# References 可以自行在下属列表找找到适合自己的学习资料,虽然罗列的比较多,但是个人最好选择一个深入阅读、练习。当练习到一定程度,可以再看看其他的资料,这样弥补单一学习资料可能存在的欠缺。 ## Python & IPython * [Python教程](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000) * [Python-Lectures](https://github.com/rajathkmp/Python-Lectures) * [A gallery of interesting Jupyter Notebooks](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks) * [IPython tutorials](https://nbviewer.jupyter.org/github/ipython/ipython/blob/master/examples/IPython%20Kernel/Index.ipynb) * [Examples from the IPython mini-book](https://github.com/rossant/ipython-minibook) * [Code of the IPython Cookbook, Second Edition (2018)](https://github.com/ipython-books/cookbook-2nd-code) * [Essential Cheat Sheets for deep learning and machine learning researchers](https://github.com/kailashahirwar/cheatsheets-ai) * [手把手教你用Python做数据可视化](https://mp.weixin.qq.com/s/3Gwdjw8trwTR5uyr4G7EOg) ## Libs * [numpy](http://www.numpy.org/) * [matplotlib - 2D and 3D plotting in Python](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb) * [scipy](https://www.scipy.org/) * [pytorch](https://pytorch.org/) * [tensorflow](https://www.tensorflow.org/) * [keras](https://keras.io/) * [bokeh](https://bokeh.pydata.org/) ## Machine learning * [ipython-notebooks: A collection of IPython notebooks covering various topics](https://github.com/jdwittenauer/ipython-notebooks) * [Learn Data Science](http://learnds.com/) * [AM207 2016](https://github.com/AM207/2016/tree/master) * [Python机器学习](https://ljalphabeta.gitbooks.io/python-/content/) * [scientific-python-lectures](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/tree/master/) ## Awesome series & Collections * [Awesome Cmputer Vision](https://github.com/jbhuang0604/awesome-computer-vision) * [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning) * [Awesome - Most Cited Deep Learning Papers](https://github.com/terryum/awesome-deep-learning-papers) * [Awesome Deep Vision](https://github.com/kjw0612/awesome-deep-vision) * [Awesome 3D Reconstruction](https://github.com/openMVG/awesome_3DReconstruction_list) * [awesome-algorithm](https://github.com/apachecn/awesome-algorithm) * [Papers with code. Sorted by stars. Updated weekly.](https://github.com/zziz/pwc) ## Lectures * [Machine Learning](https://www.coursera.org/learn/machine-learning) * [CS229: Machine Learning](http://cs229.stanford.edu/) * [CS 20: Tensorflow for Deep Learning Research](http://web.stanford.edu/class/cs20si/index.html) * [CS 294: Deep Reinforcement Learning, UC Berkeley](http://rll.berkeley.edu/deeprlcourse/) * [Deep Learning Book](https://github.com/exacity/deeplearningbook-chinese) * [Machine Learning Crash Course with TensorFlow APIs](https://developers.google.cn/machine-learning/crash-course/) * [ Nvidia DLI](https://www.nvidia.com/zh-cn/deep-learning-ai/education/) * [Introduction to Machine Learning](https://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551.htm) * [Computer Vision @ ETHZ](http://cvg.ethz.ch/teaching/compvis/) * [SFMedu: A Structure from Motion System for Education](http://robots.princeton.edu/courses/SFMedu/) * [Scene understanding of computer vision](http://vision.princeton.edu/courses/COS598/2014sp/) * [Autonomous Navigation for Flying Robots](http://vision.in.tum.de/teaching/ss2015/autonavx) * [Multiple View Geometry](http://vision.in.tum.de/teaching/ss2015/mvg2015) * [Deep Learning for Self-Driving Cars](https://selfdrivingcars.mit.edu/) * [史上最全TensorFlow学习资源汇总](https://www.toutiao.com/a6543679835670053380/) * [Oxford Deep NLP 2017 course](https://github.com/oxford-cs-deepnlp-2017/lectures)