import torch from torch import nn, optim from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision import transforms from torchvision import datasets batch_size = 32 learning_rate = 1e-2 num_epoches = 50 # 下载训练集 MNIST 手写数字训练集 dataset_path = "../data/mnist" train_dataset = datasets.MNIST( root=dataset_path, train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST( root=dataset_path, train=False, transform=transforms.ToTensor()) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 定义简单的前馈神经网络 class Neuralnetwork(nn.Module): def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim): super(Neuralnetwork, self).__init__() self.layer1 = nn.Linear(in_dim, n_hidden_1) self.layer2 = nn.Linear(n_hidden_1, n_hidden_2) self.layer3 = nn.Linear(n_hidden_2, out_dim) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) return x model = Neuralnetwork(28 * 28, 300, 100, 10) if torch.cuda.is_available(): model = model.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) for epoch in range(num_epoches): print('epoch {}'.format(epoch + 1)) print('*' * 10) running_loss = 0.0 running_acc = 0.0 for i, data in enumerate(train_loader, 1): # FIXME: label need to change one-hot coding img, label = data img = img.view(img.size(0), -1) target = torch.zeros(label.size(0), 10) target = target.scatter_(1, label.data, 1) if torch.cuda.is_available(): img = Variable(img).cuda() label = Variable(label).cuda() else: img = Variable(img) label = Variable(label) # 向前传播 out = model(img) loss = criterion(out, label) running_loss += loss.data[0] * label.size(0) _, pred = torch.max(out, 1) num_correct = (pred == label).sum() running_acc += num_correct.data[0] # 向后传播 optimizer.zero_grad() loss.backward() optimizer.step() if i % 300 == 0: print('[{}/{}] Loss: {:.6f}, Acc: {:.6f}'.format( epoch + 1, num_epoches, running_loss / (batch_size * i), running_acc / (batch_size * i))) print('Finish {} epoch, Loss: {:.6f}, Acc: {:.6f}'.format( epoch + 1, running_loss / (len(train_dataset)), running_acc / (len( train_dataset)))) model.eval() eval_loss = 0. eval_acc = 0. for data in test_loader: img, label = data img = img.view(img.size(0), -1) if torch.cuda.is_available(): img = Variable(img, volatile=True).cuda() label = Variable(label, volatile=True).cuda() else: img = Variable(img, volatile=True) label = Variable(label, volatile=True) out = model(img) loss = criterion(out, label) eval_loss += loss.data[0] * label.size(0) _, pred = torch.max(out, 1) num_correct = (pred == label).sum() eval_acc += num_correct.data[0] print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len( test_dataset)), eval_acc / (len(test_dataset)))) print() # 保存模型 torch.save(model.state_dict(), './model_Neural_Network.pth')