import torch import numpy as np from torch import nn from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus'] = False #%matplotlib inline np.random.seed(1) m = 400 # 样本数量 N = int(m/2) # 每一类的点的个数 D = 2 # 维度 x = np.zeros((m, D)) y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 a = 4 # 生成两类数据 for j in range(2): ix = range(N*j,N*(j+1)) t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] y[ix] = j #尝试用逻辑回归解决 x = torch.from_numpy(x).float() y = torch.from_numpy(y).float() w = nn.Parameter(torch.randn(2, 1)) b = nn.Parameter(torch.zeros(1)) # [w,b]是模型的参数; 1e-1是学习速率 optimizer = torch.optim.SGD([w, b], 1e-1) criterion = nn.BCEWithLogitsLoss() def logistic_regression(x): return torch.mm(x, w) + b for e in range(100): # 模型正向计算 out = logistic_regression(Variable(x)) # 计算误差 loss = criterion(out, Variable(y)) # 误差反传和参数更新 optimizer.zero_grad() loss.backward() optimizer.step() if (e + 1) % 20 == 0: print('epoch:{}, loss:{}'.format(e+1, loss.item())) def plot_decision_boundary(model, x, y): # Set min and max values and give it some padding x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel("x2") plt.xlabel("x1") for i in range(m): if y[i] == 0: plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) else: plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) def plot_logistic(x): x = Variable(torch.from_numpy(x).float()) out = F.sigmoid(logistic_regression(x)) out = (out > 0.5) * 1 return out.data.numpy() plot_decision_boundary(lambda x: plot_logistic(x), x.numpy(), y.numpy()) plt.title('逻辑回归') plt.savefig('fig-res-8.3.pdf') plt.show()