thas=s>

Machine Learning

R




ko d
l.....
EEEEEENgy
am
L )
mm
n

.....



UAV

® Small, cheap

® No pilot

® Convenient

® Strong survivability

® Aerial photograph
® Attack

® Air platform

® General aviation




I UAV - Autonomous

Remote
Control

»

Heavy workload
Professional training
Difficult to be cluster

~

AN

Autonomous




I How to Realize Autonomous?

Eye

Brain

—> Ear —>

How to realize autonomous?

Environment

Body




I How to Realize Autonomous?

Eye
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—> Ear — —> Body

Knowledge

— Environment <



I New Challenges

‘ Mapping ‘

® Multi-type sensors: IMU, GPS, Image, LIDAR, RADAR ...
® High quality and real-time speed required
® Reasoning and knowledge are important for realizing strong Al



I Applications




I Applications
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How to Achieve Intelligence?



| How to Achieve Intelligence?

_
(Touch)
w give up
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e S = . . .
() e Learning is about seeking a
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o | predictive a_nd/or executable

= ‘WHAT IS LEARNING?’ understanding of

natural/artificial subjects
phenomena or activities from ...
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|What is Machine Learning?

Machine learning seeks to develop theories and computer systems for

Complex, real world data, based on the system’s own experience with data,
and (hopefully) under a unified model or mathematical framework, that

Representing

Classifying, clustering, recognizing
Reasoning under uncertainty
Predicting

And reacting to

Can be formally characterized and analyzed

Can take into account human prior knowledge

Can generalize and adapt across data and domains
Can operate automatically and autonomously

And can be interpreted and perceived by human




| Pattern?

“A pattern is the opposite of a chaos; it is an entity
vaguely defined, that could be given a name.”

- Watanabe
A
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http://www.cse.msu.edu/~anoop

| Recognition

|dentification of a pattern as a member of a category we
already know, or we are familiar with

— Classification (known categories)
— Clustering (learning categories)

}7_;1, A Ct .\\AII o
£ A/g » 8 it o | 111
A = 1/ /04 =
5 Category “B” — / [/ | /
BB

Classification Clustering



I Representation

Each pattern is represented as a point in acdimensional feature
space

Choice of features and their desired invariance properties are
domain-specific

Xl > x «

Good representation implies (i) small intra-class variation, (ii) large
inter-class separation and (iii) simple decision boundary




I Pattern Class

* A collection of similar (not necessarily identical)
objects

« A class is defined by class samples (paradigms,
exemplars, prototypes, training/learning samples)

 Intra-class variability
 Inter-class similarity

 How do we define similarity?



| Intra-class Variability

G T 7 5 TN

The letter “T” in different typefaces

222
o228

Same face under different expression, pose, illumination




I Inter-class Similarity

Identical twins Characters that look similar



| Inter-class or Intra-class?




I Good Representation

« Should have some invariant properties (e.g., rotation,
translation, scale, ...)

 Account for intra-class variations
 Ability to discriminate pattern classes of interest
 Robustness to noise, occlusion,..

« Lead to simple decision making strategies (e.g., linear
decision boundary)

 Low measurement cost; real-time



I Good Representation

“ handle
S L— Feature -3 | Learning
@ wheel representation algorithm

Input

4k Motorbikes
Input space | = “Non’-Motorbikes| ~Feature space
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I Good Representation

3rd layer
“Objects” _
* Represent objects from low-
level to high-level structure
2nd layer
‘Object parts” e Can share the low-level
representation for multiple
1st layer tasks
“‘edges”

Input




I Deep Learning = Learning Hierarchical Representation

@ Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Feature
Extractor

Feature L Mid-Level
Extractor Features




The Mammalian Visual Cortex is Hierarchical

® The ventral (recognition) pathway in the visual cortex has multiple stages
® Retina-LGN-V1-V2-V4-PIT-AIT ....

® Lots of intermediate representations

WHERE? (Motion,
Spatial Relationships) WHAT? (Form, Color}
[Parietal stream] [Inferotemporal stream]
gon reacny g

i
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I Deep Learning = Learning Hierarchical Representation

It's deep if it has more than one stage of non-linear feature transformation

Low-Level| |Mid-Level| |High-Level] | Trainable
Feature Feature Feature Classifier
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I Perceptron and Neural Networks

e From biological neuron to artificial neuron (perceptron)

Inputs

Xy Linear Hard

~' Combiner  Limiter
—~—_ Output
) AL

Soma Soma

Dendrites -
Synapse i Threshold
e Activation function ] e
| o
: +1if X>o
X => x;w; y — ’ 0 o AxE x
E o {1, if X <o, = s “é?‘f‘w"
M
= N O— 2
e Artificial neuron networks =0 <O
. . M 7 Oﬁ 3
e supervised learning 1T\ ), O s
e gradient descent —O Middls Layer )

Input Layer Output Layer



I Neural Networks

o
Neural networks
sample label
% ﬁ —_—
A hyp(X)
—_— —— B 5
—_— — C +1 Layer L,




I Neural Networks - Feedforward Networks
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Neural Networks - Feedforward Networks




I Neural Networks - Disadvantages

® The number of trainable parameters becomes extremely large

® Little or no invariance to shifting, scaling, and other forms of distortion

16 wheights

T
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T
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Input Image
16 = 16

100 hiden unit
25600 + 100 + 2600 +26 = 28316




I Hierarchical / Deep Architectures for Vision

Filter ,| Non- |} Spatial §)| Filter L} Non- | } Spatial

Bank Linearity Pooling Bank Linearity Pooling

Classifier

« Multiple Stages

« Each Stage is composed of
— A bank of local filters (convolutions)

— A non-linear layer (may include harsh non-linearities, such as
rectification, contrast normalization, etc...).

— A feature pooling layer
« Multiple stages can be stacked to produce high-level representations

— Each stage makes the representation more global, and more
invariant

« The systems can be trained with a combination of unsupervised and
supervised methods



I Convolutional Neural Network: Multi-stage Trainable Architecture

Pooling

Convolutions, i
Subsampling

. Convolutions,
Filtering

Classification

=

Convolutions,

Filtering Pooling

. . . Subsamplin
@ Hierarchical Architecture pling

» Representations are more global, more invariant, and more
abstract as we go up the layers

@ Alternated Layers of Filtering and Spatial Pooling
» Filtering detects conjunctions of features
» Pooling computes local disjunctions of features

@ Fully Trainable
» All the layers are trainable



I Convolutional Layer or Feature Extraction Layer

_ )@
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I Subsampling Layer

Feature map

o\

® By reducing the spatial resolution of the feature map, reduce the effect of noises and
shift or distortion.
® The weight sharing is also applied in subsampling layers



Convolutional Neural Networks - Demo
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Applications



I Application (1) Image Annotation

|:| imp_surf - Building D Low vegetation

(a) original image (b) shallow features (c) deep features (d) multi-modal features

- Tree |:| Car

N

N g
18

Ke Li, et al. Multi-modal feature fusion for geographic image annotation



| Shallow-feature (Color)

Shallow !
Modality .

Shallow-feature (DSIFT) ShaIIow feature
Texture)

e

Deep :
Modality ! CNNs

(a) Low-level Feature Extraction (b) Mid-level Feature
Construction based on Superpixel

Ke Li, et al. Multi-modal feature fusion for geographic image annotation

(c) High-level Feature
Construction based on DBNs
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Application (2) Object Detection

Joseph Redmon, et al. YOLOvV3: An Incremental Improvement



Application (2) Object Detection

Darknet-53 without FC layer DEL =

mmd DBL resl res2 res8 »B—
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416x416x3 |
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Joseph Redmon, et al. YOLOvV3: An Incremental Improvement



Estimate position and depth image simultaneously

Tinghui Zhou, et al., Unsupervised Learning of Depth and Ego-Motion from Video



I Application (3) Deep Learning based SLAM

Depth CNN

Tinghui Zhou, et al., Unsupervised Learning of Depth and Ego-Motion from Video



I Application (4) Place Recognition

Sourav Garg, et al., LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics



Application (4) Place Recognition

s

(a) Semantically labelled descriptors of
length D per 2D location in WxH

\\ (c) Local Semantic Tensor
——

Input
Images Densé Conv5 Tensor
| | WxHxD
Semantic (b) Residual aggregation g’e)sfi::)tzgll'
Segmentation _ — for each semantic class Matching

Top N Candidates

sl . :
(9) S::;;rt\gg? ly (i) V’\éelghted
t i eypoint
Keypoints § Matching

N\ A\
—'\\ "\§ \\f\\\ Final Match

8 % 83 8% 3 (h) Pairwise local
(f) Frequency Map of descriptor matching
high-activation regions

(e) Activations for different
feature maps of the tensor

Sourav Garg, et al., LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics



Application (5) Realtime 3D Map

TerrainFusion: Real-time Digital Surface Model
Reconstruction based on Monocular SLAM

Wei Wang, et al., TerrainFusion: Real-time Digital Surface Model Reconstruction based on Monocular SLAM



I Application (5) Realtime 3D Map

[ visual SLAM | [ Local DSM Generation | [ DSM Fusion b
New [ Noise Filter
— 20 Mesh irnge No Multiband DEM Multiband DEM
Tt S Patches Stitch — Blend bk —_.
Extraction 2T o . — T T
Track Current Project : = .
Frame 2DTo3D ! ]
{ 3D Mesh !
Add > I
Keyframe ..1'-’
Local Bicoacd '
Optimization JLE“‘". |
‘ evatlon;
2D Mesh
Fit GPS N |
y e | ) Local
, 'Ortho MosaiC St't h
Keypoints |- ! Itc Blend
T | ——— __)
Pointcloud -
& J J \ J

Wei Wang, et al., TerrainFusion: Real-time Digital Surface Model Reconstruction based on Monocular SLAM



I Summary - Methods
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I Summary - Problems

« General-purpose intelligent system is a very difficult problem

« Successful systems available in well-constrained domains

* All components are coupled

« No single approach has been found to be optimal for all problems

« Use of object models, constraints and context is necessary for
identifying complex patterns

« Careful sensor design and feature extraction often lead to simple
classifiers



ISummary - Future

Storage
Computing

Computing

Representation
Recognition
(Text, Voice,

Image, Video, 3D)

Perception

Organize and
Generate
Knowledge,
Reasoning

Cognition
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| Materials

Notebook: https://gitee.com/pi-lab/machinelearning notebook
Homework: https://gitee.com/pi-lab/machinelearning homework

Notebook Homework


https://gitee.com/pi-lab/machinelearning_notebook
https://gitee.com/pi-lab/machinelearning_homework
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