3r18r5hkbWFcnPN0c6Slg8fclquiePi4uLi\n4qJUqVL6G1uj22v2vHCB09mZs3z58uXLl9emSEn/yogko9tb3Llxo/5z1rBhw4YNGyo1ePDgwYMH\na8dlV0Gj21vYDAnRX29kZGRkZKRSP//8888//2y9OUVSkjnaffAgp+VmD4mJiYmJiepPloUrFxdO\nmVJb0J/b8rz58/XnldcZM2bMmDFjlE0ZGRkZGRlKjR8/fvz48UoFBgYGBgZaT12U4/I42aUYAAAA\nAMzFYQpYlmvODBlijhsEpD7/8Q/9DYpknz7maF9Jz1dfzbv/W7c2R/uetnzhhbz789lnOR88MEc7\nizvluqtX1/eLjFCSEUspKeZob2Hz+HFOua4qVapUqVJFqQ4dOnTo0EG7flnjyuj2WubHH+vfp+Dg\n4ODgYG2qoByXAtOOHfZpx/bt+teR1123bt26devUn1avXr169WqlKlWqVKlSJevvv/xSRmrL9QEA\nAACAOTiTg+Bt27V/N2lidIsgL7yYu7W2bY1umWPg3d2s8eLZ8KR4VzprPXtyli5tdAuNIdfdo4f+\n+K1bt27dukXUrBn/u359o1taNHjEL1FgICevhUa0a9euXbt2EfGugkRjxhjd0rxxAYuIR2gSJSQk\nJCQkEI0cOXIk72TK5s7ltPW5L6wuXThnz9Yf5ymFRCtWrFixYgUR76ZKxGurEb3yCj9u505OnrKo\nZUICZ+/enDdv3rx58yYRr8VIxGtvFX+/AwAAAICewxSwUlJSUviv+czPz+gWQV5s3bAGBBjdMscg\nN9qWmjc3umVPJynEWOI1oIDXALMmBYeShkc4Wnv9dc7KlY1uYd6qVMm7/RcuXLhw4QIRr3FFNHhw\n8bQnIoKzYUPOU6dOnTp1iujdd99999136f9HlhNNm8Zf37CBk3eHJHJ11acU6HlqK9G//sUp55Hz\nJicnJycnE/EuiUReXl5eXl5E3t7e3t7eRAMGDBgwYADRxYsXL/J0awAAAAAoSg5TwLL8hfK554xu\nEeSFd+2yxmtjgb3ZKiCWlJEwxc1WoZwXpwYpQFgqqSP+bF2XjPwxO1uFxf/4D05eK8/+5HX+/d/1\nx+/evXv37l2tnWPHFuz8UVGcvXpxyois1q1bt27dWhvpxYvxE6Wnp6enpxMtX758+fLlRLymFgpZ\nAAAAAEXNYQpY8guokL8og7nYGoEgU2zAvmz1M6/ZBE/qmWfyPl6zptEtM4fatfM+XlIL1rauy1Yh\nz2waNMj7eNeuxrSnW7e8j/91WmNhWJ5HCmQy9ZU3a9BSjmdlZWVlZRHxIvPG9A0AAABASeQki2EZ\n3RB7K1u2bNmyZYlycnJycnKI7t/n47wYLJiFvC+865X1cbxf9oX+L1roz7/naP1j63qzszkrVjS6\nhX9P1oyqVMkc7ZfXtfzDR1G1x9b5z5/n9PXVH5dClhSoZYphWlpaWlpa8fYNAAAAQEnkMCOwAAAA\noOAePTK6BXr2/tObrfPzbpIAAAAAUNwcpoDF27Nr/5a/JIO5/HWa51/h/SoeMuLAEvq/YGx9nm0d\ndzQ3buR9/I8/jG6ZfVy7lvfxS5eMbtnjSU/P+7iMSCputl43MbFozm/rPP/4B6flFELLRew7derU\nSRaOBwAAAIDCc5gCVuXKlSv/dRqArRsnMJatG3tbN35QtGz1s60bV/h7tgoT584Z3TJzOHs27+Op\nqUa3zD5sXdexY0a37PHYauf33xvTnv/937yPz5lTNOe3PE/58uXLly9PFB/P/5apgpJy3MPDw8PD\ng2jmzJkzZ840pm8AAAAASiKHKWD5+Pj4+Pho/z5zxugWQV5On877eEm9oTWbkyef7Dj8vZSUvI8f\nPWp0y8zht9/yPp6QYHTL7MPWdW3caHTLHo+tdv73f3Pm5hZPO+R1vv5af1wKTJs28b+nTSvY+f/1\nL87NmznlD2D79u3bt28fUf/+/fv376+tcSU5YMCAAQMGEB0+fPjw4cPWv3cAAAAAQOE4TAHLz8/P\n769b2tu6sQRj2Xpfjh83umWO4cSJvI8X1ZQcR5OUlPfxXbuMbpk5/PBD3sc3bDC6Zfaxfv3fHzfr\nyODr1zktC1g1a9asWbOmVpBduLB42rNgAacUQOvWrVu3bl2ib7755ptvviFycnJycnIiGjeOv967\nN6cUEGVKtKQc79WLc/x4TjnP119//fXXXxM1adKkSZMmRMuWLVu2bJm2OLvk0qVLly5disIVAAAA\ngL04TAErICAgICBA+/eRI0a3CPJi633Zs8foljmG3bvzPr5zp9EtezrZGnGzZQvnw4dGt9AYDx5w\nypQrIWsV/vIL/7uk/KFBCvDJyZxVqlSpUqUKUceOHTt27KhN3f3sM6NbmrcZMzhlbbIuXbp06dKF\naO7cuXPnztUe989/cu7YYZ92yHlHjdIfj46Ojo6OJurXr1+/fv2IVq9evXr1am3kVFyctJtTdlGU\nlOOWI67kPH379u3bt2/x9zsAAAAAWFAOgof+y55CSvFoLKX4CNIsWbcup7xPku7unHzDb3w7S1pK\nv1atqu/3smXLli1bVilnZ/43L1ZsfHvNnry4tNZvPLVJKR4JqvUvT3Uyvr3FnTzCSuuHRo0aNWrU\nSKmIiIiIiAjteGioOdpb2OzTR3+9kZGRkZGRSh08ePDgwYNK8UgfpcqX56/ziEfj233gAGe5cvJ5\ndnZ2dlYqKSkpKSlJ/Wn06NGjR4/Wrs/FhTM2lrOgP7fleTEx+vPK64wZM2bMmDHKpszMzMzMTKUm\nTJgwYcIEpYKCgoKCgpTiQqmWTZs2bdq0qfY4eR4AAAAAmIvDFLAePHjw4MEDpfgvq9ovwLghN0fy\nYs7a+1K1atWqVata3/Dzor3Gt7ek5dat+v5v0KBBgwYNlAoNDQ0NDdWO80gM49tr9uS1d7R+e+ON\nN9544w2leKSIdrxDB3O0t7izbVt9//BIHqXS09PT09OVcnV1dXV1VcrJib++f7852v2kuXcvp1yH\nFEwuXbp06dIl9aehQ4cOHTpU6w+efqbUxYvGtFv+v+jtrX+fhg0bNmzYMGUlNzc3NzfXupAl2bAh\nJy+KrtSvv3LyrqdaynF5nDzP8nxSuJLXBQAAAADH4DAFLNGnT58+ffpovwjPnm2OGx1HT546o70v\nUjiZPHny5MmTteMDB5qjvSUtw8P1/T916tSpU6cqtXnz5s2bN2vHfX057983R7vNlvfucVre+MfH\nx8fHxyt18+bNmzdvKuXu7u7u7q59nacuGd9+e6flyCtPT09PT0+lbt26devWLfUnGQkjj3v+ec4r\nV8xxHfmltPO55/TX+8knn3zyySfKSk5OTk5OjlLBwcHBwcHa4728OGUklL3bfegQJ++qp7Wjffv2\n7du3V+r+/fv3799X+Vq3bt26deuU4rWprAtQT5pyHjkvAAAAADgmhytgrV27du3atdovxoGB5rjh\ncfRs3Fh/w7Jhw4YNGzYodfr06dOnT2tTV2QqS3q6Odr9tKeM8ChbllP6+cyZM2fOnFHq0aNHjx49\nUqpx48aNGzfW3p8vvjBH+82W//mf+s9xYGBgYGCg1o9CRhzJ4+rU4ZSRKEZfR1EnL05uXdCJjY2N\njY1VVu7evXv37l2lWrVq1apVK+3xnTpx5uSY47osUwq7HTvqr7NNmzZt2rRR6t69e/fu3VM2Xbt2\n7dq1a0p17ty5c+fO2vPl597YsZy8qHrh28trWin10Uf615HXlYKatOtJSWGO15JSKjw8PDw8XCl/\nf39/f3/rqXxyXB4nz5PzAAAAAIBjc7gClvwF2cPDw8PDQ/tFXaZ6GH0D5GjJi7Nr70O1atWqVatm\nfcMSEhISEhKiPe7DD83R/qc9P/hA3/9hYWFhYWHW3zdr1qxZs2aN9jhPT86rV81xHUZnZianrNUm\n/WRrxIhMaZa1d+TxAwaY43qKKh894uzXT98vzZs3b968uVIPHz58+PChskmm2vn6+vr6+mrPb9eO\nMyPDHNcp3wfBwfrr9PLy8vLyUop3qVOPTX7+vf/++++//762Rpac182N8+235XPGyYvFW0/Nk+P/\n8z+cgwZxWq55JwVsmSoon1MAAAAAADNwuAKWGD9+/Pjx47Vf3Hn7bKWMvhFytHzpJf0N1KRJkyZN\nmmT9fh06dOjQoUPWix3//rs5ruNpy9RUThlxIf2anJycnJxs+/uma9euXbt21d6v/v3NcT1GZ1iY\n/nPcvXv37t27q3ylpqampqZar803aZI5rquwOX68vl9kpM2JEydOnDiRf/8I+Vz6+Pj4+Pho55Op\nhfv2GXN98ocPy5FlUnA7cuTIkSNHHv86bfn1119//fVXpXr27NmzZ0/tdYoqeVdB68XZAQAAAADM\nxGELWFeuXLly5Yr1YsE//2yOG7+SnnLjJzdQlSpVqlSpklJZWVlZWVm237e33nrrrbfe0p7Xs6c5\nrudpS8vC4TvvvPPOO+/k/30jBRd5v+T5Cxea47qKO+fP1/ejFKJ+//3333//Pf/+FBs3bty4caNS\npUuXLl26tHa+iRPNcZ2PmzLiyrJwJdcla6oVlCzybjm1UH5+h4Rwnjhhn+uTkUyyq6C8rrRDpgpa\nLtJe1KQAOHPmzJkzZ2qF5fym5nXr1q1bt27a81JSUlJSUuzXTgAAAACAouSwBSwRFRUVFRWl3YA0\nb85Z0G2/kX+f0q9Nm+pv/CZOnDhx4sT836+MjIyMjAyl3Nzc3NzcUEB50rRco0n6Ufr1ca1cuXLl\nypXaeUqV4pSpTEZfp70zLo6zdGl9fy5ZsmTJkiWP34+WFi9evHjxYutClox0u3nTHNdvmbLGleVI\nNLmOwvaLJVkjS35uyB8i5HUl5efMJ59w/vgj56VLnLLovqQc/+EHThkJJ2slWp5fCkSyOHt+a1wB\nAAAAAEDBOXwBS3a/qlWrVq1atbQbk88/N8eNYUlL2R5d+rl27dq1a9dW6s6dO3fu3Hn8923FihUr\nVqzQziNT4ZKSzHGdZsuDB/X9JP0mhaiCGjdu3Lhx47TzVajAWVJ31du0SX+dct2PW4B9XDIiy3Kk\nW+3a+nYY3R+yq6DlFDoZiVbYEVePS0Y8RUZGRkZGKlWlSpUqVapYF5wKm3LeoUOHDh06VKnLly9f\nvnzZ/tcHAAAAAAAoYP1Jdr2zLIjItuJG3yg+7ZmYyCm73Uk/x8XFxcXFFfx9Gzx48ODBg7XzPfMM\n56lT5rhuo1P6oUYNfb9HREREREQUvN+F7K4n55PzlynDWVJGxslUQcsRV1LIsBeZ4hUUFBQUFGRd\nUJHFzDdu5HzwwD7XL7v+ScGqbVt9OyRlcXaZamoU2axj27Zt27Zt096nli1btmzZUqnq1atXr15d\nKRcXFxcXFy3luDxOnifnkfMCAAAAAEDxQwHLguWNeL16nFlZ5riRftpSdueqU0d/oyu7axWW3FDK\n2i5yflnc2VEXeZfClYzYkX6RxcWLelt6KWRZjsiSfOMN/efB6P7JL2VXwdDQvAs1RT3iKj+yG9y8\nefPmzZtnvYuqZPXqnLLL3DffcB44oL+u+/c5ZeqcHJfHff21/jxyXsvX8/T09PT0VComJiYmJib/\nXQUBAAAAAAAKCgUsC7K2iuX29m3acN6+bY4bbLOn9FOrVvob3mbNmjVr1qzo14rJzs7Ozs62XtxZ\nRmQ5ytRCmSpoOeJK+kX6yd6WLVu2bNky6ylwHh6cCxboCylG95sUcmJjOd3d9f0nU+IKO+WyqMj7\nOHv27NmzZyvVsGHDhg0bWheYijobNWrUqFEjpebMmTNnzhxtCjYAAAAAAIC9Ocl/EOikpaWlpaUR\ntWvXrl27dkRnz549e/YsEe/eRrR2LSevhQPizh1O3qWLaNs2Tl7rimjv3r179+4levbZZ5999tmi\nf/3bt2/fvn2bKCQkJCQkhGjr1q1bt24l4imhRDNmcI4YYXRPFa3vvuMcMoTz7l3OLl26dOnShWjd\nunXr1q0j4oJS8bXr1KlTp06dIuKRjUTbt2/fvn279nUfH86hQznDwzl9fe3brgsXOJcs4eQpgkRp\nafrH8Yg1ovnz58+fP5+oTp06dXg0oTkdPXr06NGjRDt27NixYwfRTz/99NNPPxGdPHny5MmTROfP\nnz9//jwRF56058nnwtfX19fXl8jPz8/Pz4+odevWrVu3JuIRjkQNGjRo0KCB0VcJAAAAAACOCAWs\nfPAaNEQdOnTo0KEDUWZmZmZmJhGPyCLi3ciI3NyMbqmxeIolUa9enPv3c/KaMkS7d+/evXs3Uf36\n9evXr2//9vAUOaIRI0aMGDGCaOHChQt5PSb28sucMTGcZi5K5IWnCBING8a5dav+67yYNRFPOSMq\nU6ZMGV6Xylhr165du3Yt0eTJkydPnkx05MiRI0eOaF93dubk3UCJgoM5mzXjlM+OtzenZTEuO5tT\nClEnT3LyGmxECQmcPCKP6NEj/fMDAwMDAwOJJk2aNGnSJKLXXnvttddeM7rXAAAAAAAAAAWsxySF\nrJdeeumll17SRmTxGllEK1dy8rbtjkMKAf36cfKaU9qIKxkBVVyFK1tWrVq1atUqoiFDhgwZMoTo\njz/++OOPP7SRWRERnKNGcXp5GdfWvKSnc86axSnFOJ76RuTm5ubm5qYV6sLCwsLCwoxutW3yU0c+\nH4sWLVq0aBERb6ZAxFNM7ff65cuXL1++PNGrr7766quvEg0aNGjQoEHaiCsnJycnJyejewkAAAAA\nAAAEClhPKD09PT09nah37969e/cmOnTo0KFDh4jKleMb3hkzuDfff58fX6qU0S0uWrm5nDJyaexY\nTl7LiIjXuCLatGnTpk2b7DdVsKBkBN2YMWPGjBlD9N1333333XdaQYV3SSQKCeF86y3OLl047f1+\nSv/KNLvFiznXrOGUfpYCixRePvvss88++4yoWrVq1apVM7qXC06mgO7Zs2fPnj1EP/74448//kh0\n7NixY8eOaVPhMjIyMjIyrKfCVaxYsWLFikQ1atSoUaOGVjjlNaKIOnbs2LFjR21qcIUKFSpgGjAA\nAAAAAID5oYBVQDJC5MMPP/zwww+JFixYsIAXpmZBQZyytg4vZv70+uknTinM/fKL/uu8qyBRdHR0\ndHQ0UdmyZctKMcjMkpOTk5OTiaZNmzZt2jSiNWvWrFmzhoh31dMeV7UqZ8eOnO3acQYEcMoURN6t\njahiRf3rSJGFd3vTRqodP865ezfnrl2c16/rn+/s7Ozs7EwUGhoaGhpKFBUVFRUVRdS4cePGjRsb\n3YsAAAAAAAAA9oUCVhGREUfDhg0bNmwY0blz586dO0ck05B69OCMiuJs29boFv+9vXs5p07ltFxj\nSaYIxsbGxsbGEvXs2bNnz55Gt7rwZGrokiVLlixZQsS76REdP378uBSbioMslj1gwIABAwYQDRw4\ncODAgUS1atWqVauW0b0EAAAAAAAAULxQwCpid+7cuXPnDtH06dOnT5+uLaJtOdVJRs28+SanrFdU\ns2bxtvf8ec5VqzhlN7tff9U/TnYp++CDDz744AOisWPHjh07VltLqKS7cOHChQsXiBISEhISEogS\nExMTExO1tdGk8HX16tWrV69qU+GEq6urq6srkaenp6enp1YAlCluLVq0aNGiBVFwcHBwcDCRj4+P\nj+zQBwAAAAAAAODoUMCys6ysrKysLKKYmJiYmBhtqqEUOizJovCdOnEGBnLKAugy+sbdndPWLmzX\nrnGeO8cpu7EdPsz5ww+cqal5t1vWUpLd7IYPHz58+HAid3d3d3ltAAAAAAAAAIDigAJWMcvJycnJ\nySGKj4+Pj4/Xpqp9//3333//PdGNGzdu3LhRfO2pWrVq1apViV588cUXX3yRKDw8PDw8nKhHjx49\nevQgKlOmTJkyZYzuNQAAAAAAAABwZChgmURubm5ubi5RUlJSUlKStgvbiRMnTpw4oe2+JlPZrl+/\nfv36ddu7sElhytfX19fXl8jPz8/Pz4/I39/f399f24UtKCgoKCiIqFSpUqVK2o6JAAAAAAAAAFAy\noIAFAAAAAAAAAACm5mx0AwAAAAAAAAAAAP4OClgAAAAAAAAAAGBqKGABAAAAAAAAAICpoYAFAAAA\nAAAAAACmhgIWAAAAAAAAAACYGgpYAAAAAAAAAABgaihgAQAAAAAAAACAqaGABQAAAAAAAAAApoYC\nFgAAAAAAAAAAmBoKWAAAAAAAAAAAYGooYAEAAAAAAAAAgKmhgAUAAAAAAAAAAKaGAhYAAAAAAAAA\nAJgaClgAAAAAAAAAAGBqKGABAAAAAAAAAICpoYAFAAAAAAAAAACmhgIWAAAAAAAAAACYGgpYAAAA\nAAAAAABgaihgAQAAAAAAAACAqaGABQAAAAAAAAAApoYCFgAAAAAAAAAAmNr/Ad9cGQa9ASyIAAAA\nJXRFWHRkYXRlOmNyZWF0ZQAyMDE3LTA4LTA0VDE4OjMwOjI0KzAyOjAwgL2PcgAAACV0RVh0ZGF0\nZTptb2RpZnkAMjAxNy0wOC0wNFQxODozMDoyNCswMjowMPHgN84AAABpdEVYdHN2ZzpiYXNlLXVy\naQBmaWxlOi8vL2hvbWUvY3lyaWxsZS9naXQvY29va2Jvb2stMm5kL2NoYXB0ZXIwMV9iYXNpYy8w\nMV9ub3RlYm9va19maWxlcy8wMV9ub3RlYm9va180MV8wLnN2Z4MWeUoAAAAASUVORK5CYII=\n", + "image/svg+xml": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " " + ], "text/plain": [ "" ] }, + "execution_count": 13, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -259,24 +398,13 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { "podoc": { "output_text": "" } }, - "outputs": [ - { - "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAgICAgICAgICAgICAgICAgICAgICAgICAgICAgI\nCAgIChwLCAgOCQgIDRUNDh0dHx8fCAsgICAeIBweHx4BBQUFCAcIDwkJDxgVEBIVFRUVFRUTFxUV\nGBUVEhUXFRUVEhITFRUVFRUSEhISFRUVEhUVFRISFRISEhUSFRUVEv/AABEIAWgB4AMBIgACEQED\nEQH/xAAdAAEAAgIDAQEAAAAAAAAAAAAABQYEBwEDCAIJ/8QAWhAAAQQBAgMCBgsJCwoGAgMAAQAC\nAwQFERIGEyEHMRQiQVFVlBUXGCMyU2FxldLUCBYzNFJUgZHTJEJDYnJzdKGys7QlNTZEgpKTsbXw\nY3Wio9HhwcImg4T/xAAbAQEAAgMBAQAAAAAAAAAAAAAAAQIDBAUGB//EAD4RAAIBAgEIBwYEBgID\nAQAAAAABAgMRBAUSITFBUpGhExQVUYHR4SIyU2Fx8CSiscEGFjNCgpI0crLS8SP/2gAMAwEAAhED\nEQA/AN5oiKpyQiIgCIiAIiIAiIgCIunIT8qGaUDcYopJNCdNSxpcBr5NdFWc1CLk9hkpUpVZqEdb\n0Hciqs3Fb2h55DfEEp+GevLiqyDyeXwgj/ZC7H8UPDnN5Lej3s13n97ejqa93mfu/QtTtCj38jr/\nAMvY3d5rzLMixMLcNiBkxaGF5kG0HUDZI+Pv+XZr+lZa2qdRTjnR1HJr0J0ZunPWgiIrmIIiIAiI\ngCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAi\nIgCIiAIiIAiIgCw87+KWv6NP/dOWYsPO/ilr+jT/AN05a+L/AKUvob+S/wDlU/8AsjX1v4M38mz/\nAIXGrul/Cv8A56X/AKzAum38Gb+TZ/wuNXdL+Ff/AD0v/WYF5c+p9xcuEfxKH55/8RKpVRXCP4lD\n88/+IlUqvS4H+jH72nzHLX/MqfUIiLbOWEREARYl/JQQOibLIGGZ2xgPlPnP5Leo6nzhZahSWovK\nnJJSa0PUERFJQIiIAiIgCKLy/EVCm8R2rdeB5ZzNssjWkR7i0SO1+BGXAjc7pqCuzBZunfj5tKzF\nai1IEkLw9jtCWkseOkjNwc3c3UaseO8FBYkEVd4g4srQVhLXlgnmnilfTj5h5c/JmhrzO5jAfEjk\nsR7tOvfou3hLiSC8LETZopbVKV8NtsMVqKNr2z2IA+PwqMGSIvrTN3M3N1hlAcdNUJs9ZOosY5Cu\nJxVM8ItOiMzaxlj8IdC120zCHdvMQcdN2miyUICIiAIiIAiIgCIiAIiIAiIgCIiAIiluG6YkeXuG\nrY9NAe4uPd84Gmv6kB0VMTNINQ0NB6gvO3X9Gmui7pMDOB05bvka46/+poCtCKLk2KLLG5ji1wLX\nDvB6EL4VuzNATs6aCRvwCenTytJ8yh34CYDUGNx/JBIP6NW6KSCJRfUjC0lrgQQdCD3gr5QBERAE\nREAREQBERAERdGQuRwRmSQ6Nb5upcfI1o8rijdgk27I71iWslBHqHSNLwD721wdIdB3BgOuqo2b4\nimnOm7lRE6CNp0Lv5Th1cfk7lEDQjzgrVnidkdZ0qOAeiVS+bfZ5mxavEdOTX33ZodpEgLSD5QR5\nCFIVrUUv4ORkn8h7XafOAei1WAB3DTp36uLj85cdUimAcNrtHA9C06EH5CO4rHTxMkvbsbGIwFOc\nm6F7Lv0m2lh538Utf0af+6cqzgOKHNIjsnezuEv75v8AL0+E35e/51Zc2dalojqDVmIIPQgxO0IV\n8RNSoyt3GDAUpU8XTT3ka/t/Bm/k2f8AC41d0v4V/wDPS/8AWYF02/gzfybP+Fxq7pfwr/56X/rM\nC80fT+4uXCP4lD88/wDiJVKqI4UeG0YSToAZ+p7vxmXRZk2Srs03zRt17tzgNV6LB1Ixoxu/u583\nyth6lTGVHCLenYr7DLRYcWUrvO1s0bj16BwJ6DU6AfJquZ8lXZoHysYSNQHO2nTUjuPygra6aHeu\nJzup172zJcGZaw8zkWVYXTPDnAEANaNXOc74LR5ifOUiylZ50bNG49+gcD0CjeNJGupPLSDo9g6e\nRY6tdKDcWr2NnBYCc8RCFWLScknottNecQWZ7ExmnboXjxG66tZGCQ1rfkHX+tXbgvOPdsp2Q7nN\nBEcnwuY1rd215Hc8NB6nv0HlVYqvOw9T+AH79w/fDr+H6H5enzqR4Q/zgzy+KfLr/qzvO8ri4avN\nVU763pPoGVsDRng5Rzfci3H5WRsFEReiPloREQGJmb7KlaxakDjHWgmsPDBq8shjdI4NHlcQ06Ko\n5PN5KiGT256r3CCW9ZoRU5hE2jXMfhjamR3nm24I5Wv8cDmbHaNYDq28PaCCHAEEEEEagg9CCD0I\nI8ipGc4RiZLSETLElR8vgdyN09m06KjI3fHBA2aQivRfairMmDBqWbQSGNIQtGxR+OM9lnmeAzSi\nzHfnZXjx88uNk3CeXH14Z7ETyHxRHKcP32mbUObYn3N0GimOBMuIrsdhsVh1OWS7D+56dmd/NyUl\nLKAzQwxl9UQ5H2frva8DaWndor/d4ex5syZCeJhm5JjkfLLJ4Ps0a0vfXe/wfm7GMZzS3doxo106\nKDzfafia2rWyvtOB7qrA5mp6/hnkRnr5WkrJTpSn7quVqYmnBe07Gscf2eZyTGUYnwCG1QE12oWT\nt0a/IR0JLtOcSkaTPkiybXfvQbkZB6LY3Z1jLta9kJLVSSBk4EED+ZBK2RtfKZy+bDuTIeVFJHlo\nGta7xtWS6gAamKd2sTSAuq4exKwa+OZHkADvJ5UBA6fKje1K61ofLhJxEeu8PnDdvnBdW2n9azdT\nq/LivMwPKEGttvoyN48o3rGQycbKU2kpMEFp8UrIOTapYvHRhllg8cCKzxBK7YdW8oa6Et16uDr0\n9eB08QmNajVhFWvWtcigc1mZW5BmHdWLt0lZkeVxVaJwb4oim7idFZ8T2u4yU7ZmWKx8pcxs0XmI\nJiJf+tqysDwbhZ6To60rrETnVwLVew2G7Gyo0MqQG7SDZy2KPc0GUl2j3akrHUoTh7yMtLFU6ism\ndOC4/ANOC2Y7TrO53slSjFfHthkht3Kb5IrVgzRvfTpyyua3dsAYXbQ4K8UrUc8bJYntkjkYyRj2\nno5kjGyMPyase13X8oLUXHfZjcNW/HRkjlZYjtw168cZrSQQ2mwxMrl7ZNsrWiHHxGU6bYcXs0Je\n4rZ3CeFbQqR1w7mSdZLExGhnsSHdNLoT4rS7o1nc1rY2joAsJlmo60SqIiFAiIgCIiAJr5P+/L/8\nIo6pbc63YiOm1jI9PP3anX/f/qCrKVrGWnSc1JrYr8yRREVjEjgHXu+X+rouVHcOW3TQCRwAJfJr\np3dXF3/7KRVYyzlcyVqTpzcHsJrhzHskDpJBuAdta092oAJJHl7wp+GFjOjGtaCdSGgDr8unyKp0\nclLC0tZt0Ltx1GvUgDz/AMULv9nZ/wCJ/un/AOVYxlpRVb2dsfxP93/7T2dsfxP93/7UWJuWlFV/\nZ6f/AMP/AHT/APK49nbH8T/d/wDtLC538WRgPjcB1c1wPy7SND8/jf1BQiyr96Sbbv2+LrptGnfp\nr5fkWKpICIiAIiIAiIgCIiALX3FmSM85aD71ESxg8hI6Of8ApI/UArzk5uXBM8d7IpHD5wwlv9ei\n1juAI2sc8aDmAgjTzuZIHbf0OWpi6uYkjq5KwjrydmlZbT4B08jT008YOI6/yHBw/QV9SPLiXOOr\nj1JA0BPzeRfK5jLdfG3adfg6a9x00BOh6rUzYp5206arVJRVG/s3OF9Me7TaAwB2moDTudoSW6ku\n29CT3Dyrjd06s2/kv0c3e3ToSxx1BWTFtY3c4gecn+ofOq+zNXZkbrYWTpwel92k+GVie/p83VTV\nHKPbUlrdJGvZJG1+7rGJGluhA7wCdRr51HRSA9Wnu83kPf8AoXWyuNxeXOc49+ojAI8m7YwF5Hnc\nT3JJyehanrMVGMI3lUbUo6Y6Not/AlPnZYP+9DTjaPnJgf8A1Lum/Cv/AJ6X/rMC6nTsDtpcNw06\na92ummvm7x+sLs066+QcvU69S5+QqyOJ1/2j+grSrUFFXiegyflKc2oVlZvU9Vyy48f5JHQH8P0L\ni1p/dMve4fBHyqEzVUPje7azWMsfrvJ6bQHajTxdB+vaFN4//NLfgj8P1c3c3TwmX4TR8JvyKLu2\neU17gGO8ZjSA3b0MevjEnxug6fOFjq+7H6fuzZwL/wD1qNb/AOyKqwtBBHL1BBHjHyfoXDGtAaPE\n0a1rR4x7mt0Hk8wWayi6UvayUxljXPJ0D9QzoW6OkA6694PkXy6i+JrHPmMnM3aDRrduxxafgyHX\nXp36dywXPQZ0b22klw/VAZzdrNXyMDfHcPFaRqQfK7d+9/iqVyY/ybJ0A9/7muLx8LXvPXX5PnWH\njbGreWQxvKfEwEjfu6nzO6P1HwvlXRnclthFccstc50jiGloJDy0DTyabTqfL1WalJK9+45OIpyq\n1I22ST8EYFUHYeh/AD8v8ofxe/5lJcI/5wZ/J8uv5sfOFgmxXbqAK+mwNG7XV3UHa7xPgd/6gkGS\nbXsRzRcvo0bgNdCdCwtHi/B2dAVNKSjNN7GjPiqcqtGpCOuUZJeKNnIqbZ4xefwULA3yF5c4n9DS\nNEq8YyA++wsc3y8suaR8vjEgr0irwZ8olg6sW01pRckVOzHaHTrENMNp5I1BayIMPnAcZO8Hv/Qo\nSz2sN/gqLj8slgN/9LYj/wA10KWBrVEpRWg41fKWHoycZy0rZZmzFVuPONq2KbtI51p7dY6zTodC\ndA+V38HHr3eU+Qd6pdntUuEHl1q0fyuMkhHy/CA1VMxmTlitm74ti24l/MsME5Eh/hGt7g8AaA+T\nyaLeoZJne9Thc52Iy7Stanf621Fux2AyefncctYkqwxiOQVI27CBJ1Zsif4sTtvXdJud1Vv4B4Zo\nV32tlaNzorLo2SytEsoY3TTR7xqP0KgRcUZkyyTR8wSShoeY6jTqGDRugMZA6eZc1ctn2F5jF0GV\n5kftpa7nnvP4Hp+hVqYHEzavOKSvoTto2bDcpZYwFKMs2nOUmo+00m7q2dt0Lu+Rsrh0/wCSJP5u\n1/yeu15/yP8A/wCUf/haugs59kZhZHkBEQ4FgpybSH/CH4HXrqvo2eIOVyOXkeVt2bPA5NNv5P4H\nXRaMch1FG3SR922s6lT+LaEqjkqU7dKp6lq7tZsHi/G15sbA6WCKRwbVAe5jS8AsaDo/Tc3p5lVu\nKeAXY+aGxhbE1eaWTltidJ01PUNbKepYdPgyaj5VC2L+edGIXsvGJu3RrqbgBs+D15OvTRc2+Is2\n4xul55MTxIwvptGjx5ekQ1+YrapZOxVL3KkdS0N6NGvRY0a+XMBXt0lGeubbSSelLN032NFv4N7Q\nXOm9j8vH4Jda4MEjm8uOV3c0PB6RPd5HDxT5NOgWw1554rzdnINYLrIi6M+JLyBDMGnvZuHew/kl\nTXD/AGi3asDICIrLYxta+bfzdv71rntdo7QdASPIFsV8lyks6Fr7VfR4HLoZbpxbjO9tja0+JuxF\nq6v2sP8A4Sg0/KyyW/1OiOqlaHafUkc1hq22ud0AYIpP/wBwdFpTyfXgruOj6o6NPKuGm82MtP0Z\nfEUE/iuoPjT8zB+rq7v+ZZuNzNewdscnj/kPG1x+YHo79C5+fG9rnUdKSV7EgiLrfYjadHSMafMX\ntB/USrNlErnYq5iptchN42oeJGg+R21zNoB7j0B/UV35a86RpjjIYNSHO11LgOmgI7gVBvr7NHGR\nrPGAaS7b45PigE+UlaM8XRv72r5M9DhMk4lQfs+8u9eZeF0ZCTbFK4HQiN5B8ztp2/p10UdXypaw\nCUAuHTcCG7vlII71H5u06UalwZC3qBqep85I+E7XoAFZ42lbXyZr0si4pVNMdXzXmZfBjvepG/ky\nahvcQC1vXTzEg/1qdVNoNewtlilHyHqQ4eYjyjp3fJ51Z6t5rmOe7SMMAL3Fw2gaEkknuA08qmji\naT9mLJyjk3ERbqyjo8PoZaLoo2452CSF4kY7uc35O8Ed4I8xXc4gdT0A6knoAO/U/IttNNXRx5Ql\nF5rWnuOUWPRuxTguieHhp2nTUEHydD10I6g+XyLIRNPShOEoO0lZhEXU+zGDoZIwfMXtB/USjZVK\n52ojTroR1B8o6ogCIiAIiIAiIgCIiAwOIfxSx/NP/sla1WyuIfxSx/NP/sla1WpiNZ0sF7rPiSTb\n/wBgAfKS46AfOuxzS06OBaR3g6aj50Y9zerSWnu1aSD/AFeRcfrPznU/rK1PazvkdVuj0StfP29x\nywdR84Wc9uvkHQ6jUajX5R5lhRfCHzj/AJrPVpK6szXjUlCSlHWj5YD5SDoA0aDQBrfgtAJ10A86\n+9P/AKKA6H/vyLohicHOcXNAd3sjY8NPUEE7pCAenUNAWP3bKK0Gys2vnVKs7S2aNZ97DqS3a3XX\nU7dXaOADgDrpoQB3gr5sjxT8mi7V12fgn/vyq0YJO6MNTE1KiUZPQtR11L0sQLWSODXd7dRp84Dh\noHA6HVSt+TcxrgXlpkiLdzA4aFh+CGjV3y6+XVQKlWj9zxkjQGVnV0rmtOm8dCPwY8nTvWtjI6Ez\ntZDqvPcNmsyJT4ju/wCCz+Ad8bKuID0Pf+Ek/gHD+Ck/V836V8yuGx3VnwWf61J8ZJ8nzfN3+VcQ\nuGh6s+HJ/rch/g3+XTqPl/QuZY9UdtEnfL8MePB8GPb00druDh8DzkLBzhO5mu8na74YAd+Efp0A\n00836Fm0OrpdNHaPhPiTOdpoHdS49en5C7h+n9JJ8uvl66dSt7CRu7nnsuYhQhmbX+xXHEkaa6fL\no12n6HBd74XSaEvlHTTxjGT/AOgaaLLzEI0DwNDrtPy9Cdfn6f1rrh+CPmW3OjGTuzj4fKtejDNg\n+OmxjPrkDv3aDqfL85XUpFR8g6keYlZUrGjKbm3J62fdbGQ3HtrTahsu5rHg6OilcxzY5B5HaOI8\nU9Cq9ws2BnhdG9BD4ZVtNPOe34ULXFk7evQsBDHA+US/IrVgfxqv/PR/2gq/2847we7Dcj8UXK74\n5CPK+ENjfr/KhkjH/wDWu3k6c6tOVDOavq+TOBlGNLD4iGKlBStrVlpRm9n2Njy2Vs5EwsjoVXht\naBjGsjc8fgdzGjQlrPfXa+WRnkVo494+Zhp2RHHz2YW1H37k9d8DBSpssR13TGKQh0+j5GktZ10U\nr2a4nwPF1ItNHvjE8uveZJ/fCD/JBaz/AGAqnx7w17K8QQ05LU1eq/Az+GRQti3Xa/snV1qvkkaT\nDG4gauZoemmqviqznOyehaEa2Cw8Ixu1r0ssT+OoRkPYzkym0cnFj2t3MAdHLjXZMXhr31xHHK3T\nv1YVE43tUgkiu2JaF+vVrULmTrTuED236dGbwed0LWye8y83aGxy6ahwPcux2Hg+/OG5tHOHDsjd\nfJ0yMbA7+UI5Ht18zlRMTxLBY4VyODrtnmvVMDl33GMidtqyx2Z4BUn18Ztt5c9zWadRE8rWubqh\nF7O4u7e1KKOuZblCzSliy1HFWq8std5ruyEUc8FkywvLJIeTMxxA6jxlbeF802/DJMyN0YjuXqZa\n4gkuo25qjn9PI4wlwH8ZaQzNWpn4skyKTn0clxPha8VmIuDHOZgYIXujeOpMc7evysV/+5xfZdw/\nC65r4W67lnWdQAfCDk7Rm1A6A8zd3JcmcIpXJSpx6x2WkxclK3Azbd8Huycvk2n45td9xscQdzWs\naLDNryNHddFDYTtYNmKxMcLko2xY+DKV2NdXsTW6VybkUnxRV3ksfI9spcH9GCJxJ0WPW4gp3OI8\nxzbcDJcTj5cdTqPkDZSJImXcpd2OHRmra8QPmrSHyqq9g0jZRZeybnug4TxdO2Q2RrK1yB2Rb4CW\nyDxJo67YNzR5S8+VLk9HG2ldxeHdpj3OxhZiLL6+Tbhdll00bGRyZpsj2RNa5mtgwxxSOkLO4AE6\nap20cNiWr4fXaGWKfjP2ADmV9dX7hpo4xnx+vk5iiODP3T941TvbSwDMxKPJvbjauNqanyauu2XD\n+ZW2ZI2uBa4BzXAtc09zmuGhB84IWWhWdOSkjVxWHhUi42NKZPMY59N13wSsJZKbYmRNjaxjL5k2\nSPDWeRrQ+QfJtXXwrQMMDXSa82QBztQA5rT1Yz5OmhPykqExfDrjmmYhxLoo7zw4H99DEDI5x+V1\neMf7yvmV/GJ/56X+8csmUJSo0+jUm85uWvZsQycqeJrKrmJOEVHUveWtmMsmrVkdo5vi6HUOJI6j\nyjTrrr5VjBWIDToO4dB8mi4R6CTMq9mJzBHHro/QiaRv77ToNPK3UdT86g5HAAuJDQOpLiAB8pJ7\nlJEKHsOa7VhBIOrSfJ1Zrp5+4pObZGHpxzrW0bTOklNcu2vbMGtDtzOjJAWh2o6nbqCo0ULG58ti\nEyskMxjD5HGNhJduMe7p4vkH8VfNc/ufZpoWxaHpoCNpGoGvyFfU0EIZuEoc7R52eDygjbrt1c5u\n3R3yLnYhaj2GRXomtl9H0Mc0LEB0na8bw0je4l2mjtugd+90af1LtqRPc/c2aOPle+BsmmhIDW7g\nC7x3eP0HyFdTg3c7TvjmMR6Aa+IXajTyfIjnta15JfqNXFrdAC1sTndHFpAOrQpu+h8TIqa7Q/xv\n4kviXPjl0dNHIyZnO2xgHaSGgdzvEd5wu/JzzvcIo4WywMLZ5WuP4QMDujvFIbGNdT+hRuHc0vaQ\nX6lhcWu00AcGFvUNGp6n9Sz8lAHxkn95446ak6dCB06dDr/sqsKfsOS1mPEYvNxkaMkmnbiYFrwm\nN3NZF4LDIGtLYpdGvdHtY5/iAau3H+tG3rjwYmPdLGdHSMe7cCxh3uA3A7Ro06keTVY7CZK8Mu47\nS9wbGR1HUO3FwGh1II/2Su3HBxkIa7brHJr0J10Hwen5Wu3/AGleE5Ki9JXEUKbx0Lpam/FXt+hJ\nY25ainZK2BgbtEcrd5O5jw1zTuLfFdowuHn1cp6fOSE+IGtb5NRqf0nuVbwlgzMe8nQB/L2afCLd\nRu1HTRoGmh/LCyMiAYn7u7Qa6ajpqNe7qs+GqSjTOTlmjCri4wtp0Jv6n1keJ55GO2D3iNwZNPHq\nCXOB2ho16s8V2pHesJpBGo6g9QR3EFYl01GRtMTJnBrHOlY9zmNc7bq4R6fvdQO/zBdtIN2nY3a0\nlrg3UnTdGxxGp+UlVpYidSXtGfKWSqOHoqdNW2fX5kpisi+u4FpJZr47PI4eXTzO+VXmN4cA5vVr\ngHA+cEag/qWuVfcL+LwfzTP+QXTw8nqPJYuCVmZaIi2jSCIiAifvoxnpLH+vVf2iffRjPSWP9eq/\ntFBe5mf6ab9Hn7WnuZn+mm/R5+1ro9Dht/kaX474fNeZO/fRjPSWP9eq/tE++jGeksf69V/aKC9z\nM/0036PP2tPczP8ATTfo8/a06HDb/Ifjvh815k1NxHintLXZHHOa4EOabtUgg+Q++LC8NwP51ivX\nKv7RYXuZ3+mm/R5+1p7mZ/ppv0cftah4fCv+/l6EqWPWqnzXmZvhuB/OsV65V/aJ4bgfzrFeuVf2\niwvczP8ATTfo8/a09zM/0036PP2tOrYXf5ehOflDc/MvMzfDsD+dYr1yr+0X17JYL88xfrtb9qsD\n3Mz/AE036PP2tPczP9NN+jz9rTq2F3+XoM/H7n5l5mf7JYL88xfrtb9qnslgvzzF+u1v2qwPczP9\nNN+jz9rT3Mz/AE036PP2tR1bCb/L0Gfj9z83qSHslg/zzF+uVv2q4ORwX53i/Xa37VYHuZn+mm/R\n5+1rn3Mz/TTfo8/a06thN7l6DPyhufmXmZnh2B/OsV65V/aLsdlMIWhhuYvaDqB4ZWAB+TST5So7\n3M7/AE036PP2tPczP9NN+jz9rR4XCPXLl6F4V8oxd4xt/l6meclg/wA8xnr1f9r8p/WgyOD7hcxn\nl/16v5e/+FWB7mZ/ppv0eftae5mf6ab9Hn7Wq9SwW9y9DJ13Kvc/9/UkosthGa7buMG7vPhtbU6d\n3fKufZfC/nuM9dq/tFGe5nf6ab9Hn7WufczP9NN+jz9rUrC4NapcvQxzr5Sn70b/AFl6khJk8G4a\nOuYsjv0Nyr+0XyMhgvzzF+u1v2qwPczP9NN+jz9rT3Mz/TTfo8/a1PVsJvcvQpn4/c/MvMkPZLB/\nnmL9crftV8G9gfzrFeuVf2iwvczP9NN+jz9rT3Mz/TTfo8/a06thN/l6DPyhufmXmZ8WRwTXBzbe\nLa5pBaRcq6gjuI98TL5HBXGtbat4qw1hLmCW3UeGkjQkaydDosD3Mz/TTfo8/a1z7mZ/ppv0efta\nvGjho6VN8CsuvS96nfxXmTY4nxY0AyWOAGgA8Nq9B/xE++fF6/5yx3rtX9X4RQfuZn+mm/R5+1p7\nmZ/ppv0eftajocNv8iLY34fNeZOffNi+/wBksdr3a+G1ddPN+E7kHE2LGpGSxwJ6ki7V6nuBPvnU\nqD9zM/0036PP2tPczP8ATTfo8/a06HDb/In8d8PmvMm28TYsDQZHGgDuAu1QB8w5i5HE+L8mSx3l\n7rtXy9T/AAnnKg/czP8ATTfo8/a09zM/0036PP2tOhw2/wAh+O+HzXmTLuIcQSSb+MJcCHE26ZLg\nehDiX9Rp5CvscTYvr/lLHdTqdLtXqT3k++dSoP3Mz/TTfo8/a09zM/0036PP2tOhw2/yH474fNeZ\nNjibFjTTI44dNPx2r0A7h+E7l9ffRjPSWP8AXqv7RQXuZn+mm/R5+1p7mZ/ppv0eftadDht/kPx3\nw+a8zOZkMCLDrgtYkWnDR1gWqnNI2hnV/M1+CAP0LmTIYJxLjbxRLiSSblXUknUk++edYPuZn+mm\n/R5+1p7mZ/ppv0eftamVHDS1zfAR69H3advFeZmeG4H86xXrlX9ou72Xwv57jPXa37RRnuZn+mm/\nR5+1p7mZ/ppv0eftap1bCb/L0LZ+UNz8y8yT9l8L+e4z12t+0XX7IYLXXwrFa+fwupr+vmLA9zM/\n0036PP2tc+5mf6ab9Hn7WnVsJvcvQZ+UNz8y8zM8OwOhHhWJAPeBbqjX59JF8+FYD86xfrtb9qsT\n3M7/AE036PP2tPczv9NN+jz9rUPCYN65cvQywxWU4e7Fr/L1Mttrh8dfCsV1Op/dlbqe7U6y9Tp5\nVw+zw+ddbOK69/7srdfJ8b5li+5mf6ab9Hn7WnuZn+mm/R5+1p1TB6s7l6E9bypfOs79+d6mZDcw\nDDqy1i2kDTUXa3d5vwq7Jcng3DR1zFkebw2tp/eqP9zM/wBNN+jz9rT3M7/TTfo4/a06pg9Wdy9C\nssRlJyznF37871Mptnh8aAWcUAO4eGVtB8w5q+jcwGuvhWK/RcrftVh+5nf6ab9Hn7WnuZn+mm/R\n5+1p1TB6s7l6EvFZTbzs137871M2C9gWfAt4puvmu1h39T/C/IuyXKYRwLXXMWQe8eGVv2ijvczP\n9NN+jz9rXPuZn+mm/R5+1p1XB73L0Kyr5SlLOcdPfnepkGfh7u8JxXm/HK3d/wAVdsV/AtGjbeKA\n/plX5vjPkWD7mZ/ppv0eftae5mf6ab9HH7WiwmDWqXL0LzxWVJq0otr/ALepIeyeD/PMX65V/aLL\ni4kxTQGtyOODQAABdqgADyfhFCe5nf6ab9Hn7WufczP9NN+jz9rVlh8KtU+XoYHLHvXT5rzJz76M\nZ6Sx/r1X9on30Yz0lj/Xqv7RQXuZn+mm/R5+1p7mZ/ppv0eftanocNv8iPx3w+a8yd++jGeksf69\nV/aJ99GM9JY/16r+0UF7mZ/ppv0eftae5mf6ab9Hn7WnQ4bf5D8d8PmvM9FoiLQPRhERAEREAREQ\nBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREARE\nQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAR\nEQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREA\nRFQPuguPJuGuH7mYggisy1n1Wthmc5sbvCLUUBJczqCBIT+hAX9FpPiTtP4gfxM/h3C43F2JIsNB\nl3y37VisOXJJFDIxpijIJD5o9P8AaUp2adtVS9FYjzEcWEyVPMewVirLYE0MmQO7ksrWA0CQSbJN\nAfi3d46kDbCLW3av2z4Th+C+ZrUE9+g2HfjGztjsvksNbJDFqWkMkdCTIAe8NKqeT7e6rMnwzILe\nPgwGXxuRuXbU79XQTVI9ra8djeGbxZ96LdpJI0CA3qirFTtBwkuMdmWZSkcU3o+8Z2MgY7eGct7n\n9WS73NaGHrq5vTqFj4TtNwF2jZyVXLU56VIa252S9KoPcZ2Eb4gdDoXDroUBb0VQ4X7TuHspbNDH\nZijctiPm8iCdsjnMABcWEeK8tBG5reo666KT4z4uxmGri1lb1ejAX8tsliQM5khBcI42/Clk2tcd\nrQT4pQE4iqTe0rAGhDlBl6PsfPYbVit89ohNlwJEDnfwcujSdrtO5dnCfaLgssLbsdlaVttEbrbo\npm7YGaOPNe53Tk6Mf74OninqgLSi0hke3Spb4j4ZxWBvY7IU8lNk4co6PdLPAalZk1blkPAja93N\n8Ygg7Dp3FbvQBFqfhfthhfd4riypq46jw5fqU23HSPAkFoyta6bd0Y7eyNo0/KV7yXGGMrWjSnuw\nRW20X5IwPdpIKERkElot0/AgxSan+KUBOoqTw/2s8NZC3HRpZrH2rczN8UEM7XvkAaXlrNOjpQ1r\niYx10B6LLHaRgjjxlRlaZxzp/Bm2xLrCbGu3kg6a8zX96gLWi1f2ddtuJzeZy2HrvjbJjTHyJjO1\n7chHskdZkhbtBY2Asa1+78sKw8Kdp/D2Vsy08bmKNyzE1z3wwTte4sZ8N8XkmYOmrmajqEBb0VT4\nR7SMDl7HguMytS9Y8HfbMVaTmObXjmZXfI/QaMAlkYND18YeRRs/G76+dydS5cw0WLoYhmQe0TWP\nZWuQ9vOsW4y3kto7HdHN6/B79ToBfkVO4c7UuHcjcZj6GYoWrkkQmjghna98kZj5viEdHvEfjFg6\ngA6gaKB7f+0S9gGYZuPqVbdnMZeDFRstyyQxMksgiJ5fECQOZtB6dxKA2ei1b2d9pt2fMz8OZ7Gx\n4vMR0xkKxrWfC6V+kX8p00EhYHxvbIHjY4fwbz5FYsH2ocPXr7sXUzFCxfaXt8Gina573RhzpGxH\n4Mz2tY8lrCdNjvMgLgiog7YuFvCY6fs7jvCZZ3Vmw+ENDxOx/LMT9ekTt/ijfpqe5QPt5YuTiDIc\nOQvi8Kp1J3xWOe10c1+vu52PbCG7ufHskLhr/BOQG2UWlewDt1x+axuKZlMljIc/f8JDqELzEdzb\nliGtGI3vJjlfAyJwY46neCB1C2hgeKsdfs36dO3FYs4uVkF+FhO+tLI1zmNk1HXXY8ajUaxvHeCg\nJpFrzB9oE9ji7KcOOrxNr0MZWvsshz+dI+d0LTG5p8UNHMd1HmCqmT7Xr5l43rQMxFOThh+JjqW8\nnNZZSk9kXSb33TENzNrWaNDO8ubqQOqA3cip2d7ScLi2UW5fK4+lYuwxyRtfPtY/e0bpWbxuZV36\ngSSaDoqPx/211qt7hSSjfxr8FmZ8tHfvyk8tkePiiIdDYMgZFpI6Rp3A69NPlA3SiguCuL8Zmq5t\n4q7BertkMT5IH7tkrQHGORpG6N+1zTo7yOBU6gCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAI\niIAiIgC0192jj7FrgzJwVYJrMz5cfthgifNK4Nv1nO2xxguIDQSdPMVuVEB5jzPAVzLdoU5FzN4e\nu3hOtpkcU81HSSstVQabrMkJY5pa8vMY66wtPkVi7R+w+jT4NzOPxXhUt7mOzjb1qc2chaylQtsC\naScgDnSMjfH4oA9+ce8knfSrfaRwhFnMfJjp7d+nDM5vNkx1nwWeSIaiSu+TYQ6vI1zmvYR1BQHm\nbhfA381wJxjxFLVdNluKnyWooIWOfIKWOkENWGGPTc4tDLW3TqRy+9WLhuIZLiDs7tsx9rwWrg8n\nXnNqhNE2tahqcgiUSx6ROM0b9rj39CNdV6L4cw1bHU6tCnGIatOCKtXiBc7ZFCwMYC5x3PdoBq53\nU9SeqkEB4rn4QyLcZk5W4q3PRxnanNl7WNiqPL7eHj5bHSVapbpah26N0aNNCT3AqU4yoT5mxxxm\n8Vi79bF2OFo8Y1suPmpy5XJixBKJ4ajmCWYxwxui3EeUL2AvkPaSWgjcO9uo1HzjvCA810+HZYs5\n2USw0JIm18LeZdkjquYIHOwcLWstOaz3pxlfKAH6dXO8qs33Tt63XucNyxUy2o21a8LzlfDRZrI4\nb3uF0IowywvFczuZtdJtP4Jvm0O8EQHhSHh+9NhMnE+hlJRY7Sat0R3cXJXsTUpmTa2rFOOARxNc\n0eOGNDQTpoBoFfu1vgzI2+KeL4cZTmY27wIYYnxQOjr2rbLlA+DNlDRE+y+BkkYBOuhPkXq1EB5I\n4assv57s2NHCZOizEVb1TJST4mxUhgn9jYoxA6w+MCTbIyQ7j09/HlJA3x2s8fWsDLjJBh7eRxlm\naWLI3KLZJ5sZo1hgkdThiL54nkyAuGgHL85aDf0QHjHiXhXK5XhztEylfGX2x5zLY61jas1Z8V6e\npj7bXzWBUI5gYY3lwHeeW5TPEmZdmeKLWWrUMrBQZ2eZSkbF7HWqTHWGm7M5jHTMAdoJg3UeVj9N\ne9etVhZ7Gx3KtmnKXCK3XmrSFhDXiOeN0TywkaB21x0JQHjHgfTL4rs5xeNw95uQxuZqZO5fdjHw\n1IKNeeWaxOL5by5WSnlvG09TAAfG0CnI+DLJ4++9blD2DZm/v+HXqAawiDNncIRkHCHb5tV6j4B4\nXrYXG1MVUdK6tSi5MLp3NfKW7nO8dzGhpOrj3AKI4G7OKWJv5LJsnvXb+Uk1ntZGybUsUAe+SKlV\nO0CGnGX6NZ5ms1J0CA0RbwV12b7TsTFStR28/j65xE3gr21LLYsbYE8bbpbyWcwzsi6nvc4HuKhe\nxPAvs3uFGWH8Qsu4KCdhpycL18fUxpFIxWoreTa1r54ZnM2scd7iZQXAElexEQGi/uJOF2UeFaUk\n2ObTyMkt8WJJaoguvYbj9gmc9glLeXHDoD5GMVS7WMNck4j46kjqWXxz8Ay14JGV5nMmse9+8RPa\n3bJN/Eb1XqFEB5aqcNzxW+x6SKhNGa2PtNyD46j2Gu9+Kxw0uOaz3pzpXT/hPK6Ty6q2fdfMmb96\nVqOrbtR0OKaF6y2nWltSsrVt0kr+XC0k+K06fKQt8ogPNUmMyfF3EVzO06N/E0aXDGQw+NnycD6F\nm3k7sdlrZ4oX++NqsFn4Z8sQ06kga+7H+F5pJOFsXedxDWu4XLR2Dj2cMVYa1KWvM+aaaxmmNa6W\nhPt2l+5xPNZ0PRe1kQHg9s8dzhbiTAVcNfu5jJ8WWzRmgx0j65Lb9YukdkQ3lxGOOKVrg8jQTN18\nUkrcE9SfH8e3jaqW5GZPhOKlVuxVJZq0t2IB03MnYzbE88iU+N+U3zjXdPZxwPTwNezWpOnfHbv2\nsjKbD2PcJ7ZaZQwsYAIvEGgPy9VZ0B4wwnCtuPgns8Axthl2vxlBPaApyttQweyeUcZbA5fMji2C\nA7ndNBH8i9UcI52rau5ivBj7dSWlaiitWbFLwaHISPh1bPWnH44xrWhpceo8TyEKzr55jdduo3aa\n7dRrp59O/RAebst2aVc72iZs5WncfRbhaDq88ct6nC6w3wdrmNs1ntErg1zvE1Pd3dFr7L8By4+j\n2r0KGPveDSO4bZjmGO3ZfZayxM6XkSy6yWtpedSCdNQvaiIDzA4HCcWS5LLYnIZClk+GMdTxs1XG\ny5EV5oIIWWcc6KNhMUkr2Pf42nw/NrpQ+xDEyWaXZY7wWSxXgynFL7DxXdNBCOeOU6dwaWRe+NG0\nu8rOncvUHaN2X1M3M2xLkM3Qk5HgsvsVlbFKOzW3PfyLEDSYns1lfqQATu6noFZODeGqWHo18bjo\nG1qdVmyGJpJ0BcXvc5zjue9z3OcXHqS4lAar+59xMtTiDjzWrJWrTZirNW1gdDBLvhnM0sBLQyTV\n/Vzm+UrdaIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiALV/bJ2j5DD5LAYvG4\n2DI2M6+/EwWLZpshfUigka4vETtY9JXOd5dI+mpK2gvPv3S9a7LxTwC3Hzx1bfhGcMNiaubUDHip\nVdtmhDwXMe1rmHQg+MSOoQHVk/uhrtPF52W7h4o8zw7k6FG7RitPkrTRZF5bWs1rHL18drJSGEfv\nW69+gmLfatxGLOOwreH6jOI8hFavyU5skDSx2LieWQzWbUEZM0z3tczbGO9vyqIv/c+XreLzjLuW\nglzXEGUx+Qu22VpGU4osbIXVqkFfmbi1rXyjeTro9uvdqbx2m9nV+1l6HEOEvwUMtSqzUJG3K7rN\nK5Rmc6QQzNjeJI3Mlc54c0+UeZAU+T7oWb2Ja9mGI4hdxH96pxLrTPB25TXrL4YG9am3Trp3nTu8\nZUbH8a5LD8Sce5q/jq0eRo4PDyS04bbpqspaK8TXx2eUHhj4y12jm6ju66aq8P8AuerAxQazM68Q\njiT76vZR1VorOyZPWHwQO1FPbp01111PwfFXZ7ReSuycTWMxmKs9jiTFV6L306L68VOasGclzInz\nkzQtMceoJBOjuo16AWS72svhyfCdGSrE2LiLGXMhYn5r9aQqY3w9zWN2e+t6Fup07lA8E9smeybc\ndk4uGHP4eyt99GvPXsyWMnVjE0sDMjepxw7IqfMidvIPigHqfF3fHDPYzmzlOHL+ZzFC5Dw/Su45\nlWtQkr86tZx8lAOfM6Y7pnNc0u6AeJ0HVZPZ92ScQYgY/FxcSNbw9jLr7UMMNPl5W1A6aWcY+5aM\nhjNbfKdzmAEjXQDpoBrTh/jXN28T2j+z8MN/H4+1lK8lduRssdBNHYaz2NqPjhDvABGZdJjofEYC\n3QlbH4c7XW4816Fqi2rj4uB6/EdGcWZ7D3xVasPPoOfM3fNMxoeQ8kkhrSepXVN2IZBv35VIcnV9\njOKnW7jWS1pDaqZG3MyR7jI1+ySq1pnAbpr40fdode3tY7BHZzFcO0W5HwOzhasePntRMf8AuqjJ\nUhrXYWsDunMMEZbv1A8bzoCu1+O58jmuB7s2FgbmsthM5bx5OTuR1azXUrNirFKxkeyZk8UVfc9z\nTt5pIBLWqF7Nu2LiPHcMXs5k4IMlUqcQeCWJn3ZnWoK0lgV7GyMQbTHDI+s1g18bnO10067n4g7M\nzY4m4czkM8UFbAVb1UU+U4ulbaqTVYxG8O0jawSNOhH71a+ucGRcKcNcVVM9k4ZOH8g+4+o6ClMb\n8E+TLmNbJt3MkkEhr7DoAC0kkDuA2NwT2hy5XiLOYqCtH7H4SKk12QErnOsXLkTJuTGzbs2MYJQ4\n666tb51DfdRX6tejhTapm6yTibERRsFyxT5M7jOYrBdWOs2xzfwbunUHvAVB7CMLmuH8DwpWrV5v\nZDiDOeH5189eaYQYvweR7xPO8aVJ/BYKQa1+h3PkABOq25228BS8QVsbBFZjrGjmqGVc6SN0gkZT\n5usLQ1w2ucZB4x8xQGvuKO27ORT8Utx+DpWa3CsrTcsT5F8D5axidKeTAIDum2slJ1IA2DvJ0Uc/\ntFz9/jDhfwBkMeIy+EZkY6ct2VvNrT14prE1pjIC1tyAyStYxpIdy2aka9Le/senLeOR4bD/APy1\noEPvL/3F+5p6+svje+/hQemnwSsWPseyNW1whdoZKqyxw7i48PbbYrSSRXKvLjimfBsk3QzFrZNN\nfymeYggVXNfdOvifkL0OPoSYPGZP2OnMmWiizdprZooZb1HGlnvtdrpQQCeuh6jR224YztXzF3iX\nJ4TH4WGzSxE+PNzI+GtY5tS7WM4LK0gBlsu67A06e9P101CgavYDdo27rMbdwnsXevvvkZPAV8lk\naPOex09WpPM7lyQO2kDmDoHefUm88L9mT6mV4tvutgRcSx0Ioo4GGOWk2nTnqFweTtLzzg5ug6bU\nBScT2+XW5nF47JY7FVmZa9Jj21amcr38xjJdxZXfkqtdhjayV2z4LugedTqNDkwdtWbtvu38Vw07\nI4GhlnYmWSCxI/L2eVJHHYu06EcBbJAwyA7SeunUt67YPhf7nnL1Dw7FJlcQanDeVjvQNr4l9eze\njE/Nldcsc8/ujbqxug066kkhWCh2O56hJdo4jiRuOwd/KyZSQMpl2Xq858b7FOnadJymwuLNA5ze\nmvceuoFcwvF/EM3E/HVG6yCfFUKDXS1RkLMfgleTFTy1zR5cIfzrGkZl6tLDI7aToNZPsa7SmU63\nBeNbjmUsRm8XfdVmddsWX1LVB08z6skk7dXxuhDC1xI+EQBoArHd7KcgziHO5WpkaraPEePbUyFW\netI+xHLBjpKVV9adkm0MDyyR24fljzERPEfYNNa4QxHDzMk2vkMPKyWtko4nhu7WwyVuwP3hj4bL\ngRr3tagIqL7o2w/FYm2MZVhucQ5C9Dh4rl8VakeOoOZHLfyVqRm2BwkLhy2a6jTQnuWwewvtQ++J\nuSgmhrwZDEW21rjKdtl6nKyVrnVrVWywePBII5NAeo5Z1UH2gdhkVyhw7Dj7EFa5wxG2Ki65UZep\nWYTDDDZhu1XnR4l5LHbx1GrtOp1Fu7IuELeKhtG9Ji5LNudsmmJxUOLrQQxxNYyuNhMlkB/NkD5T\nr7+8dyA82cQZfh/77+M4uJ87lMbFBNQ9i21L+Sh2l9R7rZhiqAtc4EVyA4d7u49VcexntUzePwvC\nHs3BLZr5vLWMSMlddJHeZHKQMPNNGQebzjzRvcfgwh2p11W1OA+zY47P8S5maaGwzOy4+SGHkkPq\n+BRTRu3PcdHl3MB6afBVZ+7Qt0hwxNUsPnF+5YrjCMqwzTWZcrBKyaBkPJaeW4ta9pcdOj3addAg\nNfdrHbHxDdxFm9iYIKFGtxUcPDeZdmbZtx152RxSNZyNhrT73B2h8XlnTd5Mi/ks7D2iW5qOOo2c\nseCYDYrSXnw04SLtWScx2DBvsASMbG0EN15oJIAKutvsRkm4GxnDUFiOldpCjc57ozND7Ixy+FWd\n7QQXRunkmAP8nv7lO8Mdm9+PiR/El67Vmnn4cZhrENaCWJhsixXnksxl7yWwkwkBh69R1QFYofdA\nT38ZwzJi8S2fM8TyXYq1Ke1yqtYYx72XrE1kRlz4W7NzWgakF3lGhx8z90HbpYvNyW8PHFmuHsjj\n6V+g20X1ZY8i8irarWuXqWvY17g1w1Gjde9MH9z/AHsfiuG2UctBFm+GbGSlqXJKj5KVmHKSyvs1\np6/MD2tLHtbvafI/z6j5zH3Pty7i84y3l4Zc3xDkcfevXRVeynFHjXk1alesJN2xjHPbvJ1Orde7\nqBbeA+0vKT8SWOHMziq1Cz7FjMVJKl511hrGw2uYZnOhb7+Hk9QNPe3fIVtda/PZ/L9+DeJ/CWco\nYH2H8E5buZv8MNrn83dt26Hbt0WwEAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREARE\nQBERAEREAREQBERAEREAREQBcEa94/7HcuUQBERAEREAREQBERAEREAREQBcEf1d3yfN+tcogCIi\nAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCI\niAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgC\nIiAIiIAiIgCq/GvFRxs+NYYeZDcsOhsS7tprR6Na2fbpo5gkkj3eYFx8itCrfF/DXsjNVEmw1WR3\n4bUbi4PkjuVXV9rNBp++OuqvC19Oox1c7N9nX6nTk+LeVmamLZCHslhkls2C/a2A8uaSvGBpo972\n1rBPmDWecL4s9oGPFezYhdPNyKrrjGCpbYbMA0AmqufDpYrlzmayx6tAkaSdCCo3BcGXonU7Fi1D\nLdbYt2LtlrX6SPkomhVdDE8aeLDHX3NJA1Eh8qjsZwLkXOJtvgDjhshjJJhdu3ZZ7Fs0yLZbajDY\nGEwSExM7tzRqR3Zc2maznW7tfLUTdjj+Iu5UVeyJX4ufIRumqW44muiYHCKQviAA6/C1A6Ad5C+q\nvHtaSjLOJGssQ45t94sV7sFcxmPc6aJ7oS6xWD+hdDu72+ca48/DmQkNd7m1GuOHt4yy1tiZwikk\nEZglgca4M7C6MBwcG6b9RrpoeniTgm1ZgETJIA4cP3MTq50mnhFjwPbJ0ZryR4O/U9/VvRRaBLlV\n0tfoWW1xZQis+CPleJRLFXc4QWHV47E4YYa8tpsfIineJI9GOIJ5sf5Q1VOLKEtoU2TOMxkmhYTB\nYbBLNX3GxBDadHyJpo+XJuYwkjlSfknSr8R8JZKzbkfzIJIDksZdhkluXGOgr0bFKeSoygyM1y4u\nrTOExOp5wBHQEZuJ4cvw5Js7fBq9bwi1NYNaxb2Xo52zGNkmMlb4PWsiWSKR9mN2rjA7po8gRmws\nSqlW9raL9x28RcVWYL81OFtBrYKEN10t60+s13NmtRbA5sRDGtFfUvOvw+5SWD4rr2K7Jnh9eQ46\nvk5q8jH8yvXsNkc3eQ3RzgYZWlo6+99yh+JuGrUuTlux1MZdilx8FPl35XsMT4p7crnta2o8PY5t\nho06fAWD952SrRCOtJVtOmwsWJsS2pZ4eW+A2CyxG1kbzNGfCpBy3EH3tnjHUlLQaClUUn3fdiy2\neM8dHJHG6d3vgrneK9h0EXhZDawsWGx8qs6QuaGiQg+M3zhdkPFtB9oU2zO5zpZIGOMFgV5LELHv\nlrx2jHyJJ2NjkJja7X3uTzHSt2eE8gJa7oDVicyOhGbsVm3XmYysGNninqNYYMoxwbIGGXbt5x82\np7ouF7wyBlaa9es+xZksvrWbbfDIJ4pmsikxr2mvFaD3xOdaY7UmDuG4gM2HeOkq31be4maPGmNm\nLhHO4hsMthj3V7EcU8EGnOmqSyRhlyNu5uroSfhtPcQuuHjrFujml8IeyOvWFx75a1qFrqh/1mAy\nxDwiHu8aPXvb5wq/V4OyDq9KnO6m2LF0rFatLC+UyW5X0X4+GWaIwhtSMQyPc5jS/q5uhAb17OJ+\nCLVqJrI5IA5uBs4sl7pAPCJn0nNf0Z+BArP1Pf1b0TNhfWR0lbNvbl6k3PxlVdHK6GTbJDZx8EjL\nde5WcBfuRVYXiN8HMc2Qve1jwNpLepABIzI+KqLrQqCZ3NMjoA7kz+DusMY6R9dtvZyHWGsY8mMO\n18R3ToVCcUcJ2LVqzPG+FrJhw2Gh7nhw9h81YyNncAzTxoZWtZ5yDroOqxMPwPLBc1eyOauMhayE\nc7shkQ9jrM09oMGMB8F5jJZ3N5uvUDUt1JTNhYlzq31fd/ItnDPEFXJQ8+o6SSE6bZXwTwskDmhw\ndEZ4xzWaO03N1GoI7worh3i3wnJZTHSRCI0XsEEu8EWY+TBJOduniOidYhDh5p4vOueBqdujBQxk\nkTHR08XXZNaYXbHWY9kLY4tzQXt2xyuJPd7351A5vgG1O+9JFYiglt5N8okaX7/Yy5jqOPvwEhur\nJyKxlZt6boK5J70Shdp6thMpVM2LWvavAy+EePjfG4xRQMky76Fbe+V7rNY0PZCtYZsj0ZLLAWSB\nr9BoT110Bz+FuNa89KvNblihndjm5G01rXiGtXIOsssjtWwMJD9oedTypNNdp0w4eDZmWxMx0DYW\n5tmRYwF4LarME3FNiA2aCUSjXTu2+XXoobEdmlmtj5seyxEI71PbdJfPJy8lE1jYbNdx0e6u5jGR\nvi1boIItunXW1qb5GOMq62X1+hfcFn6t3miB0ofDsMkU9exVmY2QOMTzDajbJy3bX6P00Ox47wdK\nnW48sl+4wU3QnMTYoQstP8O0jyD6AsNgMW2QDbznt1GjGyHXp1l+CMBJVksTzwRQzTRwQ6syOQyb\n3shdM8bpr4BYwPneWsaOm55JOvSu1uB7oc+IwY2NrszNkm5Jkkrr7YX5N98RMj8GAbI6I8gu3kaP\nd0I6GqULsvKVWye3Tq5ayzS8ZVHlza8m4xXoaMzpYLjIRK+14LJDHMIdklgPBGgOnVpJAOq7YeMs\ne+w2q2aQyPnkqxu8GsiCWzC2V0sMVoxcmR7BDKHBp6GNw7wopnCVgVG198O9ueflNdX7fB3ZeTIB\nnwNedyngad2uvXTqq1jW2BexeNjEUsNDL3rBkY20yyyua+TDXW4Ja4ZC0SWWRiUOcJNWOaND0lQi\n7lZVaitfaWPhLtDr2qVaWcSC3JjxdfDFTu8uQsbH4Q2m4xEWuXJKxpEZcRuGqsfCWaZkaNW8xkkT\nbMMcwjlY9j2b2glvjtBc0EnR46EaEaghV7A8I2IIMJE+SEnG4+apOWF5DnyV4IWuh1aNzdYnHxtO\n8LM4CgvVIKeOswRBtPHV4n2YpHvikliJrxiMvjaSTFDzHN08XmNGp71E1DTml6UqmhT7u7boOeHO\nLPCchk6MsIhNGRvJk36tsw7GGV+hHiPje5ocPNLEfKo3g/j05AMeYoq7JsrJSrh75XPsVvY92RrT\nsDI9GSyQFkm1+gA3dddAcTNcA2p3W3x2IoX2sjO9zwZC44m9TqVL1bUN1jsHwdsjSOgdDD171nV+\nDp2W2Th0AiZnH5IMBeCKxwjsYyIDZoJRKQdO7Qd+vRTanb7+9JS9a/jyv+xMYDjHH3pI460sjzNC\nbEDn1rUMc8TCwPdBLPEGTFpkYHNYSRu6rBy3EN4XbtWpBTe2jTqW3utWZa/M8JdcbsD2QubGGimT\nuP5a6uGeFbFZmBa98LjiqMlWwWl53vfXrxAw6s8Zm6J3wtO8Lo4m7PYMlcyM9pldwsUadanMY2y2\nKk9eS7I+ZnMZtaN09cgA9eUQRp3wlBP5evkWbrOK7/Tx2mfU4/xzoKs0j5YvCalS65przyirDdbr\nA67LAwx1Wk7hukIHvb/ICVl5HjLH15315ZpBJHJBDI5tazJDFNZMYgglsRxGKOZ/OiIY466SMPcQ\nqnxfwnmb8M0b3U3us42KuR4dfgrU7TWSCw6KtFFstxSPczR8uhAb3OHRYPFbbEdi3joGxTC7mMXc\nDSLbLbNJ8dLY2R+D8mxWa2u55sB4DfGaRub1sqcGUlWqRTuuX1L9FxZQdaFRsrzK6V9druRYFd9i\nJj5JK7LZj5D7DWxyExh2vvb/ACgr4wvGOPuSxw15ZHOmY+SFz61qKKZsRAlEM80QjlewkbmtJI6+\nYqt/epkn34Z5ZIZY4MpJdE77t10j6z2WY4qrKJZ4PXdEydjNzSd3K1OhcVnY3g+VsOGhmdC9tCO1\nHaDXSaSNnrSQARHaCRq/rrp5VVxh3/f3YyRnVez70epl8Q8Yso25K8sZe0VIpoWxeNYs2ZrEkEVS\nCI9HSOLOnX8onQAld9jiqKnFD7JaQ2nwmeaGrHZuMrxtPjySSQxasrs1AMzw0eK5RGV7Oqti3zHM\nYyCPHitVexz/AAupZ8Lfa8JrSOB5cgcWOD9ddW92iwMlwdkZpW25/BrVmWjHQtNZkMjjYT4NPafD\nab4G3WQSNtPL67xoOga7vJJQIcqqb0fQlbPFswtywsbA6JmTx1Nj9HEuhuVGWHv1D9C/c7oR000U\nhLxxjGGfdO8NrssyPk8GtGF4p7jabXmEXLtSR7H7mREnxH9Oh0iI+C5mTF0boGwi/jLMbA6XVsFG\njHVezxgTv3M8UEnppqVhcPcF+AOjdbZBJUoeFysty5HIynlPinjBdjpT4LWeIJ5Gve0kHxtGjd4s\n2g/v5EZ1ZbO/X9fIvdbKwSWH1mSbpo4IbL2tDi1sNh0zIX8zTYdzoJtADr4izVSOx3EPrUXSyPfI\n6eXbA6VpZJ7H1GinjQ4O8YF1WFkx3dd1mTu7ld1imknZGxSk5RTYREVTIEREAREQBERAEREAREQB\nERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQ\nBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREARE\nQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAR\nEQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREA\nREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAERE\nAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREB5C9vriP46r6o36ye31xH\n8dV9Ub9ZauWdw60G5TBALXW6oII1BBnjBBB6EEHuXqXhaSV81cDwEcdiG7Z74mwfb94i+Pqeqs+s\nnt+8RfH1PVWfWXqhvDGN0/zfS9Vg+on3sY30fS9Vg+ouT1uh8Nffgeh7NxXxnz8zyv7fvEXx9T1V\nn1k9v3iL4+p6qz6y9UfexjfR9L1WD6ifexjfR9L1WD6idcofDX34E9m4r4z5+Z5X9v3iL4+p6qz6\nye37xF8fU9VZ9ZeqPvYxvo+l6rB9RPvYxvo+l6rB9ROuUPhr78B2bivjPn5nlf2/eIvj6nqrPrLn\n2+uI/jqnqjfrL0/k+GscIJiKFIERSEHwWDoQw/xF4NhPit/kj/ktzC9DXv7CVjm5QWJwmbeq3e/I\n2p7fXEfx1X1Rv1k9vriP46r6o36y1ci2+q0t1cDm9oYjffE2j7fXEfx1X1Rv1k9vriP46r6o36y1\ncidVpbq4DtDEb74m0fb64j+Oq+qN+snt9cR/HVfVG/WWrkTqtLdXAdoYjffE2j7fXEfx1X1Rv1k9\nvriP46r6o36y1cidVpbq4DtDEb74m0fb64j+Oq+qN+snt9cR/HVfVG/WWrkTqtLdXAdoYjffE2j7\nfXEfx1X1Rv1k9vriP46r6o36y1cidVpbq4DtDEb74m0fb64j+Oq+qN+snt9cR/HVfVG/WWrkTqtL\ndXAdoYjffE2j7fXEfx1X1Rv1k9vriP46r6o36y1cidVpbq4DtDEb74m0fb64j+Oq+qN+snt9cR/H\nVfVG/WWrkTqtLdXAdoYjffE2j7fXEfx1X1Rv1k9vriP46r6o36y1cidVpbq4DtDEb74m0fb64j+O\nq+qN+snt9cR/HVfVG/WWrkTqtLdXAdoYjffE2j7fXEfx1X1Rv1k9vriP46r6o36y1cidVpbq4DtD\nEb74m0fb64j+Oq+qN+snt9cR/HVfVG/WWrkTqtLdXAdoYjffE2j7fXEfx1X1Rv1k9vriP46r6o36\ny1cidVpbq4DtDEb74m0fb64j+Oq+qN+snt9cR/HVfVG/WWrkTqtLdXAdoYjffE2j7fXEfx1X1Rv1\nk9vriP46r6o36y1cidVpbq4DtDEb74m0fb64j+Oq+qN+snt9cR/HVfVG/WWrkTqtLdXAdoYjffE2\nh7fXEfx1T1Rv1lz7fXEfx1X1Rv1lq4onVaW6uBPX8RvvibR9vriP46r6o36ye31xH8dV9Ub9ZauR\nOq0t1cCO0MRvvibR9vriP46r6o36ye31xH8dV9Ub9ZauROq0t1cB2hiN98TaPt9cR/HVfVG/WT2+\nuI/jqvqjfrLVyJ1WlurgO0MRvvibR9vriP46r6o36ye31xH8dV9Ub9ZauROq0t1cB2hiN98TaPt9\ncR/HVfVG/WT2+uI/jqvqjfrLVyJ1WlurgO0MRvvibR9vriP46r6o36ye31xH8dV9Ub9ZauROq0t1\ncB2hiN98TaPt9cR/HVfVG/WT2+uI/jqvqjfrLVyJ1WlurgO0MRvviFn8N/j1L+mVf7+NYCz+G/x6\nl/TKv9/Gs0/dZr0vfX1Pfze5crhvd+hQmWy7habThAL2wPt2nn+Brgujia3/AMWWVr9pPTSCXy6a\n+RjFydkfRpTUVdmVlc3XrOEb3OfMQHNrwRyTzlpOgdyYWlzY9RpvPTzlRpzOTkGsGILB5PDrsFfX\nzECqJCB8+hVHxPaPJDUrmKhLcccP7MWp57cMc5hje6J5kLK4bNMGxt7gPIF3w9pskdjLWJYzJjK1\nTFWK/jRRTRyZCJhihcHdHcx8g1e46N5ZW7HB1FdZqdu9/NLY+97Tnyx9N29pq/cvk3tXy2FrlzWX\niG6XDRysHUijkWTy6eUtjtwRNcfk1UnwxxFVyMb313OD4n8ueCVjobFeUDUxzwvG6N39R8mq1vd7\nRHX3UI4HNrTQ57G17batyO3BNWtRWHtDbMI2yRu5bg5ug0MZU7j2MbxS5ldzncvCtbkHa7tZTaYa\nPOI77HL8IIJ66H5lWeHsmpKztfR++l69liaeKvJZsrq9tP7aFq2l5yv4Cf8AmZP7Dl+e8HwW/wAk\nf8l+hGV/AT/zMn9hy/PeD4Lf5I/5LcyT/d4fucr+Iv7PH9j7REXZPMhERAEREAREQBERAEREAREQ\nBERAEREAREQBERAEREAWRjqU1mVkFeKSeaQkRxRNL5HkNLiGtb1J2tJ/QVjq7dhH+kmJ/pEn+GnV\nKks2DfcjLQgp1Ixe1pcyO9r/ADvofI+qS/VT2v8AO+h8j6pL9Ve6NFCO4sxwm8H8Ibv5ohLgyQwi\nYuDBC6wG8ls28huwnXU6LjRynVlqj+p6WWQaEdc3yPGXtf530PkfVJfqp7X+d9D5H1SX6q90poo7\nVn3Iv/L1LefI8Le1/nfQ+R9Ul+qntf530PkfVJfqr3DcuRQ8vmPDObI2KPX99I7XawfKdD+pZCjt\nafciP5fpbz5HhK1wNmomPllxV+OONjpJJH1pWsYxgLnvc4jo0AE6/Iq8vdXaj/mPM/8AlWQ/wky8\nKBdDBYp107rUcjKmAjhXFRd7grlcFcrd2nL2Hfj6ctiWOCCN800rtscUY3Pe7Qna1o7z0/qVh9rr\nPeh8h6u5d3Yv/pDiP6Yz+w9e1spcZWgmsSa7IYnyv2gF22NpcdATproFz8ZjJUZqMVe52cm5Mhia\nbnJtWduR4j9rrPeh8h6u5Pa6z3ofIeruXrDhPtJo5G8/HxxWIp2NkcDKIXRP5RAfskglcHdDqD3E\ndxV2WrLKVWDs4o6EMg0Jq6m+XkeGfa6z3ofIeruT2us96HyHq7l7m0UJnOJqtVj3OJlMd7HY+WOH\nY58VjJ2alauJA5wDWjw2CQ+Xa7UA9Aqdqz7kX/l6lvPl5HjT2us96HyHq7k9rrPeh8h6u5e5tE0T\ntWfch/L1LefLyPDPtdZ70PkPV3J7XWe9D5D1dy9zaJonas+5D+XqW8+XkeGfa6z3ofIeruWJl+Dc\ntThdYtY65XgYWh8ssLmRtL3BjAXHu1c5o/SF7x0Ws/unf9Gb387R/wAdXWSllOc5qLS0sw4jIVOn\nTlNSehNnj1ERdo8wFn8N/j1L+mVf7+NYCz+G/wAepf0yr/fxqs/dZkpe+vqe/h3foVA4iykeKzTr\nF33vH5SlWp+FuJ5Ve1UmtvbFO7TSGOSO27Rx8sblf29wUfclp2eZTlEU4fqySGRgkjd03GN+4bC7\nb12nqvKUpWbutG0+hVoOUVZ2a1FSxvZ5j+TpDanfC/DSYZjhJC8GrK98nOa5sejphv0Du7oOi4sd\nmuPbHO19qyyGelTqTjmwsa52PDBTuB/L3R2o9gILTt87ViZLsmwMbw6IWqLppNrW07dlm+R2rtGx\n6kNAa1x0aNAGk9AEg7GcG/R83hd0EBzTPene0gjUEGNw1Gi3VVgnfpJf6q//AJd5z3Qna3Rx/wBn\n/wCpE5HMYSOSrUmy1rM3fZOrZrtritLJHPC4RNa41IWwxwBrnF7XderyOq2LwjwzVxkT2Vw9z5nm\nWxYmeZbNmU98k8rur3fJ3DyBffD3DOPxwLaVOvW1GjnRRtD3Ad2+TTc/9JUwtavWUtEL2232+C1G\n3hsO4POna+y2zxesxsr+An/mZP7Dl+e8HwW/yR/yX6EZX8BP/Myf2HL894Pgt/kj/kuhkn+7w/c4\nn8Rf2eP7H2iIuyeZCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIArt2Ef6SYn+kSf4adUlX\nbsI/0kxP9Ik/w06w1/6cvo/0NjCf1of9l+p7Ttsc6N7Wu2OcxzWuH71xBAd+g9Vretk562Nq0a4s\nVsjUhEDqgx8k4s2GNawPZYc3lCB0gLzPrpo8k6HVbNTReYp1M3Wj31Wk5u6djWMuTyTbex09s3W3\n68LabKv7gkonlCafm8nTbyTLLzN3RzQ3+KZy9evtryvrGWW2K1hz4XxeJHM2NxjEY2gOdzAAG69f\n61cdF12q7JWPikaHMka5j2nuc1wLXA6eQglc6eFlKrGec7J3t36U+/5W+jOjWxCnDNUbO1r+H08e\n++01ZLcnlssjr2Ll5sMmOnjFuAxls7nXmv1PJa4MJZGHa9AdR8gleyy7dsPeblmw53KjfJWmgmY6\nGfc7eTPyGRsJ1INYB2m1p1Pebfg8DXpmR0Ilc+UMa+SeeazKWRbuVHzJ3lwjbveQB+W495KkwFuV\n4qVXOi9Hd/8ADUwTdGlOE0m5PX3cb/sV3tS/zHmf/Ksh/hJl4TC92dqX+Y8z/wCVZD/CTLwmF2sk\n6peB5f8AiL3oeIK5XBXK661nnHqLd2L/AOkOI/pjP7D16I7asTkLl/GwwOsspvZIJZoWyvjge07n\nyTcs7WkxhoaX6ddeq879i/8ApDiP6Yz+w9e3J2BzXNI1DmkEa6agjQjXyLiZUqShUThrzXb66T1O\nQqanQlF6s7yNN8LcBMoXDeZYuWpuU+JoeA4APLdXEsbucQGaD5ypvje7G3LYSvkBZlpy4bOzz1oY\nLlpr7Vexw8yCaWvSYXOdGyzaa15GgM/TqQrvica2J5dy3jqdC54dpr06aDzedd8+JgfbgvOYTZrV\n7VWGTc4BsF2SpLYZsB2uLn0ax1PUcs6d5Xl8HSxLm6uJneTVrbLL6WPTyVKKzKSsjS7b+RoYvJ+y\nLcs2Wfg+q2rIYb1p7LNdub5gnnrtcK19kU9AyPkIJ011O0kSedwMjxlWirbL7ee4Qsh8MdoGWpHZ\nwDbM0diEeLy317bnuaQWiMuOg0K2jxHg6+QhNa0Hvrv1E0DZZI47EZaWuhsCNwM1dwOjo3dCNQQQ\nSEv4KrO8ySxbnkAE8yRvcNB0a7TuXTXzMTvsNdyUJ4r9iGaG+/Cx5px5LWXJ4+VLgaD4nBjQX2Mc\nL7rm5rdWiRwJ02nTFwuHvWIbEV6O/JCzG5V+PbK60JI2yZa+cVq7o9uSZjRSA3e+N0Gvjak7H+9a\nh8R/7s310+9ah8R/7s311No9/L1IvLu5+hVXQWJIIHzQ3jI+nUbOW7xK6ZteuZHhroy6OcOmeOmn\nwLPl6LJtRudI7l1L0Wokdtj3MZLqDDABrBta74R8cjbrqdfF1sP3rUPiP/dm+uuDwnj/AIj/AN2f\n66ez9r1F5EHhHTVZTIypcndOO+Uu3gGeRo6mEMieQwSOD9PhM6nRQv3SM3M4VtSbXM3uxz9r2uY9\nu67Wdtc14DmuGuhBHkVzPCGOP+rn/jT/ALRU77peNrOF7jGjRrZMe1o6nQNu1gBqep6LNh7dLG3e\njWxt+gnfdf6HkBEReqPnoWfw3+PUv6ZV/v41gLP4b/HqX9Mq/wB/Gqz1MyUvfX1Pfze4fMqxkqVv\nfKyoyaBsnhBlc6aLwd5khk2vgLXGeCYzGMktAHWQ9T32dp6Bc6ryMZZp9FlFSRV4MO588Ehr8mGO\nxvbBK+Nzo/3LZjkkaGPLWh73weK0/vCe8lYlTEXYIa7IGuYIa8RdE2ZrGyWKerBF3kCGyHgl3kEA\n1GpVy1XOqv0sinQRKPksPkCHRxg7+TLEbLJGxulD8fIzUyGTmB/hrg4AAAaNPepSDFSsubtJOSJG\nvhewxlscQga18Ehkk5h3TCV50B15jSTqOlk1XGql1pP9CFQinrMfK/i8/wDMy/2CvDuG4IuT0obo\nfXjry157Ebnmdz3R1JjWsaRV4HPLmScvUAd07D59PcOVPvE/8zJ/YK8Y8KQ3BjWTNyk9WqIC17HQ\ntdXjZ4YY9gM0wEoL7MspLAepcBq4aLfyc2lK3y/c4+WoxlKCavoerwOkdnl3e2N09Frn2YKo9+mk\naJbQYapeYICGRytlhLHO7xKD3Ndt+avZ5fmidPC+pLGyMSuLZZWkNNeC23xZIQ4k1rVaXQdwmGuh\nDg2bgwF9oDGZayxscsMuzweTeDSeakU8UTJS6ZrTSqbA3q4cg6eL07KWEyIayH2XuQxxsZDG10QD\nBHLJPSZGxwt7Xu5ce1zASdskDRu6AdHpZby4HFWHjtg+K8yh8S4eTH25qczo3y13mOQxiYMDx3hp\nnia5w/jAaHoQSOqjlkZLIz25HWLEjpZpOr5HabnHTvcWjqflWOtqN7adZzp2znm6giIrFQiIgCIi\nAIiIAiIgCIiAIiIAiIgCIiAIiIApThPOTYy7Xv12xOmrPc+NszXOiJdG+Px2scHEaPPcfIFFooaT\nVmWjJxd1rRvTA9tfFN7meCUsTNytm8bJIzq9sr2hrZsgDIdkMziGa6CNxPRZ9btR40lIEeKxzi7l\naaRydefafTiPXIdxsMc3XyDRx0aQTo/BZ+3R5ngsoiMuzeeXE86sbKxpa6RhMZ2TzNJbp0kcFLw9\nomZZt23nDboG+9VyGtETItgBj0DNjG+L3alx7yStCeCjf2YrxudWnlOVvbnK/wArG3Ie03jV7Q5u\nKxbm7WuJAJDQ6GWcCT/KXvT+VC8lrtCNWA9XNBxH9r/FwmkrmhiBLE+tG9p1277mvgwZL7JcuXfo\nerCe46rVMXHmWYAG3HNAaGaNhrgOAhmr6yaR++PMU72lztSdGE9WjTF++u/4RJa5w58vK3SCCuC0\nQbeUyMCPbEwbW+KzQHQa6lQsEtsY8yXlN20TnyNxM7XOLyNW4/Eu8QSaN1ceW7fsk0GR15bhHIQ7\nuPLdp3Lhna9xcXNYKGH3uERazU7jzmufGA05LXUxsc8jyBpJ0C01R4luwBginLdj2vDtkbpNzJn2\nGF0j2736TSSvAcT+Ff512Q8VXmbNszW8vby9K9cFhaZHb26R+K93NlDiO/mO11VupR3VzI7Tlvy5\nF/4r7bs9NBax9qvjGNsV3wS8qKdzhFag+HHI24YyTFKHA9R1C1Ku25ZkmeZJXF8jtu55+E8tYGBz\nj++eQ0auPUnUnqupbNKjGmvZVjQr4mdZ+227arnBXKIsq1mBvQSXC+Zlx9ytehax8tWUSsbIHGNz\ngCNHhpB06+RbU90ZmtNfBMZp3a8u1p3Hy+Ed/Q/qK0ypfh/iCekHNjEbmvO8tkY14MgjcyF53DuY\n9wkAGnWNixVsPCppkrs2cNi6lL2YysjZ/ujM3rp4Jjd2umnKta6+bTwjXVcj7ovN/meN0GmvvVvQ\na92v7o6a9FrgcW2PetIqwMMgla7bOZC4Elu+Z0/NcBucNCf379ddztc/H5K5kDIedUje2StsilL2\ntnfvZK2EbnkbN9NjiD5SO4Fa7wlJacxcTbWUa70Ko7/RF2P3Rua018Exmh8vLtaajr+cfMuPdG5v\n81xep06cq15e7/Wf+9VXMhJkK7bEgmxM0QEkzmNB2mXlxuc+OJw3c0cnRuv5Tj3npkPkv8xzuZiT\nI2RhYZGyMdLr4m8yOf71s0b3nynXrqFTq9HdXEy9bxPxHwROe6Lzf5pjNPPybfl1H5z5wf1Fce6N\nzX5ri/8AhWvtKqbYr0cEcLpMeytzKbtN7pXNa1/NgJDz1Z73oQNO469Tqe2pDc5m/bixvdLtcd5A\ndZdXklcGAkv2siGg/wDE11II1nq9HdXEjrmJ33wLP7o3Nd/guM0/mrX2lPdG5r81xf8AwrXd6yq3\nMy/sa1wxHUE/wrTGXAN1BDujy1reo/ijydK5Y4qsSdXRVdeYyUkQuDi5kglGrt+74Wo1HXRzvL1U\nxwtJ6oriVnj8RHXUfA2QfujM35auM8n8Fa8vUf6z5VB8d9suTzFGXH2a9FkMzonOdBHYbKDDMyZu\n0vnLRq6MA6jylVRnFdoCRpbXc2R5eWviLmtPIZWGxpdtaGxsAA8mp8nRQIWSGEpp3zdRgq5Rryjm\n57aevQERFtnPCNOnUdCOoI6EEdQQR3FEQGR4fY/ObPrE3108PsfnNn1ib66IqdHHuMnTT73xHh9j\n85s+sTfXTw+x+c2fWJvroidHHuHTT73xHh9j85s+sTfXTw+x+c2fWJvroidHHuHTT73xBvWNPxix\n8v7om6/J8PuWP8nk8g8nk7h+gfqCIpUUtRWU5S1sa/8A4/qGg/Rp0XJcfOe8nv8AKdNT850H6giK\nSLnCIikgIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCA6f1/\n1jQ/1IiA40TaPMP1LhEByAm0eYLhFAOdB5v6lyiIAiIpAREQH//Z\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "YouTubeVideo('VQBZ2MqWBZI')" ] diff --git a/1_numpy_matplotlib_scipy_sympy/4-scipy_tutorial.ipynb b/1_numpy_matplotlib_scipy_sympy/4-scipy_tutorial.ipynb index 4c42c6d..c8542f6 100644 --- a/1_numpy_matplotlib_scipy_sympy/4-scipy_tutorial.ipynb +++ b/1_numpy_matplotlib_scipy_sympy/4-scipy_tutorial.ipynb @@ -11,8 +11,6 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "J.R. Johansson (jrjohansson at gmail.com)\n", - "\n", "最新的[IPython notebook](http://ipython.org/notebook.html) 课程可以在这里找到: [http://github.com/jrjohansson/scientific-python-lectures](http://github.com/jrjohansson/scientific-python-lectures).\n", "\n", "其他的这个课程系列的笔记在这里[http://jrjohansson.github.io](http://jrjohansson.github.io)." @@ -20,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -63,15 +61,6 @@ ] }, { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy import *" - ] - }, - { "cell_type": "markdown", "metadata": {}, "source": [ @@ -105,7 +94,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -113,12 +102,13 @@ "# 在这里我们将会运用函数jn和yn,它们是第一类和第二类实值阶的贝塞尔函数。 \n", "# 我们同样包含了函数jn_zeros和yn_zeros,它们给出了函数jn和yn的零点\n", "#\n", - "from scipy.special import jn, yn, jn_zeros, yn_zeros" + "from scipy.special import jn, yn, jn_zeros, yn_zeros\n", + "import numpy as np" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -135,31 +125,33 @@ "x = 0.0\n", "\n", "# 第一类贝塞尔函数\n", - "print \"J_%d(%f) = %f\" % (n, x, jn(n, x))\n", + "print(\"J_%d(%f) = %f\" % (n, x, jn(n, x)))\n", "\n", "x = 1.0\n", "# 第二类贝塞尔函数\n", - "print \"Y_%d(%f) = %f\" % (n, x, yn(n, x))" + "print(\"Y_%d(%f) = %f\" % (n, x, yn(n, x)))" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD7CAYAAACG50QgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4TNcbx78jsdcW2aW2xr6vpRRFFVFUW0urrbZaRVFd\nlFJbLbXEvgVVW2urIkgjgpBVJLIQWUQSiWwikT2Tycx9f38c/ES2We7Mncj5PM887cyce+47N+Y7\n577nXWREBA6Hw+FUDapJbQCHw+FwDAcXfQ6Hw6lCcNHncDicKgQXfQ6Hw6lCcNHncDicKgQXfQ6H\nw6lCmEptwFNkMhmPHeVwOBwNISKZJuONaqVPRPxBhCVLlkhug7E8+LXg14Ffi7If2mBUos/hcDgc\n/cJFn8PhcKoQXPSNkEGDBkltgtHArwWDX4f/w6+Fbsi09QuJjUwmI2OxhcPhcCoDMpkMpOFGrtFE\n73A4nKqLTKaRblVJxFoUc9HncDhGAb/TLxsxfxS5T5/D4XCqEFz0ORwOpwrBRZ/D4XCqEFz0ORwO\npwrBRZ/D4XD0RGxsbIVjkpOTkZ+fbwBrGFz0ORwORw/ExMTAz8+vwnEWFhZYu3atASxicNHncDgc\nPeDk5IRJkyZVOM7U1BQODg44ePCgAazios/hcDgaceTIETg4OKB3797w9vYudUxISAjs7OzUnrNX\nr15wd3cXy8Ry4aLP4XA4GjBp0iTUr18fc+fORb9+/Uodc+7cOQwePFijeS0sLBAdHS2GieXCRZ/D\n4XA0gIhw5cqVckX9xo0baN++vUbzdunSBYGBgbqaVyG8DAOHw+FoQEhICMzNzWFlZVXmmPz8/BKl\nE5ydnWFiYgJPT0906tQJrq6uWLhwIdq2bQsAaNSoEaKiovRqO8BFn8PhVALEKj0jRnmfS5cuYejQ\noeWOUalUxZ7Hx8ejffv2sLe3x+LFizF//nw0aNAATZs2fTamdu3aUCgUuhtYATqJvkwm2wfAAcBD\nIupUxpgtAEYAyAcwhYiCdDknh8OpehhTLTZ3d3fMmDEDjx8/xu7du2FpaYnOnTujR48ez8aYmhaX\n1qfinpqainr16qFhw4YYNWpUsTFZWVkwMzPTu/26+vT/BDC8rDdlMtlIAPZE1ArA1wB26ng+DofD\nMSgFBQWwtbVFTEwMUlJSEBYWhsGDB+PPP//EW2+9hU8++QQbNmwodoy1tTVyc3OfPY+IiEBISAhc\nXFwwYMAAAICLi0uxY5KTk2Fvb6/3z6OT6BORJ4DH5QwZDeDAk7HXATSUyWRlO8I4HA7HyKhRowZm\nzJiB0NBQODo6wtXVFXXr1kVsbCxsbGxgamqKjIyMYscMHDgQ/v7+z567ubnh3LlzICLI5XKcPn0a\nlpaWxY4JDg4uMxpITPTt028CIOG55w8A2AFI1fN5ORwORxRMTEywaNEiAMDYsWOfvS4IAkxMTACU\nrHc/btw4rF+//lmEz+zZs8s9h1wuR/369VGrVi0xTS8VQ2zkvrgFU6Z3rnbtpXjlFcDKCnBwGIQ5\ncwbB1lbP1nE4HI4WtGnTBqmpqTAzM0P9+vWLvdewYUOYm5vj0aNHMDc3r3Cuo0ePYtq0aRWO8/Dw\ngIeHh7YmAxChR65MJmsO4GxpG7kymWwXAA8iOvrkeQSAgURUYqUvk8koLY2QnAzcuAG4ugLu7kCL\nFsB33wETJwLVq+tkKofDMVKe9HqV2gyNSE9Px759+9CgQQN06tQJffv2LfY+EWHv3r346quvyp0n\nISEBN2/exJgxY8ocU9b10aZHrr5FfySAb4lopEwm6wNgExH1KWOeEo3RlUrg4kVg3Trg3j3g+++B\nadMAA9wBcTgcA1IZRd+QGI3oy2SyIwAGAjAH89MvAVAdAIjI6cmYbWARPnkAPieim2XMVUL0n8ff\nH1ixAoiMBPbuBd58U2uzORyOkcFFv3yMRvTFpCLRf8qpU8C33wKjRwNr1gAvuNI4HE4lhIt++Ygp\n+pWu9s577wFhYUBREdCjBxAeLrVFHA6HU3modKIPAA0bMhfPokXAwIHA+fNSW8ThcDiVg0rn3nkR\nPz/g/feB2bOBefPEq9HB4XAMB3fvlE+V9umXxoMHgIMDMGIEsHo1F34Op7LBRb98xBT9l6LKpp0d\ncPkyMHQoIAhsg5cLP4fD4ZSkUvr0S6NxY+DSJZbQ9eOPxlWVj8PhcIyFl0b0AcDMjAn/1avAr79K\nbQ2Hw+EYHy+V6ANAo0bAf/8BR4+yCB8Oh8ORitjY2ArHJCcnIz8/3wDWMF460QcACwvAxYWFdLq5\nSW0Nh8OpisTExMDPz6/CcRYWFli7dq0BLGK8lKIPAK1bA//8A0yeDISESG0Nh8Opajg5OWHSpEkV\njjM1NYWDgwMOHjxoAKteYtEHgP79gS1bWMmG9HSpreFwOC8DR44cgYODA3r37g1vb+9Sx4SEhMDO\nzk7tOXv16gV3d3exTCyXl1r0AVaSefx4tuIXBKmt4XA4lZ1Jkyahfv36mDt3bpmdrs6dO/esgYq6\nWFhYIDo6WgwTy+WlF30AWLUKyM1l/+VwOBxdICJcuXKlXFG/ceMG2rdvr9G8Xbp0QWBgoK7mVchL\nkZxVEdWrA8eOAT17An36sCQuDofD0YaQkBCYm5vDyqrsdt/5+fklWig6OzvDxMQEnp6e6NSpE1xd\nXbFw4UK0bdsWANCoUSNERUXp1Xagiog+ANjaAn/9BXz0ERAYCN6GkcOpRMiWiZNiT0t0z9q8dOkS\nhlawclSpVMWex8fHo3379rC3t8fixYsxf/58NGjQAE2bNn02pnbt2lAoFDrbVxFVRvQB4K23gK+/\nBqZOZZU5eakGDqdyIIZYi4W7uztmzJiBrKwsXLp0CZGRkViwYEGxMaamxaX1qbinpqaiXr16aNiw\nIUaNGlVsTFZWFszMzPRrPKqIT/95Fi0C0tIAJyepLeFwOJWBgoIC2NraIiYmBikpKQgLC8OQIUPQ\noEED9OjRo9TVubW1NXJzc589j4iIQEhICFxcXDBgwAAAgIuLS7FjkpOTYW9vr98Pgyoo+tWrAwcP\nMvG/e1dqazgcjrFTo0YNzJgxA6GhoXB0dISrqyvq1KlT7jEDBw6Ev7//s+dubm44d+4ciAhyuRyn\nT5+GpaVlsWOCg4PLjAYSkyrl3nlKu3asNs+nnwKenoBplbwKHA5HHUxMTLBo0SIAwNixY9U6Zty4\ncVi/fv2zCJ/Zs2eXO14ul6N+/fqoVauWbsaqQZVb6T9l1iygbl1g3TqpLeFwOJWVsnoANGzYEObm\n5nj06JFa8xw9ehTTpk0T07QyqbKiX60aK8jm6MjdPBwOR3Nyc3Nx8uRJBAYG4vbt2yXenzNnDk6d\nOlXhPAkJCWjUqBHatGmjDzNL8FJ0ztKFDRuAc+dYSWYezcPhSAPvnFU+YnbOqrIr/afMng1kZQEH\nDkhtCYfD4eifKr/SB4CbN4Hhw4Hbt4EXNtQ5HI4B4Cv98uGN0fXAjz8CKSnA4cOSmcDhVFm46JcP\nF309kJcHtG/PYvgHDpTMDA6nSsJFv3y4T18P1K0LrF/PQjmVSqmt4XA4HP3ARf85PvgAMDfnJRo4\nHM7LC3fvvMCtW8CQIcCdO+wHgMPh6B/u3ikf7tPXM7NnA4WFfMXP4RgKLvrlw0Vfzzx+zOrzuLgA\n3btLbQ2H8/LDRb98+EaunmnUCFi6lIVx8n+HHA5HW2JjYysck5ycjPz8fANYw+CiXwZTpwLJyWy1\nz+FwOJoSExMDPz+/CsdZWFhg7dq1BrCIwUW/DExNgbVrgXnzeAgnh8PRHCcnJ0yaNKnCcaampnBw\ncMDBgwcNYBUX/XIZNYqVZdi3T2pLOByOsXDkyBE4ODigd+/e8Pb2LnVMSEgI7Ozs1J6zV69ecHd3\nF8vEcuGiXw4yGUvYWrIEyMmR2hoOh2MMTJo0CfXr18fcuXPL7HR17ty5Zw1U1MXCwgLR0dFimFgu\nXPQroEcPFre/fr3UlnA4HGOAiHDlypVyRf3GjRto3769RvN26dIFgYGBuppXIbxRoBqsWMHEf+ZM\nXoWTw6nqhISEwNzcHFZWVmWOyc/Ph+yFBh3Ozs4wMTGBp6cnOnXqBFdXVyxcuBBt27YFADRq1AhR\nUVF6tR3gK321aN4c+PhjYNUqqS3hcKooMpk4DxG4dOkShg4dWu4YlUpV7Hl8fDzat28PBwcHXLx4\nEQ4ODpgwYQKaNm36bEzt2rWhUChEsbE8+EpfTRYuZFU4584FmjWT2hoOp4phRAkz7u7umDFjBqKj\no3Hr1i2Ehobi3XffRffnMjlNTYtL61NxT01NRb169dCwYUOMGjWq2JisrCyYmZnp3X6+0lcTKyvg\nm2+A5cultoTD4RiSgoIC2NraIiYmBikpKQgLC8PgwYNx9uxZNGnSBN9//z3Wv7DpZ21tjdzc3GfP\nIyIiEBISAhcXFwwYMAAA4PJCElBycjLs7e31/nn4Sl8DfvoJaNUKiIgAnrjhOBzOS06NGjUwY8YM\nhIaGwtvbG66urqhbty7mzp0LALhz5w5atGhR7JiBAwfC39//2Wavm5sbcnJyYGNjA7lcjtOnT5cI\n6QwODsbUqVP1/nl47R0N+f13IDAQOHFCaks4nJeHylx7Z+XKlZg7dy7q1Knz7LXMzEysX78eK1as\nUGsOuVyOX375BRs2bCj1fV57R0Jmzwa8vYGgIKkt4XA4UuPs7IzZs2cjMTGx2OsNGzaEubk5Hj16\npNY8R48exbRp0/RhYgm46GtInTrAzz8Dy5ZJbQmHw5GSU6dO4bfffsO4ceNw/PjxEu/PmTMHp06d\nqnCehIQENGrUCG3atNGHmSXg7h0tKCgA7O0BZ2cWv8/hcHSjMrt3DAGvp28EbN0KuLkBZ89qdlyh\nshAPsh8gNS8VNU1qom6NuqhbvS5s6tnAtBrfV+dUTbjolw8XfSNALmer/VOngF69Sh8jkICQlBC4\nx7jjYsxFBKcEI6swC7b1bGFV1woKlQJ5RXnIVeQiU56JDhYd0N2mO/ra9cWYtmPQsFZDw34oDkci\nuOiXDxd9I2H7dlZv//z54q8nZidid+Bu7Lm5B/Vr1sfQlkMxtOVQ9G7SG9avWKOarORWSk5hDkJS\nQxCUHITLcZdxOfYyBjYbiIkdJ+L9du+jpmlNA30qDsfwcNEvHy76RkJhIYvbP3ECeP11IOxhGJZd\nXYaLMRcxqeMkzOg1Ax0tO2o1d3ZhNs5EnMGBkAOISo/CvH7z8GW3L1G7em2RPwWHIz1c9MuHi74R\nsXMn8K/rI7T+eglO3DmB+f3nY2r3qahfs75o5/BP9MeKaysQkBSAxQMX4+seX5d6t8DhVFa46JcP\nF30jgYiw1W8X5p5ZjPHtPsL28UtgVlt/tTOCkoPw7X/fQiABu0ftRierTno7F4djSLjolw8XfSMg\nLS8NXzh/gZTcFAzNOYAIz/ZQIyRXZwQSsCdwDxZdWYSvu3+NpYOWorpJdf2fmMPRI1z0y8eoMnJl\nMtlwmUwWIZPJ7spksp9LeX+QTCbLkslkQU8ei3Q9p9S4x7ijq1NXdLDoAO8vvPHrN+3h5weEhur/\n3NVk1TCt5zTcmn4LwanBGHRgEB5kP9D/iTkczkuBTit9mUxmAiASwFAAiQBuAJhEROHPjRkE4Hsi\nGl3BXEa/0icibL6+GWu91+LQe4cwpOWQZ++tWwcEBADHjhnOHoEErPFagy3+W3Bg7AEMe22Y4U7O\n4YgIX+mXjzGt9HsDiCaiOCIqAnAUwJhSxonTvUBClIISs/+bjb0398L3S99igg8A06cDV64A4eFl\nTKAHqsmqYcGbC3D0/aP4/MznWO+znn9xOBwjIjY2tsIxycnJyM/PN4A1DF1FvwmAhOeeP3jy2vMQ\ngDdkMlmITCZzkclkmjWONAJyFbkYe3QsItMj4f2FN5o1LNlF5ZVXgO++A1auNLx9A5sPxPWp13Eg\n5AC+c/0OKkFV8UEcDkevxMTEwM/Pr8JxFhYWWLt2rQEsYuia96/OsvImgFeJKF8mk40AcBpA69IG\nLl269Nn/Dxo0CIMGDdLRPN3JKczByL9Hwt7MHrtH7S530/Tbb4GWLYGYGPZfQ2JX3w6en3vivWPv\nYfw/43H4vcM8pp/DkRAnJyesWbOmwnGmpqZwcHDAwYMH8emnn5Y71sPDAx4eHjrZpatPvw+ApUQ0\n/MnzBQAEIirzk8pkslgAPYgo44XXjc6n/1Tw2zZuC6d3ndSKjV+0CHj0CNi1ywAGlkKhshCfn/kc\niTmJOP/RebxS4xX1DhQEIC4OSEkB0tPZhygsBGrWZI86dViz4JYtgfri5SBwOEDl8ukfOXIEhw8f\nRlpaGjZu3Ih+/fqVGBMSEoJr165h1qxZas/76aef4uDBg6W+ZzQhmzKZzBRsI3cIgCQA/ii5kWsF\n4CERkUwm6w3gOBE1L2UuoxJ9bQQfANLSgDZtgNu3AVtbPRtZBgIJmOo8Ffce34PLRy6oW6NuyUHJ\nycDFi4CnJws7CgsDzMyAJk2Axo3Zo1YtJvyFhUBuLnD/PruNqVUL6NYNePNN9ujTB6jN7yo42lOZ\nRB8AJk2ahNGjR2PSpEmlvr9y5UqMHTsWHTp0UHvOH374AdOnTy+1ZaLRiP6Tk44AsAmACYA/iGi1\nTCabBgBE5CSTyWYCmA5ACSAfLJKnhKPLmERfrpTjncPvoLVZa40E/ynffQeYmgIvtM00KE+FP+Zx\nDM5/dJ4Jf2QkcPAgKw2akAAMGQK89RbQtSvQsSPQoEHFExMBqamAvz/g5cV+NMLDgREjgAkTgOHD\n2Y8Ch6MBlUn0iQg2NjYICQmBlZVVqWPGjh2LU6dOQSZTX48PHjyImjVrYsKECSXeMyrRFwtjEX2B\nBEz8ZyIA4OgHR7Uqd5CQAHTpAty9yxbMUiGQgJnHPkPr/65jTngDVEt4AHz8MfD++6w0qKlIpZzT\n0oCTJ4GjR9ldwxdfsBZjTZuKMz/npacyiX5wcDAmT56M27dvlzlm2LBhcHNzK/aas7MzTExM4Onp\niU6dOsHV1RULFy5E2ycNt8+ePYuoqCj88MMPJeYTU/R5AfcX+NHtR6TmpeLC5Ata17d59VVg3Dhg\nyxYJO2ylpKDatm3Y4eSKG6/VxsrB5liwPBamNfSwCrewAL75hj3u32cfvFs34O23gQUL2C8gh6MD\nMh03L59CIgSHXLp0CUOHDi13jEpVPIIuPj4e7du3h729PRYvXoz58+ejQYMGaPrcwqh27dpQKBQ6\n21chRGQUD2aKtGzw2UDttrWjjPwMneeKiiJq3JgoO1sEwzQhNZVo1iyihg2Jpk8nunuXCpWF9PbB\nt+lr569JEATD2JGVRbR+PZGVFdGnnxLdv2+Y83IqJcbw/VeX4cOHk7OzM8XFxdHx48dp1apVFBAQ\nUGzMsGHDSj02JSWFBg4cWOp7//zzD+3atavU98q6Pk9e10hreanGJ5yLOgdHX0f89/F/aFS7kc7z\ntWoFDB0K7N4tgnHqkJsLLF8OtGsHyGTMf79jB2BvjxomNXBy/EkEJAdg2VUD3XrUrw/88AMQFcXc\nPN26sVW/AZNQOBwxKCgogK2tLWJiYpCSkoKwsDAMGTIE3t7eaNy4MVq1aoWoqKhix1hbWyM3N/fZ\n84iICISEhMDFxQUDBgwAALi4uBQ7Jjk5udRNXLHh7h0AkY8i8cWZL+A8ybnUxCtt+flnYNQoFr9f\nU189UIhYQf+5c4GBA4EbN0pNEqhXsx5cPnJBv339YFffDlO7T9WTQS9Qvz7w22/M9fPTT0DnzsCe\nPWwDuQxSFQqE5eUhPD8f4Xl5eFBYiIdFRXioUCBTqYQAQHji36xvaorG1aujsakp7GrWRJs6ddC2\nTh10qFsXrWrX1mgjjcMpjRo1amDGjBkIDQ2Ft7c3XF1dUadOHXz00UeIjY2Fm5sbli9fXuyYgQMH\nwt/fH4MHDwYAuLm5IScnBzY2NpDL5Th9+jTs7OyKHRMcHIypU/X/vazyG7nZhdl4fe/r+L7P9/iq\nx1eizz98OPDBB4Be/pb37gEzZwKJiSwxoJR44ReJSo9C/339ceLDExjYfKAejKqAc+eAGTOAd94B\nHB2B+vURnZ8P98eP4ZWVBe/sbGQplehYty7a1amDdnXqoFmtWrCsUQOW1aujoakpTGSyZ3U9slUq\npBcVIb2oCAmFhYjIz0dEfj5Cc3ORJwjo36AB+jdogJFmZmhXt5TQVY5RUJk2cl/Ez88Pzs7OWLVq\n1bPXMjMzsX79eqxYsUKtOeRyOX755Rds2LCh1Pd59I5ICCTg/ePvw6quFXaN0k82lYcH8PXXLKrR\nxESkSVUqYNMmYPVqYP58YM4coLr65ZUv3ruIT059At8vfdGiUQuRjFIfysqC75o1OC0IODtyJDJN\nTTGsUSO8+USg29SpI8oK/YFcDq+sLFzLysLZ9HS8YmKCcebmmGBpic6vqJm0xjEIlVH0f/75Z3z2\n2WcoLCzEihUrcPLkyWLvb9q0CZMnT4a5uXmFc+3fvx99+/ZFmzZtSn2fi75IrPZcjbNRZ3Hlsyt6\n60FLBLzxBnNvf/CBCBPGxABTpjC//f79QAvtRHub/zbsCtgFny99RO3yVR7R+fk4lJqKw6mpqFGt\nGj5IS8PoFSvQY+JEVJs9m30mPSEQISAnByfT0nDk4UPY1KiBaba2mGBpibqi/RpztKUyir6vry/S\n0tIQFhaG0aNHl0jEIiLs3bsXX31VvgchISEBN2/exJgxpdWqZHDRFwGfBB+MOzYOAV8HwK6+XcUH\n6MCZM8ytfeOGDrpGBPz5J9soWLCAZYBV034fnogw/fx0JOUk4fTE03prv6giwrn0dGx98ACheXmY\nZGmJT62t0f2VV9hqPiaGJXU1bQocOMAq1+kZFRH+S0/HrqQk+GZnY0aTJpjTpAnMa9TQ+7k5pVMZ\nRd+QcNHXkccFj9HNqRu2jNiC0W3KLfMvCoLAEl63bGERPRqTk8NqN4eEsAQoDVK7y0OhUuCtA2/B\noZUDfnnzF1HmfEquUondycnY8uABrGvUwLdNmuBDS0vULO2HqrCQ+fkDA9kvZDPxNtMrIqagAGvi\n43EiLQ1fWFvjp6ZNYcXF3+Bw0S8fY6qnX+kgIkw9OxVj2owxiOADbEH+88/A779rcXBICNCzJ6tt\nc/26aIIPADVMauD4B8ex1X8r3GPcRZnzcVERfouLQ8vr1+GXnY3jHTrAr0cPTLa2Ll3wARbatHcv\n8NlnQN++gLe3KLaoQ8vateHUpg1Ce/aEgggd/P2x+v59FKh4eWrOS4qmgf36esBAyRk7b+ykrru6\nkrxIbpDzPaWwkOjVV4leyOEon4MHiczNif76S292ERFdirlE1uutKSErQes5souKaFlsLDX29KQp\n4eEUkZen3UQuLkQWFkQnTmhtiy7czcujcbduUVMfHzqSkmK4ZLYqjqG+/5WVsq4PtEjOklzsnxli\ngD96RFoENV7TmCLSIvR+rtLYsIHoww/VGKhQEM2eTWRvT3T7tt7tIiJa7bma+uztQ4XKQo2Ok6tU\ntDE+nqy8vOjjsDCKzs/X3ZigICJbW6KdO3WfS0uuPn5Mnfz9aXhICMWK8Zk45cJFv3zEFP0q49NX\nCkr039cfn3T+BDN7z9TbecojN5cF2/j6AmUm3j18CHz4IdvQ/OsvoGFDg9gmkIAxR8egbeO2WDds\nXYXjiQj/PnqEn+7dQ4e6dbGqRQt0EnMT9t49Fss/eTKwZIleI3vKokgQsD4hAY4JCVjYrBlm29nB\nhCd76QXu0y8fvpGrBas9V+Ny3GWdCqmJwa+/sqKUpTZZuX0bePdd4KOPWLiPDtE52vAo/xG6OXXD\nnnf3YLj98DLHBeXk4LvoaDxWKrHR3h5DGuletqJUUlNZyeYBA4CNGyURfgCIys/H1MhIyAAcatcO\nTXnpaNHhol8+Yoq+5G6dpw/o8fYuODmYzNea0/1M6Yt+paYSNWpElJz8whvnzzNf9uHDktj1lCux\nV8h6vTUlZSeVeC9DoaAZkZFk5eVFuxITSWkIf/fjx0S9ehF9+y2RhP51pSDQ6rg4svDyoqOpqZLZ\n8bIC1nqVP8p5lHXdiLt3iqNQKdBrTy/M7TMXU7pOEX1+bZg5k5WkWb36yQtbtwKrVrGa9G+8Ialt\nALD4ymL4PvB9dldERDiUmoqfY2IwpnFjrGrZEmYaZADrTFYWq2fRrRuwbZvB74CeJzAnBx/duYN+\nDRpge6tWqM0TuzgSwt07pbDMYxkCkgPgPNHZaIpvxcayHiYx0QLqL/sBuHABcHFhPWiNAKWgxFsH\n3sKoVqPwfvdZmBYVhUylEjtbt0ZvqfrjZmczV0+nTsDOnZK5egAgT6XCV5GRCM/Px8kOHdCSt4rk\nSAQX/Re4k3YHA/cPRNC0IL1n3WrKpx8WYFHEZLRunA6cOgXoyy+uJfcy76Pz2RWo0Xwyfm3eErOb\nNIGphCtsACxJ7e23WWG59eslFX4iwtbERKy8fx/72raFg5Qt0jhVFp6c9RxPe8QuH7Tc6AQf6enY\nETUEd+7VRKHzBaMT/OCcHHwQnYbXWr6PxuGLMN3aXHrBB4B69dgdkbs76x0gITKZDLPt7PBvx474\nOjIS6+Lj+UYkp1JgBN9k/bDzxk5Uk1XDtJ7TpDalOPfvA/364ZV3+mNX/8P46x99FdrXHIUgYHFs\nLIaFhmJOkyYI7jsMPcxsMd99vtSm/R8zM8DNDfj7b6CMMrSGpF+DBvDr3h1/paZiamQkFIIgtUmi\nolAAcXGAlxe77Bcvst9cLy/2elGR1BZyNOWldO8kZCWgm1M3eH7uiXYW7USZUxRu3QJGjmQlN7/7\nDpcvs5Izd+5IujcJgIVhfhYRgea1amFX69awfdL1JaMgA112dcG+0fvw9mtvS2vk8yQkAG++CSxd\nyqqOSkyuUomPw8ORpVTi344dDbvRLRKFhSyHxNcX8PMDAgJYeLG1NdCkCUsdYQmdQEEB8OABkJLC\nWiR3784qaLzxBtC7N1CnjtSfpmrAQzafMPrIaFrmsUy0+UTh6lUiS0uiI0eevSQIRD17Ep0+LZ1Z\nCpWKlsZWNs+ZAAAgAElEQVTGkoWXFx1KTi617ID7PXdq4thElN7BohIeznrwurhIbQkRsbDOH+7e\npXbXr9P9ggKpzVELuZzI2Znok09YW+XevYnmziU6fpwoLo5IqSz/+KIiothYVjXj+++J+vQhql+f\n6IMPiI4eJcrJMcjHqLKAl2EgOhNxhlpvbW3w2jrlcvo0i8G/eLHEW8ePE/XtK00I+u3cXOp+4waN\nCAmhB/Lyr9e357+lyf9ONpBlGuDjw67t9etSW/IMx/h4svPxoVtGrHjJyUS//sou3ZtvEm3dSpRU\nMjVDK9LSiPbuJRo+nKhBA6Jp0wxWTaTKoY3ov1TunfyifLTf3h57R+/F0Jba1DDWA/v2AQsXAmfP\nsmqZL6BSAW3bsmFvvmkYkwQibHrwAKvj47G6RQt8aWNTYThrniIPXZ26Yt3b6zC27VjDGKouzs7A\ntGnAtWusI70R8HdqKuZGR+OfDh3wpoFKaahDbCxL9j51Cpg0iTVdK6NZkygkJwNOTuzRoQNrBTFk\niP7O9zzZhdm4mXwTAUkBuP3wNhJzEpGUk4SU3BQoVIpn4+pWrwubejawecUGr9Z/FV2su6C7TXd0\nseqC2tWNOxy3yodsLry0EDGZMTjy/hGRrNKRtWuBHTtYHH453ywnJ/abcO6c/k2KKyjAlIgIqAAc\naNtWoxhz73hvfHjiQ4ROD4V5nYpbwBmU3buBdeuYM9pIwifdMjLwcXg4Drdrh3fMzCS15fFjlv+3\nbx/w7bfArFmAGl38RKOwEDh2jP3gNG0KrFwJ9Okj7jkEEhCYFAjnSGecjTqL6IxodLHugp42PdHZ\nqjPs6tvBtp4tbOrZoKbJ/wMochW5SM5NRlJOEu5n3kdwSjACkwMR8SgC3Wy6waGVAxxaOaCzVWej\nyfV5SpUW/YhHEei/rz9Cp4fCtp6tiJZpAREwbx4LL7xwAbArP2RULmeF2NzcWO6RfkwiHEhJwU8x\nMZj36qv4/tVXtSoe9qPbj4jPisfxD4/rwUod+flntgt58SKr0W8EeGdl4b3bt+HUujXes7Aw+PkF\ngf0eLl4MvPce2/e2sTG4Gc8oKmJdPpcvZwmKGzfq3jPnfuZ97Lm5B/uD96NezXoY3Xo0RrcZjdft\nXodpNVOt55Ur5bh2/xrOR53H+bvnoSIVpnSZgildp6BZQwM1+snPB0JDWajUgwfskZnJLqRSCdnx\n41VT9IkIQw8NxejWozGnzxyRLdMQpZJ1Qr9zBzh/Xu1V5++/A2FhwKFD4puUplBgWlQUogsKcLhd\nO52aghcUFaD77u5YNmgZxncYL6KVIiAIwPjxrOHMwYOSJm89z82cHIwMDYWjvT0+trIy2Hnv3QOm\nTmWLij17WPc2Y0EuZ/l1mzYBP/0EzJ0LaNKwjIhwKfYSNvhuwPXE65jcaTK+6vEVOlrq50MSEYJS\ngrAvaB+O3D6C7jbd8X2f7zHcfri4q/+0NOC//4DLl1n4VEwM0K4d8NprbPFoZ8fyeqpXB6pXh2zi\nxKoZvXMi7AR12tGJilRFWs8hCgUFRGPHEg0bpnHYQmYmkZkZi4QQk3OPHpGNtzf9FB1NcpVKlDn9\nEvzIap0VPcx9KMp8opKXx0JQlhlX9Nbt3Fyy9fam/SUq7YmPIBBt3kzUuDGRo2PFEThScu8e0YgR\nRO3aEfn5VTxeEAS6eO8i9fujH7XZ2ob23dxHeQotG/ZoSUFRAR0MPkgdd3SkLju70JFbR3TTngcP\niFavZv9uGzQgGjeO9ZIIDGTdl8oBVTF6J0+RR003NiWPWA+tjheNzEyigQOJxo+v8A9VFvPmsWKS\nYpBTVERfR0RQc19f8nj8WJxJn+OHCz/QxH8mij6vKCQnEzVtykKjjIiIvDxqomfhz8ggGjOGFSaN\nitLbaURFEIiOHWMRzYsXsx5CpRGUHEQD/hxAbba2ob9C/yKlStpfM0EQ6HzUeer3Rz9qt60dOUc4\nq99praiIxbmOGMHK7n71FZG7u8baUSVFf8mVJTT+xHitjhWNlBSirl2JZszQaVmVlMT+/g91XEB7\nZ2bSa76+NCU8nLKK9HP3k6/Ip1ZbWtGp8FN6mV9ngoJYq8nAQKktKYY+hd/fn6hFC6I5c7Red0hK\nYiIL8+zZkyjiueZ2j/Ie0fRz08lynSU5BThJLvYvIggCnYs8R+23t6eBfw6kG4k3yh6cl0e0bRtR\n8+ZE/fsTHTrEXtOSKif6cY/jyGyNmbR18mNiWFvDpUtFCbb/6isWP60NcpWK5t+7R1ZeXvSvrr8c\nauB535NsHW0pPT9d7+fSin/+YY2JDeBS0YSnwn9QRLv27WMx9//8I9qUkiAIRDt2sN/rI0cE+iv0\nL7JcZ0kzz8803n9nTyhSFdHugN1kvd6aZpybQZkFmf9/s6CAaN06lkw4ZgzLLxGBKif6Hxz/gJZ7\nLNf4ONF42st12zbRpoyKYr7Y7GzNjgvJyaHO/v40JjSUUgy4zJvlMos+PfWpwc6nMUuXsjRRI8uQ\nDc/NJRtvbzqmY0MWlYpo/nyili1ZgvLLwiXfh1T38/ep0aJ25BNXzsrZCMnIz6Cvnb8mW0dbOhZ6\nhIRDh4iaNWNiL3KWWpUS/csxl6n5puaUr5CoafWVK2xppQe/8fjxbFGgDkUqFa2IiyNzLy/al5Sk\nvk9RJHIKc6j5pub0393/DHpetVGpWE2AL76QtPNWaYTk5JCVlxedSUvT6vi8PKL33yfq149lwb4s\nnI08S9brrWnW2Z9o1NgCev118bKFDUnQub10q2ktinytET12PaOXc1QZ0VeqlNR5Z2c6EXZCk+sj\nHidOMMG/fFkv09+8yW4gKqiMQHdyc6lXQAC9HRwsaa0Xt2g3arqxKWXLNbw9MRQ5OUQdO4p6RyYW\nN7KyyMLLi1zTNXNdZGSw8h0ff1zxv5PKgkKpoHlu86jpxqbked+TiNjv9IoVzEsXECCxgeqSnc02\nViwtSbF3N/3o+gPZrLehs5FnRT9VlRH9PYF76M19bxp8VUtERJs2MUW+eVOvpxk+nMjJqfT3ilQq\n+v3+fWrs6Um7EhOluQ4v8Pnpz+nb8yKFHumD6GgWHnL1qtSWlMArM5MsvLzIU80oq+Rkos6dWWE0\nkaJwJedB1gPqv68/DT88nNLySt62/Puv3m6sxeXCBfYLNWVKsduvq3FXqfmm5jTt7DRRvRNVQvSz\n5dlks96m/B1yfaBSsW9Z27biB9OXwtWrRK+9xiK7nudWTg71DAigocHBFJsvkWurFDLyM8jW0fbZ\nCs0ocXUlsrYmio+X2pISuKWnk6WXFwVVsJkTF0fUqhXR8uVG563SGu94b7JZb0Mrrq4glVD2r1hQ\nEHONr1xphJ89P59o1iwiOzsiN7dSh2TJs2jCiQnUZWcXinwUKcppq4ToL3BfYPiNw4ICog8/ZOUI\nNbwN1xZBIHrjjf9XYi5UqWhZbCyZe3nRHiNZ3b/IyTsnqc3WNlRQZFybpsVYs4aoRw+j29glIjqR\nmko23t4UWUYIX3Q0Sz/YvNnAhumRg8EHyWKtBblEqVceOymJRUd/803JBZFk3LzJsssmTKhQHwRB\noB3+O8h8rTkduXWk3LHq8NKLfuzjWDJbY0YPsh5oc320IzWVOU/Hjze4UJw9S9SlC5Hn40xqf/06\nvRsaSvFGKFbPM+7YOPrF/RepzSgbQTDajV0ior1JSdTMx6fE3zkmhgn+rl0SGSYyKkFFC9wXUMvN\nLel2qmYRLdnZLOn93XeJcnP1ZKA6CALzwZqbEx0+rNGhN5NuUsvNLWmu61ydsnlfetGfcGICLb2y\nVJtrox1hYSzbZdEiSZynGQoFNf4tkswuedPx1FSjXN2/SFJ2ElmstaDg5GCpTSmb7Gyi9u3L3jSR\nmHX371O769fp0ZPU1Lg4lstjhPvQWiEvktOEExOo/77+pfrv1UGhIPrsM6LXXzfYzXdxcnOJJk9m\nAQLPZ5JpQHp+Og07NIwGHxis9XV4qUXfL8GPmjg2odxCA/20X7jAdo4OHjTM+Z5DEAQ6lJxM1t7e\nNOR8BPUcpDDGRWmZ7A3cSz2cekhfC6k8IiLY31edgi8S8GN0NPUJDKTI+0pq2ZLFD7wMZMmzaMiB\nITTu2Did3YCCQPTjj0x3ExNFMlAdoqPZST/7TKdsWiIWifjzxZ+pxaYWFJISovHxL63oC4JA/ff1\np30392l8UTRGEFiVKmtromvX9H++F7idm0uDgoKo240b5JeVRUolUevWRJcuGdwUrREEgQYfGEzr\nvNVMNpCKU6dYpIWOCVL6QCUINDHoDtXdGkKr1r4cITrJOcnUbVc3+ubsN6KVUhAEVqusZUumxXrn\n0iWWVbt9u6juwSO3jpDFWgs6F3lOo+NeWtH/986/1GlHJ/3X3MjPZ7ds3bqxe2oDkqFQ0KyoKDL3\n8qItCQlU9Jw7af9+osGDDWqOzkSnR1PjNY0pOt0Q30QdWLCAXVyj2RVk5OQQ9eyjoteOhdLkO3dI\nVZlu9UrhfuZ9st9iT0uvLNWLm3LXLhZJrde2jNu3M8HXU36OX4If2ay3oY2+G9W+Ri+l6BcqC8l+\niz1diL6g1kXQmthYFtUxaZLOt2yaoFCpaPuDB2Tp5UXfREZSWiklFBQK5tMVqVyHwVjnvY4GHxhs\n3HsRSiXR0KGsloGRIJcTvf020ZdfEuUWKalvYCDNM8gyVj9Ep0dT803NaaPvRr2e56+/2A16UJDI\nEyuVRLNnswgdPf8d4h7HUccdHembs9+o5R59KUV/i98WGnZoWIUfXiecnVnijqOjwSI6BEGgUw8f\nUms/PxoSFETBFdTf37mTyMHBIKaJRpGqiHo49aC9gXulNqV8Hj5koTGnpK8YqlKxyL+xY/9/8/FI\noaC216/TRiPML6iIiLQIsttgRztv7DTI+f75h32V/f1FmjAvj+i994jeeotIDyXKSyNLnkXDDg2j\nUX+PqnAP86UT/cyCTLJcZ6nVBodaKBREP/3E/Lre3vo5RylcffyY+t+8SZ38/ck1PV2tlXBBgUES\ngUUnODmYLNZaUFK2kRdPuX6dbexGipM0oy0//cRq6bwYmRtXUEB2Pj50JCVFGsO0IOxhGNk62tKf\nQX8a9LzOzuxP6eWl40QPH7JifZMnG7xWtUKpoCmnp1DP3T0pJafsv/lLJ/oL3BfQlNNTNLpYanP3\nLvuDDh9usGpVPpmZNCQoiFr6+tL+5GRSanhXsXEjW3RUNhZeWkjjjo2T2oyK2bmTRWVIFPy9fTvb\ntH/0qPT3Q3NyyNLLiy5lZBjWMC0ITwsnW0dbOhRySJLzPw2+0zoWIzaWpT7/8otk+RyCINCSK0uo\n5eaWFPWo9I44L5XoJ2QlkNkaM0rIStDqgpWJIBDt3s0SKjZv1nv8vSAIdCUjg4YFB1NTHx/anZhI\nCi3PmZfHfJYherrx0RcFRQXUZmsbOnnnpNSmlI8gEH36KatiZuAvurMz+9veu1f+uCsZGWTh5UUh\nGrbjNCSRjyKpiWMT2h+0X1I7Ll5kwq9xuaVbt1g5ha1b9WKXpuwJ3EPW661LLT3zUon+56c/p/kX\nRd5ce/CApfF17coSr/SIShDoTFoa9Q0MpFZ+frQ3KUmUHrXr17OE0srG04YrGflGvkrNy2PVzLZv\nN9gpAwPZGkTdlIFjqalk5+MjaWXVsohOjya7DXb0x80/pDaFiFgHQgsLVgldLXx8WITO33/r0yyN\nOR1+mszXmpNbdPG6Pi+N6IemhJLlOsvinWd0QaViX2Jzc9aEU4/+uayiItqUkECv+fpSz4AAOpaa\nqrEbpzxyc9m/yVu3RJvSYMw8P5M+P/251GZUzN27TCl8ffV+qqQktqV0QsMq4Rvj46nd9euUXlZD\nWQmIz4yn5pua064bxlUr4vJl9uf08KhgoJsbG/ifcfaGuBZ3jSzXWRar2fPSiP7Iv0aKF94VFMQq\nl73xhl5X94HZ2fRNZCQ18vSk8bdvk3dmpt5CFdesYaWAKhvZ8mxqtrGZ/sNvxeDMGb0nbuXnswbm\nv/2m3fE/3L1L/QIDKV+HvsxikZqbSm22tiFHH0epTSmVS5fYmq9MV8/T3V9PI64SS2xB3MSxCW27\nvo2KVKqXQ/SvxF6hFptakLxIx84QSUmsqJaVFcvc0IPv/mFhIW178IC637hBzXx8aHlsLCUY4JY7\nJ4eFpenZQ6UXLkRfoGYbm1FOofH6pJ/xyy96S9wSBBaaOWmS9tsHKkGgSWFhNO7WLVHvJjUlIz+D\nuuzsQkuuLJHMBnVwd2fCX2Jz9+hRkeM89UtMRgy12NKOWl35p/KLviAI1Gt3L/o7VAd/2uPHrC9q\n48ZE8+YRZYrkInpChkJBB5OTaURICDW4do0+Cgsj1/R0g2dMrl5NNHGiQU8pGlNOTzHuhitP0WPi\n1vLlRL17s9W+LshVKhocFEQzIyMlSYLLLcylvnv70lzXucadhPeEp5u7z8I59+8nsrGpVNERDwsL\nqZu/LzU6vabyi/7x28epu1P3chsplElaGluZmZmxrjUVhUFowL38fNqakEBDgoKo3rVr9G5oKP2d\nkkK5Et5WZ2ezxUll9O0/bbhyLc7wtY00Ji2NJW79+69oU54+TdSkiXh9XzOLiqizvz+tMnDpkEJl\nIb1z6B36/PTnlULwn/LUdR+9YC/7Q1SijvL38vPJ3s+PFt67Rxn5GdKIPoDhACIA3AXwcxljtjx5\nPwRAtzLGkP0We7p476JmVyEggGjqVKJGjYi+/poVHteRJLmcTqSm0rSICGrp60vW3t706Z079O/D\nh5IK/YusW8caY1dGToefJvst9pSnMFzJC615mrilZQnd5wkL0yxSR10S5XJq5uND+5OTxZ24DFSC\niib+M5HGHBlj3NVUy+DWLCdKqPYqBR0vPf7dGAnKziZbb2/a8eD//UQMLvoATABEA2gOoDqAYADt\nXhgzEoDLk/9/HYBfGXPR2wffVu/Tx8cTbdlC1LMn65+2ahVrHKoF2UVFdO3xY9qUkECT79yhFr6+\nZObpSaNCQ8kxPp5Cc3KMdhWTl8fuTCtblu5TJv0ziea6zpXaDPXYvZvV4K+gnWF5ZGQQ2dszj4I+\nuJObS1ZeXuRSVnaXSAiCQDPPz6QBfw4Qtd+rwdixg6hpU7qyN5osLCqHK/9pfsaJFwILpBD9vgBc\nn3s+H8D8F8bsAjDhuecRAKxKmYtuJpWhXvn5LN7qt9+YI9TMjNWydnFhftcKkKtUFJWXR27p6eSU\nmEjf371LI0NCqIWvL9W9epVeDwig6ZGRtCcxkcJycytVRcMtW4hGjZLaCu1Iy0sj6/XW5HVf13x5\nAzF1KkuS0OLfh1LJkr/nzNGDXc/hnZlJ5l5e5J+VpbdzLPdYTl12dhEvpNqQbN/OFopP3L9nzzI3\n6Q0Dt9zWhH8fPiSLMjKxtRF9GTtOO2Qy2QcA3iGir548nwzgdSKa9dyYswBWE5HPk+fuT9xAgS/M\nRYkBAaDcXNDDh6C4OAjx8aC7d6GMjoaybVsoe/RA4ZtvorBbNxRWq4YCQUCuSoVclQo5KhUeFxUh\nQ6lERlERHhYVIUWhQIpCgSylEq/WrInmtWqhWa1aaFOnDtrWqYN2deqgRa1aMK1WTetrIDVyOdC6\nNXDiBPD661Jbozn/hv+LBZcWIHhaMGpXry21OeUjlwMDBgAffgj89JNGhy5cCPj6Am5ugKmpnux7\ngvOjR5gWFYVrXbuiVZ06os699+ZerPJcBZ8vfWD9irWoc+udnTuBNWuAy5eBli2fvXz2LDB1KuDi\nAvToIaF9pbA3KQm/xsXhfKdO6F6vXon3ZTIZiEimyZy6/vNT9xfjRaNKPa7NunWATAbIZKjVtStq\njx4NWfXqqF6zJkyrVYOJTIaa1aqh5v37qCmTobaJCeqZmOCVJw8zU1O8Vrs2etarB8vq1WFTsyas\na9SAefXqMJFpdF0qDbVqAYsWAb/+ygSlsjGu3TgcDzuORZcXwfEdR6nNKZ9atYCTJ4HevYFu3YCh\nQ9U67NQp4PBhICBA/4IPAKPNzfFQocA7oaHw6tYNtjVrijKvc6Qzfr3yK65OuVo5Bf/334ErV4oJ\nPgC8+y6wezcwciTw339A9+4S2fgCa+PjsSMxEVe7dkXrJz/eHh4e8PDw0G1iTW8NqLhLpg+Ku3cW\n4IXNXDD3zsTnnpfp3uFoh0LBOgdVmHFopKTlpZHNepvKEc1DxHL6razUChoIDyfJ/MYr4+Kok78/\nPRYha9c73pvM15qT/4NK4AB/kV27WARWBRF9p04xV09goIHsKgNBEGhedDS1v369wrwfSODTNwVw\nD2wjtwYq3sjtg3I2cjnac/gwKxpaibYjinEm4gy13NyyciRtEbHNlM6dy63ImZVF1LYt0R8SlaER\nBIFmR0XRmzdv6pS1e+fhHbJcZ0n/3TXO8gTlsns3y6xWs/nJU+EPCNCzXWWgFASaGhFBvQIC6JEa\nP9YGF312TowAEAkWxbPgyWvTAEx7bsy2J++HAOhexjy6Xa0qjkpF1KWLqOHkBuezU5/RN2e/kdoM\n9RAEos8/J/rww1J/aQWBaNw4omnTJLDtOVSCQB+FhdG7oaFaVXdNzE6kZhubSV4xUyv27mXVMu/e\n1eiw06elSdCVq1T0we3bNCQoiLLVzAKXRPTFenDR1x0XF7ayNLJ2r2qTWZBJr254lVzvukptinoU\nFLBospUrS7y1Zg17S65jNRExUKhUNDIkRONeu5kFmdRlZxdaea3k5zN6/vyTJV5FaReHf+YMc8uJ\nnU9RFjlFRfR2cDCNu3VLo2q8XPSrOIJANGgQ0Z49UluiPRfvXSS7DXaUnp8utSnqkZjIxOXMmWcv\nXbrEauMbU3fDPKWS+t+8SbOiotTKOylUFtKQA0NoxrkZRpunUiYHDrA2czom0507p2MjFjVJVyio\nT2AgfR4eTkUa3o1x0eeQnx/TIAP2dhed2S6zafyJ8ZVHbK5fZ2m2ISEUH88E/9IlqY0qyWOFgrre\nuEGLK9iAVgkq+ujkRzT26FhSqownA10tDh9mgn/njijTPa3V4+4uynQleCCXU4fr1+nH6Git/r1z\n0ecQESvNsHq11FZoT74inzps70AHgg9IbYr6/P03Cc2a0/DuqfT771IbUzaphYXUxs+P1t6/X+aY\nn9x+on5/9Kt82bZ//81S1EUuP3v1KhN+FxdRp6WovDxq7utLq+PitF7gcNHnEBHr7W1urtdS8Hon\nJCWEzNeaU0yG7rWUDIVL94V0x6wfCQVG4Mgvh4SCAmrp60vbnqvh8pRNvpuo7ba2lce99pSjR9kt\nlp4qEPr6ss3dY8fEme9mdjbZeHuTU2KiTvNw0ec8Y84com8qSSBMWTj6ONIbf7xRKQp67d9P1KaV\nihTvjiOaPNnoY2dj8vPpVR8f+uO5Up/Hbx+nJo5NKO5xnISWacFTwQ8N1etpQkKY52j3bt3meVpH\n55+HD3W2iYs+5xnp6eyWtDKWXn6KSlDR0INDjb45R1AQu7O6fZvYZkqvXkRLlkhtVoVE5uWRrbc3\nHU5Jocsxl8lynSWFpFSeuvJEZDDBf8rdu0TNm7PoLG04+aSOzuVS6uhoAxd9TjE2byZ65x2prdCN\npOwksl5vTZdjLkttSqmkp7Ns6CNHnnsxJYWoRQsWRWLkhOXmkoWnB9Xb+x5dib0itTmaceSIQQX/\nKQ8eELVrRzR3rmYN+ZwSE8nG25tu6lCp9UW0Ef3KW2mMUyHTpwOxsayeSGXFpp4N9o/Zj09OfYKH\neQ+lNqcYggBMngyMHg1MnPjcG1ZWwLlzrCibrnVS9EydojTIQufBtNVMJNZuJ7U56nP4MPD996zg\nVKdOBj11kyaAlxdw4wbw0UdAYWH544kIi2NjsS4hAde6dkW3UgqnGRIu+i8x1asD69cDP/wAFBVJ\nbY32vGP/Dj7p/Ak+O/0ZBBKkNucZy5YBeXnA2rWlvNm+PXD0KDBhAhAaanDb1CEtLw3vHH4Hi3pM\nhmePPvjp3j38lZoqtVkV8+efwM8/A+7uBhf8p5iZARcvAkolMHw4kJlZ+rgiQcCXkZH4LyMD3t26\nwV7kqqdaoemtgb4e4O4dvSAIzMXj6Ci1JbqhUCqo796+tMZLS2eqyDg7swz/lJQKBh47xhInYmMN\nYZbaZMmzqIdTD1p0adGz127n5pKttzft0TGiRK/s3s0uvAhdzMRAqWRBE+3alSzvk11URMNDQmhE\nSAjl6ClNHtynzymNqCjWJ96Yv8vqcD/zPlmts5Lc93z3Ltsk9/VV84AtW4hatyYSIVpDDAqKCuit\n/W/RtLPTSsSHR+XlUVMfH9qUkCCRdeWwcSNrgKJhLR1DsH07K7x69Sp7nlBQQF38/emriAitah6p\nCxd9TpksXEg0aZLUVuiOW7Qb2ay3oQdZJWPMDUF2NlGHDkQ7d2p44MKFLKpHxE08bShSFdG4Y+Po\nw+MflpltG1dQQPZ+frRCh6QhUREEohUrWK/JcpLKpMbNjcXyLzmUTXY+PrTm/n29Xz9tRF+nzlli\nIpPJyFhseRnJz2du5n37gMGDpbZGN1Z5rsK5qHPwmOKBGiY1DHZeItY0q1Ej1nRDo748RGxnPTyc\n7axL4NsVSMCXzl8iMTsRZyedRU3TspurJBcW4u2QELxtZgbH115DNamaEBEBv/zC2ltdvAjY2Ehj\nh5rsDH6EWfGRGHyrFc7+aAmR+teUiTads/hGbhWhTh1g0ybg228BhUJqa3Rjfv/5sKhrgR8u/GDQ\n865eDSQmAtu2aSj4ADtgxw6gWTNg7FjWetGAEBG+c/0Od9Pv4tSEU+UKPgDY1KwJz27dEJiTg4/u\n3EGhIMEGukoFfPMNE3sPD6MWfCLC6vv3sTI/Cm69OuGVQEsMGADEx0ttWUm46FchxowBmjcHHI28\nK2FFVJNVw4GxB3Dh3gX8cfMPg5zTxQXYvp11S9R69VatGrvVatgQGD/eoCFVv175Fd4J3jj/0XnU\nre4DYNIAABJkSURBVFFXrWMaVa+OC507Q0GEEaGhyFIq9Wzlc8jl7Brdu8daHJqbG+7cGlKgUmFy\neDj+ffQI13v0wGCb+jh5EvjgA9ZZ08VFagtfQFN/kL4e4D59gxAbyzZ1IyOltkR3ItIiyHKdJXnE\neuj3PBFs49bLS6QJFQqid98leu89osJCkSYtm1XXVlG7be3oYa52G8lKQaAZkZHU4fp1isk3QBG2\nrCyit94i+uAD42hIUA6x+fnU48YNmhQWVmp3Mg8P1qlx1iwifVw68I1cjjps3kz05puaZRMaK27R\nbmS1zoqi09Vrh6cpGRlErVrpoeWhXE40diyRgwNrxqIn1nqtpVZbWlFitm6hW4Ig0OaEBLL29iav\nzEyRrCuFhATWAm76dBYPacS4pqeTlZcXbYyPL3fDNiODaPx4oo4diYKDxbWBiz5HLZRKor59iXbs\nkNoScdjuv53abmtLmQXiilFREdHbbxN9952o0/4fhYKpwbBhemmA4OjjSK9tfk3USCeXR4/IwsuL\n9icnizbnM4KCWAz+mjVGXbBOKQi0LDaWbL296erjx2odIwisKJ+FBQvkEut3nos+R23CwliRMGPq\n7qQL357/lgYfGEzyIvHcAXPmMD3Wa/vJoiKiTz4hGjiQSMQV9EbfjdRyc0uKzxT/D3w7N5fs/fxo\nemSkRq39yuW//5giilW7WE88kMvpraAgGnDzJiVq4XpKSmL9Llq3/n9Mvy5w0edoxPLlRCNGGPWi\nSm2UKmWF8eeasGsX+2KKVAyxfFQq5vTt1IlV89KR3z1/p5abW9L9TP3FtGcWFdG4W7eoV0AAxemy\nbBUEog0bWOE0b2/xDNQDZ9PSyMrLi5bHxpJSxy/NqVPspmbCBN2StbnoczRCoSDq2fPlcfMUFBXQ\nwD8H0szzM3VKinF1ZdmVBk38FASitWvZrt/t21pOIdDiy4up7ba2BkleEwSBHOPjydLLi/7VJts4\nP5/d5XTtShQXJ76BIpFdVETTIiKomY+PqPsZeXls4dW4MdG8eURqeoqKwUWfozEREczNEx4utSXi\nkFmQSV12dqHfrv6m1fGhoczL4OkpsmHqcugQS+vUsMmuIAj0w4UfqPPOzpSaa9iWaT6ZmfSary99\nHh5OWer6wu7fZyuOCROMuqGze0YGNfPxoS/CwylTT36+xESiL78kMjMj+vlnNeo5PQcXfY5W7NpF\n1L27QaIHDUJSdhLZb7Gndd7rNDsuiS20//5bT4apy5UrzN2xcaNavrciVRF9cfoL6rW7l2RtDnOK\niuiriAhq4etLHhUtWc+cYT9sa9carW8xXaGgryMiyM7Hh1wePTLIOWNjiWbOJGrUiHW9u3mz4mO4\n6HO0QhBY2Pj8+VJbIh4JWQn02ubX1Bb+rCyibt2IftPuBkF8YmOZ2+PTT8sN8M4tzKWRf42kEYdH\nUE5hjuHsKwPntDSy8/Ghz8PDKe3FVURhIes80rSp0frvVYJAe5OSyNLLi2ZGRtJjhcLgNiQnEy1d\nyi5T9+7M/VrW6p+LPkdrUlOJbGyILl6U2hLxUFf45XKiwYPZ6sqoFp55eUQTJzLxv3OnxNsPcx9S\n7z29acrpKaRQGl6cyiK7qIjm3r1Lll5etDcpiW163r7NFGz0aNZuzAjxysykPoGB1CcwkAIlLoxH\nxEKrL1xgHrAGDYh692aLEl/f/4d8ctHn6MTly8yr8LKEcRIx4bffYk/LPJaVurmrUrFQ+XHjjDQX\nSBCInJzYbt+uXc9+lW6n3qaWm1vSwksLjaMSZinczM6mNwICqOP583R22DASdu82sl9VRmhODr0b\nGkrNfHxof3IyqYzQxsJCInd3FkbctStR7drsN1Qb0edVNjnFWLuW1Ze5dk2HGjNGRkpuCkb+NRK9\nbHthu8N2mFYzBcAKOM6eDdy6Bbi6ArVqSWxoeYSHs958zZrhwg9j8YnfPGx4ZwMmd54stWVlExwM\n+uYbnO3WDQsmT4ZZnTpY0qwZhjRqBJlUVTuf40Z2NtYnJOBqZiYWNGuGb2xtUbNa5ShHVlAABAcD\nb7yheZVNLvqcYhAB778PWFuzopAvCzmFORh3fBzqVK+DI+8fQW3TOvjlFyb2Hh5AgwZSW1gxgrwA\nvl+PQNt/PZEz/3s0X/A7YGIitVklycgAFi8GTpwAVqwAvvwSKpkMh1NTsTY+HtVlMnz/6quYaGmJ\nGgYW2SJBgEtGBjYkJCBOLsdcOzt8aWODeqamBrVDLLQprcxFn1OCrCxWHXDBAmDKFKmtEQ+FSoEv\nznyBqPQo9E86iYv/vGrsBRyfkZaXhilnpiCjIAOnO62C1Y9L2HJvyxagb1+pzWMUFgJ79jChf/99\n4LffWDPZ5yAiXMjIgOODBwjNzcVES0tMtrJCz3r19Lb6JyKE5uXhQEoK/k5NRcvatTGrSRN8aGEB\n00qysi8LLvoc0QgPBwYNAo4cqfxNV56HiDBy5VpczN2Eox8exgc9hkhtUoV4xHlg8r+TMbnzZPz2\n1m+oblKd3ZIdPAj8+ivQuTMT2q5dpTFQoWDNyleu1MiW6Px8/PXwIQ6npkIGwKFxYwxt1AgDGzTA\nKzquvPNUKnhkZuK/9HT8l5EBJRE+sbLCp9bWaG0MzclFgos+R1SuXmWdoi5fBjp2lNoacVizBti7\nF1jx9yV8d20y5rw+B/P6zUM1mfGt+AqKCrDs6jIcCDmA/WP24x37d0oOkstZG6/Vq4E33gBmzQIG\nDtSiy4sWPHzILuauXawt27JlwOuvazwNEeFmbi4uZGTA/fFj3MjJQZvatdHplVfQsW5dtKtTB1Y1\nasC8enWYV68OU5kMSiIoiZCjVCJRoUBiYSHuy+UIys1FYE4OYuVy9KxXDw6NG2OEmRk61a1rFPsI\nYsNFnyM6f/8NzJ8P+PoCTZpIbY32EAGLFgGnTrFGTE2aAAlZCZh0chKqyarhj9F/oFXjVlKb+Yyr\ncVfx1dmv0NW6K7aO2AqrV6zKPyAvj622d+xggj9jBmtCYmEhrmGFhWwV8NdfwPnzzI0zYwbQvbto\np8hXqRCam4tbeXm4lfe/9u4/tsrqjuP4+5tWoLRAFbEgIIihEchQEJQIk4aJMw4cGtNNN6lG0Oh+\nMBOm4hJnjKLGnwvT6JwoKDoJG0xF3YqTRGTID7vChG4UJIKWwuSH/FJa+t0f5yqNlpZy23sKz+eV\n3OS5l97nfvOE+3nOfc55ztnHf/bvZ3tNDdtravhfTQ117mSZkW1GXlYWPdu3p2e7dvTu0IFzcnM5\nr1MnBuXmZry/IIZjCf3oQzW/eqAhm23W/fe7Dx7cZodXN+mr+cyGDHH/5hQxtYdq/bF/PuZdH+zq\njy59tEUma0tH1Z4qn/TXSd7zkZ6+YN2C5u+gri6MvS0udu/c2X3UKPeHHnIvLz+26ULr6tw3bHB/\n8UX3a65xz893HznS/fHHMzQbnTQGDdmU1uAOt98eWsiLFkHXrrErOnoHD8LkyWHVvddfDysVNqRy\nRyU3vHoDu7/YzYMXP8glZ12S0csBew/u5eGlDzNj+QxKzinhrtF3kd/hCMUerS++CK3yBQvCGNwt\nW8I193PPhV69wpqz3btDu3ZhPdpDh2DPHti8OSzuunEjLF8O2dmhs3jMGLjiija9Vm3S6PKOtBr3\nMJrnrbdC8B8PI1527IArrwzDMV96CXKbWBrW3ZlfMZ9pb0+jV+deTB8znQt6Nf8adXN8tv8znl71\nNDOWz+B7Z36Pe8fcS9/8vq3zYbt3Q1kZlJdDVVV4bN0a1urNygqPvDw444zw6NMHhg0LJ4gT8Hr4\niUChL63KHe68Myz0XFoKp50Wu6IjW78exo2D8eND521zhrPX1tUys2wm9717Hz3yenDL8FsoHlRM\nh+yWuXvL3SmvLueplU/xyoevMOHsCdw64lYGFwxukf1Lcij0pdW5h0Eas2fDa6/BoEGxK/q2N9+E\n66+He+6BG2889v0cqjvEwvULeXLFk6yqWsX4wvFc1v8yxvYbS5cOzbub6+Chg5RVlTG/Yj7z1s6j\nzuuYeM5Ebh52c9OdtCJHoNCXjJk9G6ZOhRdegO83MJIwhpqaMEJnzpzwGD265fb90c6PWLh+IW+s\nf4MlHy+hsGshA7sNZMCpA+jftT+d2nUi56QccrJz2HNwD9V7q9m2bxsbdm5gxacrWF29mn4n92N8\n4XiuGngVQ7oPOSGHEEpmKfQlo5YsCeP4b7sNpkyBmCPkNm0KU9N06RJOSC09UrG+/TX7WV29mrXb\n17Ju+zoqd1ay7+A+DtQe4EDNAXLb5VKQW0BBbgF98vsw/PThDO0xlE7tO7VeUZJICn3JuI0b4eqr\nQ9jOnBn6/DKptjbMRDB9ejj5TJ0a9+QjkknHEvr6ekha+vWD996Diy4K9+fMmROu+2fCypXhBtCF\nC2Hp0hD6CnyRxqmlLy1m1arQgdq5MzzwAIwa1Tqfs2ZN6KRdsiSMzLn2Wo0olGRSS1+iOu+8MAz8\npptCEI8bF34FtMS53D2EfHExjB0LI0ZAZSVMnKjAF2kOtfSlVXz5ZZgH7IknQmBfd93Xa4AcNXeo\nqIC5c0PnbPv2MGlSOKk0daOVSBKoI1faHHd4/314/vmwIldOTmilX3AB9O4NJ58cHmawfXuYuHHz\nZli2LEzylpcXbrAqKQm/JNSqFzlMoS9tmnuYA2fZsnAiqKqCnTth1y6oqwt3+HbrFqZ2GT4cRo48\nvmf2FGltCn0RkQRRR66IiDRKoS8ikiAKfRGRBFHoi4gkiEJfRCRBFPoiIgmSfaxvNLNTgFeAPsAm\noNjddzXwd5uAz4FDQI27n3+snykiIulJp6V/B1Dq7oXA26nnDXGgyN2HKPBFROJKJ/QvB2altmcB\nExr5W908LyLSBqQT+gXuXp3argaOtNCnA4vMbKWZTU7j80REJE2NXtM3s1KgewP/9Jv6T9zdzexI\ncyiMdPcqM+sGlJpZhbu/29Af3n333V9vFxUVUVRU1Fh5IiKJsnjxYhYvXpzWPo557h0zqyBcq99q\nZj2Ad9z97Cbe81tgr7s/0sC/ae4dEZFmyPTcO68CJantEmBBAwV1NLNOqe1c4BJgTRqfKSIiaUin\npX8KMBc4g3pDNs3sdOAZd/+BmfUD/pJ6SzYwx93vP8L+1NIXEWkGTa0sIpIgmlpZREQapdAXEUkQ\nhb6ISIIo9EVEEkSh3wale/PFiUTHItBxOEzHIj0K/TZI/6kP07EIdBwO07FIj0JfRCRBFPoiIgnS\npm7Oil2DiMjx5ri9I1dERFqfLu+IiCSIQl9EJEGih76ZXWpmFWa23sxuj11PLGbW28zeMbMPzezf\nZvbL2DXFZmZZZlZmZq/FriUmM8s3s3lmts7M1prZiNg1xWJm01LfkTVm9pKZtY9dU6aY2Uwzqzaz\nNfVeO8XMSs3sv2b2dzPLb2o/UUPfzLKA3wOXAgOBq81sQMyaIqoBbnX3QcAI4GcJPhZfmQKsJSy5\nmWS/A95w9wHAYGBd5HqiMLO+wGRgqLt/B8gCfhyzpgx7jpCV9d0BlLp7IfB26nmjYrf0zwcq3X2T\nu9cAfwJ+GLmmKNx9q7v/K7W9l/DFPj1uVfGYWS/gMuCPQLNGJ5xIzKwL8F13nwng7rXuvjtyWbF8\nTmgcdTSzbKAj8EnckjIntczszm+8fDkwK7U9C5jQ1H5ih35PYHO951tSryVaqkUzBHg/biVRPQb8\nGqiLXUhkZwLbzew5M/vAzJ4xs46xi4rB3XcAjwAfA58Cu9x9Udyqoitw9+rUdjVQ0NQbYod+0n+2\nf4uZ5QHzgCmpFn/imNk4YJu7l5HgVn5KNjAUeNLdhwL7OIqf8CciMzsL+BXQl/ArOM/MfhK1qDYk\ntQpVk5kaO/Q/AXrXe96b0NpPJDM7Cfgz8KK7f2vN4QS5ELjczD4CXgbGmNnsyDXFsgXY4u4rUs/n\nEU4CSTQMWOrun7l7LWEp1gsj1xRbtZl1BzCzHsC2pt4QO/RXAv3NrK+ZtQN+RFhwPXHMzIBngbXu\n/njsemJy9zvdvbe7n0noqPuHu0+MXVcM7r4V2GxmhamXLgY+jFhSTBXACDPLSX1fLiZ09CfZq0BJ\narsEaLKxmN2q5TTB3WvN7OfA3wg98c+6eyJHJgAjgZ8Cq82sLPXaNHd/K2JNbUXSLwP+ApiTahht\nAK6PXE8U7l6e+sW3ktDX8wHwh7hVZY6ZvQyMBk41s83AXcADwFwzuwHYBBQ3uR9NwyAikhyxL++I\niEgGKfRFRBJEoS8ikiAKfRGRBFHoi4gkiEJfRCRBFPoiIgmi0BcRSZD/AzioDQbST2I5AAAAAElF\nTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAABoeklEQVR4nO3dd3yN1x/A8c/JTmSQCEIi9t5B7VHULKpWS2mrtVVrr2qLoq1SrVW1V0uNUpvae6/YI4gksve8uef3xw0/IzLvCDnv1ysvyb3Pc873Et/73POcc75CSomiKIry5jMzdQCKoiiKcaiEryiKkkuohK8oipJLqISvKIqSS6iEryiKkktYmDqAV8mfP78sVqyYqcNQFEV5rZw9ezZYSuma2nM5NuEXK1aMM2fOmDoMRVGU14oQ4v6rnlNDOoqiKLmESviKoii5hEr4iqIouUSOHcNXFEXJrKSkJHx9fYmPjzd1KAZnY2ODu7s7lpaWGT5HJXxFUd4Yvr6+ODg4UKxYMYQQpg7HYKSUhISE4OvrS/HixTN8nl6GdIQQS4QQgUKIK694XgghfhVC3BZCXBJC1NBHv4qiKM+Kj4/HxcXljU72AEIIXFxcMv1JRl9j+MuAVmk83xoonfLVF5ivp34VRVGe86Yn+yey8jr1MqQjpTwkhCiWxiEdgBVStxfzCSFEXiGEm5TSXx/9P0uTrOWn3TcokteWwk62FMlnS+kC9liYq/vTiqLkbsYawy8CPHzmZ9+Ux55L+EKIvug+AVC0aNEsdRQcncjSIz4kJmufPuaSx4o2ld3oUK0wXp75cs0VgKIoyrNy1E1bKeVCYCFAzZo1s1SZpZCTDdcntyI4JgG/8Hjuh8Sw2/sx6848ZOWJ+1R1d+Kb9hWpUTSfXmNXFEXJ6Yw1zvEI8HjmZ/eUxwzCzExQwMGGah556VCtCHN71ODs1y2Y3qky/hHxdJp3jGFrLxAY+eZP3VIUxTTmzp3Ll19++crn4+LiaNy4McnJya88JjExkUaNGqHRaPQSk7ES/hagV8psnTpAhCHG79Nib21B99pF2T+iCQOblGTrJX/a/HqY0z6hxgxDUZRc4tKlS1SpUuWVzy9ZsoROnTphbm7+ymOsrKxo1qwZa9eu1UtM+pqW+SdwHCgrhPAVQvQRQvQXQvRPOWQ7cBe4DfwBDNRHv1mRx9qCUa3KsfWLBthbW/DBwhOsOvHKvYYURVGy5PLly2km/NWrV9OhQ4enPzdt2pQ9e/YAMGHCBIYMGQJAx44dWb16tV5i0tcsnQ/SeV4Cg/TRl76UKejA5sENGPrXeSb8c4XbgdF8824FdUNXUd4Q3/3rzVW/SL22WaGwI9+8WzHd46SUXLt2jYoVUz82MTGRu3fv8uwW8N999x0TJ04kMDCQ8+fPs2XLFgAqVarE6dOn9RJ/jrppa2xOtpYs7l2L77ddY8nRewgBE9uppK8oSvbcu3ePggULYmtrS0xMDAMHDsTKyoomTZrQo0cPgoODyZs373PnNGrUCCklM2fO5MCBA0+HeszNzbGysiIqKgoHB4dsxZWrEz6AuZng63blAVhy9B6W5maMbV1OJX1Fec1l5ErcUJ4dztm4cSOdO3fm3XffpVu3bvTo0QNbW9uXVslevnwZf39/XFxcXkrsCQkJ2NjYZDsutRoJ3Yq1r9uV56M6niw8dJdZe2+ZOiRFUV5jz96w9fX1xcNDN0nxyVV7vnz5SE5Ofpr0/f396dGjB5s3b8be3p6dO3c+bSskJIT8+fNnapO0V1EJP4UQgu/aV6SLlzu//neLLRf9TB2SoiivqXPnzlGrVi0A3N3d8fX1BUCr/f+C0HfeeYcjR44QGxtLp06d+Pnnnylfvjxff/0133333dPj9u/fT9u2bfUSl0r4zzAzE3z/XmVqFcvHqPUXufIowtQhKYrymvH39+f8+fM0atQIgE6dOrFhwwYGDBjAu++++/S4QYMGsXz5cuzs7Dh+/DgtWrQAdGP5x48ff3rcmjVr6Nevn15iy/Vj+C+ysjBjXg8v2s85Qr+VZ9kyuD4u9tamDktRlNfAjBkzWL16NfPmzcPW1haAPHnysHTp0peOrVGjBk2bNiU5OfmVc/ETExPp2LEjZcqU0Ut8QjdjMuepWbOmNGUR80u+4XRZcJwaRfOx6rO3MDdTN3EVJae7du0a5cuXN3UYRpPa6xVCnJVS1kzteDWk8wpV3PMyuUMljt8NYfGRu6YOR1EUJdtUwk9Dl5rutKxYkBm7bnI9QL8LOBRFUYxNJfw0CCGY+l5lHG0t+fKvCyRoXr3JkaIoSk6nEn46XOyt+bFzZa4HRDFz901Th6MoipJlKuFnwNvlCvJB7aL8cfiumqqpKMprSyX8DBrTuhzOeawZv+kyydqcObNJURQlLSrhZ5CTrSVftyvPRd8I1px6YOpwFEVRMk0l/ExoX7Uw9Uq68OPO6wRFJZg6HEVRlExRCT8ThBBM6lCJ+KRkpm6/ZupwFEXJwXJzicM3RqkC9vRrVJJN5x9x7kGYqcNRFCWHemNLHOY2A5qUxNXBmqnbrpFTt6ZQFMW03tgSh7lNHmsLhrUow9iNl9nlHUCrSm6mDklRlBftGAMBl/XbZqHK0Hp6uofl1BKH+ipi3koIcUMIcVsIMSaV54sKIfYLIc4LIS4JIdroo19T6uLlTukC9kzfcZ1EjTb9ExRFyTWeLXF49+5d+vTpQ+fOnZ8+n16Jw7/++ivVEofZle0rfCGEOTAXaAH4AqeFEFuklFefOWwCsE5KOV8IUQHYDhTLbt+mZGFuxrg25flk2WnWnLzPx/WLmzokRVGelYErcUN5djinRIkSLF68+LmE/zqXOKwN3JZS3pVSJgJ/AR1eOEYCjinfOwFvRDmpJmVdqV/Khdn/3SIqPsnU4SiKkkOkd8P2dS5xWAR4+MzPvimPPetboKcQwhfd1f2Q1BoSQvQVQpwRQpwJCgrSQ2iGJYRgTKvyhMUmseyoj6nDURQlh3i2xOGrvMklDj8Alkkp3YE2wEohxEt9SykXSilrSilrurq6Gim07Kns7kSLCgX54/BdIuLUVb6i5HYvljgMCQmhf//+nD9/nmnTpj09zhQlDvWR8B8BHs/87J7y2LP6AOsApJTHARsgvx76zhG+bF6ayHgNS47cM3UoiqKY0IwZM2jTps1zJQ5dXFxYsGABd+7cYezYsU+PfbbE4avou8ShPhL+aaC0EKK4EMIK6A5seeGYB0AzACFEeXQJP+eP2WRQxcJOtKpYiCVH7hERq67yFSW3GjFiBOfPn6dNm4xNRPz000/TXXjVq1cvfYWX/YQvpdQAg4FdwDV0s3G8hRCThBDtUw4bDnwuhLgI/Al8LN+wFUtDm5cmKkHDIlUOUVGUHEovC6+klNvR3Yx99rGJz3x/Faivj75yqvJujrSt7MbSoz58Wr84+fJYmTokRVGU56itFfToi2aliU7QsOL4fVOHoiiK8hKV8PWobCEHmpcvwLJj94hN1M/udoqiKPqiEr6eDWhSirDYJP469TD9gxVFUYxIJXw98/LMR+3izvxx+K7aY0dRlBxFJXwDGNikJP4R8Wy+8OJyBEVRFNNRCd8AGpdxpYKbIwsO3kGrCp4ripJDqIRvAEIIBjQpyZ2gGPZee2zqcBRFMQFV4jAXaV2pEEXy2rJYbbegKLmSKnGYi1iYm/FxvWKcvBfKlUcRpg5HURQjUyUOc5lutT34Ze9NFh+5x6xu1UwdjqLkKj+c+oHrodf12mY553KMrj063ePe6BKHSuocbSzpUtODfy/68TgyPv0TFEV5Izxb4vCff/7h888/p1u3buzevRt4jUscKmn7tH5xlh/3YcVxH0a2LGfqcBQl18jIlbihPDuc07FjRzp27EhYWBgjRozgnXfeea1LHCppKOpixzsVCrL65APiEl99N15RlDdHajdsp0yZwqBBg4DXu8Shko4+DUoQHpvExvO+pg5FURQjeLbEoZSS0aNH07p1a2rUqPH0mDe5xGGuVqtYPsq7ObLy+H3esDIAiqK84MUSh7/99ht79+5l/fr1LFiw4OlxpihxqMbwjUAIQe+6nozZeJnTPmHULu5s6pAURTGAGTNmsHr16udKHH7xxRd88cUXLx37bInDV83F13eJQ5FTrzhr1qwpz5w5Y+ow9CYuMZm3pu6lYRlX5n5YI/0TFEXJtGvXrlG+fHlTh2E0qb1eIcRZKWXN1I5XQzpGYmtlTrdaHuy6EqCmaCqKYhIq4RtRzzqeJEvJmpMPTB2Koii5kF4SvhCilRDihhDithBizCuO6SqEuCqE8BZCrNFHv68bT5c8NCnjyppTD9Re+YqiGF22E74QwhyYC7QGKgAfCCEqvHBMaWAsUF9KWRH4Mrv9vq561StGUFQCu7wDTB2Koii5jD6u8GsDt6WUd6WUicBfQIcXjvkcmCulDAOQUgbqod/XUuPSrng427L6pCp0riiKcekj4RcBni3g6pvy2LPKAGWEEEeFECeEEK300O9rycxM8EHtopy4G8rtwGhTh6MoSi5irJu2FkBpoAnwAfCHECLviwcJIfoKIc4IIc4EBQUZKTTj6+LlgYWZ4M9T6uatoijGo4+FV48Aj2d+dk957Fm+wEkpZRJwTwhxE90bwHN7fkopFwILQTcPXw+x5UiuDta0rFiIDed8GdmyLDaWry6AAEB8BAReh9C7uq+kWLB2BGt7cCwCReuCQ0HjBK8oymtLHwn/NFBaCFEcXaLvDnz4wjH/oLuyXyqEyI9uiOeuHvp+bfV4qyjbLvuz44o/71V3f/mAuHC4vg2u/gN39oM2Sfe4MAMLG13Sf5ZLKSjZDGp+CgXUrpyKYmpz587l1q1b/PLLL6k+HxcXR6tWrdi3b1+aK22bN2/Ovn37sLDIfrrOdgtSSo0QYjCwCzAHlkgpvYUQk4AzUsotKc+9I4S4CiQDI6WUIdnt+3VWt6QLxfPnYfWJB88n/PgIOD5X95UYDU4e8FY/KN4YnEtA3qJgYQXJGt3zIXfg/lHd19llcOp3KNEE6g6GUs1BCFO9REXJ1S5dusRbb731yuczW+KwR48e2Q9KSpkjv7y8vOSb7veDt6Xn6K3yun+klMkaKY/NlXK6p5TfOEq59iMpH56WUqvNeIPRQVIe/EnKGeV0bazqImXIXYPFryg5zdWrV00dwlN169aVp0+fTvP5e/fuPf25SZMmcvfu3VJKKcePHy8HDx4spZTywoULsnXr1qm2kdrrRXehnWpeVZunmVBnLw9m7LrJ9iOnKBv1s+4qveTb0GwiFK6e+Qbz5IdGI6D+UDj5OxyYBvPq6B5rMAzM0rlXoChvkICpU0m4pt8Sh9bly1Fo3Lh0j5M5tMShSvgm5JzHitFFr9HlygyklUB0XABVu2d/GMbcEuoNhorvwa6xsG8K+ByB95dAHhf9BK8oyis9W+Lw2rVrzJ49m+DgYJo1a8aAAQPSLXF44MCBVEscvlgJK7NUwjcVKeHQT/Tx/55z2lKENJ5Di2p19duHUxHougLOrYBtI2BhY+i6HIp46bcfRcmBMnIlbijPljgsX748CxYsQKvV0qtXLwYMGKBKHOYq2mTYNgz2f4+s0p1heaax9KoBb67W6AWfppRMW9Iarm83XF+KorxU4nDLli20bduWNm3aAKrEYe6hSYR1veDMEmjwFeK9BXSuVZxjd0K4HxJjuH6L1IC+B6FQJVjbEy6vN1xfipLLPVviEKB9+/bs2LGD1atXP31MlTh802mTYePncH0rtJoOzb8FIejs5YGZgHVnHqbbRLbkcYFem3ULtTZ8BmeXG7Y/RcmFXixxeODAAb744gv69ev39AofVInDN5uUumGcq//AO1OgzoCnTxVysqFp2QL8fcaXr5qXwcLcgO/D1g7Q42/dp4x/vwAzC6iuh/m9iqKkWuKwSZMmNGnS5KVjTVHiUF3hG8t/3+kWRjUcDvWGvPR0t1oeBEYlsP+GEfYQsrKD7mugRFPYMgRu7jJ8n4qSC4wYMYLz588/dyWflk8//TTdhVe9evXSV3gq4RvF2WVwZBZ4fQJvf53qIU3LFcDVwdrwwzpPWFhBt5VQqDKs6w0P9TPPV1GUnEslfEN7eEo3JbJkM2j78yvn2Fuam9GpRhH2XQ8kMMpINW+tHaDHenB0gzVddNs0ZJJGqyEwNhD/aH9C40OJTYpFt9hPUZScRo3hG1KkP6z9SDcf/v1F6a507eLlwe8H7/LP+Uf0bVTSODHau0LPjbCoGfz1IXy2V/dGkIqAmADOPT7HxaCLXA6+zKPoR4TFhyF5PsHbWthS0qkkJfOWpGL+ijRyb0QR+xdLJCiKYUgpEblgD6msXFiJnHo1VrNmTXnmzBlTh5F1mgRY1g4ee8Nne6Bg6kusX9Rp3lGi4jXs/qqRcX9p7x6ElR2hXFvouvLpJ5HA2EB2++xmh88OLgVdAnQJvaJLRYo5FSO/bX7y2+TH0tySeE08CckJPI59zO3w29wJv0NwXDAApfKWorlnc7qU6UIBuwLGe11KrnLv3j0cHBxwcXF5o5O+lJKQkBCioqIoXrz4c88JIc5KKWumdp66wjeUfZPB9xR0WZbhZA/QtaYHYzZe5sLDcKoXzWe4+F5UojG0mAy7x8Phn7leqR1Lryxll88ukmUy5ZzLMbTGUOoXrk/pfKWxMMvYr45PhA8HfQ9y0Pcgv1/8nUWXFtHCswUfVfiIyq6VDfyilNzG3d0dX19f3uQCSk/Y2Njg7p7K1uppUFf4hnD3AKzooNubvt2sTJ0aFZ9Ere/30qmGO1PfM3JClJJrf3/I7JDTHLWzxc7Cjs5lOvN+mfcp4VQi280/jHrIX9f/YtOtTUQlRdHCswVf1fgKD0eP9E9WFCVD0rrCVwlf32JDYX59sMoD/Q7ppkBm0rB1F9jj/ZhT45tja2WcHS6D44L57fxvbLq1CScp6R2TRNcPduDoXDz9kzMpNimW5VeXs/TKUpK0SfQo14OB1QZiZ5n5vytFUZ6XVsJXs3T0SUr4dyjEBML7f2Qp2YNuWCcqQcNOb389B/gyKSXrbqyj3aZ2bLm9hY8qfMS25ov5LDQUxx2jdK9Jz+ws7RhQdQDb3ttG+5LtWX51OV3+7cKFwAt670tRlP9TCV+fLq2Da1vg7QlZ288+xVvFnSnqbMffZ3z1GNzLAmIC6LenH5NPTKZS/kps6rCJkbVG4uheW7ca+NZu3b76BuJq58p39b5j8TuL0Wg19N7Zm1/P/YpGqzFYn4qSm6mbtvoSEww7x4B7Laj3RbaaEkLQ2cudWXtv4hsWi3s+/Q917PLZxbfHviVZJjPhrQl0Ldv1+VkNtT+HO/tgz9dQrIFu0zUDqe1Wmw3tN/Dj6R/54/IfXAq6xIzGM8hrk/eV52gTEki4eZP4q9dI8vNDExCAJigQbWIiJGtBq8XMwQGL/PmxyO+CVbFiWJcvj3Xp0phZWRnstShKTqbG8PVlY1+4shH6H4YC5bPdnG9YLA1+2M+wFmX4ollpPQSok5ScxMyzM1l1bRVVXKswveF0PBxecdM0JkRXMcuhIHy+X1dYxcA2397MpOOTcLVzZXbT2ZR1LguA1GiIu3iR6IOHiDlyhPibN0GT8knA3ByLAgWwKOCKmY0tmAmEMCM5KgpNSDDJQcHIpJQi8JaW2FaujH3jxtg3aYJ1mdJv9PQ9JfdRN20N7fZeWPU+NBoFb4/XW7Mf/nEC37A4Do5sopekFBgbyLADw7gYdJGe5XsyzGsYlukl8WtbYW0PaDoeGo/KdgwZcTnoMl/u/5KoxEhmFxpCsaP3iNq+g+SICLCwwK56dWyrV8emYkVsKlbE0q0QIo39SKRWS5KvL/FXrxLv7U3MsePEe3sDYFWsGHm7dMGp03tY5DPiNFhFMRCDJ3whRCtgNmAOLJJSTn/Fce8D64FaUso0s/lrk/ATomFeXbC0gf5HwMJab01vPOfLsHUXWdevLrWLO2errRuhNxj03yAiEyOZVH8SrYq1yvjJ6/vA1c3Q72Cm1hRklTY+Ht91q7i3eA4FHiegtbIg7zutcGjenDz162GezTJvAEmPA4k+eICIfzYTd+4cwtISxzatcenfH+vi+p+ZpCjGYtBZOkIIc2Au0BqoAHwghKiQynEOwFDgZHb7zFEO/QQRD+DdX/Wa7AFaVSpEHitz1p/N3oZqh3wP0WtHLySSla1XZi7ZA7T+EWzzwj8DIDkpW7GkJTkigqC5c7n9djNipv5Mkfwl2NmtOJ8OgsOfeeHYqqVekj2AZcEC5OvalWJrVlN8y2bydutG5O493G3bDr/Ro0m8f18v/ShKTqKPWTq1gdtSyrtSykTgL6BDKsdNBn4AjLQzmBGE3IHjc6FaD/DUcz1awM7KgrZV3Nh2yZ/YxKzNXPn75t8M2TcET0dP1rRZ83RMPFPyuEDbmeB/EY79mqU40qKNiyP4jz+43eIdgn+bg22VKhRdsZyS6zcw4OuN1C7dhO9Pfs8K7xV67xvApkwZCk0YT6m9e3Du3ZvIXbu50+5dAn+eiTY21iB9Koop6CPhFwGevQT1TXnsKSFEDcBDSrktrYaEEH2FEGeEEGdei6XRO8eChQ00+8ZgXXT28iAmMZkdlwMyfe6iy4uYdHwS9QvXZ1mrZRTMUzDrgVRoD+XfhYM/Qui9rLfzDKnVEr5hI3feaUnQzzOxq16d4pv/wWPBfPLUro0QAhsLG2Y1mUULzxb8dOYn1l5fq5e+U2Ph4kLB0aMotWc3Tu3aEfLHH9xp247IPXsM1qeiGJPB5+ELIcyAmcDw9I6VUi6UUtaUUtZ0dXU1dGjZc3MX3NoFTUbrZrEYSK1i+fB0sWP92YzPyZdSMvPsTGafm02b4m2Y/fZs/axibfWDrkLW9pHZXpAV5+3N/Q8+xH/8eCwLF8Zz1Uo8fl+ATdmXP4FYmFnwQ8MfaOzemCknp7Dp1qZs9Z0eC1dXCk+biufqVZg7OvJoyBf4jR5NclSUQftVFEPTR8J/BDw7r8895bEnHIBKwAEhhA9QB9gihEj1psJrQZOgm3PvUhpq66fW5KsIIXi/hjvH74bgG5b+8IJWavn+5PcsvbKUbmW7Ma3hNCzN9DSd0qmIbrbO7T26m7hZoI2NJWDqVHw6dyHR1xe3adPw/HMNdjXT/nWwNLfk5yY/U9etLt8c+4Y99w1/1W3n5UXxDevJP2gQEVu3ca9DR2Jfh4kEivIK+kj4p4HSQojiQggroDuw5cmTUsoIKWV+KWUxKWUx4ATQPr1ZOjnayQUQeldXiNzC8It43quuGyHbdO5RmsdppZbvT3zP2htr+aTSJ4x/azxmQs8f4mr31VXJ2jkG4iMzdWrMiZPcbd+BsBUryfdBd0ru2E7e9zoizDIWo7W5NbPfnk1V16qMOTSG84Hns/IKMkVYWOA6ZDCeq1aChQX3e/UmZMlSVeRFeS1lOxtIKTXAYGAXcA1YJ6X0FkJMEkK0z277OU5sKBz+GUq1gNLNjdKlh7MddUo4s+Gc7ysTjVZqmXJiCuturuOzyp/xVY2vDLOgyNwC2s2GqAA4MC1Dp2jj4wmYNJkHH38M5mZ4rlxBoYkTMXd0zHT3tha2/Pr2r7jZuzFk3xDuRejnfkJ67KpXp/jGjTi0aEHgjz/iN3yEuqGrvHb0cvknpdwupSwjpSwppfw+5bGJUsotqRzb5LW+uj/8s+7KtsV3Ru32/Rru+ITEcvZ+2EvPSSmZenIqf9/8m88qf8YX1b8w7OpRdy/w+li3z07g9TQPjb92jXvvdyZszRqce/eixD//YFerVra6z2eTj/nN5mMuzBmwdwAhcSHZai+jzO3zUOSXWbgOH0bkjh34fPAhSf6G3+BOUfRFbZ6WGWH34dRC3TRMIyxAelbrym7YWpqz4dzzN2+f3KB9Moxj8GT/xNtfg7U97Byd6g1cKSWhy5fj07Ub2shIPBYvouDYsZjZ2uqlew9HD+a8PYeQuBCGHRhGkgHXBzxLCEH+zz/HY+FCkh49wqf7B8TfuGmUvhUlu1TCz4z934Mwg6bjjN61vbUFrSsXYutFf+KTkp8+vuDSApZ5L6N72e6GG8ZJTR4X3Q3cuwfg+vOzbZMjI/EdMoTH06aTp2FDim/ZjH39+noPobJrZSbVn8S5wHNMP5Xq4m6DsW/YAM/Vq0BK7vfoQcyJN2s9ofJmUgk/o/wvwqW1UGeAbraKCXSu4U5UgoZd3ro5+Su8VzDvwjw6lOzA2LfGGn8TsJp9wLU87BoLSXEAxF3x5l6n94k+cJCCY8fgPneOQfeoaV28NZ9W+pR1N9ex7sY6g/WTGpuyZSn2159YFCrIw88/J2rvXqP2ryiZpRJ+Rv03GWzzQf0vTRZCnRIuFMlry4Zzj9hyZws/nfmJFp4t+Lbet/qfjZMR5hbQ+gcIfwDH5hC+YSP3P/wQmZxMsVUrce7d2yhvQl9U/4IGRRow7eQ0zj0+Z/D+nmVZuDDFVq/GukJ5fL/8isidO43av6Jkhkr4GfHgpG7uef2huj1lTMTMTPBe9SIc9zvM10cn8pbbW0xvOD3DBcUNokRjZOm2BPw8H//x47GtUYPiGzdgW62a0UIwNzPnh0Y/UNi+MCMPjjTaTdyn/Ts5UXTxYmyrVuXRsOFE/PuvUftXlIxSCT8j9k+BPK66OegmVr54CNZFVuNiWYzZTWdjZW7aYh6a4GDub04g7KY1zo08KbroD5NsM+xo5cjMJjMJTwhnzOExJGuT0z9Jj8zt7Sn6x0LsatXCb9RolfSVHEkl/PTcOwz3DkGDYbrC5CZ0N/wuU8+OxIp8EPAZdhamLfodf+0a97p0Jf7mXQr3qknBIicRwWlP0zSkss5lGffWOE74n2Dh5YVG79/Mzg6PBfOxq10bvzFj1Zi+kuOoEodpkVI3M8fBDWp+atJQAmMD6b+3P5ZmlnxYaio/bQvm8qMIqrjnNUk8kbt34zd6DOZOTniuWoVtCTf49RDsngAfbQITVZHqVLoTZx+fZf6F+VQvUJ06bnWM2r+ZrS3uc+fyoM+nPPpqGO4L5htkhpIh+YXHcfR2MLeDonkYGsuD0Fjik7SYCTATAuc8VhTLn4fiLnmo4u5EDc98WJqra8fXgap4lZbb/8GqTtBmhq7Gq4lEJ0bz8c6PeRD1gKWtluJuV4Za3+/lg1oefNfBcLVmUyOlJGThHwTNmoVt1aq4z/kNiycb3R2fp5ux02M9lG5h1LieFZsUS/dt3YlOjGZD+w3kszH+EFNyRAT3e39Moo8PRZcswa5G1ovaG8PtwCjWnn7I/htB3A6MBsDK3Ax3Z1s88tmRx9ocKSFZKwmMSuBecAwRcbq1D/bWFtQr6ULLioVoW8UNG8tXVx9TDE+VOMwKKWFxC90WAkPO6r24SUYlaZMYtHcQpwNO81uz32hQpAEAg9ec4+jtYE6Oa46VhXGurmRiIv4TvyHin39wbNsWt6nfY2b9zN+LJhHmvQXm1jDgKJiZ7j/+9dDrfLjtQ+oXqc+vTX81Sd1aTUgI9z/sQXJ4OJ5//ol1iZxVSUurley++pgVx304dicES3NBnRIuNC7jSsPSrpQqYI+52av/3kJjEjntE8rBm0EcvBHEo/A4nGwt6eLlzkd1PfF0Me0QaG6VVsJHSpkjv7y8vKRJ3dkv5TeOUp5aZLIQtFqtHH94vKy0rJLcdGvTc8/tu/5Yeo7eKndc9jdKLJqwMOnTo6e8WracDPxtjtRqtakfeGWj7u/t3CqjxJWWFd4rZKVlleTa62tNFkPCgwfyRr368tbbzWRSYKDJ4njR8TvBst2vh6Xn6K2y3rT/5Jx9t2RQVHyW29NqtfLY7WA5cPVZWXLsNlli7DY5buMl+TgiTo9RZ5ImUcq4iP9/aZJMF4sRAWfkK/KqusJ/laVtIfQOfHFBV6/WBOZfmM+8i/MYUHUAA6sNfO45TbKWutP3UdU9L4t6G3an6cT793nYrz9Jjx7hNnUqTu+2e/XBUsKiZv//ZGSpn60UskIrtQzcO5Azj8+wtt1aSuYtaZI44i5f4X7v3lgV88RzxUrM7U135esXHsc3W7zZc/Uxbk42jGxZlg7ViqR5JZ9ZgZHxzN1/m9UnH2BpbsbnjUowsElJww71RD0Gn8PgcwSCb0H4fYh8BFL7/2OEOTgWgbxFwbUMeNbXfTm6GS4uE1BDOpl1/xgsba3b/rjOAJOEsPn2ZiYcnUD7ku2ZUn9KqkMSU7dfY8mRe5wc1wwXe8MMOcWeO4fvwEEAuM+dg52XV/on3TsMy9tBi0m6tQsmFBwXzPtb3qegXUFWt1mNpbmeagNkUvShQzwcMBD7Bg1wnzcXYW7c4S4pJf9ceMTEzd4kayWDmpaiT4PiBk3C90NimLH7Jv9e9KOkax5+7FwVL0893k+JDtStfr/4Fzy+onvM2hEKVIB8npDXE2ycUg6WEB+hWyQYdh8ee0NiSkEb1/JQpQtU7gp5PVLt6nWiEn5mreio+wUaegmsjD/18YT/CQbsGYBXIS/mN5v/yiR1IyCKlr8cYmK7CnzaQP/jw5Hbt+M3ZiyWbm54LPwdK0/PjJ+8qjP4noKhF3UrlE1o34N9DN0/lH5V+jG4+mCTxRH2558EfDcJ508+oeDoUUbrNyIuiXEbL7Ptsj9envmY2bWqUcfXD90MYuzGy/hFxPFp/eKMalUWa4tsvNH4nYdDM+DmTtBqwL0WlGsHxRtCoaq6FeDpSdZAwCW4f1S3F9SD44CAEo11q+lLNDH4TDMpJREJETyMesjDqIdEJEaQlJyERmpwsXGhQ6nUSoOnTyX8zPA9oxuSaP4dNPjS6N3fCrtFrx29KJSnECtar8DByiHN49/97QjJWsn2oQ31FoOUkpBFiwj6eSa2Xl66mTiZXUwVcAUWNIB6Q+CdyXqLLavGHxnPtrvbWNl6JZVdK5ssjoDJUwhbvRq3KZPJ27mzwfu7ExTN58vP8CA0lmHvlKFfo5J6Hb7JqOgEDT/suM7KE/ep6u7EnA9r4OGcyYspvwtwYDrc3AE2eaFGL6jeE1xfLouZaaH3dJ8WziyF6AAo4gWNRkGZlnpN/A8jH3Lc/zinA05zOuA0IfGprwqvnL8ya9quyVIfKuFnxpru8PAEfHkZrNNOtvoWFBtEj+090Gg1rG6zGjf79McWlx/z4Zst3mz/oiEVCme+oMiLZFISAZOnEL5uHY5t2uA2berzM3EyY1N/8N4EX5wHx8LZji07ohKj6LSlEzbmNvz97t/YWJjmvozUaHjYfwAxJ05QdMli8tSubbC+Dt4MYvCac1iZmzG/pxe1izsbrK+M2nnFn5F/X8LMTDCrW1XeLpeBetBxYbD3Wzi7TDdEU3cIvNUPbLL/+/6SpHi4uAaO/KK7D1Ciia6Wc4FyWW4yPD6cnT47+ffuv1wKugRAAdsC1HKrRQXnCng4eODh4EFem7xYmVthaWaJpZlllrdMUbN0MirAWzfDZP80o3cdkxgju2zpImutqiW9g70zfF5odIIsNW6bnPRvxs95FU1UlLzf5zN5tWw5+XjGz1KbnJy9BkN9pPzORcotX2Q7Nn047ndcVlpWSU4/Od2kcWgiI+Xt1m3kjbr1ZOKjRwbpY/WJ+7L4mK2y5ayD8mFojEH6yKp7QdGy9S+HZLExW+XCg3dePeNLq5Xy4jopfywp5bf5pNw5Tsq4cOMEqUmS8uRCKacV1fW9Y4yUCdGZasI3yldOOT5Feq30kpWWVZId/+kol1xeIu+F33v1a9YD0pilY/LE/qovkyT8DX2lnFJIypgQo3ablJwkB+4dKKssryIPPjyY6fP7rTgja0zaLRM1WU/Qif7+8k77DvJqhYoydK0epzFuG6H7DxN8W39tZsP3J76XlZdVlucenzNpHPF37srrXjXl3U7vy+Q4/U5d/P3gbek5eqv8eMlJGR2fM6cixiVq5MBVZ6Xn6K1ywqbLMunF3924cCnX9dZdgC1sKqXfRZPEKaODpdwyVMpvnKScXU3K+yfSPcU/2l+OOzxOVl1eVVZbUU1+c/QbeS3kmkGT/LNUws+IsPv/fyc3Iq1WKycfn5yt+eJ7vAOk5+itco93QJbOj7t2Td5s1Fher+Elow4dzlIbrxQZoHsT/fsT/babRTGJMbLl+pay3cZ2Mi7JhHPEpZSR/+2TV8uWk49GjdZLMtBqtfLn3Tek5+itcuCqszIhKZuf0AwsOVkrp26/Kj1Hb5WfLD0lYxJS3px8z0r5SxXd/8dDM6RM1pg2UCmlvHdYypmVpPw2r5R7vtXN8X9BvCZeLriwQNZaVUvWWFFDTj85XfpHG2edzLMMnvCBVsAN4DYwJpXnhwFXgUvAf4Bnem0aPeFvHyXld85Shj80areLLy+WlZZVkj+f+TnLbSRqkmWNSbtl3xWnM31u1IED8nr1GvJm4yYy7tq1LMeQpj3f6q7UTHWV9oInQzszTs8wdSgy8Lc58mrZcjJkxcpst/XjzmvSc/RWOWLdBalJNs7VpD6sOuEji4/ZKrvMPybjTizRDQP+XEHK+8dNHdrz4iKk/Geg7nd5cUspI/+fzE/6nZQt17eUlZZVkl/t/0r6RvmaLEyDJnzAHLgDlACsgItAhReOaQrYpXw/AFibXrtGTfjRwVJOLijlpgHG61NKue3ONllpWSU54sAImazN3tXYpH+9Zalx22RIdEKGzwlZtUpeLV9B3nnvPZkY8Dhb/acpNlTKaR5SrupsuD4y6dtj38oqy6vIi4GmfRPSJifLB/0HyKsVK8mYc1kfZpq3XzeMM2bDRZn8GiX7J/698FD+PuFDKb9xlIlL2xt9WDVTLv2t+9T6U2kZd2e/nH5yuqy0rJJsu7GtPOGX/pCPoaWV8PWxCUtt4LaU8q6UMhH4C3huAqmUcr+UMjblxxOAux761Z9Tv4MmzqiLhE75n2L80fF4FfRiSoMp2a5Y1dnLnaRkyeYLj9I9Vmo0BHw/lceTp2DfuDHFVq7EsmCBbPWfpieVwm7t1hWTyQGGew2ngF0Bvj76NYnJiSaLQ5iZUXj6NCwLFeLRV8PQhIZmuo1VJ+7zw87rvFu1MFM6VsbMBNMusyUxlnbXRtPXfCurk1vQIexLQrQ5eB+eyp3hs/+4YZOHLvv6s+raKj4s9yF/v/s3b7m9Zero0qSPhF8EePjMz74pj71KH2BHak8IIfoKIc4IIc4EBQXpIbQMSIyBUwuhbBv9zOfNgJthN/ly/5d4Ongyu+lsrM2zv0q2vJsjlYo48vcZ3zSPS46O5uHAgYStXIlz7164z/kNszxG+M/1Vj/IUwD2TdZtv2Bi9lb2fF3na+5G3GXx5cUmjcXcyQn3X2eTHBqK34gRyOSMF2/596IfX2++wtvlCjCza1WTzLHPlvgI3Y60N7ZDq+kU/Wged0Li6bn4FOGxpnsjTs+/0XfomdecGEsb/vB/zNjIeGzNTLPBYmYYdRNrIURPoCbwU2rPSykXSilrSilruj7ZctfQLqzRzfM10tV9QEwAA/cOxMbChvnN5+Nk7ZT+SRnUxcuDq/6RePtFpPp8ou8j7n/wITFHj1Ho228oOHas8Zb4W+WBhsN1+53cPWCcPtPRyL0RbYq3YeHlhdwOu23SWGwqVKDg1xOIOXac4LnzMnTOGZ9Qhq+7SC1PZ+b1qPH67UkfGwrL24PvaXh/MdQZQMMyBVjYqyZ3AqPpveQUkfFJpo7yOUnaJKaenMq4I+OomL8S697fSZ1KPeDoL7DhU908/hxMH78hj4BnN6BwT3nsOUKI5sB4oL2UMkEP/WafNhmOz9EtzfYw/Eex8Phw+u3pR0xSDPObz8/QwqrM6FCtMFbmZqw/+/JVfuzp0/h06UJSQABF/1hIvu7d9dp3htT8BBzdYd+UHHGVDzC69mjsLe355vg3Ri+L+KK8nTvj9N57BM+fT8yxY2ke+yAklr4rz1Ikny2/f+T1+u1BH/UYlrWFwGvQfQ1U6vT0qcZlXJnXowbefpF8uvQ0sYkaEwb6f1GJUQzcO5A/r/9Jrwq9+OOdP8hvXwjazoQWk3WLDNd0gYQoU4f6SvpI+KeB0kKI4kIIK6A7sOXZA4QQ1YHf0SX7QD30qR/Xt0KYj275v4H3zYhNimXQvkH4Rvny69u/UtZZ/8NHee2saFGhIJsv+JGo+f8ugWHr1nH/k08xd3Ki2Lq15KlXT+99Z4iFNTQeBY/O6PZByQGcbZwZVWsUl4Iu8deNv0waixCCQl9PwKpkCR6NGo3mFcOaEXFJfLLsFFopWfJxLfLlMW1d40yLCYEVHXSbmPX4W7d9wQuaVyjI7O7VOfcgjIGrz5GUrE2lIeMJiAmg987enAk4w+T6kxlZaySWZil7XAkB9b+A9xaCz1HdXlyxmb8XYwzZTvhSSg0wGNgFXAPWSSm9hRCThBDtUw77CbAH/hZCXBBCbHlFc8YjJRz9FfIV0228ZEBJ2iRGHhrJleAr/NDoB2oVqmWwvjrXdCc0JpF91x8jExMJmDSJgInfkKdOHYqtW4t1cRMX4aj2ITiX0F3la037n/iJdiXaUb9wfX499ysBMQEmjcXMzg73WbPQRkfzaOSol8bzk7WSIX+e50FoLAt6elE8fw6+uZmauHBY9R6E3YMP/9JtVvYKbau48f17lTlwI4jRGy49mfFndDfDbtJjWw/8ov2Y13weHUt1TP3Aqt2g20rdpmzL2uo+xeQ0r5q+Y+ovg0/LvH9cN5/25EKDdqNJ1siRB0carRCHJlkra3+/Rw7+bbe898GH8mrZcjLghx+lVpMDFq88cXGd7u/+8gZTR/LUw8iHsubKmnLwf4ONtiIyLWHr1+uKzcyZ89zjP+28Lj1Hb5VrTt43UWTZEB8l5R/NdfPsb+7O8Gmz996UnqO3yqnbrxowuNRdCboi662pJ99e+7a8HnI9Yyfd2S/lFDcpf6upW3hoZBh4Wubr6dhvYOsM1XoYrAspJVNOTmHHvR18WeNLupbtarC+njA3E/TJF023RROI875K4Z9nUHDUSKPvv56mSp10e5Dvn6rbpjYHcHdwZ2C1gRx4eID/Hvxn6nBw6tQJx/bvEjx3HrEpmwju9g5gzv7bdK/lwQe1i5o4wkxKToJ1H8Gjs9B5SaZqHg95uxQf1fHk94N3WXr0ngGDfN65x+fos7sPDlYOLGu9LOPDsCWa6IaqIh7B8nd1+/bnELkz4Yfc0e2BXauPwfa7l1Iy8+xM1t9cz2eVP6NP5T4G6efFPkOXL6fhnAkkmllyeuSPOLVta/B+M83MHJqOg5BbcPlvU0fzVM8KPSmbryzTTk4jKtG0N96EEBSa+A2WHu48GjmKO3ceMXzdRaq4O/Ft+4omjS3TpIQtX8CdfdD+V6jQPv1zniGE4Nv2FXmnQkEmb73K3quGHyo56X+S/nv742rryrJWy/BwyGRhlGL1U5L+Q1jWLsck/dyZ8E8uADMLqPWZwbqYe2Euy7yX0b1sd76o/oXB+nkiOSqKR0O/5PG06dg3acKyXt+xLMDSZOOe6Sr/LhSqAgen667+cgBLM0u+rfctQXFBzD4329ThYG6fhyI/z0QTFMSZQSOwNBfM7/kazsjZ/71uy+Em43T712eBuZngl+7VqFTEiSF/nueyb+pTj/Xh7OOzDNk3hCL2RVjaaimF8hTKWkPPJv0cciM39yX8uHA4vxoqdwGHLP5DpmP+hfn8ful3OpbqyNi3xqZanlCf4i5e5N57nYj67z8KjByJ+5zfaN+wLHeDYzjtE2bQvrNMCHj7a90sqQurTR3NU5XyV+LD8h+y7sa6p3uXm5JtpYqcfedDqvhcYL7DPYrkNV2N4Cw5uwwO/aQrVtI4e1W+7KwsWNS7Js55rOiz/DR+4XH6ifEZF4MuMnDvQArlKaSbdmmbP3sNFmugm3YacgtWm37KZu5L+OeWQ1IM1B2Y/rFZMP+irvB4h5Id+K7ed9neMiEtUqsl+I8/8OnRE6lNxnPlClz6fIoQgjaVC2FvbcHa0w/Tb8hUSrcA99pw8McctWBlcLXBuNq58t3x70jSmvbTx7ZL/nxtWYmA8jVwWjaf+Js3TRpPptw7DNuGQ8lm0HaWXqY+F3CwYcnHtYhLTOaz5Wf0Okf/ashVBuwZgIutC4veWZT9ZP9EyabQZZmuNOOfH0CS/t+oMip3JfzkJDj5OxRrCIX0W+ZOSsncC3OZd2Ee7Uu2N3iyT3r0iAeffErQzzNxaN6cEv/8g12NGk+ft7Oy4N2qbmy/7E9UDlut+JQQ8PYEiHykeyPOIeyt7Blbeyw3w26y+qrpPn08DI1lzIZLVC3qTJ3ff8HM3h6/4SPQxuecN8dXCr2nu0nrXBK6LM1YndkMKlvIgV8/rM71gEiGr7uIVpv9YUufCB8G7B2Ag5UDi99ZTAE7Pe8tVa4tvLcAfI7A35+YbLJC7kr4VzfrkkvdQXptVkrJj6d/ZMHFBXQs1ZFJ9SZhbmaYcVYpJeEbN3G3fQfiL1/Gbcpkisyaibnjy+Xeutb0IC4pmX8v+hskFr0o0Vj3Bnxohm5foxyiWdFmNHFvwryL8/CL9jN6/5pkLV/8dR6A3z6ojm0BVwpPn0bCrVsEzvjZ6PFkSnwk/JmykvuDP3VlCfWsadkCjGtTnh1XAvjlv1vZaiswNpB+e/ohpeT3Fr/rfQX8U1W6QpufdDV5tw41yWrz3JPwpYQT83RXHKVfXtmXVcnaZL47/h2rrq2iR/kefFfvO4Ml+6SAAHwHDsJ/3Dhsypen+JbN5O3c+ZX3CKp55KVMQXvWnsnBwzqgu8qPCYRTf5g6kqeEEIx9aywAU09ONfrN73kH7nD+QThT3qv0tNi3fcOGOPfuRdiqVUQdOGDUeDJMq4WNfSHkNnRdAS4lDdZVnwbF6VrTnV//u8XWS1l7U45IiKDfnn6EJ4Qzv/l8ijkV02+QL6r9ua44+vlV8N8kw/aVityT8H1P6+YA1xkAZvp52fGaeEYcHMGGWxvoW6Uvo2uNNsgwjtRqCV2zhrtt2xFz/DgFxoym6IrlWLmnvcu0EIKuNT24+DCc6wGReo9Lb4rWgVItdBtQxeecOAvbF2ZQtUEc9D1o1Ln5Fx+GM/u/W7SvWpgO1Z7feNZ1+HCsy5XDf+y4V269YFKHUq5gW06D4o0M2pUQgskdK1HTMx8j/r7IVb/M/e4kJicydP9Q7kfeZ/bbs6mY30jTXZuOA6+P4chMODHfOH2myD0J/8Q8sHaCqh/opbnQ+FD67O7Dfw/+Y1StUQypPsQgs3HivL25/2EPHk+ajG3VqpT4dwsuH3+MyOCbVqca7liZm/HXqZx+lT9et2upkf8DpKdH+R66ufmnphGTZPghp7jEZL5ad4ECDtZM7lDppefNrKwoMuMntLGx+I0dh8wh21MAcHMXHJim+z9W+3OjdGltYc68njXIa2tF35VnCI3J2JbKWqllwtEJnH18lin1p1DHrY6BI32GELoN18q1g51jwfsfo3WdOxJ+hC9c3QJevcDaPtvN+UT40HN7T26E3mBmk5l8VOEjPQT5PE1YGP7ffotP5y4kPnyI2/RpeCxehJVH5haAOOexolWlQmw850t8kml3g0xT4eq6/wDH5+SI+cpPWJhZMLHuRIJig5hzfo7B+5u24xp3g2L4uUtVnOwsUz3GulQpCo4ZTcyRI4StWmXwmDIk5A5s/BwKVYJ2+pmRk1EFHGz4/SMvAqMSGLzmHJoMbLQ25/wcdtzbwdAaQ2lToo0RonyBmTm8v0i3U+/GvnD/uHG6NUovpnbqD0BC7b7Zburgw4N8sO0DohOjWfTOIpp7Ns9+fM/QJiQQsngxd1q2Ivzv9Tj3+oiSO3eQt2PHLH+C6F7bg8h4Ddsv5+CbtwBNx+vmKR81/aKnZ1VxrULXsl1Zc30NV0OuGqyfY7eDWXH8Pp/WL069UmlPCczbvTv2TZsS+NMM4m/cMFhMGZIUB+t6AQK6rQJL468VqOqRl2nvVebYnRCmbr+e5rEbb23kj8t/8H7p9+lTyfAr4F/J0hY+XAt5PXQ3uYMM/+/45if8xFjd4o9y7SBv1vcf0Uot8y/OZ/C+wXg4ePBXu7+oVqCa3sKUGg3hGzdxp1VrAn+agW21qhTftJGCY8di7uCQrbbrlnChmItdzh/WKVhBVz7u5O85bqfBL2p8gbONM5OOTzLIvvnRCRpGrr9E8fx5GNky/T1bhBC4fT8FMycn/EaYeKrmjlHw+IruijVfMZOF8b6XO5/UL8aSo/f453zqpT5PB5xm8vHJ1Ctcj/F1xht8UWS67Jyh5wYwt4LVnSE6EJmcbLChujc/4V/6C+LDoU7WF1oFxwUz8L+BT+fYr2i9gsL2hfUSnkxKInzDRu60aYv/uHFYuLhQdNkyii5ciE2ZMnrpQwhB99pFOeUTyu3AnFucAYAmYyE5EQ7PMHUkz3G0cmRUrVF4h3gbZN/8aduv4RcRx0+dq2BrlbFZXhbOzhSeNo2EW7cJ/MlEf18X/oRzK6DBsExtiGYo49qU563izozZeIkrj57ffuFB5AO+OvAVRR2LMqPxjP/vZ29q+YrprvRjgpGruxLw7Tf4pbI1tj682QlfSt3VoltV3UyQLNj3YB+dNnfiTMAZJrw1gSn1p2BjYZPt0JKjoghZtow7LVvhP3485vb2uM+doytQUkf/1bc6e7ljaS5y/lW+S0ndfitnlkL4A1NH85xWxVpRv3B9fjv/G49j9PcJ5OjtYFaffECf+sWpWcw5U+faN2ygm6q5erXxp2oGXodtw8Czvm44LgewNDdjbo8a5LOzov+qs4Sl3MSNTIxk8L7BAMx5ew4OVtn71Kx3RWrA+4sJ2Xub8L83YOlWyCA73L7ZCf/ufgi6Dm8NyPRNpND4UCYcmcDQ/UMplKcQ69qto1u5btn+CJhw6xYB30/ldpOmBE7/AYvCbrjPn0exDetxaNYsw7NvMiu/vTUtKhRkQ06/eQu6PVeEGRz4wdSRPEcIwfg649FoNfxwWj+xxSRoGLX+EiXy52FEBoZyUuM6bBjWZcviP248muBgvcSVrsRY+Lu3rlbx+4v1upI2u/LbWzO/pxeBkQkM+fM8iRoNow6O4mHkQ2Y1mYWHYyZ3vjSSsMsxBF12wKlYLK4VDfPv+GYn/BMLIE+B5+plpkcrtfx982/e3fQu2+5u47PKn7G6zWpK5C2R5TCSIyII+/tvfLp15+677Qn76y/s336bYuvXU2zVKhyaNjXKWOKHtT0Ji01i5xXTVnVKl5O7buvqi2sgKGftHePh4EH/qv3Zc38PBx4eyHZ7P+26gV9EHD92rpLlXTDNrK11UzVjYvAbN844i8R2jtbdZOy0EBwNtDI1G6p55GVKx0ocuR1Mz00TOep3lPF1xhu02lx2RO3fT8A335KnQQPchnRHJETqam7rWc55W9a3kDtwaxc0HqOrpZoOKSWHfA8x98JcroVeo1ahWox/azwl82ZtpaAmLIzogweJ2rGT6GPHICkJq1IlKTB6NE4d2mPhnLmP7vpQr6Tu5u2qE/fpWL1I+ieYUsPhurHh/VN0KzZzkN4Ve7Pt7jamnpxK7UK1sbPMWk2Fs/dDWX7ch951i2V6KOdF1qVLU2DkSB5PmULYylU499L/VOGnLq///7h9ybcN1082da3lwda7Wzkf+y/1XNvTuUxnU4eUqrhLl3j01TBsypfHffYvCFtb3YiEAS4C39yEf2ohmFlCzU/TPEyj1XDY9zALLy3kSsgV3O3dmd5wOm2Kt8nUVbc2MZH4K1eIOXGCmEOHibt4EaTEws0N5549cWzTGptKlUw6K8DMTNCzjidTtl3jmn8k5d1e3n8nx8iTH+oO1u2X/+gsFPEydURPWZpZMrHuRHrt6MWcC3MYVSvz2/7GJyUzav0lCjvZZmhWTkbk6/EhMYcPE/jTT9i9VRubsvpp9zmh9+DfL3W7nDYdp//29cg72BvvxEXYJJfmyIl63PKKonTBnDV2n/jwIQ/7D8Aif348fl+AWR7D1igW+vj4J4RoBcwGzIFFUsrpLzxvDawAvIAQoJuU0ietNmvWrCnPpJR2y7T4SJhZAcq10X3kTIVftB//3P6Hjbc28jj2MUXsi9CvSj/alWyX7t17qdWS5OtLvLc38d7exF26TNzFi8iEBABsKlfGvlEj7Bs30iV5A43LZ0V4bCJvTf2Pzl7ufP+efncM1bv4SPi1mm5n016bTR3NSyYfn8z6W+tZ03YNFV0ytyz/5903+G3fbZZ9UosmZfW3M6MmNJS7HTpg7uRE8fXrMbPJ/gSDp5KTYElL3T45/Y9ka5qzoQXHBdNtazcshAW/NFrKRwu9cbSx5J/B9XG0yRmzczRhYdz/4EOSw8Lw/PNPrEsU10u7QoizUsqaqT2X7St8IYQ5MBdoAfgCp4UQW6SUz65Q6QOESSlLCSG6Az8A3bLb9ytdWA2JUfBW/6cPBccFczPsJif8T3DY9zC3w28jENQrXI+xtcfSyKPR00QvNRqSw8PRhISgCQwkyc+fJD8/kh4+JOHePRLv3UM+mfdsaYlNmTLk694N25o1sfPyMslwTUbltbOiXZXC/HP+EWPblMfeOgd/yLNxhIYjYNdYuLNft694DjLUayj7H+7nu2PfsabtGizMMvZ3eT0gkvkH7tCpehG9Jnt4MlVzOg8/+4zAH3+k0MSJ+mt8//e6T1tdV+ToZJ+kTWL4geFEJkSyss1KyjkXZu6H1vRYdJJhay+y8CMvzMxMO/9em5CA76DBJPn5UXTpEr0l+/Rk+wpfCFEX+FZK2TLl57EAUsppzxyzK+WY40IICyAAcJVpdJ7VK/zwEF+ODmhJkpkZifYFSUpOJDoxiiRNAkKChRS4WjlTwCo/BSzyYpMs0MYnoI2JQRsVRXJ0NNqoqJe3LrWwwNLNDasSxbEuXgKrkiWwqVABm9KlEVZWmY7TlM4/COO9eceY3LESH9XxNHU4aUuKhzk1dUM8n+836pL9jNjts5vhB4czouYIelfsne7xyVrJ+/OP8SA0lr3DGuOcxzC/O49/+JHQpUtxnzsHh2bNst/g3YOwooOuclX7X7PfngFNOzmNNdfXML3hdNqW+H9N52VH7/Htv1f5qnkZhjYvbbL4pFbLo+HDidqxkyKzZuLYurVe2zfoFT5QBHh2crcv8OJE8qfHSCk1QogIwAV4bu6REKIv0BegaNGsXUHI4Pvkv61FCIkQjxEIzMzNMTfPg4WZJZZWNphZWiLMExHWEWitrRE2NljmzYu5gz1m9g6YOzlhnt8FC2cXLFzzY1m4MBYFChhkXqwpVPPIS8XCjqw+cZ+ebxU1/WrDtFja6BZjbR4IV/+Biu+ZOqLntPBsQRP3Jsy9MJdmRZvh7pD2DqarT97nwsNwfulWzWDJHsD1qy+JPXkS/3HjsdlcEctC2SjnGRMCm/qBSyloNS39401o8+3NrLm+hl4Vej2X7AF61yvGJd8IfvnvJpWKONKsfEGTxBg06xeiduykwIjhek/26ZJSZusL6Ixu3P7Jzx8Bc1445grg/szPd4D8abXr5eUls0yTKKUmKevn5wJ/nrwvPUdvlSfvhpg6lPQla6Sc85aUs6vp/m1zGP9of1l7VW352a7PpFarfeVxfuGxsuLEnbLnohNpHqcv8XfvymvVa0ifnh9JrUaTtUa0WinXfCDlpPxS+l3Qb4B6diX4iqyxoobss7OPTEpO/f9/XKJGtv31kKz0zU55JzDKyBFKGbpunbxatpz0m/iNwX4HgDPyFXlVH3cTHwHPrmRwT3ks1WNShnSc0N28NQxzyxy1ECQnal+tME62liw/5mPqUNJnZg4tvoPQu7p9kXKYQnkK8ZXXV5zwP8HmO6++ufzNZm80Wi3fd6xslE9V1sWLU2ji18SePk3w779nrZGzS+HGNmj2jW7Feg4VFh/GV/u/wsXWhR8b//jK+yk2luYs6OmFpbkZn684Y9Tyn9FHjxLw7XfkadiQQl9PMMkna30k/NNAaSFEcSGEFdAd2PLCMVuAJwOcnYF9Ke9EionYWVnQvZYHO70D8As3XVHlDCv9jq4U4oHpOapIyhNdy3alRoEa/HT6J4LjXl4lucs7gN1XH/Nl8zIUdcnavP2scOrQAcd33yV4zlxiM3tPLOgm7Bynm2ufjb2oDE2j1TDy0EhC4kKY1WQWzjZpT5pwz2fHvB418AmJ5au1+qmJm574mzd5NPRLrEuVosismQgL01yQZjvhSyk1wGBgF3ANWCel9BZCTBJCtE85bDHgIoS4DQwDxmS3XyX7etbxRErJqhP3TR1K+oTQXeXHBsOx30wdzUvMhBnf1vuWeE08004+P84dFZ/EN5u9Ke/mSJ8GxpmN8YQQgkLffIOlhzuPho9AExaWsRM1CbChD1jZQcf5eqsSZwi/nv+Vk/4nmVBnQoarVtUp4cLEdhXYe+1xtmvipicpMJCH/ftjZmeHx+8LMLfPfk2OrNLLv6KUcruUsoyUsqSU8vuUxyZKKbekfB8vpewipSwlpawtpbyrj36V7PFwtqNFhYL8eepBzt9fB3SLryp20hVJicx5e/sXdypO/6r92X1/N//d/39JxJ933+RxVDxT36uEpbnxE6e5fR7cZ80iOTQUv9GjM7b17r4pEHAJ2s8Bh2zc8DWwXT67WHplKV3LdOW90pm7od+rriddvHQ1cbddMszvkzY2Ft+Bg0gOj8Bjwfzs3TzXg5z7tq0YRe96xQiLTWLLhawVgTa6Zl/rFgDtn2LqSFL1caWPKe9cnsknJhMeH87Fh+EsP+7DR3U8qV40n8nisqlQgQJjxxBz6DChS5akffDdA3DsV90q9XImqAaVQbfCbvH10a+p6lqVMbUzP2gghGDKe5Xw8szH8L8vvLSdcnbJ5GQejRhJ/NWrFPl5BjYVKui1/axQCT+Xq1vChbIFHVh6zMc4m25ll3MJeKsfnF8N/hdNHc1LLM0smVx/MhEJEUw7OY1xmy7jam+d5Z0w9SnfBx/g0LIlgbN+IfbcudQPig2FTf0hf1l453vjBpgJkYmRfHXgK+ws7JjZZCaW5llbPWttobuJ65LHms9XnCEwUn+FZB5P/4HoffsoOH4cDk1zxqJBlfBzOSEEH9cvxjX/SE7czTm1ZNPUaCTY5oNd419eIJcDlHUuS98qfdnus50bkcf5tn3FHLGcXwiB25TJWBYpwqMvv0IT8sJEOSlhyxCICdZVr7Iy3s3lzNBKLeMPj+dR1CNmNplJAbvsrVZ2dbDmj141CY9Nou/Ks3oZ3gxdsYKwlStx7t0b5x49st2evqiEr/Be9SI457Fi8ZHX5NaKbV7dxl0+h+HGdlNHk6rWRXsgE9xwdN9M3VJ63M8mm8wdHHD/dTbJERE8GjHi+apK55bD9a3Q/Btwq2K6INOx4OICDvgeYGStkdQoWEMvbVYo7Mgv3atx0Tec4euyN3Mncs8eHk+bjkOL5hQYNVIv8emLSvgKNpbmfFTHk73XArkdGG3qcDLG62PIXwZ2fw2aRFNH8xwpJVP+vUHy425ozWKYdipnrU61KVeOQhMnEnv8BEFz5ugeDL4FO8dCiaZQZ5BpA0zD/gf7mX9xPu1LtueDch/ote2WFQsxtnU5tl3256fdWSsoHnfhAn4jRmJTpTKFf/wxx63OVwlfAeCjup5YW5i9Plf55pa6MebQO7qtsHOQXd6P2XstkK8aN2FA1QHs8NnBjns7TB3Wc/K+3wmn9zsRMn8BUXv3wPpPwcImR0/BvBtxl7FHxlLRpSIT6040yMKlzxuW4IPaRZl/4A7rTmeuHGji/fs8HDAQi4IF8Zg/HzNbW73Hl105819WMbr89ta87+XOhnOPCI5OMHU4GVO6BZRqoVuMFaW/GrPZEZ2g4dstujn3n9QvTp/KfajiWoXJJybrtQ6uPhT6+mtsKlTAb8QwEm56Q8d5ObJ6FUBUYhRD9w3F2tyaX5r+grV5+kWNskIIwaQOFWlYOj/jNl3mwI3ADJ2nCQ3lQd++ICVFF/6eY3fMVQlfeapPg+IkarSsOP4aLMQC3WKs1j9AcgLs/cbU0QAwY9eN5+bcW5hZMLXBVDRaDROPTcxRM6HMbGxwH9ENIRPwPVuS5CKNTB1SqpK1yYw5PAbfKF9mNJ5BoTyGnctuaW7GvB41KFPQgYGrz3HxYXiax2tjYnjYrz+agMe4z5uHVbFiBo0vO1TCV54q6WpP8/IFWXnch7jE12AhFoBLSag7CC7+CQ9OmjSUCylz7nu9MOfe09GTETVHcMzvGGuurzFhhC+IDsTy6HiKtHEkMTgO/7FjMrYoy8h+O/8bh3wPMbr2aKPVpHWwsWTZp7Vwsbfi02WnuRcck+pxMikJ3y+/It7bmyKzZmJXo7pR4ssqlfCV5/RtVIKw2CTWncnc+KVJNRwBDoVh+wiDFH7OiKRkLWM3Xqagg02qc+67lOlCI/dGzDwzkxuhWbshqFdarW6+fUIkeb5cToGRI4jas5fgefNNHdlztt/dzuIri+lcpjPdyhquZlJqCjjYsPyT2kig15KTPH5hjr6UEv8JXxNz+DCFvv0Gh7dzbn3fJ1TCV55Tq1g+anrmY+GhuyRqct7VXqqs7aFlylYAZ9JZRWogS47c45p/JN+2r4hDKnPuhRBMrj8ZR2tHRh0aRZzGxBvWHf8N7vyn29++YEWce/fGqWNHgufMIXJHzrjB7B3szcRjE6lRoAbjao8zye6SJVztWfJxLUKjE+m56CQhKfe3pJQE/jSDiM2byT94MPm6djV6bFmhEr7yHCEEg94uxaPwOP45/+Iu1zlYxU5QvBH8NxmiAoza9cPQWGbtvUmLCgVpVenV48vONs5MbTCVexH3+PH0j0aM8AW+Z+C/SVChA3h9AqRssjbpO2y9vPAbM5a4S5dMFx8QEBPAkH1DcLFxydZKWn2o5pGXxR/X4kFoLL2WnCIiLomQPxYRumQJ+T78kPyDcu5Ooi9SCV95SZMyrlQq4sj8g3dINsLWsXohBLSdBZp43XxyI5FSMm7TZSzMzJjUIf2dGusWrssnlT5h/c317PbZbYQIXxAXDus/0Q2BvfvrcyUjzayscP/tVyxcXXk4aBBJ/qbZoC42KZYv9n1BTFIMvzX7DRdbF5PE8aw6JVz4/SMvbj6OYt7wnwiaORPHdu0oOGF8zq4Y9wKV8JWXCCEY1KQU94Jj2HY55+1K+Ur5S0GjEeC9EW7tMUqXG8894vCtYEa3KoubU8bmXQ+uPpgq+asw8dhEfCJ8DBvgs6SEzYMg0g86L9atWH6BhbMzHvPnIePiedi3H8mRxq09oJVaxh8Zz42wG/zU+CfK5Ctj1P7T0qRsARZ7hNN+3yquF6tCnonfIXLomoVXeb2iVYymZcVClCpgz9x9t41SIEJv6g/Vbfy1dRgkpj6zQl+CoxOYvO0qXp756PFWxovBW5pZMqPxDCzNLBl2cJjxxvNPzE/ZOuE78Kj9ysOsS5fG/bdfSfDxwXfQYLSJxlvJ/MvZX9j7YC/DvYbTyD1nTRON3LUb19+mklihChOqfsBHy88RHpuzVnmnRyV8JVVmZoJBTUty43EUe67lrAVDabKwhnazIOIB7J9q0K4m/XuV2IRkpneqjJlZ5j7Wu9m7Mb3hdG6H3Wby8cmGn5//8DTs+RrKttVNY01Hnrp1KTx1KrGnT+M/xjjTNf+8/idLvZfSvWx3PqrwkcH7y4yofft5NHw4tlWqUHXlYn79uC43AqL44I+Tr89CRVTCV9LwbpXCFHOxY9aem6/XVX6x+rqbkcfnGmxu/r7rj9ly0Y9BTUtRuqBDltqoX6Q+/av259+7//L3zb/1HOEzYkN14/aOhaHj3OfG7dPi9G47CowcSeT2HTyeOs2gb0r7Huxj+qnpNHFvwpjaY3LUuHj0oUM8GjoUm3Ll8Fj4O2Z58tCsfEEW9a7JveBo3p9/DJ9XzNPPaVTCV17JwtyMr1qU4XpA1Os1lg/wzmRw8oDNAyFJv0MmEXFJjN14mbIFHRjQpGS22upXpR8NijRg2slpnA44racIn6FN1pUqjH4MXZbptpXOBOdPP8H5448JW7WKoFm/6D8+4GLQRUYfGk0F5wr80OgHzM1yzoZjUfv24TtoMFalS1F00R+YO/z/zb1RGVf+/LwOUfEa3p9/jAvprMjNCVTCV9L0bpXClC3owKw9N9Ekvybz8gGsHaDDbxByW1euT4++33aV4OhEfupSBSuL7P0XMjcz54dGP+Du4M6wA8PwjfLVU5Qp9n8Pd/ZBmxm6EpGZJISgwOhR5O3WjZCFCwlesECv4d0Ou83AvQNxtXPlt2a/YWeZc/bgj9y5C98vhmJdvjyeS5dinjfvS8dUL5qP9f3rYmdtzgcLT7DzSs6+MMrWb6sQwlkIsUcIcSvlz5cuH4QQ1YQQx4UQ3kKIS0II4y6XU7LFzEzwVYsy3A2OYePrNC8foEQTqNknZWjnhF6aPHQziHVnfOnbqARV3PPqpU1HK0fmNJtDskxmyL4hxCTpaXjg2r9w+Geo0Ru8eme5GV0h9Ik4tn+XoF9mE7JkqV7CexT9iH57+mFtbs3CFgvJb5tfL+3qQ8SWLbox+8qVKbpkMeZOTq88toSrPRsH1KdsIQf6rzrHjF03cux05uxe4Y8B/pNSlgb+S/n5RbFALyllRaAV8IsQIm82+1WMqGXFglQu4sTsvbden9W3T7SYBHmLwsa+EJ+9mqXRCRrGbrxMSdc8DG1WWk8B6ng6ejKj8QzuRdxj5MGRaLSa7DUYdBM2DdBd1bf5KdvxCTMzCk+dikOrVgT++GO2r/SD44Lpu7svcclxLGixAHcH92zHqC8hS5fhN2o0djVr6oZx7O3TPcfVwZq1/erQraYHc/bf5rPlp4mITTJCtJmT3YTfAVie8v1yoOOLB0gpb0opb6V87wcEAq7Z7FcxIiEEw98pw6PwOP489cDU4WSOtb2uXF+EL2z9KlslEb/fdhW/iDh+7FwVG0v9jzPXK1yPcW+N4/Cjw0w6PinrN0ljQ2FNV7C0ga4rdDOX9EBYWFBkxk84vqu70g+c9UuWYgyJC+Hz3Z8TFBfEvGbzcsxceyklgTNmEPjDDzi0bPn0Bm1GWVuYM/39ykzpWIkjt4NpNfsQx24HGzDizMtuwi8opXwyaBUAFEzrYCFEbcAKuPOK5/sKIc4IIc4EBQVlMzRFnxqXcaVOCWdm/3eLiLicd+WSJo/a0HQsXNkAF7K2W+W+64/589RD+jUqiZdn5m58ZkbXsl3pX7U/m25vYs6FOZlvQJMI63pB5CPovgac9HvlLCwsKDx9Gnm7dCbk9995/P3U58skpiMsPozP93yOb5Qvc96eQ7UC1fQaX1ZpExLwGz2akEWLyftBd4rM/Bkz68y/UQoh6FnHkw0D6mFrZc6Hi04yZetVvdTJ1QspZZpfwF7gSipfHYDwF44NS6MdN+AGUCe9PqWUeHl5SSVnuewbLouN2Sqnbrtq6lAyL1kj5dK2Uk5xkzLoZqZODY1OkDWn7JEtZx2U8UkaAwX4f1qtVn5z9BtZaVklufrq6sycKOXmIVJ+4yjlhb8MF6CUUpucLAOmTpNXy5aTDwcPlsmxsemeExYXJt/f/L70Wuklj/sdN2h8mZEUGCjvde0mr5YtJ4Pmz5darVYv7cYmaOSETZel5+itsvGP++S+a4/10m56gDPyVXn4VU9k5CslgbvJZxL6K45zBM4BnTPatkr4OdPwdRdk6XHb5f3gGFOHknkRj6Sc7inlvHpSJkRn6BStVisHrjorS43bJr0fRRg2vmckJSfJIf8NkZWWVZLrbqzL2ElHf9Ml+z3fGja4Z4QsXy6vlisv73btKpOCg1953OOYx7LjPx1ljRU15FHfo0aLLz1x3t7yZpOm8lq16jJi5y6D9HH4ZpBsOmO/9By9VfZZdkreCYwySD9PpJXwszukswV4cvu/N7D5xQOEEFbAJmCFlHJ9NvtTTGxky7KYmwmm77xm6lAyz7Gwbjz/sTdsHpyh8fwtF/3YdtmfL5uXoUJhRyMEqWNhZsGMxjNoWKQhk45PYsPNDWmfcHk97B4P5dvD218bJ0jAuVcvivw6m4TrN7jXpQtxly+/dMzDqIf02tELv2g/5jWfR70i9YwW36tIKQlbuw6f7h+AVovnqpU4tnzHIH01KJ2fnUMbMbZ1OY7dCaH5zIMM/es8tx5HGaS/NL3qnSAjX4ALutk5t9AN/TinPF4TWJTyfU8gCbjwzFe19NpWV/g51y97bkrP0Vvlybshpg4law79rLsSPjI7zcPuB8fIShN3yk7zjsokTbKRgntevCZe9tvTT1ZaVkmuv7E+9YPu7JfyOxcpl7SWMjHOqPE9EXvpsrzZtKm8VqmyDP3zr6fDIjdCb8ima5vK+n/Wl5cCL5kkthclR0dL3+Ej5NWy5eT9T/uk+clE3wIj4+XUbVdl+a93yGJjtsreS07KrRf99DpUSBpX+ELmoBqbz6pZs6Y8c+aMqcNQUhGXmMzbPx/AydaSf4c0wNL8NVu/JyX83Vs3T73nBij5cqWipGQtXRYc505QNDuGNsQ9n+kWBCUkJzB031CO+h1laI2h9KnU5/9bD/hfgqVtdDdnP92R6ZW0+qQJC8Nv1GhiDh/G8d13uffp24w4/y15LPKw8J2FlMybvVXJ+hBz6hT+E74mydcX1y+G4NK3r0l2vAyNSWTZMR/WnX5IQGQ8TraWvFOhIPVL5adeSRcKONpkuW0hxFkpZc1Un1MJX8mKXd4B9Ft5lnFtytG3ken/I2daQjQsbgERj+DTnVCwwnNP/7jzOvMO3GHuhzVoW8XNREH+X1JyEhOOTmD7ve10L9udMbXHYB58E5a1BQsb6LMHnIqYOkykVkvw/AUEzZ1DmJ1ke1dPhgxaZvDC4+nRxsQQOHMWYatXY1m0KIW/n4JdLePUx01LslZy9HYw68/6cvBm0NMZcA1K5WfVZ29lqc20Er5F1kNVcrOWFQvRvHxBZu25RetKbng455wl8RlibQ8froVFLWDV+/DZnqdTGI/dDmb+wTt0q+mRI5I9gKW5JdMaTqOAXQGWeS8jMPwuU68cIo+ZJfT+N0cke4B4bQJzqj/mfC8zRu22peeS+2hDZpE0bDiWBQsYPR6p1RK5bRuBM2ehCQggX6+PKPDll5jZ5YzfV3MzQaMyrjQq40qyVnLNP5Kjt4MxM9DmceoKX8myR+FxtJh5kLeKO7Pk41o5aofDDAu4rBsScSwMn+4kINGWdr8dfjpcZWeV866JVp+ZzU9X/sAjWTKr6WxKlWhu6pAAuBN+hxEHR3A7/DafV/6cgRX7Ejp/ASGLlyAsLHD5rA8un3xitGQbe/Ysj3/4kfhLl7CpUIGCE8ZjV6OGUfo2JTWkoxjMosN3mbLtWo4Z+siSuwdh1ftoC1enV8Iozj1OZvOg+lne9tigAq7Aqk6cNktmpJsbsdpEJtadSNvibU32hiulZMOtDfx4+kdsLWyZ2mAq9YvUf/p84oMHBP48k6hduzB3zY9zj57k694t1c3Ish2LVkv0wYOELFpM3NmzWLi64jpsGE4d2r921amySiV8xWA0yVo6zjuKX3g8O79sSAGHrN9sMqmrm9Gu+4QL2uI8fnc1rWuVM3VEL3twImXLhDzw0SYC7Z0ZeXAk5wLP0axoM8a/NR5XO+PuWnI/8j7fHf+O0wGnqV2o9tNhp9TEnj1L8Lz5xBw9irC1xaljB5zefRfbatWynYwTfR8RuXUrEZs3k3jvHhaF3XD5+GPydu6cY4ZvjEUlfMWgbj2Oot1vR6hX0uW1HdrZctGPbWsXMs/6N8zdKkPPjWDnbOqw/u/GTvj7Y91Y/UebdBvCARqthhVXVzDvwjyszK0Y7jWcjqU6GnxP+ZikGFZ4r2DR5UVYm1szrOYwOpXuhJlIP3HH37hJ6LJlRG7bhkxMxKJgQRyaN8euphe2Vati4eaW7u+QNjaW2PPniT19mtjjJ4i7eBEA25pe5OvSBcc2bRCWlnp5ra8blfAVg1t69B7f/XuVKR0r0bNOxuu75gQXH4bT9ffjVC7ixF9NwrFY3xvyl4EP/oK8HqYNTko4Mgv+mwRuVaDHBrB/+SreJ8KHb49/y9nHZynpVJLB1QfTrGgzvb/5JiQnsPb6WhZdXkRYQhgti7VkdK3RWfpkkRwdTfT+A0Tu3EnMkSPIBF2pQHMXFyzd3LAoUAALFxcAZHIyMjGRJH9/kh4+RBMYqGvE3BybihVxePttHNu1w8o9Z9y8NiWV8BWD02olvZee4oxPGNu+aEAJ1/S3lM0J/MLj6DD3KDaWZvwzsD4u9ta6giHreut2mey2GopmbXpctiXGwOZB4L0JKnaCDnPB6tXDE1qpZe/9vcy5MId7Efco71yebmW70ap4K/JYZnzXx9Q8jHrIhpsb2HR7E6HxodR1q8uQ6kOo7Fo5W+0+IZOSiL9xk7iLF4i/ehXN40A0QUFoQkJAgLCwRFhYYFmwIJYeHlh6uGNbuQq21atjbp+91/amUQlfMYrHkfG0/OUQhZ1sn+4WmJPFJGjovOA4vqGxbBhYjzLP3qQNugFruul2nWz3C1TvYdzg/C7Apn66OJp/A/W/zHAtWo1Ww7a721h6ZSl3Iu5ga2HLO57v0KBIA2oWqpmhQiNSSm6G3eSY3zEOPzrM6YDTmAkzGrk34qPyH1HbrXb2Xp9iMCrhK0az/3ogny4/TfuqhfmlW7UcO56flKyl74ozHLoVzJKPa9G4TCpDErGhuhW59w5BhY7QdibkcTFsYMlJcHgmHPoR7PJDx3lQqlmWmpJScin4EhtvbWS3z26ik6IBKO5UHE8HT9zs3ShoVxBzYY5GakjSJuEX7ceDyAfci7hHWEIYAKXyluIdz3d4r/R7Jl9ApaRPJXzFqObuv81Pu24woW15PmtYwtThvCRZKxn613m2XvJnWqfKfFC7aBoHa+DYbNg/DWzz6pJ++XczfLWdKXcPwO4JurUBlbtA6x/1duNYo9VwLeQapwJOcSHoAo+iH+Ef7f/0TeAJV1tXijoWxdPRk2qu1ahbuK5K8q8ZlfAVo5JSMmjNOXZeCWD5p7VpWDrnFDiTUjJ242X+Ov2Qsa3L0a9xBreFeOwNm/pDwCUoWhfengDFGugnqIDLsPdbuL0XnIpCyylQoYN+2k5HbFIsoCumbi7MsTDLeQvNlMxRCV8xupgEDZ3mHcMvPI41n9ehsvuri0Abi5SSKduusfjIPQY3LcWIlmUz10ByEpxbAYd+gih/KN5YVxy8bBuwtM1cW5pEuLYFziyB+0fBxgkajoDafXWlCRUli1TCV0zCLzyOLguOE5uoYW2/us/fFDWyZK1k/Cbdlf0n9YsxsV2FrN9fSIqD04vh+FyI8gMrB90wT9E6ULg6FCgP5i/MAU+MgfAHuuR+96DuvkB8OOT1hJqfQo1eOWvev/LaUglfMRmf4Bi6/H4cAfzdvy6eLsafQpegSWbY2otsu+zPkLdLMaxFGf3cTNYmg88RuLQOrv8L8RG6x80swdoBrPLopnbGBP3/OQBHdyjRBCq+p9uaOZcs+VeMQyV8xaRuPo6i2+/HsbE0Z+kntShXyHiVo8JiEhny53mO3A427E1krRbC7oHfed14f0Kk7qo+KQ7y5AfHIrov95rgXMIwN30VBZXwlRzgql8knyw7RUxCMnN71Eh9GqSeXXkUQf9VZwmMTOD79yrRpaaJV80qihGklfDVZ0nFKCoUduSfQfXxcLbj02WnWXncB0NdbEgpWXv6Ae/PP4ZWK1nXv65K9oqCSviKEbk52fJ3/7o0Kp2frzd78+my0wRExOu1j/shMfRacorRGy7j5ZmPf4c0oJpHXr32oSivq2wlfCGEsxBijxDiVsqfryyoKYRwFEL4CiHmZKdP5fVmb23B4t61mNiuAsfvhtBi1kH+OvUATbI2W+1GJ2iYu/8278w6xPkH4XzXviIr+7yl2xtHURQgm2P4QogfgVAp5XQhxBggn5Ry9CuOnQ24phw/OL221Rj+m88nOIZR6y9xyicUD2db+jYqSRcvd2wsM74HT1BUAsuO3WPl8ftExmtoWbEg37aviJtTJufFK8obwmA3bYUQN4AmUkp/IYQbcEBK+dJqFiGEFzAS2AnUVAlfeUKrley59ph5B+5w8WE4+ewsdTU+S7tSt6QLBR1tMDf7/4yWqPgk7ofEcuR2MAduBHLGJ4xkKWlVsRD9GpdUwzdKrmfIIuYFpZT+Kd8HAAVT6dwM+BnoCeSM4ptKjmFmJmhZsRDvVCjIibuhrD39gCO3g9l8wQ/QzV7Ma2uJg40lIdEJxCQmPz23XCEHPmtYgm61PCieX22RqyjpSTfhCyH2AqntnjT+2R+klFIIkdrHhYHAdimlb3qLXYQQfYG+AEWLprGhlfLGEUJQt6QLdUu6oNVKrgVEcu5+GEHRiYTGJBAZp8E5jxVuTja45bWlVrF8athGUTLJ4EM6QojVQENAC9gDVsA8KeWYtNpWQzqKoiiZZ8ghnS1Ab2B6yp+bXzxASvm0coQQ4mN0Y/hpJntFURRF/7I7D3860EIIcQvd+Px0ACFETSHEouwGpyiKouiP2lpBURTlDaK2VlAURVFUwlcURcktVMJXFEXJJVTCVxRFySVUwlcURcklcuwsHSFEEHA/G03kB4L1FM7rIre95tz2ekG95twiO6/ZU0qZaoWhHJvws0sIceZVU5PeVLntNee21wvqNecWhnrNakhHURQll1AJX1EUJZd4kxP+QlMHYAK57TXnttcL6jXnFgZ5zW/sGL6iKIryvDf5Cl9RFEV5hkr4iqIoucQbl/CFEK2EEDeEELdTCqu/0YQQHkKI/UKIq0IIbyHEUFPHZCxCCHMhxHkhxFZTx2IMQoi8Qoj1QojrQohrQoi6po7J0IQQX6X8Xl8RQvwphLAxdUz6JoRYIoQIFEJceeYxZyHEHiHErZQ/8+mjrzcq4QshzIG5QGugAvCBEKKCaaMyOA0wXEpZAagDDMoFr/mJocA1UwdhRLOBnVLKckBV3vDXLoQoAnyBrmhSJcAc6G7aqAxiGdDqhcfGAP9JKUsD/6X8nG1vVMIHagO3pZR3pZSJwF9ABxPHZFBSSn8p5bmU76PQJYEipo3K8IQQ7kBbIFcU2hFCOAGNgMUAUspEKWW4SYMyDgvAVghhAdgBfiaOR++klIeA0Bce7gAsT/l+OdBRH329aQm/CPDwmZ99yQXJ7wkhRDGgOnDSxKEYwy/AKHS1knOD4kAQsDRlGGuRECKPqYMyJCnlI2AG8ADwByKklLtNG5XRFJRS+qd8HwAU1Eejb1rCz7WEEPbABuBLKWWkqeMxJCFEOyBQSnnW1LEYkQVQA5gvpawOxKCnj/k5Vcq4dQd0b3aFgTxCiJ6mjcr4pG7uvF7mz79pCf8R4PHMz+4pj73RhBCW6JL9ainlRlPHYwT1gfZCCB90w3ZvCyFWmTYkg/MFfKWUTz69rUf3BvAmaw7ck1IGSSmTgI1APRPHZCyPhRBuACl/Buqj0Tct4Z8GSgshigshrNDd4Nli4pgMSggh0I3rXpNSzjR1PMYgpRwrpXSXUhZD92+8T0r5Rl/5SSkDgIdCiLIpDzUDrpowJGN4ANQRQtil/J434w2/Uf2MLUDvlO97A5v10aiFPhrJKaSUGiHEYGAXujv6S6SU3iYOy9DqAx8Bl4UQF1IeGyel3G66kBQDGQKsTrmYuQt8YuJ4DEpKeVIIsR44h2422nnewG0WhBB/Ak2A/EIIX+AbYDqwTgjRB9028V310pfaWkFRFCV3eNOGdBRFUZRXUAlfURQll1AJX1EUJZdQCV9RFCWXUAlfURQll1AJX1EUJZdQCV9RFCWX+B/AJ6KXw7oh/wAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "x = linspace(0, 10, 100)\n", + "x = np.linspace(0, 10, 100)\n", "\n", "fig, ax = plt.subplots()\n", "for n in range(4):\n", @@ -169,16 +161,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([ 2.40482556, 5.52007811, 8.65372791, 11.79153444])" + "array([ 2.40482556, 5.52007811, 8.65372791, 11.79153444])" ] }, - "execution_count": 7, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -217,7 +209,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -235,7 +227,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -246,14 +238,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "integral value = 0.5 , absolute error = 5.55111512313e-15\n" + "integral value = 0.5 , absolute error = 5.551115123125783e-15\n" ] } ], @@ -263,7 +255,7 @@ "\n", "val, abserr = quad(f, x_lower, x_upper)\n", "\n", - "print \"integral value =\", val, \", absolute error =\", abserr " + "print(\"integral value =\", val, \", absolute error =\", abserr)" ] }, { @@ -275,14 +267,14 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.736675137081 9.3891268825e-13\n" + "0.7366751370811073 9.389126882496403e-13\n" ] } ], @@ -299,7 +291,7 @@ "\n", "val, abserr = quad(integrand, x_lower, x_upper, args=(3,))\n", "\n", - "print val, abserr " + "print(val, abserr)" ] }, { @@ -311,25 +303,25 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "numerical = 1.77245385091 1.42026367809e-08\n", - "analytical = 1.77245385091\n" + "numerical = 1.7724538509055159 1.4202636780944923e-08\n", + "analytical = 1.7724538509055159\n" ] } ], "source": [ - "val, abserr = quad(lambda x: exp(-x ** 2), -Inf, Inf)\n", + "val, abserr = quad(lambda x: np.exp(-x ** 2), -Inf, Inf)\n", "\n", - "print \"numerical =\", val, abserr\n", + "print(\"numerical =\", val, abserr)\n", "\n", - "analytical = sqrt(pi)\n", - "print \"analytical =\", analytical" + "analytical = np.sqrt(pi)\n", + "print(\"analytical =\", analytical)" ] }, { @@ -343,20 +335,20 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.785398163397 1.63822994214e-13\n" + "0.7853981633974476 1.3753098510218528e-08\n" ] } ], "source": [ "def integrand(x, y):\n", - " return exp(-x**2-y**2)\n", + " return np.exp(-x**2-y**2)\n", "\n", "x_lower = 0 \n", "x_upper = 10\n", @@ -365,7 +357,7 @@ "\n", "val, abserr = dblquad(integrand, x_lower, x_upper, lambda x : y_lower, lambda x: y_upper)\n", "\n", - "print val, abserr " + "print(val, abserr)" ] }, { @@ -397,7 +389,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -445,7 +437,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -457,7 +449,7 @@ "" ] }, - "execution_count": 15, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -493,7 +485,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -517,7 +509,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -527,19 +519,34 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "# 解决常微分方程的坐标:从0到10秒\n", - "t = linspace(0, 10, 250)" + "t = np.linspace(0, 10, 250)" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/bushuhui/virtualenv/dl/lib/python3.6/site-packages/ipykernel_launcher.py:11: DeprecationWarning: scipy.cos is deprecated and will be removed in SciPy 2.0.0, use numpy.cos instead\n", + " # This is added back by InteractiveShellApp.init_path()\n", + "/home/bushuhui/virtualenv/dl/lib/python3.6/site-packages/ipykernel_launcher.py:12: DeprecationWarning: scipy.cos is deprecated and will be removed in SciPy 2.0.0, use numpy.cos instead\n", + " if sys.path[0] == '':\n", + "/home/bushuhui/virtualenv/dl/lib/python3.6/site-packages/ipykernel_launcher.py:13: DeprecationWarning: scipy.sin is deprecated and will be removed in SciPy 2.0.0, use numpy.sin instead\n", + " del sys.path[0]\n", + "/home/bushuhui/virtualenv/dl/lib/python3.6/site-packages/ipykernel_launcher.py:14: DeprecationWarning: scipy.sin is deprecated and will be removed in SciPy 2.0.0, use numpy.sin instead\n", + " \n" + ] + } + ], "source": [ "# 解决常微分方程\n", "x = odeint(dx, x0, t)" @@ -547,17 +554,33 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 27, "metadata": {}, "outputs": [ { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/bushuhui/virtualenv/dl/lib/python3.6/site-packages/ipykernel_launcher.py:8: DeprecationWarning: scipy.sin is deprecated and will be removed in SciPy 2.0.0, use numpy.sin instead\n", + " \n", + "/home/bushuhui/virtualenv/dl/lib/python3.6/site-packages/ipykernel_launcher.py:9: DeprecationWarning: scipy.cos is deprecated and will be removed in SciPy 2.0.0, use numpy.cos instead\n", + " if __name__ == '__main__':\n", + "/home/bushuhui/virtualenv/dl/lib/python3.6/site-packages/ipykernel_launcher.py:11: DeprecationWarning: scipy.sin is deprecated and will be removed in SciPy 2.0.0, use numpy.sin instead\n", + " # This is added back by InteractiveShellApp.init_path()\n", + "/home/bushuhui/virtualenv/dl/lib/python3.6/site-packages/ipykernel_launcher.py:12: DeprecationWarning: scipy.cos is deprecated and will be removed in SciPy 2.0.0, use numpy.cos instead\n", + " if sys.path[0] == '':\n" + ] + }, + { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAEACAYAAAB1QyoQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4VOX1x79vEiBAQoAsBJIQ9n0RkF0wLigoIloXVFBb\nrbZqtbW/urVWXKrW1l1rcWnBre67LC4QRWWXfQ2BhCXsIZAEAiR5f3+cuTP3ztzZ75qcz/PkmZk7\nN3feSWbu/b7n/Z5zhJQSDMMwDMMwDMNEToLdA2AYhmEYhmEYt8EimmEYhmEYhmGihEU0wzAMwzAM\nw0QJi2iGYRiGYRiGiRIW0QzDMAzDMAwTJSyiGYZhGIZhGCZK4hLRQog8IcQCIcR6IcQ6IcTtQfZ7\nTghRJIRYLYQYFM9rMgzDMLEjhBgvhNjkOSffHWQfPmczDMOEId5I9CkAf5BS9gUwAsCtQoje6h2E\nEBcA6Cal7A7gJgAvxfmaDMMwTAwIIRIBvABgPIA+AK7iczbDMExsxCWipZR7pZSrPPerAGwE0MFv\nt0kAZnn2WQKgtRCiXTyvyzAMw8TEMABbpZQlUspTAN4BcLHfPnzOZhiGiQDDPNFCiE4ABgFY4vdU\nDoCdqse7AOQa9boMwzBMxOidj3Mi2IfP2QzDMH4YIqKFECkAPgBwhyciHbCL32PuNc4wDGM9kZ57\n+ZzNMAwThqR4DyCEaALgQwBvSik/0dllN4A81eNczzb/4/BJmmEY1yKl9BeeTsT/fJwHijSH2ofP\n2QzDNDiMOGfHW51DAHgNwAYp5TNBdvsMwLWe/UcAqJBS7tPbUUrZqH4eeOAB28fQmN/vN99ItGkj\nkZYmMXt243jPjfH/bMWPi1gOoLsQopMQoimAK0HnaDV8zjbhpzF+L/jvxX8vp/4YRbyR6NEApgJY\nI4RY6dl2H4COACClnCGlnC2EuEAIsRVANYBfxvmaDBM3VVXA9dcD774LVFYCDz0ETJhg96gYxlyk\nlLVCiNsAzAOQCOA1KeVGIcTNnuf5nM0wDBMhcYloKeUPiCCaLaW8LZ7XYRijmTsX6NMHGDcOqKsD\n7roL+OknYNQou0fGMOYipZwDYI7fthl+j/mczTAMEwbuWGgjBQUFdg/BUpz0fj/7DLjYU9grMRG4\n5RbgP/8x/nWc9J6tojG+Z4YJB38vooP/XtHBfy97EEZ6Q+JBCCGdMhamYVNbC2RnA6tWAbmewl1r\n1wKXXgoUFdk7NsadCCEg3ZFYaBh8zmYYxq0Ydc7mSDTT6Fi0CMjP9wloAOjbFygvB8rK7BsXwzAM\nwzDugUU00+hYtAgYO1a7LSEBGDMG+P57e8bEMAzDMIy7YBHNNDpWrgQGDQrcPnYsi2iGYRiGYSKD\nRTTT6Agmos84g6LUDMMwDMMw4eDEQqZRUV0NZGYCR44ATZpon6uqArKyqG50YqI942PcCScWMgzD\nuAdOLGSYGFizhupD+wtoAEhJIRFdUmL5sBiGYRiGcRksopmYOXbM7hFEz6pV+lYOhd69gQ0brBsP\nwzAMwzDuhEU0EzVSAn/7G5CRAcycafdoomPdOqB//+DP9+nDIpphGIZhmPCwiGai5uefgZdfBt56\nC7jnHuDwYbtHFDnFxUC3bsGf79MH2LjRuvEYQVUVMH8+cOKE3SNhGIZhmMYDi2gmal57DbjxRuCS\nS4AJE4AZM+weUeRs2wZ06RL8ebdFoo8cofdzzTXAM8/YPRqGYRiGaTywiGai4vhx4N13geuvp8eT\nJwOFhXaOKHLq6oAdO4BOnYLv07s3RaLdUnTgvfeovvX8+cCTTwJHj9o9IoZhGIZpHLCIZqJi/nxg\nwAAgL48eK7WVa2vtHVck7NpF5e2Sk4Pv07o10KwZcOCAdeOKh9dfB669lsT/uHG0SsAwDMMwjPmw\niGaiYtEiEs4K6ekkqFevtm9MkVJcDHTtGn6/jh0pYu10SkqAzZvJUgMAl14KfP21rUNiGIZhmEYD\ni2gmKn76CRg5UrvNLe2yw/mhFfLzgdJS88cTL4sW0d9eqXl95pnAjz+6Y1WAYRiGYdwOi2gmYmpr\ngeXLgREjtNtHjybx5nSKiyMT0R07ukNEr1oFnHaa73FGBk0AVqywb0wMwzAM01hgEc1EzLp1QE4O\n0LatdnufPmQrcDrbtkVm58jPd4edY/VqYOBA7baCAvckejIMwzCMm2ERzUTM4sWBUWiA6i4XFwP1\n9daPKRq2bw9dmUPBLXYO/0g0QPaOH36wZzwMwzAM05iIW0QLIf4jhNgnhFgb5PkCIcQRIcRKz89f\ngh2rpibe0TBmsm5dYOQTAFJTqarF7t3Wjykaysookh4ON9g59u4FTp4EcnO12wcOpP8TwzAMwzDm\nYkQk+r8AxofZ5zsp5SDPzyPBdrr3XgNGw5jGpk1Ar176z3XvDmzZYu14oqGuDti/H8jODr+vG+wc\nq1dTFFoI7fYuXYB9+6iLIcMwDMMw5hG3iJZSLgQQrvGzCPM8AGDWLIqwMc5k40aqR6xH9+5AUZG1\n44mGgwcpWt60afh9MzOB6mr6cSrr1wP9+wduT0wEevZ0V9dFhmEYhnEjVniiJYBRQojVQojZQog+\nwXacOhV4+mkLRsREzdGjQEWFr8mKPz16OFtEl5UBHTpEtq8Qzq8VXVICdO6s/1y/fiSyGYZhGIYx\nDytE9M8A8qSUAwE8D+CTYDveeCPwwQfuabncmNi0iSKcCUE+MU6PREcjogHyGu/aZd544qW0lIS+\nHn37si+aYRiGYcwmyewXkFJWqu7PEUL8SwjRVkpZ7r/vhx9Ox/79wO23A7/4RQEKCgrMHh4TIaGs\nHIDzPdHRiuh27chb7FRKS8m7rUe/fsALL1g7nsZGYWEhCrmWIMMwTKPGdBEthGgHYL+UUgohhgEQ\negIaAB58cDp27SJrAOtnZ7FpU2gRnZ8P7NxJqwj+yW5OIFoRnZ3tbH/+jh3BRXTfvmznMJuCAu0k\n/8EHH7RvMAzDMIwtGFHi7n8AfgLQUwixUwjxKyHEzUKImz27XAZgrRBiFYBnAEwJdbzx44E5c+Id\nFWM0mzfT5CYYqamU1Hb0qHVjioayMqB9+8j3d3IkurISOHECSE/Xf75jR6pEcuKEteNiGIZhmMZE\n3JFoKeVVYZ5/EcCLkR7v7LOBG26gxh3B/LeM9ZSUhG+Z3aEDidW0NEuGFBVlZcAFF0S+f7t2zo3m\nKlaOYBH/xETydJeWhp74MAzDMAwTO46TqenpQJs21AGPcQ6hPLgKHTo4t+HKnj3R2zmcGomO5H/R\nuTN1aGQYhmEYxhwcJ6IBYNAgamnMOIPKSuommZERej8lEu1EYkksdKonmkU0wzAMw9iPY0X0ypV2\nj4JRCGcfUHCqiK6rAw4cIGEcKU72RO/YEby8nQKLaIZhGIYxFxbRTFhKSsJHPgEgJ8eZIvrwYaBV\nKyApigyAzEzg0CES4E6DRTTDMAzD2I8jRfRpp7Gdw0mUlgKdOoXfz6mR6EOHwltR/GnShNqEHzxo\nzpjiYd++8JVGGouILi8H1q61exQMwzBMY8SRIjovDzh50rnL6Y2NSCPRThXRBw9GL6IB5yYX7tsH\nZGWF3qexiOgHHwSGDweuvNLukTAMwzCNDUeKaCGoNJeT20g3JtweiY5VRDvVF71/f3gRnZUFHD9O\nSaENlbo64L33gMWLgS+/dG6NcoZhGKZh4kgRDQDdunGZO6cQaSS6fXsqJSel6UOKinhEtNMqdNTW\nksc73PsRgnzTO3ZYMy47WLCAfPgDBgAjRgDffWf3iBiGYZjGhKNF9Natdo+CASJLZAOA5GQgJcV5\nPuKGFIk+dIjqqCcmht83J8e5dbuN4P33gSme/qfnngt8842943EDQoi2QoivhRBbhBBfCSFa6+yT\nJ4RYIIRYL4RYJ4S43Y6xMgzDOB3HiuiuXTkS7QRqa0m4RVoeLiuLysk5iVhFdHo6Ja45iX37Iv9f\nNHQRvWIFcMYZdJ9FdMTcA+BrKWUPAN96HvtzCsAfpJR9AYwAcKsQoreFY2QYhnEFjhXRHIl2Bvv3\nA23bRl4eLiOj4USi27Z1noiOxA+tkJvbcEV0XR2wcSPQpw89HjSIvPvsiw7LJACzPPdnAZjsv4OU\ncq+UcpXnfhWAjQCiaFXEMAzTOHCsiO7alUW0E9izJ3w5NTXp6Q1HRDs1Eh2piM7JAXbtMnc8drF9\nO9XybtWKHicmAl268OpVBLSTUiompX0AQq5rCCE6ARgEYIm5w2IYhnEfUbSfsJaMDIo2lZdTRJCx\nh717oxPRGRlk/3ASDS0SHY2dY84cc8djF+vWAf36abcpFrBBg+wZk1MQQnwNIFvnqT+rH0gppRAi\naBqwECIFwAcA7vBEpAOYPn26935BQQEKCgpiGDHDMIy5FBYWorCw0PDjOlZEC+G7KDpRRH//PTV5\nuOyy6NpJu41oI9Fs5zCXaCPRDdXOEUpEN3aklOOCPSeE2CeEyJZS7hVCtAewP8h+TQB8COBNKeUn\nwY6nFtFMjPzwA/nlRoyweySMk9m3D3j2WeDRR+0eiSvxn+Q/+OCDhhzXsXYOgJZnt22zexT6TJ8O\nvP46MG1aiJ3q660ajmns2UNNRyIlPZ0j0WYSjSeaRTSjw2cArvPcvw5AgEAWQggArwHYIKV8xsKx\nNU5uuQUYOdLuUTBOp1s34LHH7B4F44ejRXRenjM9nUePAsuWAZ98AixaBJw4obNTYSEpyuefd17h\n5ChweyT61CmgqgpIS4v+d50ooqOpzpGVRTWlT540d0x2sH490LevdhuL6Ih4HMA4IcQWAGd7HkMI\n0UEI8aVnn9EApgI4Swix0vMz3p7hNgLeeINunXayYZxFla6jirEZR4top0bSvv4aGDWKxGWfPtQx\nTUNpKXDFFcDTT5OI/vxzW8ZpBLF4op0kohVPfUIMn/TUVOr6d+qU8eOKlWgi0YmJtIqwZ4+5Y7Ia\nKUksd++u3c4iOjxSynIp5blSyh5SyvOklBWe7WVSygs993+QUiZIKU+TUg7y/My1d+QNmIED6fbW\nW+0dB+Ncli2j2wUL7B0HEwCL6BiYPRu48EK6f9ZZwPz5fju8/TZw+eXA9dcD99wDvPqq1UM0jFiq\nczjJzhGrlQMgX36bNs4KEO3fT1UpIsWp36GIKS0FTj8deO0176b9+4GWLamxj5qOHenz2hAj70z0\nCOFcO6Au77xj9wgYpzJsGN1y4q7jcLSIzs11pp1j8WLgzDPp/tln64joDz+kjEOAItILF7o2HOh2\nO0d5OQnhWHGapSPaajWuLnNXUwOMHQucfz5w//3AvHkAqA19p06BuzdpQueMkhIrB8k4EcViV1Fh\n7zgi5s036Xb9envHwTBMVMQtooUQ//FkfK8Nsc9zQogiIcRqIUTEBaicGEWrr6foRrdu9Hj4cGDl\nSpXtuaSEomdjxtDjlBTgkkuAd9+1Y7hxISXZOdycWFhRAbQOaGwcOU4S0adOAceO+WojR0KHDq6d\nv9GST5cuwN/+Bjz+OPCvfwEILqIB2l5aatUAGaei2Eddk45yzTV0658tyzAzZtDt5s32joPRxYhI\n9H8BBE06EUJcAKCblLI7gJsAvBTpgRUB4KQiF2VlJMpatqTHaWlAixYqofL558BFF2lb/J1zDvDj\nj5aPNV4OHwaaNaP3FymtW1PiZW2teeOKhiNHGo6Irqigz1s0/u727V0sot96yycuLrqI/IDV1SFF\ndHY2JV8yjZvjx+mWrT2M6/nNb+i2Rw97x8HoEreIllIuBHA4xC7eNrNSyiUAWgshIqovkJxMyV0H\nDsQ7SuPYutUXhVbo3h0oKvI8WLaMsg7VjBhBZTxcRrRJhQAlsznJR6wIz1hxkog+fDh6a0r79jTx\ncx0VFcA33/hsUW3a0Pdo7tyQIrpdO/rcMo0bV4rodevo9uWX7R0H4xyUCGI0y4+MpVjhic4BsFP1\neBeA3Eh/OTfXWZaO4mKqAqBGI6JXrgxsmdalC53NXWZOjdYPreAkS0e8kWgntf6ORUS71s7x/ffk\nlVL/8y65BPj0U2zfzpFoJjSuFNFKzcabb7Z3HIxz6N+fbp2UaMRosKpjofB7rOtU02shq/iiBw82\ncXRREDISXVNDKtvf1yaELxp9+eWWjTVeom20ouCk5MKKiuiqWfjjtEh0tN07XWvnWLaMRLSaMWOA\nZ59FCYDOnfV/rV076iRqNma1kGWMwZUiGvBdTE6cIC8d07jZsIFumzSxdxxMUKwQ0bsB5Kke53q2\nBaDXQtZp1QW2bgUuvVS7rXt3T3Widevogd7Jb+RIV4roWCLRThLRR44E1hOOhrZtfecxu2lUdo6l\nS4HbbtNu69ULcsdOlEqJ/Hz/eTlhVSTarBayjDEoItpJNd4jYvNmSnpITnZRViRjCkuX0u1LEaeR\nMTZghZ3jMwDXAoAQYgSACillxJc5J9o5gkai9awcCoMHA2vWmD4+I4lVRLdu7ZzSUkZ4op1iTYlF\nRKenA9XVtEjiGqSkSPTQodrtSUnY13MsUpNPeRN7/WnXju0cjE9/ui4SLfQnh0wjRFmJUxILGUdi\nRIm7/wH4CUBPIcROIcSvhBA3CyFuBgAp5WwA24QQWwHMAHBLNMd3ksdRSopE+3uiu3UjcV3/86rg\nIrpnT9eVqIklsRAg0XrkiPHjiYV4PdFOei+xiGgh6DvkqmS74mLKKNbxEpV0PgudWgXPY3bde2VM\nxXUiGvAFW+66y95xMPZx7BjdpqbaOw4mLHHbOaSUV0Wwz23h9glGVpZzRHRlJSXL+vtSU1NJbO1e\nfRB5l07W/+W8PPI4VFcjaBjNYcQaiXaS8Iw3Ep2WRiX7nMDhw5G3/FajWDqCJeM5jqVLA6PQHkrS\nh6BTQikA/QI/GRnkYa+ro0oxTOPGlSJaSSb7xz+AJ56wdyyMPSga4XCowmeME3B0x0KAlmf377d7\nFMTevTQePTp3Bkq21VMlDj0SEylk7S3j4XxiTSx0koiONxLdqpVz3ksskWjAhRU61q/3CQk/tjft\niU7Vwbu6JSXR38hJZTEZ+3CliAa8jYUwd66942CsR+2F50iA43G8iM7Kco6I3rcvuKjsnF+P7QdT\ngY4dgx+gRw9XWTo4Eu28SHQsItp1FTqKioI2FiipyUanwytDdvNxkgWMsRfXiujf/pZuJ0ywdxyM\n9SjdtLZts3ccTES4QkQ75YK4b1+ISHTbI9ie0j90KZqePYEtW8wZnMEcO0ZVlmIRbU4S0RyJBtrX\n7ULZ7JXOmQ2EY8uWoCVVSnYloXPbo9T7OwjccIVROHHC7hHEgSKgWUw1ToLV8WQcheNFdEoK+ZCr\nq+0eSWgR3anZHpQ07x36AH6R6PJyZ5XvU7N3L0X0YkkWd4qIPnGCvLHJybEfIzUVqKpyRuv5mET0\nwoXo8NY/sGftQapV7oQ3EgolezeYiC4BOnVvEnJFhyPRjIKrqtL48+WXdOufyc40XJTyuPPm2TsO\nJmIcL6KFcI4vOmQkWm7DdoSZOfpFov/yF2D0aGf6N/fsAdpnx1an1CkiWolCx1M1KjERaNGChLTd\nRC2iq6qAq69G+7umYU/fc2k24fST8549lFSj48Gprwd27ADyB6SFFNFc5o5RcELwJWaE8GUD8we6\ncaD4j847z95xMBHjeBENOMcXrURn9eh8fAO214TJwuvWjaJsIEvnhx9SEzbHlYGsqcGe/3sS2Su+\nAO6/P+ropVN8xPH6oRWcMimIWkT/7W/AmWei/UWno6xMALffDjz3nGnjM4QtW4L6offuJXtNi35d\nQopoJ3WZZOzF1SIa8Fk5YsnwZtyFkk/1xhv2jsMiamqAP/2JWgK8/bZ7ewu5RkQ7YSIeKhKdd3Al\n9lSmhO6QlZFBrbSqq/Hdd1T17qmngPnzHfYBuusu7DmWhvZXjAG++w64446oBugU0RmvH1qhVSv7\nJwW1teRTb9Uqwl/YsweYMQN44glfdY4pU4CffnJOO0k9iopCWzk6gVZ0Nm0Keog2bbgyFEM4YQUp\nLoTwfelLS+0dC2MuO3fS7dSp9o7DIh57DCgsBIYNA665hqSGG3GWiA6y1OwGO0eTkiK0z6z1fg90\nEYJaMO7ciQ8+AK64giYIyckI/XtWcvIk8Pbb2DvmcrTv1Rr4/HP6pL/6asSHcIqIbkiR6IoKupYm\nRPqN/cc/gGuvBTp0QEYGjf9kQjJ1wVq0yNSxxkWIpMLiYk8FyTCNi9q04Ug0Q7g+Eg342r+6ptA7\nEzWK5/C11+wdh0Vs2QK8+CJwySVATg5tu/12e8cUK84S0VOnAitWBGx2ip0jVIk7bN+Ozl0Etm8P\nc5COHYGdO7F8OVk5AGDgQGDVKiNHGgdz5gB9+1Ikuj1IQb73HnDvvcDGjREdonlz4NQphI7KW0BD\nikQfPRrFhODgQWDmTForAwlvb8WK0aOBH380a5jxs21b0ESqzZtJPyMnh0KMQWY2HIlmkjxtxBqE\niBYCuOACuq8kGzINh7o63/1f/cq+cViElMAttwB//jMwaxbw7rvA5MnA2rX2B6tiwVki+oUXKK7v\nVwPWCSJayhDNVioqgBMn0LVnk/C9VPLyUF+yAxs3Ar09xTxOOw1YvdroEcfIW28BU6dqG6307g38\n9a/AbbdFZOtQViDt/kI0pEh0ZWUUHWBfew24+GLfFB+qWtGjRjlbRO/aRas1OnhFtBAho9Ft27KI\nbuwoDd8ahIgGgC++oNuJE+0dB2M8yozvww/tHYdFvP8+xXnOO49iISNHUkQacGc1R2eJ6CuuoAu/\nn3XACZ7oykqq1KDbsXv7dqBLF/TqLUJZNYm8POxcfxRpab4o6cCBDhHRUgILFgATJgQ2WrnlFioj\nEuEX3QnC88gRY0S0EyLREYvoujrgpZeAW2/VbFZaf2P4cODnnx3ThUJKv1q+u3cHFdGbNgG9enke\nhBDRHIlmUlLo1vWeaAUhgI8+ovvnn2/vWBjjUPvcL73UvnFYyMsvU72CL78EJk2ildIzzqDn7NYM\nseAsES0EeTkfekhzkXdCyapQfmhFRPfuHTLficjLw4YNQJ8+vk2OsXOUltKsOCcHe/f6ieikJOCf\n/wSmT4+oWocTRHRU0dsQuOq9zJ1LH9TTT9ds9iYXtmpFnuOVK00ZZ7S8+CIwdqxngaOujpacdNpk\n1tVRYRtv4Y4QyYUsohsHP/0EPPss5Wr70+Ai0YAvXPfVV/Z75RhjUHzujeSEdegQVeOYMAH47DNa\nMAV8fWXWrLFvbLHiLBENAIMHk31AmXUDyMy0v6DA/v0UEddl2zagc2f06hWBiO7YERtKWmhEdI8e\nlFhoe3etZcuAYcNQWydw6JDO+x03jorBR+DLc5XwDIOrItFvvglcf33AZk3r7/79gQ0bjBxeTBw/\nDjz6KDk4vv4aNFNt21a36+eOHVTcxrsSFCIS3bo1/b+c3leGiY3iYuDyy4ErryQ9OWAALaCpaZAi\nGvAtWTZtau84mPhRn6eNSN5xAZ9/Dpx7Lq0QrVsHnHUWbVfyKmfPtm9sseI8EQ3QUvSLL3ofZmTY\nL6LLy+n6rsu2bUCXLujcmXRAyBN3Xh427E/XiOikJAoelpUZOeIYWLYMGDoU+/cD6ek+q5YXIYC7\n76bVgjA0JBHtmvdSWUmJoZdfHvCU184BILLZnvnMnAkMHQr8/e9U7gi7d2t83Go2b1ZZOYCQIlqx\nXdn9P2OM5ehR4A9/IEfSoEH07//yS+DJJ6kQzQ03+AJ6DVZEDxjgu798uX3jYOKjro6y6oBGNdv/\n6CNyrXz5pS8mp2bdOnvGFQ/OFNGTJpFFwhPbV0S0nbWUQza68Ng5EhOpn4qqKWEgeXnYUJmHPr21\nbyY3lzSErXhEtCap0J9LLqGrl6dpTDBcIzwjwDWR6E8/pZIvGRkBT3ntHACt9ERYacVMvv8euOwy\nSoVYuhSoKtoTVERv2uRJKlTo0YM+g+rMdhVs6Wh4/OUvdKpdvx647z7qJArQ5WL9eqoK1LcvVeRU\nFjMaZKnDY8foduhQe8fBxI4Sobrttvha6rqIykr6bl54IV2qFCuHGrttu7HgTBGdlATcfLM3Gt2s\nGdVStlPIhBTRHjsHEF6fyNRW2FDfC33aa6/wOTk2i+j6eko4O/30wKRCNU2aAFdf7ZtFB6EhiWjX\nvJcPPyRFqkOHDqrPl0Mi0UpuQNOmQL9+wM9La4OK6HXrtHkEaNmSfF47dujuzyK6YVFZSU6l55/X\nz01p1YqKO738MnDddaQzlfO1X7En99O8ua8MZMTdlxjHoPYsPP+8feOwmDlzqMJqSgrZr8aP1z7f\npo07v6vOFNEA8OtfU31iT6H5zEwqDmEXQUV0XR0l5HkSBHr1Ci2iy8qA5MRTSD++S7M9J4e8obZR\nVkbCJD09MKnQn+uuA15/PeQylGuEZwS4IhJdU0OtLydM0H26Y0eV3uzWjR7YaMKvq6PmhIpFY+hQ\nYNmaZkErcyxfrhN44zJ3jYZZs4Czzyab2eTJZOcYOJDs/X37UpnQH3+kCnCjRpHXvsFaOgDfSmBl\nZQN9gw0UKSkUCzS6E5Ri5Vizhk7z/gumQQs3OBzniujsbJqqzJwJwH5fdFARXVZGV2zP2uKQIeSK\nCMaGDUCfVrsCws62R6K3bPGWPggZiQboitWiBUWug9CQRLQr3st335Gi0LFyAPQRPXXKMxlo2hTI\nzw9ryTGT7dspcVUROsOGAcu2petGoo8fp4+n2g4KgCt0NFD8C09ISVHm3/0O+O1v6dTz3/8Cb7wB\n/O9/VHf2z38mp9nChVRE6N//9uUANJgyd/789BPdKvX8GOejtJxt3rzRJBMCFOOZO5csHD/84Ctp\npyY52fpxGYFzRTRAfqEXXwTq65GR4dBI9PbtvvosoMLhS5YED9Ju2AD0aXfImSLa0265rCyMiAbI\niPjpp0GfTk21/+IVVnjW1QFvv011yUOYsVwRif78c+Cii4I+LQRFo71lSW22dPiXeRw6FFi2r6Ou\niF69mmxS/kko4WpFN0g/bAPn++8Dl3m/+YbmfUVF1ND2lVdoHj9gANmA+vShXNq336ZIV1ERcM89\nvnOw3UkHVr/nAAAgAElEQVTppjFypO9+IxJkruXjj333FV97I+Gbb+g7m5UVXES7tWpj3CJaCDFe\nCLFJCFEkhLhb5/kCIcQRIcRKz89fIj74qFGkYObOtb3MXVAR7anMoZCVRUuOwSwdGzYAffKPOVNE\neyLRO3aQ4ArJpElU6DEIjhfRlZXAOedQiOvbb0MuIbgiEv3VV4Hqw4/8fJWlI4QAtQJ1x05lOAdP\npuJQy8AP3vLlAWWvfb/EDVcaFP3709dQnS/6/PN00b33XuCDD4I0vAKVznr3XRLU/fv7trsxWSli\nlGz7I0cQvl0uYxunTvmaqdh9YbSBL74gySAli2gNQohEAC8AGA+gD4CrhBC9dXb9Tko5yPPzSBQv\nQGt4zz/vXDuHn4gGKECwaJH+cTZsAPr0qg9QzLZX51CJ6J07gby8MPuPGEG+j5IS3adTUuw/V4QU\nnrfeSj72hQtpTfi55+gkd+hQwK6Oj0Tv20fLNGrloEN+vioS3amTtluWxfhHohOExGCsxPK9gZ5o\nFtGNhzZtaBVs/Xp6vG0bJSR98gmJaU2ZQx3OPpuE9tSpvm1ubCUcFT/8QLc9ejig2QCji1LX++yz\ng88CGzDz51PMavt2knVKjxk1jVJEAxgGYKuUskRKeQrAOwB0Cpcg9houU6YAK1YgEwdcYecAKICu\n2NXUSEkXhz6DkwMUs1KCzLYyftGK6MRE4LzzKIqrg90iuq6OfFi656tPP6Waai++SO8DIAF9+eUB\n7bIB8mCePGnvlzykiP7hB0p7Tgj9ddbYOTp1CjoBsgLVx404ehRDE3/GsvUtNPtJSfOcESN0DpKX\nR4nHlZUBT7GIdi/Dh5MlDiDrRm0tfT2nTIns9888U7tyfscdxo/RUYwe7bvvVmNpQ0appAIEvV42\nZHbtImtd//6+KLReVb/GKqJzAOxUPd7l2aZGAhglhFgthJgthOiDaEhOBm68ERmrvnFNJPrMM8kD\n5C+I9+6lD09Wn4wAEd28OQk+W97jqVO0zt+lC6qqKJiRnh7B7xUUBLYK82C3iK6qor9nwJe1vh64\n/37KPvJX2H/7Gy0h/PijZrMQ9kejw4povfUxPzSRaM0D6ykr8yvEsXs3hmZux9Jl2n9YURF9Hvv1\n0zlIQgL5+HUKs7OIdi8jRvhE9Jw5dPvkk9Ed44wz6CMO0AQ4ZO3+hoD6YtNI6g67gm++8S2FNKKm\nKmoWLCCpkJAQ+lLlxvJ2QPwiOpK46c8A8qSUAwE8D+CTYDtOnz7d+1NYWOh74re/ReaSL3Bgj31T\nlWhEdO/eJCKVC4HCt98CY8cCIlffAG1bmbvt2+nFmzXDzp0kbiI6DxcUUPV0nfB5SopugNAygorO\njz6iiZlSZkhN8+bAQw8Bd90V8J7s9kWHFNELF1KTlTBoPNHKAxuWPqREYBnFXbswNP8Ali3TDmnu\nXLJ6B/08BqnQkZZm7qSnsLBQc75ijGP4cGDxYrq/ejWdXgOSSiNAnWd7//3GjM3RqEVaBF1lGZM5\ncoTa8gG0BN1IJzcLFpCLBQgtohtrJHo3APXCfx4oGu1FSlkppTzmuT8HQBMhhG4DbfVFqaCgQHXU\nPGQM7YyDm+wJRdfUkD2gRQu/J44dI3XdoYNmsxDU8+K997S7K4IAWVn0BfPzr2Vl2VSBRDURiMjK\nodC1K73Z4uKAp+yOROuKzvp64MEHgenTg5/Qpk6lX/arPNKqFXB0m31tM4OK6MpKEpG6pmEtGjtH\nSgp9oPfvN3SckVBeTi+tWXnevRv5XZNQW6udX86ZEyZfMogvOjXVXBFdUFDgOhEthGgrhPhaCLFF\nCPGVECJoSQchRKInEfxzK8cIUNWN7dt9/79rrontOC1b+jqvvveeLR91axGCbGoABQJsTBxu9Ejp\nq5jyhz/4dYpqPEhJwcOzz6ZV9t27g6fuuHXlMF4RvRxAdyFEJyFEUwBXAtCUbBBCtBOCFIsQYhgA\nIaWMuvhUxo2TcWD3SVtETEUFRaEDdFdJCUX0dLyol19OJ25ldlVfTwUUzj8ftH92tqoPM5GerpvX\nZj47dnjXPnfujKAyh4IQQS0djhTRSmp/kIYkAMgj/cQTVCNLtb6UlliJIxOmUDUPi5GS+inoloNd\nvBgYPDiiUF2HDnQiq6nxbLDJ0lFWFjDvBHbvhsjNwbBhPjfNwYOUW3DuuSEO1qtXUBFt50qIQ7kH\nwNdSyh4AvvU8DsYdADYgstVGQ2nShMphzZ1LjydOjO046ela7RKmyWrDYOhQ4IYb6H6vXpxoaBdq\nTfDUU/aNw2a2byc7Vc+edC4fMcLX8VxhzRqaZ9TXB21Y62jiEtFSyloAtwGYBzrhviul3CiEuFkI\ncbNnt8sArBVCrALwDIAI00O0ZI4fgoN1bUI2+DCLkFYOv6RChb59ydYxYwY9XrGCGl54s1J1atrZ\nKqI9ynnHjigi0YDP0uGHbSJaSuC661D50NNIbVLj215bSxHoUFFohfPPJ4H5xBP0+NAhtNq0FEev\n+x35plesMGv0ulRXU9RWyYHUsHBhRH5ogE5eXbqoKmHZJKJ1m/ns3g3k5mLqVN885ZlnKJksZAnc\nIPWuWUTrMgmAIiVnAZist5MQIhfABQBeRTxJ4XEwYoTv3DloUGzHyM3VLhHff7+NidtW8uqrvvvJ\nyY3kTTsI9fWlkf/tFSuHEForR309tTY45xxaaWzShLbv3u2+eV/cdaKllHOklD2llN2klI95ts2Q\nUs7w3H9RStlPSnmalHKUlHJxLK+T1lqgGi1x6iPLVxeDi+jiYmqhHISnniKL7dKlwG9+A9xyi+pJ\nHRGdkWG/iI7KzgEAZ52l64tu2pS+KCdPGjfMiFi1CvjuO1SeaobU7Wt82//7X+orev754Y8hBF2I\nnn0WeOcdYNo0pHVqgyMFFwM33QR8+KF549fBCD+0gkZz5ufbUqEjWCQaOTm4/HK6+/zz1HXu7oDK\n83706EGzAnVhYbCIDkI7KaVSNXkfgGCNdp8G8CcAtmVCDR9OZbEA3wU2WnJy6PyTlESfoxMndOf7\nDRP1+ThM1R7GQNShVLepQROYP1/rhx49GnjpJYpMP/gg8Ktf0SXo8cd9vzN8uK/EpRtwzbcrIQFI\nb12Hgx8vtPy1g4rorVtDiuj+/YFHHqFWl717U8lrL0Ei0bZU54hHRHfuTCFSv0L/QlA0urrawHFG\nwptvAtOmofLKG5F6dBd9c3fuBB54gCLLkSZ35OVR/eiXXgKaNEGrMQPJo3nmmZZfiYOK6JMnqTPF\nqFERH6t3b1UjIJtqRetGonftAnJykJRE35kPPwT+/veAnN1AUlJo9unNmCQUEd3YAkEez/NanZ9J\n6v2klBI6Vg0hxEQA+6WUK2FTFBrQVm2LlZwcKqGeluZzONx+e/zHdQ1cscNa7rjD12t+wwZfbehG\nipQkos86Czh+nJKEf/yRgiMzZ9Kl65pr6M+krFr/8Y/UqLqgQL9MsBNJCr+Lc8ho3wQHd59C+5IS\n/WrdJhFSRIeJbN50E822EhL8zmNBRLR/RQ9LKC31eqKLiyMQLmoUX3RhoV/hX5+lQ/dvZwZ1dSR8\nFyxA5bdNkTrmNODiobSk+ac/kV8wGs4+2zuNTrvHU51j5EgycVVXW1Y0P6iI/vlnmsSlpUV8rF69\nfF5T5OdTCSaL2bNHWzoVgDcSDQBXX00/EaOE11XWqmbN6Dt34kTjKp0rpRwX7DkhxD4hRLaUcq8Q\noj0AvVS7UQAmCSEuAJAMoJUQ4nUp5bV6x1QnVRYUFGgTwuNACejFc5pXau936UJ5APffDzz8MCVv\nZ2YaMkznU1fn84GF6TLLxMGLL1LDLoACOb31es41LjZvpvNw584Uyzp2jP5MS5b4yk8qKJWvMjOB\nG2+kx7NmRRUfCkthYaG26ptBuCYSDQAZGQIH+p8dUMfXbGK1cygkJemsqDnFE11X5y3aW1NDd4PY\nvINz1lnOSC5cu5YEZc+eJDwHdKHp78svU+ZCHHjrRLdoQVlPwVpSmkBQEf3DD1FZOQC/SLRNbTLL\nyvwi0SdP0pesXTB3QRjYFx0pnwG4znP/OuiUG5VS3ielzJNSdgblr8wPJqCBEBWV4uTYMbqN9SMB\n+GrvJyVRRPrPf6btv/51/ONzDQkJvi/B558Dv/+9veNpiMycSeFTgHybsZaTaWAoVg4hKLYF0PzC\nX0ADtFgM+PpTXHQRtQo3ciXRrIpKrhLRmZnAwbxBtA5gIUeP6gT7amspghu14vTgFBG9dy9lPDZr\nhq1bKfITtQdxzBjy5vp94i0X0StXAkOGAFAJz9xc/ZrQUaKpE33mmcD338d9zEgJKqKjSCpU6NWL\nGk/U18O2wuQBdo49e0gt6WZORgCL6Eh5HMA4IcQWAGd7HkMI0UEI8WWQ37HFEKPUiY63LF1ODp2q\n9+2jqNjNN1P1ykbV9yIlhc7zAOV5XHqpveNpSLz0EvDLX9L9AQPoMQPAZ+WoqaE/y8iRwSstKW7Q\njAy67dGDPrY21JGIGleJ6IwM4EB6L8tFtK6I2bGDytTF0gUAcI6IVvmhN28mw3/UdO1KVyW/JDVb\nRLQnlT9kMl4MaDoWDh5Mlg6LqKrSKW9XXx9xp0I1qam0qrJjB6gweUWF5QkwAYmFKitHTIQQ0XZ2\nmXQaUspyKeW5UsoeUsrzpJQVnu1lUsqAmaaU8jsp5aTAI5mPcoovKYkvGqUW0QAtJwPAnXfGNTz3\n0a6db0by8ceWWdEaNHfe6asW0KMHrXoyAOjyVFhIIlr5E338cfD9t26lW0VEA+5xH7lKRGdmAgdb\n5tOH1cIekZWVOiImTFJhWDp0IDWhukLYUp3DCBEthC8arSI1teGIaE0kundvShyxCF379aZNNKgY\nxOfAgZ4qfYmJNBFUkmEsIFi3QrNENEei3YnSeCEnJyBnOSoUEa0EYhMTKYXj2WfjHqL7yMz0/WGP\nHaPzdmPLvDWKHj2Ap5+m+1deyY1t/Fi7loKCs2dTYazs7NDWLP9INECWjs+tL8YWNa4S0RkZwMGq\nZFqit1DEVFXpCLJ4RXTLlhTFLvf1nWnVirJYLS0LZ4SIBkhE+1kcLI1E19fT5Oq00wCYHInu1o3+\nbhZFcHUj0VGWtlOjsbDn5lpq6VCu3Zrun/FGotu3py9OubaHE4to96JUKSooiM85lZNDtaKVSDTg\n6ySrk8bR8GndWhupSUhQdV9iwiIlncAU1ffgg1QGldEwfz7lJPzlL2TDD9XfDPD9ORVPNEBJhaWl\ntjgOo8JVIjoz09MWe+hQSy0duoIsXhEN0BleFQUUguzJlkajVQLG1SK6uJh8Cm2po7yujz0ONJHo\npk3JC79li3EvEALdSHQcIvrss301eK1OLjx0SHuiBBC/iBZCt3Mhi2j3ojTYGTsW+O672I/jb+cA\nfJU5lPq1jY62bbUruc2b21Iv3nVUVWkrBCxYAPz1r/aNx8F8+CHFtF59lVxEoVyHUvpO3eoCDklJ\nJL6/+MLcscaLq0R0RoYnQtG/v6WRaFPsHIAzfNEeAaN8kGMW0f3701Khql6vpSJaFYUGSES3amXc\n4TWRaMCvzIW5VFXpiOgY/NAKAwfS8vaePbA8ubC83DvP8eHpVhgXOpYOFtHuRbmYjh4dXyQ6NzdQ\nRAO+agG2dFV1AomJWitH586+VqFMIFu2aCNpVVW0TMIEUFtLBdQuvph8zeEuVfv3U6CobdvAluDj\nxsU3ibYC14noAwdASk/HA2kWptg5AGeI6LIyICcHxcUk1NSepKhISKDU26+/9m5KSbFQxBQVaWYA\nRotoTSQaAPr0sWwiV13tN4nbuZM2xjjjUXyh8+bBG4m2KrdQV0TH64kGdEV0q1Ysot2KcjHNzCTX\nVKyBUr1INEA2VqCRNV/RQy2kf/c7shiyT1rL889rz7X19ZyYGQIlcvzCCxRTO34c6N49+P5FRbTy\npKc9mjZ1/sfRVSI6M9MTidZZujWTADtHfT2wfXuUXUl0cIKI3r0b6NABhYUkrOJqbDVuXICIrqqC\nNSUSioo0kxqzItHeL7SFkegAO4cytY/jn3XrrcB99wFvlYzG8Fm3oGVLaxxSQSPRJohojkS7F+Wj\nffgwWTpijUbn5FAp/MOH6WKuPv6oUZT01OiRksKGACXkJCRwWRvA539Wz7SUbUxQLrmEbnNzKSKt\nd6navp0q5Vx4IbkSKyp0bH6gfAanN350lYhW7ByycxeKXlkUPguwc+zeTUog3tloXp6vyrgHS0V0\nfT2t6atEdFyMGwd8+623CGtKClC1pYz+cStXxjva0GzdqpnuHjlirCe6aVOKjnkvxEEqQphBQGJh\nDPWh/TnnHEr4uP/D03BP5mt45BFfsrmZBHiipfSuhsQFi+gGhXLRLS+n85LXwx8l6emkCzt0CIy7\nKAJ6+fKYh9lw+OQTyitRSEsDvgxWOrwRsGaN1v/85JPOD4k6AOUj9NprdKvEe06epOa4d95Jp+oR\nIyhoc911VD8aoP5l/nO3kydj6FthMa4S0cnJJGYqa5pQVxCluKDJBESijbByAFQVo7RUs6lt24Ai\nA+Zx6BCQmgrZLNkYEZ2XR1crj4kpJeEYqr5eRMX977zT3JOQKhJdX69jgTAAjS+6c2eaTltwYtVE\noqUE5swBzjsv7uPedRdQ/ONeXHL8bfz2t9QO3Gx7dEAk+tAhSmzSlOuIgW7d6LukmliziHYvin4p\nLwfGj6fPZiwNUoSgU1JaWqD7qkcPur3qqvjG2mDo0kV7Pps4sfGVwTt1iuqxDRzo21ZT0wgLi8fG\nPffQrRKN/uEHSpcqKKDn2rQB3nqLYnczZwJXXEHxE+XPPXAg/Y7CqVMsog3Hm1xocSQwQER37Rr/\ngfPzA0R0gPfWTDxWDuXiYsRbwo03AjNmAABSFs5BVXpH6vW5Zw/w008GvIAOVVX0R/NEM5VEvIBW\n63Gi+d+0aUMXGDNnPBdeCDRtiurNu3wiev16UhP9+hnyEiKnA7B3L9JS6jBpkvl1OQNEtBFJhYCv\nYorqnMDNVtyLOhLdpQt93WJdzMrJoQmwXgrDH/5Ap3OebKmQEpgyxfc4IaFxRKVnz6bziNpAL2Xs\nDdUaGWvWAB98QJPTNm3IorFmDfCnP1F/sqVLgfvvp6bC6mtzURH9mf/9b6rffvnlvqZILKJNIDPT\n03ipZ09LfNFKYEvjyzEqEp2fT8571Uw/Lc2aC/+yZcAz/2qCb5MvxA030ETbEKvXtGmUsVZcjJTZ\n76Eqtzf5ICZOpBZGZlBcTFdazzfTaD+0giYSLYQvGm0GJSV01iksRNWOQ0hp4QnDffEFVaE3ypfX\ntCmd8fbtw+DBVCTfTALsHEYkFSr07695AxyJdi9qEQ1QqavZs2M7Vk4OnVf1Uhh+/3u6ff312I7d\nYPnf/7ShfyUqbdkyqYWUldF7u1DVtLOionFF4A3gz3+mAIlir1e6DZ5zDuVm6gW1pCQ5VV1NxbUm\nTaJVp3/8g55jT7QJZGd7uk9ZFIk2rUY0QOHSli09JUeIVq3Mj0RXVFAhjS1bgNuLbkO7dhSRMYTW\nrelg/fohpXcequDxVJxxhnadxkiKijR+aLNEdMAqQefO5tVXff99ssGMGoXqhFS0XLuYziqffEIX\nNCPxVOgYOND8zrUBkeidO8kGZAQsohsMajsHAFxwAbmYYiFUJNrTZwq33RbbsRs0ipVDlSyO9HTa\n3hCWeGpr6b2oJ/EXX0zv2ciEmkbAjz9S1LlHD2rmtXcv+Z0B4J//DB7z2bOHIs1lZXT6BoABA0g8\nFxezJ9oU2rf31Lft0gXYts3019Mtb7dlS+iaLdHgZ+mwws7x/vuUA/ivgvex/vaX8cknBicc//Wv\nwJ49SPnHA746rKNHU+ZAXZ2BL+TBb1JjdFKhQkCtaDMj0e++663DVdU8Ey1ffZZarVVUGN8lwtO1\nUNGgsXhPIyVARJeW0nfACPr3B9at8z60TEQrRYcZw/CPRI8ZQ06mWJKuc3IoVrF9u3432GeeoVtO\nMAzCueeSsBw71rctLY3+SW5s0qK0TfVXZ0qQgokKKanS09130/Wjc2fgzDPpuXnzQmuLoiKSBPn5\nvrQYIegj9803bOcwhfbtPU3+zIwCqgiozFFbS6It5q4kfvglF1ph53jjDXJdKJ5oUyr2tG6NlPap\nPhGdmUn/PDP8Atu2acoNWhqJNkNEl5fTRM1z0aoWKUjJbA5cfTUZx4xe3/KUWmzblt6jn03fUA4d\nMlFEDxig+XxZVidaJdwZYxCCPouKiG7WjJKTvvoq+mPl5FAeTceOvvbCapSa0c89F/NwGwfffUeK\nKTnZt61zZ/pnuaH19caNNFb/qlqnTrF1Iw7mzSOLbdeutBB94YXANdeQbhoxIvTvFhVRoHLQIO12\npeUEi2gT8Eaic3LIBmFymbsAO8e2bZTuHW81AQW/SLTZdo49eyiiM2ECjKnPG4KAjoVnnEHrPkbj\nJ8Qs8UQD5onoFSsoE8PTcaK6WqDlWy/TerYZXbI8kWiAdOiaNca/hEJ5uZ8nescO40R0p05UELii\nAoCFkWhVl07GGBISyKqvtuDG6otWOtv36aPvi87OprLvb7zRMFwKpnP8OInO9u192666igSqEGRw\ndQonTwKPPELj6tNH+9yJE/Q+/NvkMRFTX09R6EceoZKRu3cDd9xB4nngwPDXYSWpUNVsGACJ6AUL\nqDBKgxfRQojxQohNQogiIcTdQfZ5zvP8aiHEIL19IqVDB4+ITkyks6PJF7AAO8eGDYFfxniw2M6x\nZg3N+po2hekiOjXVT0QPGmSOQvMTYq6PRC9fDpx+OgBa+Dh1Ckhu1dSQsna6qFp/Dxhgni9aShJF\nSktnAPTZV4yp8ZKQQFVLPJ8xy9rO+9V6Z+InKYniFGr7xoQJsZW669iRvqahmowqCYZvvx3beBsl\nZWX0pf7jH7XbU1JItF50kYWlplTU1QGPPkpjaNaMSkKoqa+ncTs9Y80FfPABSbHhw8mBeMUV1Jvm\nq6+A888P//tbttCtv4hu35603uLFzv83xSWihRCJAF4AMB5AHwBXCSF6++1zAYBuUsruAG4C8FI8\nr+mNRAPmelI9BNg5zBDRqomA2XaOdeuAvn09D4xochGC5GQKBHht0H37Gr/0LSX9/VRCzDJPdKdO\nJAKNNhGrRLRSI9rUJllKqA7kUjKr/Hp1NZ1wmzf3bDh1ispJGfkZHDqUzrygv1t1tbkebwAciTaB\nvn1pXqeOROfnA1lZ0XuXc3Ppo9amTXARfemldPvUU7yyHzX//KevlIKaL76g9X0lQr1woTl/XCnJ\nTqK8TlISlYpQs2kT7ccdBw2jtpbmJ48+6qu1PnMm3c6bFz7mIyWlSQHastwK48ZRLQKn53jGG4ke\nBmCrlLJESnkKwDsALvbbZxKAWQAgpVwCoLUQol2sL6gR0Z06WSKiTY1E+70Hxc5h1ol8/XqPiD5x\nghShXsN6g1DsZ97VPUVEG/nmDh2iaIPqn2RZJFqprnLwoLEvtHw5FdOETstvM1DZOXSaaBqGbo3o\n7Gxj1+tGjvSemRMTaSKnbvdsOPX13gkIYxyDB9P3uKxMu/2CC6K3dAhBx6upCS6iMzIoclZUROU/\nmRhISvIJVb3lrLFjabVIEbtKBtlnn1F+k78I96e6mmb4Dz+sPUZCgn7HnDff9I3HqBwmxst779Hp\ne9cuErujR1OApKyMfjxxoKBs3kxe6vbtgXY6ilBJThw1yvixG0m8IjoHgPqSu8uzLdw+MXdXaNeO\nNEttLSxJLgywc3hVqEF07Uq1XDzCslkzuvibdeFft87Tp6OsjL4BRnck8UOzpJ6RQWu0RrbF00lM\ns8wTDWgEqCEcOEBK3dP5JqDltxl4EgshpbUi2m8FwRAUEe35PqWkmGzR3LePom2MobRoQdaiY8e0\nKwkTJsRW6m7IEPocFBV5rh06KDpMaVnMxMGAAT4BW1urSfzW8O23VFauc2dat1eLY/+flBSqivXX\nvwZ/XcWqISVltzGmICV1Qr/qKup8O26cz77x1VdUGzoxMfQxvvuOAlP+Vg4FZcLbu7f+804hXgUV\naUjRf/1E9/emT5/u/SkM0pgjKYkuxPv3w7JItFfE1NWRiadXL+NeIC2Npm+qLklmWTrq61WBdJP9\n0AopKX7JXf36GWvp0BFilkWiAeNF9OrVdFbxTG4siUSnpNAF7PBh79sxwwJRUeGnN42szKGQn68p\nvWWWL7qwsJDOVfffj+nhrhZMTCgRKO/KIyg3edMmz/k/CoYMod/Lzg5+yZg8mW5ffdXk1YvGRmKi\nL1Ck/FRVUSu7WPnqKzqG+phs1bCM77+nP/8nnwC/+x0tCCuVVyP1QxcWhhbRr75Kt07/l8YroncD\nUHdKyANFmkPtk+vZFoBaRBeEqELgtXRYEInW2DnWr6f1bqNDg926aYyoZlXoKC0lX2Dr1jDdD60Q\nIGKMFtE6QuzIERdHov3sQkoLc9PxvI8WLejzrur/YxhHj/r528wQ0UJQNNrTYr5lS6DqiPG1yQsK\nCuhcNX48po8cafjxGUpWAihipdC0KUW55s2L7liDB1PRm1DJhWlpFBStrwc+/ji2MTMR0rIl8MQT\ngSI40p9x4yw6MTJ6PPkkaYn9+4Hf/IZWeIYOpe/O11/TvycUUvoi0f7l7RS2bweGDTN+7EYTr4he\nDqC7EKKTEKIpgCsBfOa3z2cArgUAIcQIABVSyn2IA6+ItiASrbFzLFniO7MbSbduNFP3YFaFjvXr\nVfrMUyPabEwX0UEi0WYkI1gSifYT0dXVFtg5AJ+lA+b5ogMSPrdto4mw0UyYQGnjAFKSa1F17mTq\nJ2uGd3nHDuM6LjIalFPtt99qt8di6ejShc5DGRnBRTQATJlCt0qCFMMwWrZsAT7/nC7jM2dSvGLU\nKJrgrlxJ37FwLr2iInIVHDkSPBINADfeaOjQTSEuES2lrAVwG4B5ADYAeFdKuVEIcbMQ4mbPPrMB\nbAYjsoMAACAASURBVBNCbAUwA8AtcY4ZHTp4Ek6ys2mNuKYm3kMGRWPnWLLEnKmRXyTaLDtHSYnK\nmmahnUMjonv2pIwCo7DbE52XZ7qItjISDdBbMqPgRMAKwdatxnX+VHPVVRTm2LULKfuLUXV6AZ3Z\nn37a+Ncyw9fNAPDlgr3zjjYXecIEikRH0/w0kuRCAJg4kcTA119z0RWG0eOpp+j27rvJ+j53LuWH\nAvS9jNTKcdppZAPxpP9oUOIdisXKycSdVSalnCOl7Cml7CalfMyzbYaUcoZqn9s8zw+UUv4c72t6\nL/IJCcZHAv3Q2DnMjERbYOfYuVMVNLNLRHfvbmwNNc2bIlztid64McDOYUkk2oIKHQErBEVFmnbt\nhpGSQkJ64kSk7C1G1ZQbgTvvpEKmRpu9dT5/jDEkJNDF+dgx7YJjbi79yaPt2zR4MB1Lr+GKQkoK\nXbgTE6n5CsMwPg4eBGbMIOlwzz10Ov30U7JBAZGVtgMoxtG6NYlwvdoGH35ItyYWDzMM13UsBHwF\nLQAEtM02Gq+Irqyk5ecBA4x/Ec0bMs/Oobne2+WJzsqi4tGHDxvzAjrvwyxPtFLpQaPDjBTRBw5Q\neE1V78eySLTKztGxo3l2Du//pbKSNphlKbr7buCXv0TKpLNRlZhGNqI2bagWk5FwJNpUglk6pkwB\n3norumMNGUIJgxs3hp5LTZlCpRFnzuSa0QyjRim/PWcOVSZdtoxOq9270yl9xQpfabpgSBk+qVCp\nkOP0pELAxSJ62zbPg44dzVt3KypCVZWkSGBhIZ2FzWif060bReU8mGXnCIhE2+GJFiLg/cZMfT1l\nNvgVmTx0yK+1tEEkJlLpLU21EaXbnxFX2w0bqJ6P6szR0Owc3kh0cTF9kc0qsdixI3DHHUjJSPZ9\n/qZM8XqlDYNFtKmMGEG3/iL66qspWnXiROTHGjKEFsHatAn9+Z4wgQTCwYPRR7sZpqFSUwO8/DKd\nRvv3p23qKPSCBTTpDXe9Ki6mS9zRo8FF9Jo1zi9tp+BaEa2JRBt9xa+vp+KHPXqgsqScItEvvwxc\nf72xr6OQnk4KzVPmznQ7R309CSYLlqF1S4wZZek4cIDWhFQTm+PHSc96u+IZTMAEJyWFinurW6vF\nysaNAWcOy+wcFiQWauwcRUXm+KH90NSJPussYyPRNTWUk6HXKYAxBHUkWh097tiRFheiSTDs2pUW\nwNq1C+2LTk4GLrmEvtb//W9s42aYhsY559Dt66/7tqlFdDSl7QoKfNVc/dm7l25/8Yt4RmsdrhTR\nWVl0/TpyBOaI6AULKP30p59QubcKqR+/Tg0clNRtoxGCbCJr1gAwx85RX69yPuzfT0rdLKWpIqiI\nNiISvWcPlWpRoUShzVoG0p3g5OYaozqLigI6a9kRic7O1pQtNwyNnWPrVnP80H5oPn+DB1NquWYp\nIQ527aIvlMkNixozmZlUwOXgQaoupOaaa6gpXaQkJFA5LcXSEYqpU2ky/tFHJjfrYRgXUFpKVTie\nesrXYHbrVoodKbUWovFDjxxJp+J+/fSfB9zTZNKVZ38hqMpEcTHMEdFvv021VUaORFVqe6R8+ylw\n2220lm8W/ftrRLTRdg6lsVpyMixdgtYV0UbZOcrKAiwpAV3xDEb3f9Ohg7YjRKxs3RqQqmxWkmQA\nbdvSzLS6Gu3aRd/MIhLsiES3bKn6/DVrRqGPpUuNOThbOSxh+HA6b/lbOi67jKpoVFREfizFFx0q\nEg1QpKxpU/ruKUlODNMYkZKqCQPA73/v2/7pp1Q5NCGB7LWVleFTxhQ/dEYGTY714njK9zxU6Tsn\n4UoRDah80UaL6JoaqrTviTpX1jRF6lcfAtOnG/caeqgi0WbYOTR+aDOaXATBVDuHTiS6vNwcP7SC\n7v8mO9u3BhUPOtFZy0S0EF5LR0oK5TcaHYHTeKK3bLE+Eg1QQVOjjK5cmcMSFJ+lv4hu04aqd0Qj\ncgcPjkxEJyRQpDspiWtGM42bTz+l21de0a7w+ls5xo0Lvyi3bRutim/aFLwhyyuv0HlbL0rtRFwt\nojWRaKPSqL/6Chg4EMjJwalTQG2tJ3prNn4i2qgVZwXN9d7CCFpqqrWR6EOHzI9EB0S+vN1/4qC+\nns4wfpFoTYlFs/FYOoQgy5TR0WivnaO+nj7rAwca+wI6BIjo0aONE9EcibaE4cNpEXDhQjofq5k6\nNTpLx5AhvlrR4S4Z06bRJHbVKtN7ejGMIzl5kvIDAPo+KBw4QJ7maFt9f/cdVe94/33g8ssDn1eu\nOdF8p+3G/SK6ZUv6MapP8bffej8NSlKXJWVW+val6dmpU0hNNVlE2x2JzsoCTp2KPxnPhkh0Zib5\nMzUYEYkuK6PQmp8B2rJINKApy2GGpcNr5ygupvdq5mzHQ8Dnb9gwYPlyYybd3K3QEgYNoslxVhb9\n69RccAHNxyJNSejRg1ZZjh8P38Cyb1/692Zna5OpGKax8O9/0+0jj5AbTuGLLyiSnJxMl/L588O3\n+gbIytGuHQWiRo4MfF4R6hddFPfQLcO1InrAAOBnpW2LkZYOZaoEi6OALVrQGXvzZqSmGu+J3rWL\nAo0A7PdEC2GMpcOGSHRWls58zYhIdJBEO0tFtKrsjdGRaCnpvaSmgnrDDhpk3MFDEPD5a9+ezK5G\nnC927uRItAUkJ1P/oTZtAi0dTZvSEnLHjrTP1KmU/FRYqO+VTkggr2XTphTZDse0aT5Lh9F9ehjG\nyRw+DNxxB93/zW+0z6mtHEuXkr85XJEiKUleHThAlTf8rR8nTlBE+/bb3ZWr7aKhahkyhDKsq6pg\nnIguLycRcfrpACwW0QAwZgzw7bemRKI15ZRLS+0V0YAxlg6bItEB4lInEn3kSJQX3SAi2tLPoKpz\nZlaWsRU6qqpIDDVpAntFNEDGWO8MPA7YzmEZw4dTEpJaRG/eDIwf71sZ+t//qAzX9u3UFCI3lz7S\nV1wBPP64L1o9ZAh9j+fODf+6V11Fv5eYCHz/vfHvi2Gcyt/+Rre//a32mnrsGEWeL7yQHkdalaOk\nhOwhq1frWznuvZdun3girmFbjmtFdHIyWSqXLoVxInrhQlpj8NRwsaxGr8LEicAXX5jiiT5wgC4c\nAOhvZaGdQ/e9RFjmrr4eeOEFaroQUJbKSZFolYiurKTqMe3aUfWAiNCpzAFYHIn2E9FGRqI1lTlW\nriQhawGaOtEKRohoKTmx0EImT6b4xpIl9P27+26yt48fTxGsjh1pgeuXvwSef55s70eOUKXSiy+m\nf9WQIeS1HDyYzoXz5oWf6GZn07mnTRuuGc00HoqLgX/9i+7/4Q/a5775hr5LynU2Gj90djZdo0eN\n0j5XXw88/TSV8lfbRtyAa0U0oMoRMkpEf/89MHas96HlkehzzwUWL0YqKk0R0VlZoJnB8eOWNaUP\nGomO0M7x7rvkyxo1Crj5ZtVFr76eQqXZ2Zr9zS5xFzQSrbJzvPIK+cNeegn4058ijEjrRKIVC4Sl\nIrqoCJDScE+0N6lQSmdEoleujO/AFRW05uidGTBmcs45FA07dozmrKWlwLp1dIFv2pQ6GPonIyUm\nUu+ia64BXnyRRPOjj1Kka9s2+jyuXh3+tadNo+/wp58aH9xgGCdyzz10Hb344sBKpGorR3k5JemO\nHh3+mIWFwa0cr7xCt0Y3lLUCV4tob7Uqo0T04sWaT4PlIjo1FRg5Es0+fQ+Q9TgxbiLw8MPk3I+T\n/fs9kejt26noo0VN6eOxc5w6Bdx/P/Dss8A//kEX0M8/9zx58CAJGL827Ga1/FbQjdCmptJVtqoK\ntbXAM8+QeFZOFp98EsGBdUT0iRP0b7JsZq784crLzYtEL19O6iUnx7iDh0BTJ1rBiEg0WzksRQjg\n//6P7tfVAf/8p3b+PHUqlfcPNWEdNAhYsYKiXYcO0edi3rzwr33xxRSZ69WLqgowTEPmxx+psQoA\n3Hmn9rm6Ot/qDgDMnk0pZJFcowoL6ZqiZ+X4zW9In1iQa244rhbRY8eSnWNHs+4UmoiHkyeplpHH\nDw3YYOcAgAceAB54AK3qDuPoeZfRp/TVV+M6pJQqO8eWLZSibhEtWlDgO+DiFoGd44MPaLX8nHMo\nqnTZZfRFBKDrhwbMj0Tr2jmE8CYXrl1LmnrIENr8xz9GsAwsJV2l7SxvB9CAPZYOoz3R3hrR77xD\nRlM7J3EdO9IMJZ5kUBdaOYQQbYUQXwshtgghvhJCtA6yX2shxAdCiI1CiA1CiBFWj1WPK6/03ff/\n6vftS+c3pdtZMJo3J7sHQP/+e++lyXkoWrYk0dCsGdeMZho2UtI1a9gwyikYM0b7/KJF9N3r3Jke\nv/46rfSEo6SEJFp6emDU+ptv6FYR7m7D1SI6PZ0aCd73eq/4I9GrV5OAUKkWy0UMQJ+w9euRmtMK\nlb+4ngzBjzwS/kwfgupq0iwtW8JyEZ2QAP1EycxMmtYeOhT0dz/4ALjuOt/jUaNUXzQdPzRgfiS6\nTRt6LwGLA57kwlWrtE6FCy6gC3vIf9/+/WTyb63VNJZaORQ8ItoUO0eqJH+Op5GRFSglmDT/LyHi\nt3S4MxJ9D4CvpZQ9AHzreazHswBmSyl7AxgAIEyTbGto0gS44Qa6r7e6FU3N6Ntu80XZunenCHUo\npk2jCfqmTcb0iWIYJ/Luu3SuLCuj1VT/WIfayrF7Ny0sKo9D8c47dPuLX1BATI1SGs+C3lum4GoR\nDQB33QX8+HMyfnnwCRzadTz2Ay1eTBkkKmwR0QCQlobUNk1IeA4ZAgwdCrzxRsyH8/qhActFNEDa\nMKDclNK7PUgXg2PHaIaqrhd5+unkg6ypgW4kWkrzI9EJCSTSA2pFeyLRq1dr25W2aUN6bcGCEAd1\nQnk7BY/NxjA7h5TAQw/h6POzkLZ4HkVv+/Qx4MCRIYRJyYXuFNGTAMzy3J8FYLL/DkKINABjpJT/\nAQApZa2U0uD+qbGjNH5Q6teqmTKFms3W1IQ/zpAhlAs8bhxwxhnAhAkUq/Bv5qJw1llU8uu004BZ\ns/T3YRg3U1NDKzOTJ9N1dLLf2UFKrYh+/HESxJs2he6wXF/v8zz7WznWrqXbkNdHh+N6EZ2SAqxa\nJdCkZTNMnkyrtDERRERbbufwoIne/upXZPiLEa8fGiALhX+mgMnodvkDaE0oiIieN4/mDuqocosW\nlCi0YgV0I9HV1VTT1ewOk7oCUxWJ9m/E5ym6EpwglTlsmcT16gVs2ICMDDqR1tXFebx77wW++AJH\nMruhVb+OKj+OdZhS5k5l53BRN7t2UkrFpLMPgF5l184ADggh/iuE+FkI8YoQooV1QwyNMhm6555A\ni1hODv1bQ37XPAweTOeR8eNportiBV3Ix47V/38mJlLyolIzOpjYZhi38txzvopn//d/gRHjTZso\nuFVeTpPZF14gvXXddfTdS08nG8iUKcB995ELdflyKkup1AA44wztMQcMoNuCAkveoim4XkQDJNL+\nPfhlZCRX4uGHYzzIokVUjFRFVZVNkWhQBNLbcOX88ykEG2lbLj805e2cEokGQoroOXP0uxZ5LR06\nkeiDB821cihkZuqXuZNlFIn2F9Hjx/t8X7o4KRI9aBCwahWSkui1Dx+O41hFRcBrrwFz5uBIv9FI\nG9nHlvpFunYiAyPRTopMejzPa3V+Jqn3k1JKAHptG5MADAbwLynlYADVCG77sBz1xVbv7x6ppaNP\nHzqdjh5N9aJzc6kc5eTJFHXWO9VOm0an4ZwcVYIzwzQADhygqjXXXw8sWwZce632+cOH6bu3ezcJ\n7MxMCiYdOUIdQysrqQTtc8/Rdbt5c0pQnDiRVnnatgUuvVQrzP/3P7oNKF3rMpLsHoBRJOTn4eFu\nP+KCVy7BQw9F2fFm3z5Seb16aTbbZueA34W/WTP6BL7zDhmVosQrog8fpiw/v7JwZhNSRK9fr/s7\nP/0U2CUJII1XWAjgaBllHKoIkmtoOMEi0TtXbUBysso646F3b/qIBfVrb93qq1yvwhYR3bMntbes\nrER6eioOHYqjGuLTT1NdwvR0HD1qWWnyADQTUoWuXSmkEquJXtXye/Hi+MdoFFLKoM13hRD7hBDZ\nUsq9Qoj2APQMO7sA7JJSLvM8/gAhRPT06dO99wsKClBgckgpK8tXifRXv6IomPpcf+ml1GUtnK0r\nKQno35/yyevqqHFLr15kD0xKIpvH999rv8v9+9MxBw4ksaBYSxjG7UyfTistn31G+QLNm9P2FSuo\nXvRHH9E1/K9/pX3vuIOasCieaSHou5KVpV3Q//xzYNIkmpSqrRwVFfR6+fkBsss0CgsLUWjCSmjM\nkegoMr1LhBBrhBArhRBLYx9qGDp2RL/6NUhNjeGipkSh/ZS3Y+wcALXdirGIoldEFxVRFNqiyggK\n0UaiKyook1dZ6lHTtasnsUdHMQfJNTScYJHo1dtSA6LQAM2+Tz+dZvi6hIhEWz6JS0qiUgdr1iAj\nQ8f7HSmHD1Oo4bbbAKjqRNtAWpqOZy8hgWZkUSYXnjgBnDhWR5+/nBzU11MDEJfwGQAlVfc6AAHF\nF6WUewHsFEIoy1XnAtCf6YJEtPJjtoBWGDPGl5uqRLMUWrWilR//7XqccQZFn8eP15a6u/NOuuCP\nHx/4uZk2jZa0t2zx+TkZxs1s3Ai89x7w619TOdZf/pJWeYYPp0TA7t0pOb51a+oEeuoUxfP8o9V6\nqGNkvXv77t90E91GUmLSKAoKCjTnK6OIx84Raaa3BFAgpRwkpRwWx+uFJj8fKC3FlVdShmlU/PRT\nYAsd2GvnCBDRBQUktmKwdHgTCzdsoEijxQQV0Z066YroJUtIdCbprJN4m+rpKOY9e6wR0cEi0Vv3\npgR1ygwfHkJsFRcHbflti/D0iMv09JDFU0Lz/vvUPMiz6qHpWGgxupFoIGpLx9//Tp/lIYPqUZOe\nAzRrhs2bXVXb9HEA44QQWwCc7XkMIUQHIcSXqv1+B+AtIcRqUHWORy0faRjeeotup06lhCc1t98O\nPPlkeN/ylCkkts8/P7AF+EMPkdVj4kRtZZ2rrybP9bXX+krlMYybuesu6gD65pt0GRo+nDTU/ffT\npemeeygwOX48tWWYO5dkRJcuoY+rJBQqKzZXXkkC/JNPfJcHG+SI4cQjosNmeqswP/Tpabhy8cWB\nJ8SwLFpE7b79sNPOEdD6u0kTMhtF1LlDizexcMUKTR1sqwgpoktLAzKEfvpJ998BgILPVVUSlXur\nA2wpZWXW2Dk6dCBvmIbsbGw73EYvPxAAJVzoiujycnr/OpYCW+wcAJUgWLUqvkj0W29pCoh660Tb\ngG4kGohKRB87Rg0+1q4FenU4igfEgwB085Edi5SyXEp5rpSyh5TyPCllhWd7mZTyQtV+q6WUQ6WU\nA6WUlzqpOodCQoLP+9y5s1bojh5NTptwwRSllntaGvDDD+R0UxCCmjx17kzRuJMnaXv79vRdbt+e\nhEB5ubHvi2GsZP58ihZfdx15opctA15+mdpTTJzo8zCrq3LMmqUtPRuMb7+l61dJCa34pKTQJFSJ\nQhsYDLaVeER0JJneAEWivxFCLBdC/DqO1wuNR0T37UtiSle06XHyJC3pDgsMkttt5wiInl16KZmT\nosRr51i2zFkiumVLuoLt3avZvHhxcBEtBNAlvw7FLfoHJKlZZedQtL+GrCwU13RAl3z9chbDh1PW\ns3/UzFuZQ8diY5uIHjIEWLo0dhG9YwdlYE2Y4N1kp53DiEj022+TWO7WDfjXVQsxq3wSliwhD6Fb\nRHRD4+qr6ba0lHzK6mYN990HPPZY6A6GQlDfn9mzad74/ffa5xMSgP/8h04z06b5KtVMnUrL0Bdd\nRHmzDONG6uqoscpjj/niUevXU28DNVVVwMKFdDovL6ckeb2ug/7MmEFpS7t300L6rFnkSD15kq7v\nkbQKdwMhRbQBmd4AMFpKOQjABAC3CiHGBNlP41eJ2gCelwfs3ImkRInTTgtfPN/LqlW0LqFzhXeU\nnQOgbJeff9Yx5IbmwAEgs00thdEGDzZukBESVEQDur7otWu1tZb96ZZdjeJWgwK2W2Xn6NSJZtca\nkpKwLaEburTWD0116EAX5YAmeUH80ICNKyGnnw7s2YP0hMOx2TnefpvaS6omOXbbOXQj0T170hle\nV2Fr+c9/KJEGALKOFOGmQU9gzJjpWLJkOsrKphs6XiYyhPA1cz3jDIoY33UX1bs97zz6+IWronHV\nVRSxHjdOfwUzKYn8nwcPUqKzlLQ8/eOPtDz94otc7o5xJ2+8QZ/d116jyebXX+uX8P/iCxK9aWn0\nXZgwIfy5fO9eikQ3a0bfl6Qk4C9/oeeUVZ6GQkgRLaUcJ6Xsr/PzGYB9QohsAAiR6Q0p5R7P7QEA\nHwMI6ouOK0mlZUv6OXAAQ4dS1C8iFi3S9UMDNiV2edAV0c2bk4Hv00+jOtaBA0DW4c2k/mwIrUcj\noo8cofedmxv8eF3blGNrcr+A7VbZOXJz6bXUF8+6OqCkviM6N9kV9Pd69aJamxpCiGjbItGJicCF\nFyJj58rYItF+Vg7A/sRCXZ2slGhYtSrk7x87Rg1NvaeknTvx4BVZeOGF6Vi7djoee2y6wSNmImXq\nVLp9+236HxUX00LKzz9TNPrRR3VWf1T06kXnjObNg9sAk5PJRbdmDYn0li0pCl1cTL/L5e4Yt1Fd\nTQmE69bRhPDMM8mj7I+UwMMPUzWcRYuAW28lEfz00+SZvuUWyi244AKajCrftZkzaVI7bx5FrXft\n8jVIuvFG6gHRUIjHzhE201sI0UIIkeq53xLAeQDMy2n2WDqGDg1RCcGfIH5owF4fZ4AnWiEGS8f+\n/UDm9qW2fXKjEdEbN9KFLVQBkW4t92ArAoWnVXaOpk2Bdu20vuiyMqBt0yq0OOIfavbRu7dOTUwn\nimgAmDQJ6RsWRi+i16yhL45fVX27v0tBO2pFYOlYsoQqxbRQWo7s2AGR3xE33WRNXXImOM2aUafB\nkyfpnP/BB1RBYMIEErkVFeT7DMVVV9Hk9tAhHZuWh9RUql0/Zw4tf0+bRpG822/nBEPGfUycSLcv\nvECX4D//OXCf+fNpwrhhA634qG0epaWUptW3L3mlr7+evocTJlARsFdeodWdHTtIgN9wg+93H3zQ\n1LdmOfGI6EgyvbMBLBRCrAKwBMAXUsqv4hlwSDp2BEpLMWxYFCL6/9s77/Aoqi6Mv5eEDtJCDxCQ\njtRPEEGkKk1FLIiigCJiAUSaYEGKDVRQARVFmijYAJUmTRREQTrSO6GXUKUkJOf7491hdpPZlrI7\n2b2/59lnk93ZzZ3N7Mx7z33POW6y2IzWsRnd/c4dlp5ogPWE//zT57IJ//3H2WHuVYvdG40zGH9E\n9LZtrqVwrLg54gD2xruGqq9d46QjUKKmTBlXS8e+fUC5fGcs/BomlpFoN5U5gOBGb3H33Yjauxpn\njlzxvq0z06fTrOpULjI+nlnZuYLU985tJBrwSUSvXMmyajfInC2/QxbDZtOjB+8fe4wrkXPmsBTd\niy96fn3Hjty2cWPPJbcKFgQWLeLy986dnERXq8bvtC53p8ksvPEGey1MnMjLb9asrlHov/+ml7lH\nDwazhg/nJfr55+mhnjED+PBD1ox+4QVOQjt04Gm0eXNW0d23j2K6fXsKamOxb+HC4F0HMopUi2hf\nMr1FZJ+I1HLcbhGRd9Jr4JaUKQMcOoRy5ShAvGZOHznCtVqLNthG5CzAJZVvYGnnMJ5o29bnNuCn\nTgGFo5KgFsxnFDsI+BuJ9iaiyyfuxJ4Lrh1Njh1jcoRfTXbSQHJf9N69wM1FLqVIknSmShX/7Bxn\nzwaxfFqePIjq8SBObz/teT3cmfh4YNo0rhM6YUTUg/VdcptYCPgkolesSBZYd2r5rQk+BQuyHPmR\nI6YlIyaGtW3vvJPJUh07Mu5gdShHRwO3ONxh3io7lSjBxKqRI7ki9cUX9ErraLTG7iQk8HsyfDjF\nbbdurMgxYADPzZs20abUoQOF8cqVPMZ79KBn+quvPNeGzpqV72XULnj9ddo4XnjBLAnbsmXG72eg\nCYm23zdwhAeVYs7Qzp1etl+xgimiFlf3c+eCt/wMeLBzADz6J03y6X1OnQIKZz3HEgI3en8HFo8i\nOpka9UVEl7qwFScv5bqxWgAELqnQwEpEl4uO9yiiK1dOZue4cIHZq246SJ45E9waxIX6dsHpa3mZ\nEeKLkP7lF37xkhX/DGZSIeChxB3AUOLeva410pxISmJk5kYm+eXL/GIG6buksaZvX9736cNDdckS\nszIAQL9mVBQn2QUK8HTYvj2ja5MnMw/2zBkuYSckeP5bZcsyYn3wIJfDH3pIl7vT2Ju4OFotZs/m\n6vqkSVyt2b+flW06dmQd6Lvu4urN00+zmsa997IvwvLlXOW1aoDmzPHjjAsZ5VznzzefS0WLi0xB\naIloJ+VcubIPInrZshStow2C6eEEvPg4mzalKvUhe/LUSUGRC3s5tQwSxoTAstxU6dIuWXq+iOjI\nE0dQuli8S1GPw4eDK6I3bwaqV03kvrihdGlGl29MjvbudVveLimJ//8CBdJ12H5RsEgkziEfEuf/\nSnXiqV4YwMyR7imrWAbVlgIvkejs2XnAbd5s+fSBA5wE3rAJxcYydBmoJQ+NT5Qtyyjbrl381/Tq\nxXq0c+emrARw7hwv8tu2ASdOcFHv1VeB337jpPWvv7z/vWrVzNNv7970mOpydxo7sn07S6zWrEmJ\n9P77PKf17ElnWpMmfG7PHh7LOXIwUf6TT/g9ArjA6EuHwrff5mXittvMx4oXB+bN81wsIDMTWlcC\nJ9NppUoWS+fJWbYMaNbM8qlgi2iP0bMsWYD+/bku44WTM5agcNJxrtEEiYgIJihYRtaNLL3YWMTH\nUwy7a1hyg6NHUf5mYedCB0ZCYqCIiaHvy2DdOqBOgxzcATdkyUK/2I3j0oOV4/x5FlKx6toY5jGX\n6QAAIABJREFUKCIjgbx5Fc79uJRJBs895z4i/ddfVDAWx1mwv0seJ6SAR0vHv/+aS/0AtJXDxrz3\nnvlzo0b0bDZrxkO3dGleEzp1ojVnwQKWqNuwgXEUw8axfz8j1EZzFU/UrUuBvnQpl6nHjzdrSWs0\ndmDlSnr9X3mFx/nRo8B99zFJ8J9/GBvZvRsYPJjXaINffuECad26zKv66SezLrvBtWtcpRszht+l\n6GjamoyARfXqvG/ePGXt6VAitER0TAxDC//95z0SffAgVV21apZPnz/P2VqwyJGDAUpny4IL3brR\nxOSul/TVq8Arr+DUz3+hcPtGrOEURHzxRR85wi+uR+EoAhw/jpsrZ8PevebDW7da17jMKGrV4gU4\nIYFWkmvXgDJ1i3gU0QB39UYE24OIjouzRzvpqCjgdEI+rl9v2ECjW3JE2H7qlVc4KUqGHewcHktB\n16njtrB8ChG9b5/3freaoJAjh5ngt2gRL/xHjtDLuWULaz0PGQKULEkbxmuv0dE3YQKj0kYr8bg4\nfi0//ZTfa0/07s37J57gqpEud6exC5s2sczc9Ok8Pvv350SyVi1OIrt3pwC20jljx5pR6FmzaGcr\nWpSn+lWrmPZSuDDjKrt3M03rlVdc7R5GjG/MmIzf12ASWiI6IoJnv127vEeily3jOoabbKdge6IB\n/n23wjNHDtZa6tIlZYh39WoKg507ceqJfihcIYizAQe+iGifgnxnzgB58qB85UiXSPS2bW7nQxlC\noUKMmP/zD7VlnTqAKlGcJnQPpkpH7ivxUJnDTiL6zBkwoXXePOC776hAnJk0iZOHZAmFBsG2c+TJ\nQyuz2yhhvXpurVH//pvsuPIw8dEEn1tuYeTt4EHmixun95tu4gX/gw8oqiMjGVkrWpSCe8gQHh9G\n5YCxYymIK1TgsrYnMf3777zftg34+OOM3T+Nxhf27WP0d9w4Nh76/HOu1m7fzi6rBQqw/rMV27bx\n9vDDTNnp3Jk5BkpxNbVhQ9aBjo5mtLlQIa7cDB5suuLy5uWKDmCP61hGEloiGrhRAqFCBS7NudUz\n8+fTSe+GYC9BAxSeHpehH3+c6ef33MMaMtu20ejUrh0jgz/8gFOXc6NIEQ/vESAKFPCQeOOPiD52\nDCheHDffjBuR6IQEaptk+WwZTtOm9FGuW8cGD4iMZBaGF1/0jVq0mSASXaiQU+vvwoWpOEaNYteJ\nfftYJ2nQIODHHy2j0EDwv0tZslBIu03UrVmTJwuLWd7Wrcki0bt3W1bz0diHpUt5Xy9ZW68XX2QC\n4MmTTDS8dIn1bcuVo3e6Xz8uZgI8ZufPZ93pefP4NR0/3nplsFEjTrTi43k++PffjNw7jcYzx49T\nOL/+OoXwsWOskJEvH+0Xixbx8aJFrV8/bhy/FxMmmM3mjElkz55clPzrL27XtCljl7Nmua72lShB\nK0hSUuinj4Te7jl80Tly8B/p7Fu9QXw8e1x6MOoE+8IPeIneGowfzxTadu24P7lyce2yQwdAKTZa\nsUEhgcKFPXQrd3gcfBLRjo4q5cvjRiR6714u0Qa6/mTTpjyhLF3q1E29VCmPlg6XSPSePW4N4HYR\n0Tci0QYxMZw1HDtGw+n06fwQPBjSg23nALz4orNmZV2mZNaohATavF0SXXUk2vZERDAivGWLa3WA\nqCgu3I0ezXzSWbNo93j2WS5x9+9vlnk36kXXq0cRPWsWl8ArVaIQcUYpNpAwkk+Te0c1mkBx7hxj\ng1268Lg+csRMuD95ksf9p59ywmhFXByfHz3atQHLqVO0cowdS4Fevz5P/08+yXidcx39jRv5PnPm\nBK+saSAJTRHtqCNWoYIbEb1iBc+G7qZisIeI9mjnMMialWf/gwdpth01ykU1nzplDxFdpIhZKzIF\njlIX/kSiy5alVv3vP0YLA2nlMLjzTroAChZ0WtQoVcpjLZ8bkejLlxnidZOybBcR7RKJNihcmGvi\nBw6w9tGNGYQ1wbZzAD74ohs0oNnPiT17kk3OkpLMiioaW2M0YGnb1rX/Ub9+LGl35gz/r7/8wgW8\noUNZ1suIuH3zjav9p25dRqs//pgxi+SVOO6/n6ttXbtSvKfoTKrRZDBXrjBpsFEj+v03bDAvL4cP\nc6Fw8mQm1lasmPL116+bE8H27c00qj//5ATUHUlJ9EMDvB526wa8+25gq2UFk9AT0bfccsOYk7wM\n2Q3mzjX7Xroh2ImFgA92Dh+wi4j2GIl2/KMOHfJBRMfGAiVLInt2Wtp/+on/7kAmFRrky8d9mjXL\nSSR6EdE3ItH79jECHxFhuV1cnD1aSkdFWYhoP7FLJNqjiG7YkFcLJ/bsSebcOHqUb2SscWpsS2Qk\nI8gAK2cY1Rmjo5lsZXiX8+Th9/fzz/n/di7jZVWwpV07xmDee481po0qHhERrFVtrNpUreq93rRG\nk15cv85az9HRrBgzdy4jxtmymcm0V6+yvN3AgdbvYdRaL1fO9PfffLP3Rsdvv837u++mnalAAbfp\nMSFJ6InoqlW5hhEXl6I1MwCeTX/4wXS9u8H2iYU+YhcR7TESXbIkcOoUYg8lee+mvH8/xSdYrurz\nz9k17KGH0nW4PpNCT3mxc0RFMWJwact+j7aAYDdaMUhh50gFdolEe5yQ1q/PMIqjXjngcqiRFKpa\nY2fatGGEbMsWRsYMBg6kC87wyBctSuHRtavZOhxw372wcmU6fw4f5pK20V+pa1c+Pnkyf+/TJ733\nSKNJiQgrbVy7xoS/jz6ilWPoUJ6/BwzgdmPH0rZUv37K95g82ey6WbcuPc8rV3JS6cmSceqUWbDp\n1Ve5EP755+Fh4zAIPREdGUl/45o11pHoP/9kiNclWygldrBzpDUSffkyNYEdAmceI9EREUB0NGIP\nifdItJOyadeOuueuuxyJfXYgOtpjJFopWjoOrT/tUUTb2s7hJ0FtX+7Aa63oQoU4mXPKCrMU0doP\nnakYMYJWr1dfZSUdgPOgFi3YG8igQwfGX2bO5PkEMCt2WJEvHz2fLVpQdKxezeXvF16g+KhUiVU9\nvvoqY/dPoxk4kJXIvv2WybOTJ9OZNnMmy8zlycNr78iRFLnJ+ftv4Kmn+HPVqsCMGXSJzpzJ0nju\nuH6dlXAAHvfPPMP3dzlnhgGhJ6IBTrX+/ttaRM+Y4VP3PruI6LREoo0otB1mhR4j0QAul6qEy5c9\ne68AuCibvHk587Y6MQQNL3YOwCGit13KFCI6PewcdtiXggV9aMuczBedQkTv2qVFdCYjSxbaLwAm\nCRrR58GDmTxlVNtQiqJ3yhSnFu+gkPD03kOHskqB0bHw+edpD+nenee8vn3pTdVoMoL33mPy7Dff\ncCJ48CAncevW0b7WtSu3GzaMCa/JvdBHj9LPb7B2Lb8LP/9MQe1JEL/+uun9372bqzKGGA8nQlNE\n3377DRF9o5wYwDPmDz/QPOQFO4hor0vQXrCLlQPwEokGEBtVC9H5L3kW/EZnEyfPR4cOHvNDA49L\nDTtrypQBDu5L9JigZgfhCaSPnSMuLrjtywEGmr3uR8OGnkX0xo1cD9VkKgoUYOMJgMnAAKsa/u9/\npvUCoOj9+GMKEoOhQ10cPpY4+6SHDDHLimXJwmX1Bx5I+3dIo0nO5Mm0JU2YwElcxYoUvzlyMDr9\n/vtc5DWi1G+84fp6ER6rxnV54ECupiQkMDHx5Zfd/+05c0yLVKlSLBf54YcZs592JzRF9G23AatX\no1jUdZw7Rw8qAB5Jder41HHMLomF6RGJtgPeItGxeaqiVE4vIc/YWLY0zJo1fQeXnhQrxgPOw+yn\nVCkg9lhkpohEp4edww774pOIdopEiyQT0SLMNPNSiURjT2rUoFdz40azV9Arr3AVy1kkd+jg2nXt\n6FGzk6EnnH3Sc+eyqUunTjznPfggFz91S3BNevHTTzx+hw3jMfvss/Q0R0ZSWFeqZNqSBgxgKf/k\nieq//srTnVGF44UXeD9hAmNBrVtb/+1du3hMGyQmMjbppk1AyBOaIrpoUaBiRWRZutgMDBpFDo1e\nlh4QCY3EwlOnYItGKwBF1IUL7qM6sdnKoZQ64vlNUoQGbYhSDAl46DlfskgCjlzMy5C0G+wgPAGO\n4exZs7qBvyQlcT6RKSLRFStysEePIi6O/8ob446N5eStePGMHqomg+jenR7OXr24/NygAb+C06e7\nbvfJJ+bPlSrRV+1LpQ3DJ929O39ft44NPl9+mULjtdfSb1804cvvv/MYe/xxCuSJE01ZExfHRsbv\nvcffly41e7AlZ/Bg3jdrxtWS0qWpN0aM4CTQalX4v/8ooJ2vBz/8EN6nxdAU0QCrjU+davqif/2V\nhjh30ysnLl/m9TLYM6u0JhbapdEKwKXNAgXcRzUPJZZEqYS9nt/kwAH7i2jAu4iOPI4j2W92G1FP\nSrJHMh7AIebJk/rJ3IULQO7cjJAEE59EdJYs7KCzZMmN+dqNC4nR212TqVm8mPcVK1IYjxxJkWtU\n2AB4zjQaTRw+zFxhXxMEDZ/0a6+xhPq5c8DUqfRWf/MNG3tqNKllwwZaMBo04ARtyRLXnnEjRlDk\nVq3KiVu/fjzGs2d3fZ+NG3nr2ZMTSkOEv/UWa01Xr57yb4swedC57vqECd5L4IU6oSuiO3YEFi5E\nmaJXcWDPdaatjh7tUw9KO/ihgfSJRNtFRAOMirvzRcdeK4JSZzfzm+qO/fvNvrx2plIlrnm5oeS1\n/TiSxX0ZktOnWU3CLq6VtCQX2sEPDfgoogEWFV60KOWih7ZyhARZs5oioE4dOv+6d+fN+dQzfDjv\nT50CmjenODFqQvvCiBF0dgGMFkZEUEA/+ywjgxqNv+zZw+ZB1arR4//HH67Woz17ONkbNoy/T5vG\nAIiz9cKgdm3et27NAEfjxmxdMHkyj10rxo1jcTPjPNqoEUV1uBO6IrpgQaBHD8QsmYgDo77jkde2\nrU8vtUuji7RGou0mogsXdu+Ljj2VA6WzHPGs1owGJXanUiXPkegL23Ekwf0/5vhxey2PpSW50C62\nFJ9F9F13UUTvS3I91NatM688mkxNsWL0lP77L1scDxnCiPOkSeY2WbKYOTH79jFyPWWKf3/nyy/N\n01WhQvRNjxrFFgVpbaKlCS+OHWMzk6JFGUv67beUbsCXX2bkuUgR2i5ef93almGsxvzzDyPJvXpx\nm0GDWNvcmPw5s2oV8OabrjEs433CndAV0QDw7ruIaX4zDkT9j2sfPnL6tA+l1gJAKCUWAl4i0bEK\npW7OxlRid/z7r9f63rbAi52jQOxmxEtWXLpk/byjs7ltSEtyoV1sKT6L6JgYoEAB7F97xhTRV66w\n/IJR2kGT6bnvPiZkPf88o2tffUURsX+/uc3QobyfMoVJXG+9ZbYF94XWrdla3GgRXr48vafNmtFt\nmNo8A014cf480KoV84ni4iigky/IrljB8nRGg5/33uPp6rbbUr7f3XfzvlAhlsPr1Iki+a+/zK6F\nzpw4we/KI4/Qjw3QVpLcIhKupFpEK6UeVkptVUolKqXcrnMqpVoppXYopXYrpTwUTckAlELMc61x\nMHslv0yZp07ZQ0TnycMZZWqzuu2UWAhQ0J84kfJxEeZtlaqe372Ijo+neSsY/b39pWJFjtXNVVJt\n2czkQjd5lHYT0Wm1c9hBROfPzzJM3sqVAQDuvRf718WZInrxYq792+GkoEk3Zs7kOalZM/qjX36Z\n4tY43zZpYm575gwXM52j1d5QCujfn60Jhg/nua95c0a+T56kKNdoPBEfTzuGEZNZtizlYuz168BL\nL7H9ds6cbNg8diwTDJOzeTPvN25kAm3Xrpzo9e3L1+fKlfK9H3mEHYGNjoZt2uhKn86kJRK9BUB7\nAH+420ApFQFgHIBWAKoCeFQpVSUNf9NvLBuueMEukegsWeiNvXAhda+3U2IhwAQdq47Y58/zgpOv\nRhn3InrHDp49cuTI2EGmB3nz0ghsVS9aBNi8GSXLZA0bEW0HT7SxPO+14QoAPP009h+KQNloR0mG\n2bNdOxJoQgKlzK9onTpmSTCj3m316gxkABQyw4ZRaBgNWnzhscfYkKJFC16LlGIkcPx4dkz8+ed0\n2x1NiCECdOvGChsFC1JAW7UWGDWK51ijh9xrr9GrbFX8qWZN3leoQP/zCy+w8u/164xIJ2fwYF5y\nnW2YP/yQ9n0LJVItokVkh4i4z54i9QDsEZEDIpIAYCaAdqn9m6mheHEuKd+oFe0DdhHRAL8cPl34\nLbCbnSNF8xsHhw6xdjIqV3Yvojdtcs2isDt165p9hp05cADImxclYzKPiC5SxHoFwRfsEokGfPd2\nJ1WsjINJpRCz5Rd+iX75RYvoECVnTjPIUqsWLR3vvEPnWJYsdI89+yyfr1SJtvgvvvD9/bNlY077\nuHH0p169Sk/0o4+ysUu3bsDWrem+W5oQ4LXXWH6xQAFWerFqK7BpEyd9kybxeN24EViwwCxf54wh\nhCdMYO3z228HSpTgMf/BBylrLvz4IwVzt25cTQGYrGjUldaQjPZElwTg3AP5sOOxgJElCwXaoUO+\nv8ZOIjq1SV1Xr3Ip6Kab0n9MqaVMGetVgdhYH0T05s2ZS0Q7Ws+nwLEfJUsi04joYsVSL6Lt4okG\nfPdFHzvGyji5+z3L8KS7sI4mJChTxkySatuWrYs7d+b5s2ZN00F2552MRr/7rn9BmWeeARYuZIfE\nwoX5ferWjR3ievWiP1t3NNQ4M2ECVz2yZaNfOXm7boDHZ+fO9D+XKsXIdb9+9PJbXfdHjuR9x45m\ny4yPPuLEsHFj12337gWee47R6g4d+Fi1atbR6nDHo1FYKbUYgEWuJl4RkV98eH8P9cpSMtTI5ADQ\npEkTNHE2paUBw9JRqZJv258+zUCiHYiK8twu2x1GFNpjG+0AU6aMdST6hoguW5alKS5cSHkW2LwZ\n6N07IONMF+rXtw4HbNoE1KyJksVYksgKu4nookXTFomuElADl3t8FdH79wNlK2UHPvqF7eeMmlFO\nLF++HMuXL0//QWqCQosWZs3oqVN53h0xgiJ63TpW8XjuOZ5P69WjyDGSuLyRLx+F+Ycf8taiBWMF\nOXNyKb52bQqVhQvtU9ZSEzzmzjVXPzZuZGzJiuHDqW06dzZfd/w48PTTKbe9eJEVfosXZ1KgMUF8\n7DEmFDpz9SprUb/+OtCjBx/LmpXC24cKwWGHRxEtInel8f2PAHAuiFsKjEZb4iyi0xN3EVB32C0S\nnRo/qt380AAjMOfPM4rjvCS0d6/D6xUZydnLqlVMRzZISmKdXsPQlRmoW5fC/9o11zTmTZuAhx5C\ndDZmWVsRaiLaDp5owPcqIzdqRN92m3V6O1JO8odZCG1N5mLAAGDNGi5jX7jAkl5jxvAr+8UXFNG1\na3Ob++5jbencuX177xdf5ELakCFM0nrjDYqSXLlY+SNbNkYRP/44Y/dRY2/WrAHuvZc/b93qPgCx\nejU7FW7cyIldQgKP3zFjrGsoGBak556jdaNnT8YGHn+c/mhn+vXj9Tgigu0Obr2V16OmTdNvP0OJ\n9JpXuIt3rgVQQSkVo5TKBuARAAFPpXDnxXVHKIjoEycofuyEO2vNrl1Oy1V33skq8s5s2EBPQHR0\nQMaZLuTOzZ3asMF8LDGRtYhuvx1ly1pP7ETsJ6KLFXPt6OYPdvJE+xWJzgTlyDXpi1Jcvq5cmV5R\ngFUP1q7lV9dIApwzB7jjDkanfSU6muLo008ZQfz2W/qun3qKwufUKYrqiRPTf780mYO9e805+5Yt\n7gtRXb7M6PPYsWZN5wkT2LbbOfZkEB/PYwzg+XjXLvqhf/iBkzpnvv2WKyIDBjDpEOC536jMoUlJ\nWkrctVdKxQKoD2CeUmqB4/ESSql5ACAi1wH0BPArgG0AvhWR7Wkftn/ExLjW//RGKIhouwkxA6tV\ngV27nGbDViL611+tzw52p1kzYN488/e//uLVOSYG5cqxiUPyBo0XLjACYFQFsAOFC/Pkm5pSi5nR\nE61FdPiSNy/zSBMTXY/bXbvol86Xj17VVq3oRXVX692K/v0pRvLk4VJ5nz78/j/6KBO9AEa3V65M\n333S2J/Tp83EwU2bPLdDePVVVpN5+GH+fu4crUfvv29t3/z6a7MD81df8TZkCN2Gzsf47t2MUH/2\nmSnmixYFFi3SKSGeSEt1jtkiUkpEcopIMRFp7Xj8qIi0ddpugYhUEpHyImJRuTDjycyR6MKFQ09E\nO/8vEhMpWm5kHt9+O6O3zpk7v/7KdsyZjc6dabA06kXPmQO0Y3Ga/Pm57JZc1Nnx/xYZSUtGao7D\n06ftI6KLFHHfMdMZLaLDm/LlKWSdO7e9+ipX0oYP5yR31CimPYwb5/v7Vq9OO8j06fS8HjtmRrcf\neMCcbzdq5F8ivCZzc/myab3csMFz/vzy5ewbN368+djbb9Ne5O51Y8eaTshevSi6d+0yI82A6YN+\n+WXzUqsUj0m75LTYlbCwiftTK/ryZQo7X71uGU1qEwvtKMaAlBOagwc5273hkc6dm9PsBQv4e1wc\n/dDJ04czAzVrMvz5228sxOkkogEKtX37XF9y8KAjydJmFC3qv6UjKYki2i4Nf0qUAI4e9b6dFtGa\n6GguiBkRuTlzeA3p0oXR6hIlOM8fPdq/Ov4DBlCAJyYyybBvX7MLYps2rAkMMNjw33/puksaG5KY\naK46rl3ruYnJxYvAk08Cn39uBib272d5uxEjrF+zbx+rQH3zDX8fNIie55Ej6cM36NOHPuhFi8zV\n0eXLWVFG45mwENHFizPi50uR/DNnKFztUtUi1Owcya01Ln5og379mNUjwvtHH7XPrMZfXniBty5d\ngHLlGIpyUK5cSpvRzp2+V5EJJKlJLjxzhkVWnE/WwcQXEZ2QwO9O6dKBGZPGvhQqBCxZYvqjy5bl\ndeHRRxlV3raNqzT++EWbNOHc+rXXWD3xllvM5i4AHWCGnSMqKqXdSxM6iHDVQ4S59N4Ea79+7HjZ\ntq352KBBFMDFrGqogX2ijEjyggVcBcmfn7XKDWbM4OQtMtIs9Th/Pp2VGu+EhYiOiPC9VrSdrBxA\n2kS0uy9WMKlViyWjDCxFdLt2PLN06cLq7u6m2ZmBp59muOn0aWZyOM3ODF+0M7t22VNEp6ZWtN2S\nW30R0YcOcfIZiqXGlFIFlVKLlVK7lFKLlFL53Ww3WCm1VSm1RSn1jVIqu9V24UCePK7f0Xz52Cr5\n++/ZNvnYMVo8zp/37f2Uoud05kwuUH3wAb3Vx46Z2zRsyPzjq1czV0EijX80a8bVjcWL6WL0xIIF\njBKPHm0+tmoVb337un/d998Dv//On++4g1780aPNy9DOnawcW7kybSIAK8S0bp3q3Qo7wkJEA75b\nOkJJRNsxEl21KsWVsU+WIlopXmVq1mS6sJ2UWGp45hn6upPVvrYS0XaORPtr57CbiI6KYiKYpxWp\nELdyDAKwWEQqAljq+N0FpVQMgO4A6ohIdQARADoGcIy2I3t21y6F99xDu8Xly0wEjI93jSZ7o1Ah\nVuHo2pXHZLduKUvK33EHhdOWLWw5rgktunShXeLHH1k33BNxcTzOJk0yLyEiFM9vvcUyiVYcO8ZS\neABL2Y0aReF+66187MoV1icvUYKRZ4ArJb16pXXvwgstopNht/rKBQsyEcCfyggiFDx2FNEREfQZ\nGgXeV66kBToFlSqZ61chipUn2nJSYQNCIRKtFL8TzlG/5IS4iL4PwFTHz1MBWPUyvwAgAUAupVQk\ngFxgvf+w5tFHuQwOMEdl9Wr6Sj/4gI8NHcpKNL7SqhXFeK9etHYsWsQawcm3mTYNmDVLC5tQYsAA\n/l8//5wJpd7o3ZvbNWtmPvbtt7SePf64+9cZbTfatWNeyvjxTEJ0ft8dO2hLMnLfly3ze3fCHi2i\nk3HkCFAyoI3JPRMRwZN3XJzvrzl3jtETdzPUYNOgAZeh9u2joGnQINgjCg7lyrl2Lbx8mZM4O5YT\nSo0n2m4iGvBu6QhxEV1URIz/4gkAKf47IhIH4AMAhwAcBXBORJYEboj2JHdu4JFHXOvqbtzIYIDR\nuPK11/x7z1GjKJwXLKC46d3bFDMGTzzBphjjxrFygiZzM3QoS9G9+y6jy9748UceI+++az529SpX\nLkaPdt9B8OpVivR27Zib8t13rAhj5HpMn87VkPh45rwDwOHD9skFy0x47FgYSsTEmAUfPHH4sP0u\nooalw9cIuV2tHAYNGvBkEhXFL3lERLBHFBzKlWNmvyE2d+/mY3b8PEqU4ATTH+wqoj3tx/79rJKQ\nWVFKLQZglQ3xqvMvIiJKqRRpa0qpmwH0ARAD4DyA75VSnUTka6u/59xlNnkXx1Dj6aeZkPXmm6Zg\nbtmSq0f330+P9PDhtGv4Qu7crNl7773MExk/nlUUkkcXhwxhxHDUKAoed/WANfbm3Xc5IRowwLcJ\n0YkTzEmfPds1IPbxx8wt8lSwyihf99VXZnL3IId5a9MmTs6cmTTJXsHDjGD58uVYbsx40xMRscWN\nQ8k4VqwQadDA+3YPPCDy3XcZOhS/adhQ5I8/fN9+yRKRJk0ybjxp5dIlkdq1RbJlE1mwINijCS5t\n2oj8+CN//u47kfbtgzsed+zYIVK+vH+v6dpVZOLEjBlPaunVS2TMGPfP33YbzxX+4jh/Bf086ukG\nYAeAYo6fiwPYYbHNIwAmOv3+BIDxbt7P/w8qE5OUJPLllyKNGonQNGfeli3jfdmy/r/v0KEid98t\n8uefIiVLily8mHKb69dF6tXj3+jenb9rMg8jR/J/16WLb9snJYncf7/IoEGuj588KVKokMjOne5f\nu3w5/1bDhiJ79vDnCRP43JkzIpGRrsdup078e+FGep2zw8bOYeU/tcJudg7A/1rRdo9E585NT+E3\n33hPqgh17rjDLGn1558uFfBsRalSXKXxp+TWiRP2qxDjzc6xdy9XA0KUnwF0cfzcBcBdAtKHAAAg\nAElEQVQci212AKivlMqplFIAWoDdZsMepdim+48/UloDDb/q/v1mvoevvPIKLXgbNjCx6x2LlmQR\nEcxNLlmSSY6PPmrWl9bYm5EjzSYmkyf79prp02n1c1roQVISc9Q7d3afN3PhAhNWs2bltsOG8fGn\nnmJeVatWpn0DMP3ZemUj9YSNiC5enAfYxYuet7OjiPaWDJWco0ftLaIBfskffJC1KcOZO+5gOauk\nJJYjMlq52o1cuTj58WcyZ1c7hzsRfeYMhYndvztp4F0AdymldgFo5vgdSqkSSql5ACAimwBMA7AW\nwGbH6z4PwlhtTZkyFDlW1qsGDfh869bMjZ44kTkg7hIPs2blsvsbb7CZxmefWQd88udn4tdNN9GH\nfd99uiGLnRGhvWfQICbPz5vnm1g9fJjHzbRpzG0yeOUVnqOc/dHJeeklHn85clC0f/UVULcur7P9\n+wP//GNuO3YsLULufNUa3wibjy9LFhY2d07kSk5iIi/8druIlizpnx/14EF7JqdpUlK3LrOjZ8zg\nikPlysEekXtKlQJiY33f3o4iumRJ9yJ6505+/qEalRGROBFpISIVReRuETnnePyoiLR12m6UiFQT\nkeoi0kVEEoI3avty881M3rKiWTPg+ed5/K9cyYYYpUvz2tK8Oev1rl9vruxUrMhy+IMGsRLHgAHW\n71uxolnPNzGRDVv8STrXBAYR/i/feIPX4hUrfMt1EWHJw169XFclp0xhkGXWLPfNq376iZOrli2B\nevVYJRZgFHz6dNcyjN9/D/Tsmdq90zgTNiIaACpUYBKIO06cYEk5u3RYM/C1XbGBFtGZhxw5GK3o\n2pXZ/3bGHxEtwqi1XVp+G5QunbJLpMGOHfaexGjsx1NPmTWk27QxVzGnTOH1ZuBA/rxmDVdC16zh\nY9eu8ftetiwF9h9/sFpDVBSr9Kxf777cWMuWFGinT7OUfuPG/q1UajKWpCSK4FGjeB1eu9b3SlkT\nJnDFwrlu+B9/8JiZO9d9D4uTJ1l9Y+pUNvFp1Ig1pAHaN5wTCZctAx56KHX7pklJ2Ino3bvdP29H\nKwegI9GhTr9+jEa/+GKwR+KZ0qV96/oJ8EKQK5frcqQdKFuWguPKlZTPGZFojcYfnn6aUeT58xn1\nM/IAqlTh8ruBUpyItmxJgbVrF4VRoUIU0iVKcMX0vfdYsaNPH1f/qjMvvUQBfeYM/dF33EE/vya4\nJCZyYjV+PFu6b9rke/O2vXtZ9WXqVNPmuGcPG6J8/bXZvjs5IkCPHvRK3347I9ILFlBIA0BHp1ZJ\n//wDNG2a+v3TpCSsRHTFip4j0YcPZ34RLaJFdGakQgV6ju2MP5Ho2FggOjpjx5MaIiMppK1sXTt2\n2LNbpMb+vPYaO8H17s0lfIOoKPf9CZSi0DKsHWvWmInWY8eyW2Hz5oxgW712wgROauPjaf9o3Jiv\n0QSHhAQK3qlT6Uv++2+2ifeFxET64V95xRTL585xMvXGG7TtuGPaNArw4cPZ4vvsWa6oGzWhDTZv\nNrsVatKPsBLRvkSi7Xjh90dEnzvHe6O7lkaTXvgjou08katUiVHn5Gg7hyYtLHG0pHnuOQoag7Jl\nKZK9ERPDCLMIkxIBLuXny0eryBdfcNneIEcO1hCeOZMdaj/4gCJ81ap02yWNj1y7xg6Us2axAsay\nZf4FRT76iPfGaqQhyO++m8eTOw4eZMLgV1/xNUaD3y++cPVAb94MVK/u3z5pfCPsRHRmjETnz89o\nw6VL3rc1xEuoJkdpgkepUr7bOewsoitXpmB2JiGBYy5fPjhj0mR+8uWjmClUiGXN+vQxn/vf/7jM\n7iszZvD7U7o08yW6dKFIr1iRwmrhQort4sUZfZw9m5HsKVPY+OXXX9N77zTuuHyZFolFi1hd6eef\n/bOxbd/OjpWTJzP5UIRiOiLCbCtvRVISo9f9+vHcbKxizJ3rGgxct04L6IwkrER0kSL0mDn71JzZ\ns4cZ13ZDKc9VBZyxs3jRZG788UTb+Ti0ikT/+y8jhnbzcGsyF506serBlSuMBDpXWLj/fte24Z7I\nl4+2gOPHKYxvuQX49lv+3qkTE81q1KDwyp+fyWQrVwJz5rBVdOfOZhUPTcZx8SJQvz5rg3frxlWB\nrFl9f31CAv9Xb75pao9x47gCMXOm5xKwH3/MCPgTT7C+eLFi3P6ee8xtVqxgeT1NxhFWItrwoG3e\nbP389u3uzfvBxldLx4ED9hUvmsxNdDQnoJcve982s4noVauAhg2DMx5N6KAUG2ScOUN/64YNrs+P\nGEFfqi9Nixo3Npf3+/Tha3LkYFR60yZGKWfO5OTv008pmnftold6wQJaQ4zKIZr05+xZRni3bAH6\n9uVn7UvNZRFOhpYt4zl17VpOfFq3BvLkoa8+JoZNd958k5OxiRP5v547l2Xspk3j/7dLF66eNW3K\nIIdzIurvvzPhVJOxpLrVhVLqYQBDAVQGUFdELF1fSqkDAC4ASASQICL1Uvs304PatXliS56hev06\nC9y76wQUbHwV0XYWL5rMTUQEu/nt2cMomCfsfBwaIlrEtD2tWmX6CTWatJI/P0uMDRyYMj9l3TqK\nrXPnvCeejRhB4bRkCZMX33yTx6xStHXcfTdF3OjRQK1awAMPMCI9YgSweDGjknFxrBqiST9OnmTA\nLS6OXQFffz2lhVKE1+xt21LelDLrew8YQD3y77+06XTrxsorly7xduqU+fOlSzxuDN97jx68//hj\n17/92WfAnXdm7GegIWnpF7cFQHsAE7xsJwCaiIgtSsLXqcOlr+Ts20d/Wc6cgR+TL/haK/rAAS4v\naTQZgVHhxhcRnTw73C4UKsTs9a1buTIF8KLk61K7RuMr+fLRuzp4MH3SzuTPT4vGww+7z2HJnp0R\nyJo1WTbt2jWWwHPevnp12jreeotWgOPH+R1dvBjYuJE2kjNn+Pd1rkzaOXqUAYLr1zl5eeklJlxv\n2ZJSLOfKBVStylutWsBjj/Hnn37iisXChfz/nTzJ5jxffQU8/rjnvz9kiNnRcuRIjqVJE/7eujUn\nXboLYeBI9UctIjtExEOangu2+eoakejk2NnKAfie1KUrDGgyEneVLZy5cgU4f96sl2tH2rRhXV+A\nF8WLF+27CqXJ3CjFVs1GxY7Gjc3nHnmEgqdtW5Yy++WXlMGSGjUonKOjGQDq3ZvCPDklSjBB7ehR\nWgD++4/J9F268HXdu7OUmib1HDjAVeHr1+l9P3eO/586dVhh48gR1mr+4ANua9g2xo2jSG7ShN0D\n33qLtozq1YGrV4H27el19yagV6/mKsPx44w+L15sCuhHH+U5TQvowBKIj1sALFFKrVVKdQ/A3/NI\ntWqcxSVvtrBjh71FtLeW5QCTFPbt44lTo8kIvNVaBzjZi46298ncWUTPn0/voI7SaTKS119nEphR\nTWPYMPO5+fNZgWn8eIqyEiVYI3jYMEYWu3RhzelWrWgHefZZayENsLTaiy/y/YoXp6Vkwwbgyy8p\n1q9dC8z+hho7dtB/bjBvHu0Vn3xCUfvrr8CYMZysNGzI1S5nROiTf/99lsLLmZPX9IYN2S25TRse\nG+vWMbJ99arr6y9fNleZ336bJfCmT+fvX38NfPNNxu27xj1KPGQ4KKUWA7CKJ70iIr84tvkNQD8P\nnujiInJMKVUYwGIAvURkhcV24mks6Unt2ky+qOfkzu7alRfSp58OyBD8ZtcuLtV46kq1cye/iLpz\nlSajWLmSHr6//nK/zaJFXGZcujRw4/KXy5cZKd+3j5GjL74wIzqpQSkFEQkrGR7Ic3YoERNDu9O0\nacwz6NTJfC42lpHOgwcpptau5W31alo7Tp/mcv6CBbQFfPkl38MdIqaVpG5ddqwDeK3QKy/euXaN\n57E33zTPef/7Hz/3GjXMiffJk/x/Gf+z7dsZqLt2jWL46lVOagwKFeL/01h1qFgRKFAAyJaNwvzk\nSd5y5mRVsSJF3Nf/Xr3aVctofCO9ztkePdEi4qFPjm+IyDHH/Sml1GwA9QCkENEAMHTo0Bs/N2nS\nBE3SclXzwG23sfSL84G3ebNp0rcjZcuyjnV8PL9oVtjdkqLJ/PgSic4MF+hcuRgVrFKFYsTfU83y\n5cuxfPnyjBiaJsTZsIHfj86d2dnujz/YCvzKFdr2vv8eeOghiu0HH+Rr4uMpljp3Nm0h//zDMngr\nVzJCaSWmDSvJTTfRN714MbvfVarEgMvIkWZegIZcvMiVgdmz6VmOjzdXrpcsobd53TpWz1i7lj+f\nP09xfeutnBRVq8ZKG9mzs+xc794Mbi1YQLEM8P/crx//r8WLpxyHCN/35EmgWTPrsW7bpq/5QUdE\n0nQD8BuA/7l5LheAvI6fcwP4E8DdbraVQPHzzyJNm5q/nzghki+fSHx8wIaQKm6+WWT7dvfPv/22\nSL9+gRuPJvxIShLJn1/k1Cn32zzzjMi4cYEbU1pYvFhk27a0v4/j/JXm82lmugXynB1qJCWJTJgg\nQqkk8sknIhUrmr8/9BC3sXrdgw+KdO8u8v335va5c4u0b8/v3Y4d1q/98EOR0qVFdu4Uef5587X3\n3COycmXG77OdOXFC5IsvRNq0EcmbV6R1a5HPPhPp1s38nEqWFImJEbnpJpEmTUT69xeZMUNk926R\nxETr9712TaRDB5HmzUUuXjQfX7NGJCpKZP1672Pr0cMcg/Pt4MH02fdwJb3O2R7tHJ5QSrUH8DGA\nKADnAWwQkdZKqRIAvhCRtkqpcgBmOV4SCeBrEXnHzftJasfiL//9x6Xcw4fNLlOzZ9OnZGdat2Zy\nwr33Wj/fpQvL2nTrFthxacKLO+/kkrLRISs5DRvSs+ecQBXqaDuHJjWcPg0ULsyfb7kF2L+f1yeD\nI0foj07+mpo16Ydt0IDJiUeO0Ce9cqXZfrxFC96aNzeTfCdNojd74UKWTnv0UXMM5csDgwYxQm3n\nfIb04sABXvdnz+ZKtNGwpHBh+psN6wvAEnRPP81Ic/nyvn0+V65wJSFbNlZYyZGDj8fG0kI2bhwr\np7hDxP3fOXnSPG40qSO9ztlpqc4xW0RKiUhOESkmIq0djx8VkbaOn/eJSC3H7RZ3AjrQ5M4NNGpE\n7ybAJZY2bYI7Jl+oWBHYvdv989rOoQkEzt7K5IiwdFy1aoEdk0aTGYmKomhu2ZJ1gpMnC5YsSRuG\n81wlKorNN7p2pdf2++9p9/vuOya5HTpEIX3rrWziUaUK/bvDhtH2MXo0LR158tB61akTr4l161Jg\nGwI9ISGgH0VAiI1l5Yy6dWnnnDsXyJuXvy9bxpKAH35ont+KFeN1ddkylqerWNE3AX3hAoNeBQrw\n/2MI6EuXgPvuo73Dk4Betcr679SrR4uHFtD2IQzmm9Z07Eg/WGwsZ52tWgV7RN6pUMG9iL5+nV/2\nqlUDOyZN+HHrrfQCWnHkCJNhoqICOyaNJrOSKxfF3FNPsfVz//6uzz/1FJPeT540H2vdmpU2evVi\nm+lvvqGwatuWSbOVKgEvvMDV1VOnKK7PnmVzlmHDKM5vu40R2GnTgFGjgBkz+Pp33mHiXIUKwNix\nvnUotTPHjnE/GjbkhOKjjzj5uOkmTvgLF2aUec0aJvDdfDMnFuXKUcz6WzL2zBlG/6tU4Sq30QY8\nKYkl7GrXZnK2FfHx9MJbdU8dOZLVO266yb/xaDKWsBXRTzzBE0mlSiwHFB0d7BF5p0IF9zV6t2xh\nUkry7lgaTXrjKRL97786UUmj8ZfISEaX27VjI4716ynmDFatAooWZVTT4L33gL//5mORkUwyjIlh\nQOjCBdf3vuMORlgPHeLfMaxWjRtTTFesyITHDRtYr3r8eDaC+e03RrlHjDA77GUGTp9mBa6mTWmH\n6d2bn2FiIptAdezIyP3Ro8CUKbRcNGnCFbQWLfj5//GHa0k7Xzh2jJ9ps2acuDhHkwcP5kTms8+s\ny2lOmsRExIMHXR/v0YMTmYEDzYi2xkakh7E6PW4IQpLK2bNMMswsnDjBpC6rJIZPPhF58snAj0kT\nfhjJhcePp3xu1CiRPn0CP6ZgA51YqEknxo4VKVpUZMwYkenTUyaUdehgJvb+/bdIkSIihw/z98RE\nkWefFbntNl7fPJGYKDJ6tPm+lSqJvPqqSM+eTHobM4bbbNvGa0uBAiJ9+4rExmbs/qeWs2dFJk0S\nufNO188rf36Rrl1Fvv1WJC7O9TXnzol06cKk/RUruO916nhOnHbH/v18n7feSpnYOWkSnzt9OuXr\njh5N+T82bidP+j8OjW+k1zk7bCPRAKO27pL07EiRIizgvmNHyuf++ovJChpNRqMULR1W0ehVq/ic\nRqNJHT17ssTaihVA374pexd89x0tCHPmMIo8YABXh6ZN4/OffELvc/PmtBa4I0sWtqxev55R7rvu\nos3hl18YMX3pJf6d3LkZJd28ma+rUYMWE6vrUKC5eJGNRqpUof/4qacYQa5dm10B16/nZzB5MpuT\nGOXlAHYMrFmT0d1162hh2bCB/md/7Wg7djDhuk8fNlRxjjT//jvw8su07BQqZD5+7Bi3S544CrAl\neGKi9j5nCtJDiafHDTqq4ROdOolMnJjy8QoVRDZvDvx4NOHJO++wTJYzCQksFWkVoQ51oCPRmgxg\n61aRxx8XiYhgZDIy0jVS2bEjo6urV4vUrSvSoIHIhg2MhL78skj16lzB9OXvREdzRTMpiSXY+vY1\n/050NMuxJSWJnDkjMnw4I+Dt2zMaHkj++4+R3Zw5XT+LBx8U+e477xH4K1dEXnpJpEQJkXnz+H4P\nPSTSooXIpUv+j2f9epFixUSmTEn53O7dXFVYvJi/JyXxZ3eR54IFRRYu9H8MGv9Jr3N20E/ENwai\nT8g+MXYsa1c6c/Ika1tevx6cMWnCj+3bWTfVednyzz9FatYM3piCiRbRmoxk715aKpxrOzuLr7lz\nab344guK2+efp7geMkSkShVaBnz5G2XL0pJlkJTE93S2RgwaJLJ2LQXn2LEiZcqwbvLChdb1qdOD\nXbs4YUguOvv3NycNvrBunUjVqhTNx49z30qWFHniCYprf1m5UqRwYZEffkj5XFwcLTKffipy/rzI\nu++mHH+ePObPNWuK7Nvn/xg0qUOL6DBl7VqeBJyZMIE+OY0mkFSsKPLPP+bvb7whMmBA0IYTVLSI\n1gSC2FhTdFWo4CrIYmLo8T1zhiK6aFGKxBEjuK0vXubYWAq/1193FaZXrrCRFyBSowbfr0QJNlb6\n8Udeg265RaRWLTYguXYt9fsYH8/zyrBhriITEClXTmT2bJGrV/17z4QEfg6FC9NnPns2JxeNGzOK\nnxoWLeL7WUWO4+MZ2W7UiI3dkovn5s3pnTZ+796dEXFN4NAiOkyJj+eSz9695mNNmojMmhW8MWnC\nk4EDueQrwlWQatVEli4N7piChRbRmkDyyScphZlxe/ttbrN+vcjtt9Pm0bEjo8z793t/7xMnGBV9\n6aWUEd7lyynWn3mGUd0PPqBINLr8tW1LoVuggEjnzkzc9yZ44+LYfbFJE+v96dnTTJxMDbt2idSv\nT+E6YwYtL9Wri8yfn/rI+axZFNArVqR87uRJ9/+bN97gROfBB83HduxI/b5pUo8W0WFM375mxO/I\nES6xpWYpSqNJC7GxIoUK0doxcaJIw4YZt5xrd7SI1gSa1aspXt0JtqVLafGYMoWeXYDtwXfv9v7e\ncXEUnk8/nfLacv48rSXlypntws+eZfWLJ57gOSEqiu2xs2blfadOInPmiFy+TP91797WYy5blhVD\ntmxJuz0xKUlk/HiO57nnRO69l23Pp05N23tPm8bPc90687G9ezlpcPe/ePJJRsCVMh9766207Z8m\nbWgRHcbs3s2T1IULTDpJnuCl0QSKjz4SKV6cCYVr1gR7NMFDi2hNMEhKYuTz11+5EmQl4EqVogfY\n+TFnAeiOCxdEHniA3++3305ZHm72bFpGBg1ytW9cv05xPWgQhbY7YQkwv2fVKv/tGd44fFikZUta\nTho2ZNT4gw/SHmwaP55Jln/+KfLTT5xkWO1Xu3aMxgMiuXK5PjdhQtrsLpr0Ib3O2YrvFXyUUmKX\nsWQGevZkaZ8yZVhWLFeuYI9IE46IAJs2sYtWuXLBHk3wUEpBRCxaKIQu+pxtP65dY/OwCRP8f22J\nEmw+VrYsm49kycISbNu2semKQYcOvO5kycJuiJMm8fH27XkeWLuWnQB9oUMH4OGH2YExd27/x2zF\nzJlAly7s/nfTTcDzz7PEXGobkV27xnbgDzzA5iyRkewQnJyaNdm0xrkhjkGLFsC4cfx8NfYgvc7Z\nWkRnYrZtY93oYsWCPRKNJrzRIlpjJy5cYGe+8+ddHx8wAKhVi22tDUqUYF3oK1dSvk+2bOycWL48\nkDMna1QbNGlCgbl6NVtaO5M7NwM9zz/PcRhcugQsWcKayVOmsBaywf33s5Ng27ZAnjz+73NcHNCt\nG+tnA6yvPXQoOxP7SlISsHs3W4CvXs37f/+1/mwM2rbl57BkiflYrVpAbCwnB6+9psWzHdEiWqPR\naGyCFtEaOzJ/PkWeM489BrzzDqPLXbvysY8+ouCNjGTDlb17gV27KCid7y9cYCOSQ4fM97vtNmDQ\nID5uNBoxWpB7IimJTU4MQe38nvXqsVX3ffcBefN6388FC4A2bfjzXXexxXnVqt5fd+KEKZbXrGED\nqfz5uU9lygD79gE//GD92sKFuQJcty4btMTFsclLbCxbr2vxbG+0iNZoNBqboEW0xq6cPg2MGAF8\n/LHr4336sLvo448zyly+PC0Hd97p/r0uXAD27KFNolQp4JtvgPffB7JnZ5T7gQf4d0aN4q1rV9fu\nfZ44cgSYN4+dF//8M+Xzzz0H3HIL/27p0rzPnp2PHTjAbVasAO64w/r9//uPot0QzKtXs+NhvXq8\n1apFC8iXX7pGlZPTsiUjzHffTSvL++/z8axZgUce0eI5s6BFtEaj0dgELaI1dufcOQrE/v2tn69f\nH9i/n+3C33vPuh21FUlJjAS/9x7FbN++jM4++yyFbqdOFLalSvk33mvXaKUYP55tu52JiuLkwJmn\nnjLFtXFfqhSjxQkJbG1esSKjzIZwTkwEvv2Wtg9PNGwIDBlC++TffwOffWb6vmvVAvr1A5o29c86\nogkuWkRrNBqNTdAiWpNZuH4dmD0bePttJsy5o0IF2jLq1GHE1xfWrKGYXr4cePJJeqq3bmVkOUcO\nitE77uB99epARITn9xNhhHrTJkaZR45MuU27drRQHDhAS0WgGDiQn6G3fdDYEy2iNRqNxiZoEa3J\njKxeDYwZw2isN+69l77jW2+lAPYkrPfsAUaPZqWMhx9mdFopiumVK3l/7Bij34awrlEDOHiQgnnz\nZvM+MpKVL4oUAX76icmJ/fsDVapw+yxZKGSzZOHt7Flg+3be9uxJ+2dUrBjQrBkjzUZVkltuYWRb\nk3nRIlqj0WhsghbRmszMoUNMLhw92nysfn0mE3qL7rZrx1J1996bMgnw1Cn6rD/9lGJ54EC+75Ej\nwNKlfHz16pTvWa8eEx1btaJf+/33aevo2pXJi4UKsfLI1q20fGzdat4uX6YnOTEROHwYOHnSetwR\nEa7VQQAK5rZtWXmkcWP/LSiazIMW0RqNRmMTtIjWhAKXLlGsDhpk/fyAAcCDD7Jax+zZwKxZ7t/r\nvvsYLU5KouD9/HPX55s3ZzWLGjUYaY6JYeTZiFQvX87xGDz4IEXt9u0UzufP8/3Ll2fS4IEDvF24\n4N8+V6/OyHbTplo0hxNBF9FKqfcA3AMgHsBeAE+KyHmL7VoB+BBABICJImLhatInZI1Gk3nJDCJa\nKfUwgKEAKgOoKyLr3Wynz9lhTlISK2VMmeJeKD/+OFCtGpPpSpZkpYupUymu7ULLloyS161r1rke\nO5bJgAMHMuLsa/UQTWiRXufsLGl47SIA1USkJoBdAAYn30ApFQFgHIBWAKoCeFQpVSUNfzOkWL58\nebCHEFDCbX8Bvc8aW7EFQHsAf7jbQJ+zM47M9L3IkoX2jB9/NBtWJyQwShwVxW2mTwcGDwY6d2ZU\n+f77XQV0yZKs2VyvHrsg+kvLlssxeDC7/fnSfCUmhp0aT50yx7xwIV8/aRLHsXMnsGgRq4k0bRpa\nAjozHV+hRGRqXygii51+XQ3gQYvN6gHYIyIHAEApNRNAOwDbU/t3Q4nly5ejSZMmwR5GwAi3/QX0\nPmvsg4jsABiB8YA+Z2cQmf17ERlJX/OpU2zIMmYM8Ouv9B3HxgLR0fQTly5Nj/WBA6y7XK4c8L//\nAQUKMBp8/bp5S0gANmxwbSsO0Fbx22/LcfVqE8TEsC7zpUtsjrJjByuG3Hkn3zciAtiyhRaQgQPp\nn27YkN7rFSsomJ98komKoWzXyOzHV2Yl1SI6GU8BmGHxeEkAsU6/HwZwWzr9TY1Go9GkL/qcrfFK\njhyMQg92rD+L0M88bx7FamQkk/QiI3nLmpWi+coV/pwjh/l46dL0O584QT92XBxrVBctykob69ZR\nEN95J2/16lGMO9OuHe8TE5lcaPiqa9Tge+bLF9jPRxM+eBTRSqnFAIpZPPWKiPzi2OZVAPEi8o3F\ndtowp9FoNAHCl3O2F/Q5W+M3SjE5sGbNtL3P8OFMGPzyS0aQ33yTUeesWX17fUQEhXONGqzuodFk\nNGmqzqGU6gqgO4DmInLV4vn6AIaKSCvH74MBJFklqiil9Mlbo9FkWuyeWGiglPoNQD+rxEJ9ztZo\nNOFCepyzU23ncGRwDwDQ2EpAO1gLoIJSKgbAUQCPAHjUasPMcgHSaDSaEMDd+VafszUajcZH0lKd\nYyyAPAAWK6U2KKU+AQClVAml1DwAEJHrAHoC+BXANgDfiohOUNFoNJoAo5Rqr5SKBVAfwDyl1ALH\n4/qcrdFoNKnANs1WNBqNRqPRaDSazEJaItHpglKqlVJqh1Jqt1Lq5WCPJ6NRSmR0GCYAAAVdSURB\nVJVSSv2mlNqqlPpXKdU72GMKFEqpCMeqhS8JTpkepVR+pdQPSqntSqltDr9pSKOUGuw4trcopb5R\nSmUP9pjSG6XUJKXUCaXUFqfHCiqlFiuldimlFiml8gdzjOmF1b5abPOx4/y9SSlVO5DjsyPermlK\nqSZKqfOOc+EGpdRrwRinXfBFA+hjLCW+nnOUUgeUUpsdx9qaQI/TLiilHnZcmxKVUnU8bOeXJg2q\niA7Twv4JAF4SkWrgsuoLYbDPBi+CS8ThsvzxEYD5IlIFQA2EeK1dh4+2O4A6IlId7HjXMZhjyiAm\ng+csZwYBWCwiFQEsdfweCljt6w2UUm0AlBeRCgCeAfBpoAZmR/y4pv0uIrUdtzcDOkgb4cvnpY8x\nt/h6zhEATRzHWr2Ajc5+ZEizqWBHom8U9heRBABGYf+QRUSOi8hGx8+XQGFVIrijyniUUtEA2gCY\nCPdJTSGDUiofgEYiMgmg11REzgd5WBnNBXCSmEspFQkgF4AjwR1S+iMiKwCcTfbwfQCmOn6eCuD+\ngA4qg3Czr87c2G8RWQ0gv1KqaCDGZlN8vaaF/DnQR3z5vPQxZo0/55ywP95EZIeI7PKymd+aNNgi\n2qqwf8kgjSXgOCJ3tcGOj6HOGLCaS1KwBxIgygI4pZSarJRar5T6QimVK9iDykhEJA7ABwAOgZUd\nzonIkuCOKmAUFZETjp9PAAiXi7zVOTw6SGOxA75c0wRAA4c1Yb5SqmrARmc/fPm89DFmja/nHAGw\nRCm1VinVPTBDy7T4rUmDLaLDZVk/BUqpPAB+APCiIyIdsiil7gFwUkQ2IHxmxJEA6gD4RETqAPgP\nobPEb4lS6mYAfQDEgKsreZRSnYI6qCAgzNYOp3Nb8u90OO17cnzZ9/UASolITbDK1ZyMHZKt8fVY\nCctjzOF53mJxu895Oy/nnIYiUhtAa9A+2iijxx0sPHxe9/r4Fn4fV+nV9ju1HAHg3M2+FKj8Qxql\nVFYAPwKYLiLhcAJtAOA+h7ctB4CblFLTRKRzkMeVkRwGcFhE/nH8/gNCXEQDuBXAKhE5AwBKqVng\n//7roI4qMJxQShUTkeNKqeIATgZ7QAEi+Tk8GiFo4fEDr9c0Ebno9PMCpdQnSqmCjpWccMMXDRC2\nx5iI3OXuOUfCr9dzjogcc9yfUkrNBi0LKzJkwEHG0+flI35r0mBHom8U9ldKZQML+/8c5DFlKEop\nBeBLANtE5MNgjycQiMgrIlJKRMqCiWbLQlxAQ0SOA4hVSlV0PNQCwNYgDikQ7ABQXymV03GctwAT\nScOBnwF0cfzcBeETXfwZQGfgRrfDc05LzOGI12uaUqqo4/sBpVQ9sNRsOApowDcNoI8xa7yec5RS\nuZRSeR0/5wZwN5hgF+54bTblqyYNaiRaRK4rpYzC/hEAvgyDwv4NATwOYLNSaoPjscEisjCIYwo0\nYbEUB6AXgK8dX8a9AJ4M8ngyFBHZpJSaBp6IksBl68+DO6r0Ryk1A0BjAFGKzUuGAHgXwHdKqW4A\nDgDoELwRph8W+/oGgKwAICITRGS+UqqNUmoPaFkK6WPcG+6uaUqpHo7nJwB4CMBzSqnrAC4jNCvY\n+IQvn5c+xtxiec5RSpUA8IWItAVQDMAsx5wtEsDXIrIoOMMNLkqp9gA+BhAFNpvaICKtnT+v1GhS\n3WxFo9FoNBqNRqPxk2DbOTQajUaj0Wg0mkyHFtEajUaj0Wg0Go2faBGt0Wg0Go1Go9H4iRbRGo1G\no9FoNBqNn2gRrdFoNBqNRqPR+IkW0RqNRqPRaDQajZ9oEa3RaDQajUaj0fiJFtEajUaj0Wg0Go2f\n/B/NCqfN4Rm/ZwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAAD8CAYAAABJhAMxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACoyklEQVR4nO2dd3xTVR/Gn9NCWWW2ZbXsjWwQBAcqw4mIoqI4cO/xqq/i3utV3HvhFhQHqCCCC5SNsneZpayW0ZbVdd4/nnt6b5KbNEmT3CQ9388nn5vc3Nyc3Nx77nN+5zeElBIajUaj0Wg0Go0mtCQ43QCNRqPRaDQajSYe0UJbo9FoNBqNRqMJA1poazQajUaj0Wg0YUALbY1Go9FoNBqNJgxooa3RaDQajUaj0YQBLbQ1Go1Go9FoNJowoIW2RqPRVEKEEKcLIdYKITYIIcbavF9NCDHReH++EKKlA83UaDSamEYLbY1Go6lkCCESAbwB4AwAnQFcLITo7LbZ1QD2SSnbAngJwHORbaVGo9HEPlpoazQaTeWjL4ANUsqNUspCABMADHfbZjiAj43nkwAMEkKICLZRo9FoYp4qTjfAF6mpqbJly5ZON0Oj0WgCZvHixTlSyjSn2+GFdADbLK+zAPTzto2UslgIcQBACoAc60ZCiOsAXAcAtWrV6t2xY8dwtVmj0WjCRrj67KgW2i1btsSiRYucboZGo9EEjBBii9NtiARSyncBvAsAffr0kbrP1mg0sUi4+mztOqLRaDSVj+0AmlleZxjrbLcRQlQBUBdAbkRap9FoNHGCFtoajUZT+VgIoJ0QopUQIgnAKABT3LaZAuAK4/lIAL9JKWUE26jRaDQxT1S7jmg0Go0m9Bg+17cAmA4gEcCHUsqVQojHASySUk4B8AGAT4UQGwDsBcW4RqPRaAJAC22NRqOphEgppwKY6rbuYcvzIwAuiHS7NBqNJp6osOuIEKKZEOJ3IcQqIcRKIcTtNtsIIcSrRuGDZUKIXhX9Xo1Go9FoNBqNJpoJhUW7GMBdUsp/hBC1ASwWQsyQUq6ybHMGgHbGox+At+CZSkqj0Wg0Go1Go4kbKmzRllLukFL+YzzPB7AazL9qZTiATySZB6CeEKJJRb9bo9FoNBqNRqOJVkKadUQI0RJATwDz3d6yK47gLsbVPq4TQiwSQizas2dPKJun0ZTLlCnADz8AJSVOt0Sj0Wg0Gk2sEzKhLYRIBvANgDuklHnB7kdK+a6Uso+Usk9aWrQWVdPEI3/9BZx7LnDOOcCllzrdGo1Go9FoNLFOSIS2EKIqKLI/l1J+a7OJP8URNBrHKC0FrrwSaNkSuPFGYMIEYP16p1ul0Wg0Go0mlglF1hEB5ltdLaV80ctmUwBcbmQfOQ7AASnljop+t0YTKhYuBDZsAJ54AnjoIaBqVeD1151ulUaj0Wg0mlgmFBbt4wFcBuBUIcQS43GmEOIGIcQNxjZTAWwEsAHAewBuCsH3ajQh46efgIQE4IwzgCZNgBEjgIkTAV0HT6PRaDQaTbBUOL2flPIvAKKcbSSAmyv6XRpNuPjxR2DAAKBBA74eNAj46isgMxNo29bZtmk0Go1Go4lNQpp1RKOJRXbvBv79FzjzTHPd8cdz+ddfzrRJo9FoNBpN7KOFtqbSs2QJl/37m+s6dQLq19dCW6PRaDQaTfBooa2p9CxdymW3bua6hARatbXQ1mg0Go1GEyxaaGsqPUuXAhkZpn+24thjgXXrgEOHnGmXRqPRaDSa2EYLbU2lZ+lSoHt3z/WdOjHryLp1kW+TRqPRaDSa2EcLbU2l5uhRYM0aV7cRRceOXK5ZE9k2aTQajUajiQ+00NaEhcJC4PHHgd69gS1bnG6Nd9asAYqL7YV2u3aAEFpoazQajUajCQ4ttDVh4X//Ax55hG4Z99zjdGu8s2EDlx06eL5XvTrQqlX0C+0jR4CNG51uhUaj0Wg0Gne00NaEHCmB8eNZ9OXBB1n45Z9/nG6VPZs2cdmqlf37HTtGt9CeOZNBnG3aALNmOd0ajUaj0Wg0VrTQ1oScv/6ihfWKK4CbjXqgv/zibJu8sWkTUK8eH3Z07AisXQuUlkayVf7zwgsU2o0aAY895nRrNBqNRqPRWNFCWxNyJk0CatYEzjsPSEujW8bffzvdKns2bfJuzQbop33kCJCdHbk2+cuuXbRoX3453XN++w1YuNDpVmk0Go1Go1Fooa0JOXPnAn37ArVq8fXxxwNz5kSnVbg8od28OZfbtkWmPYHw9ddASQkwejQwZgzXRevMgUaj0Wg0lREttDUh5cgRljTv189cd/zxwN69dMGIJqQENm/2LbSbNeNy69aINCkg/v4baNECOOYYuo906aL9tDUajUajiSa00NaElCVLgKIiV6E9YACX8+Y50iSv7NzJgYE/QjsaLdrLl7umJTzpJM4cFBc71yaNRqPRaDQmWmhrQsr8+VxahXbbtkCVKsD69c60yRvlZRwBgLp1gdq1o09o2xXaOekkoKCAgx2NRqPRaDTOE1dC++hR+q1K6XRLKi8LFwLp6UDTpua6KlUoZlXO6mhBFdJp2dL7NkLQqh1tQnv1avpnd+1qrjv+eC7nznWmTRqNRqPRaFyJK6H90UfAhRcCI0YABw863ZrKyapV9BV2p23b6BPaO3ZwaR0U2NG8efT5aC9fzqXVop2ezjSFq1Y50iSNRqPRaDRuhERoCyE+FELsFkKs8PL+yUKIA0KIJcbj4VB8rzvXXsu8wpMnA6++Go5v0PhCSmDdOvsqi0poR9Nsw44drP5Yt67v7aLRor1sGVCtGtMPKoQAOnemtVuj0Wg0Go3zhMqi/RGA08vZZraUsofxeDxE3+tCQgJw113A6acDL78MHD4cjm/ReGP7ds4keBPa+fnAnj2Rb5c3duwAGjemQPVFs2bA7t0MnIwW1q4F2renW46VTp20RVuj0Wg0mmghJEJbSjkLwN5Q7CsU3HsvhdFXXzndksqFSt/nTWgD0eU+snMn0KRJ+dupXNpZWeFtTyBs3crUfu507szBTE5O5Nuk0Wg0Go3GlUj6aPcXQiwVQkwTQhzjbSMhxHVCiEVCiEV7gjR/DhxIS+XPPwfdVk0QxJrQ3rHDP6Gtttm5M7ztCYRt28zUg1Y6d+ZSu49oNBqNRuM8kRLa/wBoIaXsDuA1AN9721BK+a6Uso+Usk9aWlpQXyYEMGQIy1NHYzXCeGXtWlaDTE/3fK9lS/4vmZkRb5ZX/BXaDRtyuXt3eNvjLwcPsgCQsrRb6dSJS+0+otFoNBqN80REaEsp86SUBcbzqQCqCiFSw/mdQ4Zw+lznFI4cym/Yzuc5KQlISwOysyPfLjuOHAH27fNPaDdqxOWuXeFtk7+owEw7od2sGVCjBoNSNRqNRqPROEtEhLYQorEQlF9CiL7G9+aG8zuHDOHy11/D+S0aK5s2AW3aeH+/SRMzpZ7TKDcQf4R2qjEkjBaLtko1aOc6kpBA322VI1yj0Wg0Go1zVCl/k/IRQnwJ4GQAqUKILACPAKgKAFLKtwGMBHCjEKIYwGEAo6QMb6K3xo0pOP75J5zfolFISQE4bJj3bZo2jR6hrdrhj9CuWhVISYkei7YS2nYWbYBuOps3R6o1Go1Go9FovBESoS2lvLic918H8HoovisQuncHli6N9LdWTnJy6I7hTfwBFLXR4sqjhHbjxv5t37Bh9Fi0t22je463QjstW7JCp0aj0Wg0GmeJq8qQ7nTrRr/haMp/HK8oV4XyhPauXSwd7jSBuI4A0SW0t26lyK5a1f79Fi2A3FygoCCy7dLEBkKIBkKIGUKI9cayvs02PYQQc4UQK4UQy4QQFznRVo1Go4l14lpod+/OrCMrVzrdkvhHuTPY5XZWNGnC/yMaitaoNqT6GZLbqFH0uI54S+2naNmSS+2nrfHCWAC/SinbAfjVeO3OIQCXSymPAYuRvSyEqBe5Jmo0Gk18EPdCG9DuI5GgPL9hwLQeR4Ofdm4uUK+eZ2VFb0STRbu8QjtKaMeTn/b27cBff+l0nSFiOICPjecfAzjXfQMp5Top5XrjeTaA3QCCy7eq0Wg0lZi4Ftpt2jCv87JlTrck/tm6FahZE2jQwPs20Sa0U1L8375RI2D/fuDo0bA1yW/27DFze9sRjxbtK68ETjyRxajCG0ZdKWgkpVRX4U4AjXxtbGSKSgJgmwU/FEXGNG7s3g0UFzvdCk20c+QIsGaN063QlENIgiGjlYQEoF276KpGGK9s3Uprtl0ObUUsC20lbPfsATIywtMmfygtZeCpr1pODRsC1arFj0V7zx6m6WzRglbttWuBjh2dblV0I4SYCcAu1PcB6wsppRRCeB26CCGaAPgUwBVSStv5BCnluwDeBYA+ffroYVAoaNQIqF0byMtzuiWaaKZGDS619SGqiWuLNgC0bh1d1QjjlS1bfPtnA2aGj2goWpOTE5zQdtp9ZO9eim1fFu2EBPpwq8I2sc633/I3v/giX//+u7PtiQWklIOllF1sHpMB7DIEtBLStme1EKIOgJ8APCClnBe51msAAPn50TGFpolODh50ugUaP4l7od2mDQupaN/O8JKVVb6lt3p1upbEskXb6YBIJfR9WbSB6CoOVFG++44VR0eM4DmmhXaFmQLgCuP5FQAmu28ghEgC8B2AT6SUkyLYNg0AXHYZlw884Hs7TeUlOdnpFmj8JO6FduvWNArEi+iIRkpKKAD9SZWXlkZrstMEKrTVtvv2hac9/qJcYH1ZtIH4EtpLlgAnnEC3pFNOAf74Q8+UVpBnAQwRQqwHMNh4DSFEHyHE+8Y2FwI4CcAYIcQS49HDkdaGiLw84KabgAMHnG6JH7xulJ0YN87ZdmiiHz1lH/VUCqENABs3OtuOeCYnhzMG/hR/SUmhyHWSwkLOyvqb2g8A6huZhvfuDU+b/KWyWbRzczmL0LkzXw8YwMFGvLjFOIGUMldKOUhK2c5wMdlrrF8kpbzGeP6ZlLKqlLKH5bHE0YZXkMceA956C/jsM6db4gd16pjPVUonjUaxfr35XIkcTdSihbamwqjiL7EitJVYDsSirYR2LFm08/Nj341v9WouldBu25bLTZucaY8mdlGxIfXqOdqMwCkv+EVT+Wjf3ukWaAIg7oV28+YMDoum2ZVoqIwYSgIR2g0aOC+01fcHIrSrVqVLnNNCW1m0y2u7+i9i3aq9ahWXSmi3asWlHjhrAkX1u/7mznecWB8la8KPLnsdE8S90E5KYgaGaLkxr1zJjDw9e0aX+K8IKkCwkc9svCQlxXn3C+UjHojQBmjVdrrte/aw3eWJhWhKpVgRVq1iLnxVCVMNnKPletbEDkpox0xgfM2a5vN333WuHZro4tlnzefVqjnXDo3fxL3QBljAI1qKd3z3HVBUBKxYAbz/vs0GS5cC990XIxE7JFDXkUOHnB2IB2PRBii0o8GiXZ5/NmAKbfXfxCqrVgGdOlFcA5xZaNZMu45oAkfVfyksdLYdAXHzzVxef72z7dBED/fdx+UjjzjbDo3fVAqhnZ4ePZa96dOB3r2Bvn2ZPcGFLVuA007jiLVv35gR2zt30uroT7YhJW6ddB8JVmg3aBAdQrs8/2wgfizaa9Z4Fqdp3VpbtDWBoyzaMSW0VfYRgBYKTeXGeg48+qhjzdAERqUQ2k2bAtu3O58S7MABYO5caumBA4FFi9zc8B59lCtefx1Ytw748kunmhoQO3f6Z80GYltoR4NFe88e/yzaKSm0/saU0F67FrjrrjL/nKIiXrfKL1vRurW2aGsCJyYt2lZq1XK6BRqn0edATFJphPaRI8D+/c62Y9YsWlWU0C4uBubMMd4sLgamTAHOPZfJXrt0AT7+2Mnm+s2uXf75ZwO0CgPO+jrn5rJ4jtUF0h+iwUfb3/zfQnDwEzNCe+1a4MQTWf5x2DDgyBFkZdGf1j3pQqtWHNxpA58mEBITuYw5oa1SDWk0CqdLFGsCotIIbcD50t9r13LZvTtw/PH0Oy0T2n//TRU3fDhV0hVXAPPm0bId5cSaRTsvL7gUX067jkjJwaJKNVgeMSW0X3yRyvm553hRTJhQFldhJ7QBYPPmiLZQE+OouLGYE9rWhP9XXulcOzTOcu655nN/pjU1UUNIhLYQ4kMhxG4hxAov7wshxKtCiA1CiGVCiF6h+F5/SU/n0mmhvXEjxVrduvRnbtbMknd+8mSmSDntNL4+7zwuPRy5o49YFNq1awf+ufr1gcOHnQvkPHyYIsHfQULMFK0pKgImTQLOOQf4739ZZ33KlLI6He5CWw2cYz3QUxNZkpK4jDmhDQATJnD50UeONkPjIJMnc/nDD862QxMwobJofwTgdB/vnwGgnfG4DsBbIfpev1A35u3bI/mtnmzc6FrEqU0bYMMG48WcOcBxx5kKsFUrWjLmz494OwOhsJCG+FgS2vn5roXX/MXpojXK9clfi3bMCO1ff+VJdNFFnM0ZNgyYPh1bMosAmKn9FCoYVKWV1Gj8IWZdRwBeGwqd6q/ycckl5vOzz3auHZqgCInQllLOAuDLe3U4gE8kmQegnhCiSSi+2x9UBoZosGi3aWO+btvWyKVdUgIsXw706GG+KQQzjyxYEOlmBoRyFfPXR7tGDT6c9HUO1qKt/MudFtqBWLRzcmJAWPz4I4N8TjfG6uecAxw6hC3zdqJxY/rTW1HnmnZT1ARD1F8P3rjnHi51qr/Kh0qMcNJJzrZDExSR8tFOB7DN8jrLWBcRatSgFdBJoV1SQp9Sd4t2Tg5wYMkm+qd27+76ob59WeEmPz+ibQ2EQHJoK5wuw56XF5sWbfW9gQhtIAYsv4sWMeelcqIdOBBITMSW9Udtq0/Xr0/rpBbammCIWaH93HPm85kznWuHJrI88ID5/M8/nWuHJmiiLhhSCHGdEGKREGLRnhBGW6enOyu0t2+nK6q70AaAzJlGrjI7oS0lsHhxZBoZBMEIbafLsOfnB++jDThnjQ/GdQSIcveRoiIWaerTx1xXowbQoQO27K5hK7QTEug+EvUDCE1Ucviw0y2oAIMHczlkiLPt0ESOp5/m0t+OXxN1REpobwdg9bTMMNZ5IKV8V0rZR0rZJy2EkbUql7ZTqAIbVqHdti2XmQtyaaI75hjXD/XuzeXSpeFvYJAEI7Tr13c21WKwFu1Ycx1R/0lUBw2uWsXoUnWuG5R274mtB1NshTZAoa0t2ppgcKldEGvMmGE+19bN+OeZZ8znTueW1QRNpIT2FACXG9lHjgNwQEoZUTtb48bOWsDshLZ6vmFVIdChg6czaloaU5SUpSaJPpSI89dHG+BPyssLT3v8IdhgSCVwnSrYGazrSFRbtNVsjdWiDWB32wE4iupokVpg+7FGjbRFWxMcBfanVOxw/PFcnnyyo83QRID773e6BRHl99/pOfjf/wL/+Q9w9KjTLQoNVUKxEyHElwBOBpAqhMgC8AiAqgAgpXwbwFQAZwLYAOAQgIgnA01Lczbvf1YWl+kWz/TatWmZy8yuAQzp5PkhIYB27aI6l/auXRR+yr3WH+rUcU6sHj3KRzCuI+ozTg0SArVoN2rEUyiqhfaiRTywanrHYEsqLdwtijIBdPf4WMOGUX1ZaKKYmLZoA8Ds2fSfApj2b9QoZ9ujCQ93320+d7qsdQQoKADGjAG2bmVxP4D2xxtucLRZISFUWUcullI2kVJWlVJmSCk/kFK+bYhsGNlGbpZStpFSdpVSLgrF9wZCWhrjDZ3qZHftoutB1aqu61u2lNiS38CzzrSiXbuot2gH4jYCUGg7JVZVXGkwFu2kJA4onBTaNWua+YDLo2pVZoiMaqG9Zg1dphJcu6ItNToCAJrvs3ebUhbtSnD/0YSYmLdoC2GK64svdrYtmvAxbhyXlcQ3++GHUVY7QXHjjc60JdREXTBkuFC5d52yau/ebe9e0bLREWyWzX0L7a1bo3YOJRihrVxHnBBJSmgHY9EGnB0k7NsXeEXLqM+lvWEDz3E3tuyvCwBoscd+TN6wIYPaYt46qYkYVYz527g4Z1S6NwA46yzn2qEJD0KYzyuBb/aiRcArr9CCDbimilcVtWOZSiO0VVylUwFUu3ebYt9Ki9p7sRXNUdq8pf0H27UDSktNJ+8oI1iLdlGRMxUWlUgOxqKtPuekRTsg40ZxMRrvWY4dM1YAn38ermYFz+HDwLZtHm4jAMeWdRPzUXfTEtuPqkGr9tPW+EtyMpcxb9FWfP01l1OnxnDOQo0HRUXm8379nGtHBLnpJvbp/foxVO2SSzh7C2ihHVMooe2URXvXLnuh3TIpG4Wohl21PcUGANPaZ7iPvPcecMcd0TNlvmtXYIGQAC3agDOCtSKuI+pzTgrtgCzat9+OJjsWY0dRCnDZZUzkHk1sMtJaWqs4GWzZArSos99rL6uuJZ15ROMvSmjHhUUbAEaONJ8HEiSjiW6svoHz5jnXjgixahWwcCEwdiyDIYcOZf2yYcP4vtOFBkNBpRHaTt+YvbmOtCihpXpzaXP7D1qEdmkp8PjjnGJR7ltOcjD7APLzgca5K2l19xMlcp0IiFQiOe5dRxYuBN58E036ZGCXaIxSJERf6eYNG7i0sWhv2QK0aHyUF45NLkinB86a6GPlSmDECGYtmDvX8/1atbh0KhA7LFhHDb//7lw7NKFh0iTz+T//ONeOCDJpEj1lWrXiBOeIEVyvPKKmT3eubaGi0ghtJ2/MhYUUSbauIwdXAQC27Kru+SbACMo6dYCtW7FwIbOXNGwIPPIIq006RkEBdg29DADQ+LPngauu8tvMroS2E4I1FK4jThXq9Nt1REpGrDdsiCYXnIDiYoGc00YD77/vOi3pNOUJ7VZG92STXsTpKp2a6CEri91Pt27UmpmZzIB3ww2u54eyaB85EpBdILpR8+sAcOqpzrVDExouuMB83rOnc+2IIJMm8XqdP58x8cqSffrpXP70k3NtCxXxJbQXLmQ+3vHjPVRorVr0/XFCaKvvtBXae/8FUM6sfkYGkJWFb75hQM999zGDitIpjjBhAnauzAEANL74FODjj4Enn/Tro9HgOhKLFm2/XUf++ov5kR58EE1acQC389RLeCJGU/GjzEz+IFUJyODAAT5adDZMkDbuI0poO1n4SOM8r73GSb/PP6dLXWYmsHo1n7/3HtCxI/DFFxx7Kos2EOPVId2x+mcHa0HQOI81ALK42Ll2RJC1a4Hly+kF9d13wEknASkpfC81lctosg0FS3wJ7fx8miuuugq4916Xt4Rwrpqc+k4715Ha21ahQVI+tmzxsQNDaM+cyWnRk07i6uXLQ95U/5kwAbsa9wAANLr7cmD0aOCxx+znbN2IBteRWPPRlpLHSw1SfPLMM5zCufpqs2hNk158Ek0+fxs20D/beoOBOYBs07cBK6baWLTVcdAW7crLrl2cuDnhBN6wx43jTbp2beDFF5nJoEULdk13321atIE48tMGmMfzqqv4PD9fjz5jkTVrzOeDBrHfqwR88w2X3brRV1u5jQAet4WYJr6E9qmnUn3efDN73e+/d3nbqaI1KjOCh0W7pATYuhUt6x8oiwuzJSMDpdu2Y80aoHt3oFMnTrE4JrR37gR+/x07e3Jup3ETAbzxBgcEV19d7hA0Giza1ptuIDgltA8d4nR3uQOEdeuAadOA224DatY0hXZRKtC0aXQJ7W3bYFdjXaWNb9epKh33bCzaiYk8FlpTVF7efpvG3NdfB7Zv5xTzDz8AkyfTOpabC8yZA1xzDfDSS7R0K+Im84jigw/M55Uk73Jc0clSsG7mTOfaEWG+/hro398cZ5x5prPtCRfxJbQBDoNeeolFMO6912UKJi3NWYu2h9DesQMoKkK7Zkd8V7nLyMDWHVVx+DCnQmvU4HTpsmXhanE5TJ8OlJZiZ/N+EMLwf69bl1Gaq1eXG3TntI92crJHfRS/qVPHrC4ZSZQwKHeA8O679C+65hoAljLsOwVw3HF+zThEjOxsin831q3jZdymDZhY1Uvmkfr1tUW7snL0KPDmm7wxf/klrdpnnw2ccw5w7rnAeecBQ4bwMnjuOaYgfeop8/NxJ7QBV6toly7OtUMTGFbTbSVKo7RhA7BkCd1GZs3ircAmAVVcEH9CG+BU2lNP8Y79ySdlqxs2dMai7dV1xDBjd+hAH22v4i0jA2vATO4dWTAP3bo5aNFetAhITsbO0oZISzMLQeCcc4BTTmFqFB9Jsp12HamIG6P6bKQDIv3yLT96FPjoI2D48LLk5jVrss07doBCe+NGxzrz3bsZ9zhlCjh3f+CAV6HdvDkHlGjfniZum+i1evW0RbsyMGkSbSdWJk7k+dSuHT3WRo8GFixgmM7ixcC//wIPPcTQkZtuAp5/3vXzTsVZhBVV7QNgCpZKUOgk5llkKchVs6aZtaESoNxGzj8fmD0bOPHE+HIXsRKfQhug6OvWjS4NBk65juzezTSnHtZIIwKyQ4+akNJHcGNGBtaAClvNMHXtSs106FBYmuybRYuAnj2xa7dwLVYjBPDAA/zBPgqkVK1KEeWU60iwgZCA+dlIt90vi/b06Zwvv/pql9Vl1SF7GX7aDo3QXn6ZwWoPPwzIbKNcpRehXVYsskMHRq5lZXlspy3alYOpU2k3UUmNpOS5VL06x5U9ezLw8dhjGQvfqxfQowfH+88/T1H+1VdmkBUQx4ZDa+anlJQ4Sq8Sh5SW8qRVxFXgQPlMmgT07UsP2u3bzdizeCR+hbYQwHXXMRfl4sUA2O8cPhx5cbp3L7/bY7RmCO32/XkH8FoBKSMDq9EJKbWPlkXitmzJPjXiydyLi5m5ondv7NxpY6U/9VQ6kr/4os90f3XqxLZFO9JC2y+L9sSJzOAxeLDL6jKhrSxePv2UwkNeHse8jRrx9JkxxUj7kJ7usp2UbF779sYK1Wabi0NbtCsH/ftz/KgMEbNn02J95AhdwL75xpj9sOHuu3neTZniauDduTP87XaM7dvN55UkqC4msf43kfZFdJicHNrrhg3j9QzQoh2vxK/QBoBLL2UP/M47AMx0Mbm5kW3Gvn1e4lM2bQKaNEH7rqzq5Utor0FHdEzJKVulDIERF9qrV3O0Yghtj/LrQgC33MIQYuu0mBtOBRVW1KLtlNAu16J9+DDVxHnnccrAQpMmhrBIT+f0pAM1befO5TEbP57H8LufjbzxbhbtPXs4ACsT2uqJlxR/2qId//Tvz6UKL3j5ZfO9L75gvKwvbrqJ55113G/xKIw/mjZ1TZk5erRzbdHYY815ftddrtUgKwG//cblkCH0z65fn2F1VuIhrZ8ivoV23brAqFHsjfPzHRPaXvMfb94MtGyJOnUohrwaGuvVwxp0QqfkrWWrlD6xGi8igjE7IHt5EdoAoxuSkny6j9St61wwZFxatGfOpBq3FjwwaNKEAzIJQeHqgNBWcVq9e/OxeK0xYnAT2iozRJnQbtKEowubi0NbtCsHnTvzups7l+PJ777j+scfN4talMeYMcCHH5qv58+Ps1za7lhvcl98EV1B0JWdOXNcq3i+8IJzbXGIX3/lNd27Ny3aJ5zgmaAgniq4xrfQBug+cvAg8OWXZT56OTm+PxJqfAptwxzToYNr0LiVvfsEdqMhOiaaTtyOWrSTknCgUXscPepFaNerxxQAX37pNfG+dh0JjHIt2tOmsSLHwIEebzVrRlGxdy94ojngOrJmDa0WaWn0oV2WnYqi6rU9EoP/y/pNZlE0IbxmHqlfn8clniwfGk8SEujLOXcuXOoN3HdfYPsZM8b19XPPVbhp0Y3VhD9gQJxGgMYY+fksg6jws5pyvDFzJnDyydRi69fb+2fH0+ka/0K7Xz8GRb79NlJTeFJHhdAuLga2bqWzNdjEZcvsdakS4B2LzSC2OnXoBRBxob1hA9C6NXbl0L/MrggPAOCiixhx5CVvc926zgjtWHUd8WnRlpJCe9AgRt260awZl9u2wY8UN+FhzRpmzBGCVoyjJVWxMnWgR+DCP//QiO0ygPNihVfXVDxZPjT29O/PGN4VK/i6Th1LtiM/EcJ1hv7ll+Pcqg24OqPXrVtphV1U4F4IIe5PPns2b2Yih8GDfftnx1O/Hv9CWwjghhuAf/9FypZ/AESJj/b27Qy3NYR2v34M0lQ3EitlQjvf9HkWglZtR4R227YMroMXizYADB3KYI+ffrJ9Ozk58kHWUpZj0T54kLnXL7iABSBsbkpRadFes4a91xln2H62eXMut24FhXZpqY8UN+FhzRozY07v3lwurnGCx3b//GMmRymjQwc23u3GpK4p7acd//Tvz9P2zTf5+vLLg9uPNfPIgQMsmBHXNGrESrGKYAsIaCqONfjxn3+YNqcS8uuvXA4aRP/smjU9+/yCAmDChMi3LVxUjqvu0kuB5GQ0mMBeOpIW7dJSdugeFm0j44hyHTnuOL6cP99zH2vWANUSi9By9wIX8Rdxoa1yELZtW5ZtTVlLPahXj8NUH0I70kUjjh7ljIGtVbiggNOrzz/PZLzXXAPccYfHZjVr8l7lhNBOSvISM6P8/YYOtf2si0Vb5c1T5RcjwP79NKypHPBt2wK1RQH+kT1ctjt0iJ5JtkLbJv+luqa0n3ZgCCEaCCFmCCHWG0uvpQSFEHWEEFlCiNcj2UZ3+vXjUp3qF18c3H7cs0lWCvfYsWNdq6XFa7LiaMb9mJf5xlU+Zs7krGWnTrRo9+9vxu9v2AD85z+M2//f/5xtZygJidAWQpwuhFgrhNgghBhr8/4YIcQeIcQS43FNKL7Xb2rXBi69FFW//gL16pZG1KJdUECx7SG0Vc11w6LdqhWzongT2u0b7kfikYMu8ykRF9o7dlANtWtXJrTdsrO5ctZZnO/dts3jrVq1Ii+0lTi2tWjffTfbOnky57VuvRV49VXg229dNhPCmYwp+fk+/LPnzGHP5SX9QsOG7Mi2boVZ8tzmPwkXyutDCe0EIdFL/IPFBR1dtlu2jNeKh9D2knlEW7SDZiyAX6WU7QD8arz2xhMAZkWkVT5o0MC1Hos1/XAgZGS4vl6+nNXp4p5du1xf28RyaMKEu8iuxO47paW0aA8aRCmzbBntcT//TLnQvj3w+ut8bp2g/c9/YtvTpsJCWwiRCOANAGcA6AzgYiFEZ5tNJ0opexiP9yv6vQFzww3AkSNIqZIXUYu2srZ5uI5s3swL0DA3CkGrjZ1L8+rVQMfmxllmUdZKaEfsulUWRcOiXb8+BbNXVD7nP//0eCs5mRdOSUnom+kNJY49LNqLFzMF5H/+w8SeCQnAuHFUfDfe6FEGsk6dyFeGLCjw4Vs+Zw6t8V4sVQkJPM22bQOjEatXd40qCzOZmVyWldfNy0Pv0oVYmtPUJSZB+ev17eu2AyW03YI4tUU7aIYD+Nh4/jGAc+02EkL0BtAIwC+RaZZvBgwwn7tlsPQbq9BWzx99NOgmxRbWG8WsWcD7kb8NVzrcBzSVWGQDdI3ds4dC+++/eTimTqWoXryYxcy2bmWinDPPND/38st0Ody40bGmV4hQWLT7AtggpdwopSwEMAHsyKOL7t2B/v2RenAzcnMid7Ira5ut60h6ukvw2sCBFNVWDZSfz5OrcyejzW5C+9ChCAYNKHcDQ2i7W4c86NqVATizPA1iSqBHsniQEsceFu2nnuIf9Mgj5rqqVYG33mJA5yuvuGweVRbtHTs4O2JVITY0a2ZYtIWg0/bWrT63DyUqHqts2j47G72xGEeKq2LVKnO7X34BunSxKRaZnMxrRVu0Q0UjKaURZYGdoJh2QQiRAGAcgLvL25kQ4johxCIhxKI9YSy926VLxfdh7bMee4zLyZPjK8OBT6xC79prWbdeEx5uvNH13lfJRTbg6Z8N8BS89lrekh59lJOzgKlrRo9m0ePNm2n/ikVCIbTTAVjnobOMde6cL4RYJoSYJITw5tkb3k77ppuQcmQ7cjZHzhyprG22riOG24hixAguVZ5YAPjjD063DDzVCKSwCG11QkbMfWTDBob6N2/un9BOTGSCTGWqtKBEYyQDIm1dR1as4AG//XZPBd63LzB8OP22LWXlnBDaXi3ac+ZwaU0ZZUPz5hZvEQeEdrVqlkx+htAGytKy4/BhniZDhnjZiU3mEXU8Ij27EAsIIWYKIVbYPFyMIFJKCcBOAdwEYKqUMqu875JSviul7COl7JOWlhaiX+CJl0yhAWF1dUtONsengaYKjGmsZdn79bOPwNdUjDvvBN5+23xtPeaVmF9/ZVferJlZeOqkk+gu4h5/pORfRgbDj04/nYPiWByvRCoY8gcALaWU3QDMgDlt6UFYO+2RI5FarQC524+Edr8+8Cq0jWI1Vtq2ZZq/b74x182YwQC8AWcaO7CoalWAx1paOKxs3corpEoV/4Q2QAesNWtoGbagLNqR9NO2TZH39NO84952m/2HnniCH7REZtROlshbtjmiU69eLdpz5lDFlhNc06yZmegm0kJ7xw4OCss8W7Kz0Q7rUbtWSZnQnjWLwape4jnNXNqWXtaJcyhWkFIOllJ2sXlMBrBLCNEEAIzlbptd9AdwixBiM4AXAFwuhHg2Yj/ABhsPtICx9lk7d7KYKsBsJrF4Aw8KIVxHLV27mqX6NBVn1CjgpZfM10VFOgAVPAx//klr9ubNQGEh13/9tX2Q/z9MElemc4YP5z1M3TNiiVAI7e0ArBbqDGNdGVLKXCmlStz7PoDeIfjewKleHaldmyDnUE1zuBRmbH20i4qArCzb4LXzz6fvkppSnzGDI75qKck0paq8ejBTVUUsuHPbNqBZMxQWMrbGL6GtMtG7WbUjbtGeNQt5vy4EYDFcr18PTJzIGs3WksVWunYFLrmEgZGGSbhO9hrk7T4MXH+9a4WvMOLTon3sseWW8G3ZkiJ72zZQaO/YEbFc2h4VRLOzkQCJvsdKTJvGdn3wAf8Xu8IFACi09+93SRmUkECxrS3aATMFwBXG8ysATHbfQEo5WkrZXErZEnQf+URK6StoMuxMnWo+D9ZA6C60U1LMEIDHHw++bTFHYqLr9T9oEPDkk861J15ITuY9RVFUFHjC9zhlwQLex046yZQ+Tz7pmhDHipqsVUL77LPZ50/26K2in1AI7YUA2gkhWgkhkgCMAjvyMpT1xOAcAKtD8L1BkdK3NQ4iGUemRCa+x9ZHe9s23incLNoANV/t2kznPHs2jcFlVj63NCNKG0bMom0IbdUEv4R2795AjRpehXZErJGHDgFnnom8lz8AQIs0ADqEVa/OaT5fPPEEr/BrrgFmzUKdFXOQV70he4sHHwxv2w1sLdpHjnB4X45/NuCWuEMl1t6+3ev2ocRDaG/fDtSpg+tvqoKNG5li7ZtveO7XrOllJyrlhI37iLZoB8yzAIYIIdYDGGy8hhCijxAiJiLkli8vfxs7rK4jKhGHqk5eaYIiFUlJrtHoDz2kLa8VQQhXy1FxsRbZFmbO5CGyJvK6+Wb7bYuKzFNTCe2UFE6Qf/99WJsZFiostKWUxQBuATAdFNBfSSlXCiEeF0KcY2x2mxBipRBiKYDbAIyp6PcGS2pXRlrlfu/pNxwOlEXbxf3XIw2DSWoqcP/9wI8/0sjQrh1w1VXGm04K7dJSCqRmzcp8ff0S2klJTBLuFhAZ0Wn/H34ADh5Efk9GgNeZ/RNzen35JV1GvJa3NGjViq4jv/wCDByIOnUF8qo0AEaOZM7tCOQdsrVoL17MHskPoe2iU10q2IQf5TpSRnY20LQpRozgoR07lqfJ7bf72ImXzCPJydqiHSjGDOMgKWU7w8Vkr7F+kZTSI/WqlPIjKeUtkW+pd/74I7jP1axp9psqSNc6maWCtSoNCQme0wNCRDYdVKxz5Ih9Cj9rgRoNfv2Vh0UVierRw8al1kBlPwaYKEsxfDhDCmIt+0hIfLSllFOllO2llG2klE8Z6x6WUk4xnt8npTxGStldSnmKlHJNKL43GFLS+JNz/lhBkRJm9u9nEJjLNafOktatbT9z9930GRw4kKO/siAyN6Fdpw73GxHXkV27eLyaNSvTZ16L1bhz0kkUtpb0KBF1HZkwAWjaFHmnXwiBUtS641om6kxLA/77X//2ceON7CGuuAJ1Lj4LBQUCJQNO5DGxS34eYgoKbCzaam6tf/9yP9+oEc8jF6EdgRR/hYU8P91dR9C0KapUAcaPZ7KX+fN9VBkFOPuTlGRr0dZCu3KRnh680AZMA4G1Ovlff3GpMpJWKoTwdFCvUiWyld1ilcxMzthaqTTO/v5TUGBOag8dyolku7LrCqs9RVm0AQptIPbcRypHZUgL6k/LLUgyve3DyP79NqO2jRspGjzymJHEROq6GTPcUlq5Jc4WgtaYiFi0lRm7WTOsX8/v9lIfxZOTTmKb//67bFXELNpHjwLTpgEjRyL/UCJqJ0uIJo2pAGfM8O6b7Y4QtGB/9BHqtKMFvKC7kbvaJqtKKCkuptHEw6L999+c8vDm5GZBCDOesGz+PAKuIyoG1k5oAxxMPvoog4B9kpjIaGE3oe1EhVGNs3TrxqCqYP201elvreFiTdpTafOyuwvEtDTg88+daUss8MEH7JOsaJFtizWQ+a67eD/zGo8D70K7dWtqomnTQt/GcFJphXYOUiMSvnrggE3e5sxMqtRAp5aaNKFAtChrp4R2ixYclfpFv378rRahHTGL9urVFNsDBiAvD6hTL5EDrG3b/FB39qj/My+hPq/6MAttJSRdLNpSmoVq/KRMaNesydFfBPJCqtjdMqEtpYvQDggvKf60Rbty0bUrY1+C9dNWFu1du1zF+l13cXnFFZ6fqTRIyZSsiksv5VSYFpAmpaW0XFxj8bJq0kQfIx8o99fx41kNEvDPol21qqd+atw4smmBQ0GlE9plmTpqtYiIRTs/38YSuXGjV7cRnyhxYhFIKSkRch2xOGavW0dDqt/UqsX0c05YtJcu5bJ7d+TlGf+FEAGMEjwpE9p54CAizDWcbYV2ZiYz5wQotLOyjE4qPT0iFm01PV/mo52bS3cba1Sav3TowN9tSU2mgyErH127chms+4gS2sXFLkmc8NRTXE6ZUsk10+zZjEdR5OXRl7vSmvot7NjhaSD7888IFrOIPY4cMWc2L7+c4Vrt27uGRhUVcf3997Mg8zvvcH1Kiqf7e2FhuUm2oo5KK7RzGneJiEXbI4hNSooFm0DIcrER2hG1aFevDtkgBevXByi0Ac7NLlhQ5hevsktERGhXrw60a4f8fJvZhSBwEdodO1LwhvFPUMfIpdy98s8OQGh36sTlypXw8PcPF0pol3Wq6juDsWh36MDzZ/PmslU6GLLyUasW7RTBBi5ag7itlUmrVTOTREyfHnz74oIhQzzTf9avD3z4oTPtiQZuucWz3yop8e0DoSmrwHrqqVz+9Ret2Tt2AO++C5x3HnXZwIHMOWDVSzt3ehoSi4po6Y4lKp3QVlMROfXbMXz1SHiL13gEse3dS4VWEYu2xQzToEGELNpZWUCzZsjJFThwwEwC4TfHH8/sHIb1V+VADvsU0NKldO9ITDQt2hXEQ2gDHi4NoUQdIw+hXbcu0Lmz3/tRmnzWLETMoq3iqcoixysitF1yFBJt0a48qMF5bi5wxhkU2sF031ahvXKl63sqyOrMM4NrY1yRlORp2r/6apoYVbWRysDGjfzNb7zhul5K3sg0Xtm/H3jWKHP19NO83vbt42Hr2JGlKBYvBi6+mIkfcnNd8+UDvH1b1xUWaqEdE6SmArk1Mjh3GKyjn594CO1yMo74xKbmekpKhCza2dlAenqZ71TAFm2l8lR4PygcwyqSpKTQ7t4dAMJj0VZ589aEL5GOV6Hdv39AHX3jxmzuH3+AQnvnzrCn8dq7lxMKZYH5FbVoAy6RMioYslJP9VcSrJVwzzqL6fGDcR/xJbRPO41LKV2zklRqpATmzXNdV60acMcdjjQnYqi0fe6zz+vX6w7HT557znzeu7cZzvTee5QzS5dygvKdd4ARI2g72rDB/MyQITTSnHWWmee+qEi7jsQEqalAjjR8SFaHt3aOh9D2kUO7XGrU4PSdm+vIwYMRKPJnBLCtX8+XAQvt9HT+ZsudMTk5zBZtNe9kCO28vNAIbWUVz8+HmXYujEL70CEuy4T2/v2cjQnAbUQxcCA7u5LG6RTZynkuTOzb55bYRZ27Lom1/SQ1lTtzs2iXlkYklbnGYVQ/mpsLnHIKLdw//hj4fnwJ7cREYNgwPn/++eDaGZf06+cpLl95JSJZlxzhyis90/YBPAbumUY0tmRlAS+/zOfDh9MtS43NunfnzGq3bp4+2NaMI2PGsFTFsGHAuHEU2dqiHSOkpAC5h2uwV3UrgBFqvFq0/c6N54abb63yOQ+rVVtlimjSBIsWUfAF1fxBgyi0jWC2sFu01dDYcDkIi+tIlSocdUTSdWT+fP4nQQjtk09mu+fmd8Eh1MDM7/LD6qq9d6+b0N6+nSdttWrB7dAt84jLoEcT16jJGzVLMmgQ8NNPgRsX69Qx++SVKz0//8gjXL74okvcrQbgwVIjf8VJJ1EtuRUli0meeoq/5aOPXNcXFmordoA8+qjp2jVoEPDJJ2bpkj/+8J6V1irJevXirWLMGGqFefO0j3bMkJoK5OQm0H0jjEK7qIiWZg+LduPGbn4AAdCkiYtvbUSqQx44wCumaVPMmkV9F1Rl2UGDqPKMINTkZODgvqPAxInh6cQsswdShs51RIm7vDxjRceOEXEdKStPPmcOVUffvgHv6/TTefpd9lpfZCALQ25uj8svD11b3dm7l5MwZQSb2k/RoYOH6wighXZlQFm+VEzK2Wdz2tka0Ogvyqqdl+cZqtCrl/n8p58C33fcU6MG++svv3RdP3Ag/ySrv0AsUFoKXHcd2/7gg67vff89f2usKTuHWbWKqfzU/XbdOjNt5vPPe68ICaBs1rxmTXPm/NRTaRedPl1nHYkZylLitWsXVqGtrLUuVtRgU/spMjIiL7QNk+e+Oi2wYoXv/Jc+OeUULo10AbVqShT8sw4YNSq4OeDyyMzk1dmiBQ4dYn8aCot2lSrsBMqEdvv2/K4w+Tt7WLT/+os5zoL4MfXr8/6YtScJnbEKVw1YjV9/DZ8Hla3rSEWFdnZ2mbJWh0AHRMY/7kJbBSwGI4a9ZR5R3/PAA3yulhobRo2iCL33Xtf1Y8fyIAoR3Rfmjh1sY2IinYatPPoof5sqRagJiLFjaQTp14+vX3/dfK+8QGMlybp3NzMp1qvHff3yi7ZoxwypqbxPH23dKayBDbb5jzduDM4/W9GsGTsIYw5GWQv37Qt+l+ViCO2/97SHlBUQ2mlpwLHHAl99BUiJ5D0bUZAvOewdOzb087SZmSw3XrVqmcUzFBZttZ8yod2ypWdS3lBw5Ajw/vs4+BsDkWrVAk+qv/6qUK3ok08GsreWYJY4Gc/2+x5JScCbb4akxR6ExaINlPXG2qJdebC6jgAUyz16BO+nrbyX3P20AeCyy8z3lIVN44Vnn+U91K4TqV2bYlZt4zQlJcALL7BNdv3QxRezncp/SBMws2cDP/zA8deMGVx3ySUcs2RkmGlmvaEmh60zSwBLty9axNArLbRjgLIy7E270t8sTE6qHkL76FHmo66IRbt5c5pmjTYr4RhOoSGzKSC/mt8CSUnmKDUorrySocYLFqDWhqU4WD2FHfSqVcDcuaFpsMKSr1yJ4rAI7RYtuLTkdw4JH34IXHstDk5ivdmaNQH8/jvnzs44o0K7TmtSBQlNGiHtwAYMGcLdhgMXi3ZJCXvJYIrVKFSKP0Noa4t25UHdXK3pTM86i55Ugc7oNW9OW0Vysr3Q7tDB1GGqeIamHG680T5DCQDcdx9HSkIADz8c2Qs2P59+RkJwOvK///Xc5s8/2fYvvohcu+IQKYF77uG1o+rTVavGW9nvv9N10T340cqePabRsGdP1/dOO80cq2nXkRhACe09KUYO5DC5j3gI7S1beKZURGg3a8bl1q0ATOF44EDwu/TFLbcAda+7EK2RiU8n18Gdd9oHY/vNxRczkmnUKCQf2o2CaqkcqgKhF9obNngI7VC4jgA2Fm0g9EJ70iSgY0ccTG2B6uIIp9GmTuUJZS2THCxNmwLbt6NbN8YXhjo17tGjdHspE9qq5nUwGUcUbduypzYCIrVFu/LQpQuXubnmDffsszl+C7TATM+ePBWLi+2FNmCWZB83Tme1CQiVoaSkxOwbrTzxhGnpFgK46SbPAMuKsGYNR2Vq/3Xq2PsXNW7Mdkqpi86EiO+/5zjrrLPM3Nfr17NWXV5e+fYhS/ZfD4t2nz6uriSxRKUU2o0bc7mrppE6I0xzg+rmXya0K5LaT9G8OZdGSXSXDBghZsMG5ug/oXEmGibk4tRTzSpPQVOvHvDMM0BuLpJTquNgcRJdStq1M6sdhoL9+2nmMo51WF1H1H+yZUtodg5waP/nn8D55+Ng+16oJQuY5+j77+k2EmzWDivp6UB2Nrp2peAI9XhTWSbKXEeMc7bseAVD9eq8eRtCO+wW7enTgc8/D9PONYFw3HFcFhaauuzYY2k4CdRPu08fLo8c4WSanVfDRReZzydODLy9lZ6EBGDTJh5clW7Cjrfeol+cEsZ2jxEj6Oj70kus0z1qFONU7Lbt1Mm3G+LRo2xTqF39KjlScgzVrBnw229c16gRX//8MycTBg3yvQ/rzOoxx7i+V6WKeZ2Gws4USSq10N5ZnMp/L5QCyYJHMKRSMhXJw+lm0a5hZCkMh9D+8kv2W+92eRXz2l2GX38N0ZTNHXcAe/ag1nWjcfCgQGkpmMpkzpzQ+fGpNIqRsGjXqMEeJZQW7Z9+osnt/PNxsFkH1BKH6Fy9c6f91GcwGBZtZSkMde0mJbTLLNpKaKtzOFjat/dwHQmbRfu994AnnwzTzjWB0L+/+Vy5jyQmMrhq2rTAYpHT03nJAryOs7Lstzn5ZD5///2gmqxRKJWkHtdfH9jnv/8euPVW4M47aaiZOJG1BPxh0SLX7441v4MY4ddfgX//pX1L2RTPP5/LadN4i69b1/c+lEDv0cP+byot5TKIzLaOUqmF9o5dCbzph3rK38DDdWT1apr3vCWQ9IfkZO7DEC1C8OQNh9D+4gvOqGXsX1Gx6X47qlVDcn06XR46BF45e/aYV2hFUYMnw386rBZt9T2hHLDNn0/rf48eOFhSA7WaNaBVaMyY0PUy6enA3r3o0PwwqlTx/77lL8pvtkxoG4PDCgttleJPyvC7jmzb5pqiQuMYnTubz63dxFln8Vyzcw32hhCmVRvw7j4yejSXf/8d1gyelY+333YVvzk5rn9IsDz/vFkqVj169674fjXlogo8HTxoun0MGkTb0L//0j/bF7t3m9ehu9uIOxVyX3WASim0a9WiJWznToReIFnwENpr1nBay1c0gD80b26KFtiIvhCQk8Pmnn02Kp4pwgsqXd3BgzAjLBctCs3O3dwUwmrRBujOEMoB2z//0JFUCBw8CNRqmMxpWPc0VBXBCEpMyt2B9u1DL7RtXUdq1XJLQxIEHTrw4srORtWqtHyEzXUkK6viAwNNSEhMNLWYkSEUAEM8qlQJPPuIP0JbWeQABnRpwkRKCl3jrAI5mMfddwdfo0ITNEuWMPUewAnHwYMpc04+2VxfntC2FI32CIQEzNtrLP69IRHaQojThRBrhRAbhBBjbd6vJoSYaLw/XwjRMhTfWxEaN3ZAaK9ezeImFaVZM1NIIjxCW+VV7nKM4csWBqGtjktBASieEhJCl9B52zb68xqRr+HKOlLm6dKyJQc/am6rIhQXA8uWlfU2Bw8anUt6epCVgryg/tPt23HMMaHPpW1r0W7WrOIDTeXrsmQJAKPw0cGK7dKWoiKe+9qiHTWcdhqXkyeb6+rVo89msH7agHehXb++mUp5/HjfrsYaTWVFWbMBVoCcM4cTCQ0a0G2kcWO6g/hCuY0A9hbtDz7g8rrrKtzciFNhoS2ESATwBoAzAHQGcLEQorPbZlcD2CelbAvgJQCOl44qE9otW7IATKhTLsAU2rVqgapj9+7yk0j6Q/PmLoODcAhtVcShc4ZRFTLUriNws2hXr05/6mDKvNnhJury82kRC9WUU+3a9Akty0bQvDmDbHbvrvjO16zhMTd6m4MHLVUhQ4lKs5edjRYtODYJZapbW4t2RQIhFb16cVC2YAEAnkdhsWjv2MEDoi3aUYPy016xwrV2wNlnM8YgEJuJ1aPAV7dzySVc5uToSpEajTtbtphZER98kLfxOXNowS4poUX7tNPKt6+oQEghgG7dPN9/910uw1nJOFyEwqLdF8AGKeVGKWUhgAkA3MspDQfwsfF8EoBBQlTUrFUxXCzaUtpHw1SQ/HwzWLHMwS8UFu1WrZhVw7jThEtoJycDzYRRhTLcFm2ATpihEtrbtrkIpLw8M6NUKPDI9qJEq3s952D45x8u3S3aocZi0c7IoLYPZYXRvXvNGAIAHv9J0CQn06o9fz4AHpuwWLRVn6At2lGDNYe/dar5nHO4nDTJ/301aWJett4yjwAU8dWr87myqmk0GnLffVympgIPPQRMmcKJ3REj6A20d2/5af22bzdzRXTo4Fbkz0DZsDq7m3FjgFAI7XQA2yyvs4x1tttIKYsBHACQYrczIcR1QohFQohFe/bsCUHz7HER2kBY3EcKCiw+wUpoh8KirfJwb9oEIHyuIx07AmKnkQIpjEK7TCR17syrLRTzs26iLj8/dG4jgE2hoFAK7SVLeGc3qiCGTWjXq8eRYHZ2mZYM5Xhz/34ep8RE0Nq/c2doLNoAFdeCBWUBkWER2qHKkqIJGampZpc9c6a5vl07oG9fTlsHgnIfyc938cZzoWZN4IIL+PzHH8NW30yjiTn27mV2MoAW6aQk4LvveI327Mm0fgkJ5Rcytqb1s/PPthqAYjFpTNQFQ0op35VS9pFS9klLSwvb9zRuTCFwpHFLrghD5pGCAsvIbMkSqiW7BP6BovJwG6H34bJod+4M864SRteRMov2McfQP3nDhortuLiY7baIOmXRDhVhtWirUY6RnT9sQluVITYs2kBohXZensWarY5LqERr376c0Vm/nq4jeSWhd6DVFu2oRNUWUeWdFZdfztCGpUv935c/ftqA6T4CAB9/7H07jaYyoRJgXXYZJxnz83ldnnsuby/TprGrTrE1q5qUJ7T//JPLWAyEBEIjtLcDsN49M4x1ttsIIaoAqAsgFw5Slku7SgbPiDBZtMuE9sKF9C1VpY0qQiuj0I6RKzrUQjsvj7oo3ELb1nUE8H3H84fsbM5dubmOhMOiXXbcGzXifxsKoa2y0xgcOhTGDsYoWhMuoV12zNVAVpkjK8qJJ3L5449IrlGCgwtWcaYnlE6027bxJC0v+asmoqjCNevXu3bbo0axIGAgVm1/hfbgweY948MPQxvLoNHEIuvXl9UNw/jxXP78MycvzzuPMQ0LF5bvNgJQaCs9YBcIqYT4pZdWvN1OEAqhvRBAOyFEKyFEEoBRAKa4bTMFwBXG85EAfpPS2a5K6cYduUnsQb3NG1aAMqFdVESL9rHHhmbHdepwDtUitA8fDp1BT2mi1q3BgLA6deydpiqISzAkwLxAQMUrddrkaw6X60iZ0E5M5HlUUaF96BDVg+HLX1JC3+mwCW3Dot24MX9C2IR2KKqiWunQgYrrvfdQa/taFBRW5RzljTeGJvMLwIORkRE6x35NSLAWrrG6j6Sk0J/68899Fwa0Yg2I9CW0q1Qxb/IbNgCzZvnfXo0m3igtNW/X771n2g+//ZaFno8/npZtKctP67d5M71gVVl1O4u2Ks7btWsoWh95Kiy0DZ/rWwBMB7AawFdSypVCiMeFEEaICj4AkCKE2ADgTgAeKQAjjZrpz8qCR7q8UFEmtFeupFoKRUJ+RZs2Lq4jQOiKdiitmJEBWofDYM0GbCzatWpRrFbUdcRmyj/sriMAT6qKCu3169k7GUJblZoOt0U7MUGiSZMwC+2qVUPrhnHttcCaNai1fD4OVk9lBcdt28qCJCtMqII3NSGla1cze5BVaAN0H9m1y8zdWx5paeYkS3kTaVdcYT7XQZGayoz1/L/6ai6PHuWE4jnnUHhPm0Z7YHmyR1mrq1blZH1ZOliDPXtMH21VqTXWCImPtpRyqpSyvZSyjZTyKWPdw1LKKcbzI1LKC6SUbaWUfaWUG0PxvRVBeV9s2oSwCe38fENMqiIsobJoAzQ3GxZtNbMdKvcRF50apmI1gJmyziWQzTKACJqdO7m0tDvsriNAaIS2W3YadWzCatE+fBjYvx8ZGWEW2q1ahcZ1SnHRRcAZZyC5Z1scrN6APXxSEvD116HZv7Joa6KKKlXo9wmwcI11AuPMM3mjDsZ9ZNUq35MhXbqYFvBJk4ADBwJrt0YTD+TlmbmsJ0wwJ/x++42aZ8QIXkfTp7OYVEI5KvP33ymys7Lo2+3OtGlcNmjAMK5YJOqCISNF7doW7wsltEPlzVJSArz5Jgpyj9CKOmMG5zVDNW0OUGhv3QoUFdmLvgqQlcWLo3Fj0HUkTBZtldfaJQdyKIT2jh0UXJYKhHv3eo6UK0JYhbYQTKOACAhtSy7tsArtDRtCe/4DPChTp6LWaSei4GACR5xDh7pWMwkWVaxGW7SjEuWnvWcPAyAVSUnAxRcD33/PYHd/UEL74MHy7S1jxnB5+LCZbUGjqUw8+aT53Fo59bvvqKsGDWLJ9d27y/fPlpJCu6iIj4su8txGzSSFyn7iBJVWaAM0sG3aBFqtDh4MjYlCSmDkSODmm1Gw6yCSC3PZ648eHVpfzw4dKOg3bAiL0G7UCKiaWBp2q55HsZE2bfidZZVggmDnTo4SjON9+DA9dypa+dtKtWochXsI7QMHKpZrbs0azmUbc+NqV2EpWAN45NIOi9CWkoOnUAttg1q12EkXFoJzixs30n+gIqhiNdqiHZV489MG6D5y9Civ93vvpdVt7Vp2l3ZYp7YXL/b9vRdfzOse0O4jmsrHhg1mFcg33jALFZeUUOaceSYz0/78M9cPHVr+/tQ9p2VLc6ZKYU0Gd8opFWy8g1R6oV1m0QZC4z6yeDHPuGuvRYGsheRvPqYCuOaaiu/biipDvWJFyIX29u2Gvti9mwomVLmPbfDIgazEmJEjPCh27DBTBMCsIBdKi7YQNtleQpHiLzOzzJoNmMcmDLGoxGLRbtiQg56KjHEUJSXcV506YPh5fj7Qtm3Fd2yDSz52ZeqsqJ+26v21RTsqsRausab5y8kxMyAAwEsvURx37MgJjwEDgJtvBt5/n111aalrQKQSCN5QAZcAPQKt1nSNJt65+27zuZrdAVgJcs8euo0AdPfo3Rto2ND3/qxp/S66yNMWqa7zV1+N7Zj0Si20W7dmgoeSpiEU2l99BVSpgqInnsVRVEdyWk1g+PDQh8t27Ej/jjAI7TIjdgQKdiQnu1m0lRiriPvIzp0u7i4qkCKUQhvgNJnLMVffqXzEg2HjRrMgEcz9hzKQ0wWLRVt1iqGoE6X+0zp1EPqMI264ZK/p1YtmlnnzKrZTde5ri3ZU0rix2VXMns3z7dVXOUZ97z1zu+XLOY09fjyDtqpUAT79lHG0ffoAAweyf1Cn5tSp5XsQWgWGtmprKgu//mp65T36qOss63ff0W3rzDNp2Jo71/+0fgp3t5HcXLMa5M03V6jpjlOphXarVjTYZie15IqKCm0pKbSHDkVBElVd8t030MIdamrU4N1h5coyERZKoZ2eDts0eaHGo3y2WzGeoIiARRuwsWg3asRlsG4LBw6wd7EIUpVJJmxCu3p1HpjsbKj6UKpzqwjquNSpAzPZqsVSH0pchHaNGkCPHuzpK4IuVhP13Hgjl4cP8/q4/XaK56VLaUARApg4kafDmDHAK68wLd/+/ZyyfustCvFu3czuZvt2YMUK3997xhkou1Y++4xuKhpNPFNcDNxxB58L4Sp8pWRavyFDeB2qAOXy0vop/2yAt4YePVzfP+ssLu+5p/yAymgnxptfMZThcGNBQ0bmVVRoL1/OHn7kyDKLXtgEEkD3kRUryr4jFOn98vOp9xyzaKekUJ0FK7SLijh/bGPRDqWPNsC8n0rEA7BUQQrSom1kkbFatMMutIGyIE4lHkJh0XYR2kuXUgCH2XWk7Dzq14+VErw55fqDLlYT9Vx7rekjClBI//ILMxM0b06fzk8+8bRQJyRwLHvDDRTVqvaRYupU399btapZKXLv3vDYUTSaaOK998wB6E03MZGEYskSyh7lNvLTT7w3Wt277Fi92rRJubuNHDxoev898UQofoGzaKENYP3GRE6hV1Ro//UXl6ecUnbTD5tvLUChvX49kqscARAaoa3ci9PTweNRo0b59VMrgIdFWwjeBYPNpa2uXItFO1yuI6mp1PRlpKRwwBasRdspod2sGbBlS5nrSMgt2kuX8lwNZWo/Cx6Fj3r35ouKFD7SxWqintq1GeyoGDrU9e+6/HKO1+fM8b6PjAz6k158sblu7FjtPqLRKPbvBx56iM8TEoC77nJ9/7vvuP6cc9jtfvMNvWWtg2A7fLmNqNzcF11El5RYp1IL7ZYtaeVcsAChyaU9ezYVaosWkRHa3boBpaVIWPqvZ/aOINmxg8umTWEW7Aij2PCwaAMVS/GnrMkWi3a4XEfS0tyEdkICoz+CtWir3xxpod2mDbBxI9JSqS5CatGuLSm0u3ev+E694GHRVqXF/v03+J3qYjUxwW23mc/d+9rzz6cfaXk5tYUA3n7bdd3Agb4v4x492P0CzHpiLQWv0cQTjz9Oj0aAA1JVg0Tx3XecFUpLowtJfj5w5ZXl71fNBHXubOZ2AJg7YuJEPn///Qo3Pyqo1EI7IYHTG/PmoeJCW0oK7RNOAISIjNA+5RT+iOnTkZwcGou2Eo5paYiI2LAdILRpw7w+5Uz9b9sGPPiga9aBsrujm0U7ISH0YjU1lR2QS5GLRo3KLNpSsmM6+eTyp6MB0KKdkuLirpCfzxF9tWohbborrVsDeXmoXZiLpKQQC+0ju3mQwii0PSzanTtzfr8iQjuOi9UIIRoIIWYIIdYbS1unKiFEcyHEL0KI1UKIVUKIlhFuarlYsxq459lNTqbYnjiR6T19UacOM6aqwfjs2XRBUTd8O1R+XyldM51oNPHC2rXAa6+Zr60zSAAnDVesMN1Gnn6ayw4dfM8KrV9vpuV0t2Y/8ACXffuGWT9FkEottAHmY12xAshr2JY312CL1mzZQr8Lw+EvIkI7JYVn47RpqF07tEI7NRUMhgyz0PZI7wfQl7eoyOfAJyeH2u2pp+gvWeYrrUzybj7a9euHPqAiLY0iW7mmAKDAN8T+nDnM4fvvv8Cll/rx/2zc6JGZIz8/zNZsoOw7xaaNaNgwxK4j24y61hEQ2mUDtqQkmkiCFdrxX6xmLIBfpZTtAPxqvLbjEwDPSyk7AegLIARnRuhRMbZ33unZfV9+OWNOfvih/P306cPxWb16TAPYrh0wahSFgLLoWRk92vSGGj++YiEBGk00ctdd5jV19tmeydO++47L6tU5y6MKGzdpwnt7ly7AsGGceXr5ZWYt2bLFdQbJKrQLC4EXXuDzH38Mxy9yhkovtI87jifSwpJeNHu4+AIEgEonZlRSUKIq7COy008HFi5E7WpHkb9gNed5KqCUlDUzpXYhBWMYc2gDptB2uUH6kXnk+efpO/bxxxS6jz1mvKEs2ioDCEJfFVJhGzxosWi/9BIF/pQpHAi89VY5O8zMdHEbAShYwy601XdmZiItLcQW7aWzqUbUPHsYcMmjrejZk0I7mIFz/BerGQ7gY+P5xwDOdd9ACNEZQBUp5QwAkFIWSCkPRayFAWAtZPHpp57vpaf7V5K9Tx9eut26ccw7ezYtdGpq3P26aNTITGG2dSuvc40mXpg+nYGNanL4vvtc39+507Rw33ADPQQBWsBfew24/noOVrduBT76CPjPf1hivWVL4MUXuW2PHrR+K449lsvzzzfvr/FApRfaffvSR2/qNmOoFqz7yIIFHNYZQ76IZB0BOGcjBJJXLUB+5i4muLzwwqB3l5NDz4Wk7Ztorg1T7mNFrVrUNIest3D1nV4CIvfvB15/ndamyy9nEEaZxWrHDlr6LREU+/aFV2i7jM0aNwZ27cKhgxLff8+gqYEDgcGDWUnLq+4rLuZQ301oR8SirZzuMjNDbtFOnvIF1U4Ys3d4uI4AFNq5ucGVuoxAth2HaSSlNKZ+sBNAI5tt2gPYL4T4VgjxrxDieSGEbTSrEOI6IcQiIcSiPaEYpQXI//5nPr/iCldXrsREziZNm1Z+jLKqENmoEUXE8uUUFzNm0JNtyBC3LEMw3UcAWuw0mnigqIjCuHlzPj/xRM7ylJbyehg50mXSGBMmMK5r8GDgllv4ePFFDlKXLuWsUk6OZx0xqzV73jyzANSECeH/jZGk0gvtevU4BfjmL22QhfTghfbChSyWYdTnjYjrCEDzy2+/oXa9Kiho3Y29/Z9/An/8EdTucnIMtxElcsOU+1ihiu24uFWkp1Moe7Fo//QThfmtt/J1//60QO3ZA7P8ugXlOhJqVIojD4t2YSFWzc9HSQlw/PFcfeGFHNmvWuVlZ9u2ce7ZCdeRmjXZa27cGFKLdnLNEiRmrgMuuKDiO/RBjRocLLv4+lckIDIOcmgLIWYKIVbYPIZbt5NSSgB2w78qAE4EcDeAYwG0BjDG7ruklO9KKftIKfukOWCGqlvXNfe1u/X68st5aX3+ue/99OjB7lvFQ6i4ioEDKRhWr+YEojV3/rBhZt8yaxbwzz8V+ikaTVTw9ts833v1ouHlmms4oG3fntl9/vjDLFizciVjJbKzvQdBCmF6ulommzF4MJcFBWXOAPjf/8rPWBJrVHqhDTBPY6kUOAs/YdHfQVQfKC5mPd++fctWqZu+sraFlYEDUXtof+RXaQBcdx2Hls8+G9Su9uwxLLVKaIcp97FCGTr377esTEyklVWlu3NjyhRerCpPp1ouWACPYjWAA64jAJbPo3lV+bSpKeZp07zszCbjCEChrQYjYaV169C4jkgJPP00DnwzE3UKc/hfqkiZMCGETZrI7t35RjBCOw4s2lLKwVLKLjaPyQB2CSGaAICxtJvDyAKwREq5UUpZDOB7AL0i9gMC5JhjgKuu4vMrr3T1l+7cmTHqL79MH1BvJCfzOv3tNwoMawDzaacx2PKff+irqs61atVcUwNqq7Ym1snNBR55hBORq1dz3bXX0k0kPZ0D1qwsWrjbtwc6dWKMQp065Xf1//7rOrP03//ymrzzTnOdMqDFE1pogz5Dk76S2IsGGPLqsMBTOK9cyfJkbkK7Ro2wpQ72oCwYsnp1zmfOnBmUYiqzaK9fzyvHmpk+DCihfeCA2xutWgGbNnlsf/QoxeqwYWZwY+/efD5/PjzKrwPhcx1Rh8bDdQTA8n+Ly4p3AjSOduniQ2irQYUTFm2AMxdr16JhQ4qIQ8F64z76KPDAA8jbfRh1Eg9yDjACVk6P7DXJyfxNwVq0k5OBOnUwfTrw5Zcha2a0MAWAcnq4AsBkm20WAqgnhFB/3qkAvM3HRAXWVGANGrjOkj34IMdPH3/s+Tkrl15Ky1yNGuxPrEGQ55zDSpB//01fU5XJROXUrlGDp7uKx9ZoYpFHH+X9+LjjzKK+Q4ZwNvbPP5l84NAhWrXPO4/X2aRJdOWsUcP3vq1xSj17ch/p6SyIAwDPPUcJE29ooW0wbHgCZjW7FAmy2KUYgV8sWMCl8uQHb/qRTE3jkt7vooto0lEhwQHg4jrSrl3YC3bUq8elh9Bu2dJWaM+dy985bJi5TkU3z58vPSzaxcW0lodDaFevzu+2s2gvW1MVxxzjOtA67TTWNLIt2ZyZSXeZpk1dVkdMaHftCuzahZSqnBcPKiZ4+3ZGj40ejbyTzkad7q3pzBcBbLPuqIDIQMnKKssf/9prwJNPhqSJ0cSzAIYIIdYDGGy8hhCijxDifQCQUpaAbiO/CiGWAxAA3nOovX4hBIUwQPeOzp3NFGJDh7J7fuYZ+px64+yzaV/Yu5f+qL/84vr+RRcBH37I/V5wAa1xffrQqlenDvubN98Mz+/TaMLNypUUw8OG8VoBGKcwZQrPccWPP/JcHzEC+Oor2hnLy5194ICr+9bkyXSpVPeaGjUYVBmPaKFtoVVrgbHpn+Lvvxn84jfz59MByWKNzM+PrNCuXZuWyNJS0G+7fXteAQEgpZvrSJjdRgAvriMALdr79nkocJXcRfk+K3r2BFYsl1SxFov2nj38XW7eJCHDw9VCWbQ31/FIhXTccbwxL19us6ONGzm4cJsCiZjQNtLvpeRxcOOSstBf3nyTA7zHH0denoiMy4uBV6G9dat9bjZfbNsGZGRASo6hLRNVcYGUMldKOUhK2c5wMdlrrF8kpbzGst0MKWU3KWVXKeUYKaUPx4voYNQo83lWFi1x115L4f3wwxy7+/LVrlGDY8MtWzhLYpf//ooreKr/+CMt4CUlXLdrF8XI229TeGg0sYSUdOEoKaEIBmgcevppz9S4X39NS3SfPnQb6dix/JLrn35qzpQefzxnea0S5bHHIuQm6QBaaFvJyMD5hQx3/eabAD43f76ZvsSgoCBCAsmgdm1L9g4hmB/njz8CUkwHD1KnptYv4UgjgkLb1nUE8LBqz5/PZrlXhW/TBsjekYDDqO6iqtU0bsSEdv362JPYGLsLanoIbZXVYNEimx3Z5NCWMoJC20i/l5LDucJAtSkKC4F332Xt3datkZcX2U6zTh0vQhsw806Vw8qVFGEHth4AmjXD1q38b+NNaMcziYmuFuX//IcW6C5d+F7PnhQOvnJeX3op+9HCQuDnn+23vfFGYNw4Co6rruJ0ekICZ85yckzLukYTK/z0k+cMjqreaGXRIg4y69YF7r+f9SI2bABuuokzPkOG0J2zc2fGLBQX81725ptmzNpFF7nm0j7uOFc/7XijQkI7gApjJUKIJcYjerONNmuG1rvnoVcv6VFlzCv5+bxDuw3nnHAdUc0BQMFTUuJnSUJSVqymZBc/2759aBtpg1fXESW0LVMLUlJo242cVQzhZrR0sWjbVGQPKR5COyEBmQ3oQuSesKVFCw4QPIS2lLY5tFV+8YgI7bQ0oEkTpGxbAiAIoT1zJk+gq68GAEeEtjUbBICAMo/8/TfHGpdeCty482EgI6PMI0wL7djC6vrXpQuFQJ06wJlnMoPC+vW+Kz4OHEhrW1ERT2nbgTEoDJ54gpa6J59kBoUtWzg59PLLwdc+02gizcGDpjumut/873+u/tI5OQyIVB6yq1bRpxqgmP72W6bnO3SIHpApKRzo9urFwe3q1VwnBPvam24y9z1+fOTi2ZygohZtfyuMHZZS9jAe51TwO8NHs2ZAURHOHliABQtsSoPbsWgRe1SHhba6OMqE9rHHUl0GUEVBCca0vUYEhBIqYSQ5mZYgW9cRwMWinZVFC7UvoZ2JNhG1aDdpwuApK5tqdQFg/gSFEPxbFi5024lykbEJhAQiKFi7dUPKRjYuYKE9YQJHTUOHAogSoZ2WxvlNP4T2a69xH/+5Og9f4hJM3dcfCxYwq4T7zIQmuqlRw/Srv/pqdmOLFwN33MEwAoApXa35tq0kJNBCrfAawAyWi77vPk7mLF1Kr6Pu3SlCZswIyc/RaMLKrl2mVunShdlG6tUz/aX37uV53qqVmbM+NdW8j510Eq+lXbsopv/+m3UtZs2i+D5wgMHI6ruOO44VJxU33kjXk3imokK73ApjMYWRzqtP+g5I6eeMs8rA7mb2ckpolw0OEhI4RJ02zUv0nSdlFu3sZRzKWqMfwoQQFDgeFu0GDfijLEJbXdh2FkalUTeitYv5OtxCu3lzWsmsPpmbkljqqmVLz+379DGT1JThI7UfEEEXpF69kLLmbwABCu0jRzjHeN55QFISpIwSoQ34FRC5axdvCGPGAM+MXoHOWIkbJw7EpEm0xlhqH2liBHdrWfXqrNRqzUySmMgp8H/+YT9RXGy+d+ml5nNfk4JCAE89xRLTKm3Zrl2Midap/jTRzuLFrvepr76ibe6WWzip/cgjFNjPPAOcdRarPQJ0M1F64bbb7HMmCMFgSWtJj6NHmdBg8WJz3WuvhfpXRR8VFdr+VBgDgOpG5bB5Qohzfe3Q0SpjhtDuXWc9ANeTwSvz59NHwC2thRPBkOp7yxg+nMr799/92oe6cNI2zqdZJkJZ4+vVsxHaQnik+FM5PY85xnMfaWlArapHsTGxnUsVwp07WVAiXCmDWrTg0lrnaBNaomHCHtsc6l26sANbv96yUqX2c1pon3YakkoOI7l6UWBCe9o0NtYo86VcXqJGaK9Z4zNf4Y8/0k3g6quBaru34T1ci217qmPnTuCFF8LXZk34qF/ftJrdcAML2lxzDa1nVoYNoz9p06YsVtOoEQvXvPWWed0tXOi7qqQQFNXXXsvX06cDJ5/My0L1WRpNtPHpp8wvr9JUrlplWqwPHODt9/HH6XO9dCnjV2bOZGGZvn05gG3QgJl6fKHSoxq1/FyYODG+XUYU5QrtEFQYA4AWUso+AC4B8LIQwmtdb0erjBlCu+nB9Wjc2A+h7cNpOGJBbAYePtoAcOqpjD5QIcTloMY1qatn8+4TIerWtRHagEeKv7Vr6TtpN4ARAmhdaxc2JnV0GV7b1K8JKUpob9lirtt0NB2t5EbbuekONHaX5ScFED1Ce8AAoG5dNEjMCyzryMSJnEs89VQApuCNtNAuLLSZvOnZk/+DbaoXMmcOfQePOQbAtm0YgLn44v3DmDmTh0QTm9x9t/m8a1cKiz59PMW2ld27KSreesu1L50+3fd3CcHPqMJUEyfS7ejVV4Nvv0YTDoqLGV9w+eVmcOKtt1LOfPQRX7/2GmMV/v2XObK7dqUVOzOTLlh793ISc/Ros5KqO0VFzNr0wAPmaysvvMD0fpWBcoV2CCqMQUq53VhuBPAHgPA7/wZDgwZ08Nu2Db17+yG0vTgNS0nhaDGshh1bi3b16szPM2WKd4dECzk5QJUqEnULsjhnHiHq1rXx0QZMi7YRVbRmjSlU7WhddRtdRyzY1K8JKc2bc7l1q7luU0Eqhfa+fR7bqwBJF6GdmUlTmpsJPOJCu2pV4PTTkXI0G7k5fkZyHTxIh7yRI8tmQJwS2oCPzCM+3EfmzKGgFgJlxWpGXVnDI4WkJrZo3JjiQFFYyGnrt97yDFQGeNNXbml9+rhWubviCgZ6+SIx0TUkprCQBXICjnfQaMJEURETkr30El0+jjmGMqFWLXOmuGtXhp59/z1ndxSvvEJb5Hnn0UpdWOiaOzsvj64nd97J9H116nhP+de2LQV7ZaGiriPlVhgTQtQXQlQznqcCOB7RWmFMCJ5JhtBevbqcfKjKP9vtbDp0iO4BTghtjwDO889ntN5ff5W7j5wcILXGIQiAEQ4RwtZ1BKDQPnQI2LMHUlKc+gqaaF26ARsLM1yi/XfsCK/QzsigO7yyaJeUAFv310ErbLKdb65Vi6eYh0W7jeckjxp8RPI8wkUXIaV4J3JX+5grt/Ldd/yPLAmMnRDa6vz3cB9p0YJ+BF6Edm4uB3D9+xsrtm0rK1ajiX3OPNP1+v/0U/YJ69aZ/trPPEMby7x5tES//jqFRs2arm5q3buzIqRHMLOFKlUYgwHQPnD4MAMlNRqnKSmhFXvKFOCNNxj0OGsWXUeefZbbdOzIAaX7hPayZcBvv9F3u0oVuo10704hPnMm/bfr1qX34Ftvsfu0xkm48/bblcNlRFFRoV1uhTEAnQAsEkIsBfA7gGellNEptIEyod25M43APsuxz5vHSCmj2IfCCaFh6zoC0E87Obn82sOg60hq8U5ePXYmnzDh1XXEkuJv504eV58W7cOrcLikWllKP+lZKDLkVK1K/05l0c7KAopLEii0VUPcaN+eN/oyNm70cBsBTIN4OKpaeuXcc5HSMBG5WwpsK3N6MH48/6cTTyxb5aRF20NoC8Hz2YvQVgWQylxEsrI4etLEDVa3rm7dzP7gsss4Dps8mRlC8vIoPs4+mwGOn3/u2v8PHUph0rcvcPrp3m0XnTu7XA549lnf1Sg1mnAjJWMVJkygH/bVV5szNvXqmf2ft/ohr7zCyf7LL6fr1eLFdLFKSKAPtzVguKSERjtfCc9UTYnKQoWEtj8VxqSUc4zKYt2N5QehaHjYaNUK2LixLIW0iyBy588/mavGLS2BEo2Ou44ANKGOHMnKCj4CwgAgZ/tRpB3ewtrCEcSn6wgAbNpUZgH2atEuLESbQ5zbVS7PeXkcrYfTog3QfUTdzFWQYxtkehXaHTrQoi0l241t22yFtvKTVrnGI4IQSBncE7myASO61MG0Y/NmmjnGjHEpHRZVQhug+8jy5a5pJQz++YdavKzjV+XXNXFD1arAF1/weffuph9/UhIwdiwHW3v30jK3bx/F9mWXAffc4+rz36cPr/PnnuO47cQTeYn89pvnd77zjvlcTalrNE4gJfDf/3IG54EHGLtgLZExaxZn7889l4NEd/bsoe92URG7UmuhGYA2uWefpc3lpZdo9e7SxbuRMj8/wrO0UYCuDOlOhw7A7t1ol7YfgA+hnZfHu/TAgbZvAZEVGomJ1NS2luGrr+bZ/eGH3ncgJfasyUGqyC3LHhEp6tXjMfMo8GAjtL1atHftQmtQFCptqJbKjzpctGhhCm1lOO2OpWZuQTc6dOD/tHs3+MHSUlvXkX372CFFeootpU197EN9lOQfopLwZtl+5RU2zlohBFEqtI8coY+IG6tWMea2Vi3wTrJjh7ZoxyEXX2w+t05pX3klU60/8QSny2fMoDvRKacwQMyaQ33yZBo07rmHl8Qrr1BMDBpE8WIdx3Xq5OrjfemluoCNxhmefJJVTG+9len6zj/fnIHNy2M1yH37OOi0Y9Ag3qKKi11tR2vW8Jxet46FbMaMod/1iy9yNsjKmWfSF3zt2shmY4sWtNB2xxjqJWevQ9OmPoT233/z7LMR2k5YtAEv+agBRiaccAJNMYWFnu8fPgzceity8qshtV9bW9EXTurW5aH08C9PTmY2i02bsGULfcPS073sZMcOtMAWCCHLBLZKrRXudODt2lEv5+cDS5YAzZpJpNQ6albHcENVts/MhNcc2gA7v/q2tVbDS4MGgJQC+7/7ncGOZ5wBjzQke/bQbDd6tMdIJiqFNmDrPrJqlcWKs3077xzaoh2XqEqfH35olpauVo3CedYsPo49lhlGdu9m0Ndtt5mfX7nSLE5Vsybfy8ykBW/cOFaGtAoRd+Fyzz1h+2kajS2vvAI8/DCDeR9+mO5P333H91av5qzOiy9yYGkXuPjhh/YJm6ZM8e3Gac2NfcUVdC156qmIFJuOSrTQdkedCWvXevrSWvnjD85JlkVRmSixG0mhAfjwdRaCpZmyssySaYpFi4BevVDyxlvYiwZIG9IjEk11QQ1IbN1HjBR/WVn0hfZq3d25E9VxFOlpRS5COyEh/O7mJ5zAgcKcOdRyPXoIjgiysmy3Vzpu2zaYZnebwc3evRH2zzZISTG+v2kXmvE2baKvv0q4CnAu8uhRlsVzQ4ndSKa39Jp1BOAdoXp1D6FdXEwLS5nQVoOeCA80NZHh2GPpYwrQ2qxmoa69lkl/nniCr487DvjgAwY9bt5sXg8A8PPPrvusVo2i4tNPKeR79aINBqAv96mnmunPXniB+bw1mkgwfjwtzOedx0wg/fqZxWPuvJNumG++ycHj/fd7fn7uXE6GKzp1YlfaqJGZxtKOo0d5ewDotjl5Mm19t98eql8We2ih7U7r1lRz69b5FtozZrBHrlnT4y0lNCJt0a5b14tFD2CavyuuoNB+7TXO+9x7L39Dfj72fvUrJBKQmhb5bAvKB9lXir9yY9QMN43WrWSZXlq9mprJW57PUDFgAK3tP/9M4dazJ9hYf4V29eq2EZtOWbSVsMjNBUcRH3/MyK+zzqLJ/rHHuO7BB22d5vPy+JMiWVHRp0W7ShVGwbkJ7U2beFPQQrvy8O67LG4FMKNIURGDvP77X/poz53L9y64gGXYn3uO3lMKVXzDnUsvpa93zZrc/tVXOTkydqyrn3ePHp6TQxpNqJk0iQWahg5lvMEJJ3BysmpVThI/9BAnJR97jNJg0CDXz2/d6rruggtY2Cszk/vzVstOStfrpX592mc+/LByZRlxRwttd5KSKO4Mi3ZOjk3HuHMnb9pehnVRZ9FWvPEGQ4Rvu43D0+ef59T/8uXI6XIyAF6EkUZ9p6pM6UKrVsCWLcjKkr6FtjFn27pDVReLdgSqyKNWLQZKffghLds9eoBC24vrSN26tPZu2wb2XK1b26aTc9qiXZb/d9QomkfmzeMo4tFH6cf/0EO2n490+XWAAichwcdAs2dPDhIsjrKrjNxHZUJ740beibz6J2linWrVmC0BoPBQxWtuuIH9kLJqA0zz17Cha3aRmTO9B3l168YJwjPOoPVu9GhOePbqZVamLSnhpWMTl6vRhISff+YgsX9/WpLPO4/uivfcw4Hlk0/SuPXww3TXfPFF19tPQQErpqrUxh06MO3l99/zvLXmznbnnXfMTE4A+9g336y8LiMKLbTtMNJCuPjSWlHzh16EthM+qoAfQrtWLbZ9+nRaJNes4bJ+fbP8eoSLcVq/05vQlkVF2O6P0E5NRZt2CdixgyJ1/frICG2Aacfz8jitdsIJoFjLzrYtFKTStW/dCq85tIEosWgrxozhyGXCBM4/Tpjg1azhhNAWgoMXn0J7/376AhgooV12jmRmcmBXmU0vlYAmTUwx8MEHrLdUqxan06dNo1gGeO19+KFnOvxHH/W+73r1KEieeoripH9/Bp8dOWJeLjNnan9tTXiYPZvCun17DhIfeYSvZ8zgLEu3brR0L1vG2Z2bbnLNNFJaSou1tTjT4sUM7XrjDbqf2GUmAegy5V519fbbfQvzyoIW2nZ07AisXYsWTZn81Fr1DwB748aNPfJnKw4cYBxfpO/X5QptgIpk6FA6K1qGmWXl1x20aKs2uNCqFfajHg4dTvAttLdvB5o0KYtNfflljt4jJbT/8x+mNlq92hg4ZGRw+L/btliqka5dmhZtN6Sk0I4Ki7aieXOa42wCgK04IbQBfqdPoQ24uI9s2MDLuMyXPDNTu41UEvr1Y2ENADjnHHYfN99McW0NYzntNE/x8Pnnvn2tExLo8/rzz/Roe/pprrdasV96Cfjkk9D8Fo0GoCA+6yy6QhUVMejxkUeYWvLttxmT8PLLPD/vuIODQvdB4yefmIHCAAeEtWoxqHLjRuDxx+2/e/t2xiNYGTyYcQkaLbTtOfZY4OhRND/ItBXWggc4coRC+6yzvFaPO3DAGaHhl9D2gpMWbSXsvAntLFBh+xTamzcDLVvi+ONpTH7qKVqQytGEIaNxY3ZeZRZo5X7gxU+7eXNg2xbJ+WsbcXfoEK0ITli069ZlZxxs6egDByIbCKnwKbS7duXId/HislVbtjDWFgBHNl4GPZr45IYbWHgGYN9SsyYtcJMnm+4lAD3smjZ1/awXrykXhgxhBlj3wX7z5uyXrrvOzISi0VSEVas4KMzPZ/+7bRtnVB59lJO9zzzDPNmnnEIh/fvvFM1WQ05pqWds+y238PNPPMFCTkOHen730aOctbEmNGvTht/vzZe7sqGFth3HHgsAqL9mLpKT3Sza06fzbL7wQq8fz8tzJiF73br0qwqmCpkS2tYI+0hRtSpH17auIy1alC+0pSxTTQkJDNwoLeWNtExIRRrVWB8BkbtzEnAE1XxWhXRCaCck8HuDDdrav9+ZdntNbwnQzNO9uxnthrKxGdm7lxeutmhXKn74wXx+9tkMX6lTB7jrLtPrq1Yt1vuy8v33vkuxK5o353T+FVeY67Zu5YRikybMfuIl3b5G4xebNnFQpwwjjRvznFMS5f77qQleeIGi+O67GQh8/fWu+/nhB9f0lBdeyPvUAw/wc+PGeX63lBTj8+e7rp8yxZnZ2GhFC207WrUCUlIgFi5wqfoHgPMwKSkcGnrBSYu2+v5A2bOH7i4qaCfSpKV5sWhXq4asul0A+BDa+/dTJBmq6aabOB388MPhaKmfqMZ6CYhUmUeykOGzKqRTnVVKSvAWbad8y+vX95K5RnH88bwjFBejtJSCp0xol5X01EK7MlGlitnvTJ8O/PQTLdi//srpcoUqUW3lwQf9+47q1VlZ75hjzHU33EDL+f799KG1ZibRaPwlO5suGiq/e58+HAD27s3XCxcyDOuOO9i1vfwyXUBeesnT2nzuuVyqsgh33MEZmfHjOQC1C2h85x1WnLTyww/e/bgrK1po2yEEk6AuWIAWLSwW7bw89o7nnUczrBcOHHDOoq2+P1BycpxxG1GkpXmxaAPIqtMJCSixy4BHVIBbixYAmDd78mRnfw/S0pjBxmWUZlKW4g/NzAqYFpy0aAOxKbTLbfOAAfTJWbYMO3bQymOcMqavQLdu4W6mJspITWUOfICBYKedxoH62LGuxTqmTjWfV63KinqzZvn/PZbJFBQV0f/1k08YmHnjjbpypCYwcnJoyVZZto4/ngPEJk34WkqK5UaNaJXeuZPxB8OG8XNWrIPKatUof447jq5UKh2gO3//7VrQCWCcw9lnh+wnxg1aaHujb19g5Uq0aHTE1Eqff06f2muv9flRp4LBKiq0nQiEVKSmerFoA8hKaoPGiXu8j23UH+SYn4gNCQm0VHvJBVZm8K7f1XYaIVYt2oWF1LJOVbT06e6izJJz5pSNzcpOmaVLeQGVKW9NZaJ/fwaOATwnXnqJ5/All5h1mqx5hYuKOEX/wAP+C+TatV2t4NOnM+PkQw/Ravj666H4JZrKQF4e4wtU5qSTTmLwrVV3TJjAAeRTT3H9/ffbu4AoQQ4waHL9er7+6iumtnzySU/D4fbt9Mt2d1O1VoTUmGih7Y1zzgGkRPP9S5GbCxwskAxT79WL8zM+iEWL9p49zgptr64jALJkOjJKttiXjwfgqZqihPbtTZcEN1RwVXZd+7QosWrRdrLdDRrwBuQ1RqFZM45wZs92nwSh4une3WuAsyb+efRRc8q7TRumQ1uxwqyal5REq6Fi4EAKEfdqkb647TaGC6iu6sknKeTPOYeZi377LRS/RBPPHD1K334V133KKZxtSU42tzl0iPXoevZkZtbFi+m+dPvtnpWSX36Zy2bNgG++4b3prLM449K9u2t1SPX955/vmfYyJ0d3n97QQtsbPXsCHTuixerpAICt707jPOKtt5Z7NsWqRdtJV4vUVLbBzjqUdSQFGcgyKrzYsHkzI5aiLfqiXTtatG1yadeuDSSLAmTXsPcJViLXieBU9b2xJrTVsVJt8EAI3pV++w1bNvM/adECrCKybJlRaUhTmbG6ilx0EYMYX3qJeYgB12nxRYsomB980H+rdloa8xhv304rJECf8Fq1WFTkggu8F8TRaEpLGUirBmSDB7NiY61artvdey9vl6+8wslV5QJiF1dw551cfvghz/Obb+bntm7l0pqm2Fvw47PPOnevigW00PaGEMCll6L52l8AAFuencAb8WWX+fxYURG9S2LNou2060haGo+dXXq2rAO1KbQ3bbL/sMrTFm3D6XbtaK6yyzxy+DCayu3ITrCP8Ny5k52n1UoRSRo0oFVETZv7i9MWbaAc95FBg4CcHGz+Zx8aNmRKN2Rm8qLVQrvSk5DgGlD744+09I0Zw4GnkZAKAE+b++5jwNi33/r/HSqjSdOmZhrML7+kcaa4mGLe62BRU2mRkoL5q6/4euhQZveoWdN1u+nT6YZ0xx3AiSdy+7//pguJuy755Rfz+ddf04vxrLMonM8/3zM9rgp+bNjQdf1//xuSnxi3aKHtixtvRIuOPIu35tVjaaRyqtCom7wTo7tghfbhw9QZTgdDAp4BkXl5QN7BKr6F9oYNtgGFjqPm6OzcRzZvRlNkI7vIfnSzcye8B39GAHX+BpriLyaENoDNK/JNtxFVJlAVtdFUaurWZdFcgOI6K4tZHa6/3rNG2Zw5rG/20EOcGPGHFi3o+/3DD5wgBVhNduFCCvC1a5laLZg0rZr45ZlnTD/+M85gwH+NGq7b5OayEmPnztz+8GHTBeSqqzz3edppXL73HgNzL7uMMywlJVxamT+frk9durjWYZs7lwNUjXf04fFFgwZoMvsrJCaUYsu1T9rneHLDySn/YIW2ErdOB0MCnn7aKjtehsi2F9qFhbwrdukS3gYGgy+hvXo1hXaB/dRHtAjtQN1HosF1xKfQzsgAOnTAlqxE06X/xx95sHXGEY1Bhw5M9QeYbiHffENxnJEBDB/OdR9/zFR9q1cDX3zh//7vvZfGDSFY0Gb7dk7THzzI92fOpPVSZyLRAMAHHzDwFgDOPJNVH91j6KXkYDAnh3kbqldn7mw7FxCAMzGKrVs5e9m3Lz97112utqs9e4CRIzkLY62KevHFzE6i8U2FhLYQ4gIhxEohRKkQwmuEoBDidCHEWiHEBiHE2Ip8Z6SpkloPGc0SsHW/f07XSpg4IVqrVuUINxaFdqNGXFoT5gOm10VG42J7ob1+Pedbo1Fop6ezt7MT2suXoyl2IDs3yfZmunOneUycIBaFtrJol9fm0pEXYsuhNLRMyedA7eefmfNKm2U0Fs48k1ZBK1ddRReP9evpqwpQlHTvzqwl3uK13TnmGAZAvvUWp+k3bWK//eWXZn7jt97SmUg0dA+55ho+P+MMuilVq+a53SefcDD4xBP0gsvK4rk1cqR9heSnn+ayVy/6Z596Ki3bTZq4VogsKQFGj6bYtuberlqV+9eUT0XvLCsAnAfAazZRIUQigDcAnAGgM4CLhRAxlc68RQuv6ZA9cDqILZgy7MqK7KTriEqS7x7vWCa0W1Yxs4tYUcPrrl3D1ragSUjgHJ61nrNi+XI0TS3E0aPC1h9z1y5nLdreZhjKIxqEdnnuLrvOugpHUR0tts9hVFF+PoW2RuPGvfcyKNLKqlV8PP44X5eUUJxs2kTB4i9jx/Jc3bSJQZBPPw3060eXgKQkbnPbbYFlNdHEF3//bc6eDB3KiqR2InvTJrohnXgiKz8CPL/sXEAAzsB88w2fr1rFGZX0dGDBAg4urbFBjz3GIMmTTmJcguLBB837tsY3FRLaUsrVUsq15WzWF8AGKeVGKWUhgAkAhlfkeyNN8+ZuZdh94GQpc/W9gfrVRoNFOzWVxl/346yEdtMOte0t2suXc06sQ4fwNzIY+vZlegL3zCPLl6Npa/aYqqqXorCQAzYnhbayplt98fxh3z4Gcfqo5xQ26tblqVDe+b8ZLQEALX8fz3n/Jk1ckyRrNAZCUDz36uX53oYNZqGPn3/m4PKJJ+gX6w/9+1O8vPACxU1CAq3jZ55JYaMmWM44w8yXrKk8rFxJ330AOPlkeripAZiVkhJmxwFo1U5MZNiJcgGxy3prtUQfOQKMGsViN8ce65rvYepUntP9+pmZdwB+n7+VUTWR8dFOB2C1U2YZ62wRQlwnhFgkhFi0J1BzWpho0YKCr7i4/G2dtminpHivsOgNdZidFNpC2A9osrIY4VytbTOaeQsKXDdYsYL5qu2G+dFA376cYrC6jxw+DGzYgKad6gHwFNpK3Drtoy1EcELbqdzfQvC7y3MdKatvlFoA7NjBuVj30H2NxqBmTYoMJXoU48Yx8Eyxbx+v5bfe8n/f993HPm72bPrgfvstM0GcdBKti4pjjgl8dkkTu2zbZnpDHncczz9vxosXXuD58/rrFNWlpfTvd3cBUWzfThGuaNuWhpXsbDMdIMAJ5Esv5UyhNZ3fRRfRZ1x72vlPuYdKCDFTCLHC5hEWq7SU8l0pZR8pZZ80R2tomzRvzlGjuyCyIzeXms89r2WkCCb/cU4OLxqnBJLCTmhv3mxMT6mMEAsXum6wdGl0+mcrVD4w611z9WqgtBRN+7BqjQr4VCg/dSeFdpUqHHi5FyUoDyeFNuBHdUiYHkgt5k1kigcdzaMphwYNKIDPPddcN3EiU2CqqnqKZ56hN5I/nHYa/buffZZT/23b0l2ksBDo3ZtdhSI9ncVCNPFNbq7pktG1K0W01Tfayr//MuPN+eeblujPP7d3AVFMmuSaIefpp1kR8pJLOMsC0Mo9ciT7c2t/Onw48Omn5SZf07hRrtCWUg6WUnaxeUz28zu2A2hmeZ1hrIsZVBowf9xHcnNNa6ATpKYGLrR37+bnnB6h2gntDRt480H//jyof/1lvrl5Mx/upqZoolMnjrqsQttIJ5dxansI4fmbo0FoA5xJCNSivXevs0LbH9epzZu5XXKjWtFXTVQTtdSoQZFy/fXmusaNGSBp7e9zcsxqe+UhBKfm166l4HnlFT5Xn+/Y0fSYKypixUqdiSR+OXTInFlu2ZJC2pvIPnyYFufUVOa3FoITvmPHerqAWJk0yXzesyfzZyckuLqT3H67WXlS0b07B5dOuAXGOpGQVgsBtBNCtBJCJAEYBWBKBL43ZCih7U9AZE6OsxWSlOtIIJ2x06nkFM2bcyZfRe4XFlIUtWsHqrcuXRgdovj1Vy4HD450U/0nMZGDhBkzzD/lxx+Bdu1QrXMbNG3q6Xoey0J73z5nC3Q2aOCf64jW15pgSEyka4iy/AHMCjloEGNM0g2nyIcf9j9WZtgwlrl+7jmK+WHDGGipZrpatmS/CHCd9bs18UNRkTkTXq8ejUy+LMf33Uff/fHjTc3x7LOeLiBWsrNdbVUPP0yhfe+9LMwEMGXlu+96fnbu3Oj10Ix2Kpreb4QQIgtAfwA/CSGmG+ubCiGmAoCUshjALQCmA1gN4Csp5cqKNTuyqBMwEIu2U6Sm0pfc36lLwPkMF4rmzalFVQDk5s30N2vb1tjg+ONZIULNe82cSUe0Tp2caK7/XHQRzVSLFzNR7m+/ldVybtnSM5mKEtru1bciTaNGgbuOOG3RTk0t35d182Zz8FwZEUI0EELMEEKsN5a2/5gQ4n9G+tbVQohXhYi20qvOIASn863MnMnp9jPPNNfZZXvwxssvs5+77DKmCSwudq2217ixOYCcP9/VhUUT+5SWugY65ub6FtkzZ1JM33KLWXRm82b6a1tdQNyxWrMbNGBGkWbNzHNt6VLg2ms9P5ef71kcR+M/Fc068p2UMkNKWU1K2UhKeZqxPltKeaZlu6lSyvZSyjZSyqcq2uhIU6sWb+D+WLRzc50NKgwm/3E0WbQBc0CzYQOXZUL7pJN4xc+aRWfFmTNpzY72+//IkexFP/2UVTCOHi0T2q1aeQrtrVt5DjltPQjUoi0lRa6T+b+bNOH57G1GR0pt0QYwFsCvUsp2AH41XrsghBgA4HgA3QB0AXAsAJtsvJWTxETgySc918+cSSshQOuie10AbyQns+DNrl383D33MKf2n3+a2zRoYA4iJ092DcTUxC6lpa6iuqTEtxvn3r3AmDF0K3ruOXP9Pfd4uoC4c/vt5vMDB4AlS4D//Y8Bv/v3A+ed51mRdP16e19vjf/ouFE/ad7cf6HttOsI4H/mESmjT2gr4akSdagCizj3XKq/Z5/l/G1OjndHtGiiXj1gxAjgzTeB665jKkLDr7xlS0aYWzu39estv9lBGjUC8vJoqfOHAwf4O5y0xDdpwjZ4G2ju2UPfxkoutIcD+Nh4/jGAc222kQCqA0gCUA1AVQABzm/EN1dd5ek/u2kTzy01q6OK2vhDnz4U75Mm8dpr0YKft2a7Sk01+8ePPmIhE+2zHbsUFQUmsqUEbrqJA7LPPjOTJc2a5ekC4o6qdGr9ruOP54RraSnF+8aNrtu8/77F0KUJGi20/aRFi/JdR0pLnRfayprur0X7wAEaWKNBaLdqxdkDVRp2wwZWYSubIahRA7jzTob/jx0LDBnCRyzwzju0vlev7pIQVaVjUu4yQPQIbSWY/bVqKzcTp4U2YPq0ulOWcaQSu44AaCSlVEdoJwCPOQgp5VwAvwPYYTymSylXu28HRGdK1kjQpAmzMNSr57r+qqs4pgZYFMSuzpY3/vtf4JRTKJhuuonZS9W+FC1amIFqH3xAW4M/qWc10cWRI67uIsXF5Sck+OILBiQ++iiz0gAUzHfc4eoC4k5BQdkkKv7zH3P9yy9zQvjJJzlLYmXIEMYOaCqOFtp+oqpD+rIeHDhA0RQNFm1/hXa0BN4BtA716VOWlAPr13M07eIZcuutTDh7wQXAa6850s6gqFuX2f+3bnUxEbRqxaUKiDx0iAFP0SC0Ay1ao7aLBaEd7xZtf9OySiklaL12/3xbAJ3ALFHpAE4VQpxo913RmJI1Ujz8sL2r4MUXm8Vq1TXuDwkJLDqSlEQL5SmnMH2be6xEr16mMPr8c075+1soR+M87j7Phw+XnzJv61bg5puBAQM4EFOMH8/sJMoFxI477zSfq3v+qFG8337/PeMCrFSpAkyY4PfP0ZSDFtp+0rw549h8RZJHQynzQF1HokloA0xpvGQJBy1//22O2suoWZPD708/jd5qkN4QwqO0lxJ8SgAqv/T27SPWKq8owexvQGQsCG3l/hXvFu1y0rLuEkI0AQBjaTeUGgFgnpSyQEpZAGAaGPSusdCtG7BuHWfhlLBWLF9uPn/oIc9aW97IyADee48FZevXpwizKzxyzjlmwOUPP7BE9759wf0OTeTIyXGdBdm3jxOdvigtZTXGkhLe+pTL0urVtGIrFxA7vvuO5xMA3H8/ff8B4KWXOGMyYoTr9ioezcnsUfGGFtp+4k8ubVXQpmnT8LfHG/Xq0SoSixZtgKVei4rYCRQUcGo2nmnWjJYM5Y++bh2X0WDRjkehvXkzr5G6dSPVoqhkCgCjaDOuAGBXE2ErgIFCiCpCiKpgIKSt60hlRwjmI162DLjxRvttnnwSqF2b1/vQoSxK89ZbwO+/2wfvnn8+p+2/+477Hj/enOmzctdddFUBmLbtxBNd3dA00cX27dQHpaXma3fXIzteegn44w9mGmndmut27wbOOou2m88+s88JkJ3tmkXE+l1JSZ6Dw27d2Ec6qWHiES20/cSfXNpKaKtcqk6QmOhfGWqFElFOZoqw0q8fl+PG0Xh96qnOtifcVK0K9OhhlrhVgjsaAlCUaPWnIipgCm0ns+7UrEm/fl9CO97dRvzgWQBDhBDrAQw2XkMI0UcI8b6xzSQAmQCWA1gKYKmU8gcnGhtLvPCC72v3lFNowRw/nj7Yp57K66xBA/rQvveeafxQKf/WraObwS23uFb0Ayiu3noLGGjkg1m5kq4Fq/WQKOrYsIGzFSrwfe1a/wTtsmW0RJ97rplp5tAhzmjs3MmQH7s+rbSU2x86RHHevDnPT4B52t1dXM85hy4oTlW1jme00PYTlRHDH6Ht9GgwNTUw15GqVZ0vv65o2pTBGgUFwBlnVI7cnQMGUGgXF7PzbdyY1i+nqV6dblD+Wsh272bn7XTlsCZNfLuOxLvbSHlIKXOllIOklO0MF5O9xvpFUsprjOclUsrrpZSdpJSdpZR3+t6rBuBA748/vL9/+unAwoXM5rNtG+tYvfoqp/1XrmRSoqZNmQf59dfpA15QQPeRxYsZ/OhOUhKDLtu04ett25jUaO7csPxETRAsW+Y6S7lwoX/ugUeOsPpj/fosIiMEBfRll7HY8BdfsAqkHa+9xrwBjz3GPnzXLtMYolJQKm6/nT7/TleHjlf0YfWT1FSO9Nyr+FnZvp3bOC2S/CnaoVCp/aIpFfWLL9JP+623nG5JZBgwgFaHJUuA6dPpbxctZGQEJrSdLrIDeBfapaVAZmZ0zBZo4pf0dMaY2DF6NN1FhOC1NXgw47vffpup1ZYupTAqKqJftntGkXvvtZ+tTEmhZbNuXeY8TkpitcoffwzPb9T4z5w5LF+uWLmSQYj+8OCD9PX/4AMz9uuee4Bvv+Wsr7fCRcuX81wZNozW7sJCZhez43//4+yJJnxooe0nQvAGrYLV7MjOpjXCadHqy6LnjvIZiza6d3c2qDSSDBjA5bhxHPiMHOlse6zEk9Deto0WomgINNXEN3XquBarsRpfTj0VmDLF8zNC0Ef2oYcYCLltG/DGGxTjiv37aUiZPJmDcysdOzIH9+HD7NNbt6YQGz8+lL9MEwi//GIaTpKS6LrWubN/n/39dxqdbriBvtgAUz2OG0c3ojvusP/ckSMc0NWtyzzYyoffLvvNhx96TwmoCR1aaAeAP0LbSf9sRdOm/vvVbt1qusVonKFZM94UJ0xgNUjVqUYDGRm84fvDrl3RIbTV+e8eYKYCTbXQ1kSCRo2Aj42yQPn5ru8NHw48/bTvdLEZGfTjnjGDVlAr555LwT18OMWSyoY1eDBT9v/7L12/+vSh0HrmGV3YJtJMmmSWR09PZz/qr9va/v3MMtK2relX/dNPnP04+2wz/7Ud999Pi/b48bR8q2w37lVKv/5aVxeNFFpoB0Dbtpzecw9IUSiLttM0bUofwIMHfW8npRba0YAQnOLt1w+4/HLnXY+sZGTwJu5uPbMjWizabdrQquc+2NRCWxNpLruMAZB2PPAArdv+FJvp3JnCzcpVV1FQX301r9MbbmAQ5NVXM7f20qW8BwweTPF1xx1mtgtNePngA5Z6ADg7u2pVYH3jLbew//rsM7qj/vsv/fi7d2d6Pm85t3/5hRlKbr7ZNQtO8+aueda//z66Zk7jHS20A6BtW/rO2Vn4pIwuoQ2U7z6Sm8uLTwtt5+nUiem73n3X6Za4kpHB5fbtvrc7coTZFKIhTaQKOlLCWrFuHW9aKpuKRhNuhKDF+YQT7N//4w8GD7tbvO1QKf8Uxx7L4N5Fi+gq8NFHFOSnn87gue+/Z0zC5s0saPPqq8All3j31dWEhhdeAK65hs8HD2a/XqeO/5+fOJEDpdGjeS9fvpyW8QYNaJBJTrb/XE4Oy6h37EhjoDX3ujUt8bffxn/a3GhDC+0AUEFUdu4j+/ZRbESD0PY3LZu6+LTQ1nijWTMuy/PTVu9Hw7mkLNYqVaJi3Tq+53QMhaZy0bIlMHs2H95cC+vUoQWyPFTKP4D5kXNyWNTrvfdoAHrySe7njDPoe3v++RTjCxbQTWDiRLqm5eWF6tdpFFJS3Cqf50suAaZN812MJi+P/83HHwNjxzJn+qhRfO+TT9j/duvG5AbbtjHvdfPmHFD17cvZkmHD+Jm0NBrX1qxhcK0dX3/tWaBGE3600A4AX0I7GnJoK5TY10JbU1GURbs8oa3OJSXMnSQjgzc3O4u2dhvROMUJJ/A6+sFLNvLu3YFnn/W9j+Rks7JfURFw8snmzGVaGt1RNm9m9cAaNeh6UFTE7x0/ni4Jf/zBz/lbiEpTPqWlTM2o/r877jArOEpJ/+jff2cw46230tKdkcGAxX79aIl+7jlmngIonK2zmyeeyCwiF1/MbDLHHMNMMyUlnG2cOLH8Nj78sHYXcYoqTjcglmjalDdwd0sZYKb9iwbR6q/riBbamvJQA8fyAiKj6VxKSOCg2HqdFhRQgFx2mWPN0mgAMJht715eW1a/WYAW0fvuo0jr04duUO7+uH36MLjxvvvo+3viicDMmWbRkqQk5l4ePRr4+29awb/5hu+9/jq3X7yY2Y6mT9fpLitKURFw4YV01QEoiLt3p/BeuZIW5v37ze1r16Z7x6BBdBns1IkxMDffTGH+88+0bF9/Pbd/7z3TFcWO9etdDQhjx7oO2NLTKeDdC9RoIocW2gGQkAB06MDOzZ21a7ns0CGybbKjbl0OCPyxaNeooS9AjXdq1mQQz8aNvrdTQltZwJ2mfXvX63TRIlqdVOVRjcZJ6tenu2FqqpkVwooaENaqRdHVq5f56NSJ7gnTp9M6nZlJa/nMmRRwCiG4/oQTaAi6/35mNpo9m+9v3MjrYcYM7lcTOIcPA0OGcECjGDeOAa4NGtDt4+KLTUHdsSOFr9V97fff+X83aMBgxvbtad1+7z0OpnyJ7KIi12Dbbt1cRfaFF/pn7daEFy20A6R7d3ZM7qxdy6m7aKiwKIR/Kf5UxhHts6rxRbt2vtNaArR4N2rE9ITRQLt2nKIvLqaVaN48ru/b19l2aTSKatVY2EZZrIWgS8fvv7tuJyXzIavMP9WrU1BZy24fOgScdBKFWo8ent/VqhVdTp57zjXF3N699PH+6iszS4amfKQEZs3i/2WlQwcGGg4fzkFMYiL/4yVLOLBZv57BqOoxYQIzxQCcaXjySbr7qFSMc+dyfd261BdpaTR8qOe33OIaqG718580iT76GufRQjtAundnkMKePa4FVdaujQ5rtsIfob1lS3RM9Wuim7Zt7QeXVqItTWS3brT2LFnCqfZ582gp0rM3mmgiIYEZR2rXprhS1s1PP+X7Bw+yqt+BAxRp//zDx6JFLFqj2LePy549gd9+855SsHlzWtBHjHC9pi+8kEaiOXNcreIak6Ii4M8/edw/+MDV7WfIEJY8T0vj//PXX8zysnhx+UYKxT//uOa67tKF31m1Ku/lS5cyhWphYfn7WraMgZOa6KBCwZBCiAuEECuFEKVCCK9FRYUQm4UQy4UQS4QQiyrynU6jSqkuXeq6PtqEdnq67wA2KdlmlQpNo/FGu3bs6H3lZY82oT1kCC2E06fzXJ8/HzjuOKdbpdF4kpzsej/59FPXe8nChRRb9erR73rcOAq+ffuAX3/13N+pp/Lcf+IJujQUFbm+X6sW08RddBFfq+ti3z66N5xxBq21usANs4JMnMgMImlp7Fdef91VZA8fzoHS6adzID9kCP2058/ngP/JJ5l9ZONGxk3t3cvARICfKSjgsZ49m59v25aGvOXLKdh//50iXFW2PXCAMxPe2LxZi+xoo6JZR1YAOA/ALD+2PUVK2UNK6VWQxwJ2Qnv/fo40o0lot27NC85bMYTdu3nBRlObNdGJGoxlZtq/rwofRUPGEUVaGv1Of/6Z1r+dO81S9xpNtNGtGzNI3HMPX6uYHytNmwJffGG+rlGDojo/n9dovXpmFUGAYu6EE2ipPuMM4PnnaWEtKWHA5Oefs8jNvHkMnlSl3n/+GRg4kAJ80iTvBdrilawsZgc57TT60I8aZWZ6sWPyZFqQ+/alAJ4xg2kXN21iEOoDD1BQt2pFt4+nngIef5y+25Mnc+CTmwuceSb3N3Uqv9cOIYBHH6WQtyMnx//qk5rIUSGhLaVcLaW06RLil9RUdngqDQ8QXYGQirZtKbKtieqtqNRn0dRmTXSihLZdth3ArBwZTUIb4M1t7lzelOrV441No4lWEhIo1NzTUloZPZqi/MABc11yMkVzQQGtqDk5LGYD0O96zBi6Cd5zD92oUlPpOvLOO8CDD1IIfvYZ/YC//NIsiLJgAT/fvj3wxhv+VYeNVdatowDu04f92M0309/dOhtgPeYAcNtttDbv38++ceJEHuPBg+1d1IqKWM1z3Dj6Vn/2GQc8R44A557L/+j7773PMh8+TKH90kue73XvzhlH7RoXnUQqj7YE8IsQYrEQ4jpfGwohrhNCLBJCLNqzZ0+EmhcY/fq5Tq0p0d25s2NN8kClbPJmhVSDA51XWFMevvLHA9F7Lo0eTWvR77/zxhlIdTaNxinataPrgBLL7ixfzoHjTz+Z6449lq4iX38NTJnCDCQnnUSLdI8ezMCTnU1Bfv75nJG9+WZmCfrtNxqPvvmGvsfLl9NnW5GbS2HYvDnwyCOcDY0HlLju3p0GpwcfpMXfip1luVcvHoNXXmEwZN265X/X4cM87h9/DDz2GP23ExKYCemqq+gi8vHH3iuIjhvHDFB2XH01Z+28va+JAqSUPh8AZoIuIu6P4ZZt/gDQx8c+0o1lQwBLAZxU3vdKKdG7d28ZjbzzjpSAlCtX8vX550vZrJmUpaXOtstKVhbb+Oab9u/ffbeU1apJWVwc2XZpYpPGjaW88kr79957j+faxo2RbZM/ZGdL+eKLUublRf67ASySfvRz8fSI1j47Fjl0iPcWmnTsHyNHSpmTw+2Li6U8+WQpa9WSct06KQ8elPKMM7jdiy967n/VKimffFLKnj099zt7tpQTJ0qZksL7xPDhUp59Nt+rXl3K66/nd8Qaa9ZI+cQTUnbrZn88k5KkHDRIyv/9T8rPPpOyRw/X908+WcoDBwL7zn37pDzxRCmF8LwfP/AA9/v00/afXbvW+39ft66U06ZFl+6IdcLVZ4dmJ+UIbbdtHwVwtz/bRmunvWULj9y4cVIWFfGEv/pqp1vlSkmJlDVqSHnnnfbvDxsmZZcukW2TJnYZOpQ3ZDv+8x+eayUlkW1TtKOFtqaiFBdLeccdvN8MGSJlcrK96PrmG26/bZuU9etLeeyxUhYWSnn0KMU4IOWjj3oXZRs3SvnCC677rF1bymuukbJFC74eMEDKKVO4LimJwnHECCn//jtihyMoVq+W8vHHaQyzO3YdOkh5221S/vSTlAUFvKc/9ZSUVatK2bChKcrPPVfKw4cD++4dO6Ts3p37mjDB9b0PPuB+r77a838pLqau8Cayp06tyBHReCNmhTaAWgBqW57PAXC6P/uN5k67c2cpTziBnQwg5VdfOd0iT7p0oSXCjnbtaC3RaPxh7FjeLI4c8XzvtNOk7NUr8m2KdrTQ1oSKl1/m9ZeYKGVqqr34GjlSyl27pJw0ia9HjKDwLiqScswYrrvrrvItoJ9/br9/9XjxRc4UPfAARb0S4d99Fz2D7dWrpXzkEe+/4bzzODO9aZPr51aulLJPH25zwQVSXnQRn195JY9jIGRmStmmDWcYpk93fW/GDCmrVOHgqbDQXF9S4nsW47LLtAU7nESl0AYwAkAWgKMAdgGYbqxvCmCq8by14S6yFMBKAA/4u/9o7rRfeolHLyODU2u5uU63yJNzz5XymGM81+/fT2vE449Hvk2a2OTrr3m+L1rk+V6zZlJeemnk2xTtaKGtCSXbtlEo16rlXYgBFMrPPcf7Us2adJU4eFDKW2/l+9deW77L4KJFFPQJCVLefLPpgmJ9vP8+7yWvviply5Zc166dlG+/TbeXSLNqFX+b3TFJT5fywQfpEmMVtoriYh6zpCT+7s8/l/Lii/nZu+8OXNwuXUp3uwYNpJw3z/W95culrFOHhrD9+7kuO5uWb1//659/BnVYNAEQlUI73I9o7rRLSujLVbWqlJMnO90ae/77X3YcR4+6rv/1V/7zP//sTLs0sUdmJs+Zd95xXX/ggPTpY1iZ0UJbEw5ycymeq1eXXkVZr16cbVXW0ZYtOVi+/36+vvhie8FpZc0aKZs3pyj880/6Gn/6qed3XXWVlD/8IOUnn0jZuzfXpaXRkKP8x8NBcbGUX34pZZMm9sdg6FC+v2dP+b/zuONkmaV7/HhT9D77bODtmj2bbh8ZGWYclyI7m8e0cWNa03/4wft/aPUL37Ej8HZoAkcL7Sjk0CHPqadoYuJEaWuFfOYZro9GK7wmOiktlbJePQZBWfnrL55L0TrYdBIttDXh5OBBKV95RfoUac8+K+Vvv0nZtStfn3KKlKNH8/mwYeX7HG/dKmXHjhT1U6aY69es8fyu2rUpVC+7zAywrFGDFvHMzIr/3txc+lGfd57333vnnVIuW+afBbq4mG4w1avTBebGG6U8/njup3VruuAEyg8/cH8dOjCWy0pBgTkQGTLE9/+mHvfdF7jLiiZ4tNDWBMzmzfyH33jDdf2IEZzi02gCYehQxiZYeeIJuiGF03IVq2ihrYkEhYW8Nn0JtkWLmPGiQQO6g6j1gwZJmZ/ve/979jC4MjGRVmtFaamU777LWV2A/UB6urnvatVc23DSSfQ1dxegdhQXUzA/9BAH+N5+13HH0YIcqGvH+vWMsQLo+qayizRpIuVbb5Vv7bfj4495jPr0kXL3btf3jhzx/f9Uq8ZZAPW6Rg0pf/kl8DZoKoYW2pqAKS1l1PTll7uua9qUVg2NJhBUXILVOnXyyd6zkVR2tNDWRBI1u+TtUbMms4vceisFoVp/7LF0C/FFXp6Up57K7V9+2fW9zZvN9047jVbnZ55hSjvr91gfxx7Lbdau5T727qXPd3l+yq1aMdtXdnZwx6ikhD7lNWq47rd+fab0O3gwuP2++KIsG7ioVKK5uVI+9pjv35OR4elz/847OuDRKbTQ1gTFsGGc+lMsW8Z//e23nWuTJjbZsIHnziuv8PXBg4wBuPtuZ9sVrWihrYk0mzdLecMNppXZ26NzZ891u3b53vfhw5wNVZbkr7823RpKSjhzWrMm/ZM/+ohice9eprW7/HJXi60/j4QEKW+/Xco5c0ITXJmZKeXAga7fUasWgyRVUGKglJbSvQNgnvGff2ZsVCC/0/qflPcfaMJLuPpswX1HJ3369JGLFi1yuhkxzVNPseJVdjbQpAnw8MNcl50NNGrkdOs0sUanTkDjxqy2+MMPwDnnANOmsdy5xhUhxGIpZR+n2xFJdJ8dXSxYwErGwdCyJSsmtm/PqqqqkuG777JypaJxY1YnrFsX2LQJeOst87377gOqVAH++ce1kqUvbr4ZuPRSoG9ffmdFkZLl5m+80VxXtSpw003A/fcDDRsGvs/iYmDFClbkLC6uWPs+/ZS/V+M84eqztdCOc9avZ0f55JPAAw+wTHyjRhRKGk2gPPccMHYs8PPPvInu3csS7NWqOd2y6EMLbU20sHw50K2b060w6dGDZd7r1AFmzwYmTrTf7uabWbr8xBMp2ANlyxZ+z4IF5rorr2Qp+RYt/NuHlMCGDcDCheZj3jygpCTw9ijOPptt6FOpeofoRwttTdAMGgRkZgKPPQaMGQO8+abr6F6j8ZejR4EuXYCtW4HCQuCzz4DRo51uVXSihbYm2hg/HrjqKs/1t98OdO/u+t7dd9ManplJg8369RSc2dnBfffSpd7FfnExMHcuMHUq8MUX7F/cGTGClvPBg8sf2EsJvPEGcOut5rrzzweeeIKzcr4+t327q6hetAjYv7/cn1cuQgAXXECDVzQNejQmWmhrgkZN8QPAgAHAH39w6kyjCYZlyzg93KYNcOedoZnejUe00NZEI7m5wBVX2LtyXHAB8PXX5uvjjgNefZUuEoqDBym4N2wwxXdmJgfhc+ea2514InDHHdzmkUeA2rVp5LnggvLbmJVF0f3118DMmfbb1K4NXHst3VuaNQMyMrjcvx9o1crcrn17ivfeve2PhVVUL1wI7NzJ9xITafXet4+P8qhdGzj+eM72uXPZZXRT6dix/P1onEMLbU2FmD0bmDCBF3t6utOt0WjiHy20NdHM8uXAuHHAxx+Xv+2YMcAzz9Afuzzy8oAPPgBeeYWuG23bAqedRnfFVatomb7wQhp9mjWjpdcXR4/y/rVoEfDRR3RV85dWrShylQhXy7p16Wt+/fXmth07Aj170qq9aBEHEP4wdCgt7D/84Lq+bl3g8ss5W9Cmjf9t1jiHFtoajUYTQ2ihrYkFcnMpOu+/v/xtMzIodvv2pQXXF8XFwLffUswvWEB/7Lw8122aNqXgVo+ePYGkJN/7PXKEg4Q332Rboo2bbqIFP5ggS42zaKGt0Wg0MYQW2ppYorgYmDyZlujZs/37TI8ewHnnmSK5QQPPbaSkS8m4ccB333HdMcfQLeXQIWDOHGDzZq6vVo1uKv378/0mTYBduyis1WPdOmY/8Ub16hTrCQl8HDxIq3g46dcPGDkSuO228gcKmuhFC22NRqOJIbTQ1sQqS5YAL70EfPJJcJ9v147BhyNHUoCrOI7MTPp8f/ABBfCppwJ33UV3jvfeYxq+wkLv+23dGrj4YgrtCROYTlClrR01ivtftcr1sXGjb2HuLyeeCJx0Eh8DBgDJyRXfpya60EJbo9FoYggttDWxTk4OLdxPPul7u9q1gfz88vdXuzbT9JUXXNi+PX23CwvpKpKXR2FuR69e3N/mzbSehwohgEcfBQYOpKtMjRqh27cmOglXn63zBWg0Go1Go/EgNZUp8QoLga++okXZDiWymzZl8OFZZ3nfzp8MHuvWMehx0yZgxw7vIhtgMZxNmwIX2f37A6ec4rruwgtpBZeSVvCHH6bQ1iJbUxG00NZoNBqNRuOVqlWZli8zk+nzVq5k+r0rr3TdLjublQ79rQIZKZ5+mpUcS0poIR8/HigoYCaUhg2Bxx8Hdu9m4RxfebY1mmDQQluj0WgqEUKIC4QQK4UQpUIIr9OkQojThRBrhRAbhBBjI9lGTfRSty4rDJ9xBvDhh6b1d9y44PYnBFC/PlPxde9esbZVqcJgxBo1gJo1zfUPP8wUhddey9LyV17JNn/wAVMQPvQQkJZWse/WaLwRRFFTjUaj0cQwKwCcB+AdbxsIIRIBvAFgCIAsAAuFEFOklKsi00RNLCEEi1fdeSdfFxYym8jUqcC0aay2WLUqhbB6uL9W604+mc8PHGABGW9Uq0bf6RNO4GPAAKBePddtcnJYLn3uXLZn0iRmM/n4Y2DIkPJzeGs0oUALbY1Go6lESClXA4DwrTL6AtggpdxobDsBwHAAWmhryiUpiYL55JOB//2vYvs6epQZRt57j0L6xBMprPv0Kb8Ue2oqcPbZfGg0ThHVQnvx4sU5QogtAX4sFUBOONoTJcTz79O/LXaJ598X7G9rEeqGRJB0ANssr7MA9LPbUAhxHYDrjJdHhRArwty2YIjW81O3KzBSf/opOtuFKD1e0O0KhA7h2GlUC20pZcBeU0KIRfGcUiuef5/+bbFLPP++WPxtQoiZAOwKZj8gpZwcyu+SUr4L4F3je6PyWOl2BYZuV2DodgVGNLcrHPuNaqGt0Wg0msCRUg6u4C62A2hmeZ1hrNNoNBpNAOisIxqNRqNxZyGAdkKIVkKIJACjAExxuE0ajUYTc8Sj0H7X6QaEmXj+ffq3xS7x/Pvi6rcJIUYIIbIA9AfwkxBiurG+qRBiKgBIKYsB3AJgOoDVAL6SUq70Y/fReqx0uwJDtyswdLsCo1K1K6pLsGs0Go1Go9FoNLFKPFq0NRqNRqPRaDQax9FCW6PRaDQajUajCQNxJbTjtWSwEKKZEOJ3IcQqo3Ty7U63KdQIIRKFEP8KIX50ui2hRghRTwgxSQixRgixWgjR3+k2hQohxH+Mc3KFEOJLIUR1p9tUEYQQHwohdltzQQshGgghZggh1hvL+k620Qnsjovb+0II8arR9y4TQvSyvHeFcezWCyGuCHG7fPb5QoiXhBBLjMc6IcR+y3sllvdCGujpR7vGCCH2WL7/Gst7Th6vO437zDIhxK9CiBaW98J2vPxsWzUhxETj/flCiJaW9+4z1q8VQpwW6rYZ31FuPyCE6CGEmGv0icuEEBdZ3vtICLHJcgx7RKpdxna2/59gwPN84/hNFAx+jki7hBCnWNq0RAhxRAhxrvFeuI7XBcb/UyqE8Jpi0Nv5GNTxklLGxQNAIoBMAK0BJAFYCqCz0+0K0W9rAqCX8bw2gHXx8tssv/FOAF8A+NHptoTht30M4BrjeRKAek63KUS/Kx3AJgA1jNdfARjjdLsq+JtOAtALwArLuv8BGGs8HwvgOafbGQ3Hxe39MwFMAyAAHAdgvrG+AYCNxrK+8bx+iNoUUJ8P4FYAH1peF4TpWJXbLgBjALxu81lHjxeAUwDUNJ7fCGBiuI9XAG27CcDbxvNRqm0AOhvbVwPQythPYhjaWG4/AKA9gHbG86YAdqj+HsBHAEY60S5f/5/Rb48ynr8N4MZItsuyfQMAey3nX7iOVyewMM0fAPoEej4Gc7ziyaJdVjJYSlkIQJUMjnmklDuklP8Yz/PBLADpzrYqdAghMgCcBeB9p9sSaoQQdUGR8gEASCkLpZT7HW1UaKkCoIYQogqAmgCyHW5PhZBSzgI7eyvDwcESjOW5kWxTNODluFgZDuATSeYBqCeEaALgNAAzpJR7pZT7AMwAcHqImhVon38xgC9D9N2hbJcVR4+XlPJ3KeUh4+U8MH96JPDnmFmvw0kABgkhhLF+gpTyqJRyE4ANxv5CTbn9gJRynZRyvfE8G8BuAAEX3gt1u7xhHL9TweMZ8OdD3K6RAKZZzr+wIKVcLaVcW85mtudjsMcrnoS2XcnguBGjCmO6rCeA+Q43JZS8DOAeAKUOtyMctAKwB8B4QdeY94UQtZxuVCiQUm4H8AKAraDl5oCU8hdnWxUWGkkpdxjPdwJo5GRjohRv/W84+2W/9224QLQC8JtldXUhxCIhxDw1XR3hdp1vuBdMEkKo4kBRcbwMrgZnKRThOl7+tq1sG8n0kwcApPj52VAQUD8ghOgLWkMzLaufMv7zl4QQ1SLcLrv/LwXAfuN4AqE9doH2m6PgORAOx/HyB2/nVFDHS1eGjCGEEMkAvgFwh5Qyz+n2hAIhxNkAdkspFwshTna4OeGgCjjlfquUcr4Q4hVwGu0hZ5tVcQyfu+GggNkP4GshxKVSys8cbVgYkVJKIYTOiRp7jAIwSUpZYlnXQkq5XQjRGsBvQojlUspML58PNT8A+FJKeVQIcT1oGTs1Qt9dLkKISwH0ATDQstrJ4xURhBAzATS2eesB64vy+gFjNudTAFdIKZUB6T5QcCaB+ZrvBfB4BNvl8f+Bg5WgCfHx6grm7VeE5XhJKSf7s49QEk9CO65LBgshqoIi+3Mp5bdOtyeEHA/gHCHEmQCqA6gjhPhMSnmpw+0KFVkAsqSUagZiEii044HBADZJKfcAgBDiWwADAMSb0N4lhGgipdxh3BB2O92gKMRb/7sdwMlu6/8I83faMQrAzdYVxowMpJQbhRB/gDOFoRCO5bZLSplrefk+6M+qPnuy22f/CEGb/GoXAAghBoNCaaCU8qhaH8bj5W/b1DZZhqtaXQC5fn7WL6SUg729J4Twqx8QQtQB8BMo6uZZ9q2su0eFEOMB3B3Jdnn5/74B3byqGFbagI5dKNplcCGA76SURZZ9h+V4+Ym3cyoXQRyveHIdiduSwYZf0AcAVkspX3S6PaFESnmflDJDStkS/M9+iyORDSnlTgDbhBAdjFWDAKxysEmhZCuA44QQNY1zdBAYPxBvTAGgsj9cASDiFpEYYAqAywU5DnQj2gFaqIYKIeobMyBD4Wq1qgh+9flCiI5gYOFcy7r6aipaCJEKDvhDdV2W2y5DeCjOgXndOHq8hBA9AbwD4Bwp5W7L+nAeL7/aBtfrcCR4r5DG+lGCWUlaAWgHYEEI22b3/bb9gNH278B4hUlu7zUxlgL067XN4BOmdtn+f8bx+x08nl4/H652WfCInwjj8fIH2/Mx6ONVXrRkLD3AyPd14Cj7AafbE8LfdQIACWAZgCXG40yn2xWG33ky4jPrSA8Ai4z/73uEKItANDwAPAZgDdgJfgqgmtNtquDv+RL0Ny8CZyOuBv3yfgWwHsBMAA2cbmeUHJcbANxgvC8AvGH0vcthieYHcBUYoLYBwJUhbpdHnw9OL59j2eZRAM+6fW6A0c6lxvLqSLYLwDMAVhrf/zuAjtFwvIzze5flPjMlEsfLz7ZVB/C1cVwWAGht+ewDxufWAjgjTNeAbT8Auti8bzy/1LhGllgePYz3fjOO3Qpw1i85gu3y+v+BmTUWGMf1a4SoD/enXcbrlqBVOMHt8+E6XiPAPuyoca5PN9Y3BTDV1/kY7PHSJdg1Go1Go9FoNJowEE+uIxqNRqPRaDQaTdSghbZGo9FoNBqNRhMGtNDWaDQajUaj0WjCgBbaGo1Go9FoNBpNGNBCW6PRaDQajUajCQNaaGs0Go1Go9FoNGFAC22NRqPRaDQajSYM/B91SwhFi14rLAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -590,7 +613,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -600,14 +623,14 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAARMAAAEACAYAAACQ65KNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADytJREFUeJzt3XuMHeV5x/HvUwNGJg6ORWJuJggBMpAoMkGGQFHPHwUZ\nI3GRuJQoghQJA4IokaJgCFFw/4KQG4q4FKo0QkpdgsRFTsEJpmIbIIKADNRQzEWpG0PBVArmZhKw\n/fSPObjLdnd9dufdnTlnvx/pyHPOvOfM82p2f573nTmzkZlIUl1/0XQBkgaDYSKpCMNEUhGGiaQi\nDBNJRRgmkoqoHSYRsTQiNkTESxGxYpT1nYh4KyKe6j6+U3ebktpntzpvjohZwI3AXwOvAk9ExOrM\nfH5E03/LzNPqbEtSu9U9MlkCvJyZGzPzQ+AO4PRR2kXN7UhqubphcgCwadjzV7qvDZfA8RHxTETc\nHxFH1tympBaqNcyhCopdWQcszMytEXEKcC9weM3tSmqZumHyKrBw2POFVEcnO2XmO8OW10TEzREx\nPzP/OLxdRPglIakhmVl7KqLuMOdJ4LCIODgi9gDOBVYPbxARCyIiustLgBgZJB/JzIF9XHPNNY3X\nYN/s32iPUmodmWTmtoi4HPg1MAv4aWY+HxEXd9ffCpwFXBoR24CtwN/UrFlSC9Ud5pCZa4A1I167\nddjyTcBNdbcjqd28AnaadDqdpkuYMoPcNxj8/pUSJcdMdUREtqUWaSaJCLIFE7CSBBgmkgoxTCQV\nYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJ\nRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNE\nUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIw\nkVRE7TCJiKURsSEiXoqIFWO0+Ul3/TMRsbjuNiW1T60wiYhZwI3AUuBI4LyIOGJEm2XAoZl5GLAc\nuKXONiW1U90jkyXAy5m5MTM/BO4ATh/R5jTgdoDMfByYFxELam5XUsvUDZMDgE3Dnr/SfW1XbQ6s\nuV21xfLlcPzxsGwZbNnSdDVq0G413589tote3rdy5cqdy51Oh06nM6miNI2efhqeeKJaXr4c7ryz\n2Xq0S0NDQwwNDRX/3MjsNQ9GeXPEccDKzFzafX4VsCMzvzeszd8DQ5l5R/f5BuCvMnPziM/KOrWo\nIcuWwZo1sM8+8NJLMG9e0xVpgiKCzBz5H/6E1R3mPAkcFhEHR8QewLnA6hFtVgPnw87w2TIySNTH\nVq2CM86A3XeH9eubrkYNqnVkAhARpwA3ALOAn2bmtRFxMUBm3tpt89EZn/eAv83MdaN8jkcm/ezu\nu+Hqq6thz+zZTVejCSh1ZFI7TEoxTPpcZnWE8sUvwne/23Q1mgDDRO2zaRMsXgyPPAKLFjVdjXrU\nljkT6f8sXFgdlVx8MezY0XQ1mmaGicq67DJ4/3342c+arkTTzGGOynvmGTjppOrszgIvdm4750zU\nbitWVHMoq1Y1XYl2wTBRu23dCp//PNx0Eyxd2nQ1GocTsGq3OXPgllvg0kvhvfearkbTwCMTTa2v\nfAX22w++//2mK9EYHOaoP7zxRjXc+dWvqmtQ1DoOc9QfPvMZuO666hvF27c3XY2mkGGiqffVr8In\nPgE33th0JZpCDnM0PV58sbqJ0rp1cNBBTVejYRzmqL8cfjh84xvVFbL+pzGQDBNNnyuugN//Hu66\nq+lKNAUc5mh6PfoonHMOPPecd2VrCU8Nq39dcglEVBe1qXGGifrXli1w1FHVzadPOKHpamY8J2DV\nv+bNgxtuqK49+eCDpqtRIYaJmnHWWXDIIXD99U1XokIc5qg5f/hDdc/YRx+tTh2rEQ5z1P8OOqi6\no/0ll3jtyQAwTNSsr30N3nkHbr+96UpUk8McNe+pp6obKK1fX30xUNPKU8MaLN/6Frz2Gvz8501X\nMuMYJhos770Hn/sc3HornHxy09XMKE7AarDstRfcfHN1m8etW5uuRpPgkYna5ctfrs7yXHdd05XM\nGA5zNJg2b65u87h2LXzhC01XMyM4zNFgWrAArr3W2zz2IcNE7XPhhbDnntUcivqGwxy104YNcOKJ\n1W0eFy5supqB5jBHg23RIrj88uoKWfUFw0TtdeWV8MILcM89TVeiHjjMUbs9/DCcd151m8e99266\nmoHkqWHNHMuXw+67V38EXcUZJpo53nyzus3jXXfBl77UdDUDxwlYzRyf+hT8+MfVEcqHHzZdjcZg\nmKg/nHNOdZn9D37QdCUag8Mc9Y+NG+GYY+Cxx+DQQ5uuZsr86U9w0UVVd+fOhVWrpvZPDDlnopnp\nRz+C+++vvrsTtX/+i9qxo7pp3Ntvw1tvVY/JLGdWj23bqs89++zqr4JMFcNEM9O2bXDssfD1r8P5\n5xf72D//ubdf+PHWv/suzJlTncHee2/45Cc//m+vy7Nnw6mnwpo11YHY2rUemUyIYaKerVsHy5bB\ns8+yY/4+vPtu/aOB7dsn9gs/2vLcuTBrVpkubtlSzTffdtvU/xVVw0QzWmev3/Hw1qPZwSzmzIF5\n82LCv/zDX9tzz9aNmqZNqTDZrUQx0nTbPms2O7o/vqfO/y13bjq+4YrkqWH1pbmzqz8resyc57jt\nkaMarkbgMEd9ast/vcXyv6yCZN5n/c5OHc6ZSCqi8TmTiJgP/AL4LLAROCczt4zSbiPwNrAd+DAz\nl0x2m5Laq86cyZXA2sw8HPjX7vPRJNDJzMUGiTS46oTJacBHfyD2duCMcdrO0JNu0sxRJ0wWZObm\n7vJmYMEY7RJ4MCKejIiLamxPUouNO2cSEWuBfUdZdfXwJ5mZETHW7OkJmflaRHwaWBsRGzLz4dEa\nrly5cudyp9Oh0+mMV56kSRgaGmJoaKj45076bE5EbKCaC3k9IvYDHsrMRbt4zzXAu5n5w1HWeTZH\nakAbbo60Grigu3wBcO/IBhExJyLmdpf3Ak4G1tfYpqSWqnNkMh+4EziIYaeGI2J/4B8y89SIOAS4\nu/uW3YB/ysxrx/g8j0ykBnjRmqQi2jDMkaSdDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGG\niaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSE\nYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQV\nYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpiEmHSUScHRHPRcT2\niDh6nHZLI2JDRLwUESsmuz1J7VbnyGQ9cCbwm7EaRMQs4EZgKXAkcF5EHFFjm5JaarfJvjEzNwBE\nxHjNlgAvZ+bGbts7gNOB5ye7XUntNNVzJgcAm4Y9f6X7mqQBM+6RSUSsBfYdZdW3M/OXPXx+TqSY\nlStX7lzudDp0Op2JvF1SD4aGhhgaGir+uZE5od/3//8BEQ8B38zMdaOsOw5YmZlLu8+vAnZk5vdG\naZt1a5E0cRFBZo47X9GLUsOcsQp5EjgsIg6OiD2Ac4HVhbYpqUXqnBo+MyI2AccB90XEmu7r+0fE\nfQCZuQ24HPg18B/ALzLTyVdpANUe5pTiMEdqRtuGOZJmOMNEUhGGiaQiDBNJRRgmkoowTCQVYZhI\nKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgm\nkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGG\niaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVMekwiYizI+K5\niNgeEUeP025jRPx7RDwVEb+b7PYktVudI5P1wJnAb3bRLoFOZi7OzCU1ttfXhoaGmi5hygxy32Dw\n+1fKpMMkMzdk5os9No/JbmdQDPIP5CD3DQa/f6VMx5xJAg9GxJMRcdE0bE9SA3Ybb2VErAX2HWXV\ntzPzlz1u44TMfC0iPg2sjYgNmfnwRAuV1G6RmfU+IOIh4JuZua6HttcA72bmD0dZV68QSZOWmbWn\nIsY9MpmAUQuJiDnArMx8JyL2Ak4G/m60tiU6I6k5dU4NnxkRm4DjgPsiYk339f0j4r5us32BhyPi\naeBx4F8y84G6RUtqn9rDHEmCab4CNiL+MSI2R8T6cdr8JCJeiohnImLxdNZXV0QsjYgN3fpXjLK+\nExFvdS/geyoivtNEnZO1q/512/Tt/vtIRMyPiLUR8WJEPBAR88Zo15cXZE7ggtNd7u+PycxpewAn\nAouB9WOsXwbc310+FnhsOuur2bdZwMvAwcDuwNPAESPadIDVTdc6hf3r2/03oh/XA1d0l1cA143R\n7j+B+U3XO4n+LQIOBx4Cjp7s/h75mNYjk6xOCb85TpPTgNu7bR8H5kXEgumorYAlwMuZuTEzPwTu\nAE4fpV2/TjT30r9+3n/D7exH998zxmnbd/sze7vgtNef553a9kW/A4BNw56/AhzYUC0TNVrtB4xo\nk8Dx3SHA/RFx5LRVV18v/evn/Tfcgszc3F3eDIwViIN8QWYv+/tjSp0aLmlk0vfLDHEvda4DFmbm\n1og4BbiX6nCzH/S6H/pi/41zQebVw59kZo5zDVRrL8gscMHphPdb28LkVWDhsOcHdl/rByNrX0iV\n5jtl5jvDltdExM0RMT8z/zhNNdaxy/6N0qa1+y8zTxprXfckwb6Z+XpE7Ae8McZnvNb9938i4h6q\noUErwmS8/vWol/39MW0b5qwGzgeIiOOALcMON9vuSeCwiDg4IvYAzqXqz04RsSAioru8hOrUfD8E\nCfTQP/p7/w23Grigu3wB1RHkx0TEnIiY213+6ILMMc9StthYcz697O+Pm+ZZ5H8G/hv4gGo8diFw\nMXDxsDY3Us0iP8MYM81tfQCnAC9067+q+9rO/gGXAc9SzYz/Fjiu6ZpL9q/f99+wPswHHgReBB4A\n5nVf3x+4r7t8SHc/Pt3dp1c1XfcE+ndm9/fvfeB1YM3I/o21v8d7eNGapCLaNsyR1KcME0lFGCaS\nijBMJBVhmEgqwjCRVIRhIqkIw0RSEf8LB+U5EoL/HJ8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR8AAAD8CAYAAABO8KDVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUDUlEQVR4nO3dfbRVdZ3H8fdHCDAVRGQI0XwYSbSxUO843aFlPlVkK7DRMW016kShozYzPi11WWmWpc40uMwsyee1Wj5n0VgiIEwzawF5mUER7qhINsqQIJhNWiD4nT/27+Lxeh/O5WzO75zD57XWWWc//M65382FD3vvc/b+KiIwM6u3nXIXYGY7JoePmWXh8DGzLBw+ZpaFw8fMsnD4mFkWpYSPpMmSnpa0UtKlPaw/U9I6SUvT4wsV686Q9Gx6nFFGPWbW+FTr93wkDQKeAT4KvAg8DpwWESsqxpwJtEXEed1euwfQAbQBASwBjoiIV2oqyswaXhl7PkcCKyNiVURsAu4Bplb52o8DcyJiQwqcOcDkEmoyswY3uIT3GAe8UDH/IvAXPYw7SdJRFHtJ50fEC728dlxPP0TSdGA6wC677HLEhAkTSijdzAZiyZIlL0fE6DLeq4zwqcZPgbsjYqOks4A7gWMH8gYRMROYCdDW1hYdHR3lV2lmfZL067Leq4zDrtXAPhXze6dlW0XE+ojYmGZvAY6o9rVm1prKCJ/HgfGS9pc0BDgVmFU5QNLYitkpQGeang18TNJISSOBj6VlZtbiaj7siojNks6jCI1BwG0RsVzSVUBHRMwC/l7SFGAzsAE4M712g6SvUwQYwFURsaHWmsys8dX8UXsOPudjloekJRHRVsZ7+RvOZpaFw8fMsnD4mFkWDh8zy8LhY2ZZOHzMLAuHj5ll4fAxsywcPmaWhcPHzLJw+JhZFg4fM8vC4WNmWTh8zCwLh4+ZZeHwMbMsHD5mloXDx8yyqFe75AskrZD0pKR5kvatWLeloo3yrO6vNbPWVPMN5FO75O9S0S5Z0qzKdsnAf1G0S35d0t8B1wGfSev+EBETa63DzJpLXdolR8T8iHg9zS6i6M9lZjuwMsKn6pbHyTTg5xXzwyR1SFok6cQS6jGzJlCvdskASPoc0AZ8pGLxvhGxWtIBwGOSlkXEcz28dmuv9ve+9711qdfMtp+6tEsGkHQ8cDkwpaJ1MhGxOj2vAhYAh/X0QyJiZkS0RUTb6NGl9Kk3s4zq1S75MOBmiuBZW7F8pKShaXpPYBJQeaLazFpUvdol/xOwK3C/JID/iYgpwMHAzZLepAjCa7p9SmZmLcrtks2sam6XbGZNz+FjZlk4fMwsC4ePmWXh8DGzLBw+ZpaFw8fMsnD4mFkWDh8zy8LhY2ZZOHzMLAuHj5ll4fAxsywcPmaWhcPHzLJw+JhZFg4fM8vC4WNmWTh8zCyL0sKnin7tQyXdm9YvlrRfxbrL0vKnJX28rJrMrHGVEj4V/do/ARwCnCbpkG7DpgGvRMSBwAzg2vTaQyja7bwfmAzclN7PWtGPfwzf+hYsXJi7EsusrI6lW/u1A0jq6tde2QZnKnBlmn4AuFFFH52pwD2pkeCvJK1M7+e/na3mppvg3HNhp51g6FCYNw/a23NXZZmUddhVTb/2rWMiYjPwKjCqytciaXrq6d6xbt26ksq2utqwoXh+803YtAkWLMhajuXVNCec3S65BRx3XLHH0+Xoo7OVYvmVFT7V9GvfOkbSYGAEsL7K11oraG+H+fPhwx+GLVtg48bcFVlGZYVPv/3a0/wZafpk4LEo2qXOAk5Nn4btD4wHfllSXdZo2tth9mw44AD44hfh9ddzV2SZlBI+6RxOV7/2TuC+rn7tkqakYbcCo9IJ5QuAS9NrlwP3UZycfgQ4NyK2lFGXNah3vxtuuQVWroQrr8xdjWXiXu2Wz/TpcOutsHgxtJXS/tu2M/dqt9Zw3XUwZgx8/vPFp1+2Q3H4WD677w7f+x4sW1YEke1QHD6W19SpcMop8PWvQ2dn7mqsjhw+lt8NN8Cuu8K0acVH8LZDcPhYfmPGwPXXF9d73XRT7mqsThw+1hg+9zmYPBkuuwyefz53NVYHDh9rDBJ8//vF81lnQRN+BcQGxuFjjWPffYvbbTz6KNx1V+5qbDtz+FhjOeccmDQJzj8fXnopdzW2HTl8rLHstFNx6cVrr8GXvpS7GtuOHD7WeCZMgCuugPvvh4ceyl2NbScOH2tMF18MH/xgcRj2yiu5q7HtwOFjjeld74LbboN164ogspbj8LHGdfjhcNFFxZXv8+blrsZK5vCxxnbFFTB+fHH7jddey12NlcjhY41t553hBz+AVavgq1/NXY2VyOFjje8jH4Gzzy6u/1q8OHc1VhKHjzWHa6+FvfYqrnz3jcdaQk3hI2kPSXMkPZueR/YwZqKkhZKWS3pS0mcq1t0h6VeSlqbHxFrqsRY2fHhx7dfy5cUlGNb0at3zuRSYFxHjgXlpvrvXgdMjoqsd8vWSdq9Yf3FETEyPpTXWY63sk5+Ez34Wrr66CCFrarWGz1TgzjR9J3Bi9wER8UxEPJum/xdYC7jrn22b66+HESN847EWUGv4jImINWn6N8CYvgZLOhIYAjxXsfjqdDg2Q9LQXl7qdslWGD26uPPh4sXwne/krsZq0G/rHElzgff0sOpy4M6I2L1i7CsR8Y7zPmndWGABcEZELKpY9huKQJoJPBcRV/VXtFvn7OAi4FOfKrqfLltWNCC0uiizdc7g/gZExPF9FPKSpLERsSYFydpexg0HHgYu7wqe9N5de00bJd0OXDSg6m3HJBVdL97//uLLh3PmFMusqdR62FXZAvkM4CfdB6T2yQ8Bd0XEA93WjU3Pojhf9FSN9diOYp99inY78+bB7bfnrsa2Qa3hcw3wUUnPAseneSS1SboljTkFOAo4s4eP1H8oaRmwDNgT+EaN9diOZPp0OOoouPBCWLOm//HWUNwu2ZrbM88Ut9444QR48MHc1bQ8t0s26/K+98HXvgY/+pHDp8k4fKz5XXBBcfuNc8+FDRtyV2NVcvhY8xs8uLjnz8svF+d/rCk4fKw1TJwIl1wCd9xRfPRuDc/hY63jK1+Bgw4qPgX7/e9zV2P9cPhY6xg2rDj8+vWv4ctfzl2N9cPhY61l0qTixPMNN8DChbmrsT44fKz1fPObxTegp02DjRtzV2O9cPhY69ltN7j5ZujsLO7906I2boS1a4veihde2Hw7ev6Gs7Wu00+Hu++GJUvgAx/IXc1WmzbBq6/C73731qOv+d7Wdb+b7M47F5e6tbdvv9rrelW7WdOaMQMeeaQ4/Fq4sPg+UA3eeKP6YOhrXTVHgoMHF/dMGz68eIwYAePGwcEHvzU/fDgsWgQPPwxvvlmE0YIF2zd8yuTwsdY1ahTceCP//pkbeHTCfUz8/BEc+MmDBhQUldN//GP/P3LQoLeCoet57NjiGwCVYVK5vqf5YcOqu0vIwoUwd24RPEOGwNFH1/ynVjcOH2tpC387geN4jDeeG1Lc/u7ynscNGvTOABgzprh0rNrAGDGi+tAoS3t7cai1YEERPM2y1wMOH2txCx7cwJb0ucpObOG0D3byt9/+s3eEx847N+/9yNrbmyt0ujh8rKUdfdIohj66iU0EQ3iDc88J2o/LXZWBw8daXPv0Q5nHMhY8uJ6jTxpF+/RDc5dkicPHWl779ENpn567CuvOXzI0syxqDp9qWiancVsq7uE8q2L5/pIWS1op6d50w3kza3Fl7PlU0zIZ4A8VbZGnVCy/FpgREQcCrwDTSqjJzBpcGeHTb8vk3qSWOccCXS11BvR6M2teZYRPtS2Th6V2x4sknZiWjQJ+GxGb0/yLwLieXux2yWatpapPu/ppmbxVRISk3q5U3TciVks6AHgs9et6tdpCI2ImRUtl2tramu9qWDN7m6rCp4yWyRGxOj2vkrQAOAx4ENhd0uC097M3sHqA22BmTaiMw65qWiaPlDQ0Te8JTAJWRHE/j/nAyX293sxaTxnhU03L5IOBDklPUITNNRGxIq27BLhA0kqKc0C3llCTmTU430zMzKrmdslm1vQcPmaWhcPHzLJw+JhZFg4fM8vC4WNmWTh8zCwLh4+ZZeHwMbMsHD5mloXDx8yycPiYWRYOHzPLwuFjZlk4fMwsC4ePmWXh8DGzLBw+ZpZFTeFTTatkScdUtEleKumPXX27JN0h6VcV6ybWUo+ZNY9a93z6bZUcEfO72iRTdCd9HXi0YsjFFW2Ul9ZYj5k1iVrDZ6Ctkk8Gfh4Rr9f4c82sydUaPtW2Su5yKnB3t2VXS3pS0oyu3l49cbtks9bSb/hImivpqR4eUyvHpQaAvfbhSd1MDwVmVyy+DJgA/DmwB0UPrx5FxMyIaIuIttGjR/dXtpk1uH7bJZfRKjk5BXgoIt6oeO+uvaaNkm4HLqqybjNrcrUedvXbKrnCaXQ75EqBhSRRnC96qsZ6zKxJ1Bo+1bRKRtJ+wD7Av3V7/Q8lLQOWAXsC36ixHjNrEv0edvUlItYDx/WwvAP4QsX888C4HsYdW8vPN7Pm5W84m1kWDh8zy8LhY2ZZOHzMLAuHj5ll4fAxsywcPmaWhcPHzLJw+JhZFg4fM8vC4WNmWTh8zCwLh4+ZZeHwMbMsHD5mloXDx8yycPiYWRYOHzPLoubwkfTXkpZLelNSWx/jJkt6WtJKSZdWLN9f0uK0/F5JQ2qtycwaXxl7Pk8BfwX8orcBkgYB3wU+ARwCnCbpkLT6WmBGRBwIvAJMK6EmM2twNYdPRHRGxNP9DDsSWBkRqyJiE3APMDW1zDkWeCCNq6blspm1gHqd8xkHvFAx/2JaNgr4bURs7rb8Hdwu2ay1VNU6R9Jc4D09rLo8IvpqFFiaiJgJzARoa2vrtS2zmTWHqsKnr5bJVVpN0TSwy95p2Xpgd0mD095P13Iza3H1Oux6HBifPtkaApwKzIqIAOYDJ6dx/bVcNrMWUcZH7Z+W9CLQDjwsaXZavpeknwGkvZrzgNlAJ3BfRCxPb3EJcIGklRTngG6ttSYza3wqdj6aS1tbW3R0dOQuw2yHI2lJRPT6fb6B8DeczSwLh4+ZZeHwMbMsHD5mloXDx8yycPiYWRYOHzPLwuFjZlk4fMwsC4ePmWXh8DGzLBw+ZpaFw8fMsnD4mFkWDh8zy8LhY2ZZOHzMLAuHj5llUVP4VNMqWdI+kuZLWpHG/kPFuislrZa0ND1OqKUeM2seVbXO6UNXq+Sb+xizGbgwIv5T0m7AEklzImJFWj8jIv65xjrMrMnUFD4R0QlQdD3udcwaYE2a/j9JnRRdSVf0+iIza3l1PecjaT/gMGBxxeLzJD0p6TZJI+tZj5nl02/4SJor6akeHlMH8oMk7Qo8CPxjRPwuLf4e8KfARIq9o2/38Xr3ajdrIf0edpXQKhlJ76IInh9GxI8q3vulijE/AP61jzrcq92shWz3wy4VJ4RuBToj4l+6rRtbMftpihPYZrYDqPWj9n5bJQOTgL8Bju3hI/XrJC2T9CRwDHB+LfWYWfNwu2Qzq5rbJZtZ03P4mFkWDh8zy8LhY2ZZOHzMLAuHj5ll4fAxsywcPmaWhcPHzLJw+JhZFg4fM8vC4WNmWTh8zCwLh4+ZZeHwMbMsHD5mloXDx8yycPiYWRYOHzPLYrv3ak/jnk83il8qqaNi+R6S5kh6Nj27aaDZDqLWPZ+uXu2/qGLsMRExsdvNpy8F5kXEeGBemjezHUBN4RMRnRHxdA1vMRW4M03fCZxYSz1m1jz67VhakgAelRTAzan7KMCYiFiTpn8DjOntDSRNB6an2Y2SWrnB4J7Ay7mL2I5aeftaedsADirrjfoNH0lzgff0sOryiPhJlT/nwxGxWtKfAHMk/XdEvO1QLSIihVOPKtslS+ooq3dQI/L2Na9W3jYotq+s96pLr/aIWJ2e10p6CDiS4jzRS5LGRsSa1Dp5ba0/y8yaQz16te8iabeuaeBjvNWTfRZwRpo+A6h2T8rMmlw9erWPAf5D0hPAL4GHI+KRtO4a4KOSngWOT/PVmNn/kKbm7WterbxtUOL2NWWvdjNrfv6Gs5ll4fAxsywaNnwk3SZpbW/f51HhBkkrJT0p6fB611gLSZMlPZ3qf8c3uyWdKWlduiRlqaQv5KhzW1WxfUMl3ZvWL5a0X4Yya1btJUKStlT8LmfVu85tNYBLqPr8ffcoIhryARwFHA481cv6E4CfAwI+BCzOXfMAtm0Q8BxwADAEeAI4pNuYM4Ebc9e6HbfvHOD7afpU4N7cdW/jtl4HXJqmLwWu7WXc73PXuo3bdzDFFwsXAG3b+vvu6dGwez5RfAlxQx9DpgJ3RWERsHv6rlAzOBJYGRGrImITcA/F9rSKarav8tKaB4DjJKmONZalpS8Riuouodqmv88NGz5VGAe8UDH/YlrWDKqt/aR0SPmApH3qU1opqtm+rWMiYjPwKjCqLtWVq9pLhIZJ6pC0SNKJ9Smtbrbp32K9ru2ygfspcHdEbJR0FsX/qsdmrmmH1NclRpUzEX1eIrRvFJcYHQA8JmlZRDxXdq3boqRLqAasmcNnNVC5N7B3WtYM+q09ItZXzN5CcW6hWVTzu+ka86KkwcAIYD0NKPq4xEhSVZcIxVuXGK2StAA4jOI8SXZ9bV+VtunfYjMfds0CTk+fen0IeLVi97fRPQ6Ml7S/pCEUJ1zf9glIt/NXU4DOOtZXq363j7dfWnMy8Fiks5dNpt9LhCSNlDQ0Te8JTAJW1K3C7a+a3/c75T6b3sdZ9ruBNcAbFMeQ04CzgbPTegHfpfjfYxm9nIlv1AfFp3XPpPovT8uuAqak6W8Byyk+OZgPTMhdc8nbNwy4H1hJcdnNAblr3sbtHEVxI7xngbnAHml5G3BLmv7L9Hf0ifQ8LXfdA9i+T6d/fxuBl4DZaflewM/6+n339/DlFWaWRTMfdplZE3P4mFkWDh8zy8LhY2ZZOHzMLAuHj5ll4fAxsyz+H5x5Wc5twlzJAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -615,12 +638,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAARMAAAEACAYAAACQ65KNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADytJREFUeJzt3XuMHeV5x/HvUwNGJg6ORWJuJggBMpAoMkGGQFHPHwUZ\nI3GRuJQoghQJA4IokaJgCFFw/4KQG4q4FKo0QkpdgsRFTsEJpmIbIIKADNRQzEWpG0PBVArmZhKw\n/fSPObjLdnd9dufdnTlnvx/pyHPOvOfM82p2f573nTmzkZlIUl1/0XQBkgaDYSKpCMNEUhGGiaQi\nDBNJRRgmkoqoHSYRsTQiNkTESxGxYpT1nYh4KyKe6j6+U3ebktpntzpvjohZwI3AXwOvAk9ExOrM\nfH5E03/LzNPqbEtSu9U9MlkCvJyZGzPzQ+AO4PRR2kXN7UhqubphcgCwadjzV7qvDZfA8RHxTETc\nHxFH1tympBaqNcyhCopdWQcszMytEXEKcC9weM3tSmqZumHyKrBw2POFVEcnO2XmO8OW10TEzREx\nPzP/OLxdRPglIakhmVl7KqLuMOdJ4LCIODgi9gDOBVYPbxARCyIiustLgBgZJB/JzIF9XHPNNY3X\nYN/s32iPUmodmWTmtoi4HPg1MAv4aWY+HxEXd9ffCpwFXBoR24CtwN/UrFlSC9Ud5pCZa4A1I167\nddjyTcBNdbcjqd28AnaadDqdpkuYMoPcNxj8/pUSJcdMdUREtqUWaSaJCLIFE7CSBBgmkgoxTCQV\nYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJ\nRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNE\nUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIw\nkVRE7TCJiKURsSEiXoqIFWO0+Ul3/TMRsbjuNiW1T60wiYhZwI3AUuBI4LyIOGJEm2XAoZl5GLAc\nuKXONiW1U90jkyXAy5m5MTM/BO4ATh/R5jTgdoDMfByYFxELam5XUsvUDZMDgE3Dnr/SfW1XbQ6s\nuV21xfLlcPzxsGwZbNnSdDVq0G413589tote3rdy5cqdy51Oh06nM6miNI2efhqeeKJaXr4c7ryz\n2Xq0S0NDQwwNDRX/3MjsNQ9GeXPEccDKzFzafX4VsCMzvzeszd8DQ5l5R/f5BuCvMnPziM/KOrWo\nIcuWwZo1sM8+8NJLMG9e0xVpgiKCzBz5H/6E1R3mPAkcFhEHR8QewLnA6hFtVgPnw87w2TIySNTH\nVq2CM86A3XeH9eubrkYNqnVkAhARpwA3ALOAn2bmtRFxMUBm3tpt89EZn/eAv83MdaN8jkcm/ezu\nu+Hqq6thz+zZTVejCSh1ZFI7TEoxTPpcZnWE8sUvwne/23Q1mgDDRO2zaRMsXgyPPAKLFjVdjXrU\nljkT6f8sXFgdlVx8MezY0XQ1mmaGicq67DJ4/3342c+arkTTzGGOynvmGTjppOrszgIvdm4750zU\nbitWVHMoq1Y1XYl2wTBRu23dCp//PNx0Eyxd2nQ1GocTsGq3OXPgllvg0kvhvfearkbTwCMTTa2v\nfAX22w++//2mK9EYHOaoP7zxRjXc+dWvqmtQ1DoOc9QfPvMZuO666hvF27c3XY2mkGGiqffVr8In\nPgE33th0JZpCDnM0PV58sbqJ0rp1cNBBTVejYRzmqL8cfjh84xvVFbL+pzGQDBNNnyuugN//Hu66\nq+lKNAUc5mh6PfoonHMOPPecd2VrCU8Nq39dcglEVBe1qXGGifrXli1w1FHVzadPOKHpamY8J2DV\nv+bNgxtuqK49+eCDpqtRIYaJmnHWWXDIIXD99U1XokIc5qg5f/hDdc/YRx+tTh2rEQ5z1P8OOqi6\no/0ll3jtyQAwTNSsr30N3nkHbr+96UpUk8McNe+pp6obKK1fX30xUNPKU8MaLN/6Frz2Gvz8501X\nMuMYJhos770Hn/sc3HornHxy09XMKE7AarDstRfcfHN1m8etW5uuRpPgkYna5ctfrs7yXHdd05XM\nGA5zNJg2b65u87h2LXzhC01XMyM4zNFgWrAArr3W2zz2IcNE7XPhhbDnntUcivqGwxy104YNcOKJ\n1W0eFy5supqB5jBHg23RIrj88uoKWfUFw0TtdeWV8MILcM89TVeiHjjMUbs9/DCcd151m8e99266\nmoHkqWHNHMuXw+67V38EXcUZJpo53nyzus3jXXfBl77UdDUDxwlYzRyf+hT8+MfVEcqHHzZdjcZg\nmKg/nHNOdZn9D37QdCUag8Mc9Y+NG+GYY+Cxx+DQQ5uuZsr86U9w0UVVd+fOhVWrpvZPDDlnopnp\nRz+C+++vvrsTtX/+i9qxo7pp3Ntvw1tvVY/JLGdWj23bqs89++zqr4JMFcNEM9O2bXDssfD1r8P5\n5xf72D//ubdf+PHWv/suzJlTncHee2/45Cc//m+vy7Nnw6mnwpo11YHY2rUemUyIYaKerVsHy5bB\ns8+yY/4+vPtu/aOB7dsn9gs/2vLcuTBrVpkubtlSzTffdtvU/xVVw0QzWmev3/Hw1qPZwSzmzIF5\n82LCv/zDX9tzz9aNmqZNqTDZrUQx0nTbPms2O7o/vqfO/y13bjq+4YrkqWH1pbmzqz8resyc57jt\nkaMarkbgMEd9ast/vcXyv6yCZN5n/c5OHc6ZSCqi8TmTiJgP/AL4LLAROCczt4zSbiPwNrAd+DAz\nl0x2m5Laq86cyZXA2sw8HPjX7vPRJNDJzMUGiTS46oTJacBHfyD2duCMcdrO0JNu0sxRJ0wWZObm\n7vJmYMEY7RJ4MCKejIiLamxPUouNO2cSEWuBfUdZdfXwJ5mZETHW7OkJmflaRHwaWBsRGzLz4dEa\nrly5cudyp9Oh0+mMV56kSRgaGmJoaKj45076bE5EbKCaC3k9IvYDHsrMRbt4zzXAu5n5w1HWeTZH\nakAbbo60Grigu3wBcO/IBhExJyLmdpf3Ak4G1tfYpqSWqnNkMh+4EziIYaeGI2J/4B8y89SIOAS4\nu/uW3YB/ysxrx/g8j0ykBnjRmqQi2jDMkaSdDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGG\niaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSE\nYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQV\nYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpiEmHSUScHRHPRcT2\niDh6nHZLI2JDRLwUESsmuz1J7VbnyGQ9cCbwm7EaRMQs4EZgKXAkcF5EHFFjm5JaarfJvjEzNwBE\nxHjNlgAvZ+bGbts7gNOB5ye7XUntNNVzJgcAm4Y9f6X7mqQBM+6RSUSsBfYdZdW3M/OXPXx+TqSY\nlStX7lzudDp0Op2JvF1SD4aGhhgaGir+uZE5od/3//8BEQ8B38zMdaOsOw5YmZlLu8+vAnZk5vdG\naZt1a5E0cRFBZo47X9GLUsOcsQp5EjgsIg6OiD2Ac4HVhbYpqUXqnBo+MyI2AccB90XEmu7r+0fE\nfQCZuQ24HPg18B/ALzLTyVdpANUe5pTiMEdqRtuGOZJmOMNEUhGGiaQiDBNJRRgmkoowTCQVYZhI\nKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgm\nkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGG\niaQiDBNJRRgmkoowTCQVYZhIKsIwkVSEYSKpCMNEUhGGiaQiDBNJRRgmkoowTCQVMekwiYizI+K5\niNgeEUeP025jRPx7RDwVEb+b7PYktVudI5P1wJnAb3bRLoFOZi7OzCU1ttfXhoaGmi5hygxy32Dw\n+1fKpMMkMzdk5os9No/JbmdQDPIP5CD3DQa/f6VMx5xJAg9GxJMRcdE0bE9SA3Ybb2VErAX2HWXV\ntzPzlz1u44TMfC0iPg2sjYgNmfnwRAuV1G6RmfU+IOIh4JuZua6HttcA72bmD0dZV68QSZOWmbWn\nIsY9MpmAUQuJiDnArMx8JyL2Ak4G/m60tiU6I6k5dU4NnxkRm4DjgPsiYk339f0j4r5us32BhyPi\naeBx4F8y84G6RUtqn9rDHEmCab4CNiL+MSI2R8T6cdr8JCJeiohnImLxdNZXV0QsjYgN3fpXjLK+\nExFvdS/geyoivtNEnZO1q/512/Tt/vtIRMyPiLUR8WJEPBAR88Zo15cXZE7ggtNd7u+PycxpewAn\nAouB9WOsXwbc310+FnhsOuur2bdZwMvAwcDuwNPAESPadIDVTdc6hf3r2/03oh/XA1d0l1cA143R\n7j+B+U3XO4n+LQIOBx4Cjp7s/h75mNYjk6xOCb85TpPTgNu7bR8H5kXEgumorYAlwMuZuTEzPwTu\nAE4fpV2/TjT30r9+3n/D7exH998zxmnbd/sze7vgtNef553a9kW/A4BNw56/AhzYUC0TNVrtB4xo\nk8Dx3SHA/RFx5LRVV18v/evn/Tfcgszc3F3eDIwViIN8QWYv+/tjSp0aLmlk0vfLDHEvda4DFmbm\n1og4BbiX6nCzH/S6H/pi/41zQebVw59kZo5zDVRrL8gscMHphPdb28LkVWDhsOcHdl/rByNrX0iV\n5jtl5jvDltdExM0RMT8z/zhNNdaxy/6N0qa1+y8zTxprXfckwb6Z+XpE7Ae8McZnvNb9938i4h6q\noUErwmS8/vWol/39MW0b5qwGzgeIiOOALcMON9vuSeCwiDg4IvYAzqXqz04RsSAioru8hOrUfD8E\nCfTQP/p7/w23Grigu3wB1RHkx0TEnIiY213+6ILMMc9StthYcz697O+Pm+ZZ5H8G/hv4gGo8diFw\nMXDxsDY3Us0iP8MYM81tfQCnAC9067+q+9rO/gGXAc9SzYz/Fjiu6ZpL9q/f99+wPswHHgReBB4A\n5nVf3x+4r7t8SHc/Pt3dp1c1XfcE+ndm9/fvfeB1YM3I/o21v8d7eNGapCLaNsyR1KcME0lFGCaS\nijBMJBVhmEgqwjCRVIRhIqkIw0RSEf8LB+U5EoL/HJ8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR8AAAD8CAYAAABO8KDVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUDUlEQVR4nO3dfbRVdZ3H8fdHCDAVRGQI0XwYSbSxUO843aFlPlVkK7DRMW016kShozYzPi11WWmWpc40uMwsyee1Wj5n0VgiIEwzawF5mUER7qhINsqQIJhNWiD4nT/27+Lxeh/O5WzO75zD57XWWWc//M65382FD3vvc/b+KiIwM6u3nXIXYGY7JoePmWXh8DGzLBw+ZpaFw8fMsnD4mFkWpYSPpMmSnpa0UtKlPaw/U9I6SUvT4wsV686Q9Gx6nFFGPWbW+FTr93wkDQKeAT4KvAg8DpwWESsqxpwJtEXEed1euwfQAbQBASwBjoiIV2oqyswaXhl7PkcCKyNiVURsAu4Bplb52o8DcyJiQwqcOcDkEmoyswY3uIT3GAe8UDH/IvAXPYw7SdJRFHtJ50fEC728dlxPP0TSdGA6wC677HLEhAkTSijdzAZiyZIlL0fE6DLeq4zwqcZPgbsjYqOks4A7gWMH8gYRMROYCdDW1hYdHR3lV2lmfZL067Leq4zDrtXAPhXze6dlW0XE+ojYmGZvAY6o9rVm1prKCJ/HgfGS9pc0BDgVmFU5QNLYitkpQGeang18TNJISSOBj6VlZtbiaj7siojNks6jCI1BwG0RsVzSVUBHRMwC/l7SFGAzsAE4M712g6SvUwQYwFURsaHWmsys8dX8UXsOPudjloekJRHRVsZ7+RvOZpaFw8fMsnD4mFkWDh8zy8LhY2ZZOHzMLAuHj5ll4fAxsywcPmaWhcPHzLJw+JhZFg4fM8vC4WNmWTh8zCwLh4+ZZeHwMbMsHD5mloXDx8yyqFe75AskrZD0pKR5kvatWLeloo3yrO6vNbPWVPMN5FO75O9S0S5Z0qzKdsnAf1G0S35d0t8B1wGfSev+EBETa63DzJpLXdolR8T8iHg9zS6i6M9lZjuwMsKn6pbHyTTg5xXzwyR1SFok6cQS6jGzJlCvdskASPoc0AZ8pGLxvhGxWtIBwGOSlkXEcz28dmuv9ve+9711qdfMtp+6tEsGkHQ8cDkwpaJ1MhGxOj2vAhYAh/X0QyJiZkS0RUTb6NGl9Kk3s4zq1S75MOBmiuBZW7F8pKShaXpPYBJQeaLazFpUvdol/xOwK3C/JID/iYgpwMHAzZLepAjCa7p9SmZmLcrtks2sam6XbGZNz+FjZlk4fMwsC4ePmWXh8DGzLBw+ZpaFw8fMsnD4mFkWDh8zy8LhY2ZZOHzMLAuHj5ll4fAxsywcPmaWhcPHzLJw+JhZFg4fM8vC4WNmWTh8zCyL0sKnin7tQyXdm9YvlrRfxbrL0vKnJX28rJrMrHGVEj4V/do/ARwCnCbpkG7DpgGvRMSBwAzg2vTaQyja7bwfmAzclN7PWtGPfwzf+hYsXJi7EsusrI6lW/u1A0jq6tde2QZnKnBlmn4AuFFFH52pwD2pkeCvJK1M7+e/na3mppvg3HNhp51g6FCYNw/a23NXZZmUddhVTb/2rWMiYjPwKjCqytciaXrq6d6xbt26ksq2utqwoXh+803YtAkWLMhajuXVNCec3S65BRx3XLHH0+Xoo7OVYvmVFT7V9GvfOkbSYGAEsL7K11oraG+H+fPhwx+GLVtg48bcFVlGZYVPv/3a0/wZafpk4LEo2qXOAk5Nn4btD4wHfllSXdZo2tth9mw44AD44hfh9ddzV2SZlBI+6RxOV7/2TuC+rn7tkqakYbcCo9IJ5QuAS9NrlwP3UZycfgQ4NyK2lFGXNah3vxtuuQVWroQrr8xdjWXiXu2Wz/TpcOutsHgxtJXS/tu2M/dqt9Zw3XUwZgx8/vPFp1+2Q3H4WD677w7f+x4sW1YEke1QHD6W19SpcMop8PWvQ2dn7mqsjhw+lt8NN8Cuu8K0acVH8LZDcPhYfmPGwPXXF9d73XRT7mqsThw+1hg+9zmYPBkuuwyefz53NVYHDh9rDBJ8//vF81lnQRN+BcQGxuFjjWPffYvbbTz6KNx1V+5qbDtz+FhjOeccmDQJzj8fXnopdzW2HTl8rLHstFNx6cVrr8GXvpS7GtuOHD7WeCZMgCuugPvvh4ceyl2NbScOH2tMF18MH/xgcRj2yiu5q7HtwOFjjeld74LbboN164ogspbj8LHGdfjhcNFFxZXv8+blrsZK5vCxxnbFFTB+fHH7jddey12NlcjhY41t553hBz+AVavgq1/NXY2VyOFjje8jH4Gzzy6u/1q8OHc1VhKHjzWHa6+FvfYqrnz3jcdaQk3hI2kPSXMkPZueR/YwZqKkhZKWS3pS0mcq1t0h6VeSlqbHxFrqsRY2fHhx7dfy5cUlGNb0at3zuRSYFxHjgXlpvrvXgdMjoqsd8vWSdq9Yf3FETEyPpTXWY63sk5+Ez34Wrr66CCFrarWGz1TgzjR9J3Bi9wER8UxEPJum/xdYC7jrn22b66+HESN847EWUGv4jImINWn6N8CYvgZLOhIYAjxXsfjqdDg2Q9LQXl7qdslWGD26uPPh4sXwne/krsZq0G/rHElzgff0sOpy4M6I2L1i7CsR8Y7zPmndWGABcEZELKpY9huKQJoJPBcRV/VXtFvn7OAi4FOfKrqfLltWNCC0uiizdc7g/gZExPF9FPKSpLERsSYFydpexg0HHgYu7wqe9N5de00bJd0OXDSg6m3HJBVdL97//uLLh3PmFMusqdR62FXZAvkM4CfdB6T2yQ8Bd0XEA93WjU3Pojhf9FSN9diOYp99inY78+bB7bfnrsa2Qa3hcw3wUUnPAseneSS1SboljTkFOAo4s4eP1H8oaRmwDNgT+EaN9diOZPp0OOoouPBCWLOm//HWUNwu2ZrbM88Ut9444QR48MHc1bQ8t0s26/K+98HXvgY/+pHDp8k4fKz5XXBBcfuNc8+FDRtyV2NVcvhY8xs8uLjnz8svF+d/rCk4fKw1TJwIl1wCd9xRfPRuDc/hY63jK1+Bgw4qPgX7/e9zV2P9cPhY6xg2rDj8+vWv4ctfzl2N9cPhY61l0qTixPMNN8DChbmrsT44fKz1fPObxTegp02DjRtzV2O9cPhY69ltN7j5ZujsLO7906I2boS1a4veihde2Hw7ev6Gs7Wu00+Hu++GJUvgAx/IXc1WmzbBq6/C73731qOv+d7Wdb+b7M47F5e6tbdvv9rrelW7WdOaMQMeeaQ4/Fq4sPg+UA3eeKP6YOhrXTVHgoMHF/dMGz68eIwYAePGwcEHvzU/fDgsWgQPPwxvvlmE0YIF2zd8yuTwsdY1ahTceCP//pkbeHTCfUz8/BEc+MmDBhQUldN//GP/P3LQoLeCoet57NjiGwCVYVK5vqf5YcOqu0vIwoUwd24RPEOGwNFH1/ynVjcOH2tpC387geN4jDeeG1Lc/u7ynscNGvTOABgzprh0rNrAGDGi+tAoS3t7cai1YEERPM2y1wMOH2txCx7cwJb0ucpObOG0D3byt9/+s3eEx847N+/9yNrbmyt0ujh8rKUdfdIohj66iU0EQ3iDc88J2o/LXZWBw8daXPv0Q5nHMhY8uJ6jTxpF+/RDc5dkicPHWl779ENpn567CuvOXzI0syxqDp9qWiancVsq7uE8q2L5/pIWS1op6d50w3kza3Fl7PlU0zIZ4A8VbZGnVCy/FpgREQcCrwDTSqjJzBpcGeHTb8vk3qSWOccCXS11BvR6M2teZYRPtS2Th6V2x4sknZiWjQJ+GxGb0/yLwLieXux2yWatpapPu/ppmbxVRISk3q5U3TciVks6AHgs9et6tdpCI2ImRUtl2tramu9qWDN7m6rCp4yWyRGxOj2vkrQAOAx4ENhd0uC097M3sHqA22BmTaiMw65qWiaPlDQ0Te8JTAJWRHE/j/nAyX293sxaTxnhU03L5IOBDklPUITNNRGxIq27BLhA0kqKc0C3llCTmTU430zMzKrmdslm1vQcPmaWhcPHzLJw+JhZFg4fM8vC4WNmWTh8zCwLh4+ZZeHwMbMsHD5mloXDx8yycPiYWRYOHzPLwuFjZlk4fMwsC4ePmWXh8DGzLBw+ZpZFTeFTTatkScdUtEleKumPXX27JN0h6VcV6ybWUo+ZNY9a93z6bZUcEfO72iRTdCd9HXi0YsjFFW2Ul9ZYj5k1iVrDZ6Ctkk8Gfh4Rr9f4c82sydUaPtW2Su5yKnB3t2VXS3pS0oyu3l49cbtks9bSb/hImivpqR4eUyvHpQaAvfbhSd1MDwVmVyy+DJgA/DmwB0UPrx5FxMyIaIuIttGjR/dXtpk1uH7bJZfRKjk5BXgoIt6oeO+uvaaNkm4HLqqybjNrcrUedvXbKrnCaXQ75EqBhSRRnC96qsZ6zKxJ1Bo+1bRKRtJ+wD7Av3V7/Q8lLQOWAXsC36ixHjNrEv0edvUlItYDx/WwvAP4QsX888C4HsYdW8vPN7Pm5W84m1kWDh8zy8LhY2ZZOHzMLAuHj5ll4fAxsywcPmaWhcPHzLJw+JhZFg4fM8vC4WNmWTh8zCwLh4+ZZeHwMbMsHD5mloXDx8yycPiYWRYOHzPLoubwkfTXkpZLelNSWx/jJkt6WtJKSZdWLN9f0uK0/F5JQ2qtycwaXxl7Pk8BfwX8orcBkgYB3wU+ARwCnCbpkLT6WmBGRBwIvAJMK6EmM2twNYdPRHRGxNP9DDsSWBkRqyJiE3APMDW1zDkWeCCNq6blspm1gHqd8xkHvFAx/2JaNgr4bURs7rb8Hdwu2ay1VNU6R9Jc4D09rLo8IvpqFFiaiJgJzARoa2vrtS2zmTWHqsKnr5bJVVpN0TSwy95p2Xpgd0mD095P13Iza3H1Oux6HBifPtkaApwKzIqIAOYDJ6dx/bVcNrMWUcZH7Z+W9CLQDjwsaXZavpeknwGkvZrzgNlAJ3BfRCxPb3EJcIGklRTngG6ttSYza3wqdj6aS1tbW3R0dOQuw2yHI2lJRPT6fb6B8DeczSwLh4+ZZeHwMbMsHD5mloXDx8yycPiYWRYOHzPLwuFjZlk4fMwsC4ePmWXh8DGzLBw+ZpaFw8fMsnD4mFkWDh8zy8LhY2ZZOHzMLAuHj5llUVP4VNMqWdI+kuZLWpHG/kPFuislrZa0ND1OqKUeM2seVbXO6UNXq+Sb+xizGbgwIv5T0m7AEklzImJFWj8jIv65xjrMrMnUFD4R0QlQdD3udcwaYE2a/j9JnRRdSVf0+iIza3l1PecjaT/gMGBxxeLzJD0p6TZJI+tZj5nl02/4SJor6akeHlMH8oMk7Qo8CPxjRPwuLf4e8KfARIq9o2/38Xr3ajdrIf0edpXQKhlJ76IInh9GxI8q3vulijE/AP61jzrcq92shWz3wy4VJ4RuBToj4l+6rRtbMftpihPYZrYDqPWj9n5bJQOTgL8Bju3hI/XrJC2T9CRwDHB+LfWYWfNwu2Qzq5rbJZtZ03P4mFkWDh8zy8LhY2ZZOHzMLAuHj5ll4fAxsywcPmaWhcPHzLJw+JhZFg4fM8vC4WNmWTh8zCwLh4+ZZeHwMbMsHD5mloXDx8yycPiYWRYOHzPLYrv3ak/jnk83il8qqaNi+R6S5kh6Nj27aaDZDqLWPZ+uXu2/qGLsMRExsdvNpy8F5kXEeGBemjezHUBN4RMRnRHxdA1vMRW4M03fCZxYSz1m1jz67VhakgAelRTAzan7KMCYiFiTpn8DjOntDSRNB6an2Y2SWrnB4J7Ay7mL2I5aeftaedsADirrjfoNH0lzgff0sOryiPhJlT/nwxGxWtKfAHMk/XdEvO1QLSIihVOPKtslS+ooq3dQI/L2Na9W3jYotq+s96pLr/aIWJ2e10p6CDiS4jzRS5LGRsSa1Dp5ba0/y8yaQz16te8iabeuaeBjvNWTfRZwRpo+A6h2T8rMmlw9erWPAf5D0hPAL4GHI+KRtO4a4KOSngWOT/PVmNn/kKbm7WterbxtUOL2NWWvdjNrfv6Gs5ll4fAxsywaNnwk3SZpbW/f51HhBkkrJT0p6fB611gLSZMlPZ3qf8c3uyWdKWlduiRlqaQv5KhzW1WxfUMl3ZvWL5a0X4Yya1btJUKStlT8LmfVu85tNYBLqPr8ffcoIhryARwFHA481cv6E4CfAwI+BCzOXfMAtm0Q8BxwADAEeAI4pNuYM4Ebc9e6HbfvHOD7afpU4N7cdW/jtl4HXJqmLwWu7WXc73PXuo3bdzDFFwsXAG3b+vvu6dGwez5RfAlxQx9DpgJ3RWERsHv6rlAzOBJYGRGrImITcA/F9rSKarav8tKaB4DjJKmONZalpS8Riuouodqmv88NGz5VGAe8UDH/YlrWDKqt/aR0SPmApH3qU1opqtm+rWMiYjPwKjCqLtWVq9pLhIZJ6pC0SNKJ9Smtbrbp32K9ru2ygfspcHdEbJR0FsX/qsdmrmmH1NclRpUzEX1eIrRvFJcYHQA8JmlZRDxXdq3boqRLqAasmcNnNVC5N7B3WtYM+q09ItZXzN5CcW6hWVTzu+ka86KkwcAIYD0NKPq4xEhSVZcIxVuXGK2StAA4jOI8SXZ9bV+VtunfYjMfds0CTk+fen0IeLVi97fRPQ6Ml7S/pCEUJ1zf9glIt/NXU4DOOtZXq363j7dfWnMy8Fiks5dNpt9LhCSNlDQ0Te8JTAJW1K3C7a+a3/c75T6b3sdZ9ruBNcAbFMeQ04CzgbPTegHfpfjfYxm9nIlv1AfFp3XPpPovT8uuAqak6W8Byyk+OZgPTMhdc8nbNwy4H1hJcdnNAblr3sbtHEVxI7xngbnAHml5G3BLmv7L9Hf0ifQ8LXfdA9i+T6d/fxuBl4DZaflewM/6+n339/DlFWaWRTMfdplZE3P4mFkWDh8zy8LhY2ZZOHzMLAuHj5ll4fAxsyz+H5x5Wc5twlzJAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -675,7 +700,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -693,7 +718,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -703,18 +728,18 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "# 为了求解常微分方程的时间坐标\n", - "t = linspace(0, 10, 1000)\n", + "t = np.linspace(0, 10, 1000)\n", "w0 = 2*pi*1.0" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ @@ -769,7 +794,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -786,7 +811,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -803,17 +828,19 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 37, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAADICAYAAABF5/MoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHORJREFUeJzt3X+QXGWd7/H3J5PJLwIEDCQRsiuuICC4icoPF10bhK0U\nxSKuW4oWGr2sy+IuUtRdFdjadaK1V/FeUUtXdpUfFbn3cpcSNguCSkTa1bouAW4CkZAFXAKJMpPw\nIyG/M8l87x/P6UzPpKf7dM/0dPfM51V1qk+fc7r7yUnS85nv85znKCIwMzMzG2tTWt0AMzMzm5gc\nMszMzKwpHDLMzMysKRwyzMzMrCkcMszMzKwpHDLMzMysKXKFDEldklZLujd73iNpU7ZttaQlzW2m\nmZmZdZqpOY+7GlgHHJ49D+DGiLixKa0yMzOzjlezkiHpeOBC4GZApc1l62ZmZmaHyNNd8jXgM8BA\n2bYArpL0uKRbJM1pSuvMzMysY1XtLpF0EbA5IlZLKpTtugn4Qrb+ReCrwOUVXu85y83MzCaQiMjd\nk1GrkvEHwMWSngPuAM6T9L2I2BwZUjfKmVUa42UMls9//vMtb8NEWnw+fT7befH59Lls16VeVUNG\nRFwfEQsj4gTgUuCnEfExSQvKDns/sLbuTzYzM7MJLe/VJZAGepZizFck/X72/DngirFumJmZmXW2\n3CEjIopAMVv/aJPaYyMoFAqtbsKE4vM5tnw+x5bP59jxuWwtNdLHkvvNpWjm+5uZmdn4kUSM4cBP\nM7MhPvEJ+O1vR95/113wne+MX3vMrH25kmFmdZHge9+Dj47QaXrssbBlC/i/vtnE40qGmTXdwMDI\n+6b4W8XMMv46MLO6VatSOGSYWYm/Dsysbq5kmFke/jows7o5ZJhZHv46MLO6OWSYWR7+OjCzulUL\nGV1d49cOM2tvDhlmVjcP/DSzPHJ9HUjqkrRa0r3Z86MlrZT0tKQHJM1pbjPNrJ1Uq2Qo9xX0ZjbR\n5f2d42pgHYM3SLsWWBkRJwEPZs/NbIIrVTAOHBj5GFcyzKyk5teBpOOBC4GbSXdiBbgYWJ6tLwcu\naUrrzKyt7N+fHvfuHfkYhwwzK8nzdfA14DNAeYF0XkT0Zet9wLyxbpiZtZ/+/vS4b9/IxzhkmFlJ\n1Vu9S7oI2BwRqyUVKh0TESFpxGFgPT09B9cLhYJvu2vWwUohw5UMs8mhWCxSLBYbfn3VG6RJ+m/A\nR4H9wAzgCOBu4AygEBG9khYAD0XEyRVe7xukmU0gL70ExxwDn/0s3HBD5WMWL4Y1a3yDNLOJaExv\nkBYR10fEwog4AbgU+GlEfBS4B1iaHbYUWNFog82sc7i7xMzqUe/XQel3ky8DF0h6Gjgve25mE1ye\ngZ++hNXMSqqOySgXET8DfpatvwKc36xGmVl7ciXDzOrhrwMzy60UMqrNk+FKhpmVOGSYWW4OGWZW\nD4cMM8utFDJKYzMqKV1V4qtLzMwhw8xyK4WLapWM0n1Nqh1jZpODQ4aZ5ZanklHaV+0YM5scHDLM\nLLc8YzJKx5QezWzycsgws9xcyTCzejhkmFlueSoZDhlmVuKQYWa57d8P06a5kmFm+dQMGZJmSHpY\n0hpJ6yR9KdveI2mTpNXZsqT5zTWzVurvh5kz81UyPCbDzGpOKx4ReySdGxG7JE0FfiHpXaT7mNwY\nETc2vZVm1hb6+2HGjNqVjJkzXckws5zdJRGxK1udBnQBr2bPPbef2SRSChm1Khm1goiZTQ65Qoak\nKZLWAH3AQxHxZLbrKkmPS7pF0pymtdLM2kLeSsaMGe4uMbP8lYyBiFgEHA/8oaQCcBNwArAIeBH4\narMaaWbtodQVUmueDHeXmBnUcat3gIjYJuk+4B0RUSxtl3QzcG+l1/T09BxcLxQKFAqFRtppZm2g\nVMnYvXvkYzwmw2ziKBaLFIvFhl+vqHEXI0lzgf0RsVXSTODHwDLgyYjozY65BjgjIj4y7LVR6/3N\nrHN84xuwYgW89BKsXVv5mK4uWLwYvvUtOPvs8W2fmTWXJCIi93jMPJWMBcBySVNI3Su3R8SDkr4n\naRHpKpPngCsaarGZdYxaAz8HBtIyfborGWaW7xLWtcDbKmz/WFNaZGZtq9Z4iwMHYOpU6O52yDAz\nz/hpZnUoXTkyUiVj//4UMqZO9dUlZuaQYWZ1qFXJKA8ZrmSYmUOGmeVWa0xGf7+7S8xskEOGmeVW\nazIud5eYWTmHDDPLrVYlY//+VMVwd4mZgUOGmdUh75gMd5eYGThkmFkd6rm6xCHDzBwyzCw3j8kw\ns3o4ZJhZbnnGZLi7xMxKHDLMLLdaYzJKl7C6u8TMoEbIkDRD0sOS1khaJ+lL2fajJa2U9LSkByTN\nGZ/mmlkrlSoZAwNQ6d6H7i4xs3JVQ0ZE7AHOjYhFwFuBcyW9C7gWWBkRJwEPZs/NbIIrXaI6ZUrl\nLpPSfneXmBnk6C6JiF3Z6jSgC3gVuBhYnm1fDlzSlNaZWVvp7x+cB2OkkOHuEjMrqRkyJE2RtAbo\nAx6KiCeBeRHRlx3SB8xrYhvNrE2Uxlx0dVUOEe4uMbNyeW71PgAsknQk8GNJ5w7bH5Iq9M4mPT09\nB9cLhQKFQqHhxppZa+WtZLi7xGxiKBaLFIvFhl9fM2SURMQ2SfcBbwf6JM2PiF5JC4DNI72uPGSY\nWWcrhYw8lYxduw7db2adZXhxYNmyZXW9vtbVJXNLV45ImglcAKwG7gGWZoctBVbU9alm1pHK701S\na0yGu0vMrFYlYwGwXNIUUiC5PSIelLQauFPS5cAG4IPNbaaZtYNaYzJ8q3czK1c1ZETEWuBtFba/\nApzfrEaZWXvKMybDd2E1sxLP+GlmudUzJsPdJWbmkGFmuXmeDDOrh0OGmeVW6g6pVcnwmAwzA4cM\nM6tD+Q3QXMkws1ocMswsN4/JMLN6OGSYWW61xmT4ElYzK+eQYWa51VPJcMgwM4cMM8stz4yfpf3u\nLjEzhwwzyyUi/11Y3V1iZuCQYWY5HTgAU6akxVeXmFkeNUOGpIWSHpL0pKRfSfp0tr1H0iZJq7Nl\nSfOba2atUhqPAb66xMzyyXOr937gmohYI2k28JiklUAAN0bEjU1toZm1hfKQUa2SMWuWu0vMLKkZ\nMiKiF+jN1ndIego4LtutJrbNzNpIqUoBte/C6kqGmUGdYzIkvQFYDPx7tukqSY9LukXSnDFum5m1\nkb17Yfr0tF5rTMa0abBv3/i2z8zaT57uEgCyrpLvA1dnFY2bgC9ku78IfBW4fPjrenp6Dq4XCgUK\nhcIommtmrbJvXwoPUH1MRne3Q4bZRFEsFikWiw2/PlfIkNQN3AX8z4hYARARm8v23wzcW+m15SHD\nzDpXPZWM6dPT8WbW2YYXB5YtW1bX6/NcXSLgFmBdRHy9bPuCssPeD6yt65PNrKOUh4xaV5c4ZJgZ\n5KtknANcBjwhaXW27Xrgw5IWka4yeQ64ojlNNLN24EqGmdUrz9Ulv6ByxeOHY98cM2tXecdkeOCn\nmZV4xk8zy8WVDDOrl0OGmeWSZ0xGaZ6MUiUjYnzbaGbtxSHDzHLJW8no7k73N+nudpeJ2WTnkGFm\nudQzJgM8LsPMHDLMLKfhlYyRuku6utK6x2WYmUOGmeVSHjK6uyvfm6S/f7Da4ZBhZg4ZZpZLeciY\nNs0hw8xqc8gws1zKx2SMNKhz377B28F7TIaZOWSYWS6uZJhZvfLcu2ShpIckPSnpV5I+nW0/WtJK\nSU9LesC3ejeb2IaPyahVyXDIMLM8lYx+4JqIeAtwNvCXkk4BrgVWRsRJwIPZczOboHbvhpkz03qe\nSsasWbBr1/i1z8zaT82QERG9EbEmW98BPAUcB1wMLM8OWw5c0qxGmlnrlYeMPJWMww6DnTvHr31m\n1n7qGpMh6Q3AYuBhYF5E9GW7+oB5Y9oyM2sru3en6gRUv4S1FDJcyTCzPLd6B0DSbOAu4OqI2C7p\n4L6ICEkV71LQ09NzcL1QKFAoFBptq5m10K5dQ7tLRqpklLpLXMkw63zFYpFisdjw63OFDEndpIBx\ne0SsyDb3SZofEb2SFgCbK722PGSYWeca3l1Sq5LhkGHW+YYXB5YtW1bX6/NcXSLgFmBdRHy9bNc9\nwNJsfSmwYvhrzWzi2LVrsLskz8BPhwwzy1PJOAe4DHhC0ups23XAl4E7JV0ObAA+2JQWmllbqHfg\n56xZDhlmk13NkBERv2Dkisf5Y9scM2tXtS5hjTi0u2TLlvFto5m1F8/4aWa5lHeXVKpkHDgA0uBd\nWN1dYmYOGWaWS61KRvl4DHDIMDOHDDPLqdaYjPLxGOAxGWbmkGFmOe3cmaoTkL+S4cm4zCY3hwwz\nqykCtm+H2bPT8zyVDHeXmJlDhpnVtHdvGtBZqlRUmvGz/MoScMgwM4cMM8th+3Y4/PDB55VCRvmt\n4MFjMszMIcPMctixY2jImDED9uwZesyePWl7icdkmJlDhpnVVD4eA/KHDFcyzCY3hwwzq6lSJWPv\n3qHH7N3rkGFmQ+W5QdqtkvokrS3b1iNpk6TV2bKkuc00s1YaXsmYPj1VLiIGtw2vZJSCyIED49dO\nM2sveSoZtwHDQ0QAN0bE4mz50dg3zczaxfCBn11dMHXq0LkyhoeMKVM8+NNssqsZMiLi58CrFXZp\n7JtjZu1o61aYM2fotuHjMoaHDICjjkqvNbPJaTRjMq6S9LikWyTNqX24mXWqrVtTYCiXJ2QcfTS8\n/HLz22dm7anmrd5HcBPwhWz9i8BXgcsrHdjT03NwvVAoUCgUGvxIM2uVV19trJLxutfBK680v31m\n1hzFYpFisdjw6xsKGRGxubQu6Wbg3pGOLQ8ZZtaZtm6F179+6LbS4M+SPXuGTsYFrmSYdbrhxYFl\ny5bV9fqGukskLSh7+n5g7UjHmlnncyXDzBpRs5Ih6Q7gPcBcSRuBzwMFSYtIV5k8B1zR1FaaWUs1\nOvDTlQyzya1myIiID1fYfGsT2mJmberll1NgKDd8Qq7hk3FBqmS8+GLz22dm7ckzfppZTVu2wDHH\nDN02Ywbs3j34fPduj8kws6EcMsyspkohY/hEWzt3pqnEy3lMhtnk5pBhZlXt2ZNu637EEUO3z559\naMgon3ocUiXDIcNs8nLIMLOqXnoJ5s4FDZvjd/gN0EaqZLi7xGzycsgws6p6e+HYYw/dnidkHHMM\n9PU1t31m1r4cMsysqk2bYOHCQ7fnCRlz58KuXWkxs8nHIcPMqtq0CY4//tDthx0GO3YMPt+x49CQ\nIcFxx8FvftPcNppZe3LIMLOqNm5svJIBKaBs2tS89plZ+3LIMLOqqlUy8oSMhQsdMswmq5ohQ9Kt\nkvokrS3bdrSklZKelvSAb/VuNnGNFDLyXMIK6bUbNzavfWbWvvJUMm4Dlgzbdi2wMiJOAh7MnpvZ\nBDRSd8ns2bB9e1qPcHeJmR2qZsiIiJ8Drw7bfDGwPFtfDlwyxu0yszYwMAC//W0avDncnDmwbVta\n37EjTTPe3X3oca5kmE1ejY7JmBcRpavf+4B5Y9QeM2sjL7yQLkOdOfPQfXPmpLuzQuW7tJa86U3w\nzDPNa6OZta9RD/yMiCDd8t3MJpj16+GUUyrvO/LIwUrG1q3peSUnnggbNkB/f1OaaGZtrOat3kfQ\nJ2l+RPRKWgBsHunAnp6eg+uFQoFCodDgR5rZeFu/Hk4+ufK+8krGtm0jVzKmT09jOn7965Hfy8za\nU7FYpFgsNvz6RkPGPcBS4IbsccVIB5aHDDPrLOvXw+mnV9532GGwd2+qUFTrLoFUDakWWMysPQ0v\nDixbtqyu1+e5hPUO4P8Cb5a0UdIngC8DF0h6Gjgve25mE8xTT40cDKTBaka17hJI7/HUU81po5m1\nr5qVjIj48Ai7zh/jtphZGxkYgCeegNNOG/mY0l1WS3dqHcnpp8N99419G82svXnGTzOr6NlnU3Vi\nXpVrx+bNS3dZ7eurftyZZ8KqVWPfRjNrbw4ZZlbRI4+kcFBN3pBx4onwyiuwZcvYttHM2ptDhplV\ntGpVvpDR21s7ZEyZAmec4WqG2WTjkGFmFf3sZ3DOOdWPmT8fXnwxBY3586sfe8458G//NnbtM7P2\n55BhZofo7YXnn0/Vh2p+7/fS2I1nnknr1VxwATzwwNi10czan0OGmR3iJz+Bc8+FqTWuP3vzm1PF\nY/p0OPro6seeeSY891zqWjGzycEhw8wO8a//ChdeWPu4E09MgzkXLap9bHd3qmbce+/o22dmncEh\nw8yG2LEjdWv8yZ/UPvbww+Fv/xauuirfe3/oQ/DP/zy69plZ51C6v1mT3lyKZr6/mY2922+HO+6A\n++8f+/fetSvdNv7JJ+H1rx/79zez5pJERCjv8a5kmNkQ//iP8Od/3pz3njULPvIRuOmm5ry/mbWX\nUVUyJG0AXgMOAP0Rceaw/a5kmHWQRx9N3ST/+Z+1B3026j/+A979bnjhBZgxozmfYWbNMd6VjAAK\nEbF4eMAws87zd38H117bvIAB6YqUM86AW25p3meYWXsYbSXjOeAdEfHyCPtdyTDrEL/4BVx2Wao0\nTJ/e3M9aswaWLEmfVe3urWbWXlpRyfiJpEclfXKU72VmLbJvH3zqU/ClLzU/YEC65PXCC+ELX2j+\nZ5lZ64y2KHpORLwo6RhgpaT1EfHz8gN6enoOrhcKBQqFwig/0szG2t//Pfzu78Kll47fZ95wQwob\nF18M73nP+H2umeVXLBYpFosNv37MLmGV9HlgR0R8tWybu0vM2twPfwh/9mfprqvjfVnp/ffDX/wF\nPPwwLFgwvp9tZvUbt+4SSbMkHZ6tHwb8EbC20fczs/H32GOwdGmaIKsV81ZceCFccQX88R/Da6+N\n/+ebWXONZkzGPODnktYADwM/iAjf/sisQzz2WPoh/93vwrve1bp2XH89nH02nH8+vPJK69phZmPP\nM36aTUJ33ZW6Kb77Xbjkkla3BiLgc5+DH/wA7r4bTj651S0ys0rq7S5p4tXwZtZuduyA666De+6B\nH/0I3v72VrcokeArX0lzaLz73Wn94x9P282sc3lacbNJIAL+5V/gtNNS0Fizpn0CRrnLL4eVK+Ef\n/gHOOy/d48TMOpdDhtkENjAA992XxjwsWwbf+Q7cdhscdVSrWzayRYvS1Sbvf38KGh/5iMOGWafy\nmAyzCai3N91J9dvfTjNq/vVfwwc/CFM67NeK7dvhm99My8knw5VXpnk1fM8Ts9aod0yGQ4bZBLFh\nQxpnceedsHp1uiz0yitTFaPTxzbs2wcrVsA//dPgVTF/+qfw3vd6WnKz8eSQYTYJRMBzz8GqVeme\nIw88ANu2wQUXwAc+kO4LMnNmq1vZHH19aXzJ3XfDL3+Zxpm8973pMtwzzoDXva7VLTSbuBwyzCaY\nXbvSjcSeegrWrUuDNletgu5uOOsseOc7U7h461s7rztktPbsSUHjJz9Jj48+Cscck8LG4sVwyilw\n6qlwwgnQ1dXq1pp1PocMsw5z4EAaQ/H882l54YX0uGEDrF8PL74IJ544+APz9NNTuDjuuFa3vP0M\nDKRAtmoVPPHEYDDbvBne9CY46aR0j5bhy5w5nd+lZDYeHDLMWmxgIF0munUrvPoqbNmSfsj19Q19\nLK339qarPSr98Hvzm+GNb4SpntFmVHbuTOHj2WcHw1wpyD3/fOp+mjcvLfPnD66Xlrlz09/RUUel\nQDJrlkOJTU4OGWZ1GhiA3bvTD6KdO1P3RK31115LIaLS8tpr6YfQnDlpUOKxx6Zl3rzKjwsW+GqJ\nVopIf2elwNfXd+jy8sspML76avo7PnAg/f2WgkcpfBx+OMyePXQ57LBDt5W2z5yZ/u67ux1arDOM\na8iQtAT4OtAF3BwRNwzb75AxRorFIoVCodXNqCoi/cDevx/6+9PjSEu1/dX27dsHe/cOPuZdhh//\n2mtFoMDOnalff8aM9KU/a1Z6HL4+/PkRR6QfKuXLkUcOPk62ykMn/PscS3v2DFaqysPHjh0jLzt3\nDn2+fXt6nz170v+bGTMGl4giRx1VGLKt0tLdPbhMmzb0eaPbu7oGl6lThz4faWnngDTZ/m0227hN\nKy6pC/gWcD7wG+ARSfdExFONvmcr3HwzfPKTrW5FHkWg0OI2tLfp0ysv06alxyOOGNz2618XWby4\ncPC3ybwDJvfvT1dxbNsGGzc298/TSX75yyLvfGeh1c1oO6UwMHdu9eP270/htxQ6Hn+8yHHHFQ4+\nLw8kpWX37vQ6q6VIu393nn9+mul2IhrN71tnAs9GxAYASf8HeB/QUSFj/nz4nd9J69JgIh++Xmt/\nnvXRvMfGjUPbOWVK+g1iypT8Sz3H1/vepd94OuXqhn374B3vaHUrJo516wb/fdrobduWLkPuBKUK\n5oEDg8v+/UOfV1tKrx/NY7V9GzbAwoX1vWf5n63SY95teY8/9dRR/RW0tdGEjOOA8t/lNgFnja45\n4++ii9LS7np60mJjY9s2uOaaVrdi4vD5HFs+n2PH352t1fCYDEkfAJZExCez55cBZ0XEVWXHeECG\nmZnZBDJet3r/DbCw7PlCUjWjoYaYmZnZxDKaHvRHgRMlvUHSNOBDwD1j0ywzMzPrdA1XMiJiv6S/\nAn5MuoT1lk67ssTMzMyap6mTcZmZmdnk1ZQLDiVdJekpSb+SdEPZ9uskPSNpvaQ/asZnT1SS/quk\nAUlHl23z+ayTpP+e/dt8XNLdko4s2+fzWSdJS7Lz9Yykz7W6PZ1G0kJJD0l6Mvu+/HS2/WhJKyU9\nLekBSXNa3dZOIalL0mpJ92bPfS4bJGmOpO9n35nrJJ1V7/kc85Ah6VzgYuCtEXEa8D+y7aeSxm2c\nCiwBvi2pQ2ZVaC1JC4ELgOfLtvl8NuYB4C0R8fvA08B14PPZiLIJ+ZaQztuHJZ3S2lZ1nH7gmoh4\nC3A28JfZObwWWBkRJwEPZs8tn6uBdUCpTO9z2bhvAPdHxCnAW4H11Hk+m/EleiXwpYjoB4iILdn2\n9wF3RER/NoHXs6QJvay2G4HPDtvm89mAiFgZEaXpdh4Gjs/WfT7rd3BCvuz/e2lCPsspInojYk22\nvoM0meFxpF/UlmeHLQcuaU0LO4uk44ELgZuB0tWNPpcNyKq8746IWyGNw4yIbdR5PpsRMk4E/lDS\nv0sqSirNq/h6hl7iuon0n8mqkPQ+YFNEPDFsl8/n6P0X4P5s3eezfpUm5PM5a5CkNwCLSeF3XkT0\nZbv6gHktalan+RrwGaBs3k6fywadAGyRdJuk/yfpu5IOo87z2dDVJZJWAvMr7Pqb7D2PioizJZ0B\n3Am8cYS38qhTap7P64Dy8QHV5h7x+aTq+bw+Ikr9tH8D7IuI/13lrXw+q/P5GSOSZgN3AVdHxHaV\n3XEsIsITG9Ym6SJgc0SsllSodIzPZV2mAm8D/ioiHpH0dYZ1jeQ5nw2FjIi4YKR9kq4E7s6OeyQb\nrDiXQyfvOj7bNumNdD4lnUZKk49nXzrHA49JOgufzxFV+/cJIOnjpJLqe8s2+3zWr+aEfFabpG5S\nwLg9IlZkm/skzY+IXkkLgM2ta2HH+APgYkkXAjOAIyTdjs9lozaRquiPZM+/T/qlt7ee89mM7pIV\nwHkAkk4CpkXES6SJui6VNE3SCaRulVVN+PwJIyJ+FRHzIuKEiDiB9Jf+tqxU5fPZAElLSOXU90XE\nnrJdPp/184R8o6T028MtwLqI+HrZrnuApdn6UtL3qlUREddHxMLsu/JS4KcR8VF8LhsSEb3Axuzn\nOKQ7rj8J3Esd53M004qP5FbgVklrgX3Ax7IGr5N0J2nU737gU+FJOup18Hz5fDbsm8A0YGVWHfpl\nRHzK57N+npBvTJwDXAY8IWl1tu064MvAnZIuBzYAH2xN8zpa6f+vz2XjrgL+V/ZLxK+BT5D+r+c+\nn56My8zMzJrC8wCYmZlZUzhkmJmZWVM4ZJiZmVlTOGSYmZlZUzhkmJmZWVM4ZJiZmVlTOGSYmZlZ\nU/x/8QPGQJ9lUrYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAADCCAYAAAALvrtwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAecElEQVR4nO3deZCcd33n8fe3r+nRjEaypPFIlmyNfAEyBgOKMXhrIQaDgwF7E4o1mxCTdZV3t0gt1JINmPyRpYpNzOYwZJdQ6wUq2i12jSEEOwQCxhzBEBvkEySDZcmHrHN0zD19f/eP5+menpnumZ5Wz3Srn8+rauh+jp7np6fMzGe+v+Mxd0dERESklWLtboCIiIh0HwUMERERaTkFDBEREWk5BQwRERFpOQUMERERaTkFDBEREWm5xGpebNOmTT48PLyalxQREZEV8uijj55098Fax1Y1YAwPD7Nnz57VvKSIiIisEDN7od4xdZGIiIhIyylgiIiISMspYIiIiEjLKWCIiIhIyylgiEjTiiXnvz+4n7GZ/KLn7f7J8xw6Pb1KrRKRTqCAISJNe/Dp4/zFA8/wX/9hX91zprIF/vj+vdxy98Or2DIRaTcFDBFpWqHkAExkCnXPKXpwzump3Kq0SUQ6gwKGiDTNwtdSGCJqKRZ9yXNEpPsoYIhI08yCiFFaJDvkS6XwHAUMkShRwBCRpsVjQcDwRcJDoVLBWJUmiUiHUMAQkaaVu0iKi6SHgrpIRCJJAUNEmlYewNlIF4nyhUi0KGCISNMaqU6UzxGRaGk4YJhZ3MweN7NvhNs7zOwRM3vWzL5sZqmVa6aIdKJ8cenqRPkcEYmW5VQwPgQ8XbX9KeAud78UOAPc1sqGiUjnK4eHRaepanSnSCQ1FDDMbBtwI/D5cNuA64CvhqfsBm5egfaJSAfLN9JFUlIFQySKGq1gfBr4Q6D8k2IjMOru5eX7XgK21vqgmd1uZnvMbM/IyMjZtFVEOsxsBWOxc1TBEImiJQOGmb0TOOHujzZzAXe/2913ufuuwcHBZr6FiHSo2TEYGuQpInMlGjjnWuDdZvYOIA0MAJ8B1ptZIqxibAMOr1wzRaQT5RtYRCuvLhKRSFqyguHud7j7NncfBm4Bvufuvw18H3hPeNqtwH0r1koR6UiNDPJUBUMkms5mHYyPAv/JzJ4lGJPxhdY0SUTOFYUwYCy+kqcqGCJR1EgXSYW7/wD4Qfj+IHB165skIueKXFidWDRgaJqqSCRpJU8RaVq5OrFYN4imqYpEkwKGiDStPAZjsRChaaoi0aSAISJNa6iLRAFDJJIUMESkaZUukkXHYMxWN7RsuEh0KGCISNPyDcwiqe4i0YPPRKJDAUNEmlYOD4tWMKpChWaUiESHAoaINK2RCkZ1qNCaGCLRoYAhIk2rzCJZJDgU5nSRqIIhEhUKGCLStHJ1YvEKRqnmexHpbgoYItK0XGHpWSTVVQtNWRWJDgUMEWlaQ2MwqrpPNItEJDoUMESkaeXKRaHkeJ0nqlZXNzQGQyQ6FDBEpGnlLhKoX8XIq4IhEkkKGCLStHwDa1xUBw+tgyESHQoYItK06sBQv4KhdTBEokgBQ0Sali8sXcGonpqqMRgi0aGAISJNyzdQwaiemqp1MESiQwFDRJqWL5aIxwyoHx7mjNNQBUMkMhQwRKRp+UKJ3mQcWKSCUXLMwvM1BkMkMhQwRKRp+ZKTDgNGvepEvlginQjP0SwSkchQwBCRpuWLJdLJ4MdIvQpGseT0puKV80UkGhQwRKQpxZLjTqWLpN4YjELRZ8/RGAyRyFDAEJGmlKsR5epEve6PfGm2yqFZJCLRoYAhIk3JhQFjqTEYhWJ1F4kqGCJRoYAhIk0pB4qlZpHki6WqLhJVMESiQgFDRJqSr1Qwyt0f9aepVqocmkUiEhlLBgwzS5vZT83sSTPba2afCPfvMLNHzOxZM/uymaVWvrki0inKT1Jdch2MYqkSMHKqYIhERiMVjCxwnbu/GrgKuMHMrgE+Bdzl7pcCZ4DbVqyVItJxytWI2UGedWaRlDSLRCSKlgwYHpgMN5PhlwPXAV8N9+8Gbl6JBopIZyp3kfQklqpg+Gw3iioYIpHR0BgMM4ub2RPACeAB4AAw6u6F8JSXgK11Pnu7me0xsz0jIyMtaLKIdIJGp6kWSiUS8RjJuM15OJqIdLeGAoa7F939KmAbcDXw8kYv4O53u/sud981ODjYXCtFpOOUp5yWlwEv1l0q3EnGjEQspgqGSIQsaxaJu48C3wfeAKw3s0R4aBtwuLVNE5FONlvBWHwRrUIxqGAk4qZ1MEQipJFZJINmtj583wtcDzxNEDTeE552K3DfCrVRRDpQJWAsMQU1X3IScSMZj2klT5EISSx9CluA3WYWJwgk97r7N8xsH3CPmX0SeBz4wgq2U0Q6TKWLpIFpqslYjETMNItEJEKWDBju/hTwmhr7DxKMxxCRCMoX5g3yrBEeSiWn5BCPBRUMdZGIRIdW8hSRppS7OxZbaKvcbZKMG4m4qYtEJEIUMESkKbl5XSS1xmCUA0Uiri4SkahRwBCRphTmPU21WKM6Ue4SSVS6SFTBEIkKBQwRaUojDzsrh5BkOE1VDzsTiQ4FDBFpSq6Bx7WXA0UiHiy0pQqGSHQoYIhIUwoNLBVeDhTJWLBUuMZgiESHAoaINKXSRZIoT1NdWJ0oVzXi5aXCNYtEJDIUMESkKeUBnItXMKq6SOJW6VYRke6ngCEiTSlXMFLxGGb1xmDMDvJMxvWwM5EoUcAQkabkiyXiMSMWM5KxWJ1ZJNXTVDUGQyRKFDBEpCn5opOIGRCMsahVwcjPmaYaI68xGCKRoYAhIk3JFUqVRbbqrdJZPU21JxEjV1DAEIkKBQwRaUq2UKQnEfwIicetzkqewb54zOhJxMkqYIhEhgKGiDQlmy/RE67imYjVXqWzWHnYWYyeRIxsvriqbRSR9lHAEJGmZAslUvGwglFnDEb1IM+eREwVDJEIUcAQkaZkCyV6EuUxGLVnkVQP8iwHDHfNJBGJAgUMEWlKtlCsdJHEY1ZzjYs5gzzDAaE5rYUhEgkKGCLSlKCCsfgYjHIFIxGLVc5VN4lINChgiEhTqrtIlhqDkQynqUIwOFREup8Chog0JZufnaaaiNceg1H9sLNyGFEXiUg0KGCISFNyhVJlXEWizhiMfNWzSMrjNTRVVSQaFDBEpCnVYzCScas8ObVaeeXOVFxjMESiRgFDRJoyN2DEanZ9VKapJmKVLhIFDJFoUMAQkaYES4UHoSFV5zkjNSsY6iIRiQQFDBFpSrYwu1R4Kh6rVCuq5apnkSTVRSISJUsGDDO70My+b2b7zGyvmX0o3L/BzB4ws/3h63kr31wR6QSlkpOrWio8lagdMPLF4Byz2VkkGVUwRCKhkQpGAfiIu+8ErgE+aGY7gY8BD7r7ZcCD4baIRMBMGBLWpILQkIzX7yJJxg2g8mj3GQUMkUhYMmC4+1F3fyx8PwE8DWwFbgJ2h6ftBm5eoTaKSIeZzs0NGEEFo/ZKnqlw7EX53PJnRaS7LWsMhpkNA68BHgGG3P1oeOgYMNTapolIp5oJQ0JvKgEEFYxaYyuCCoYChkgUNRwwzKwf+Fvgw+4+Xn3Mg8cj1nxEopndbmZ7zGzPyMjIWTVWRDrDdL4AVFUw4lZnkOdswOgNz53JFVaplSLSTg0FDDNLEoSLL7n718Ldx81sS3h8C3Ci1mfd/W533+XuuwYHB1vRZhFps+lKBaO6i6TWIE+vTE9NxWPEY6YKhkhENDKLxIAvAE+7+19WHbofuDV8fytwX+ubJyKdqNxFsia51CDPYqWCYWasScYVMEQiItHAOdcC7wd+bmZPhPs+DtwJ3GtmtwEvAO9dkRaKSMeZHeQZ/AhJJYKHnZVKTixmlfPyRa8M8oSg4jGjgCESCUsGDHd/CLA6h9/S2uaIyLlgOhxH0Vs1TRWCMRfpWLxyXvU0VQjGbExrmqpIJGglTxFZtpn501TDgDF/HEb1IE8IZp1okKdINChgiMiy1VoHA1gwDiNXKM3pIlmT0hgMkahQwBCRZZvKBlWIvp7ZdTCABYttlZcKL+vvSTCZVQVDJAoUMERk2SayBdLJWCVYlKsU87tIqlfyBFjXm2RsJr96DRWRtlHAEJFlm8jkWZtOVrbLAznnr+ZZvZInKGCIRIkChogs23imwNr07CS08oPM5j8pNZMvkU7ODRjjM3lKpZoL/4pIF1HAEJFlm8gU5lQwygEjW5gXMArFyjEIAkbJYVIzSUS6ngKGiCzbZCbP2p6qCkY4ziKTn9tFksnPDRgDvcFnxtVNItL1FDBEZNkm5nWRzD7IbLaC4e5BF8m8QZ6AxmGIRIAChogs2/yAURmDUdVFUh7wmU5VVzAUMESiQgFDRJZtdCZXqUYApBPlQZ6zXSTlAZ/lYzBbwVAXiUj3U8AQkWWZyRXJ5Euc15eq7EunymMwZisY5bAxf5AnqIIhEgUKGCKyLGemcwCct6YqYNSYpjpTrmBUTVMdqFQwNItEpNspYIjIsswGjFpdJNUVjOB9b1UFoz+VIGaqYIhEgQKGiCzLmakgHKyvqmAk40Y8ZrXHYFQFjFjMGNBqniKRoIAhIstSq4vEzEgnYjXHYPQk5/6Y0XLhItGggCEiyzIykQVgcG3PnP3pZLwy7gJqVzAANvalODmZXeFWiki7KWCIyLIcH8+QSsTmjMGAhQFjpsYYDIDN69IcG8+sfENFpK0UMERkWY6OZRga6MHM5uzv70kwlZ2dHTIZvu+vWlIcYGggzbGxDO564JlIN1PAEJFlOTaeYfNAesH+vp44U9nZCkY5bPTNCxibB9JM54pMZDVVVaSbKWCIyLIcH88wVDNgJCpVC6gOGAu7SACOj6mbRKSbKWCISMPcnWNjtSsYC7tIiiTjRk9ibsAohxONwxDpbgoYItKwsZk82UKpUoWo1jcvYExlCwu6RwC2hJ89pgqGSFdTwBCRhpWrDrUCRn9PYs64iqlsgb7UwoBRrmAcVwVDpKspYIhIw46OhgFjkS6S8uyQyezcR7qXpZNxzluT5IgqGCJdTQFDRBp28OQUADs29S041teToOSzK3hO5Wp3kQAMb+rjuZGplWuoiLTdkgHDzL5oZifM7BdV+zaY2QNmtj98PW9lmykineDAyCTr1yTZUPWo9rL+sFoxkQmWAZ/MFBasgVF2yWA/B0YmV66hItJ2jVQw/ga4Yd6+jwEPuvtlwIPhtoh0uYMjk1wy2L9gkS2A9eGj2EfD54ycmc6zft5qn2UXD/ZxYiJbCSMi0n2WDBju/k/A6Xm7bwJ2h+93Aze3tlki0okOjExxyeDC7hGYffjZ6HQ+fM3NeSBatUsG+wE4qG4Ska7V7BiMIXc/Gr4/BgzVO9HMbjezPWa2Z2RkpMnLiUi7jc3kGZnIVsLBfOVqxZnpHIViifFMgXW9tSsY5e+hbhKR7nXWgzw9GDJe96EC7n63u+9y912Dg4NnezkRaZP9xycAlgwYY9N5xjPBdNX5D0Qr275xDcm48avwe4pI92k2YBw3sy0A4euJ1jVJRDrRE4dGAXjVhetqHl8fdoecmc5xZjo3Z998yXiMnVsGeDL8niLSfZoNGPcDt4bvbwXua01zRKRTPX5olK3rezl/7cI1MAD6UnGSceP0dI7RMGCsq1PBALjqwvU89dIYxZKeqirSjRqZpvr/gH8GXmZmL5nZbcCdwPVmth94a7gtIl3siRdHuerC9XWPmxnnr00zMp7l+HgWgKE6YQTgqovWM50r8oy6SUS6Uu1J6lXc/X11Dr2lxW0RkQ51YjzD4dEZPvDG4UXPGxro4dh4pvKckVpLipdddWGwfM5jL57hFVsGWtZWEekMWslTRJb0o/0nAXjDJRsXPW/zujTHxjMcH8+QSsTqDvIEGN64hi3r0jwUfm8R6S4KGCKypB88M8Lg2h6uuGDxSsPQQJpjYxmOjWcYGuipuSBXmZnx5pcN8tD+k+SLpVY3WUTaTAFDRBZVKJb40f4R/uVlg4sGBoDhjX1M54r884FTbN9Qe0Guam+6fJCJbIFHXzjTquaKSIdQwBCRRf34wClGp/Ncv7PuenoVL9u8FoATE1lesWXtkuf/i8sGSSdj/MNTR5c8V0TOLQoYIrKorz9+mIF0gl9/+dIL5b1882yo2LlEdwoEj3i/fudmvvHUEXIFdZOIdBMFDBGpa2w6zz/+4hg3vuoCehLxJc9fvybFpv4eUvEYv/HKLQ1d41+95gLOTOd5YN/xs22uiHSQJaepikh0/d+fvshMvsj7r9ne8GcevuM6Xjw9TTq5dCABeNPl53PRhjV88cfPceOrGgslItL5VMEQkZqmsgW++OPneOMlGxvq7ihLxGNcXOd5JbXEY8YH3jjMoy+c4eGDp5ppqoh0IAUMEanpf/3oICMTWT7ytstX/Frvu/oitqxL8yfffJqSlg4X6QoKGCKywNGxGf7nDw9y45VbeN32DSt+vd5UnP/89pfx1Etj/N3jh1f8eiKy8hQwRGSOUsn5yL1PYgYfveHlq3bdm6/aymsvWs8n/n4vh0dnVu26IrIyFDBEZI7P/fAAPzlwij9+104u2rhm1a4bixl3/eurKJacD9/zONlCcdWuLSKtp4AhIhX3PXGYP/v2r3j3qy/gvbsuXPXrb9/Yx5/85pX87PkzfPSrT+Gu8Rgi5ypNUxURIFhQ6w++8iRXD2/gv73nVUsuC75SbrpqK4dOT/Pn33mGRDzGnb95JYm4/hYSOdcoYIhEnLtz9z8d5E+/9UuuuXgDd//urobXsFgpH/z1SymUnE9/dz+np3J8+parGEjXfzKriHQe/VkgEmGnJrPctnsPf/qtX/KOKzfzN793dUf8IjczPvzWy/nkza/kh8+M8I7P/IjHXtQD0UTOJQoYIhFULDn/5+EXuO4vfshD+0/yX961k8/+m9e2vXIx3+9cs517/90bcIff+txPuONrT3FqMtvuZolIA2w1B1Ht2rXL9+zZs2rXE5G58sUSX3/8MH/9gwM8d3KKN1y8kU/cdAWXDy395NN2Gs/k+cx397P7J8/Tm4pz6xuG+cC1w2zq72l300QizcwedfddNY8pYIh0v0Onp/nyzw7xlUcPcXw8y84tA/zHt1zK26/Y3LbBnM149sQEf/7tZ/j2vmOk4jHe9eoLeM/rtvH6HRvOqX+HSLdQwBCJoAMjkzyw7zjf2XuMx14cJWbwpssH+Z1rtnPdy88/p38hHxiZ5PM/eo6/f/IIk9kCF21Yw9t2DvGWVwyxa/g8kpp1IrIqFDBEupy789KZGR4+eIpHnjvNI8+d4tDpYDXMV24d4O07N/Nbr9vGBet729zS1prOFfjHXxzj608c4eEDp8gVSwykE7z+4o1cPbyBX9uxgSsuGFDgEFkhChgiXSSTL/LCqWl+eWycvUfG2XtkjH1HxjkznQdg/ZokVw9v4NpLN/HWnUNs7bJQUc9ktsBD+0f43i9P8Mhzp3nh1DQA6WSMl20eYOeWAXZeELxeNtTfEbNlRM51Chgi55BSyTk5meXoWIajYxkOj87w/Mkpnj81xcGRKY6MzVD+v20qHuPyzf1csWUdr9w6wK/t2MDl568lFjt3uz9a5cR4hp8+f5rHXhjl6aPj7Ds6zthMvnJ8Y1+K4U19bN+4hh0b+9i+qY8t69JsHkgzNJAmlVDVQ2QpChgibZYrlBidznFqKseZqRynp3Ocngq+zkzlODmV43gYKI6PZyjMe2T52nSCizf1Mbypjx3h1+VDa7n0/H6V/xvk7hwZy7DvyDgHRiZ54dQUz52c4vmT0xwbzyw4f1N/iqGBNFvWpRlcm2ZjX4oN4dd5fSk2hq8b1qToTXXW9F6R1bJYwNBKniI1lEpOtlAiky8yU/7KFSvbU9kiE5k8k9kCk5kCE9kCE5kCk9lCsD8zuz0+k2ciW6h7rXW9STb2Bb/MXr9jA5vXBb/UNq/rZUv4fkNf6pwelNkJzIyt63vZur6X6xmac2wmV+TQmekg4IVB79h4hmNjMxwezfDEoVFOT+Uo1fl7LJ2MMZBO0p9OsDadZCCdYG06wdqeZPBaOZagvydBbypObzL8Ss17TcZVgZKuoIAhq8rdKZacQil4LbpTLAbbJQ/3F8P9pVLlvHzRyRdL5AslsuFreV+uWCJXKAXHi8H+bHk7fA3O8co5uUKJbKE0JzhUh4lMvrSsf1dPIjb7i6Qn+CWyfeMa+tMJBtJJzluTYkN/8Nfuhuq/hNck9ZyNDtCbinP50NpF1wMplZzxTL5ShZr/WgmUmTwTmQJHRmfCwFlgOre8J8P2JGILgkcqESMVj5FKxOhJxOZsB+/L51jVvhipRHzOdjJuxGNGIhYjETcSMSMRj5GIBfuD47Fwf3hezIjHjWQsVjlHgVeWclYBw8xuAD4DxIHPu/udLWnVMn310Zf4+uOHcYI/L8q9Pu4s3Ff+UGXbFxwrdxt5zc/5vHNrXKPO95t7bGG73L1yTXen5FDyoH0l9/Cr+njtczw8p/ozsrREzOhNxlmbTjK4Nlb5azIdfpV/2KeTMfpSCfrDv0bXphMNd1NkC0WOjs1wdGxmhf81shpSiVilyrSYQsmZCsPGVK7ATC4ItuWAW10lq7zmioxksgu6y2SWGcTMiJthBvGYYQTVKgMIj5sxZ7+FB2NGeGzeOfX2h5+d8758zpzjdb7n/O9DuLP876nx75uzPe+M6uOLnfsf3nwJ1166aTm3tiWaDhhmFgc+C1wPvAT8zMzud/d9rWpco/7gK0+u9iWlCxVKHnR1LNKdISKdw52g2olC2GIeevYkz99546pf92wqGFcDz7r7QQAzuwe4CVj1gPGTj13HgZFJYDa1ldOcVf6nzjFm0+XcfeXvXuuYLTh3/vem6lj52pX3i7Sn3JbYnKQtIiKrLahQz60uQ1UlmdmKcc33cz5bvW92f/W15lx7fmhaZHOpz165dd3y/uEtcjYBYytwqGr7JeD1808ys9uB2wEuuuiis7hcfRes7+26BYRERETOZSs+uszd73b3Xe6+a3BwcKUvJyIiIh3gbALGYeDCqu1t4T4RERGJuLMJGD8DLjOzHWaWAm4B7m9Ns0RERORc1vQYDHcvmNnvA98mmKb6RXff27KWiYiIyDnrrNbBcPdvAt9sUVtERESkS6zqs0jMbAR4YdUu2Pk2ASfb3YgI0f1ePbrXq0v3e/XoXs+13d1rzuBY1YAhc5nZnnoPiZHW0/1ePbrXq0v3e/XoXjdOD0EQERGRllPAEBERkZZTwGivu9vdgIjR/V49uterS/d79eheN0hjMERERKTlVMEQERGRllPAaCMz+4iZuZltCrfNzP7KzJ41s6fM7LXtbuO5zsz+zMx+Gd7PvzOz9VXH7gjv9a/M7O1tbGZXMbMbwnv6rJl9rN3t6SZmdqGZfd/M9pnZXjP7ULh/g5k9YGb7w9fz2t3WbmFmcTN73My+EW7vMLNHwv++vxyuZC01KGC0iZldCLwNeLFq928Al4VftwOfa0PTus0DwCvd/VXAM8AdAGa2k2B5+yuAG4C/NrN421rZJcJ7+FmC/5Z3Au8L77W0RgH4iLvvBK4BPhje348BD7r7ZcCD4ba0xoeAp6u2PwXc5e6XAmeA29rSqnOAAkb73AX8IVA9COYm4H974GFgvZltaUvruoS7f8fdC+HmwwQP5YPgXt/j7ll3fw54Fri6HW3sMlcDz7r7QXfPAfcQ3GtpAXc/6u6Phe8nCH7xbSW4x7vD03YDN7elgV3GzLYBNwKfD7cNuA74aniK7vUiFDDawMxuAg67+5PzDm0FDlVtvxTuk9b4t8C3wve61ytD93WVmNkw8BrgEWDI3Y+Gh44BQ+1qV5f5NMEfgqVweyMwWvVHi/77XsRZPYtE6jOz7wKbaxz6I+DjBN0j0gKL3Wt3vy88548IystfWs22iawEM+sH/hb4sLuPB39YB9zdzUzTA8+Smb0TOOHuj5rZm9vcnHOSAsYKcfe31tpvZlcCO4Anwx8K24DHzOxq4DBwYdXp28J9soh697rMzD4AvBN4i8/Oy9a9Xhm6ryvMzJIE4eJL7v61cPdxM9vi7kfDbtUT7Wth17gWeLeZvQNIAwPAZwi6rhNhFUP/fS9CXSSrzN1/7u7nu/uwuw8TlNhe6+7HgPuB3w1nk1wDjFWVPaUJZnYDQYnz3e4+XXXofuAWM+sxsx0EA2t/2o42dpmfAZeFI+1TBANp729zm7pGOAbgC8DT7v6XVYfuB24N398K3Lfabes27n6Hu28Lf07fAnzP3X8b+D7wnvA03etFqILRWb4JvINgwOE08HvtbU5X+B9AD/BAWDF62N3/vbvvNbN7gX0EXScfdPdiG9vZFdy9YGa/D3wbiANfdPe9bW5WN7kWeD/wczN7Itz3ceBO4F4zu43gidXvbU/zIuGjwD1m9kngcYLAJzVoJU8RERFpOXWRiIiISMspYIiIiEjLKWCIiIhIyylgiIiISMspYIiIiEjLKWCIiIhIyylgiIiISMspYIiIiEjL/X/HAbqcRgin2AAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1269,7 +1296,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -1278,7 +1305,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -1290,29 +1317,29 @@ " [1, 0, 0, 1]])" ] }, - "execution_count": 51, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 稠密矩阵\n", - "M = array([[1,0,0,0], [0,3,0,0], [0,1,1,0], [1,0,0,1]]); M" + "M = np.array([[1,0,0,0], [0,3,0,0], [0,1,1,0], [1,0,0,1]]); M" ] }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "<4x4 sparse matrix of type ''\n", + "<4x4 sparse matrix of type ''\n", "\twith 6 stored elements in Compressed Sparse Row format>" ] }, - "execution_count": 52, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -1324,7 +1351,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -1333,10 +1360,10 @@ "matrix([[1, 0, 0, 0],\n", " [0, 3, 0, 0],\n", " [0, 1, 1, 0],\n", - " [1, 0, 0, 1]])" + " [1, 0, 0, 1]], dtype=int64)" ] }, - "execution_count": 53, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -1355,17 +1382,17 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "<4x4 sparse matrix of type ''\n", - "\twith 6 stored elements in LInked List format>" + "<4x4 sparse matrix of type ''\n", + "\twith 6 stored elements in List of Lists format>" ] }, - "execution_count": 54, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -1381,19 +1408,19 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "matrix([[ 1., 0., 0., 0.],\n", - " [ 0., 3., 0., 0.],\n", - " [ 0., 1., 1., 0.],\n", - " [ 1., 0., 0., 1.]])" + "matrix([[1., 0., 0., 0.],\n", + " [0., 3., 0., 0.],\n", + " [0., 1., 1., 0.],\n", + " [1., 0., 0., 1.]])" ] }, - "execution_count": 55, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -1411,17 +1438,17 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "<4x4 sparse matrix of type ''\n", - "\twith 6 stored elements in LInked List format>" + "<4x4 sparse matrix of type ''\n", + "\twith 6 stored elements in List of Lists format>" ] }, - "execution_count": 56, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -1432,17 +1459,17 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "<4x4 sparse matrix of type ''\n", + "<4x4 sparse matrix of type ''\n", "\twith 6 stored elements in Compressed Sparse Row format>" ] }, - "execution_count": 57, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -1453,17 +1480,17 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "<4x4 sparse matrix of type ''\n", + "<4x4 sparse matrix of type ''\n", "\twith 6 stored elements in Compressed Sparse Column format>" ] }, - "execution_count": 58, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -1481,19 +1508,19 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "matrix([[ 1., 0., 0., 0.],\n", - " [ 0., 3., 0., 0.],\n", - " [ 0., 1., 1., 0.],\n", - " [ 1., 0., 0., 1.]])" + "matrix([[1., 0., 0., 0.],\n", + " [0., 3., 0., 0.],\n", + " [0., 1., 1., 0.],\n", + " [1., 0., 0., 1.]])" ] }, - "execution_count": 59, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -1504,19 +1531,19 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "matrix([[ 1., 0., 0., 0.],\n", - " [ 0., 9., 0., 0.],\n", - " [ 0., 4., 1., 0.],\n", - " [ 2., 0., 0., 1.]])" + "matrix([[1., 0., 0., 0.],\n", + " [0., 9., 0., 0.],\n", + " [0., 4., 1., 0.],\n", + " [2., 0., 0., 1.]])" ] }, - "execution_count": 60, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -1660,7 +1687,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 50, "metadata": {}, "outputs": [], "source": [ @@ -1683,7 +1710,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -1693,7 +1720,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -1852,7 +1879,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 53, "metadata": {}, "outputs": [], "source": [ @@ -1864,7 +1891,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -2323,85 +2350,6 @@ "* http://docs.scipy.org/doc/scipy/reference/tutorial/index.html - 关于如何开始使用SciPy的教程. \n", "* https://github.com/scipy/scipy/ - SciPy源码. " ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 版本" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "metadata": {}, - "outputs": [ - { - "data": { - "application/json": { - "Software versions": [ - { - "module": "Python", - "version": "2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]" - }, - { - "module": "IPython", - "version": "3.2.1" - }, - { - "module": "OS", - "version": "Darwin 14.1.0 x86_64 i386 64bit" - }, - { - "module": "numpy", - "version": "1.9.2" - }, - { - "module": "matplotlib", - "version": "1.4.3" - }, - { - "module": "scipy", - "version": "0.16.0" - } - ] - }, - "text/html": [ - "
SoftwareVersion
Python2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]
IPython3.2.1
OSDarwin 14.1.0 x86_64 i386 64bit
numpy1.9.2
matplotlib1.4.3
scipy0.16.0
Sat Aug 15 11:13:18 2015 JST
" - ], - "text/latex": [ - "\\begin{tabular}{|l|l|}\\hline\n", - "{\\bf Software} & {\\bf Version} \\\\ \\hline\\hline\n", - "Python & 2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)] \\\\ \\hline\n", - "IPython & 3.2.1 \\\\ \\hline\n", - "OS & Darwin 14.1.0 x86\\_64 i386 64bit \\\\ \\hline\n", - "numpy & 1.9.2 \\\\ \\hline\n", - "matplotlib & 1.4.3 \\\\ \\hline\n", - "scipy & 0.16.0 \\\\ \\hline\n", - "\\hline \\multicolumn{2}{|l|}{Sat Aug 15 11:13:18 2015 JST} \\\\ \\hline\n", - "\\end{tabular}\n" - ], - "text/plain": [ - "Software versions\n", - "Python 2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]\n", - "IPython 3.2.1\n", - "OS Darwin 14.1.0 x86_64 i386 64bit\n", - "numpy 1.9.2\n", - "matplotlib 1.4.3\n", - "scipy 0.16.0\n", - "Sat Aug 15 11:13:18 2015 JST" - ] - }, - "execution_count": 93, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%reload_ext version_information\n", - "\n", - "%version_information numpy, matplotlib, scipy" - ] } ], "metadata": { diff --git a/1_numpy_matplotlib_scipy_sympy/5-sympy_tutorial.ipynb b/1_numpy_matplotlib_scipy_sympy/5-sympy_tutorial.ipynb index e6ef6d5..24c4ed2 100644 --- a/1_numpy_matplotlib_scipy_sympy/5-sympy_tutorial.ipynb +++ b/1_numpy_matplotlib_scipy_sympy/5-sympy_tutorial.ipynb @@ -11,8 +11,6 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "J.R. Johansson (jrjohansson at gmail.com)\n", - "\n", "这门课的最新版本[IPython notebook](http://ipython.org/notebook.html) 可以在这里获得[http://github.com/jrjohansson/scientific-python-lectures](http://github.com/jrjohansson/scientific-python-lectures).\n", "\n", "这节课其他的参考书可以在这里找到[http://jrjohansson.github.io](http://jrjohansson.github.io) 。" @@ -53,11 +51,11 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ - "from sympy import *" + "import sympy as sp" ] }, { @@ -69,11 +67,11 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ - "init_printing()\n", + "sp.init_printing()\n", "\n", "# 或者使用较旧版本的sympy/ipython,加载ipython扩展\n", "#%load_ext sympy.interactive.ipythonprinting\n", @@ -97,16 +95,16 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "x = Symbol('x')" + "x = sp.Symbol('x')" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -120,7 +118,7 @@ "(x + π) " ] }, - "execution_count": 6, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -131,17 +129,17 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# 定义符号的可替代的方式\n", - "a, b, c = symbols(\"a, b, c\")" + "a, b, c = sp.symbols(\"a, b, c\")" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -150,7 +148,7 @@ "sympy.core.symbol.Symbol" ] }, - "execution_count": 8, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -168,16 +166,16 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ - "x = Symbol('x', real=True)" + "x = sp.Symbol('x', real=True)" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -186,7 +184,7 @@ "False" ] }, - "execution_count": 10, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -197,16 +195,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ - "x = Symbol('x', positive=True)" + "x = sp.Symbol('x', positive=True)" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -219,7 +217,7 @@ "True" ] }, - "execution_count": 12, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -244,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -257,18 +255,18 @@ "1 + ⅈ" ] }, - "execution_count": 13, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "1+1*I" + "1+1*sp.I" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -281,18 +279,18 @@ "-1" ] }, - "execution_count": 14, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "I**2" + "sp.I**2" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -306,13 +304,13 @@ "(ⅈ⋅x + 1) " ] }, - "execution_count": 15, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "(x * I + 1)**2" + "(x * sp.I + 1)**2" ] }, { @@ -331,17 +329,17 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ - "r1 = Rational(4,5)\n", - "r2 = Rational(5,4)" + "r1 = sp.Rational(4,5)\n", + "r2 = sp.Rational(5,4)" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -354,7 +352,7 @@ "4/5" ] }, - "execution_count": 17, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -365,7 +363,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -380,7 +378,7 @@ "20" ] }, - "execution_count": 18, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -391,7 +389,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -406,7 +404,7 @@ "25" ] }, - "execution_count": 19, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -433,7 +431,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -446,27 +444,27 @@ "3.1415926535897932384626433832795028841971693993751" ] }, - "execution_count": 20, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "pi.evalf(n=50)" + "sp.pi.evalf(n=50)" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ - "y = (x + pi)**2" + "y = (x + sp.pi)**2" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -480,13 +478,13 @@ "9.8696⋅(0.31831⋅x + 1) " ] }, - "execution_count": 22, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "N(y, 5) # 和evalf 一样" + "sp.N(y, 5) # 和evalf 一样" ] }, { @@ -498,7 +496,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -512,7 +510,7 @@ "(1.5 + π) " ] }, - "execution_count": 23, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -523,7 +521,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -536,13 +534,13 @@ "21.5443823618587" ] }, - "execution_count": 24, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "N(y.subs(x, 1.5))" + "sp.N(y.subs(x, 1.5))" ] }, { @@ -554,7 +552,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -568,13 +566,13 @@ "(a + 2⋅π) " ] }, - "execution_count": 25, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "y.subs(x, a+pi)" + "y.subs(x, a+sp.pi)" ] }, { @@ -586,34 +584,34 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ - "import numpy" + "import numpy as np" ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ - "x_vec = numpy.arange(0, 10, 0.1)" + "x_vec = np.arange(0, 10, 0.1)" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ - "y_vec = numpy.array([N(((x + pi)**2).subs(x, xx)) for xx in x_vec])" + "y_vec = np.array([N(((x + pi)**2).subs(x, xx)) for xx in x_vec])" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -630,6 +628,7 @@ } ], "source": [ + "import matplotlib.pyplot as plt\n", "fig, ax = plt.subplots()\n", "ax.plot(x_vec, y_vec);" ] @@ -643,17 +642,17 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ - "f = lambdify([x], (x + pi)**2, 'numpy') # 第一个参数是一个变量列表\n", + "f = sp.lambdify([x], (x + pi)**2, 'numpy') # 第一个参数是一个变量列表\n", " # f将是以下函数的函数:本例中仅为x -> f(x)" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ @@ -669,34 +668,33 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "10 loops, best of 3: 28.2 ms per loop\n" + "11.4 ms ± 82.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], "source": [ "%%timeit\n", "\n", - "y_vec = numpy.array([N(((x + pi)**2).subs(x, xx)) for xx in x_vec])" + "y_vec = np.array([sp.N(((x + pi)**2).subs(x, xx)) for xx in x_vec])" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The slowest run took 8.86 times longer than the fastest. This could mean that an intermediate result is being cached \n", - "100000 loops, best of 3: 2.93 µs per loop\n" + "1.41 µs ± 17.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" ] } ], @@ -736,7 +734,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 49, "metadata": {}, "outputs": [ { @@ -749,7 +747,7 @@ "(x + 1)⋅(x + 2)⋅(x + 3)" ] }, - "execution_count": 33, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -760,7 +758,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -774,13 +772,13 @@ "x + 6⋅x + 11⋅x + 6" ] }, - "execution_count": 34, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "expand((x+1)*(x+2)*(x+3))" + "sp.expand((x+1)*(x+2)*(x+3))" ] }, { @@ -792,7 +790,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 51, "metadata": {}, "outputs": [ { @@ -805,18 +803,18 @@ "sin(a + b)" ] }, - "execution_count": 35, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sin(a+b)" + "sp.sin(a+b)" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -829,13 +827,13 @@ "sin(a)⋅cos(b) + sin(b)⋅cos(a)" ] }, - "execution_count": 36, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "expand(sin(a+b), trig=True)" + "sp.expand(sp.sin(a+b), trig=True)" ] }, { @@ -854,7 +852,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -867,13 +865,13 @@ "(x + 1)⋅(x + 2)⋅(x + 3)" ] }, - "execution_count": 37, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "factor(x**3 + 6 * x**2 + 11*x + 6)" + "sp.factor(x**3 + 6 * x**2 + 11*x + 6)" ] }, { @@ -894,7 +892,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -907,19 +905,19 @@ "(x + 1)⋅(x + 2)⋅(x + 3)" ] }, - "execution_count": 38, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# simplify 展开乘积\n", - "simplify((x+1)*(x+2)*(x+3))" + "sp.simplify((x+1)*(x+2)*(x+3))" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -932,19 +930,19 @@ "1" ] }, - "execution_count": 39, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# simplify 使用三角恒等式\n", - "simplify(sin(a)**2 + cos(a)**2)" + "sp.simplify(sin(a)**2 + cos(a)**2)" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -959,13 +957,13 @@ "tan(x)" ] }, - "execution_count": 40, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "simplify(cos(x)/sin(x))" + "sp.simplify(cos(x)/sin(x))" ] }, { @@ -984,7 +982,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 57, "metadata": {}, "outputs": [], "source": [ @@ -993,7 +991,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -1008,7 +1006,7 @@ "(a + 1)⋅(a + 2)" ] }, - "execution_count": 42, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -1019,7 +1017,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -1034,18 +1032,18 @@ " a + 2 a + 1" ] }, - "execution_count": 43, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "apart(f1)" + "sp.apart(f1)" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ @@ -1054,14 +1052,14 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 61, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHwAAAAsBAMAAABVvsF6AAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAVO8Qq5l2zWYiiUS7\n3TIuwQ1sAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAB30lEQVRIDe2Wv0sCYRzGHzs0zx8ZQUGTUENF\nRRIuTSdF0RIKaUMESWMNNUQ3hf4DwQ21BIEEEQRFBO01NdQQEQ0tubYpDpFR9nrv+173+l4m1NDg\nDfe+3+d5Pu99+eqhwJ9dHZFGjnL1OqaUyXgjeDRZcsSB1UZweJq4PL/m6OSZiMp3X5vkyHpWTDpV\n7vGXaSf9H2qu9K+aauJ1xldxvgoE8en6Zp+ux8g25Jyq1Dm4ajUn/8OAauzdo0uu1BmdmrrJ85h9\nVRMIZ5mgGHZH2EfhexOELlp5igjdCoZQ8IYmgB7BYLh/ENqaYAgFx4eBeN7uMJxIVvN2m+05nomY\nuDo/x36xLVx5lLGdg6WIqXKcFE9EOTNaCzTNcfV4VsL9A8hQ8Qv3lwGlH+4LEQf2T2v50SwWavFg\nDHCXEEwT41DX73R9nUZapD8gixE8EM/2EgIpIrRcQMtTiDWvGggUqfJ1H4LyQSureU+CCFoOYZZi\neKgk40oZLjYhC+8EeZDWjiuXYR7AcNJP8JWdyBeliMBat1lxvC0Bj4HWtPfeR1MM92YRTnOOrxvY\niuXMguN7RwczZPJTJ9srNMRwnKeuOWWt0eXnKfpxcDxTqbxbdnXDcUGUCo5LxpikOAnCS/gJnQmX\nnOfh0q8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAH0AAAAtCAYAAACDDmTSAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEPklEQVR4Ae2c4VUcIRSFd/dYgJoOTAdGK8jagaaDaAfx5Jf+NR1EK0i0g9iB0RLsIGY7MPcjvDnjqLjiMiLDO+cJAwM87oUHw8w6vr29HaWSw8PDddV9Kv2g+CxVOyXV2wdmS4sGTEYvq84T6Y10Q7omrRJAoG/MUpDOjN6hj+rMFwXM9ioBBIRTr5hNArbUrEIRqKQXSmyoW5X0EDqF5lXSCyU21K1KegidQvMq6YUSG+pWJT2ETqF5lfRCiQ11q5IeQqfQvEp6ocSGujVO8cJFx4q8ZOEMnrN3wmvplfRCed8UVukg0CdmSUjv9KdeZoZAde+ZEdKHOYMkXa50Kt3tA+Ac2xgk6SKCfQY6SBkq6YMk2zpdSTckBhRW0gdEtnW1km5IDCgs+jldO/Tv4nL6AJ+rPo2PN7typXLuG79uRinX44ODg3TfQCdGSeSMY5pQuW2VW1MYfTqosm8Wt6VY4GLALqnMW8atrukljcQ5+1JJnxOokm6rpJfE5px9qaTPCVRJty38Z02LBEebpTXVt+fr5Kyc6yOln/u02GCmgmhx4jHb9x3jewYeS/eVzvcMTrJ9TpeRkAzBRvpIcd6M8ey9o/iZ60H90yAgTGxSNOcMSjvSDfymcEtxN1mSunc18pJXmBC8qzp4pjb56SNfLaG08IWYQfDnNiaqj1mPV+NrJidJSVcLzFY0RnBHGIs6UQeauKUVGIIXGiOcPv4VTt3yzPBlpeMJRtmu6TIQQ1cw0kRpNutx8VXuIwBm68LpscnhBsMd0v1IMHfwRxWwbm4rPfq48r5dcSmygVGM+9pT/DiuljSlcsFNdjRreaen7n8EKN9t5hrSlQCo9q9C+Hp1pLRfCliXj6WPjR5uTSZqF4OxbVOK0b+l2YjsyxI3A8jjh1u3Hf1/964Mpj2Es7V3hPtCxK+V9iqEY4Pahmg3QhXHvV8qzGL3LjuyxQ3svMArk7bx1jbTcZt0wHbH/n43w558NFKFwVeYym8eu6xihc9+hal6zqQMwFOFKz7eqrL3aDRusj05Zr6Nc4V38DfSPwkuMpsZrTiDALeAiw9Kt1K7WenMzKhXmCp7Zx2yOhXi3nGp6JMDUveklGjcUmDW7qjqd1/7PtTORImQizoX2ipIh0bKdw/0rfTkUW/TpRrClWNbduLtygo3A0m2MdneK2xmuOJMPvfINrEbFV604kTZCTZrqRXo3JPkUm3NVDFq7rzdzoa/6H0wto1oxbPBDZuEHR5yU2GzcfO2MhBuiC8BsBRy3SggUde4Bq4NWCrp25V2jcYuDGd28djGoHg1oX1pVrjJHjhj48ZS3T7LWFUaz+9uM2dr+kclniiRM9p30h/SLSln36Rx3auoXXacU2nbeDrVnCH3atDDjeWGG4SDkVvPOyY7r01a0hcuIoyZGbWR6xg8mMs+MJskRtPW5sTNFFV9csz+ATS2nGeup02IAAAAAElFTkSuQmCC\n", "text/latex": [ - "$$\\frac{1}{a + 3} + \\frac{1}{a + 2}$$" + "$\\displaystyle \\frac{1}{a + 3} + \\frac{1}{a + 2}$" ], "text/plain": [ " 1 1 \n", @@ -1069,7 +1067,7 @@ "a + 3 a + 2" ] }, - "execution_count": 45, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -1080,14 +1078,14 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 62, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIIAAAAvBAMAAADdrw/+AAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAIpm7MhCriUTv3c12\nVGZoascqAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACs0lEQVRIDe2WzWsTQRjGn02y+dpuSCMo9LQk\nYC9KK3pS0OhfsKdCvSQIXrRgiGIugrnWi5YiWAsSPNSDivVqhKQFUU9G/wHr1UPpwdDi1/rOzs42\n231NFkoPgnPYd/eZ3zz77uzMvguEW6F0KiwCxpvEcU4Pa3oVt5thGRnHqTEyIyVtZO4N6GZXXhg3\n1wbUYaeZFpLfBgDlkBzQhp8a/f06kH+2D23y2H15Jz+HzfWyVCIc79Ywnze2JKkc4ra2E2GsRFag\nP0JsOuhAV6ejOsQsxPrIdolPtduvltvtqhw6lZdx5HEdyEyjUpageoqr4NcJY2daGK/U8NnrUg7L\nwJTN4Ix0AVir9HDGlDkrBwt4ytCMpD1pHG0Z3dxKSnYqhwJyCwzOSIbjOC197sbhd0EHbfJSxIfY\na6py2KtHv9ajvsLolv/JA5oBWj77aweU179oq238LesvsmMkcIgz0Iony0jKPcUDjes9BbzkHGaQ\n2oG+6naxQAHmbw/IWYMO6mNwGVgCbokuHvjQw3cPyAa2v3J4CFwrY1Y48MB8U/8BCUwIym/KoWML\nB6NJHTwA8RQSoOLAFEkSX9ig0gMIAIX6e1tEqFsAF2uQwFmSw0USSG/TFIipFEB6AR0K1HyHI4/J\n0gWegy+S2SrhLRpDAGY3UKJAzXdA6oEHUGSLZJHwxBYdCBDF6hmFYBVdsn2AKZIYs2iE77AI3fut\nUTmMA+d6EqAkmSKJT9DySLfIhgB9G6ZIh5pycGzh4AI0UUyRTFgYy/szqf9CfPVjwGGRXpYH1Omt\nhovkRKN+hSaoRqMIwGt8rYrz3Rw2Yf70gDuUZLhIdhyHFq1RpjEEYObt+bkmxV2HdLFEggvwi9al\n5XIcCQQ3TrBIMjuLAXBC3o85ert7JMB+QFy/eN4NI4GRH7HhwB+u8vuFvy0h3AAAAABJRU5ErkJg\ngg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIIAAAAxCAYAAAAWXXEmAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAHCElEQVR4Ae2c7XHcNhCGz5oUIDsV5NyBHFdguQNZHcTuwJn8kv46HdiuILY7kFOBY3cgd5DkOlDeh8JyQBDk8U4kb6FwZ3D4IIhdvFgsliRwq5ubm9USxsXg4uLiJMVUZccK67TcS/6HlWO6vLxcS7xfg4g/K/6HvMq/hTKv0Z+S8VjCmZykoSe3kb/fI38i3UoUlOCN4lchACLAflX+1KvcQS4U9rvCiQJK8EnhieTeKHZJni3CGyH2S4yagMQavFTZR4WH8bUx00HR1orf7dnuN937Ys97D3KbW4sgNJj1/wpQM6sG0GcljlXOsjEVwTPlOxUvF+16VgQG/LsGvMuc/q8Gamptcbs09JhW1t2VrpsjVmGkPBYCxxLF+VuBdflM5b8rnp3ElyXMlPWx0m9TmWcXqoehZ4vQEltAogQ24PV1lbOMfFXAucSPYPDfhrwNhrKzETw/IEeQBX/HtZNblCIITJzEdwFcJSvLAOiUowB46kak+5YWqzd6LDmeK2ys4SAXSx3K6ZLcLg0pWgITED8rfpVcY7ZVMzApx0qwPHRSaJN6KT2iIMOL4n2fCFDMU7XJ00issLR5cCpCEQQc6+1KcaoEFJ8roCDxDEQxWEKuFDqpoz34nOkmBmxn/0L3wPOR4q6XR8jmjtwrQhiUx4prJVCaQYZ4cQOwDcdReZRjpXqY47nJ3oCmfM3KpLKm9Q6Sd+0jaCBxDp8qttfMBhIzFiUw+mKJEPMypwJc9/LkYIqTVJskiw/DU0JKLEGHUMxUjmzerUUIg4cTiNmPnSxm1onKKrOtmAGvB1p5lhHyBjqK1OsrqO6YxGMiIbZgrwMDt28b3SqCgEMJGNDKPwhAWhSb12cqfC/gAftHhT8UnivwKEkZ+dlIPHlSgbcpL4qL9fpJZbUfM5tAAxk94DPoQk0ENGB7O4vNlsrJHZUj6qySMnPdzt4pkFgswhSoFtjmYhEKHLQpRF4UYQpUC2xzUYQCB20KkRdFmALVAttcFKHAQZtC5EURpkC1wDYfaK/98kapwIEbW+TlPcLYiBba3rI0FDpwY4u9KMLYiBbaXqci6MPLutA+NcQeox9jtNEQ6gCZbX3IKoJu4vMtm0LuA7HlzPYD7Nyfe4RFLw4tZ1Ed5xNsblfQziBOfYNkxWrZ7iXbItY6JBsGk30CO21QKQWLgINthGHrHriwJ8I251RDoTwTIotDQxFUkUY4ydu18bJq0MOPZLTO1rt+VMaOZjrLdvIUBM49PFP5oM/LqlcEFkFOBt0UYaU0m3nYGPNC6YbyK5/FIV0aANJ21ig5LUkotnfndiANYYysrUOyKmOg2d2UEv3inqE0GxZ3xAH8XqoNLLnRh5D4zQqiOItDqgjnanDfE8ARr8FJZh1hH2Iz6OBDsqFf9G8ovzmxuAsObNvbhFDhqD6Sz1IXDvWeRVUAWHcHL7K9uS3E9LOJtavTgJsS/TtX6FX2krCQrODQ+IsAlZl16LLuLRxqRVBjrLWNdVX5FokJa/PBD5tKjto3SISsnnZ0Pd7galXoHxtbexVB17di4QUH65jFkosJzbLGH4x09bOFQ7w04HVfW4O5ODDxdNi0IabkQwlMURvXQob+cX0b9WLhEQf6roCjjNPIJPirp5MtHGKLgCll23WWxITrOGFuDptmBEW+xiHZpA79yy0ZSbWqThYLrzhILgafsFKapYHT162nBq6LWjjEisD++01VLf+DuQFE80itFqao8YhiFyyWQKxV1EsJngheP/pEFXY6bBp45A7JRk1WPtAQi9CHhWscAp6fhAdj+VHxw5DuxSFWhLhiLo2T5eawaSygOlo9girOKVRctW+A43p9aVc4qM8nCKu4sgaR4CwNTL7cRG3hEPsIeJJZsykmlBNSZoCCEFudTOpNQeKNGWwdklV5bubTB8ziNspioTZd4RDkwWdjGUC2odTCIVYEAMqBFzf+Jc4ojXddKYcEmfuw6Uo8mQ251+EoR27AmQkM8jbahoULHNT/jTpCsKUg7hcOL5SbpC0c4qWBAX1a3Zr8wFCB67WiKI85Jm+MGJBeXyFp9k5Z8YI3zmHvIdmECa/Oe/8zIdTPYiGe7nCQvPatpe6q5GQiMOt5hERRUmrhECsCAHW9gKAhV4dNJQ9KgDLkXlEzkDlivcTZ20Z9WLjCQQPNU9KpQjx24NL63hJ1uo1D/F/A2r94rdD6H+G4zphp8TpTeD1mm11tic9a4brrelpOXYVZsBCfg+NwFGkJyeqNVFI2ZdbWuCl5WNuY0CHWwOrPicXhccjMhCtpqNt/EU/lHZKnPwpXQ+rGdbjnPmHRh0NqEZgNPAnE643NkJJj+kO/dqX7hkUnDo2NKYaSHA+cDRyQro8WVtV9rD7gTPJkMeSxsdWf+4LFNhz+A9vVKnwVWlWOAAAAAElFTkSuQmCC\n", "text/latex": [ - "$$\\frac{2 a + 5}{\\left(a + 2\\right) \\left(a + 3\\right)}$$" + "$\\displaystyle \\frac{2 a + 5}{\\left(a + 2\\right) \\left(a + 3\\right)}$" ], "text/plain": [ " 2⋅a + 5 \n", @@ -1095,13 +1093,13 @@ "(a + 2)⋅(a + 3)" ] }, - "execution_count": 46, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "together(f2)" + "sp.together(f2)" ] }, { @@ -1113,23 +1111,28 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 63, "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'f2' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msimplify\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'f2' is not defined" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIIAAAAxCAYAAAAWXXEmAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAHCElEQVR4Ae2c7XHcNhCGz5oUIDsV5NyBHFdguQNZHcTuwJn8kv46HdiuILY7kFOBY3cgd5DkOlDeh8JyQBDk8U4kb6FwZ3D4IIhdvFgsliRwq5ubm9USxsXg4uLiJMVUZccK67TcS/6HlWO6vLxcS7xfg4g/K/6HvMq/hTKv0Z+S8VjCmZykoSe3kb/fI38i3UoUlOCN4lchACLAflX+1KvcQS4U9rvCiQJK8EnhieTeKHZJni3CGyH2S4yagMQavFTZR4WH8bUx00HR1orf7dnuN937Ys97D3KbW4sgNJj1/wpQM6sG0GcljlXOsjEVwTPlOxUvF+16VgQG/LsGvMuc/q8Gamptcbs09JhW1t2VrpsjVmGkPBYCxxLF+VuBdflM5b8rnp3ElyXMlPWx0m9TmWcXqoehZ4vQEltAogQ24PV1lbOMfFXAucSPYPDfhrwNhrKzETw/IEeQBX/HtZNblCIITJzEdwFcJSvLAOiUowB46kak+5YWqzd6LDmeK2ys4SAXSx3K6ZLcLg0pWgITED8rfpVcY7ZVMzApx0qwPHRSaJN6KT2iIMOL4n2fCFDMU7XJ00issLR5cCpCEQQc6+1KcaoEFJ8roCDxDEQxWEKuFDqpoz34nOkmBmxn/0L3wPOR4q6XR8jmjtwrQhiUx4prJVCaQYZ4cQOwDcdReZRjpXqY47nJ3oCmfM3KpLKm9Q6Sd+0jaCBxDp8qttfMBhIzFiUw+mKJEPMypwJc9/LkYIqTVJskiw/DU0JKLEGHUMxUjmzerUUIg4cTiNmPnSxm1onKKrOtmAGvB1p5lhHyBjqK1OsrqO6YxGMiIbZgrwMDt28b3SqCgEMJGNDKPwhAWhSb12cqfC/gAftHhT8UnivwKEkZ+dlIPHlSgbcpL4qL9fpJZbUfM5tAAxk94DPoQk0ENGB7O4vNlsrJHZUj6qySMnPdzt4pkFgswhSoFtjmYhEKHLQpRF4UYQpUC2xzUYQCB20KkRdFmALVAttcFKHAQZtC5EURpkC1wDYfaK/98kapwIEbW+TlPcLYiBba3rI0FDpwY4u9KMLYiBbaXqci6MPLutA+NcQeox9jtNEQ6gCZbX3IKoJu4vMtm0LuA7HlzPYD7Nyfe4RFLw4tZ1Ed5xNsblfQziBOfYNkxWrZ7iXbItY6JBsGk30CO21QKQWLgINthGHrHriwJ8I251RDoTwTIotDQxFUkUY4ydu18bJq0MOPZLTO1rt+VMaOZjrLdvIUBM49PFP5oM/LqlcEFkFOBt0UYaU0m3nYGPNC6YbyK5/FIV0aANJ21ig5LUkotnfndiANYYysrUOyKmOg2d2UEv3inqE0GxZ3xAH8XqoNLLnRh5D4zQqiOItDqgjnanDfE8ARr8FJZh1hH2Iz6OBDsqFf9G8ovzmxuAsObNvbhFDhqD6Sz1IXDvWeRVUAWHcHL7K9uS3E9LOJtavTgJsS/TtX6FX2krCQrODQ+IsAlZl16LLuLRxqRVBjrLWNdVX5FokJa/PBD5tKjto3SISsnnZ0Pd7galXoHxtbexVB17di4QUH65jFkosJzbLGH4x09bOFQ7w04HVfW4O5ODDxdNi0IabkQwlMURvXQob+cX0b9WLhEQf6roCjjNPIJPirp5MtHGKLgCll23WWxITrOGFuDptmBEW+xiHZpA79yy0ZSbWqThYLrzhILgafsFKapYHT162nBq6LWjjEisD++01VLf+DuQFE80itFqao8YhiFyyWQKxV1EsJngheP/pEFXY6bBp45A7JRk1WPtAQi9CHhWscAp6fhAdj+VHxw5DuxSFWhLhiLo2T5eawaSygOlo9girOKVRctW+A43p9aVc4qM8nCKu4sgaR4CwNTL7cRG3hEPsIeJJZsykmlBNSZoCCEFudTOpNQeKNGWwdklV5bubTB8ziNspioTZd4RDkwWdjGUC2odTCIVYEAMqBFzf+Jc4ojXddKYcEmfuw6Uo8mQ251+EoR27AmQkM8jbahoULHNT/jTpCsKUg7hcOL5SbpC0c4qWBAX1a3Zr8wFCB67WiKI85Jm+MGJBeXyFp9k5Z8YI3zmHvIdmECa/Oe/8zIdTPYiGe7nCQvPatpe6q5GQiMOt5hERRUmrhECsCAHW9gKAhV4dNJQ9KgDLkXlEzkDlivcTZ20Z9WLjCQQPNU9KpQjx24NL63hJ1uo1D/F/A2r94rdD6H+G4zphp8TpTeD1mm11tic9a4brrelpOXYVZsBCfg+NwFGkJyeqNVFI2ZdbWuCl5WNuY0CHWwOrPicXhccjMhCtpqNt/EU/lHZKnPwpXQ+rGdbjnPmHRh0NqEZgNPAnE643NkJJj+kO/dqX7hkUnDo2NKYaSHA+cDRyQro8WVtV9rD7gTPJkMeSxsdWf+4LFNhz+A9vVKnwVWlWOAAAAAElFTkSuQmCC\n", + "text/latex": [ + "$\\displaystyle \\frac{2 a + 5}{\\left(a + 2\\right) \\left(a + 3\\right)}$" + ], + "text/plain": [ + " 2⋅a + 5 \n", + "───────────────\n", + "(a + 2)⋅(a + 3)" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "simplify(f2)" + "sp.simplify(f2)" ] }, { @@ -1162,7 +1165,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -1176,7 +1179,7 @@ "(x + π) " ] }, - "execution_count": 45, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } @@ -1187,7 +1190,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 65, "metadata": {}, "outputs": [ { @@ -1201,13 +1204,13 @@ "4⋅(x + π) " ] }, - "execution_count": 46, + "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "diff(y**2, x)" + "sp.diff(y**2, x)" ] }, { @@ -1219,7 +1222,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -1233,18 +1236,18 @@ "12⋅(x + π) " ] }, - "execution_count": 47, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "diff(y**2, x, x)" + "sp.diff(y**2, x, x)" ] }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 67, "metadata": {}, "outputs": [ { @@ -1258,13 +1261,13 @@ "12⋅(x + π) " ] }, - "execution_count": 48, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "diff(y**2, x, 2) # 和上面的一样" + "sp.diff(y**2, x, 2) # 和上面的一样" ] }, { @@ -1276,7 +1279,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 68, "metadata": {}, "outputs": [], "source": [ @@ -1285,11 +1288,11 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 69, "metadata": {}, "outputs": [], "source": [ - "f = sin(x*y) + cos(y*z)" + "f = sp.sin(x*y) + sp.cos(y*z)" ] }, { @@ -1301,7 +1304,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 70, "metadata": {}, "outputs": [ { @@ -1314,13 +1317,13 @@ "-x⋅(x⋅y⋅cos(x⋅y) + 2⋅sin(x⋅y))" ] }, - "execution_count": 51, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "diff(f, x, 1, y, 2)" + "sp.diff(f, x, 1, y, 2)" ] }, { @@ -1339,7 +1342,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 71, "metadata": {}, "outputs": [ { @@ -1352,7 +1355,7 @@ "sin(x⋅y) + cos(y⋅z)" ] }, - "execution_count": 52, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } @@ -1363,7 +1366,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 72, "metadata": {}, "outputs": [ { @@ -1380,13 +1383,13 @@ " ⎝⎩ 0 otherwise⎠" ] }, - "execution_count": 53, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "integrate(f, x)" + "sp.integrate(f, x)" ] }, { @@ -1398,7 +1401,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 73, "metadata": {}, "outputs": [ { @@ -1411,13 +1414,13 @@ "2⋅cos(y⋅z)" ] }, - "execution_count": 54, + "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "integrate(f, (x, -1, 1))" + "sp.integrate(f, (x, -1, 1))" ] }, { @@ -1429,7 +1432,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 77, "metadata": {}, "outputs": [ { @@ -1444,13 +1447,13 @@ "⎝ℯ , (x, -∞, ∞)⎠" ] }, - "execution_count": 55, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "(exp(-x**2), (x, -oo, oo))" + "(sp.exp(-x**2), (x, -sp.oo, sp.oo))" ] }, { @@ -1476,7 +1479,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -1485,7 +1488,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 80, "metadata": {}, "outputs": [ { @@ -1507,61 +1510,61 @@ "n = 1 " ] }, - "execution_count": 57, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Sum(1/n**2, (n, 1, 10))" + "sp.Sum(1/n**2, (n, 1, 10))" ] }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 81, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJ8AAAAPBAMAAAAIUwCQAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAVO8Qq5l2zWbdMoki\nu0RRNjIpAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACUElEQVQ4Ea2TP2gTUQDGf+k1TZo/7eHoYvwD\nXaqeRShODaVB0aEVmqn+CYoUVEiGDuJicNAOgg6Kk5jVyQ5FxCAJgpMOtzg4NSg4C61WQRu/995d\nrt09wpfL+77fl/fevYPoylzNnddtbgFvab3Li0q7vQbtG63c46V22wqF9ls/zttv2TZDQkPqsPWG\n+n0VMBoy1SxM8rDf75eZ7qUbWd1tWeE9qV8xsC/A2k4SmpOLm7Yws37TfF8JmYUKF2AYPlEM010o\nW6Hu89sBXmVehcZ2ktAw4gqF6yrcD9mGDprtG8b+aCivT8sKX3qeTAfUA2fbjPnziI79aCifCb2/\nUG/BWI1iycTg20DMkgeF1nYZVyhayXiGq9da8EBDE5phD4owfvvVJSUwMSenNPNBobVdZnhAxz7F\noLCDV1NhB+404TXM3GLI14r1y8mHJ0EMaMnWdpmEjn0hfNZ+qTBTS3V8vO8q3CStMzBjTCvkj8WA\nKTR2lBnQsW+Yy939ppB71zstRhpa8iOyO7BsTCtwKNi1ZGNHmYSO9/C0du7rmi0EnQkdSEYbZPUU\nnplCIx9hw08Kre0yu+nooUzoP07Mzc0fqYlc0RLLOoklM0NvSyNW+sGeQmu7zG46KlyApwKHQu52\nczp/LzWQ0yaVyP3QuJWj8LybzNDaLpPQbg9nGnqtspMCx0OWg+kmHFCGc0z5pEyhlVVSP+NN10Nx\nts0kNOnZ7TOMliksVRTJb2w181Vz+N75knz1rN6eg7qzMla92HMAi8dXms52mQGt7P+9/gFEfua1\nt0ciqgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJ8AAAAPCAYAAAD6fR2jAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFfklEQVRoBc2a7XFVNxCGLwwFGKcCSAfBVJDQAYQKgA5g8s//PNABuAI+OoBUwEcHkAoS3IHzPLqSoqsj23t95Qw7o7s6q1erlXa10jn2tdPT09WudHh4+AvlS6uH5z2e9+HfWvmsOnpvo+s3yhvqJzP0RnVGcTNs+hF1MP8p/r7RTk6lPL+l3KG+jUP/BG+wlQC0Lt1Zs/FvHu8J/EmPQPayke1Tf4SstUlbxbxEDlvQCfKbvRTZ8072GlmxO6oziktDod+NUubo2vj8HPmHBOh+kKs/5IcoFtx5864WBHFT/H2DwVyMY8o/lAOKC7Mt2dfiopnp3lGO0N0GC6IFucDF8akx2/OZB4PqhUK4ev+CuylKJr2LzL4+O3ZLZsRnrYB+zus9xWBPToc7vuVnihTVGcWtGMP1fQYvwafsMbL38AcU10pZ2A9bYiPzdvwQTlsh19uyk78NPgPkAUUDnmaFPm5DX+ibdEQ75bFGcDeCx3UKPAHU1f+JqgFVnLiHbJFZkaXNA09OtX8mg+wD8jbb6PASzMKiOqM4dRpojxnXYCs2vUFm1v6DUoIv7Af0hLHoj8wbWBgndoq/N45dtf4fxOK5Y1xAS0/3EZjRelLm5ijBZxYbkcfZxkbgWZ2O+WvbAfm99pl6VGcUp3rt3pgr43olsO1KKTrvKO6yxqJ/6O/rl1W4Y7+HGPSq14FsL8tM6T39rSBPRF6ySMUh815zVAX/VcwwOnwU7BUV1RnFqRis2famvAxE3c0gmf2ukkLzxoAo7rK2Dv09LfOxoB4vJXi8Q3lnW2QwZGav4aLTVjLC/mCWP2XZqG1FX49b38I27nq5jzvPo0L+kGIga+NbZDUoeN6gC3RWbBRnB7DeR90k3j0XG1DMRIrOO4qrpmH7zv6eFXwGXf3kgWEGwlf4PUp1bpYbYO09q04oV8xoOqgnF0hKd7p1deNXh/ZvdCvGKhtC8AHPNTipf6f4Fr3IolnzUGdua9mFOMbQfudVXlY+tQpm1xkvNO8orrNvir+nHLtMwCA7KQZSN7gMuj7DRXb7I/WgowYgdR1X9C+OZNoNyPvwGujq6Mis2GcaL/7HyFtHpW5BnastcGbeFxTvo68pn6mX4zeNeUU/0XlHcSvsnuLvKcF3xqIZgLcxNGUquGm6D8ZFV3AG2S2KnyGeUswq6vhIkUZZ05eQxREvOOuzOurnJx0D70BAR2fqvCSudsMmM63z9NhfBH4F7lCJzjuKC5iytb93PnYx3je/ffjis0c2eI82g0c+CoDFvMDpmPJWm9qRlcAd6TCDjORFt23qPIvSBukaL9JZ4OfisDtdF+D95vDYNbtbzjr2yxiX5dF5R3Er5jHN3zsHH6ti1lgchcj2XTEXneIC34X7zaklHWN2VP4NXu9jLSjXHcc3x40g4tnMYfD0zs3dEnNxRwFWMLZXCupcXYTL7WZXsb7xbtheB7y6SnTeUZyWTvP3jOB7xaKOgsaAS3cw2uWL+xjy78rh9bscdTPJMeUW9eQsuIFjoI6yq4shjTbAumX9IjL6Nqc+X4B62yI61X0uTvvzHBabpunbj63eWeSVJTLvKE67pvn7enSWLKLH5ikl7eSmn59UypGYxDz7OUWqQbV+XPyatSwtGWh9IKnfl5VRdiv9U6C2ikqdfin44S5yIur2+52SXnDW0vp7oc6MjODcmBsBwNhuMPs6p5OsazpDd2jeUVw2cJq/r/lfLQzusediuJPlpmEd/ZG29s9cX5G5i/v7mAFTsp/HrcHj3zOHC4vcYHIss5nkIvnnpzQWvAYJcu0583scWMd2Q5z3yYTmdPSpV32Sdh7RfxHQUZ1b4DwF2o2ozYt/LEBfyA/0XW2Jjc47ipvi738Bi2NVuquSUZQAAAAASUVORK5CYII=\n", "text/latex": [ - "$$1.54976773116654$$" + "$\\displaystyle 1.54976773116654$" ], "text/plain": [ "1.54976773116654" ] }, - "execution_count": 61, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Sum(1/n**2, (n,1, 10)).evalf()" + "sp.Sum(1/n**2, (n,1, 10)).evalf()" ] }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 82, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJ8AAAAPBAMAAAAIUwCQAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAVO8Qq5l2zWbdiTJE\nuyIU2bFIAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACpklEQVQ4Ea1TQWsTQRh9223TdLPZ5FBPHmqt\nIEIrS62V9tJQo1Q8ZNEGoShEoQp6aKQeDV0U1JPVgwiCGMRKrZTsQS9ejIIHT1bP1u5FUA9KGmna\nYhvffNMUf4ALeftm3puXmfm+BRqP9fQ5aczTYI49CYEfcx+V/BI4OKtU8Qj0Xzy9pQhzsosBnLn5\nJCeNLqXAvIpTfLUtaOj1nf1wPHT4HD8ELmMg1B5t9NCsFlMR1gfrD77CWAX6RqsUgLiHRb7OqUDC\nMHAEkQoSd4BID6K7YOW1R4yGDycvimaHgd2YSGKNqyM68ENIDucmAxXUgBLsbgxx2bcC4ikYVYhH\nwFqAyb+iotk+IBO8LZtc1gj8pPJgtTKQYG4AEwEn1JGLBSRSsCsQj4C94Vpa0WzKZSCvj0duBNZe\njZeB2ypQwV7ukGPzARANCxjyYK9APNqYWZ3VCoQx55ELDBRJ9JHNmo9OmDlmCZSAKd7Ts5NAPwr4\nVURsXTzaCKs+qRXNAHudTXGPoY3AuosTrgUGCrTmjFKS6uMyiirQU4HKc0CMaH+/rBXN2B4puq3u\n7UBVn+nyThUogBuXSgHVpi4jYKA+sngEoilMaEUYjVn+WGpucavK9xl4vchAU4ESM64TIl4ZBANZ\nFKMC5fEFmkLEtCKMKR7wE1hKbgey8abfpNOZPWcV5Bh4BYkqA9vT6eWj8QVEq6o5p8sCQ9RHRBEG\n7IAT8jL+CXzN+6GrSW2OcC2Mbap32ybH0tgteYhHgPvCF1E04xcbCXtYas6rI7N9m4tmJx0JFUi4\n4B7yEfXRkeOYTXkXvYH2iNGeRFQrmn2fmzmGWzBWgJbh2oiUaGY0YJmWfvsCVlZ9/O+yn4nz9REM\nnj9OJh6BF2NKV4qwqXp9DXb2TJmT//n5CzSjDuDy+pXbAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJ8AAAAOCAYAAAAxIc4GAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAGU0lEQVRoBa2a7XUVOQyGLzkpIJutAOiAjw5CB8tSAdABHP7xjwMdABWw0AF0wEcHsBUQ0kH2eSaW1zPjmdFN0DmObfm1ZMmy7Llw7fz8fBf0/PnzW7TfU27TPgt+tmbOywn2HbxvE17tFn2PqR9XZqexhmPsdTPlmPZDeLO1w7vBWOg5om3/JfxP1IvEuD7prpGxsPcnmJsU5f1YEtbgA9L1TwYHRhueUdT9J8X+e/iXsmcfeWD13VOKdIdySnkKf7TXBbfo88Oi9G0RoCAF70VFyUcmuUmD8dQGscVNWSLHRwteAM5wZd1fwb+m/cp51AbKv9QenhoEtN0YnROO2NF+BO8j9X3KB9pLNNMtkDnqfhFzqdXxlfoepeouWH266R/mpXDKhAz0ao8M+gbfEWVve7LykO0a1X1fnRJtD2HYHvu/6fMDJp4piKIh7xR2CXKDPiGjPXUqH21CKxfsk7a/1F7BeWCOGR8Cz/m0DeQvlDiVsiUD7RHjfw29iz//lLbZo0vgu2uEr7zRJsM7g+emt5k45Gb9k8IV/Qb/lB7CuKw9WXkGmnoqsR79rf2uP2jT5weBvGyNYjfUjDPacPhmgHs9ufDFu1jLIm3g1NsLbgNQw1uSN9KH7Kvo9tT3MvZn+CfIPgrltFP+yeKKXG+TmnlC11qN/DWf7yPvBD2/WhuLXhOPB9LMKG36/MrBhxJPmtlzdTNdTUMPwL9p+kvNLq4x/LQz8ac8MDp7INpm5T+sG15kwV6mEtbVXea7AT3d4QPHg7L+yeKU6xVukPtsqIEOz6x0GXv2kacPf6A3bKU7omE9+pqy6vPD0bTLddzkbyiyfkBx8z1J3ccvOK+yJQcxdEFrOMYMdoHHF+jRXx/fUm9sGGCuweFG+UadHQJ4i2tkrN3sQV7nT6tbv2T8k8XtWIMb6xXvATILeevoc4Nx9t6Dt2gPc3aMp+WBXcq4rl9ZvRtB/sznVwo+BLYbcYd+vXpp6xS/PKszaJuSDZzedenaB0rilKtBUxqcADPSfx1HrmPOuUvRSV8oI0roPi4Teic/smGc/pR/0JnCtQtlju90D5CBZa091iNK2DPgs/JGwkuHufpVf9f9D1wZ6/r8IEBXrG+hZJpBfNC/hd86tptpOrozuOHRi/wagMXQsyIvAqGKZ9wM9Iri6X1H8Qstrt/AZXQHdqmO7BvjWf9kcbtm3WY8r0ID4Dv86o+iPGXPHvKK2FHlh8YbZNSPvxiFt+jzKwUfgmOje5nMrycD744LAetHQOa6zeLUfZ1iBnhC8dR7+nz0S701XYzwF7yZUxnDzxMOwMvongW1cwtFVox3Z8o/6E3hQklZpx90/nzk+8sPu7gO97Vnx3zt3pQX+tuaue6p1/boZ58WE20wI58fxsAVajc5nNcTcwOlBoVfQlsBkcKFEuSpd2Q0vAjwqgueWWFH7dXUkteumeKkjGXWGO/No1ZQaQev6oa/6Z8yN4sT7kHz4FVi/R8oZsHvlLQ9RcCmPHAGzojQZ9DuqEd7UHibPv9dwWfQLJFOdfwui2x/BxLvAg1O+eL86trEgZ+9LZgXZKb1JA4HgtqAMAvvaPv1NfDtTyi1Ruar22uuZ3NkvvpVDS7sn6irXcelFA792uMhmdkBzyxokLiOlD3gXiTlAfuf0ONz5SZ1DTza4RNvh02f/47g89QYNFO6DcMsERsRdcUx9ouOgRJXhmMpHHM0/i3lOu1hI6g13oBW90COlfEakDFGPTwJqGMspRu8h0W7p6Re3zhtYGT9k8KFPdQe2gjcdh0Gp/Y4lrKnyFyV1yoAr49NEtMk4J749kv5/KAVutZGoKftnDJEdGDpa6DG1s2grQP+pox+CY85TS3OskU9nIE2fX955frAnl6vOml0QMDoKOWKP6Neoplu8H5cnRYZwzza4mY2w0/5J4sri/Sw1rdd4e2Q4TXozy29oAzYzB4G0vKQrd89fMaD/7QZRV7ry02fX/M/FiBgEMZkM4GLc/Fu4GfG6hcMbd8TBlpNtfQHgmfwOVcy7b+ANw2CYRC+QaIuT5DkBum0qkvmFo7xGvDA1e2GzE57keXbrs2wOtF/o1zCr66Reep7Rhk+LqjvUtZsTvmn2LTpR3D6Tv3tAVyzf8uelDz0mnxi32iOyKzf3jqrPv8Ph9kUEtUPvTAAAAAASUVORK5CYII=\n", "text/latex": [ - "$$1.64493406684823$$" + "$\\displaystyle 1.64493406684823$" ], "text/plain": [ "1.64493406684823" ] }, - "execution_count": 62, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Sum(1/n**2, (n, 1, oo)).evalf()" + "sp.Sum(1/n**2, (n, 1, oo)).evalf()" ] }, { @@ -1573,30 +1576,30 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 83, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAC8AAAA9BAMAAADPFy0PAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAMs2Zq91U7yJ2iWZE\nELuNX9C8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAABXElEQVQ4EWNgAAEhBgbOlQvATBRC2JWBYRdD\nCooYhJPKwBDDwH8BUyaVgfcjA3sCNgnGHwysG7BK/GVgnYBV4gcDO1YJoB38B7DpwOGqdAaGydj8\n0RzvycBlZYtp0iAUYf+PAB+R3cdx5P+/DhDY/19NAFmCgeH9FzA///8FVHGG9VCJr2jiQ1zilEfn\nFEiCQfOgwbsJvD/AfkWVYEwIYuCAhCaqBC/vHwbuD1h0MLB9YGBRwCbBrMDAvwEc0KhGMbAvYMi/\nsACkBU2i/wDDIm4BLBJHGRhatoHE0XWAxQZe4j0k3axHS1ccwv//v2lg4JX6/1+tAeFUBgZw2v3A\nwAdKwShpF1kRPdjAkg4rAJV02AGwpMMOkCW4rSUnw1WhSJzfwN7AogQE2gwMyBK9U5GKT2QJBk+G\n41iNYihkMGYEG6WJahTHB4aYRJgWYEkHBzwODLM2QHmgkg4GAOSmp5CzUioBAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAC8AAAA9CAYAAAA9OTA8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAADsElEQVRoBe2a/1HbMBTHQ48BQruB2QDaDWADaCdoGaHX//ivRzegnaClG8AGtGxANiDNBvT7UfWCrMNxYks+ped3p+iHZemjZ1nvSc7O4+PjpE3Oz8+nqvNW4Uzpw7i+yi582YPiV8p/jOvkyL9oa1QgB6rzQYEBEGriwR8AVviii9eKr2uVMmXWgb/zULMGBgZ2Y9dUl/SR4srKcsWt8Ks69oA8jUVUjzxPLKv0gheZTaN5REn+ZVSWPNsXvgkIcBtYU53e5X3hbbrEWga86R3pDW0N9ILXnAeQATyn5TvrJFfcC95DfVV8ZIAaEGlWqOya32kzUn5FOfOArCDA3qucNd2J0qGR2lcha75NKV8rfdQKn77LdC2mmDbpaDZsaYTfUGHJqo+aT6bKDRvaas3vhoPV2nyvfBWWJU4fq4+l+9y37Vjzx2qQgCEKBVO/t2Y4DW9UGktL2WFKcPpoNFLq6ErXT6gkuVGeQbWK6uEehDupPZVlsbax5kO42zDTMb3IBQ7PKviOvMPdNsIPp+t6T6Pm6/oYLrfVmq9Z2OF01tyTtxPYlErBjg3ZyXGU+EbhVnXcLq5EzeNCAM2m/lLhhLwHfq/8hdIMrKx1XlDskc06vwbQQ5NE7IjFnVaUNm1mguXkATiCbewBR3A9GJA7Vilq2ghqAZzEIGMPlHdhWVYUvMP+9/NO0XOHVjiKOIxof1oqPJpfatjDOg9X0OaufyoOXnCVYJnv34EOhGXSPQ3V4ZvAZXHwggLevbiKQ2HZnHtw4llpq81EUEwXjgxrAqwKahuiEjVfg16VGeFXaSfntVHzObW7qu3/VvMYBRPn4VmmJcYzNJlqicPgZJHaoZM6qtQLneH8Y8VCYf3Fy8OA1L43eUDuxazHniB18c+Tf6eKpw2+9G+FGFxFDozrfI+KtflN5dwXg6vIWUycKe5z3iKFKaSm+RQNDtlGrPkh++7d1wjfW4UdG9hqzQ/iEvvVqfFvXh0VP8kOL3CMli2R8RLbldvdNwQ8WzcMlNuD9qKNbnbwahijxL/2MDS/FExT+7qGtS1SQs1jBQl2tDYR+B8FjtecO6CYfWS1xkiuVNd2+WtU71ZlV50A80MB7bOxDTtljs4VnOhaUU8BeNMqXiSadaJypk7WD2K+q85ROG2A/Ry0dKq0ewoayIECL11Z0wZYQTF18L3DIzYGw99vWSXs6ZQ1bQSGAP/TpZ5+0DLnJLiy8bWnWi0prxgGjTIq5Wm39jevliYaL/8FlUcZUcxj7wcAAAAASUVORK5CYII=\n", "text/latex": [ - "$$\\prod_{n=1}^{10} n$$" + "$\\displaystyle \\prod_{n=1}^{10} n$" ], "text/plain": [ " 10 \n", - "┬───┬ \n", - "│ │ n\n", - "│ │ \n", + "─┬─┬─ \n", + " │ │ n\n", + " │ │ \n", "n = 1 " ] }, - "execution_count": 63, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Product(n, (n, 1, 10)) # 10!" + "sp.Product(n, (n, 1, 10)) # 10!" ] }, { @@ -1615,26 +1618,26 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 84, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAgAAAAPBAMAAAArJJMAAAAAJFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADHJj5lAAAAC3RSTlMAzRAiu5mrdu/dZmiL4QAAAAAjSURBVAgdY2BgEGJgYDDZxMCgEgYkGNhJJVgzdmYB9TEwAACPpQrvlUCHcAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAgAAAAOCAYAAAASVl2WAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAXUlEQVQYGWP8//8/Aww0NDQYAdmrgdgYyP4AEmcBMgSA9GwgfgfEJkCsBMRwAFIAUhkKEgGyy4AUyBQ4YIKzcDBGFUAChmA4MIIiCxjEoAgCxQkoLkD0PSA+B8SnAeDgGGsGGU5UAAAAAElFTkSuQmCC\n", "text/latex": [ - "$$1$$" + "$\\displaystyle 1$" ], "text/plain": [ "1" ] }, - "execution_count": 40, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "limit(sin(x)/x, x, 0)" + "sp.limit(sp.sin(x)/x, x, 0)" ] }, { @@ -1646,20 +1649,20 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 85, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAAUBAMAAAD4uit9AAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAMnZUZs0Qu91E7yKJ\nmaurDqYVAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACz0lEQVQ4EXVVX0hTURz+rtvu3bybWRD1pBcD\nH6rV6KHCoIYUBCqsh1ERxCWIIKRECqFBDCoifBk+SQSaYCARDJIMIRiDgihpBeKL0YoKwgKtSFaa\nfffsnvtnzQN35/t9v+/3nfu75547oHZMeokub1AX60kPHcxXA2XMJfU+FwNNtsLL+fGUL1yoRsqK\ny4Z8FmrKzdRHp3z0WV8kgh4/VbTDgOHnZRQsSSTmqOELrWDQz5y3w/UMw76GoI4Kvb7RcdGzDhQg\nlKvG6xk+9stxEsq2ztTUX2x+sGmXwWQDW1DbFoaKOPMG+j3E7JakoTo/k0Bv23NRR32c8riBaRPD\nE0oSeItzQBangZuG/ocCjWQvjho3UOhAwyKCKZIc0nA6odxXBqEZog64BEQDo9gNtT8+R90R3DZh\n4CpwBfhJIpwAnuGVeUBPzELrQyBLkkMaphFYChegLIk64BrwMJbCAFSIF24/wss7YBleBr6zsDEH\nmDjORjCGDQaURZLRdPrEeDpdJrvKsJWLrog6YILyRkOUbjGtHNSnayXLcMA1rKLIL7Q2Vw0ptO8w\nYi16iIsuizphiBFTWQIiZaZo+AjBisfQapkN8YeNbKcsS8hhGzp3uCrqRMuYRcMocFDohrEH+Ogx\ntDZlLzejHVrZoms3JU3vxhIiFVEnNoUyagMlNMHalA4TGatfu+UoxT+0RR75WF+EuxQrUMUhN2U6\niRfKXYQKog6YYW4OI0ls7e68RTyPO53duZa1zy1r7/f9LosW1Q/t8cN8/l/jfI9CzVRxSEP12848\nnrz8IurID/O6UHyXRyk4zkeLY7z8w3P0+BQhT4I09Iv5muUtZlbStQeNfI/MfcJFLlm0Q1UUypw7\n8+PQlFIrkogaEjmzJiuvo599p5zEOiCDcFIzZLLO58v5wA7Fm3kSpb2s+G+eQqTttcNmHOSCSRcC\nXd6gLq79C/gHf4qzfkFAyyAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAAVCAYAAADByOXrAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAGXUlEQVRoBeWa0XEUORCG51wbgDlHcEsGgCPAZGBwBEAGpniy3yiTATgCDjKADMDOwGRwsBn4/k9WC60saTXjndm9o6t6NSO1ult/t3o0Y3fX19fdtvDJycl8Cl+msjPFWtZlYwpMcjZ2ui2h09PTY7nyYCJ35t7eROa228yE2N/CvSkB5SATf4pfjAGl9B5K757aT2PoT3XKzhf6vN10+Le69xhMgn0O96YEVETm4l3xw3VHR06h97XaV+vWXdMne2+9Xez/lrQJ7FPcmxJQk6gY99S+HCFSZ9L5bgS9LSqxi/1BJDwOxKM8FQY51H/SprAPuDclIOsS0Iv+62ua8Uy63zdJrlnI28X+0CrIvKFz17yaQeo2gn2Me3MCDlreikly5EAi31eIjT2M/WdjG9k2/VuAvcN9BjByhrdPkoEqZzv6SP0PxXP1fRTTftH9U7WdWubQ/6f4bzHlnJcJaF/8VTKcs2qELvdCkBPSfHyxRxw6n4vx40gMYcO9uESy99V/Fdv2Y+dqne9u5q8f7D8RT16FvV/gBu5GYU10RDJXXoD1fVR/wE3Xxfj5ObmmFfsmPL0P5AP0VPeXYmJ1oDaHrcN9pkGCfKaWIATSvTvvqSVTSUQDwMno/lIX99X+VEsSHuraJZxaALlQ+0lcq3CPJFc7/+GX+cFnmnMxAXoltnOEvTm7Fxn1swmQi5OfCmebQ5dLxLrYfJOS/CQ4F+LnurZNhB8k13cxAQRHgvqEPrWOdP2ZMfFbcTV+NifTrsK+L55gTkz2xMTts1ryo/Te4HDfkRCOPPIL0WUgC6x1BACsw7ff1JLlIeC6JjmhVYEFvB9OMvmRDipf+oJAEplfJL0blyzB/CqG2Eipr/SFioFQRNjHj6mJxCLRbD3YNz8W3hlkcpuYLwYEmQRtjZ9XGZoa9r3w9Pg/VsuGoDiAN592SsmHEw53KiCPVW74zkeQyFwW3eezCEmYIwM0N0YfSWRgpzLf5EOcSCyKquD61MaP0x+6t0BS7d4kytgIaZ+JoA/AiyTd7OzcZsL/TuM5oPE19jHoVz+4kDxh0zKoftbg1qFrxuNEQMSRxtDNNcckAj4kfjXse+Ep+yFOumZtFIZV+eNwn7EKEd/3XosBmcnsrvfiHLAaHp9k+zKxgm/ZRUnWJbFaZAAgnDnURyDpK1XAWiA0rZhgnXRTkflIv5RIblL9xxL+n4qYybi1FeRYG7TW+Gk9g/DUPHx+qbYlbxzuO35Sp5adxELuoUT8Qve2QN2OQuwCkqNK8oPEgqzKderbhW+6wy8Vh+oQB425C/WlCW2T0EEFmZKsYnDAL5HJpGuM5XmEu0RV2zd+Ldg34yn74Mx7QCgSuq757nDf0SSSzN40O00iWFQQgs35Ykwi8LbTgx0cF3PQtsRzO0r3FhRkOSQvwqSbC3TFMvTWzn+MsxPTOfSPRt5vNkQWX40TSMZZH/4vkcYMF44GQ+OXxX7J0E1sUmxu4en9yT0JeDEpkcOdBIQIZpqt3KePrVSGuSgaSoC8n5kMwDBnEWwC1kLsyC/YXjqsm3YJLC+HHs61JaLq18ZL8+7aT3UhaGHzo1D3HIHABXos5mMxSRYTMhz4Ta41frGOEvaxzEo8vW9UPd54KRrHYo5wvOW+iZUl1w73mToJLBUv/ovAnu5RQoln8SzY7VbdEywHnu9nnKpJP44gxzjEeWBfbPc3vb9+mcMuTonExyeSp9N89LA4ZPl0ER+SETHC/rnk8JfzlT3i0o1k8rTYQH5Sko9g+5eM4i/BsA32jjGcUctxgjEerzZOlefe1lSNH3oKVMI+Fm/B80i+uCqt9lCTz8X4T8xsg8Q67foG93X9P9lQPfofsSvxg6Hza/Ok90x8UZLR2Fx8VRpf1a+5h+LjVXLbOs7axc3YS7aKZ+s6pSfgbo9gy8pNtFSflremqm/abVQOqqMjXe/qgsdb7THADr9L9aP6WGXS5X+OitgPxLMVgID7xhNQC+VRy1mIR8tdiJL+IVLAo4BPSeHNORrrvD3sYn8QaS7fUAfPH2R0jZO87yXse+HZ6pZsEueA+6x14shynBH56n/rja+HXXYVC+NPdpz9qIh2Tsqp4TxZOpvm5P+vfSXs++LZis8S7n/w3N4G8jvjQO3oFUU2eDRTvZbe8rYBh034MBX2Odz/BeWecEiP3C2KAAAAAElFTkSuQmCC\n", "text/latex": [ - "$$\\sin{\\left (x y \\right )} + \\cos{\\left (y z \\right )}$$" + "$\\displaystyle \\sin{\\left(x y \\right)} + \\cos{\\left(y z \\right)}$" ], "text/plain": [ "sin(x⋅y) + cos(y⋅z)" ] }, - "execution_count": 65, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -1670,26 +1673,26 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 86, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAUBAMAAAADwRznAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHaZIu+JVM27RDKr\nZt2dj8xZAAAACXBIWXMAAA7EAAAOxAGVKw4bAAABlUlEQVQoFXWTPUvDUBSG31jbfDUxFBQEh9BK\nXYRmEkXEiBRRUDo46RJaEXEKgrMZHDo6uAiKXXS0/gMFN0EIRZyLCK5qQWg76IlJ9V6jBxLOc86T\n+8G9Af6Lfp/t3LPwO1/kCmmbQx72ORQ8DjnQLA5R5pEl3WYJGOSRpRUWKJdqEHImigYgTFRcDGW3\noY41PGrl6MmML+XNSEhYSIklFKhcdNVV9QmyOQw0iU/oa0d71L1I0DwsJDwcUasKsas7ULtnBkzi\nZyBlpF5FOxLEJoykiTcaoUXtKxd419ujlGKNapAO0BPUF6BuqF1AIR17NaAtbH1YoQoMmJSFQqBO\noq/EjNqag9YhgRZA01zSKxSUJnAM+ZoKVUBMWlA6O8AdMW1LNAroMyKBtoUp1H1qFX1sqOuQnF0D\nh8QVmtk9xXJPSDjASHnWppZwk7cxv3mL88ZDjfiCOtnMDI0SClKwFlrMH8EebCDQ6aU9IdhFLL6v\nSyTQddF92Yx5QSFYcBChEFxCJTv9VYm9elc7FGQ7JvwUYj/MJ3CTXM0O35peAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFIAAAAVCAYAAADVcblPAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEBklEQVRYCd2Y7VEbMRCGLx4KIKECnA4IVAB0QEwFIR0kwy/7XwY6ACpgoANIBQQ6gFQQcAfO+6y1mvX5Djgbe7B3Zi1ptdovrVY6F4PBoFgm7Ha77Vn7U6WjVSwR9Hq9H3JnYw4utZOurGppAinH9uTVmtrL7N2MOtJxjeik07R84BgsOsihVfnwW+2XefoifbfSt622vywZeSSHTuYZxKQLneguliUjn5QVH5Nzc22k90kK1xc+I+XIjhx5mGv0RpWhu7MCTcZQYw6En4X3Gh+rNUhzZ2q/Oi22aZ707gf6jei56Aee+8SDngvRrWhDU5/blqAgB3uAfdFfqnvYleXYqvCj9e4b1C3hN2FbuC8Esq2Bt0kc0L3rGXkoIQTvSngojNDRgBtxDLQGg/4Kr9T/CdIXEnh7hqSWonyk/nHC7xrDz3OlUIuzPn+aeLDHAwpbHWxqwjeoisflIu9GeCbckQ5sNb1qHSaJA7rbLQkkGCgAdoXlYwKtbscv4JeMnH0au/N99QF4LsVTlosjOEnACcam+r5WQ4Mo12nlljWPZSJjyeOU2WUQ5kkKl/vJ58U7aRzQvcrRfpQQF0z2/RJG4LiVaRiJAwQhlwEWJVkmT33mo4GwGGjuTkif40t2YhCXBptGVhN8gv0SEAzftDLvH8mIG0hSoNdoamO5migOkocsy0gzQkIJGME5FRqIRiCgVWUkAQL+DZvKX+epc5RF6ACohWwKgSGLqNVTPWm0/k5yIuDjeSR4X7yTxsE2suWC1LI77FZ0GsX9CoNY5jtNYa4D52Ez6oDSYAFXS2YSUJ4y1NEDjT3Qtes18Zx8Wyc5+AL46StEWwWH5PzbNA6sf4yBxBl33KXW1kcZ0BcTO059GwPN7wmZhw85I6A5d4ysI1jUMwNkCzkZOF0pf8hpv5QE24hAK7SeIHEJuh42Bnr0kcsF+yI0ioMWkpEPMZBRAQoxAKRe1QG7xwd8DgKMGnM0/Vhtq98RrZxZ8HCLOx9OsbsRGFeVlcjD+q1ISH23n9qHHAKegyYa837JpiXWNI0DJ+gqf9kkZTwNEETd48ja21JzI8JFzxDWRUNP4hr12WUuDneEMTwWJLU4RdbylMBpYE1IRj0byLQWWSMlRmPkWK1FmMZsGjc2eniOxctFwyGkda+Og/ixebf2v0j953YkvJ31f3tvIV923gs33kJWWcZzcdBcG92ssaOtqLKj7JJB2hWycezZk1jeW0PmWQ2cxrAJ4mBvYXR6jeRonQcjSG2+MPINF+beXVd2cjFRqykZ08Cr45B0odOeiytJK5GFyCcbtSbXrzS/CA0XH19RYy+EBsY3iQOvDXQa5MvGCYvcpizZ8SyZlS+ST9m7Vpsv4f+0o5hz+UyEJgAAAABJRU5ErkJggg==\n", "text/latex": [ - "$$y \\cos{\\left (x y \\right )}$$" + "$\\displaystyle y \\cos{\\left(x y \\right)}$" ], "text/plain": [ "y⋅cos(x⋅y)" ] }, - "execution_count": 66, + "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "diff(f, x)" + "sp.diff(f, x)" ] }, { @@ -1701,7 +1704,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ @@ -1710,33 +1713,26 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 89, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAUBAMAAAADwRznAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHaZIu+JVM27RDKr\nZt2dj8xZAAAACXBIWXMAAA7EAAAOxAGVKw4bAAABlUlEQVQoFXWTPUvDUBSG31jbfDUxFBQEh9BK\nXYRmEkXEiBRRUDo46RJaEXEKgrMZHDo6uAiKXXS0/gMFN0EIRZyLCK5qQWg76IlJ9V6jBxLOc86T\n+8G9Af6Lfp/t3LPwO1/kCmmbQx72ORQ8DjnQLA5R5pEl3WYJGOSRpRUWKJdqEHImigYgTFRcDGW3\noY41PGrl6MmML+XNSEhYSIklFKhcdNVV9QmyOQw0iU/oa0d71L1I0DwsJDwcUasKsas7ULtnBkzi\nZyBlpF5FOxLEJoykiTcaoUXtKxd419ujlGKNapAO0BPUF6BuqF1AIR17NaAtbH1YoQoMmJSFQqBO\noq/EjNqag9YhgRZA01zSKxSUJnAM+ZoKVUBMWlA6O8AdMW1LNAroMyKBtoUp1H1qFX1sqOuQnF0D\nh8QVmtk9xXJPSDjASHnWppZwk7cxv3mL88ZDjfiCOtnMDI0SClKwFlrMH8EebCDQ6aU9IdhFLL6v\nSyTQddF92Yx5QSFYcBChEFxCJTv9VYm9elc7FGQ7JvwUYj/MJ3CTXM0O35peAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFIAAAAVCAYAAADVcblPAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEBklEQVRYCd2Y7VEbMRCGLx4KIKECnA4IVAB0QEwFIR0kwy/7XwY6ACpgoANIBQQ6gFQQcAfO+6y1mvX5Djgbe7B3Zi1ptdovrVY6F4PBoFgm7Ha77Vn7U6WjVSwR9Hq9H3JnYw4utZOurGppAinH9uTVmtrL7N2MOtJxjeik07R84BgsOsihVfnwW+2XefoifbfSt622vywZeSSHTuYZxKQLneguliUjn5QVH5Nzc22k90kK1xc+I+XIjhx5mGv0RpWhu7MCTcZQYw6En4X3Gh+rNUhzZ2q/Oi22aZ707gf6jei56Aee+8SDngvRrWhDU5/blqAgB3uAfdFfqnvYleXYqvCj9e4b1C3hN2FbuC8Esq2Bt0kc0L3rGXkoIQTvSngojNDRgBtxDLQGg/4Kr9T/CdIXEnh7hqSWonyk/nHC7xrDz3OlUIuzPn+aeLDHAwpbHWxqwjeoisflIu9GeCbckQ5sNb1qHSaJA7rbLQkkGCgAdoXlYwKtbscv4JeMnH0au/N99QF4LsVTlosjOEnACcam+r5WQ4Mo12nlljWPZSJjyeOU2WUQ5kkKl/vJ58U7aRzQvcrRfpQQF0z2/RJG4LiVaRiJAwQhlwEWJVkmT33mo4GwGGjuTkif40t2YhCXBptGVhN8gv0SEAzftDLvH8mIG0hSoNdoamO5migOkocsy0gzQkIJGME5FRqIRiCgVWUkAQL+DZvKX+epc5RF6ACohWwKgSGLqNVTPWm0/k5yIuDjeSR4X7yTxsE2suWC1LI77FZ0GsX9CoNY5jtNYa4D52Ez6oDSYAFXS2YSUJ4y1NEDjT3Qtes18Zx8Wyc5+AL46StEWwWH5PzbNA6sf4yBxBl33KXW1kcZ0BcTO059GwPN7wmZhw85I6A5d4ysI1jUMwNkCzkZOF0pf8hpv5QE24hAK7SeIHEJuh42Bnr0kcsF+yI0ioMWkpEPMZBRAQoxAKRe1QG7xwd8DgKMGnM0/Vhtq98RrZxZ8HCLOx9OsbsRGFeVlcjD+q1ISH23n9qHHAKegyYa837JpiXWNI0DJ+gqf9kkZTwNEETd48ja21JzI8JFzxDWRUNP4hr12WUuDneEMTwWJLU4RdbylMBpYE1IRj0byLQWWSMlRmPkWK1FmMZsGjc2eniOxctFwyGkda+Og/ixebf2v0j953YkvJ31f3tvIV923gs33kJWWcZzcdBcG92ssaOtqLKj7JJB2hWycezZk1jeW0PmWQ2cxrAJ4mBvYXR6jeRonQcjSG2+MPINF+beXVd2cjFRqykZ08Cr45B0odOeiytJK5GFyCcbtSbXrzS/CA0XH19RYy+EBsY3iQOvDXQa5MvGCYvcpizZ8SyZlS+ST9m7Vpsv4f+0o5hz+UyEJgAAAABJRU5ErkJggg==\n", "text/latex": [ - "$$y \\cos{\\left (x y \\right )}$$" + "$\\displaystyle y \\cos{\\left(x y \\right)}$" ], "text/plain": [ "y⋅cos(x⋅y)" ] }, - "execution_count": 68, + "execution_count": 89, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "limit((f.subs(x, x+h) - f)/h, h, 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "OK!" + "sp.limit((f.subs(x, x+h) - f)/h, h, 0)" ] }, { @@ -1748,50 +1744,50 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 90, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAABMAAAALBAMAAABv+6sJAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEKvvZom7mXYyzVQi\n3UQ6SGZXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAaklEQVQIHWNgYBBgAAIQwaj82YGBIayogYGB\nbQLHLwapDQxTGRg8GRj2J6xkYGA5wACUYP0LJBgcQEyGfBDRAGYm/wNqd2BwZGDgiDE+wMBxgIGd\ngSGcYb4dgytQolxtAwNjvXEAUDncNgBJUBUwaYAbUgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAABMAAAAKCAYAAABWiWWfAAAACXBIWXMAAA7EAAAOxAGVKw4bAAABKklEQVQoFX2S0U3DMBRFHSaIygZhg3aFskEKG8AGVP1K/qqyQdiAlg3aEUhHKBNUYoNwjpNIFKs86eb6Xb9c+9nOuq4LRl3XU2gO7kBL/gYngZ4jPoAZaMEW7RsOmWYkT4wXYA9ugbmxYO7QD+OCJeMVWIJPUIBH8E7dMVRVVYBG0xHkOWhBB+bqcAl2Y81vRt+YZw5wdaWLQLOdLyC76xWarSWB7hFNbvick1kECjwHTYwdSBaMM3yoPUKFZleDIs/rdSh4vlrYT+T/mg0/e8OalpiPFzNM9YTuRZw0O5HYcxLotreG72FbaRhr/jfc9WF8Gg3JksL4XmAPXaM949jmoPmu3IU/b8EEeJbxXUYzkkDxBrJQI03dkbu5CLQXBN+W3Thv3QccfgDHpJb9GsghWgAAAABJRU5ErkJggg==\n", "text/latex": [ - "$$\\infty$$" + "$\\displaystyle \\infty$" ], "text/plain": [ "∞" ] }, - "execution_count": 69, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "limit(1/x, x, 0, dir=\"+\")" + "sp.limit(1/x, x, 0, dir=\"+\")" ] }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 91, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAACMAAAALBAMAAAAHCCkxAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEM3dMqvvZom7mXZU\nIkRJD0iWAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAfklEQVQIHWNggAMBEAtMQIUYw74VMDB0Lt0A\nV8LA6cD9iUHoAIMHQqiEgeH8BBUGBvYLDELGIKDCANTA8RmkC6gdCkC8+SAChCEAxJr2j4GBsQAm\nwlDIwMDdm3aBgfsCXIiLgaGLwT+PoQIuwsC4KvIAA+P6tAaEENThAgwMAMSLGqu/gFQwAAAAAElF\nTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAACMAAAAKCAYAAAA+euenAAAACXBIWXMAAA7EAAAOxAGVKw4bAAABUElEQVQ4Ea2U0U0CQRCGF2MBF+wAOtAWsINDO4AOJDzdvZmzg7MDgQ7ADoQSsAITOji/DziDsiYkd5P8mdl/Z2fnZua2U1VVaEPyPL8lzgD0wZr1aywufAL/AO70AzO4HTp02kiGYCNiDcES3ADXypC91cEMATvFnoIJ+AA98Aje2NsEk2mCLMt6oDyNwToBa1CBgXvoFMxP/WobvtBuXBm+qAB+6S+Bsx2fQG3VpnC25kzgbXH3+njonYWHLhXLvzk6f8UOsb8Ddevm+NzH/OSMBUYm4/BEM/7v8KU8sVfgBf8nMAY/8xOJkVxFyLYp/zCTSP36WHB4B3nbRjJbgtnzM4G3Pc9oW2RbS2yT+yv7qjUeYKNyQYmaoG25a+fPRJbYtqnmfFesgpfPQBc4/Pt3qZVkCOZlBcqLTMSkrEg95CwPAuf8+LZYTff1W6DDN8431/M76jgHAAAAAElFTkSuQmCC\n", "text/latex": [ - "$$-\\infty$$" + "$\\displaystyle -\\infty$" ], "text/plain": [ "-∞" ] }, - "execution_count": 70, + "execution_count": 91, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "limit(1/x, x, 0, dir=\"-\")" + "sp.limit(1/x, x, 0, dir=\"-\")" ] }, { @@ -1810,7 +1806,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 94, "metadata": {}, "outputs": [ { @@ -1826,13 +1822,13 @@ " 2 6 24 120 " ] }, - "execution_count": 58, + "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "series(exp(x), x)" + "sp.series(sp.exp(x), x)" ] }, { @@ -1844,7 +1840,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 95, "metadata": {}, "outputs": [ { @@ -1865,13 +1861,13 @@ " " ] }, - "execution_count": 59, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "series(exp(x), x, 1)" + "sp.series(sp.exp(x), x, 1)" ] }, { @@ -1883,7 +1879,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 96, "metadata": {}, "outputs": [ { @@ -1904,13 +1900,13 @@ " 5040 40320 362880 " ] }, - "execution_count": 60, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "series(exp(x), x, 1, 10)" + "sp.series(sp.exp(x), x, 1, 10)" ] }, { @@ -1922,14 +1918,14 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 97, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMQAAAAwBAMAAAC8i8hXAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAVO8Qq5l2zWbdMiJE\nibtHdKBDAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADm0lEQVRYCcVW30sUURQ+2+zu7M7O6IbYg0JZ\n1kMQNJT4EpKUWOaDC7YRQTZk+hYJBUsQOQ9FhVBQpPQDWnrpLbc3g9B9yB56yIWwiJCG/oBU3BL7\nwXbu3Lkzs7v3JosDHfDe73zfveebmftjBRCFNtAvksASKjUJn+GIaHxoRaTUxj+CyZxgRkdAFo9h\nJi+wGAzIAmCbzrdQGgKzGOc7gCYFZaGlBBZjgVlcFzhIRlAWakHNck1C6fR3k6vUSj7bvFWw3JDY\n8FpIw71vPsDeUqnqqagCt4vJKqk2ogNuGRPcKWKFO1xMvocvejNXFivc4WJSh6sCUaxwJijHpkwO\n7VA/hJJYqZqilopVnEsoP11YAcSKN1DJU6w24Y40PN6PGqJLMOgnXCxW3CEAzx2s5hG89gkeVJfr\nlhKml3tIrHhjAC46iXpiSAfN9EsMS92DQzdZUtaLFYDZ/Z9W82R0xCAtRiIfswDu2TiIJpp69/bM\nb1JpxrsTlF8AQ0iFWoOw6FZbIbpKKs2zcmFdQs8ZgLbj6184W9isqp4pkc59eQD7xtnOBm3Kkbss\nbgJEg7CY0wew8ih+I8Utp+nkFydiBWRxH5JosYh/sRZsaCycxj7aEoyFSs/qVywZGcGm/dyr8wb2\nGCq+VRAfKkK/zi4sWWcBSIXYeJxYYZD7IAiLuiW7Gtm0cicArsJKKEcoPB1IUgvp8gOMiSyS9SU3\nyMyPmczdTOYSIrEi229RRx48nsK3ANlCaEdimVkwhtuzrVktOkrYXgv7v0fyFvgwBmlJeG9Bc0G7\nroVGrm3pCplOLSazBJMgJzyItZBKJsB0npQMW3hh6BcgqpMsuB0Fd4rNs712SXIO5pKLMGVn9jmJ\nHFo96mTCbt0PBUrP2ik6nZyDtuH2k6ZTjZxubiTS37Ke4Fo4tIK7hoarMAJgjwcJko3y3M3aQCOb\n3IkDDDh03GKEqzACgNwavjjorImPovAwwI4qEsChz1ocjVFPGaD9tfLUy3YD9GW9lCFKJ25YjOD0\n4WQZ+bAs8yV4LfMsKK3Jlm9oJZRG/Eys4M8q8BP+R0R6TLYqxpaljf5s2p9UYPVPBUFTpCVDtuAf\nEcr7xH4froTxzkrGzpHWQLZsvNEmzS+AdBPIFl+sjY2muOORlgogW1yxRrIREjnOFKRfdHX17TQ4\nWo0UXhFRjoVDb7JqLMcb/nJhvofDO3R9EBajpdIax4LS2mLR5Ij/kfoLzgzy5MB/1+MAAAAASUVO\nRK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMMAAAAuCAYAAACVpa32AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIzUlEQVR4Ae2d63XUOBTHJzkpIGQ7CB2EpAKgg7BUkNDBcvIt3zjQAVABCx3AVkCgg6WDDdNB9v/TSD7yYzzyWJ5IjnSOYlvPe6/vS1fyZO/u7m4xh3R9fX0oPK4sLsf2eqHy5Uzw+yFcnswBl1RxOEgVsC3geitmeeX66f697n8oP3ZluV6Fy1+C/SRX+HOBez8XQAPgvBTTPPPavdX9scqyZiKL0y8Pr3I7EQXmJAxYhZuJ6HQvw0oQcP0Q5m/3AsADm3Q2wiDG+aDsrw8Qjl8q+5nxO8XavcsY/qxAn40w+FQXA6FNz5WzXXAKB+D/4uNV7qelwOyEQUx0LJKxXniie99STEvJiKNbHI50LWuFiHTdNNTeXEKrIGqZiKjSC/uMhVjmxlSCF7hfgoNNrB0ulXGZvqu+WAxLmJiX2QiDGASLQDj1tUcg1g2vVZelhXB4WNz+1fOj3HFxOKV4TVoY9OKdRoR2Z8oXyjC905qVllTb3yqnfS2pfK9WcI8PQ/BxYKoPFgFLR9gYi/BJZcUyiBCxU+qbbtVGmhiAjaePyggA2h4rwNrAMIaeH+k+9RSMj0NEeH3QPbmkiSmQ7AJaTIBGhNn95EdYjlTRrPfbJnU/N3ySIm4kYFK2DDdiID+a8lw4/3RluppFciQ67GKYueGzC5rtdI5khUHM3twsw2f2F8c7JdTYyeaGz1h6TNVfdGZNSeDkq52DZzZfN+7iJ+smWUTMRYggCKRq4aiyQ/KqOK+/c8MnNvVFn3OPRkOHh/lxsREG1pWPNVZNEPTc6V4naRkELEz+WZkFJ4gg6Qvd+27TlZ6zsBSCc1b48C6mSqIV68Lnupp3vuU8T9W/6Vn4QxGR+6qM612lVC0DloB8K4BhpFvlpbJJKqPuu33M4TI3fCahuX3XKLkxgmBgg0eUsTDwTy2pDEH5rCsRyiqlKgxYA8KJMNGlgIY4fKjzXhkTiItUuUx6Tj3NDZ+p6I03gGszNl1pALwI6P5RvIK1qSWVwV+vdK2EpbbppgqOAQBQtud6ahiXh8kpYJkJBcVHVM5647fjhgTvj6gtffiaL+p+kcaDpxm3tfmqMizDma4mMnmgGySDzSxckVNlgCqpUGAjBcQ7LESx3ljt2lFzPeOGoHlDTw6z/gsWnnXAaT5cI99rMOtMleE2YSn8xHysS/E0lvv8UX6hjCvyyW9Z7lcUEG0gJNov+xQDF40B8/BJ7YmueBGtxarK0LZ8adgZuekgpIsAdVQNKkIIsQYusTlL8oMvpkDtsGTA/icF+/wpaSMFsJ7kOaQYuPwjQiAQtWhMB3HQxLVFakebhce8N131A8veaTxfOM2pBZW1hMGOy5wrN2ngRKX5A6eAmApNj+bdJAhQyrkoWBCfQanzE64WG2No6rHpjYXxPw30B4Ppue+0AqeBjWU4oHFJhQIhFBBTsZ5E03Mspul/dw3hrKlzVbraUHamvFYQNBfjODeVthfKwNJ1eplxhuw/IaRYucPiJokSJQVTwMX/Q9eWaHzSOhdlVbtyQW/dQ8eVRS7uj/m4SfUEfFjHwfQISui6RE1byc17XIShRZtS0EMBF6/faBXQtBoH7U2AZpMwYDnQ6K2kvliEJrObdYBtTN9mfWucngI379EoN8kibBZTPZM1q4hc9fmPC9VP8jN/GrcVa/aBUz0bPk6b+VXGzKveaUa/DpehzyddqH7n+GjOKXCBuUmbmJs2zq0JCZciOE5D09dPU5/2reYdKwxIVWgc2Uew914vspdpezuPqNS8Xcy+UDmaiDBhLZYeOpX67RwfzTkFLggBdHDatJMEqoe52QXGKoT474zXua5Q/6biRFmFjKlmQcnNe1vcpCB6lUaWAoYxLbP3EQWfHoF42tdoaJ3mdVa72lQDlgB4+qYCTtKyCMOKEOVvGAXe2GYmFNnVRYyJ/44l5eRpU6t3daEMi+OYsmpjGZ1jHU4IjLXTs++mcbAPy7JtKpZhW8o95H5iOpgbF4XozolPCz2jofmGAMZtfUPgt+245wTyaUc5Y5GnPL3sFvnLAwAQEhzOQzIdQBxsAnE+vt/KT1bfkmZIAfhBmWgSGvlWV7Sy0+oIycZIUwdZ4DXj7qi/r+UZiwU4ArFQHWedsBQEBzgOgpBULhNttkiseQ3MThh6oyFbTDBpFxEAaXaLKASYl8IvZkDUZNO2cKsfWhhG6FwU7xphS+doPKPxvikjBLzLSphsWQ1nlcH8YwXAJxlzIlz5nU0SMRAENJBhDl2RbIQAa2Y0iO5jJ16Ur7EGjz8Sbiy3820Hz93oMBqXxnixHv/WQCFHPGLNt9A7OdRgKBrmzk8YBDMLNLbjqySksBK8ZJgmetL4aK6QeHnf3FvBrXk3HnTrm7RZFwmX5rAxntHObm8ixnghYxAI+CKaGEWXYzQJ7f9bCCDVfsK84ndiOVJMg+EWLmgtXpR5WSkiFQsm4Yp1R+mcxxozYByUqHO3s7QMMH3fCcemkATQZCdNtoH7pZhjrEXaCXKRJsHis1k3eRJdsUJ8RlyFac0CevKZI04g4Nct3NCiC9UnuYgeCrfa4x6ZhV1E8iU9lHBeKnMEGyatLZxjAq6x8R44FlRbo+ToJrXoIqQQBBCsTF6rUYIF6+C2LwvGqLRWguBPApJwJlLkb7RNMQ+C1lKq2VmGNZRh4cy/scptT2Qd3ETKshLsNe9lq2IrEFv1Dem0jrbZWwYhhivBwmsysxpC4KFt1sGtcuPLDh2vtB9PgayFwTLOQtfcBMGEEJtw6xlXj4jYg3OPxrPy+BFqv5s0frjdjSCGIQTHb95U7oRlpoWuyTKTYFsLt/BBGLoEmz6EV11EqsJZZSVFokCWawYxFAvmmiBYesA0yYYiN8FthRiGryWV81+JcAVbi75aw/IwigLZWQYxBNqT05FNpjlSGb/CwC+7JZfGwK2+fCmHMNRCgckhmTlAOVoGIjAIRNfWfZJ7DJZHBsMt5ic4cGr78wE8SoCwY25RM4tC2pf/AaTRbepGZha2AAAAAElFTkSuQmCC\n", "text/latex": [ - "$$1 - \\frac{x^{2}}{2} + \\frac{x^{4}}{24} + \\mathcal{O}\\left(x^{5}\\right)$$" + "$\\displaystyle 1 - \\frac{x^{2}}{2} + \\frac{x^{4}}{24} + O\\left(x^{5}\\right)$" ], "text/plain": [ " 2 4 \n", @@ -1938,59 +1934,59 @@ " 2 24 " ] }, - "execution_count": 74, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "s1 = cos(x).series(x, 0, 5)\n", + "s1 = sp.cos(x).series(x, 0, 5)\n", "s1" ] }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 98, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAF8AAAAcBAMAAAD1rn4EAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHarIkSJZt3NVLsy\nme8Q6PJIAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACCUlEQVQ4EY1Sv2tTURT+Xsx7SV5+9FKh0MnX\nCm61obhYB99SHBv8A0wUwbFO6qJDUcShtCiCwcEIuuhglg7i0Afi4CBJ7SDSwS4OTiYiCCLEc867\n971cSfFdOOd833fOx7l5N0DG4+3vZpzUY5dxOpvhnR67jV6Yy2CpdPXQHaw23Pr/HSWVzLxSuJKQ\nf4C7O7P5ULSPaWcdKKb2VGe04G5/GDUI5IdJw+sDOYpJ50hwQWFxi1o8pc9NqvmBYVL9QNM95ysw\nxc1aR0twW24E3DVUqjG4w2oXKPFtespMvH/xkvC+oZah2PeJl3nDrWTg+2hE+CTF9PGVE4HoZkMz\nYlo+oPSZwpk/df4SVT5NBadVWC9uCTOGL3KPWp/ENxQzuBHckwG6YgRPeUM/FG4MO8J6DSoPKC5i\nTT0TCfTacFDqMvPa7Uff2u06wSeKhdecNigUHjOUs9qhMhUIBsyGsxEJlZ+s8gbgh2ROtEHuFQvG\nsMZrZrkVGyp/4j7lXghfLSInd0g2HPtFb7otQ2coP80NMKct9JWanR2ci6nZUBgtr+yFotF3d3+X\nB/mr2kDvcnR++pOmxoC3mxtRPMHffWlu4bqeP+SlTZdqTX5JKtxPISEntCiTasuSnPTfbukpqRyk\nmFChbtFJZNkSi5FFJ5FZS7xmsYnE74/J+e4YOQw+H2tU1RjJCv8Cl4Bl3Hr5MZEAAAAASUVORK5C\nYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAF8AAAAaCAYAAADR2YAqAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAERklEQVRoBe2Z4VEbMRCFTYYCCCVAB0AqCHQASQVAB2H4Bf8y0IFJBSR0AKkAQgdQguMOyPtkrdGddZbssy5DnJ0R0kkr7e67p5V8rLy8vPT+y/wInJ+fr2n2qV9hw9eH6h8mVwX8ZS5nZ2f7KrvzYqC5/XAuzypPtb6L8Nna75Jv5x9WEDv3Fd6e6rsWYR5p/m4w/0LtDfVtBX3Xer4Nnl1zacEXGC5dqD6ugzLjM/Mfps2RjUeN/1D9JdRbWvABQ6UfgjFPW4BeqYT5nZfx7AEfL4meHo5V89KdrFrjLdTe8SP5uqliAXPI3frgssKQLnN2VO9lTchU0nqkGlLZdsMUXvY3lQPG3wz4CoxcSm7lJnGJ8yZ6ZkvDqqagTdXqEzVg4sJEtnmh+LitthGjvj42LzS+hk7RtCMDuyowdW7xjv7SAltqExj5syLqg0kccgSfI/g0cQDmTIzpyK4DXjWH91AFX+mrCGPqwP9PDJRmPvmN0kZ+ajJMSbGaGwsHGqxuFIDxg1MPycYFagMeZNLJSbA2eb/JD+xClquizJeBVqJgYDJg5dxInjEWAMBjTEhdHIhNqSE2Z1ofu5I1qa1w/Wxa/0l6OyqvzJcyDLUU8UHtQxW2zmcV5F46N6Nm+b+yhW2Y/Kh2zj3cdth6wjtiawLGTZ0FC+m+T9irD5N22MlrIfM5CC4pGrxX4VQmZ7N9CCw3n0p1IWJsv85cDfYhbgeMmtG/xDKIjrx2lsTCbG848AUwjK+Dy5XJmA6b6uOvrpZpYR9Jsl7+Ayg7hcMuBT6xNDK/AyzM9roduA81p7n/st0tj3JANIr0OHCMeaGeSwEaNxaHY6w/bV3ARFJgomPpMuf6mGJ+KyxwJiHG/FHOFwjkoVAAsum0DvVcuwHcnvphL1fAyr18YoF4B6Az15gS1dI4YJ6qwPocn1mv8VzQGq2wiDpZ7TTbA5d2wjEZNwZbyumpzx0QoV4HbQcCthO2OJvQ+ZjQm3m4EBYWz3DVB8d3Dg4Z8qtLEWqH2/1UzzmsmjnAKRO+aoydww+SaDqRT5xD6PDjps5YdUeFuAyAioLWoL80FhXmw3TKwBsfqD1UcaI+xrj9dCoeTF44pNgKjeOnCr9Q8W1T7eShHMwnlp3gOWx2gYVdDIarsozjMAvDPQXCNxI+VHGI8qOBlzJOQeh0JbLL1Rf/2HlGCmOt7dRZ3WGHuDSqNcck84t0gQW/1B1ZVvivSilRcG0O3FJu9eTXby1+oNqBUMxQZGHZhNB91cU/L8CsOrsiLnXe9V0WF/o5OScCAc6uJYVif3TVpFFC/gazMuMgpfLBrutLBJeHG+HiCDlx1cx0/k2rKXjy/p1q0mKXwssev/ClBN+jzYdDfpx1InrR/Aon14+v8EUP3E6iamHEM5/fCLHPHy1Wrk7V+lwvAb5yziwz83sCgys012p3za5CttAnXu7Ed6w//628ZWbqVKkAAAAASUVORK5CYII=\n", "text/latex": [ - "$$x + \\mathcal{O}\\left(x^{2}\\right)$$" + "$\\displaystyle x + O\\left(x^{2}\\right)$" ], "text/plain": [ " ⎛ 2⎞\n", "x + O⎝x ⎠" ] }, - "execution_count": 75, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "s2 = sin(x).series(x, 0, 2)\n", + "s2 = sp.sin(x).series(x, 0, 2)\n", "s2" ] }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 99, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAF8AAAAcBAMAAAD1rn4EAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHarIkSJZt3NVLsy\nme8Q6PJIAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACCUlEQVQ4EY1Sv2tTURT+Xsx7SV5+9FKh0MnX\nCm61obhYB99SHBv8A0wUwbFO6qJDUcShtCiCwcEIuuhglg7i0Afi4CBJ7SDSwS4OTiYiCCLEc867\n971cSfFdOOd833fOx7l5N0DG4+3vZpzUY5dxOpvhnR67jV6Yy2CpdPXQHaw23Pr/HSWVzLxSuJKQ\nf4C7O7P5ULSPaWcdKKb2VGe04G5/GDUI5IdJw+sDOYpJ50hwQWFxi1o8pc9NqvmBYVL9QNM95ysw\nxc1aR0twW24E3DVUqjG4w2oXKPFtespMvH/xkvC+oZah2PeJl3nDrWTg+2hE+CTF9PGVE4HoZkMz\nYlo+oPSZwpk/df4SVT5NBadVWC9uCTOGL3KPWp/ENxQzuBHckwG6YgRPeUM/FG4MO8J6DSoPKC5i\nTT0TCfTacFDqMvPa7Uff2u06wSeKhdecNigUHjOUs9qhMhUIBsyGsxEJlZ+s8gbgh2ROtEHuFQvG\nsMZrZrkVGyp/4j7lXghfLSInd0g2HPtFb7otQ2coP80NMKct9JWanR2ci6nZUBgtr+yFotF3d3+X\nB/mr2kDvcnR++pOmxoC3mxtRPMHffWlu4bqeP+SlTZdqTX5JKtxPISEntCiTasuSnPTfbukpqRyk\nmFChbtFJZNkSi5FFJ5FZS7xmsYnE74/J+e4YOQw+H2tU1RjJCv8Cl4Bl3Hr5MZEAAAAASUVORK5C\nYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAF8AAAAaCAYAAADR2YAqAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAERklEQVRoBe2Z4VEbMRCFTYYCCCVAB0AqCHQASQVAB2H4Bf8y0IFJBSR0AKkAQgdQguMOyPtkrdGddZbssy5DnJ0R0kkr7e67p5V8rLy8vPT+y/wInJ+fr2n2qV9hw9eH6h8mVwX8ZS5nZ2f7KrvzYqC5/XAuzypPtb6L8Nna75Jv5x9WEDv3Fd6e6rsWYR5p/m4w/0LtDfVtBX3Xer4Nnl1zacEXGC5dqD6ugzLjM/Mfps2RjUeN/1D9JdRbWvABQ6UfgjFPW4BeqYT5nZfx7AEfL4meHo5V89KdrFrjLdTe8SP5uqliAXPI3frgssKQLnN2VO9lTchU0nqkGlLZdsMUXvY3lQPG3wz4CoxcSm7lJnGJ8yZ6ZkvDqqagTdXqEzVg4sJEtnmh+LitthGjvj42LzS+hk7RtCMDuyowdW7xjv7SAltqExj5syLqg0kccgSfI/g0cQDmTIzpyK4DXjWH91AFX+mrCGPqwP9PDJRmPvmN0kZ+ajJMSbGaGwsHGqxuFIDxg1MPycYFagMeZNLJSbA2eb/JD+xClquizJeBVqJgYDJg5dxInjEWAMBjTEhdHIhNqSE2Z1ofu5I1qa1w/Wxa/0l6OyqvzJcyDLUU8UHtQxW2zmcV5F46N6Nm+b+yhW2Y/Kh2zj3cdth6wjtiawLGTZ0FC+m+T9irD5N22MlrIfM5CC4pGrxX4VQmZ7N9CCw3n0p1IWJsv85cDfYhbgeMmtG/xDKIjrx2lsTCbG848AUwjK+Dy5XJmA6b6uOvrpZpYR9Jsl7+Ayg7hcMuBT6xNDK/AyzM9roduA81p7n/st0tj3JANIr0OHCMeaGeSwEaNxaHY6w/bV3ARFJgomPpMuf6mGJ+KyxwJiHG/FHOFwjkoVAAsum0DvVcuwHcnvphL1fAyr18YoF4B6Az15gS1dI4YJ6qwPocn1mv8VzQGq2wiDpZ7TTbA5d2wjEZNwZbyumpzx0QoV4HbQcCthO2OJvQ+ZjQm3m4EBYWz3DVB8d3Dg4Z8qtLEWqH2/1UzzmsmjnAKRO+aoydww+SaDqRT5xD6PDjps5YdUeFuAyAioLWoL80FhXmw3TKwBsfqD1UcaI+xrj9dCoeTF44pNgKjeOnCr9Q8W1T7eShHMwnlp3gOWx2gYVdDIarsozjMAvDPQXCNxI+VHGI8qOBlzJOQeh0JbLL1Rf/2HlGCmOt7dRZ3WGHuDSqNcck84t0gQW/1B1ZVvivSilRcG0O3FJu9eTXby1+oNqBUMxQZGHZhNB91cU/L8CsOrsiLnXe9V0WF/o5OScCAc6uJYVif3TVpFFC/gazMuMgpfLBrutLBJeHG+HiCDlx1cx0/k2rKXjy/p1q0mKXwssev/ClBN+jzYdDfpx1InrR/Aon14+v8EUP3E6iamHEM5/fCLHPHy1Wrk7V+lwvAb5yziwz83sCgys012p3za5CttAnXu7Ed6w//628ZWbqVKkAAAAASUVORK5CYII=\n", "text/latex": [ - "$$x + \\mathcal{O}\\left(x^{2}\\right)$$" + "$\\displaystyle x + O\\left(x^{2}\\right)$" ], "text/plain": [ " ⎛ 2⎞\n", "x + O⎝x ⎠" ] }, - "execution_count": 76, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -2008,14 +2004,14 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 100, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAG8AAAAwBAMAAADtMzlxAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHarIkSJZt3NVLsy\nme8Q6PJIAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACRUlEQVRIDc2Vv2vUYBjHv8klubt4XsMVOqdV\nCg6HtS3oIJhBORfx8B/o6XCLSG/TSQ8VsTjo2MOhFR0VuiuYyU0aFNqhFBwVRe78hagYn8vv5p6n\noA76Dnmf5/t9PnnfhDxvgGBUjjY6YZS/GvVDeSmb6/7HbJqJN7GVyUZC/aE1ooXCBq4ITiDrTdnd\nfcUXdWlJ5Z18T0BrFtcE/4AtGJFc+ST5u261YCmfJXB9VXJIrzragLXpCU93WCcUDcvwePs6Lguv\nrbbvxLSN9sYIp0zNnzmHZ9PzI04gKK3i1dIdzpvAJXuJM0KNNjkwHc4/i0XrAWeEmoLyGu9auMsb\nsTpmx1F+/pAXdubr7s48ySo/kpAJTOsgVPaF31P7mGSISFpYfYoGZ+vf9vS1DueE2vhUbZO1ldnJ\n+kWZ+78d0/7D/f07MOyn39h2tFW5n6R7RWDUT346CFCWb9JYcikcS40+pUavt/ym15uhGrGfqIwd\nyVuV+4nlkIBiP/FcDMr9JHAxKPaTxMVg3E+ntp4MS59z9dr2YzfVk2cMJGUGi02KbqUFaTQOI/Nn\nUJzUAQoWqq8A9W1WjGP6i7+P4/xc7aJAh1KDPQpfA8fcPBHl5UEAtlhwxZJB4ksDFB0WJPO2JaxI\n8kILNenU1r/IHK4BLQks0Vctjb0eTFcCtyWK9DowAQFUPRk0PRy/Pzf3c5YreQTN4fShRt/afprY\nD6DiQXXI5IZ2o/2yS8Z3zjzZvnCE04damU6ILnDeP8xUrPj+V0b+K+kXPYuKl+Zu0xMAAAAASUVO\nRK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHAAAAAuCAYAAADwZJ3MAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFU0lEQVR4Ae2cT27cNhSHx60P4Dq7LJ0bOM7eQJMbJMgJ2iy7S+CVvQucGyQ5QZvcwCngfeDcoFl2V8c3cL9PEAWKY2lmNDMecqAHPFP8I4k//sjHR5Hjndvb28micnZ2dsA9r9CL+l7j30n/UseLCmo8z6n0DbqHPkHfkv6NMGv5aWDtJOx3VALfo49KJY+6K+foAzB8QN9x/RX9G81edpeo4a8l9NA58b1Nyj0g/j1JyzK6DIETCHwKKk3OF641P0XKHR1Rc+qozF6GmlCBnaD2Uue9jzSCoIsWMLxGrwDxnvBDCWB2hjgxKTDAHpJ2RbiT5pUWB4MW5RN6wbXzYdYyaAQCLB1t1XxBuia1aAGDU8Eb9JxrO2bWMohAEH1KwO3XKIuY+GNGwLGH/kjwhPn8KC6b4/VQAt8BOF4jOSI/k1YigZJ1jcZ115KY/heatTRzII2/R01d2ykuZH9DD9CXqPKVMp+9qMvqxPyH6nKbptnJRuo6zotHUylO8Sjif8MzYlKrjNz+xMsIbb5fVyaErwk+opImEBfrutWBQHtnVoRRn1QWwaM1iS1K+qxs45UJhSB7arruqcxiXXPnuDQ/W1Dbhqe3oV1GnJ6eHhoGJX6BXoV4aeG24elr/zACU/PhJP5nL/MZZzICtwpPX1NPeaGAD2u5ar7zZtJ0tXVyipNtw5MSsFsT45cHJ30/iwVHJvbATsjL3WmpsG0bnpSwNO4IdMSp1zX4a671MishzTy3V0qRbcPT2+4/Hx8f/0sJvcxf0McQdnJ5efkP+gf6kLRb0hpzSjxroc5bhWdWYzcL+VkFx/w8W2DKicmzmmOtulpgJLCrZVaQrv+Ahs95K3ji9CNGAqfbZJUpLr3WuvwaCVwlXRt41u4G3jm+cs4WwPw6eoMJvnOHaByBczbmhor5ccW913DU0R0i51U/qkju+UjghpiZ9VpIcuSlO0BTO0Q7fLlf/Gj2rLeTTwV6DziRbw/y8Owik/wL7ks/VLdqQ/694+Gd7pf6BSiVcNTEr1upfOO+F2liiJN3iDZYufYQ9T7h41DGcFzIx62x4msa2xFzQLj06TaeYcd0c731rNGJWTFp63gcpIXR3XzSJK2yXCOB62jxJZ9ZkzPXDtHoxCzZ2Gu63RGnztwhGkfgmhhY8rHuy3q0XxInjMhXqCfFdZY8+i+xlTltOTEkHpAZNm6PLGic9MYbIj4l5Hssz5dUm8FTBTJJGIpvaPV538qcmK46NCOwBufCsXFtuXYd4m8enqF9P97UXveS3FWB+0qn/nbOofiGVvOGG9W1STwHSpaHeRsBtKPRCkjQnUIZz5CWIIPwLQPMTo+u9VdOMYHaW38jULmnUcUdeR5qsge3hDRN59p7WeulwyML4xv+qvu7MyZQovyde9eQT4m1li8pv9YetsKmGIJvha9fz6PiObCZ+5JXOcomENWa44hrOvWKihDquxC+IkBRyXgETtUZ0JKn6QyeaVWGdNNuCOOjh1VeSX+68JWEoZdAgOi8hP/cEONyyVCK6YzrnV534UvLZRvvJBCCNI96Ua21HXG3OYoxnV0t34Wvq3yu6XcSWJM0IUzJ03TqkZZuOqtd7hRfriT11av1JcaCgPLrwRPCZt7jWuIUwxapVepk4j16r8HTa+6t87MJ+vCRV1zHbLxQWxgAOi0t8uqWlyDnQgFKUktI/0GC5rbL02uV31RkFr5N1WuZ9zYjEHCOLnd9U4L2SXN3+FHXi8hzs1ECn3WV2XT6Mvg2Xfe+98cjUI9MEsMpqPi+1howZNAoOjNHdfwpcTtArv9fZWF8AWfO4f8H/2yYQEzy9QAAAABJRU5ErkJggg==\n", "text/latex": [ - "$$\\frac{x^{5}}{24} - \\frac{x^{3}}{2} + x$$" + "$\\displaystyle \\frac{x^{5}}{24} - \\frac{x^{3}}{2} + x$" ], "text/plain": [ " 5 3 \n", @@ -2024,13 +2020,13 @@ "24 2 " ] }, - "execution_count": 77, + "execution_count": 100, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "expand(s1.removeO() * s2.removeO())" + "sp.expand(s1.removeO() * s2.removeO())" ] }, { @@ -2042,14 +2038,14 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 101, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAAAwBAMAAABqLhIyAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHarIkSJZt3NVLsy\nme8Q6PJIAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEdklEQVRYCb1XXWgcVRQ+s5n9/xsSKPSl2aRF\nn2K3IqgVdR6M+lKzCIIodbcpRF9i9skKggSFah5KgiI2+NAI+uCDNC8FtUJHqo8lGxcqWkIjtGB9\nkF1pqwZlPHdmzp17Z++d7G7ECzP3nO875zs7s3PvmQHYZcy2rZiIy9+eimEHp4rN4npMVt2txrCD\nU8VGuhOT9cI3MeRQVOzVPTeUZFzSASeGPT65GcP2Sx279jWFJt4ji8/m1kUncKbhDQ4PbRhVWKhR\ndu/NHIPUHWJhw+bmsMaIBaVtSi7skEXzEYDfAvsIjPPfRfTAc2kRRv72sw445h/R/F8AHnd88AbM\nWFF6YD/b5eUydvrnaP45i5c7AfNRdig/04XRg9P3VAqzJ22FwLJlTD7w7Cyk5hsKdnCo3jAa6bcy\nK+rM5F3YB69XltTsEOjbkLJS3ZytTs1U4QQsWJ+o2cHRYgsMyK7rErcALPhIx6rwuXtVKGFTzChX\nyI3MiRYDfo+gcW629kwMnWvBEwAbjibkczBtKARLRRPjw98F7EEYhYQ28grAoZx1GBLKRVVoQcL+\nONGBCa1AQBTo7/gVgWRVE26enmsv1tcuwVPKgKfn5h9K7uQ7ZlNJC2CWfu4O28pfFhjRzLquuzg2\nOfqDWu+c6/5p3D8xpWvkyc19yx94et8HquY/8DxAhoqLtfZuTyUvXHFrqGN2AzFjB8o18J+wvevL\nCiOVlyw4vIJgqkXMHSg3weyQ28+cq8RGcbpt3MRFxKRLa5TxIbs6eIfcfmaupw4mOtllHRJ3eVxJ\nFoW+CJ+heY3cfmbS08QSnWnlMCLPru5NHpq+ik8m3IeHt/FzPMYgPU0I0XWHBeS38fQjHn7nQANH\n3YK4jd8PojPpkR+Zib7u3cFSC+mLeIidA7epuI1fFiQ9GeUe0Zc8ZKOG0/t4iJ1jpsY3fuPsuziW\nHBaMq1waCKVWV8/eWl2tolmWONftyDT2ehxfstMZPMTOMbOGgHbjR04c9PNFTLCJ9l5jCrcZw65O\n7Bx4dTEbvxccnkgvRCSL6AV2B/YzYb+c0Dk2bNBv/JIYOqQXxQOf6HF8czMveOAjeBY7Bz6Z+o0/\nKkt6UTzwiU67R6fbtgfiOpM6B65D/cYflSW9KB74nL68fMbxMbbOxM4Ru6s8OfeVpMz1CM1OFH4i\nW3mvS94/GIb0fm6EnNmC883Qxf3BFrwcvuyWXLcRQhLtw0WBRsSgfhQmhVYCe9Ri6MrWWBtTsycP\nyWjUK2xLSJo9s7qRvAnjKzoSElhuRMsScZQMb844ktvjyDdTovsrt1/KeU3yehzjdA/EAa/cqSmH\nA0oj1xJgc11wek3zlc1ekBBWLm+Z4WclEfL8qeAWLcFRma/WVKiHsXI4vvDO/9Gp1PNpx4WDctdt\njuzRwPfyfM93Mtdk5R4G4ROeM0Ma5e5u5W4B+K17yApSWmkdMl7XklBy2NXhY7dE/p7ndBPOV7Qq\nrNwxSN/QBgxMHN/yu5YqsfjYXw+CefXR3Z5tVe7/iP0Lu0QQYvWiWkQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAAAuCAYAAACh3GzqAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAJ8UlEQVR4Ae2d63XUOhDHF04KCKGD0AGPCoAOeFSQ0MG9h29840AHQAUkdABUwKODSwc3bAfc/0/r0dVq7bU3a3ltS3OOIlnWa0YzmtFI3tz48+fPIld49erVqXB/orBUOFZ4oPBa+T8VzxYqvF8Iwc8VktDhl/K/zBbpESB2cwRjOOQQ3qjz22Ky9wpvlf6m8PWQAxqob4TrXAFhe6dwpwiaqJAYjhK3P/bmX0cDvK3nX1HeXB8fSsBmrcHHNnFZC1sNs2FSou2yAOH/SIhiPn9RGlO6QEIKTEbYxAyYPn9XtLiv+IrnGoGpinSP1MZfKv1c4Z3S77vXTF8yId4vNXroCR0/qJ+PCp/SY5RvDzem4CCpGO6N4qc2VUqjgRCSx0rvvbFXG6zwlwqflWb/dnDQOFhgkuINkurnrqIfim/wXCANBabiIEGwzkISiDFYlTF9EJC9Qe3RFm3C3DDfGCAJ3sIPczkEt09VPmZlgUQUmIqwwQS/xQxonxDQaMfKRwPsBLSlQJuhYCFwAGbqGKB3vCukLiO8T6r8XJxDB5nbqQgbQsU5kAlDTKxYCOP3G89VW+xXQgaDuenjYqPCYTJ6x7tC463wDz2RaLpPygtpcRiMZ9zrJPZsTfQXc/yjd6eK/V5DaQSPMySAQ2rMTzQfDhDgm8o4R4BitBr5//JCQHmcLqNmOo1vX7yhEQ4S8Oa4Y6E2MaELJKTAUcK2kzYt5kBQEKKYSdhzcTsCBsKB8kEBAUOIOMBlH2TCxuoervB6HDcIhz7wRnvHdBs34jMY3VTMyDpS4xixmx/uvRgRjYYwheBMpCqDvUn8Piw7hXSueE9hbraOcZKardJQHMQ6DRZg+F15oQn4WO9+Wp5if3QQ1JlMUuNHM2eH92QmqGWgkxM2MZzbjymOBW2hvNgkxOExC3MpV7xb+PcgrzUXWEe2z1/qudNFiEmZkUIKk5BLs17QlMZBwt5tDZSHoAH+VoTycPfjHJgUaMxZ4p1ikqClgvHGzl2o7g9V+qiYiw94i7E21kDvarcqkxE2IYBj4IHiWFPBiFfKR5C4/WGENCdJaFa+1HucA5MBjTdLvFNMkGgJr1z7xpHqI0RsVZwFVcVsVWJAGO3zJf9uEq5/DRzNxeBZSULA4XFX79F2EBLnwT0FBAzCPFP+LcULxQghAuk1HfljBo01S7xTzIloiUXzVTH8cS1Q3d+qyL7/SoG5abzArbJsd+A3f/VvKpoNIQI5EAgDAmaaCkHEdkaozoUkmu1MMZeLDfHJCJrGDuSK9wr7fv9Cyw2Tr2sX4iGElWCaDH7jmAne2gDlw4svqnru/SQ02wYmJSMLClSMCjPfUbBF1Wn7ipk70UFlqcNFa2fldKoUFara4DIBAuQcIooRPrQdllW4XXG1lcc5L1sf5wWfimZzgy9/8qGAGJRtAF/Nu6MOPXMpgQDjsu/CUdEV2Od38hg2Naj+TJgsXijPFgDzE8TV6ROHDEK5KMIWk6eHZxH3kUKtedFD86Ntog+8YUwFBIm9+D2F+DhnoTwEDi90rdevhkDMxYbDoqZcWxaChpaMwQtg+ELjQxgZ/zPyi7BBhf6BlcytZv03PeoW+8AbbYbA2d6oCWH2TJhpW0Ht4M0Fvq+ivf4i3H5cVdttP5REv8WM3IvspXLvFBDzwswIhz9H3dKJ0yaBMDUVxcTb9sVIU72NfPWFWcg9WxwjCDrjbPNuss+7r7A44g+gyqxKZvo8UPpMAZX5XAHwt+VXj+VvoUB/FBD/wWswMNfr4iOeuo7McuD4ZxvAy8umArvyvcp7V35Tm1E+ZiSa+jg0I5FWvnOisW8K3JZn78HmEsS62scqWqBQYGcKmDb72LGmOSVq90tBG/Au52JNkJrvre9TJ2wSKDRaLEycYdm5FKtH/L5p8CW/UOA6FIDfgFatJn5FgNCES6XbhA3erdVsA/G99X1iZuRet+Ur5N3GVoh1haeqh4rdCipz0J9sVv/+w9R4oHrHIamtsOFrZ9rova3W4TvMJLdhDjPjtMrkhjfCA7QJD2Vsu9PFnb9Ns+3F9wykA5hmW+3ZNLEx08NA8R3ExnZVH+lt2yg21t/2Qm03Mvu2ekO809jqhGmhfFZpXNO72vd+2KqbG94IGTQzTeBpESb0HuF5qYBW68KjtFe7r1P9vfg+HNeWtPV95czIsKAGYCu1mZAL5bkNXliupAsFeqaAY3x4raVdfAmUedhSbqfXCfne8FkeVchxb4yNIvayW62VDtU5t+W7rCI7IVgKFwoEFHitNBYBB8C15qF4EL8BZbhBEmslZdcCfGwM7wuoPnlD8P2aZkOTEdxnKsQKSwUHGhTv8E4WKBRIRoFKeFjQWfTvhh0hGArcAIEXuYfY6kQJ6sO794NnSw7F9+bIWR6pZwbOSkLnCyHCRUu+C2Pzz7UZhNCblJQpMA0KaN648rSmAfTMin6iOLRcRoGQxsTRE/yIJWWLvmkls7x2HSv4u22Q2vRKRHlD8T2+DLc4YEYygLWNvvIQrkkKmMbOSmL4MFE8X3eiVHW8IFzRAJhC3CEMGckGzfdb0MAEjjSQxJm1anq/vxovY2311nbtRe3ZN2doN8f01FU+9DI+IYu8FHxPv+7THjTbbEDEgpm4Ge6JqLS7hKqYo4ahFhAmktA7CAdwxEnAys9Espg0AWUICCWaDPz5Z49Jxqa2k+GttveBC1XmTqMXtn0a61q3mitoT/+LWQmb8EGwzoUkZrAJFoiysuAutjwl04H6TjapahuGdiu/0lxvWtvfRFh1OtOL6lz7MSXe1x7UqiLzzznw0E4+nD2fqjmb3a1/TJC11dUQVX6BTCkgHoAvMCefDEwChNsL+Kw0m4iJRln7GjcgsLObByZ26W48FOBiPdptKOsGK4uf5PCOqFkJWzyvQvSR8jib8Z+yx2Xm/iwaMOnHFZ78vAAMwEqfFQhnbpywXwV/v6dPQQS1zz4aH4H/9o1+bqbo7NBtCklc3uxnICqM9f3QYzpQ/wjZhWhhX3Ow8PBbHCxC2YHwRquFP3eYigbw3YZHdfY/+CMCY6fjHh/SG5lqEtfaFW4sKAjQLaXZq7aCynE4zB1EtFyBASkwS80W0k9MxWoGI14qbeZUWCS3NHsIhG3bkUFuNBkE31kJmxgI87HOFW5mZDbmk+iAubTtF6jKwjOIiP3fyWyETYwF88Bc7EkKI60OvOvocML0i0bZOUnA+5AwJ2FbipAEf4gYEJabFkCyw+ZV86P6y/+uq9uXod1zosNoJmU2wlZRlANEHAAexHA4SFjhcf8jjLkALu61s0U941ABNjxlq+zyNyUFZueNFEOxcofMdKrnWV1EFo54V1lA0NjEOD0wC/kFNP91uNLgbjcYMB+veFZ+TouOUB4H/AfpPyIznU3o2QAAAABJRU5ErkJggg==\n", "text/latex": [ - "$$x - \\frac{2 x^{3}}{3} + \\frac{2 x^{5}}{15} + \\mathcal{O}\\left(x^{6}\\right)$$" + "$\\displaystyle x - \\frac{2 x^{3}}{3} + \\frac{2 x^{5}}{15} + O\\left(x^{6}\\right)$" ], "text/plain": [ " 3 5 \n", @@ -2058,13 +2054,13 @@ " 3 15 " ] }, - "execution_count": 78, + "execution_count": 101, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "(cos(x)*sin(x)).series(x, 0, 6)" + "(sp.cos(x)*sp.sin(x)).series(x, 0, 6)" ] }, { @@ -2090,24 +2086,24 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 103, "metadata": {}, "outputs": [], "source": [ - "m11, m12, m21, m22 = symbols(\"m11, m12, m21, m22\")\n", - "b1, b2 = symbols(\"b1, b2\")" + "m11, m12, m21, m22 = sp.symbols(\"m11, m12, m21, m22\")\n", + "b1, b2 = sp.symbols(\"b1, b2\")" ] }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 104, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGgAAAAyBAMAAABCJ4MDAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMA74lUMhBEqyJ2u93NZplQnf8bAAABo0lEQVRIDe2WsUrDUBSG/zZprNaKqIuT2cSlUnyAKta9g3uL+ADiplPBxc1OgpuLgosUn6Dgg+jm0A5VsHaL99xr7vUkp0PqJPTAhXD/+5Hwk3wEG9EHMs129I7V+kEmBof1KtayIXR6bwaZ0nQRweblzVmwdS/1KGUayi88oHmNKuDfmuVwnlUeGyrS0H6ph6sQL/Dfuno5BizLt+d6MdRotlBr4BzwumY5imWltj+OIdSAPrAuQSzLtYojCw2AJwTjgnAnsAzep4VWUBhhqXchQSxDqRND6p7lIRbDUIB4hopiTHtBF/Mn8E53BYhn5VcL0YWZdHtxYko6wrHaSHwa3rIK1ZJG7fvPO3cpqNj/6tCSGNrPRdEwBUmHhb3E4wknhK0Z9FPKrIg/FyEJMX7lpExX7oRIMiRhuuGZJEuSIQnz11hZUibKUsuQPnk3VpaUibLUMuSQlSVlsixJhgnIylKLUpIlyTABWVlqUUqyJBlyyMlSi1KSJcmQQ06WlImyJBlyyPVImSRLLcMJsqRMlCXJcJIsKfsvspzq122an8Rv50XFB+Ww4SIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGgAAAAzCAYAAAB7VU2VAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAExUlEQVR4Ae2c71EbMRDFDUMBhBJMB5B0AB2QpIKYDsLwCb4x0EHSQQY6IB2E0AF0kMEdkPc7Sze680kng08nz2hnZJ1We5L2vdMfn3e8dXFxsTvpkMvLy3mHuqgGQkB4d/Kwrf7+Kr200vVA4yjN+hG4bXEAJ7dbmkFPujgVg7/995aa1AiIj5n6/MwMKpIxAoWgjMlhaIWgQlDmCGQ+vDKDCkGZI5D58HZC49NR70j1x0pTpTNje6r8n9InpT+yuVE60PVXo8f+WrqNOLbn7mOQIAF9LAfOlO51/UPpnrLyiXK++b4o543Ds6N/VpkvXR+UNkGy9tG7BwlwZgXEIB/5kO6G3Mieyfeld2cL+s7XFvbGXPJN8DE0g5gVj0qATWq//oFA5GqR1Z8scS5hVYVp54sKvLU4rK3NRV99235N5WQ+Gv/OzbjZMpBv0rMCecVLkHMj+9BE5TboEAGB7Q6wb5AmG8is2lEO2Q3pq28Yr7HgjH1wHzVs9mX270p0zZbBe9D9hab707vEOeZs/o9O2V7iVIM0dYoOAu4wUrkiQzlEsjyyPy1JX/3SDetXDO6jhjyTn/YhxQNWpKl0diVCtyQxBHURAfBMU7tH2YZ5QiCDpYN6d0DWJsc8hY9g87Cq8zuhGwzIkPGrZcdeMlF9YwZJBSlWx15TnfiwzVVS+ah+frYwgLBqD2zpG8W+GQTgXY1AWrtDGr5S2tVgvitnjd0ESe6j8GFZO1FaOiy1AeubQcyGpU1MHbjH7bpN6dl7qv2nVmZ+oTEn9VH98UCw/xzqet4HT5CgvptL/WoIWHKUcwKeKGcmzZV3Hp6wKQSBQgIRCcwcln3ezNiTG/tQcJ9OQpAZHIM5UuJoyUCflFdLZV+9bLOXCB/4zsPeTV6L7gMXr5SYBC8041aIuBKTMC4Fcb1vx5kVq7EQKASNhXxkv4WgSKDGMisEjYV8ZL+FoEigxjIrBI2FfGS/haBIoMYyKwSNhXxkv4WgSKDGMisEjYV8ZL/Bl6V6H8TLTV6NT5XsW1de7pXAxUUQiP31WJAMI0GC1GXWQX1rgiRrH70Eafbwm4UNCiFw8UE695fUPQMQgYvuz9/oea1ei+opnxsFsxFpxIQZG2/c3OKW9X6qz2Q+xmDQ5Z2XIBmvM6gvGBNmgGI5RRrkLlSDfSbzUR4EMfB56D0kCLS5uakCTuX2ehsKXLQzz/Y70/2WAHSNmDDVBePmbCPrzlP6qLEHMfD55iXIueHdQX1qi4PFyjFhzhiGvkzh45swCC1xFhSefHePmejJYxliL2nPFAbhBi6yxt/JvnG/dNh1hXNJPYoM7uNbMQjOIDUKCZDx1sDFpRAstQlpUTFhKagaw8dVMAgSJIAgqOtJh7T2rADPKyVv4KIBIzomjAYTSFIfV8aAP7JQOnp9fZ0MmdTHVOnW9qHrA3S2TK7yidKTq9uka/xR8vrYV+/6KtuZ0n3MHvTuh9g8NSvHhL2744QN9PnYV+8bahKC1HkwJswMnoMDm/VS3Jxv8Jnpgz5qrH31ne6UuLhOWMZX6qEtcXHj09A/gr5TXH8LxWJQBOwexLrP0bkWled1oVwMjkAbf3VY8WFnECcs90/9+K5SJC0C7T/0qzj4Dxr7qKkPNMjdAAAAAElFTkSuQmCC\n", "text/latex": [ - "$$\\left[\\begin{matrix}m_{11} & m_{12}\\\\m_{21} & m_{22}\\end{matrix}\\right]$$" + "$\\displaystyle \\left[\\begin{matrix}m_{11} & m_{12}\\\\m_{21} & m_{22}\\end{matrix}\\right]$" ], "text/plain": [ "⎡m₁₁ m₁₂⎤\n", @@ -2115,26 +2111,26 @@ "⎣m₂₁ m₂₂⎦" ] }, - "execution_count": 43, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "A = Matrix([[m11, m12],[m21, m22]])\n", + "A = sp.Matrix([[m11, m12],[m21, m22]])\n", "A" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 105, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAB4AAAAyBAMAAAC5cHbcAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMA74lUMhC73c2rRHaZImaqCQggAAAA9klEQVQoFWOQ//+JAQb0/39kEHZxhXEZQlwMGUTgPBDDEcRnTSyACYL5DBwTUPn8Bqj89QGofHUYF2IeQ+fuw1ARiPk/AvgvMLiBhMB85q8M/Ao+0+F8ngaGeAUGczif4wDDegMkPv8DhvMByPwFrHIMSHzOB2wHkPmsp+cBzUKYB+Rg4RuCBCH+BbHu1M9G4YPEkOXpyKdLfDAdOwrzHzg+dBlmwPjg+Khl8L8A9T84PqQY7i+A8iHxwWAPTAXg8OMHxwdDNUw/JD6YDsD4kPh4A+QihTeXApcDMt/D2AxmHkghg/z//0ASET9gQSL46OkdLT8AABDBTMmz6EtEAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAB4AAAAzCAYAAACAArhKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACpklEQVRYCe2Y21HDMBBFDUMBMHQQOgA6ADoAOgA6gOEr+YUOoARCB6EDHh1ACUAJ3GMkjeOxd+3YwR9kZxQ9LO3V3tXK66yNx+PNrEImk8l3xXDrIemp1L8uTa8qX6Vy0xqhfsG0pBus6ZosflfjQjt7ql/b3xPhnEvbCRYPIhsWavAPVO2rfKq/Y81v88y0WEDfKkdS+KHSqytM4IIFu2rPCv3OTRdYFh8GlD+3OKca2jubWVBgHq4wD4vfBHwZ+hywmfqPob9QZVIt5dw6+Hekcq/+reorlanajC0sJrC0Rv8eCCinOtZ6drwwqhZ6VONfaE7+VRsWkO3fKsvC2Kn63IB7cdyqPWAujpeSAsaQZ34EhCsiM3FTPDLFoxqlvESKchI6eXgJGEbwPZdMY/GAUZQUCgCLIqWJ/sZohYkeMCEzKszn3n7QBu4LYws1PR+fSeuNgIhh4vdO7U7xG3dpAgsEOi/i5D5rj+o+seZ0DQZsUj23xZqO3MHhwx3E8kj9O9XvqgmxWukDmHDj/m4lg1G9Am7lpy6T/x/VZjgpFnkbrRL6LmcqrXUPl+jmKkRWCX2nhMCkOpzqpST0ZjjJr9G/cwm9NoTPSehvw+auGZCMfqvsTONmMugBN0noyclSeqQ272NSYvMj3qRai92EXnPOBRaZUTfjjxsSAlxUKx6wm9BLM9aWvzZqAeMDj2rmmQm9LCvn2GzkQ+NvEaSq9ixuldAHejl07oebZ3HjhF6gnGj8u6e2eaJhwAQOCtKJZUGVRFDVREGmmrPBP0bJTeV1JnB5clVfyrGUELoKgExjs2bm2RlYAMQs7+25z1ltwmSqM7AAtgTaWrxT3Vph0wWDAUequeLwUxL13ZBIk41GWa+m5jjRYk5l8c/yZf5Rnuv+AXfl7hubHpGEAAAAAElFTkSuQmCC\n", "text/latex": [ - "$$\\left[\\begin{matrix}b_{1}\\\\b_{2}\\end{matrix}\\right]$$" + "$\\displaystyle \\left[\\begin{matrix}b_{1}\\\\b_{2}\\end{matrix}\\right]$" ], "text/plain": [ "⎡b₁⎤\n", @@ -2142,13 +2138,13 @@ "⎣b₂⎦" ] }, - "execution_count": 44, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "b = Matrix([[b1], [b2]])\n", + "b = sp.Matrix([[b1], [b2]])\n", "b" ] }, @@ -2161,14 +2157,14 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 106, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAAzBAMAAAB4eZ5HAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMA74lUMhBEqyJ2u93NZplQnf8bAAAFXUlEQVRoBdWav4tcVRTHv/Mzq+suQUUQhEwhqCAxSwpRiyQYGxGdwsIuw2InolgZtRhIExuzlUGrNApayGplQHDR0kH8C3QbEcwWa8AYq/Gec+8955137tt1wR/vXXi793zfued95u7bOW++DFAcJz+bFvU2iSeWNz1Of35sx6stUh5b/oZ7zj/jiVbnw9tebZHy4vkN3Fvi6c1WbpX0FmnnyuTA4PcWUZZQGslXt0rpLdIayU9WIEfzSvAvTl86Su0m8rXdSpXBf7T/T1Sueei0iXwTL+vaDpCPH7r8wcXxIx9j+O3pjzz55pvvXt3a/HCmZ7yi52Tmk7zCyWnPhUIqeAWwe96/8xNceB8b6C2X+7IOec8nn26N/pwNjgPPAv1ffwZE4SiopSFJtIwPo/BSXpfIhQLDawB1c1Uoiv3dkj+9uoMrE/xUu34iH576Cis3sbaP598GHsY7UIUiUgtDkyiBDqvQ0jgSuVAMf9kGd3NRKEr93ZJPL8xwZoq3QvFr8eCSiXw0ukVv88fCqaeAL/HCXBWKSC0MTeKEkGQVXsrrErlSDLbB3VwUilJ/t+Q4A9wA7ge9WjrC6C8W3z2wWOyG6WAf69vohXeacPn7cGWmCkdlck3K5FbhpcCji8Xni8X3dMlMgUAeu3lWKEr9vUa+B3yB8e0RreGDCsl9vr6D1Qlem0/j7oa/jir0t2og1yRKoMMqtJRH2nMYCu7monDE/b1GfjfCHbG+c6lM3psg3E57K6ci43VAFYSogVyTMrlVaCmPTG4oQN1cFI64v1vy8JgV/v/umkzK5OH2CP+83/QjY38XdMMkhaIGck3K5FahpTwSuaVA6OaqUMRH7V1xvI07XsfgjbNl8leAq8DjD0bGH0MNVShqINekTG4VWsojkVuKtV1AFYroqL+fkxJH8T7PJ5lxPBmfVYGjBnLNyuRG0UL5bpHTRGG6OUdRsXeLLLF7Pv5BT8TZBvDc6SenKnMU1IMHJdgkU+jV+urQ9Gw3pygpf4u8XhDvfX0RJ5bLik4RqQcOSrBJvlC1wMqNP7ZsN6coKY3kx8ObYTjaOxrI6dXS0V7w2ntLi0EdWsOeu7z2CR0hLxhX3SAvGVfdIC8ZV90gLxlX3SAPvcUZV10h98bV0cj/P8uIHm7tOBp5NgFsjX8+cg+N8cHWXKgj5PZRl18Bk3sjxiucnffcOz1eMRsUA5/kFc7MHzHKxlUsxuRqxGSzQhXqXqTyyOTi9IhBZBT1ftK69EuSDnOaErlQ2EfdWI3JxYgRs0IU6l7JvggLErk6Pdkgsop6P4Zckw5zmhK5UJgyKWByMWLko5Ao3L3oQxWPRK5OTzaIrKLeT1oXf2kSfWKlJFVyoZiZyIWCDbnaswuTG2uG6UXh7hXJS5aRGERiIpGSvB+DTYEkETkniSKFipZRxZSTopF8zxlEolD3qu95xenJBpF6P+z7ZO9HrsMTTeLP2s1OU9pzsYwqppxUjORixBAjc4pC1owj74lllA0iq4j3I9fhiSYx+fVGpymTZ4qKKScVmVyNmEyuCtkyjlydnmwQWUW8H7kOTzSJyClJlVyIExN5hYKeW+yzC5OrEZPJVaHu5cjV6ckGkVXE+2EO+aFJRE5JquRCnJzIlUJNOSkW7xYJM7kIbM04cjntDSJS1PuRxNokkNskWyjfLbpKTDmR6uTBqDBmBdsyojjLyBtEpFgTSa5VmRiDiHRbyFlGaspJEUvuzQrqXgfYF94gIsWaSHItnXiDyBfS7DCj55bas4slN9ktCiqmnFB1g7xiynWMXHArk3Plb4lUMto5pW+JFL+Z007cClX4Zs5fZLuVy5E1BG0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAAzCAYAAACKV4N0AAAACXBIWXMAAA7EAAAOxAGVKw4bAAALeklEQVR4Ae1d4XHVOBAOGQoASggdEOggdHDcVQB0QIZf4V8GOjg6YLgOoAM4OoAOOFLCfZ8jeWw/WWvHK3lFVjN+kndl7bef7H2yrOd35+Li4t5RIr158+YqIXaRM+AMOAPOwE4MIC4n4/Vd4PkX28kE13vsv5zIdt8NTrwOQCLm5/6ls3vXOABnwBmow8BHmDmbmPrMQM70FMHw83XR9Odb4Oy/YFD+G2j5RfTQNGoH5ww4A86AAgOIeU+HzWD/BfafHQ+FDZRfAPjw2+gtMJ9A9qgB7A7RGXAGnIEiDLQWyDka/1qECW/UGXAGnIFGGYhTK03Ax8ibc/fDxMD+A/JvQ6GXnQFnwBm4TQy0NiLv+yZMp/wBwWkvVC7Axhk2zkF5cgacgZUM+PWzkrAN1ZsM5DhBTuAz58dPUS65TJJLfZLLfTZw7oc6A7eFAb9+KvV0U1Mr5CQGceTd01vkfNB5hfxHJc7cjDPgDDgDphioEsgRZLnShIGXI+nzwADnt39ie4LtC+q8C0H5ryBnfS437JdFoszjueTwPNRFsVvvHtvkvokEfCo+azljDY+WX9rtWOPJGh5tvlPtWfPZGp4UZ1UCOQxznTqD7yeUGYg/cZ+AkPP26xfyK+R8cBnlHGFz8ft9bDFxzTjrM+8TjunXlvfC/QtaPmt5Yg2Pll/a7VjjyRoebb5T7Vnz2RqeA86KB3IEWU59MIAzPcb2FbJ33d71x4NQfgj5cFUK5QzafYJ+GNR7ubWCps8avlnDo+FTiTas8WQNTwnOp21a89kanilfcb94IIehbnkgCGFQ5saHlMPEQM90eZ31n5xa6adVemmBArDxLoFTIdPUfclAnxrxf4P82fSAsK/qc+DuT7T9EuXRKp2gex3scuqJ6TnkV9fF7lMNzxJ7oU4S7wCTxaIaT3RO4kHSo4lqeAIW6TxK9hmO1bx+rPmshkfiWNInyQ/C4oEc4GJA6QIl9qfBmQGbQTHWi3hZfxrco041h+1UoD6CnMsb+cvR4R2EaBv1oy+bfUZb/KLr2kF+L2FcfG2BJh7Yz9pbgDfhgg2RJk8SD5KejNTEA3PZfs31EHCqXT/WfNbEs4DjG/fBca6DlHV8iJn64Q6D1Ci4gzzKGLT+wXaE/T6AsYztBbbRPDnrMUn661rVPjf7DH/4JccvkrlVOeQiBno6lnttwWY8aD9rbwFeYrSeNvMk8SDpJwQVxwN72X6d4Kmxa83nzXgWcHzjPqgZyFMBmwGa0wFxDj2eIPyGZwDjbQ31XaBCmaNT/kCHx/XBHeUuSfpYr2K+2ecFWMnV0tcWaOBZY28BfJNVNHjSdKwGHmv9as1nDTwSx5J+9py6O6tRVIRgzMD7YdIs51GPoB+NyCFi8I4yzgufh3oc0TPAc8rjIEGe1R8cUFAALPRhs88SRNgZPiBmdZ4M3bze8FgtPEvtDW23VNbiScvnWngs9as1n7XwSBxL+tw5dZxTKuoY1A6CC2QMdNNARLOX1MGxV8j5IKXFVN1n8MU7lrnXFqjjEey12GfErM7TRiKq4zHQr9Z8VscjcSzpp+dUrRE5R9cH7wwH2ORDRMg5N97Nj08Bt7IPH6r6DHs82WZfW6CNR7LXSj9NcWrzNG1/7X5tPBb61ZrP2ngkjiV96hyqEshThhuRXQEnN9MpdjxyrgA6Qs6RebHXFtS2Z5r83whcgX41f/0U8Dl7Rkj2JP1c4x7I55iBHKTGefpMrX1VoeM5/VTltQW17e3L7u2xXqJfrV8/JXzOnTGSPUmfa9sDeY4dA7rQuXyAeYaNa9oZtL8jj9NStV9bkLW3AK8BVstDkHiQ9NoIF9jL9qs2nhrtGfRZ4ljSz9J25+Li4ju0XBlifvQZvQBWPtDj4vmDeXfWkfSxHc+dAWfAGWiZAcS67j87mxqRAzQf6M2OTiV9yx3m2J0BZ8AZmGOgtUDOXzd2a8pTDiGQZ/WpY1zmDDgDzkDrDBy37oDjdwacAWfgtjPQ1Ij8tneW++8MOAP1GcCdPn+4+DpY5vQu0/QNo9fSnT49kO9EvJt1BpyBZhi48VsJa3noUyu1mHY7zoAz0CoDN34rYS2HPZDXYtrtOAPOQKsMcKXc0jeM7uKjT63sQrsbdQacgVYYwBz59MV+DOyplwDu5pKPyCtQjxPhDBsX7ntyBpyBFQxYu3aAJ/eG0RWe6Vb1QK7L51xrfOrNzZMz4AysY8DMtYMgfgLos28YXeeWbm2fWtHl01tzBpyB35CBGMSRV3nD6FoKs4EcoM/QIIHzmyj+opLzQz+xPcH2BXXeYePtBv/TjnLW53Id9Xe3WMMDP4snaz5bw1O8A25owBpP1vDckNZVh2n5jHYY/6q9YXSVk6FyNpCjzlM4wdej8j816cgn7vNY5Lzl+YX8Cjkn/qOcP5P/iO0+Nu1kDY+2f6n2rPlsDU+KMwsyazxZw1Ojj7R8vvFbCWs4SRuzgRyBmaPs+KfIj1H+Cll8dSqPfcAPpIeQD5/qUn4wH4w6lPE/OvmmxVPko7RAr4Yn2Mr+UkvCMwJfaAcYTPlcE8+SPipE++ZmNXkimMBF8tpZwpMmnoX2stf6ZoIXNKDsc4lB6QIvlleZDeRoolteEzqOHcNJ/mFikGG6vM76T06tjKZVAqmcpmFKBXm2NavvjlLEg/ayv9SS8AY8BxmO411L9GOof8Ad6DktNU38M+lnU2HYV+sDtKfhczU8Et4ZvqyI1XjCuSFdG9l+DYSo4ZH6ZQHeZB/hOMvXThKzJeFsIAexVwFoF5iwPwrO0DFgMwjFetEv1h8Fd9TJ/ru9pGfDAzub8aA5/lLrI7boE7+kKHuEjT5l8RJPKuG4VKA+gpzvT+efQgzvaFJNjGSoH7k14XNNPCAi20cjooztaPKEtqRzUeRJE4/ULwvwJnsLx5m9doCNg8/ZO3hJn3RYWbhk+SEfYvJkmiYGlxgIOx0cooxOd3+cHBzsdIofGnh40pj+pdaEL2s+18DTWh9Nuqzb1eAp1e5QtoYnDTxr7A1x7lXW8Jl3PXxWyI13z/9h47x5TJI+1iuWLwnkqYDNYM0nuXEOPQJkJ3NEy1s56ruRZFQq5ZvxANt7bHG0S1jE3d1+KmHUbsaaz8XxNNhHqT7fzFOq0aFsJU+b8ay0N4S6V3mzzwDOux62ExPv4HmHHaeXJX08rlieDeQAymDMoP1hgoAPXo6gH43IIWL9KONDzW5kzroaqQQetMnO4NTHwQNYDcxb27Dm8x54rPdRqo9L8JSyM5TleCqBJ2dviGuvsqLP0l2IpC9OwV3BAgNzaqTK4D5cqRKbuUSBS35eIefDC+2kiid0NL9dT1EejtC1cW9pz5rPVfE00kep/lXlKWVgKFvAkyqeBfaG8PYqq/gMX6exbnQHL+lrOF/1z5fhsJk/TY4nIvJuxQhyjsyvkHMdfJdQzuKN9aQ8tLP6YafU7lo9cPDE5nxecZ+XYJPwSPolNn6XOuBi9lyszdMSezm8a/oktLP7tRMxAw/jBH8nkxz8SfrYjlYOe+39+bKi8wxovGPgw4s4z8Vv2XMtG5N2ONrfdcQPP2v7PKFgvCvhkfTj1m7vXm2eattDz+5+7cSzK/g+ewcv6WM7JfIqI/LgIAMlHxgwcPJW5Tvk3XI8SY+6qgn2fqHBe9NGIb9DWW08Uxwl9q35vABPto9KcGSxTelclHjU9kmyJ+HVxlOrveDX7N2spC+FE3a7EXmVQF7KCW/XGXAGnIHSDIQg3d3BD2x1d/DQcTq2v9tN6Qcy9WIM5NLDTnXD3qAz4Aw4A40xIL1rRdIXd9cDeXGK3YAz4Ay0zABGvdl3rUj6Gr7HQM6nwqM5Y+zv+nCuhvNuwxlwBpyBlhiYxmlg7+L2cXCC8z98uBQ3Ppn15Aw4A86AM2CLAS59jHGaeRer/wcUANDVZqDNRAAAAABJRU5ErkJggg==\n", "text/latex": [ - "$$\\left[\\begin{matrix}m_{11}^{2} + m_{12} m_{21} & m_{11} m_{12} + m_{12} m_{22}\\\\m_{11} m_{21} + m_{21} m_{22} & m_{12} m_{21} + m_{22}^{2}\\end{matrix}\\right]$$" + "$\\displaystyle \\left[\\begin{matrix}m_{11}^{2} + m_{12} m_{21} & m_{11} m_{12} + m_{12} m_{22}\\\\m_{11} m_{21} + m_{21} m_{22} & m_{12} m_{21} + m_{22}^{2}\\end{matrix}\\right]$" ], "text/plain": [ "⎡ 2 ⎤\n", @@ -2178,7 +2174,7 @@ "⎣m₁₁⋅m₂₁ + m₂₁⋅m₂₂ m₁₂⋅m₂₁ + m₂₂ ⎦" ] }, - "execution_count": 45, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" } @@ -2189,14 +2185,14 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 107, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJEAAAAyBAMAAACufiRQAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMA74lUMhC73c2rRHaZ\nImaqCQggAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACnklEQVRIDe2Xv2sTYRjHvya5Jj3TJqjgIOht\nKnaoOHRwqNAKDg7n4qQEBxftEP0HPBAhBYdOdQhIKO7tbDsEHFoRasBVMf+BJaWggXg+z/O+6f16\ncx6mk+0LB+/7vN9+evfcm3wILvk9jD1yvl/F2cXbY4NgLS5UcW58DhMKQrIe1TPh7p8fHVMklFZG\nR8I7y+FFdK5JldloOb66qQv78Y1grUnrblAyzTTJPjBtqpomXR6dkB1NyqW0U5OWNz/IX9hXv202\n7WtP4mBNKjW3VBsMOUWyfrq1Du4AuYmnqL3HdXqpnroUU5Nqr6wBZpbcWI4r+hTkD1Bx7r4BFooe\nvjv4gcLHulwKBE2ad9HLdSa9aE4qmlT2UHMwB7i1Fii+CuSpJXzRuNJoPGs0+ADswOoVO4VBNCcV\nTSq1sT7LJMwD28CFCInK+p5ew94vtqb60ZyqqD5VuvjsCmkHeA57YIXvKSD9RpnOAfWC7i6Uk4om\ntayLENIZWH2UvS9mUh/3ukBxA4jkpKJIk92JtpDoxqf3UHIcM+ktlgDMANEcV4af4E+7NKc+2XWc\nXkF+95aZ9GCrC0y34zmuaBJNaHDHD0fo3VFNd1x21/DuMKXejFTU06kdOo/ByFcpRZcaD4cT+t8v\nbzwOVpxRlRDp64tmkJja/rXBV1AZzk75/t5wTg2jjKqESMH2P81OSNnadhz6dGJOPgv/jTnZhgWP\nnkiG/qYzmJNzqeZkG7I9o6SkOTmXbk6xYQZzci7dnGJDTaL70k+XNCfn/mJOtmGCZDCnWJNdqr4L\nKklzsg0TJIM5xZrsUkUymJNtmCAZzCnWTDUn2zBBMpiTc+nmZBsmSHImoubkVao5xYYZzMm5dHOy\nDbOYk3PHxJxH96vsyH4p/gHeHTH4ApAfnQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJEAAAAzCAYAAACXDOrGAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAHTElEQVR4Ae2d73HcNhDFzxoV4FE6kDuIkwoid2AnFUjuIBl/kr5p7A7sDhK5A6cDO+7A7sCJSsj7QQAF4kAseBTvjwnMQAAWC2Dx+LgAecTo0eXl5eNVJlxdXd1mxE20YATEiSxXjoTJP4r/JfH1grFqUx9G4CbhCby5eSRP9EWZl2LZ38NtW01DYB0BceZC0hd4ohYaApMQOC619msgLuwnxX9VflLSb3X3CCwJu6InEhC3is8EzVfFttzdc8TMLQm7IokipH5U/kNUXkxWZDhTZO3fNHz32JkkAkSP3lI9EY+12Udbi1VLwc4kkYByy5kAae+NLNas1y8Cu+LG2mOCJ/osEv3uy2yuP6j83pfNxN+RAHqq+Idv8FLpN8WfFT9K540irv83L0f/tWSH7AEnYycMVsKAfvYWv6InkvG4cS4sF/+dym+UQoIb5ZHVhmfSpx39vVV8Ttn3d64yZGHfcRLJ0ePJ8CCD5vFQ2DH/vcavSCIZzx1A+EWguOUspJI9dzXGH+nHG0teFawkg4whnPjME8ljr4OcC3GoYTJ2TFyY7D1+x8YVwoWylDkC+UmFC/tDaKt6ZL8q8ub7aZD79Ktk9IEOMf1JBZAI13dJ95exY1K5CmOslVXf9Z5k1A7PFy58XOtIrnqW3zQwrxep0JdN7Lytr7x+8Oznkt9GfW4Nv0p7ItPushaJ8ByfklbOm0j2EbkGhgQBfEjSCxEgTkfllBhrYPsO0O8Rq2Ksoi09w5KC+s6RZCU5HvdUaew9k9bZoomdWrGMd+MqD5H5LbN7qStZINTs+NXYI521YC1nXBQmFYdw5zkyaJLcjQDMC8lSYMP8OaMAOD1iqT9kENJt3lV25LTGsuozY88pMrHT4Bd+rsEOvDSEpW0aZsdPA46xp7PPIhGKHTk0OS5mWLbCHdJ1ZmRyZKE/3Hj6IpO7E3Liyql3d6HSQwsWdswz9fRDc9wGfmPs6ew87nL5DJ6AixgCT0t/6cK+C4Ka1BMBwvyZ6EPIlep7nkgixgwy9lk82R1aMLHTvFIcuYhuDxRPVnrgMTt+tfbEtpG3SHQuHdZt3hGxTr9V3i0xyo8JgLAGjmQAkwJJv9eKPNYyLvuEQwyjsNNcWcLYf6UPJsx96/gZ9mBTF4okUke30uTumBTUD16l2yyGziTPblYlh6ibkDV0vfN0DHbShSTsh576dj37JdsqfpY9PeNUKJIoVV5omRuJOEsIF0wpT6krpXgkvp7o9lOzDDzQqcZ1hFZabU8j0QCYQSwww94siB4s9ReM5Zq39+GJDM+/kz3gpvZMJpEfmImfKfJ4CihflGaXKtVtHKyxrPqNB56vIa9P2Bf2XqNoHpO3EDmTK/DZyJ72jXUO7SarQkCkbN9YVyHVlEwEjkyNptAQMBBoJDIAatU2Ao1ENkZNw0CgkcgAqFXbCDQS2Rg1DQOB4nsiPcLxDqMdXjRAzFUvCbuiJxIQ7fBijiEVsiVhVyRRhBWv5NNvfqLq7zcrMpwptsOLhUtskggQffvZfkMq2LcPVSzpxNFhKdiZJBJy/JrLt0C3o1FsDRaBXXFj7TmAJ+JTVT4QI7TDi3c41PydjB2DeI8GIU8Vwy/8/Ej7TXHnhz+LnkjG48bZD2F8O7woEGrDA2LHkHt9eNHyRNxJhN7hRQGEjE853eceHjC+l147d6a6eFPujtFIFn8mckJnChxejD+VRd7bi/hxXjntO2KT7Z3T8jpZW3y7bSUmdpXz2Rp+NfbkwLNIhAtlKev2Q34g+nKHF1VmkgGw3kVHScF9W+3bUT/l8GLxnFaFLc6g3B+15TuoMI9YxZFc9blvfMAmHKGK25A3sZNOcT6+w63hV2mPN+s+KS5nUjMP4AlEgMSzZD/nVF0goLtAKqdPeWtge/PQT18rXKh9fKF757RUV7TF95tN1BYvijfsRSmfK16ncl8eIhBjmNhJpzgfOtE4W8Ovxh5sSoNFIrxM76s7lQNwKRnSvtPy5MN36hBv8CnteE/LNdiNmc828BtjTwf7cZcbznQeRncFy1HYb4Q7ZLhlvwYPEu95uMvoj0176nGYDF4FV049F+S98r32kqHn3L3SfQxF7EbOZ3b8RtrT4W15Io7tcBFD2NXhxbXjQ5owxGJznzunFezdZToKu9J8VMc14Ibb9PDnaPxK9qSgWp6I/cDeHV70oA6e00onuaNyNXYV84FEOY8LsVLvzHSvFQcPf1rjWfUMEIciidQZSxZLxqSgftg/PcjhxTBBpWzIV0rxSDs7p4UNuSC7qrCTHgThRh2cj+q2hl+NPel8iyRKlXdd9hPc9jktyEB88LDt+VjjWfVDAEwmkR8Yb3WmOOu5M/VfPBc1hy3qc+xT6BDWOXlxPrkGE2XWeFZ9dvh27iwLSxPWIKAbrJ07qwGq6dgIHNkqTaMhUEYg7InYyzyOVVWeZTMZj9Hyh4VAyhFZ7zgTPBFPPPE/zkt/JD2s2TZr50KAl81rPPkfL/9lJZLv0AYAAAAASUVORK5CYII=\n", "text/latex": [ - "$$\\left[\\begin{matrix}b_{1} m_{11} + b_{2} m_{12}\\\\b_{1} m_{21} + b_{2} m_{22}\\end{matrix}\\right]$$" + "$\\displaystyle \\left[\\begin{matrix}b_{1} m_{11} + b_{2} m_{12}\\\\b_{1} m_{21} + b_{2} m_{22}\\end{matrix}\\right]$" ], "text/plain": [ "⎡b₁⋅m₁₁ + b₂⋅m₁₂⎤\n", @@ -2204,7 +2200,7 @@ "⎣b₁⋅m₂₁ + b₂⋅m₂₂⎦" ] }, - "execution_count": 83, + "execution_count": 107, "metadata": {}, "output_type": "execute_result" } @@ -2222,20 +2218,20 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 108, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKYAAAAMBAMAAAAaIdvMAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMARImrIna7EFTvMt3N\nZpneUCSWAAAACXBIWXMAAA7EAAAOxAGVKw4bAAABq0lEQVQoFWWTsWvUYBjGf0mvvVxij3CjDgbU\ntTh4Xexwg4KTvVJ01kHdSv4AoZ2kUugVwdmOHYqeopOCoVPpn+BghUIdesKdVhyv7/udfm9iH3jg\ne35JHt43IQRXbt1rB9ce4nWe+Et6aN24vdxt3U8NniPhzCNWl3gOcTGxkbmVHHVF2eNu/XcabcEu\nhMffwROXhO4kBYsZh8RHfWcjYWeqUFcq47VP1H4yO+T1TbjKAkY0Kc1XU3o58xD1J/Yk6cSnau18\n+lF1APX6iOgPUw9gA97zpmNEk1J6cAIvrdOTJK2N1HJTSdGQZp9G13W+ZTHFE5e0cwDvCE7rfk4j\nOpBzqZJmQZJxuZO7iXRHI5q08wWyTbO4Y52ekMg06rIaGfK6BrW1SecHMIIk6ZTV5H1fyDLfaYQ5\nKVOXJcsewl7onib8hq7/l2iSzqDP9HWiH9u+08is3KKu6BIsw+aXSedXuWZEk+7u9e+7e0CLi85G\nKiedKAu2jblU7dySDyL2ivfXn6g9+O8g/8nu+rPcqEtCvWonv7pqD2iMx0O1kcrp7uc2r8bjEtMk\n9AyNtKqM6qgiUQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKYAAAAMCAYAAADoD8b/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAADG0lEQVRYCd2Z7XETMRCGbcYFGEpIOnCgA9JBgAogHeDhl/0vk3RAOmBMB4EKCOkg6YCJOzDvc5aO0110e473HJOd2UjaXWnflVYf5wxXq9VgPp+/HQwGx+ID8VQMnYr/iN+If8nmQjxR/UOQY38u2Q+VrrRveFyDywy2bzE/NZ5RmKdjAZmKr9T+Kr6ijU7lWMW9yqXKu4r8Tu2F+KXYm/YNj3d8D423bzE/KZ6REo1TkISEXouvJbsoWus/r0L9UPLLmpykTUg2yN6LT1U/SpRqdNC74Qm+vgQM3AbQR8nZZBFLVo/NLkh43GIGr8bLrkHQtcbsiaejvwZeTkxOwZswAAbnBFchJg06WxflX67y5BoPAfEsgBgrIUsfjN3waDyeGjxJClKd2+C3+HAtMfXBLC00DrH9FDdiTC2T1jv1u0kk/xpuMcsH65VdA+msOQGVGx7LXw4vJ+YSJKIiGLWTZJOcBCRxox22EPZJssqGicf2BIM6WXrsZRP9bI1Hw33SeAtxjIlNh2wiBqull0mT1BeMjdugadlNEsbDeOuYQ1zZNZAPM2ZPPJa/HN4XzEYgPmoe2tFMVlzYwlSDIRuLvyNQm7o3eeDhtLxuAWbpW7r2ovKI2QK2ScweeDbxV2IflbX1bq2+IWPC8TaLb9BojjN2JUc+eq6PIkmjgUNJ8m+FR9iS/hoP3MU1BT5Lj82OaeuYLbwbxrw1ng39lfCLE1OdSS5OvW+lZl3hI2YgfXJiSoR9lPGR45qUfeDRmGwenhgPXsGWXv16pT5itgC3xdwHnjZ/daxFYkpIopUnScWIZK2fOqjPxGM5+qySDwpvcsUTJpn35ZHqyzpYS1+376ntGrOFsUPMrng6+Esh8wO7N89msxPxbW5cS5/r9xi5fB2IF7Gv6hNklXarPtr9b6VizK4B8Yuzc+Idaxd/dbzVN2aasc+gFXYpJzr/PIg/e/HOnBKepcfmudGuY36svyG7w4sCCBaeRzOJwDPgVvLiB3tLL1tXkr97Ddj4xUDyIY4svSuYHQ2mmLiC29agdU68YVpznMP7F0ltLiassIkFAAAAAElFTkSuQmCC\n", "text/latex": [ - "$$m_{11} m_{22} - m_{12} m_{21}$$" + "$\\displaystyle m_{11} m_{22} - m_{12} m_{21}$" ], "text/plain": [ "m₁₁⋅m₂₂ - m₁₂⋅m₂₁" ] }, - "execution_count": 84, + "execution_count": 108, "metadata": {}, "output_type": "execute_result" } @@ -2246,14 +2242,14 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 109, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAAA1BAMAAADsYw7NAAAAMFBMVEX///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMA74lUMhBmmXa7RKsi3c0MJ4w/AAAD5UlEQVRoBe1az2sTURCe2qTWNm0Fe1OwCh48Wf8AIZUKPQYRFAT1IIieRMGTB2+2iNiDHgQP4lXEIhQ85tKThwa81h9/QIUoqCBInNl9szs72c17m/eijXQum++9mW+/vA2Zj0ngcOcbDEGc6HyFA4tnLErH7izdH1+pW7L62nanPrd4Emat9xh7fWVkfXwNTh9vVo4+s6aXSWBqWAcr9YKD1I2HMPN87xysTrT2wasySqy5TP3iEFipXaTCW1iAqXn4XP0+DZcb1vuXSTDUsAVWaieps7ACmxWA0RbAqTJC7LlMvYWpFmoXqbU2nuv1PQCXmlDdtt++REZCjVJt1C5SJ9ZgG94dg+o6wMWwz5+p8QNgpXaRyqd0fmOuevcso7DXLbBSl5H6qdOa6vwOK9GwLf2ct1KnUjve0VbvovrlA8bHOsx4U3eQOpWq7rPz4K7UQTyT3VMd7KkqP6agufe1q8s3lx8nQhRM1vULladgnK0WFcSc9AMg/BhMNoBh1vnd+AEHGw+AEnADDIz8G7aywhBlaPdkGbHEIXLyqVOpwo9NHGkCw4zzq11owS+4BZSAGwzJv6GNKwzOozLMY0hlyBKX8WIxdSqVrR6146kmMDTOb/QpxhOYvFfZD++jBNxgGPk3LCsMUUb0BlIZsrhSC6nCj5FUhhnnN1IfX62169F7wQ2G5N96SeU84sU8hlRG9FHwIuXkUqdSpR/D9ARmnN8mnsjY6lwkFTcYkn/rJZXzjFSGVIYscfAi5eRSp1KlH8N0hlnn9xKmm7U3DZJKGwzJGvaSynlGKkMsI5Y4eLGQOpXKJXRPojSR7/wwATc4J/JvvaRyopFqIJUJFrNaSN0tFf1Y5dFtJodc50cJuMFJ5N+wjGHhlcpEHpUJlrismLpbauGN/vXGfyg1v896HXRZStdTFX2WumqIYEpqtS6UrlJFn6XWFyKYElutE6WrVNFn5VeZl+R0suJE6SxV9FnxresllSmzX+SFlK5SZZ8NJDWhDCxV9tlAUplStUfvU2UCaoSBpDLloKRiI5RtN7mdxwvVyQuZXD+rhQR/byOSmkxs/Ac2bS09zBCIWIftVPVJ7Ey8e6qDeC5De6rKQipojkqNaBTsOk+1r2CcrhYVNJTZU1UWkqHXMEgMePofApHarFRlIRn6DIPkgKf/IVC3VHal3JazPwO6TmzMAzOXIEOgHKnKQjL0GQbJAQ/aPYblhkCxVPkju7KQCfQZBskBD0plWG4IBEA/ssu/LigLydBrGCQGPPS5YlhuCARAf13IjawxDzIMIpeLtCZKDoG4rPuqLGSIYZDfEKhb4s5e+QMte6UY83QawgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAAA0CAYAAADVEcBbAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAKVElEQVR4Ae1d7ZHcuBWcVSkA3TmDvQzkUgZSBlY5g1MGVunX6p9KzkC+DHyXwd5lYCsDXQiWMhh3c8ERZoZskHjDAWenUYXFxwPeazSeQA5JQDd3d3fPNgPh/fv33waqXWUGzIAZuHoGsD4OrptPwcx/EW8PGPoXym8O6q6mCLJ+xmD/ikhu/oP4EpHhBWSvEf+BPC84rxA/oPwZqYMZWDUD9uuTTs+v0NavC73i37mgMrwC2b8/ZP03MUDCGN+Cm3+yDulXxF8RX6cyr1LvELsy6xzMwMoZsF+fYIKwBvBmahdQ5k3Y635B3QmuPQNieLf+b0QS9D+UebfeBy6gn/oC0p8Q/8zKG7T/G8rU8ZeUfkJdd7FSslyH82bg1AzA90J+TTxJB/2fv9L4C60LyI/6fN/mWlIvqAczDefoFkikLyDaLZ4oP0f5G9L8Tp63/G8PVPyCNj+wDikX4K+INywjKNlDC/81AwswAF8M+TX60/9/RDx8PEi09muygPDkIfHfAQa4WB4unnye2gU4GB3rFulvydmSpHv22ufZZnclR57PZftwKOvrnZqBJRmo8mv4+GfE/N9DjtF+ndjwgpq7RcrDcbjYPaMTZWLesd5n5dwx/97Xo0/+COAj6nfPV5Ws7+/UDCzFQMSvFSb79Xd2vKB+5yLPcUH9La9A/rCOV2s+AuAb/w8HbTeo5+MCvtA6uqor2aEel83ACRk49GGqPqyTfq2w2K/BDr5D/YL4crvdbhxPwwH4/Mjve8kn8zmvSpa3c/40c2EeT8sj/JfrRefbObfX7tcY/8+I90/UFcey+QzgKs1vV3nXyk+stkj5BrQLSta3cWoG1sgAfPc5Iv2aL6Y+Im+/HpioG6yqX1D/BgQd/TQdaO8qM7B6BuDL/LriD0SmUwM/BcqfmU/t53ZmYAPfOd13qFDGOzEHM7BjAD7Rfyq2qztXBrb5ZUX+5rnKtP26irZH3ank109PMfqSkVPYsA4zcG4G7NfnZvzy7fkZ6uXPoUdgBszAShjwgrqSiTAMM2AGLp8BL6iXP4cegRkwAythwAvqSibCMMyAGbh8Bk7yUoo04AH+2c8QbWGzdspbYW1lt5antfVrxV8ruzX8t8Layq7i6GQLajLS4qzFFjYVp0rWCmsru4qLS5K14q+V3Zq5aYW1ld1Bjk6yoOJKcQvt1WeIElnScXTW4pgsahP9R89wVDLimRuiWGkv6TjiR2GN2lW6Faa5/Ky1fZS/EkdJ/9Cchv49qXlTspp5WJIjhTVqV+kuzZvi6VQL6mJnLWLgg+cwoj5kE6SoMxyVbJMw8SSpUuAOtD+jWJO92WdRRu1icKM8FDCVeLkIeZQ/xVFBZt9+8BDlf4txpOam5LgnWVAzIy+Rz09eYnn0DFEA77b6ZWmm6iGrZKlxlU30zXfS8I5g8rmlCdPef4GQsJSSKqwFDtQ4ejxVdtF5VHcBU2/3saRV/CmOlCwjrcqumreCbJNw2bdBFLjA33nhZG/5YZyLUtUZovMgf28dsYm+3RUuaVv83NII1u8jPs6pcbB1xG5J9zGax1cT4S/CRsSumjclq8UbwapslrBG7JZ0K1xKdrIFFUa4oIbOEFVAR2RhmyD2XOeWhrGOcNBVi3GE7QrdCtJjkYX5qyQibFfNm5JV4A1jVTYF1rBdoVtBGpfxtCnEVZyHmrAcnbXIcxeVLD+XcU4eOi/q3NIxDtQ45vAx1LakewzTkK5rrVMcKVmELzVvShaxGek7xsOSWEu6xzANjRNtu/NQV3F8H64SfPHE50XvEPm1wD3qurtdJUO76gC9PLeUdvvAl0f8X0w3StY3PmcKPIqf0XFEMSoeFKao3cfSX3GkZNHxF+ZtMX+pwa14UOOosZX3UboVplxHnkef7vi+VSyoOTDnzYAZMAOXxkC/oD65NODGawbMgBlYKwNP1wpszbjS1YifFPHnEz8L4+MKhheQ8eR3/lcR/AyLn598QNknwYMIh2UZsF8uy+8U7V5Qp7A03GZVW96GIbr2ChmwXzacdC+oM8nHXQA/1ajeZov+o1teCSXpP9qOOBOmm18ZA1G/JF3K95TsyqiWw/WCKuk5FsKxVrnl7Ripa66Jgahfoj+/JPkRkTcMe0HJ9hq6sPFLqXon4HPT/H+KZXl0m21mRm7nhPPmOrNuzpqBSQxU+SX87vOY7ynZJERX1MgLasVkw8F4Fa/aZou+o1teK6C4ixnYMRDxy50SZ0IMeEGto48LamibLZx/dMtrHST3MgNNtn+b9owBP0PNyJiaxWLIn+V7P81Rl/+U36DMO9HXQzoh42Esb5F+Yx7x7VA715mBOQzAj0J+OceW2w4z4DvUYV4Wq4XT89tVfqf6FfktUr717wLKzxEp48sBLrQ72UML/zUDyzCgfE/JlkFzuVrl1lMQ+QxD+wOR6dTAD9v3PmRHmQuHgxnYMQCfuNkVGmXsl42IX7HZWr9Ev24vv/zJj0bc7bP3U7aGi1qQNbbcxwxMZcB+OZUpt5vKgH/yT2XK7cyAGTADBQa8oBYIstgMmAEzMJUBL6hTmXI7M2AGzECBAS+oBYIsNgNmwAxMZUC+lJqqZEq79BbsrEfetbA5hYuhNq2wtrI7xEGLulbjb2W3huNWWFvZreGo73O2BTUZbHG0WAubPb9z01ZYW9mdy89S7VuNv5XdGh5bYW1lt4ajzVkWVFxpboGu+sg7jizpGDzWbkgWtYn+o8fsKVnNLESxKn4U1qhdpVthquFoiT7R8ZfGmPQf+WzUruJdyWo4jGJVHCmsUbtKt8JUw1He51wLaujIO5Az+2gx9AnZBEm/QMcPiXxubPiK2H+MrmSbhJfbS0vhDXEysiHSF0j4D7ALKHPc3J6ab3N9ibq9raqp3eDRa2g7ihX9QnYLukfnDP1WEaLjV7wXZIvxDmJH55ukJ1z2zZGjCqOOeZYFNQPJxeDDQXn0yDtMfrfjKkuzrg9ZJUuNq2yib76hgXfY3OTQByXbJEz870/mhiqsBQ4k1gSwyi76juouYJrLy9Ltq8avxqhk2WCq7CreC7JNwmXfBFHgAn9PG872lh/guShVHXlXO+SITfTt7iKSbV7RdwedKFkLrMpmCetSHClMa5JFxh8ZR8SumlMlq8UbwapslrBG7JZ0K1wR2dPU+RYA9vbro5zfkUVs9H25oA4deZf/fOVP21ewzQNC8jvZXsfcNGwTWPpj9vbOJyAQJZsLFO3DWJVNgTVsV+hWkNYiC4+/ciBhu4p3JavAG8aqbAqsYbtCt4JUlEHv3nqJDg/lu7u7L4jbg/hpu91u1hYT1mdDuJRsqP2UOuj8iNjZYz7vo2R5u3PmgYlzecTPklhLuscwnZOXpW2pMSpZBJfiXckiNiN9x3hYEmtJ9ximKeNE33vE7UG8v2HntQdcDfiCg8+b3iHya4F71HV3u0qGdtUBennMHu32gS+PfmJByfrG50yBR/EzOo4oRsWDwhS1u5b+aoxKFsVf4H2x+a7BrXhQ46ixlfdRuhWmXEdN/v88BzNYr9m2KQAAAABJRU5ErkJggg==\n", "text/latex": [ - "$$\\left[\\begin{matrix}\\frac{m_{22}}{m_{11} m_{22} - m_{12} m_{21}} & - \\frac{m_{12}}{m_{11} m_{22} - m_{12} m_{21}}\\\\- \\frac{m_{21}}{m_{11} m_{22} - m_{12} m_{21}} & \\frac{m_{11}}{m_{11} m_{22} - m_{12} m_{21}}\\end{matrix}\\right]$$" + "$\\displaystyle \\left[\\begin{matrix}\\frac{m_{22}}{m_{11} m_{22} - m_{12} m_{21}} & - \\frac{m_{12}}{m_{11} m_{22} - m_{12} m_{21}}\\\\- \\frac{m_{21}}{m_{11} m_{22} - m_{12} m_{21}} & \\frac{m_{11}}{m_{11} m_{22} - m_{12} m_{21}}\\end{matrix}\\right]$" ], "text/plain": [ "⎡ m₂₂ -m₁₂ ⎤\n", @@ -2265,7 +2261,7 @@ "⎣m₁₁⋅m₂₂ - m₁₂⋅m₂₁ m₁₁⋅m₂₂ - m₁₂⋅m₂₁⎦" ] }, - "execution_count": 46, + "execution_count": 109, "metadata": {}, "output_type": "execute_result" } @@ -2290,7 +2286,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 110, "metadata": {}, "outputs": [ { @@ -2303,18 +2299,18 @@ "[-1, 1]" ] }, - "execution_count": 61, + "execution_count": 110, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "solve(x**2 - 1, x)" + "sp.solve(x**2 - 1, x)" ] }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 111, "metadata": {}, "outputs": [ { @@ -2330,13 +2326,13 @@ "⎣ ╲╱ 2 2 ╲╱ 2 2 ╲╱ 2 2 ╲╱ 2 2 ⎦" ] }, - "execution_count": 62, + "execution_count": 111, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "solve(x**4 - x**2 - 1, x)" + "sp.solve(x**4 - x**2 - 1, x)" ] }, { @@ -2348,26 +2344,26 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 112, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAH4AAAAVBAMAAAByPkciAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAZpkQ3Ynvq81UMrtE\ndiLw+n06AAAACXBIWXMAAA7EAAAOxAGVKw4bAAABrklEQVQ4EZ2UMUjDUBCG/+Sl2NI2uugqHcQu\nQiY7lSoiTpWAi4sguIgg1EFxDIK4Zupog6tDuzmI2KmbtFS0k6i7g1pEJ/HeS1KTl4iQGy69/97H\nXe5eCkApIJmd3XKOLSejieo45JTXBDybmSRWtQhNbZKTLLMlCXKYttkqoQukx/Cl2aEMSPEUsO6h\nMTzy//EXQMNwSyfiP4GuHeDLg5e7HvWo1USjMfXLc9DFVFboBHsnvufyYxbFplLV6Il57hDXv1lH\nnm+KbZPTP4Cm6a6u7tAgjNQw80QJz6L1dbuIbMvP61SfeBwB5zskMqRHOX4myjPsYrzn817/GKt6\nlyiQi+eRG6Lp+Dxofg0bOCGBvz9143DvW7Q+VAv3fhq4BKYN9/35JcoYj8gbv+kYPlsDLd03uj/F\nwP3p2td45rnA/CuWf1g81Vbujf8Q84dmM5qbuDrclR7KhQmedfevHnztQVviwsjYfv9bBHz/YBsD\nJ8CLhOxOJYEmINmovqS7oRlSD1FphwQKBP/X9896oeOLuArFPHA7Oo7oQlDC8k3fCQsUddpcyiT+\n/1sDfgDNr2XH9LJoSQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHAAAAAVCAYAAACe2WqiAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEU0lEQVRoBe2Z61EbMRCADUMBJHRAOuBRQaADHhUkdADDL/jHQAdABUzoAFIBjw6ggxA6cL7vfNLcyWf7bA5zEHZmrddqtavdlVbnmW6320nh8PBwnr4V+6lfp+Of7entAPu/yGpL4D31x3Tl2bQDol36foMa8TYd/2xPdwdyo2m4Y+pXoHaJMFOMQAY3GPkFfqH+HKlaUkEmPVH5ltso3yTbhB7H+bw/lN9ADdUXadLQf0XxTLlpW5jrFfF3ldojBK0xHrLocefgE+ix7pHyIQDd7lDkiPJShXJd7yjXwSoj3kNmkEXoO0LjSEsqKJJ5HOUOIl20RKwXi4E+P2EyT5kZT4bUDRzbp7brQOsNWEeJd0rjMWhEpXBDxxrG9OQZCZ8GHLlFr0awBmevhRTC9eX4SEjvwKETcq8w9AXvyx/gIrgNCjfQxCOh19X/C80DvdeUHoutgIJuJhIPtE+CYPnYOWVMHsJYWkIzUrecXzo1bX9NO6raaQQatsEDqujNkE5EBg11kwvDfY/SuSGjoloNufAaPXtnVlO9Se9+rpeZ3n4iwRbtUvKQjGfNMXQLxqna6xCV7mcKZqphbjYWDcjibqrRVXmBMu5YaiCVChEn43ScrjLAR6F9piyXR96uleuuQwrrYJoB2jfyg0bDui0oTALutYlPdKY5Gkt06nGWpq+DBL1lrKiYSsWvA4yNPF6gzwDaKs8Lw29RPiFTcESj7SgRwvso7UtIes2auoUoq+IRIsxoKwG8feJ5xJ9SarOjWSpmQt5lGs4jsip0OzkdJBFU6kOk9eiWORSlOqn/WdCSPh3bvkGOHUhrl2G9nG86L+x/MViKNOYNGnkPPpfZESpD0AE9w3ttKECrokLw2g59hnZYvDf6/n6z1B49nguiq6v7o6M3CTqE11YKIQL7HAYZPDr91LlJPRuPd2DORSH1uBJArHH8DhcMp7E7tIteYhJQVLzEYxoN1n+pA7mhRZ0Uu9b9N4F+fhJcqZhnbuDVVLWXZv46U5QxNWAFv6xLw4neFW6SkRoXoM+xkARQHQzOB7ugn5EaA/nC7O8L+caNUTB4Bb3NTEeCMoC1dIPOY9r9jAmJ8+nzDvZKGwTufYS5WBteMVxdUIU6LLQDGpFmrBqimARIMhCYEzzodiBRMsAcvVXlgsf6vdDTwndn9l4r8HUTxehgCbthTZ9DvvfMpk0iTBiEvuOs113+LchQVzejzZMrHKVG2Hfa6lYP/Dci4MHBwTH4ENrvsUT+DXC+Cdnz/bhrglcTPHJ5Svape4TW84Z2UK0aCeOKwhxT83isUzfiffvWej6Mu15T9KkBPTZCFtTUGlPjk2+6OkwCXg/FZ5HZ+Bk8Y6Y9CdOG5+hUJedMDZi9fxA6XqwNC/Da7LaQPX7DHHMx778O83dB73YjMusbk8+rkCOLxjPBUbYIpX/k7YXQC1XBjcQL2m3yQET6v4D991m3DWqXPnv8A5J60MOc2YU0AAAAAElFTkSuQmCC\n", "text/latex": [ - "$$\\left \\{ x : 1, \\quad y : 0\\right \\}$$" + "$\\displaystyle \\left\\{ x : 1, \\ y : 0\\right\\}$" ], "text/plain": [ "{x: 1, y: 0}" ] }, - "execution_count": 88, + "execution_count": 112, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "solve([x + y - 1, x - y - 1], [x,y])" + "sp.solve([x + y - 1, x - y - 1], [x,y])" ] }, { @@ -2379,14 +2375,14 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 113, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOAAAAAmBAMAAAAvsop7AAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAVLsyIs3dRBCZ76tm\niXbIwtSaAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADrElEQVRYCc2XS0hUURjH/6N3nDvqjLNoUS5q\n6LEpiIEiaNUsQrA2gzASBGmCFdnDRbRooXcRQUqNGC1EsrAHlRUTVLTJXLlJUoggIXWgIEfIlKIM\nKzvn3MfM/c65M7OQ6CzOOd/v/L/vf1/nzh0A8G1i3T9or9pNE63RmuR71k/OGfmxmIfmP0iMAu3a\nwF3KgOn5GBBeNsTKhagsCNxCk0S1w0hKkIJzcf8CZaiL+BMM7uMdcN0Qg6vrGkGvC/CgcgKPJUiA\n/gDBKGHAQ1RFGAz8Eiut0ro4iFMSVh0ZFQWXUJFRQBP9FMMgXWfxIPSvElYJqagyilRMAU00JAZF\nHf03fAs0jcHiLTWBDZKKQbOZVirDRZQl1tBEdgd8lNE4FcEWX5zQmhGA30N24XK9mDrdIYym7cNy\nYD/0K07gMfFnqttCdC2YxsUYh96G3Z93DrfTvND71xRJsT78Zv8niU6NZQTzNpRSVgf8p4brV+fs\neJXSznAVDVvEsS8XOYNVNBSvYt8iM9Tnn3RMc+OKtGRf2PDyADTx89AmJcpgxmCsIsG6SxjNiHdq\nF4/crbDhRC3CCyxBv+3OUkZd7HS0BoOtvcOMIb1ZrJyChlrkKsqilrLooLUZqI1wmYGGfHXNCm+c\nvE0mjyeTB/lUMH4y+U3HI9RkcsQR6Y1HWGuNsaVcNVTfRPdmU/0nl0RmBc8QgSXs4VVLa2d7gPF2\nri2Xf43sEoUNgwnM2cqiY5i7hJZYt5bd+FkPfWHDsjS2eSTKuHOEMZ1dzMBi2YLGAxR/SlMJrnNa\nMGp+OJT0lG4VafeY6fBsdkwExfdhxTHHjE/0F9lvApSyD82tM+QqYAZa30bnSXAuaX2v+ICl24fd\nxbxmifII23p2Ne93aTdCP+yc89ZET2OGP2AT9oIYnyLFod1skR2L0anmbfgcuO/KYUGVgcob7Bpm\nXAsnsD0/tkT5CHCqeRveAV7G3FmobEYVe6yr3bgj69JZIrfGqeZt2GTIhv4lYeiuRSOlyKnmbcjq\nnDZoMfai53u2WFOKzGqFDAOqr9BO9wOjtlaJrGqFDBUbEihlrylFVjXTsEV5oH0KGuxRQIqUIqua\nadhIU3gcVtXOqpSUqURWNd38MzMeoTksXgctTrGvB3spk2KlyKoWMn+SgvyjhrTyHoTjhGE38JEy\nKVaJ7GpfRkx57QEprW5q8hmF2smp/mYKaawUWdV2HbXVZ+yJMzatrHx3AmviZ58PzRTSWCmyqu3g\n4r9Q1gIGAlZHdQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANMAAAAmCAYAAABeWK5zAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAH+0lEQVR4Ae2c6XEUORTHx5QDADYDbwbGRABkwBGB2QxM+ZP9zQUZABGwkAFsBBwZwEaw4Ay8/5+QGqlbfYy6290a9Ko0utXv0JOertm7urratMH5+fmJ8v6Se6Twl7ZyJb1wYJc5oL7/VPQ9k3uu8Ks2WvdiyqQKB6rwXu5SDkX61tbAUukWRwgEx//k3sk9VPoL+asD4fVcSIEn8IfcG6Xt3ACVk1y2kYnKPpTMkCH97Z7i+AE0lMky47NKfVD4UVB6JRHhdV+ovJW7o7BRdPkoP+m3FG4QqvRFQLi4gemZwij8Rv5LeQfyHyyC1EwfFT1ZyEV4JslE9W6KdejGRuE/62y8UU9QHO2j0nEkb/EkSxCKROf0Z0zC35S2GkWyzELJ3wkvo0g27bF80ncGMpNLkkxs32LZw0CI6RfAfhD7GTmU98VWjGQvnuSU/e8aJoyKfoetZV9/VDw0M5C+fOF/Xem3/PiOhLOQy1iZqD4WGyK7U5dbbGa6rUL+iF+vs3ScUR2CqhlIYWZSN3UvjZ///QaufuaOhRu0rlQuDTwT5EDfQ08CiClTUGBNESscFKe+cIdBG+V/WAu+HbiuBcXJ8OigdVVy6cBzEl5kpUwexR+9MEE2SoyCiWHs6DFLLQrCwc2cX2OIKB+zdNdg1XKZWyZZKZNlBkpTKYvSWAgS/2R75l2lrcVM5UyiYVsLP9YX3y2+2XuZyWU2mcS2xn9IumveFsfMey3HKGjOa+QzC9BBSQP3uhmo5GXAKg4fd2dMhF/ZDkh4J0D0ZCOXsTJR/aiOZKdMO9HzChFZc6BNmbIy87KWQEF+5zlQlCkiYo089+Uah3KRoiWpcKDiQFGmihVBAPsfV6BwIMaB6OZRTJlKJ4qxr6QVDvziwKWCB7+iP0PBdSLMG1ug996YyqJ0zhS6qzB3+fjAEzngo8p0Xu9RPmcw7L5x36nASA54MuES5lfFqxv0Nu+1/N7LyypT5NItCy4HnMBTORTLQH1mYnuZe3mtbzZsPTzedrzAKcyWNNvVrDV4FoGi0VYrqBxlUL6j1kIlY1sOnFp5MBie1ipzG4FnBJ1Q5NLJHpNp+zhnmW/90kaZYKCcm43u+QViYZVlRqorC4JyMxH3lur5QVNqA43muUTjUDMoWCKDOCA+MjAxqAE87agfXJPWe92qyAX2DQL67W3x670cE8NmXwFMOzTsQuHKLFC8Cz6prC8sBMWMZtLk95oSNK5yKNRgUPn2Z8G1VlR2r5bUiKoMt7qdaevnm0uMyo+Zn9DZSZ/yJ8XTR6wj/F3fdYMZs1BwU11x6KynRZtTO4vJRd+mY/4jZzpoFMFmYu9L8KllYnnEezomlh/y7+ydnZ0xoqFMXMfhjdBWjFSdjerQeag7VBmptloQHcyyvFnJjh7hjNJgZVSPJJV2qDiP2hD+am6HCJ+sQbykn2CB8V7t2Q398KCOKQsl+ldhGD8YVN6N7G5U3CgNs3GbkWXw90rBXg4wazJ7+oMiMrpUWlGkXvYNKyBeokTsEzArsk+wMWsmAjYBm5opthVUzqyv5DslMqaQ4r7Zx0LYF2ZreyUj5AD8DVO2jmFp+LKggUHrpa2/9JtWsH3/RORjjVUDVKVMli9mJ04F3JZ3jF0oEQ4bHcFzgFUpjv2QWwgrKw7UlbuSM2/q46V+r1R4Ioqxv8fwJFAkteXk5TaYOpkKDnJFLp1cMv9UxEwf7HoHyqRMBIFidO2wMXvRCEJ6qjrMTMfyX8qhhAijMvkUj4LK8B2+x1qtgDjg8QQeolgpYEwO1efogtHTbZb07uTxMdUpcunn+pGKBIMWVfZb6pndrFieZbYx7Vy+0lCeXgVy5Z2veo1/eHF5fb7qYs6YjiMf4pghg2lX8UUhBUd4IsfCNglUF2VwCrRRHNueNVRD+G0fUNkkuajeTsqkhU/0twDalCkotLaIFRojb73TfFbaA7lBo3AHXXRIXDKMxJEHjimDE1v9R6prLAv5NxXHWjhOJmRgxZH0DvzKuGIT49joH4GZNw7Va63NaBt0EDGKWQoC2eYfBWqLK06BPZzQYBKO+i4K4D8k3ObTmN5vvArsNvEQcWvF9NoYGkyid2jjE5WbFcdclYlOw0KdjucDMxLrDcyNpSEVx8fCP/V8y62XuDfGLMU61pnCc/Mjld658fLbnxXHff9LGYVRmkN1lMZUa2moK9kSpCXhKJqSZ0TVvY4ZqI2XSfS2NTZT+qw4ZqlM6jTVWqnGdHPgrPxq77+Wf23RHHCckhk50Ds3jrmaeY1+IEahSJh312XWNHDoS8gBxz4atsnPgd4pcdwZZZKQ2XhgsZ263timn6SWzQHHVNpi9XKgdzIcY8rE/vka1hwx4UTTpEAstlf9yDAHHKPMTUzMgd6pcYwpE4v61kPbRN7OVk0MMVef5AcHybN9MKHhHHBMIKu1Sg70puKoekw0uMahbUyZ3I7HQSu3VpIhwrgpwI2BSpEU5unEanDPAccpxZkDvSNxPLX84swqgJgyXagEV0+qF4RBjZVExBA2HLgpUN9wQMEao8YSaOeA45R8yYHeMTiqLncdzX1HhRvXsxr/6ApzVZBpjIUZd96475Z89qH6k4PwYebhFjSzqA+Yp5w/Jd0t8xsaG84Bx7E0+vVzoDcVR9Vj4EYfgNZXvdFzJlVm3cQdN0b5J/J5pr742Q2UWIAwFCr2VGQteOaAo+PnFH4O9I7BsVWJHPP+B+hmv0kiy0V8AAAAAElFTkSuQmCC\n", "text/latex": [ - "$$\\left \\{ x : \\frac{a}{2} + \\frac{c}{2}, \\quad y : \\frac{a}{2} - \\frac{c}{2}\\right \\}$$" + "$\\displaystyle \\left\\{ x : \\frac{a}{2} + \\frac{c}{2}, \\ y : \\frac{a}{2} - \\frac{c}{2}\\right\\}$" ], "text/plain": [ "⎧ a c a c⎫\n", @@ -2394,13 +2390,13 @@ "⎩ 2 2 2 2⎭" ] }, - "execution_count": 89, + "execution_count": 113, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "solve([x + y - a, x - y - c], [x,y])" + "sp.solve([x + y - a, x - y - c], [x,y])" ] }, { @@ -2418,85 +2414,6 @@ "* https://github.com/sympy/sympy - The source code of SymPy.\n", "* http://live.sympy.org - Online version of SymPy for testing and demonstrations." ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 版本" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [ - { - "data": { - "application/json": { - "Software versions": [ - { - "module": "Python", - "version": "2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]" - }, - { - "module": "IPython", - "version": "3.2.1" - }, - { - "module": "OS", - "version": "Darwin 14.1.0 x86_64 i386 64bit" - }, - { - "module": "numpy", - "version": "1.9.2" - }, - { - "module": "matplotlib", - "version": "1.4.3" - }, - { - "module": "sympy", - "version": "0.7.6" - } - ] - }, - "text/html": [ - "
SoftwareVersion
Python2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]
IPython3.2.1
OSDarwin 14.1.0 x86_64 i386 64bit
numpy1.9.2
matplotlib1.4.3
sympy0.7.6
Sat Aug 15 11:37:37 2015 JST
" - ], - "text/latex": [ - "\\begin{tabular}{|l|l|}\\hline\n", - "{\\bf Software} & {\\bf Version} \\\\ \\hline\\hline\n", - "Python & 2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)] \\\\ \\hline\n", - "IPython & 3.2.1 \\\\ \\hline\n", - "OS & Darwin 14.1.0 x86\\_64 i386 64bit \\\\ \\hline\n", - "numpy & 1.9.2 \\\\ \\hline\n", - "matplotlib & 1.4.3 \\\\ \\hline\n", - "sympy & 0.7.6 \\\\ \\hline\n", - "\\hline \\multicolumn{2}{|l|}{Sat Aug 15 11:37:37 2015 JST} \\\\ \\hline\n", - "\\end{tabular}\n" - ], - "text/plain": [ - "Software versions\n", - "Python 2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]\n", - "IPython 3.2.1\n", - "OS Darwin 14.1.0 x86_64 i386 64bit\n", - "numpy 1.9.2\n", - "matplotlib 1.4.3\n", - "sympy 0.7.6\n", - "Sat Aug 15 11:37:37 2015 JST" - ] - }, - "execution_count": 90, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%reload_ext version_information\n", - "\n", - "%version_information numpy, matplotlib, sympy" - ] } ], "metadata": { diff --git a/1_numpy_matplotlib_scipy_sympy/test.txt b/1_numpy_matplotlib_scipy_sympy/test.txt new file mode 100644 index 0000000..cd08755 --- /dev/null +++ b/1_numpy_matplotlib_scipy_sympy/test.txt @@ -0,0 +1 @@ +Hello world! diff --git a/References.md b/References.md index 10532fa..af2369e 100644 --- a/References.md +++ b/References.md @@ -18,3 +18,5 @@ * 一款图像转卡通的Python项目,超级值得你练手 - https://www.toutiao.com/a6821299115175969287/ - https://github.com/minivision-ai/photo2cartoon + +* [Awesome Deep Learning Project Ideas](https://github.com/NirantK/awesome-project-ideas) \ No newline at end of file