# References 可以自行在下属列表找找到适合自己的学习资料,虽然罗列的比较多,但是个人最好选择一个深入阅读、练习。当练习到一定程度,可以再看看其他的资料,这样弥补单一学习资料可能存在的欠缺。 列表等在 https://gitee.com/pi-lab/pilab_research_fields/blob/master/references/ML_References.md ## References * [形象直观了解谷歌大脑新型优化器LAMB](https://www.toutiao.com/i6687162064395305475/) * [5种常用的交叉验证技术,保证评估模型的稳定性](https://m.toutiaocdn.com/i6838062457596936718) * 22 个神经网络结构设计/可视化工具 - https://www.toutiao.com/i6836884346155041292/ - https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network * CNN 可视化工具 https://m.toutiaocdn.com/group/6822123587156050435 - https://poloclub.github.io/cnn-explainer/ - https://github.com/poloclub/cnn-explainer * 打标签工具 - [Label Studio](https://labelstud.io/) - Demo video https://www.bilibili.com/video/BV1dL41147KE - Documents https://labelstud.io/guide/ - [LabelImg](https://github.com/tzutalin/labelImg) * 一款图像转卡通的Python项目,超级值得你练手 - https://www.toutiao.com/a6821299115175969287/ - https://github.com/minivision-ai/photo2cartoon * [Awesome Deep Learning Project Ideas](https://github.com/NirantK/awesome-project-ideas) * [Machine Learning From Scratch](https://github.com/eriklindernoren/ML-From-Scratch) ## Course & Code * [《统计学习方法》的代码](https://gitee.com/afishoutis/MachineLearning) ## Exercise * http://sofasofa.io/competitions.php?type=practice * https://www.kaggle.com/competitions * Machine learning project ideas * https://data-flair.training/blogs/machine-learning-project-ideas/ * https://data-flair.training/blogs/deep-learning-project-ideas/ * https://www.kdnuggets.com/2020/03/20-machine-learning-datasets-project-ideas.html * Titanic: notebooks/data-science-ipython-notebooks/kaggle/titanic.ipynb * 使用神经网络解决拼图游戏 https://www.toutiao.com/a6855437347463365133/ * [Sudoku-Solver](https://github.com/shivaverma/Sudoku-Solver) ## Method * Programming Multiclass Logistic Regression notebooks/MachineLearningNotebooks/05.%20Logistic%20Regression.ipynb * Equation for MLP notebooks/MachineLearningNotebooks/07.%20MLP%20Neural%20Networks.ipynb * Optimization methods notebooks/MachineLearningNotebooks/06.%20Optimization.ipynb * https://github.com/wmpscc/DataMiningNotesAndPractice/blob/master/2.KMeans%E7%AE%97%E6%B3%95%E4%B8%8E%E4%BA%A4%E9%80%9A%E4%BA%8B%E6%95%85%E7%90%86%E8%B5%94%E5%AE%A1%E6%A0%B8%E9%A2%84%E6%B5%8B.md * evaluation metrics http://localhost:8889/notebooks/machineLearning/10_digits_classification.ipynb * model selection and assessment http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selection%20and%20Assessment.ipynb ## NN * 神经网络——梯度下降&反向传播 https://blog.csdn.net/skullfang/article/details/78634317 * 零基础入门深度学习(3) - 神经网络和反向传播算法 https://www.zybuluo.com/hanbingtao/note/476663 * 如何直观地解释 backpropagation 算法? https://www.zhihu.com/question/27239198 * 一文弄懂神经网络中的反向传播法——BackPropagation https://www.cnblogs.com/charlotte77/p/5629865.html * https://medium.com/@UdacityINDIA/how-to-build-your-first-neural-network-with-python-6819c7f65dbf * https://enlight.nyc/projects/neural-network/ * https://www.python-course.eu/neural_networks_with_python_numpy.php ## k-Means * [如何使用 Keras 实现无监督聚类](http://m.sohu.com/a/236221126_717210) ## AutoEncoder (自编码/非监督学习) * https://morvanzhou.github.io/tutorials/machine-learning/torch/4-04-autoencoder/ * https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/404_autoencoder.py * pytorch AutoEncoder 自编码 https://www.jianshu.com/p/f0929f427d03 * Adversarial Autoencoders (with Pytorch) https://blog.paperspace.com/adversarial-autoencoders-with-pytorch/