{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Digitial Classification\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Automatically created module for IPython interactive environment\n", "KNN score: 0.953661\n", "LogisticRegression score: 0.908248\n" ] } ], "source": [ "print(__doc__)\n", "\n", "from sklearn import datasets, neighbors, linear_model\n", "\n", "digits = datasets.load_digits()\n", "X_digits = digits.data\n", "y_digits = digits.target\n", "\n", "n_samples = len(X_digits)\n", "n_train = int(0.4 * n_samples)\n", "\n", "X_train = X_digits[:n_train]\n", "y_train = y_digits[:n_train]\n", "X_test = X_digits[n_train:]\n", "y_test = y_digits[n_train:]\n", "\n", "knn = neighbors.KNeighborsClassifier()\n", "logistic = linear_model.LogisticRegression()\n", "\n", "print('KNN score: %f' % knn.fit(X_train, y_train).score(X_test, y_test))\n", "print('LogisticRegression score: %f' % logistic.fit(X_train, y_train).score(X_test, y_test))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References\n", "* [Supervised learning: predicting an output variable from high-dimensional observations](http://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html)\n", "* [Digits Classification Exercise](http://scikit-learn.org/stable/auto_examples/exercises/plot_digits_classification_exercise.html)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }